NASA Astrophysics Data System (ADS)
Hosomichi, Kazuo; Lee, Sungjay
2015-01-01
We study the system of M2-branes suspended between parallel M5-branes using ABJM model with a natural half-BPS boundary condition. For small separation between M5-branes, the worldvolume theory is shown to reduce to a 2D super Yang-Mills theory with some similarity to q-deformed Yang-Mills theory. The gauge coupling is related to the position of the branes in an interesting manner. The theory is considerably different from the 2D theory proposed for multiple "M-strings". We make a detailed comparison of elliptic genus of the two descriptions and find only a partial agreement.
String Theory and Gauge Theories
Maldacena, Juan
2009-02-20
We will see how gauge theories, in the limit that the number of colors is large, give string theories. We will discuss some examples of particular gauge theories where the corresponding string theory is known precisely, starting with the case of the maximally supersymmetric theory in four dimensions which corresponds to ten dimensional string theory. We will discuss recent developments in this area.
NASA Astrophysics Data System (ADS)
Maldacena, Juan Martín
D-Branes on Calabi-Yau manifolds / Paul S. Aspinwall -- Lectures on AdS/CFT / Juan M. Maldacena -- Tachyon dynamics in open string theory / Ashoke Sen -- TASI/PITP/ISS lectures on moduli and microphysics / Eva Silverstein -- The duality cascade / Matthew J. Strassler -- Perturbative computations in string field theory / Washington Taylor -- Student seminars -- Student participants -- Lecturers, directors, and local organizing committee.
Supersymmetry and String Theory
NASA Astrophysics Data System (ADS)
Dine, Michael
2016-01-01
Preface to the first edition; Preface to the second edition; A note on choice of metric; Text website; Part I. Effective Field Theory: The Standard Model, Supersymmetry, Unification: 1. Before the Standard Model; 2. The Standard Model; 3. Phenomenology of the Standard Model; 4. The Standard Model as an effective field theory; 5. Anomalies, instantons and the strong CP problem; 6. Grand unification; 7. Magnetic monopoles and solitons; 8. Technicolor: a first attempt to explain hierarchies; Part II. Supersymmetry: 9. Supersymmetry; 10. A first look at supersymmetry breaking; 11. The Minimal Supersymmetric Standard Model; 12. Supersymmetric grand unification; 13. Supersymmetric dynamics; 14. Dynamical supersymmetry breaking; 15. Theories with more than four conserved supercharges; 16. More supersymmetric dynamics; 17. An introduction to general relativity; 18. Cosmology; 19. Astroparticle physics and inflation; Part III. String Theory: 20. Introduction; 21. The bosonic string; 22. The superstring; 23. The heterotic string; 24. Effective actions in ten dimensions; 25. Compactification of string theory I. Tori and orbifolds; 26. Compactification of string theory II. Calabi–Yau compactifications; 27. Dynamics of string theory at weak coupling; 28. Beyond weak coupling: non-perturbative string theory; 29. Large and warped extra dimensions; 30. The landscape: a challenge to the naturalness principle; 31. Coda: where are we headed?; Part IV. The Appendices: Appendix A. Two-component spinors; Appendix B. Goldstone's theorem and the pi mesons; Appendix C. Some practice with the path integral in field theory; Appendix D. The beta function in supersymmetric Yang–Mills theory; References; Index.
Universality and string theory
NASA Astrophysics Data System (ADS)
Bachlechner, Thomas Christian
The first run at the Large Hadron Collider has deeply challenged conventional notions of naturalness, and CMB polarization experiments are about to open a new window to early universe cosmology. As a compelling candidate for the ultraviolet completion of the standard model, string theory provides a prime opportunity to study both early universe cosmology and particle physics. However, relating low energy observations to ultraviolet physics requires knowledge of the metastable states of string theory through the study of vacua. While it is difficult to directly obtain infrared data from explicit string theory constructions, string theory imposes constraints on low energy physics. The study of ensembles of low energy theories consistent with ultra-violet constraints provides insight on generic features we might expect to occur in string compactifications. In this thesis we present a statistical treatment of vacuum stability and vacuum properties in the context of random supergravity theories motivated by string theory. Early universe cosmology provides another avenue to high energy physics. From the low energy perspective large field inflation is typically considered highly unnatural: the scale relevant for the diameter of flat regions in moduli space is sub-Planckian in regions of perturbative control. To approach this problem, we consider generic Calabi-Yau compactifications of string theory and find that super-Planckian diameters of axion fundamental domains in fact arise generically. We further demonstrate that such super-Planckian flat regions are plausibly consistent with theWeak Gravity Conjecture.
Ahlén, Olof
2015-12-17
These proceedings from the second Caesar Lattes meeting in Rio de Janeiro 2015 are a brief introduction to how automorphic forms appear in the low energy effective action of maximally supersymmetric string theory. The explicit example of the R{sup 4}-interaction of type IIB string theory in ten dimensions is discussed. Its Fourier expansion is interpreted in terms of perturbative and non-perturbative contributions to the four graviton amplitude.
Liu, J.
1988-01-01
The author discusses several aspects of string theory. First, he calculates the vacuum amplitude of un-oriented open and closed string theory using Polyakov formalism. He argues that the volume of the Mobius Group should be renormalized, and solve a minor paradox. Second, he gives an example of a membrane whose effective action is the generalization of Green-Schwarz covariant superstring action. As a by-product, he shows that is also provides an example of partially broken global supersymmetry. The rest of the dissertation is devoted to the study of string field theory in terms of the renormalization group approach. He emphasizes the pivotal role of the conformal invariance in string theory. He proposes the generalized Wilsonian conformal renormalization group equation of 2-dimensional quantum field theory as the field equation for string field theory following Banks and Martinec. He then finds general solutions to the linearized equation on the flat back-ground and its correspondence to all the physical vertex operators. He also makes detailed study of massless modes and offer some remarks about how gauge invariance arise in this approach. Finally, he solves the full nonlinear equation iteratively in terms of the solutions to the linearized equation and extract the Virasoro-Shapiro amplitudes from them.
Kachru, Shamit; McAllister, Liam; Sundrum, Raman
2007-04-04
We study sequestering, a prerequisite for flavor-blind supersymmetry breaking in several high-scale mediation mechanisms, in compactifications of type IIB string theory. We find that although sequestering is typically absent in unwarped backgrounds, strongly warped compactifications do readily sequester. The AdS/CFT dual description in terms of conformal sequestering plays an important role in our analysis, and we establish how sequestering works both on the gravity side and on the gauge theory side. We pay special attention to subtle compactification effects that can disrupt sequestering. Our result is a step toward realizing an appealing pattern of soft terms in a KKLT compactification.
Svrcek, Peter; Witten, Edward; /Princeton, Inst. Advanced Study
2006-06-09
In the context of string theory, axions appear to provide the most plausible solution of the strong CP problem. However, as has been known for a long time, in many string-based models, the axion coupling parameter Fa is several orders of magnitude higher than the standard cosmological bounds. We re-examine this problem in a variety of models, showing that Fa is close to the GUT scale or above in many models that have GUT-like phenomenology, as well as some that do not. On the other hand, in some models with Standard Model gauge fields supported on vanishing cycles, it is possible for Fa to be well below the GUT scale.
Lyons, A. ); Hawking, S.W. )
1991-12-15
We discuss the wormhole effective interactions in string theory, thought of as a sum over two-dimensional field theories on different world sheets. The effective interactions are calculated in the dilute wormhole approximation,'' initially by considering the Green's functions on higher-genus Riemann surfaces, and then by calculating the effect of a complete basis of wave functions on scattering amplitudes for a surface with a boundary. The sum over wormholes is equivalent to having a world sheet of trivial topology and summing over different space-time and matter-field backgrounds. To leading order these consist of the massless fluctuations, since the tachyon cancels out when a sum is done over different spin structures going through the wormhole. In this way we recover quantized general relativity as an effective theory, from a sum over field theories on higher-genus Riemann surfaces.
NASA Astrophysics Data System (ADS)
Becker, Katrin; Becker, Melanie; Schwarz, John H.
String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697. Comprehensive coverage of topics from basics of string theory to recent developments Ideal textbook for a one-year course in string theory Includes over 100 exercises with solutions Contains over 200 homework problems with solutions available to lecturers on-line
NASA Astrophysics Data System (ADS)
Hashimoto, Koji; Morita, Takeshi
2011-08-01
In generic holographic QCD, we find that baryons are bound to form a nucleus, and that its radius obeys the empirically-known mass-number (A) dependence r∝A1/3 for large A. Our result is robust, since we use only a generic property of D-brane actions in string theory. We also show that nucleons are bound completely in a finite volume. Furthermore, employing a concrete holographic model (derived by Hashimoto, Iizuka, and Yi, describing a multibaryon system in the Sakai-Sugimoto model), the nuclear radius is evaluated as O(1)×A1/3[fm], which is consistent with experiments.
String theories and millisecond pulsars
NASA Astrophysics Data System (ADS)
Sanchez, N.; Signore, M.
1988-11-01
We discuss the two ways of connecting string theories (cosmic, fundamental and the connection between them) to the observational reality: (i) radioastronomy observations (millisecond pulsar timing), and (ii) elementary particle phenomenology (compactification schemes). We study the limits imposed on the string parameter Gμ by recent millisecond pulsar timings. Cosmic strings derived from GUTs agree with (i). For cosmic strings derived from fundamental strings themselves there is contradiction between (i) and (ii). One of these scenarios connecting string theory to reality must be revised (or the transition from fundamental into cosmic strings rejected). Meanwhile, millisecond pulsar can select one scenario, or reject both of them. UA 336 Laboratoire Associé au CNRS, Observatoire de Meudon et Ecole Normale Supérieure, 24 rue Lhomond, F-75231 Paris Cedex 05, France.
Non-supersymmetric string theory
NASA Astrophysics Data System (ADS)
Martinec, Emil J.; Robbins, Daniel; Sethi, Savdeep
2011-10-01
A class of non-supersymmetric string backgrounds can be constructed using twists that involve space-time fermion parity. We propose a non-perturbative definition of string theory in these backgrounds via gauge theories with supersymmetry softly broken by twisted boundary conditions. The perturbative string spectrum is reproduced, and qualitative effects of the interactions are discussed. Along the way, we find an interesting mechanism for inflation. The end state of closed string tachyon condensation is a highly excited state in the gauge theory which, in all likelihood, does not have a geometric interpretation.
Classical theory of radiating strings
NASA Technical Reports Server (NTRS)
Copeland, Edmund J.; Haws, D.; Hindmarsh, M.
1990-01-01
The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.
Black Holes, q-Deformed 2d Yang-Mills, and Non-perturbative Topological Strings
Aganagic, Mina; Ooguri, Hirosi; Saulina, Natalia; Vafa, Cumrun
2005-01-28
We count the number of bound states of BPS black holes on local Calabi-Yau three-folds involving a Riemann surface of genus g. We show that the corresponding gauge theory on the brane reduces to a q-deformed Yang-Mills theory on the Riemann surface. Following the recent connection between the black hole entropy and the topological string partition function, we find that for a large black hole charge N, up to corrections of O(e^-N), Z_BH is given as a sum of a square of chiral blocks, each of which corresponds to a specific D-brane amplitude. The leading chiral block, the vacuum block, corresponds to the closed topological string amplitudes. The sub-leading chiral blocks involve topological string amplitudes with D-brane insertions at 2g-2 points on the Riemann surface analogous to the Omega points in the large N 2d Yang-Mills theory. The finite N amplitude provides a non-perturbative definition of topological strings in these backgrounds. This also leads to a novel non-perturbative formulation of c=1 non-critical string at the self-dual radius.
Postmodern string theory: Stochastic formulation
NASA Astrophysics Data System (ADS)
Aurilia, A.; Spallucci, E.; Vanzetta, I.
1994-11-01
In this paper we study the dynamics of a statistical ensemble of strings, building on a recently proposed gauge theory of the string geodesic field. We show that this stochastic approach is equivalent to the Carathéodory formulation of the Nambu-Goto action, supplemented by an averaging procedure over the family of classical string world sheets which are solutions of the equation of motion. In this new framework, the string geodesic field is reinterpreted as the Gibbs current density associated with the string statistical ensemble. Next, we show that the classical field equations derived from the string gauge action can be obtained as the semiclassical limit of the string functional wave equation. For closed strings, the wave equation itself is completely analogous to the Wheeler-DeWitt equation used in quantum cosmology. Thus, in the string case, the wave function has support on the space of all possible spatial loop configurations. Finally, we show that the string distribution induces a multiphase, or cellular structure on the spacetime manifold characterized by domains with a purely Riemannian geometry separated by domain walls over which there exists a predominantly Weyl geometry.
Spin chains and string theory.
Kruczenski, Martin
2004-10-15
Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.
Charting the landscape of supercritical string theory.
Hellerman, Simeon; Swanson, Ian
2007-10-26
Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories.
Geometry, topology, and string theory
Varadarajan, Uday
2003-07-10
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.
Thorlacius, L.
1989-01-01
Open string vacuum configurations are described in terms of a one-dimensional field theory on the worldsheet boundary. The one-dimensional path integral has direct physical interpretation as a source term for closed string fields. This means that the vacuum divergences (Mobius infinities) of the path integral must be renormalized correctly. The author shows that reparametrization invariance Ward identities, apart from specifying the equations of motion of spacetime background gauge fields, also serve to fix the renormalization scheme of the vacuum divergences. He argues that vacuum configurations of open strings correspond to Caldeira-Leggett models of dissipative quantum mechanics (DQM) evaluated at a delocalization critical point. This connection reveals that critical DQM will manifest reparametrization invariance (inherited from the conformal invariance of string theory) rather than just scale invariance. This connection should open up new ways of constructing analytic and approximate solutions of open string theory (in particular, topological solitons such as monopoles and instantons). Type I superstring theory gives rise to a supersymmetric boundary field theory. Bose-Fermi cancellation eliminates vacuum divergences but the one-loop beta function remains the same as in the bosonic theory. Reparametrization invariance Ward identities dictate a boundary state normalization which yields consistent string-loop corrections to spacetime equations of motion, in both the periodic and anti-periodic fermion sectors.
Nuclear Force from String Theory
NASA Astrophysics Data System (ADS)
Hashimoto, Koji
2010-04-01
Recent "technology" called holography, or gauge/string duality (AdS/CFT correspondence) found in string theory, makes it possible to compute various quantities of strongly coupled gauge theories. This technology was applied to QCD, and it was found that it describes surprisingly well important properties of low energy QCD, the hadron physics. We apply it further to nuclear physics. In this talk, I review a part of the developments of the holographic QCD, and show a computation of nuclear force at short distance, derived using the holographic QCD, which was done in collaboration with T. Sakai and S. Sugimoto [K. Hashimoto, T. Sakai, and S. Sugimoto, "Holographic Baryons: Static Properties and Form Factors from Gauge/String Duality," Prog. Theor. Phys. 120 (2008) 1093-1137, arXiv:0806.3122 [hep-th]; K. Hashimoto, T. Sakai, and S. Sugimoto, "Nuclear Force from String Theory," arXiv:0901.4449 [hep-th
D-brane Falling into 2d Black-hole and Closed String Radiation
NASA Astrophysics Data System (ADS)
Sugawara, Yuji
2005-12-01
We study the dynamics of D0-brane falling into the Lorentzian 2-dimensional black hole (2D BH), typically arising in the near-horizon limit of non-extremal NS5-brane background, by the methods of boundary state. The `falling D0-brane' is expected to be obtained by the Wick rotation from the known D1-brane solution on the Euclidean 2D BH. Despite its easiness in the classical solution, the Wick rotation in the boundary conformal theory is rather non-trivial due to ambiguities of boundary conditions. We propose the exact boundary state describing it, clarifying the role of boundary condition. We also evaluate the closed string radiation from the infalling brane. An expected thermal-like behavior at the Hawking temperature is observed in the outgoing radiation. On the other hand, it is remarkably found that the incoming radiation absorbed by the black hole effectively shows the Hagedorn-like behavior with precise α'-correction. This fact implies that the radiation products are dominated by very massive, highly non-relativistic closed string states like the tachyon matter. The radiation rate curiously depends on the level k of SL(2)/U(1) supercoset, suggesting the `black hole/string phase transition' at k = 1 (k = 3 for the bosonic coset) discussed recently.
Exploring the spectrum of regularized bosonic string theory
Ambjørn, J. Makeenko, Y.
2015-03-15
We implement a UV regularization of the bosonic string by truncating its mode expansion and keeping the regularized theory “as diffeomorphism invariant as possible.” We compute the regularized determinant of the 2d Laplacian for the closed string winding around a compact dimension, obtaining the effective action in this way. The minimization of the effective action reliably determines the energy of the string ground state for a long string and/or for a large number of space-time dimensions. We discuss the possibility of a scaling limit when the cutoff is taken to infinity.
Localized gravity in string theory.
Karch, A; Randall, L
2001-08-01
We propose a string realization of the AdS4 brane in AdS5 that is known to localize gravity. Our theory is M D5 branes in the near horizon geometry of N D3 branes, where M and N are appropriately tuned.
String theory in electromagnetic fields
NASA Astrophysics Data System (ADS)
Ambjørn, Jan; Makeenko, Yuri M.; Semenoff, Gordon W.; Szabo, Richard J.
2003-02-01
A review of various aspects of superstrings in background electromagnetic fields is presented. Topics covered include the Born-Infeld action, spectrum of open strings in background gauge fields, the Schwinger mechanism, finite-temperature formalism and Hagedorn behaviour in external fields, Debye screening, D-brane scattering, thermodynamics of D-branes, and noncommutative field and string theories on D-branes. The electric field instabilities are emphasized throughout and contrasted with the case of magnetic fields. A new derivation of the velocity-dependent potential between moving D-branes is presented, as is a new result for the velocity corrections to the one-loop thermal effective potential.
Introduction to the theory of strings
Peskin, M.E.
1985-10-01
These lectures present, from an introductory perspective, some basic aspects of the quantum theory of strings. They treat (1) the kinematics, spectrum, and scattering amplitude of the bosonic string, (2) the spectrum and supersymmetry of Green-Schwarz superstring, and (3) the identification of the underlying gauge invariances of the string theory. 43 refs.
Black holes and black strings of N = 2, d = 5 supergravity in the H-FGK formalism
NASA Astrophysics Data System (ADS)
Meessen, Patrick; Ortín, Tomás; Perz, Jan; Shahbazi, C. S.
2012-09-01
We study general classes and properties of extremal and non-extremal static black-hole solutions of N = 2, d = 5 supergravity coupled to vector multiplets using the recently proposed H-FGK formalism, which we also extend to static black strings. We explain how to determine the integration constants and physical parameters of the blackhole and black-string solutions. We derive some model-independent statements, including the transformation of non-extremal flow equations to the form of those for the extremal flow. We apply our methods to the construction of example solutions (among others a new extremal string solution of heterotic string theory on K 3 × S 1). In the cases where we have calculated it explicitly, the product of areas of the inner and outer horizon of a non-extremal solution coincides with the square of the moduli-independent area of the horizon of the extremal solution with the same charges.
(Mathematics and string theory)
Not Available
1992-01-01
Over the past year our research activities concentrated around: (1) non-commutative differential geometry and its connections with quantum physics and (2) 2-dimensional(super) conformal quantum field theories and related non-linear {sigma}-models. This paper discusses these topics.
Introduction to string theory and conformal field theory
Belavin, A. A. Tarnopolsky, G. M.
2010-05-15
A concise survey of noncritical string theory and two-dimensional conformal field theory is presented. A detailed derivation of a conformal anomaly and the definition and general properties of conformal field theory are given. Minimal string theory, which is a special version of the theory, is considered. Expressions for the string susceptibility and gravitational dimensions are derived.
String theory as a Lilliputian world
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Makeenko, Y.
2016-05-01
Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.
Bell's Inequalities, Superquantum Correlations, and String Theory
Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu; Tze, Chia-Hsiung
2011-01-01
We offermore » an interpretation of superquantum correlations in terms of a “doubly” quantum theory. We argue that string theory, viewed as a quantum theory with two deformation parameters, the string tension α ' , and the string coupling constant g s , is such a superquantum theory that transgresses the usual quantum violations of Bell's inequalities. We also discuss the ℏ → ∞ limit of quantum mechanics in this context. As a superquantum theory, string theory should display distinct experimentally observable supercorrelations of entangled stringy states.« less
Introduction to string field theory
Lykken, J.; Raby, S.
1986-01-01
An action is proposed for an interacting closed bosonic string. Our formalism relies heavily on ideas discussed by Witten for the open bosonic string. The gauge fixed quantum action for the fully interacting open bosonic string is obtained.
String Theory: Big Problem for Small Size
ERIC Educational Resources Information Center
Sahoo, S.
2009-01-01
String theory is the most promising candidate theory for a unified description of all the fundamental forces that exist in nature. It provides a mathematical framework that combines quantum theory with Einstein's general theory of relativity. The typical size of a string is of the order of 10[superscript -33] cm, called the Planck length. But due…
String theory as a higher spin theory
NASA Astrophysics Data System (ADS)
Gaberdiel, Matthias R.; Gopakumar, Rajesh
2016-09-01
The symmetries of string theory on {AdS}_3× {S}^3× T^4 at the dual of the symmetric product orbifold point are described by a so-called Higher Spin Square (HSS). We show that the massive string spectrum in this background organises itself in terms of representations of this HSS, just as the matter in a conventional higher spin theory does so in terms of representations of the higher spin algebra. In particular, the entire untwisted sector of the orbifold can be viewed as the Fock space built out of the multiparticle states of a single representation of the HSS, the so-called `minimal' representation. The states in the twisted sector can be described in terms of tensor products of a novel family of representations that are somewhat larger than the minimal one.
Natural quintessence in string theory
Cicoli, Michele; Pedro, Francisco G.; Tasinato, Gianmassimo E-mail: f.pedro1@physics.ox.ac.uk
2012-07-01
We introduce a natural model of quintessence in string theory where the light rolling scalar is radiatively stable and couples to Standard Model matter with weaker-than-Planckian strength. The model is embedded in an anisotropic type IIB compactification with two exponentially large extra dimensions and TeV-scale gravity. The bulk turns out to be nearly supersymmetric since the scale of the gravitino mass is of the order of the observed value of the cosmological constant. The quintessence field is a modulus parameterising the size of an internal four-cycle which naturally develops a potential of the order (gravitino mass){sup 4}, leading to a small dark energy scale without tunings. The mass of the quintessence field is also radiatively stable since it is protected by supersymmetry in the bulk. Moreover, this light scalar couples to ordinary matter via its mixing with the volume mode. Due to the fact that the quintessence field is a flat direction at leading order, this mixing is very small, resulting in a suppressed coupling to Standard Model particles which avoids stringent fifth-force constraints. On the other hand, if dark matter is realised in terms of Kaluza-Klein states, unsuppressed couplings between dark energy and dark matter can emerge, leading to a scenario of coupled quintessence within string theory. We study the dynamics of quintessence in our set-up, showing that its main features make it compatible with observations.
Topological string theory revisited I: The stage
NASA Astrophysics Data System (ADS)
Jia, Bei
2016-08-01
In this paper, we reformulate topological string theory using supermanifolds and supermoduli spaces, following the approach worked out by Witten (Superstring perturbation theory revisited, arXiv:1209.5461). We intend to make the construction geometrical in nature, by using supergeometry techniques extensively. The goal is to establish the foundation of studying topological string amplitudes in terms of integration over appropriate supermoduli spaces.
Exact solutions and singularities in string theory
Horowitz, G.T. ); Tseytlin, A.A. )
1994-10-15
We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail.
Baby universes in string theory
Dijkgraaf, Robbert; Gopakumar, Rajesh; Ooguri, Hirosi; Vafa, Cumrun
2006-03-15
We argue that the holographic description of four-dimensional Bogomol'nyi-Prasad-Sommerfield black holes naturally includes multicenter solutions. This suggests that the holographic dual to the gauge theory is not a single AdS{sub 2}xS{sup 2} but a coherent ensemble of them. We verify this in a particular class of examples, where the two-dimensional Yang-Mills theory gives a holographic description of the black holes obtained by branes wrapping Calabi-Yau cycles. Using the free fermionic formulation, we show that O(e{sup -N}) nonperturbative effects entangle the two Fermi surfaces. In an Euclidean description, the wave function of the multicenter black holes gets mapped to the Hartle-Hawking wave function of baby universes. This provides a concrete realization, within string theory, of effects that can be interpreted as the creation of baby universes. We find that, at least in the case we study, the baby universes do not lead to a loss of quantum coherence, in accord with general arguments.
String Theory, Unification and Quantum Gravity
NASA Astrophysics Data System (ADS)
Stelle, K. S.
An overview is given of the way in which the unification program of particle physics has evolved into the proposal of superstring theory as a prime candidate for unifying quantum gravity with the other forces and particles of nature. A key concern with quantum gravity has been the problem of ultraviolet divergences, which is naturally solved in string theory by replacing particles with spatially extended states as the fundamental excitations. String theory turns out, however, to contain many more extended-object states than just strings. Combining all this into an integrated picture, called M-theory, requires recognition of the rôle played by a web of nonperturbative duality symmetries suggested by the nonlinear structures of the field-theoretic supergravity limits of string theory.
Cosmic necklaces from string theory
Leblond, Louis; Wyman, Mark
2007-06-15
We present the properties of a cosmic superstring network in the scenario of flux compactification. An infinite family of strings, the (p,q) strings, are allowed to exist. The flux compactification leads to a string tension that is periodic in p. Monopoles, appearing here as beads on a string, are formed in certain interactions in such networks. This allows bare strings to become cosmic necklaces. We study network evolution in this scenario, outlining what conditions are necessary to reach a cosmologically viable scaling solution. We also analyze the physics of the beads on a cosmic necklace, and present general conditions for which they will be cosmologically safe, leaving the network's scaling undisturbed. In particular, we find that a large average loop size is sufficient for the beads to be cosmologically safe. Finally, we argue that loop formation will promote a scaling solution for the interbead distance in some situations.
String theory of the Regge intercept.
Hellerman, S; Swanson, I
2015-03-20
Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order-J(0) contribution to the mass squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in D≥5, the order-J(0) term in the mass squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world volume, beyond the Nambu-Goldstone bosons.
String theory of the Regge intercept.
Hellerman, S; Swanson, I
2015-03-20
Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order-J(0) contribution to the mass squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in D≥5, the order-J(0) term in the mass squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world volume, beyond the Nambu-Goldstone bosons. PMID:25839257
Introduction to string and superstring theory II
Peskin, M.E.
1987-03-01
Conformal field theory is reviewed, then conformal invariance is used to rederive the basic results on the embedding dimensionality for bosonic and fermionic strings. The spectrum of the bosonic and the computation of scattering amplitudes are discussed. The formalism used is extended to clarify the origin of Yang-Mills gauge invariance in the open bosonic string theory. The question of the general-coordinate gauge invariance of string theory is addressed, presenting two disparate viewpoints on this question. A brief introduction is then given of the reduction from the idealized string theory in 10 extended dimensions to more realistic solutions in which all but 4 of these dimensions are compactified. The state of knowledge about the space-time supersymmetry of the superstring from the covariant viewpoint is outlined. An approach for identifying possible 6-dimensional spaces which might represent the form of the compact dimensions is discussed, and the orbifold scheme of compactification is presented. 77 refs., 18 figs. (LEW)
F-theory and 2d (0, 2) theories
NASA Astrophysics Data System (ADS)
Schäfer-Nameki, Sakura; Weigand, Timo
2016-05-01
F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N = (0 , 2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0 , 2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0 , 2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0 , 2) GLSM is realized via different T-branes or gluing data in F-theory.
String theory and relativistic heavy ion collisions
NASA Astrophysics Data System (ADS)
Friess, Joshua J.
It has long been known that string theory describes not only quantum gravity, but also gauge theories with a high degree of supersymmetry. Said gauge theories also have a large number of colors in a regime with a large effective coupling constant that does not depend on energy scale. Supersymmetry is broken in nature, if it is present at all, however the gauge theory described by string theory shares many common features with QCD at temperatures above the quark deconfinement transition. It is generally though not entirely accepted that collisions of gold nuclei at the Relativistic Heavy Ion Collider (RHIC) produce a thermalized Quark-Gluon Plasma (QGP) at temperatures distinctly above the transition temperature as determined from lattice simulations. Hence, we might hope that a string theoretic description of gauge dynamics can elucidate some otherwise intractable physics of the strongly coupled plasma. Here we use string theory to calculate the outgoing energy flux from a RHIC process called "jet quenching", in which a high-momentum quark or gluon traverses a large distance in the QGP. Our setup is in the context of the highly supersymmetric string dual gauge theory, but we nevertheless find that the gross features of the resulting stress-energy tensor match reasonably well with experimental data. We will furthermore discuss the technology behind computations of the leading-order corrections to gauge theory observables that are uniquely string-induced, and we will describe a potential solution to string theory that could resolve a number of discrepancies between the traditional highly supersymmetric setup and QCD---in particular, a significant reduction in the amount of supersymmetry, and a finite effective coupling that is still greater than unity but does depend on energy scale.
Hadronic density of states from string theory.
Pando Zayas, Leopoldo A; Vaman, Diana
2003-09-12
We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.
Exotic geometry in string theory and cosmology
NASA Astrophysics Data System (ADS)
Haque, Sheikh Shajid
One of the main features expected of a quantum theory of gravity is non-locality. Implementing non-locality in quantum field theories turns out to be already challenging both conceptually and technically and requires the use of several techniques, such as string dualities and twists in order to construct and understand the effects of non-locality. This thesis explored these concepts in the construction of quantum field theories with a particular type of non- locality, non-commutative geometry, as an opportunity to study non-locality in a broader context. Another important challenge of theoretical physics is to connect the microscopic structure of spacetime implied by string theory to the empirical fact that the cosmological constant is positive and that the universe is asymptotically de Sitter. Constructing de Sitter space from string theory has proven to be extremely difficult over the years. In this thesis, I will discuss recent work in these areas.
String perturbation theory and effective Lagrangians
Klebanov, I.
1987-09-01
We isolate logarithmic divergences from bosonic string amplitudes on a disc. These divergences are compared with 'tadpole' divergences in the effective field theory with a cosmological term, which also contains an effective potential for the dilation. Also, corrections to ..beta..-functions are compared with variations of the effective action. In both cases we find an inconsistency between the two. This is a serious problem which could undermine our ability to remove divergences from the bosonic string.
BOOK REVIEW: String Theory in a Nutshell
NASA Astrophysics Data System (ADS)
Skenderis, Kostas
2007-11-01
The book 'String Theory in a Nutshell' by Elias Kiritsis provides a comprehensive introduction to modern string theory. String theory is the leading candidate for a theory that successfully unifies all fundamental forces of nature, including gravity. The subject has been continuously developing since the early 1970s, with classic textbooks on the subject being those of Green, Schwarz and Witten (1987) and Polchinski (1998). Since the latter was published there have been substantial developments, in particular in understanding black holes and gravity/gauge theory dualities. A textbook treatment of this important material is clearly needed, both by students and researchers in string theory and by mathematicians and physicists working in related fields. This book has a good selection of material, starting from basics and moving into classic and modern topics. In particular, Kiritsis' presentation of the basic material is complementary to that of the earlier textbooks and he includes a number of topics which are not easily found or covered adequately elsewhere, for example, loop corrections to string effective couplings. Overall the book nicely covers the major advances of the last ten years, including (non-perturbative) string dualities, black hole physics, AdS/CFT and matrix models. It provides a concise but fairly complete introduction to these subjects which can be used both by students and by researchers. Moreover the emphasis is on results that are reasonably established, as is appropriate for a textbook; concise summaries are given for subjects which are still in flux, with references to relevant reviews and papers. A positive feature of the book is that the bibliography sections at the end of each chapter provide a comprehensive guide to the literature. The bibliographies point to reviews and pedagogical papers on subjects covered in this book as well as those that were omitted. It is rare for a textbook to contain such a self-contained and detailed guide to
Blackfolds in supergravity and string theory
NASA Astrophysics Data System (ADS)
Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A.
2011-08-01
We develop the effective worldvolume theory for the dynamics of black branes with charges of the kind that arise in many supergravities and low-energy limits of string theory. Using this theory, we construct numerous new rotating blackholes with charges and dipoles of D-branes, fundamental strings and other branes. In some instances, the black holes can be dynamically stable close enough to extremality. Some of these black holes, such as those based on the D1-D5-P system, have extremal, non-supersymmetric limits with regular horizons of finite area and a wide variety of horizon topologies and geometries.
Towards a kinetic theory of strings
Vanchurin, Vitaly
2011-05-15
We study the dynamics of strings by means of a distribution function f(A,B,x,t), defined on a 9+1D phase space, where A and B are the correlation vectors of right- and left-moving waves. We derive a transport equation (analogous to a Boltzmann transport equation for particles) that governs the evolution of long strings with Nambu-Goto dynamics, as well as reconnections taken into account. We also derive a system of coupled transport equations (analogous to a Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for particles) which can simultaneously describe long strings f-tilde(A,B,x,t) as well as simple loops f(convolution sign)(A,B,x,t) made out of four correlation vectors. The formalism can be used to study nonlinear dynamics of fundamental strings, D-brane strings, or field theory strings. For example, the complicated semiscaling behavior of cosmic strings translates into a simple solution of the transport system at small energy densities.
Entanglement renormalization and two dimensional string theory
NASA Astrophysics Data System (ADS)
Molina-Vilaplana, J.
2016-04-01
The entanglement renormalization flow of a (1 + 1) free boson is formulated as a path integral over some auxiliary scalar fields. The resulting effective theory for these fields amounts to the dilaton term of non-critical string theory in two spacetime dimensions. A connection between the scalar fields in the two theories is provided, allowing to acquire novel insights into how a theory of gravity emerges from the entanglement structure of another one without gravity.
Tensor modes on the string theory landscape
NASA Astrophysics Data System (ADS)
Westphal, Alexander
2013-04-01
We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.
String theory and the real world
Kane, Gordon
2010-11-15
We live in exciting times for particle physics. The Large Hadron Collider (LHC) at CERN has begun to collect data, and laboratory and satellite experiments are investigating the dark matter of the universe. Another, less appreciated fact increases the excitement. Physicists now have a coherent, consistent theoretical framework to address basic questions about particles, the interactions and forces between them, why they are what they are, and how numerous phenomena are related in a broader picture. That framework is ''string theory''. I put the term in scare quotes because there is not yet a final formulation of the theory. But the lack of a finished picture is not important for my purposes, so in this article I refer to the framework as string theory or M-theory. The perspective that string theory is the underlying framework to address many issues facing particle physics and cosmology is different from the more standard description of it as a consistent quantum theory of gravity. But it is a fruitful way to think about what string theory means.
Solution of the dilaton problem in open bosonic string theories
Bern, Z. ); Dunbar, D.C. )
1991-01-01
One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories.
Chiral phase transition from string theory.
Parnachev, Andrei; Sahakyan, David A
2006-09-15
The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.
String Theory and Primordial Cosmology
NASA Astrophysics Data System (ADS)
Gasperini, Maurizio
String cosmology aims at providing a reliable description of the very early Universe in the regime where standard-model physics is no longer appropriate, and where we can safely apply the basic ingredients of superstring models such as dilatonic and axionic forces, duality symmetries, winding modes, limiting sizes and curvatures, higher dimensional interactions among elementary extended object. The sought target is that of resolving (or at least alleviating) the big problems of standard and inflationary cosmology like the spacetime singularity, the physics of the trans-Planckian regime, the initial condition for inflation, and so on.
Phase transitions in QCD and string theory
NASA Astrophysics Data System (ADS)
Campell, Bruce A.; Ellis, John; Kalara, S.; Nanopoulos, D. V.; Olive, Keith A.
1991-02-01
We develop a unified effective field theory approach to the high-temperature phase transitions in QCD and string theory, incorporating winding modes (time-like Polyakov loops, vortices) as well as low-mass states (pseudoscalar mesons and glueballs, matter and dilaton supermultiplets). Anomalous scale invariance and the Z3 structure of the centre of SU(3) decree a first-order phase transition with simultaneous deconfinement and Polyakov loop condensation in QCD, whereas string vortex condensation is a second-order phase transition breaking a Z2 symmetry. We argue that vortex condensation is accompanied by a dilaton phase transition to a strong coupling regime, and comment on the possible role of soliton degrees of freedom in the high-temperature string phase. On leave of absence from the School of Physics & Astronomy, University of Minnesota, Minneapolis, Minnesota, USA.
Topological insulators and superconductors from string theory
Ryu, Shinsei; Takayanagi, Tadashi
2010-10-15
Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the {theta} term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).
Super-Higgs mechanism in string theory
Bagger, Jonathan; Giannakis, Ioannis
2006-05-15
We exhibit the super-Higgs effect in heterotic string theory by turning on a background antisymmetric tensor B field and deforming the Becchi-Rouet-Stora-Tyutin operator consistent with superconformal invariance. The B field spontaneously breaks spacetime supersymmetry. We show how the gravitini and the physical dilatini gain mass by eating the would-be Goldstone fermions.
Combinatorics of boundaries in string theory
Polchinski, J. )
1994-11-15
We investigate the possibility that stringy nonperturbative effects appear as holes in the world sheet. We focus on the case of Dirichlet string theory, which we argue should be formulated rather differently than in previous work, and we find that the effects of boundaries are naturally weighted by [ital e][sup [minus][ital O](1/[ital g][sub st])].
Instantons and chiral symmetry in string theory
NASA Astrophysics Data System (ADS)
Jensen, Steuard B.
The study of non-perturbative effects has played an important role in many recent developments in physics. String theory has proven to be an especially fertile ground for such studies: not only is its own non-perturbative structure interesting, but it has emerged as a framework in which to study the strongly coupled behavior of a variety of models in quantum field theory as well. In this thesis, I present results demonstrating the use of string theory in both these ways. First, I discuss non-perturbative corrections to the Kaluza-Klein monopole in string theory. As usually described, this object has an isometry around a compact circle and is related by T-duality to a "smeared" NS5-brane which retains that isometry. The true NS5-brane solution is localized at a point on the circle, so duality implies that the Kaluza-Klein monopole should show some corresponding behavior. By expressing the Kaluza-Klein monopole as a gauged linear sigma model in two dimensions, I show that worldsheet instantons give corrections to its geometry. These corrections can be understood as a localization in "winding space" which could be probed by strings with winding charge around the circle. Second, I discuss a configuration of D-branes in string theory whose low energy physics corresponds to a 3+1-dimensional quantum field theory with dynamically broken chiral symmetry. In a weakly coupled region of parameter space, this theory is a non-local generalization of the Nambu-Jona-Lasinio model. Indications are given that this model dynamically breaks chiral symmetry at arbitrarily weak 't Hooft coupling. At strong coupling this field theory is no longer solvable directly, but an alternate weakly coupled description can be found from the string theory model: the dynamics is determined by replacing a stack of D-branes by their near-horizon geometry and studying the low energy theory on probe D-branes in that background. In yet another region of parameter space, this D-brane configuration gives
Purely cubic action for string field theory
NASA Technical Reports Server (NTRS)
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
Origin of gauge invariance in string theory
NASA Technical Reports Server (NTRS)
Horowitz, G. T.; Strominger, A.
1986-01-01
A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.
Semi-infinite cohomology and string theory.
Frenkel, I B; Garland, H; Zuckerman, G J
1986-11-01
We develop the theory of semi-infinite cohomology of graded Lie algebras first introduced by Feigin. We show that the relative semi-infinite cohomology has a structure analogous to that of the de Rham cohomology in Kähler geometry. We prove a vanishing theorem for a special class of modules, and we apply our results to the case of the Virasoro algebra and the Fock module. In this case the zero cohomology is identified as the physical subspace of the Fock module and the no-ghost theorem follows. We reveal the profound relation of semi-infinite cohomology theory to the gauge-invariant free string theory constructed by Banks and Peskin. We then indicate the connection between gauge-invariant interacting string theories and the geometric realizations of the infinite-dimensional Lie algebras.
String theory as a diffusing system
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Nardelli, Giuseppe
2010-02-01
Recent results on the effective non-local dynamics of the tachyon mode of open string field theory (OSFT) show that approximate solutions can be constructed which obey the diffusion equation. We argue that this structure is inherited from the full theory, where it admits a universal formulation. In fact, all known exact OSFT solutions are superpositions of diffusing surface states. In particular, the diffusion equation is a spacetime manifestation of OSFT gauge symmetries.
Noyes, H.P.
1990-01-29
We construct discrete space-time coordinates separated by the Lorentz-invariant intervals h/mc in space and h/mc{sup 2} in time using discrimination (XOR) between pairs of independently generated bit-strings; we prove that if this space is homogeneous and isotropic, it can have only 1, 2 or 3 spacial dimensions once we have related time to a global ordering operator. On this space we construct exact combinatorial expressions for free particle wave functions taking proper account of the interference between indistinguishable alternative paths created by the construction. Because the end-points of the paths are fixed, they specify completed processes; our wave functions are born collapsed''. A convenient way to represent this model is in terms of complex amplitudes whose squares give the probability for a particular set of observable processes to be completed. For distances much greater than h/mc and times much greater than h/mc{sup 2} our wave functions can be approximated by solutions of the free particle Dirac and Klein-Gordon equations. Using a eight-counter paradigm we relate this construction to scattering experiments involving four distinguishable particles, and indicate how this can be used to calculate electromagnetic and weak scattering processes. We derive a non-perturbative formula relating relativistic bound and resonant state energies to mass ratios and coupling constants, equivalent to our earlier derivation of the Bohr relativistic formula for hydrogen. Using the Fermi-Yang model of the pion as a relativistic bound state containing a nucleon-antinucleon pair, we find that (G{sub {pi}N}{sup 2}){sup 2} = (2m{sub N}/m{sub {pi}}){sup 2} {minus} 1. 21 refs., 1 fig.
A monopole solution in open string theory
NASA Astrophysics Data System (ADS)
Behrndt, K.
1994-02-01
We investigate a solution of the Weyl invariance conditions in open string theory in four dimensions. In the closed string sector this solution is a combination of the SU(2) Wess-Zumino-Witten model and a Liouville theory. The investigation is carried out in the σ model approach where we have coupled all massless modes (especiallyan abelian gauge field via the boundary) and tachyon fields. Neglecting all higher derivatives in the field strength we get an exact result which can be interpreted as a monopole configuration living in non-trivia space-time. The masses of both tachyon fields are quantized by cWZW. But only for massless tachyons ( cWZW = 1) the corresponding vertex operators are well defined.
String theory realizations of the nilpotent goldstino
NASA Astrophysics Data System (ADS)
Kallosh, Renata; Quevedo, Fernando; Uranga, Angel M.
2015-12-01
We describe in detail how the spectrum of a single anti-D3-brane in four-dimensional orientifolded IIB string models reproduces precisely the field content of a nilpotent chiral superfield with the only physical component corresponding to the fermionic goldstino. In particular we explicitly consider a single anti-D3-brane on top of an O3-plane in warped throats, induced by (2, 1) fluxes. More general systems including several anti-branes and other orientifold planes are also discussed. This provides further evidence to the claim that non-linearly realized supersymmetry due to the presence of antibranes in string theory can be described by supersymmetric theories including nilpotent superfields. Implications to the KKLT and related scenarios of de Sitter moduli stabilization, to cosmology and to the structure of soft SUSY-breaking terms are briefly discussed.
Obstacle to populating the string theory landscape
Johnson, Matthew C; Larfors, Magdalena
2008-12-15
We construct domain walls and instantons in a class of models with coupled scalar fields, determining, in agreement with previous studies, that many such solutions contain naked timelike singularities. Vacuum bubble solutions of this type do not contain a region of true vacuum, obstructing the ability of eternal inflation to populate other vacua. We determine a criterion that potentials must satisfy to avoid the existence of such singularities and show that many domain wall solutions in type IIB string theory are singular.
Dynamical topology change in string theory
NASA Astrophysics Data System (ADS)
Kiritsis, Elias; Kounnas, Costas
1994-06-01
Exact string solutions are presented, providing backgrounds where a dynamical change of topology is occuring. This is induced by the time variation of a modulus field. Some lessons are drawn concerning the region of validity of effective theories and how they can be glued together, using stringy information in the region where the topology changes. On leave from Ecole Normale Supérieure, 24 rue Lhomond, F-75231, Paris, Cedex 05, France.
Introduction to conformal field theory and string theory
Dixon, L.J.
1989-12-01
These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs.
Anomalies of E8 Gauge Theory on String Manifolds
NASA Astrophysics Data System (ADS)
Sati, Hisham
In this paper we revisit the subject of anomaly cancelation in string theory and M-theory on manifolds with string structure and give three observations. First, that on string manifolds there is no E8 × E8 global anomaly in heterotic string theory. Second, that the description of the anomaly in the phase of the M-theory partition function of Diaconescu-Moore-Witten extends from the spin case to the string case. Third, that the cubic refinement law of Diaconescu-Freed-Moore for the phase of the M-theory partition function extends to string manifolds. The analysis relies on extending from invariants which depend on the spin structure to invariants which instead depend on the string structure. Along the way, the one-loop term is refined via the Witten genus.
Non-abelian Ramond-Neveu-Schwarz string theory
NASA Astrophysics Data System (ADS)
Hyun Seok Yang; Inbo Kim; Bum-Hoon Lee
1999-08-01
We newly construct a world-sheet matrix string theory described by two-dimensional supergravity coupled to supersymmetric Yang-Mills fields where the string coordinates are non-commuting matrices in the gauge group U( N). We show that our string theory has a free string limit where it becomes N-copies of usual Ramond-Neveu-Schwarz strings and can be described by the orbifold conformal field theory being second quantized string theory. In the weak coupling limit, i.e. gs → 0 where gs is the coupling constant of our theory related with the Yang-Mills coupling as gYM-2 = α' gs2, a new additional dimension appears in the string spectrum and it can be speculatively interpreted as the compactified eleven-dimensional coordinate whose dynamics is given by an orbifold O( N) sigma model.
String theory, cosmology and varying constants
NASA Astrophysics Data System (ADS)
Damour, Thibault
In string theory the coupling `constants' appearing in the low-energy effective Lagrangian are determined by the vacuum expectation values of some (a priori) massless scalar fields (dilaton, moduli). This naturally leads one to expect a correlated variation of all the coupling constants, and an associated violation of the equivalence principle. We review some string-inspired theoretical models which incorporate such a spacetime variation of coupling constants while remaining naturally compatible both with phenomenological constraints coming from geochemical data (Oklo; Rhenium decay) and with present equivalence principle tests. Barring a very unnatural fine-tuning of parameters, a variation of the fine-structure constant as large as that recently `observed' by Webb et al. in quasar absorption spectra appears to be incompatible with these phenomenological constraints. Independently of any model, it is emphasized that the best experimental probe of varying constants are high-precision tests of the universality of free fall, such as MICROSCOPE and STEP.
Topological string theory and enumerative geometry
NASA Astrophysics Data System (ADS)
Song, Yun S.
2001-10-01
In this thesis we investigate several problems which have their roots in both topological string theory and enumerative geometry. In the former case, underlying theories are topological field theories, whereas the latter case is concerned with intersection theories on moduli spaces. A permeating theme in this thesis is to examine the close interplay between these two complementary fields of study. The main problems addressed are as follows: In considering the Hurwitz enumeration problem of branched covers of compact connected Riemann surfaces, we completely solve the problem in the case of simple Hurwitz numbers. In addition, utilizing the connection between Hurwitz numbers and Hodge integrals, we derive a generating function for the latter on the moduli space overline Mg,2 of 2- pointed, genus- g Deligne-Mumford stable curves. We also investigate Givental's recent conjecture regarding semisimple Frobenius structures and Gromov- Witten invariants, both of which are closely related to topological field theories; we consider the case of a complex projective line P1 as a specific example and verify his conjecture at low genera. In the last chapter, we demonstrate that certain topological open string amplitudes can be computed via relative stable morphisms in the algebraic category.
Non-linear sigma-models and string theories
Sen, A.
1986-10-01
The connection between sigma-models and string theories is discussed, as well as how the sigma-models can be used as tools to prove various results in string theories. Closed bosonic string theory in the light cone gauge is very briefly introduced. Then, closed bosonic string theory in the presence of massless background fields is discussed. The light cone gauge is used, and it is shown that in order to obtain a Lorentz invariant theory, the string theory in the presence of background fields must be described by a two-dimensional conformally invariant theory. The resulting constraints on the background fields are found to be the equations of motion of the string theory. The analysis is extended to the case of the heterotic string theory and the superstring theory in the presence of the massless background fields. It is then shown how to use these results to obtain nontrivial solutions to the string field equations. Another application of these results is shown, namely to prove that the effective cosmological constant after compactification vanishes as a consequence of the classical equations of motion of the string theory. 34 refs. (LEW)
Multiple-Trace Operators and Non-Local String Theories
Silverstein, Eva M
2001-07-25
We propose that a novel deformation of string perturbation theory, involving non-local interactions between strings, is required to describe the gravity duals of field theories deformed by multiple-trace operators. The new perturbative expansion involves a new parameter, which is neither the string coupling nor the coefficient of a vertex operator on the worldsheet. We explore some of the properties of this deformation, focusing on a special case where the deformation in the field theory is exactly marginal.
Cosmic strings in compactified gauge theory
NASA Astrophysics Data System (ADS)
Nakamura, A.; Hirenzaki, S.; Shiraishi, K.
1990-07-01
A solution of the vortex type is given in a six-dimensional SU(2) × U(1) pure gauge theory coupled to Einstein gravity in a compactified background geometry. We construct the solution of an effective abelian Higgs model in terms of dimensional reduction. The solution, however, has a peculiarity in its physically relevant quantity, a deficit angle, which is given as a function of the ratio of the gauge couplings of SU(2) and U(1). The size of the extra space (sphere) is shown to vary with the distance from the axis of the ``string''. JSPS Fellow.
A matrix model from string field theory
NASA Astrophysics Data System (ADS)
Zeze, Syoji
2016-09-01
We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N) vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large N matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.
Non-perturbative String Theory from Water Waves
Iyer, Ramakrishnan; Johnson, Clifford V.; Pennington, Jeffrey S.; /SLAC
2012-06-14
We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theories coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.
Big bang and big crunch in matrix string theory
Bedford, J.; Ward, J.; Papageorgakis, C.; Rodriguez-Gomez, D.
2007-04-15
Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe.
From string theory to algebraic geometry and back
Brinzanescu, Vasile
2011-02-10
We describe some facts in physics which go up to the modern string theory and the related concepts in algebraic geometry. Then we present some recent results on moduli-spaces of vector bundles on non-Kaehler Calabi-Yau 3-folds and their consequences for heterotic string theory.
Pre-inflationary clues from String Theory?
Kitazawa, N.; Sagnotti, A. E-mail: sagnotti@sns.it
2014-04-01
''Brane supersymmetry breaking'' occurs in String Theory when the only available combinations of D-branes and orientifolds are not mutually BPS and yet do not introduce tree-level tachyon instabilities. It is characterized by the emergence of a steep exponential potential, and thus by the absence of maximally symmetric vacua. The corresponding low-energy supergravity admits intriguing spatially-flat cosmological solutions where a scalar field is forced to climb up toward the steep potential after an initial singularity, and additional milder terms can inject an inflationary phase during the ensuing descent. We show that, in the resulting power spectra of scalar perturbations, an infrared suppression is typically followed by a pre-inflationary peak that reflects the end of the climbing phase and can lie well apart from the approximately scale invariant profile. A first look at WMAP9 raw data shows that, while the χ{sup 2} fits for the low-ℓ CMB angular power spectrum are clearly compatible with an almost scale invariant behavior, they display nonetheless an eye-catching preference for this type of setting within a perturbative string regime.
Aspects of inflation in string theory
NASA Astrophysics Data System (ADS)
Baumann, Daniel
2008-10-01
In this thesis we make small steps towards the ambitious goal of a microphysical understanding of the inflationary era in the early universe. We identify three key questions that require a proper understanding of the ultraviolet limit of the theory: (i) the delicate flatness of the inflaton potential, (ii) the possibility of observable gravitational waves and (iii) a large non-Gaussianity of the primordial density fluctuations. We study these fundamental aspects of inflation in the context of string theory. V (φ): In the first half of the thesis, we give the first fully explicit derivation of the potential for warped D-brane inflation. The analysis exposes the eta-problem, relates effective parameters in the inflaton Lagrangian to microscopic string theory input, and illustrates important correlations between the parameters of the potential. We show that compactification constraints significantly limit the possibility of obtaining inflationary solutions in these scenarios. r: All inflationary models that predict an observable gravitational wave signal require that the inflaton field evolves over a super-Planckian range. In the second half of the thesis, we derive a microscopic bound on the maximal inflaton field variation for D-brane models. The bound arises from the compact nature of the extra dimensions and puts a strong upper limit on the gravitational wave signal. fNL: Finally, we explain that our limit on the field range also significantly constrains the parameter space of Dirac-Born-Infeld inflation. In this case the bound strongly restricts the possibility of a large non-Gaussianity in the primordial fluctuations.
Backreacted axion field ranges in string theory
NASA Astrophysics Data System (ADS)
Baume, Florent; Palti, Eran
2016-08-01
String theory axions are interesting candidates for fields whose potential might be controllable over super-Planckian field ranges and therefore as possible candidates for inflatons in large field inflation. Axion monodromy scenarios are setups where the axion shift symmetry is broken by some effect such that the axion can traverse a large number of periods potentially leading to super-Planckian excursions. We study such scenarios in type IIA string theory where the axion shift symmetry is broken by background fluxes. In particular we calculate the backreaction of the energy density induced by the axion vacuum expectation value on its own field space metric. We find universal behaviour for all the compactifications studied where up to a certain critical axion value there is only a small backreaction effect. Beyond the critical value the backreaction is strong and implies that the proper field distance as measured by the backreacted metric increases at best logarithmically with the axion vev, thereby placing strong limitations on extending the field distance any further. The critical axion value can be made arbitrarily large by the choice of fluxes. However the backreaction of these fluxes on the axion field space metric ensures a precise cancellation such that the proper field distance up to the critical axion value is flux independent and remains sub-Planckian. We also study an axion alignment scenario for type IIA compactifications on a twisted torus with four fundamental axions mixing to leave an axion with an effective decay constant which is flux dependent. There is a choice of fluxes for which the alignment parameter controlling the effective decay constant is unconstrained by tadpoles and can in principle lead to an arbitrarily large effective decay constant. However we show that these fluxes backreact on the fundamental decay constants so as to precisely cancel any enhancement leaving a sub-Planckian effective decay constant.
The 2d MIT: The Pseudogap and Fermi Liquid Theory
NASA Astrophysics Data System (ADS)
Castner, T. G.
2005-06-01
Fermi liquid theory for the 2d metal-insulator transition is extended to include the correlation gap in the density-of-states. The results are consistent with the scaling form g=gce[on(To/T)] at T larger than a characteristic T* ∝ xTc (Tc=Ec= mobility edge). The two-component model n1+nloc=n=nc(1+x) for n>nc is required and the theory explains the T-dependence of the data of Hanein et al. for p-type GaAs.
Discrete field theories and spatial properties of strings
Klebanov, I.; Susskind, L.
1988-10-01
We use the ground-state wave function in the light-cone gauge to study the spatial properties of fundamental strings. We find that, as the cut-off in the parameter space is removed, the strings are smooth and have a divergent size. Guided by these properties, we consider a large-N lattice gauge theory which has an unstable phase where the size of strings diverges. We show that this phase exactly describes free fundamental strings. The lattice spacing does not have to be taken to zero for this equivalence to hold. Thus, exact rotation and translation invariance is restored in a discrete space. This suggests that the number of fundamental short-distance degrees of freedom in string theory is much smaller than in a conventional field theory. 11 refs., 4 figs.
PhD Thesis: String theory in the early universe
NASA Astrophysics Data System (ADS)
Gwyn, Rhiannon
2009-11-01
The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.
Consistent superstrings as solutions of the D = 26 bosonic string theory
NASA Astrophysics Data System (ADS)
Casher, A.; Englert, F.; Nicolai, H.; Taormina, A.
1985-11-01
Consistent closed ten-dimensional superstrings, i.e., the two N = 1 heterotic strings and the two N = 2 superstrings, are contained in the 26-dimensional bosonic closed string theory. The latter thus appears as the fundamental string theory.
Burg-Metzner-Sachs symmetry, string theory, and soft theorems
NASA Astrophysics Data System (ADS)
Avery, Steven G.; Schwab, Burkhard U. W.
2016-01-01
We study the action of the Burg-Metzner-Sachs (BMS) group in critical, bosonic string theory living on a target space of the form Md×C . Here Md is d -dimensional (asymptotically) flat spacetime and C is an arbitrary compactification. We provide a treatment of generalized Ward-Takahashi identities and derive consistent boundary conditions for any d from string theory considerations. Finally, we derive BMS transformations in higher-dimensional spacetimes and show that the generalized Ward-Takahashi identity of BMS produces Weinberg's soft theorem in string theory.
COSMOS- e'-GTachyon from string theory
NASA Astrophysics Data System (ADS)
Choudhury, Sayantan; Panda, Sudhakar
2016-05-01
In this article, our prime objective is to study the inflationary paradigm in the context of the generalized tachyon (GTachyon) living on the world volume of a non-BPS string theory. The tachyon action is considered here is modified compared to the original action. One can quantify the amount of the modification via a power q instead of 1 / 2 in the effective action. Using this set-up we study inflation by various types of tachyonic potentials, using which we constrain the index q within, 1/2string coupling constant gs and the mass scale of tachyon M_s, from the recent Planck 2015 and Planck+BICEP2/Keck Array joint data. We explicitly study the inflationary consequences from single field, assisted field and multi-field tachyon set-ups. Specifically for the single field and assisted field cases we derive the results in the quasi-de Sitter background in which we will utilize the details of cosmological perturbations and quantum fluctuations. Also we derive the expressions for all inflationary observables using any arbitrary vacuum and the Bunch-Davies vacuum. For the single field and the assisted field cases we derive the inflationary flow equations, new sets of consistency relations. Also we derive the field excursion formula for the tachyon, which shows that assisted inflation is on the safe side compared to the single field case to validate the effective field theory framework. Further we study the features of the CMB angular power spectrum from TT, TE and EE correlations from scalar fluctuations within the allowed range of q for each of the potentials from the single field set-up. We also put constraints from the temperature anisotropy and polarization spectra, which shows that our analysis is consistent with the Planck 2015 data. Finally, using the δ N formalism we derive the expressions for inflationary observables in the context of multi-field tachyons.
From surface roughening to QCD string theory
Keisuke Jimmy Juge et al.
2001-05-23
Surface critical phenomena and the related onset of Goldstone modes represent fundamental properties of the confining flux in Quantum Chromodynamics. New ideas on surface roughening and their implications for lattice studies of quark confinement and string formation are presented. Problems with a simple string description of the large Wilson surface are discussed.
String theory origin of constrained multiplets
NASA Astrophysics Data System (ADS)
Kallosh, Renata; Vercnocke, Bert; Wrase, Timm
2016-09-01
We study the non-linearly realized spontaneously broken supersymmetry of the (anti-)D3-brane action in type IIB string theory. The worldvolume fields are one vector A μ , three complex scalars ϕ i and four 4d fermions λ 0, λ i. These transform, in addition to the more familiar {N}=4 linear supersymmetry, also under 16 spontaneously broken, non-linearly realized supersymmetries. We argue that the worldvolume fields can be packaged into the following constrained 4d non-linear {N}=1 multiplets: four chiral multiplets S, Y i that satisfy S 2 = SY i =0 and contain the worldvolume fermions λ 0 and λ i ; and four chiral multiplets W α , H i that satisfy S{W}_{α }=S{overline{D}}_{overset{\\cdotp }{α }}{overline{H}}^{overline{imath}}=0 and contain the vector A μ and the scalars ϕ i . We also discuss how placing an anti-D3-brane on top of intersecting O7-planes can lead to an orthogonal multiplet Φ that satisfies S(Φ -overline{Φ})=0 , which is particularly interesting for inflationary cosmology.
Chasing brane inflation in string theory
NASA Astrophysics Data System (ADS)
Krause, Axel; Pajer, Enrico
2008-07-01
We investigate the embedding of brane-antibrane inflation into a concrete type IIB string theory compactification with all moduli fixed. Specifically, we are considering a D3-brane, whose position represents the inflaton phi, in a warped conifold throat in the presence of supersymmetrically embedded D7-branes and an anti-D3-brane localized at the tip of the warped conifold cone. After presenting the moduli stabilization analysis for a general D7-brane embedding, we concentrate on two explicit models, the Ouyang and the Kuperstein embeddings. We analyze whether the forces induced by moduli stabilization and acting on the D3-brane might be canceled by fine-tuning so as to leave us with the original Coulomb attraction of the anti-D3-brane as the driving force for inflation. For a large class of D7-brane embeddings we obtain a negative result. Cancelations are possible only for very small intervals of phi around an inflection point and not globally. For the most part of its motion the inflaton then feels a steep, non-slow-roll potential. We study the inflationary dynamics induced by this potential.
Conformal field theory of critical Casimir interactions in 2D
NASA Astrophysics Data System (ADS)
Bimonte, G.; Emig, T.; Kardar, M.
2013-10-01
Thermal fluctuations of a critical system induce long-ranged Casimir forces between objects that couple to the underlying field. For two-dimensional (2D) conformal field theories (CFT) we derive an exact result for the Casimir interaction between two objects of arbitrary shape, in terms of 1) the free energy of a circular ring whose radii are determined by the mutual capacitance of two conductors with the objects' shape; and 2) a purely geometric energy that is proportional to the conformal charge of the CFT, but otherwise super-universal in that it depends only on the shapes and is independent of boundary conditions and other details.
Matrix theory interpretation of discrete light cone quantization string worldsheets
Grignani; Orland; Paniak; Semenoff
2000-10-16
We study the null compactification of type-IIA string perturbation theory at finite temperature. We prove a theorem about Riemann surfaces establishing that the moduli spaces of infinite-momentum-frame superstring worldsheets are identical to those of branched-cover instantons in the matrix-string model conjectured to describe M theory. This means that the identification of string degrees of freedom in the matrix model proposed by Dijkgraaf, Verlinde, and Verlinde is correct and that its natural generalization produces the moduli space of Riemann surfaces at all orders in the genus expansion. PMID:11030892
Matrix theory interpretation of discrete light cone quantization string worldsheets
Grignani; Orland; Paniak; Semenoff
2000-10-16
We study the null compactification of type-IIA string perturbation theory at finite temperature. We prove a theorem about Riemann surfaces establishing that the moduli spaces of infinite-momentum-frame superstring worldsheets are identical to those of branched-cover instantons in the matrix-string model conjectured to describe M theory. This means that the identification of string degrees of freedom in the matrix model proposed by Dijkgraaf, Verlinde, and Verlinde is correct and that its natural generalization produces the moduli space of Riemann surfaces at all orders in the genus expansion.
Phenomenology and cosmology of weakly coupled string theory
Gaillard, Mary K.
1998-05-18
The weakly coupled vacuum of E{sub 8} {circle_times} E{sub 8} heterotic string theory remains an attractive scenario for phenomenology and cosmology. The particle spectrum is reviewed and the issues of gauge coupling unification, dilaton stabilization and modular cosmology are discussed. A specific model for condensation and supersymmetry breaking, that respects known constraints from string theory and is phenomenologically viable, is described.
Non-singular string cosmology in a 2d hybrid model
NASA Astrophysics Data System (ADS)
Florakis, I.; Kounnas, C.; Partouche, H.; Toumbas, N.
2011-03-01
The existence of non-singular string cosmologies is established in a class of two-dimensional supersymmetric Hybrid models at finite temperature. The left-moving sector of the Hybrid models gives rise to 16 real (N=4) spacetime supercharges as in the usual superstring models. The right-moving sector is non-supersymmetric at the massless level, but is characterized by MSDS symmetry, which ensures boson/fermion degeneracy of the right-moving massive levels. Finite temperature configurations, which are free of Hagedorn instabilities, are constructed in the presence of non-trivial “gravito-magnetic” fluxes. These fluxes inject non-trivial winding charge into the thermal vacuum and restore the thermal T-duality symmetry associated with the Euclidean time circle. Thanks to the unbroken right-moving MSDS symmetry, the one-loop string partition function is exactly calculable beyond any α‧-approximation. At the self-dual point new massless thermal states appear, sourcing localized spacelike branes, which can be used to connect a contracting thermal Universe to an expanding one. The resulting bouncing cosmology is free of any curvature singularities and the string coupling remains perturbative throughout the cosmological evolution.
String creation, D-branes and effective field theory
NASA Astrophysics Data System (ADS)
Hung, Ling-Yan
2008-04-01
This paper addresses several unsettled issues associated with string creation in systems of orthogonal Dp-D(8-p) branes. The interaction between the branes can be understood either from the closed string or open string picture. In the closed string picture it has been noted that the DBI action fails to capture an extra RR exchange between the branes. We demonstrate how this problem persists upon lifting to M-theory. These D-brane systems are analysed in the closed string picture by using gauge-fixed boundary states in a non-standard lightcone gauge, in which RR exchange can be analysed precisely. The missing piece in the DBI action also manifests itself in the open string picture as a mismatch between the Coleman-Weinberg potential obtained from the effective field theory and the corresponding open string calculation. We show that this difference can be reconciled by taking into account the superghosts in the (0+1) effective theory of the chiral fermion, that arises from gauge fixing the spontaneously broken world-line local supersymmetries.
Confining strings in supersymmetric theories with Higgs branches
NASA Astrophysics Data System (ADS)
Shifman, M.; Tallarita, Gianni; Yung, Alexei
2015-03-01
We study flux tubes (strings) on the Higgs branches in supersymmetric gauge theories. In generic vacua on the Higgs branches, strings were shown to develop long-range "tails" associated with massless fields, a characteristic feature of the Higgs branch (the only exception is the vacuum at the base of the Higgs branch). A natural infrared regularization for the above tails is provided by a finite string length L . We perform a numerical study of these strings in generic vacua. We focus on the simplest example of strings in N =1 supersymmetric QED with the Fayet-Iliopoulos term. In particular, we examine the accuracy of a logarithmic approximation (proposed earlier by Evlampiev and Yung) for the tension of such string solutions. In the Evlampiev-Yung formula, the dependence of tension on the string length is logarithmic, and the dependence on the geodesic length from the base of the Higgs branch is quadratic. We observe a remarkable agreement of our numerical results for the string tension with the Evlampiev-Yung analytic expression.
Observational Consequences of Eternal Ination, String Theory, and the Multiverse
NASA Astrophysics Data System (ADS)
Schillo, Marjorie
This thesis details certain connections between string theory and an eternally inflating multiverse, and observational cosmology. It contains a non-trivial observational check of theories of an eternally inflating multiverse, whereby eternal inflation can be ruled out by a measurement of spatial curvature. It introduces a new model for inflation - Unwinding Inflation - which is motivated by string theory. Some possible realizations of Unwinding Inflation are described including their predictions for cosmological observables. Finally an effective field theory of Unwinding Inflation is presented and used to propose a mechanism to produce the anomalous measurements of the large scale cosmic microwave background.
Deconfinement and the Hagedorn transition in string theory.
Chaudhuri, S
2001-03-01
We introduce a new definition of the thermal partition function in string theory. With this new definition, the thermal partition functions of all of the string theories obey thermal duality relations with self-dual Hagedorn temperature beta(2)(H) = 4pi(2)alpha('). A beta-->beta(2)(H)/beta transformation maps the type I theory into a new string theory (type I) with thermal D p-branes, spatial hypersurfaces supporting a p-dimensional finite temperature non-Abelian Higgs-gauge theory for p< or =9. We demonstrate a continuous phase transition in the behavior of the static heavy quark-antiquark potential for small separations r(2)(*)
Width of the confining string in Yang-Mills theory.
Gliozzi, F; Pepe, M; Wiese, U-J
2010-06-11
We investigate the transverse fluctuations of the confining string connecting two static quarks in (2+1)D SU(2) Yang-Mills theory using Monte Carlo calculations. The exponentially suppressed signal is extracted from the large noise by a very efficient multilevel algorithm. The resulting width of the string increases logarithmically with the distance between the static quark charges. Corrections at intermediate distances due to universal higher-order terms in the effective string action are calculated analytically. They accurately fit the numerical data.
Constraining de Sitter Space in String Theory.
Kutasov, David; Maxfield, Travis; Melnikov, Ilarion; Sethi, Savdeep
2015-08-14
We argue that the heterotic string does not have classical vacua corresponding to de Sitter space-times of dimension four or higher. The same conclusion applies to type II vacua in the absence of Ramond-Ramond fluxes. Our argument extends prior supergravity no-go results to regimes of high curvature. We discuss the interpretation of the heterotic result from the perspective of dual type II orientifold constructions. Our result suggests that the genericity arguments used in string landscape discussions should be viewed with caution. PMID:26317710
Constraining de Sitter Space in String Theory.
Kutasov, David; Maxfield, Travis; Melnikov, Ilarion; Sethi, Savdeep
2015-08-14
We argue that the heterotic string does not have classical vacua corresponding to de Sitter space-times of dimension four or higher. The same conclusion applies to type II vacua in the absence of Ramond-Ramond fluxes. Our argument extends prior supergravity no-go results to regimes of high curvature. We discuss the interpretation of the heterotic result from the perspective of dual type II orientifold constructions. Our result suggests that the genericity arguments used in string landscape discussions should be viewed with caution.
F-Theory, spinning black holes and multi-string branches
NASA Astrophysics Data System (ADS)
Haghighat, Babak; Murthy, Sameer; Vafa, Cumrun; Vandoren, Stefan
2016-01-01
We study 5d supersymmetric black holes which descend from strings of generic N=(1,0) supergravity in 6d. These strings have an F-theory realization in 6d as D3 branes wrapping smooth genus g curves in the base of elliptic 3-folds. They enjoy (0 , 4) worldsheet supersymmetry with an extra SU(2) L current algebra at level g realized on the left-movers. When the smooth curves degenerate they lead to multi-string branches and we find that the microscopic worldsheet theory flows in the IR to disconnected 2d CFTs having different central charges. The single string sector is the one with maximal central charge, which when wrapped on a circle, leads to a 5d spinning BPS black hole whose horizon volume agrees with the leading entropy prediction from the Cardy formula. However, we find new phenomena where this branch meets other branches of the CFT. These include multi-string configurations which have no bound states in 6 dimensions but are bound through KK momenta when wrapping a circle, as well as loci where the curves degenerate to spheres. These loci lead to black hole configurations which can have total angular momentum relative to a Taub-Nut center satisfying J 2 > M 3 and whose number of states, though exponentially large, grows much slower than those of the large spinning black hole.
Electromagnetic interaction in the theory of straight strings
Nikitin, I.N.; Pron`ko, G.P.
1995-06-01
A scheme is proposed for including electromagnetic interaction into the theories of stretched relativistic objects. In the theory of the straight string, the operator of electromagnetic interaction is constructed, and form factors of electromagnetic transitions are calculated. 6 refs., 1 fig.
Killing(-Yano) tensors in string theory
NASA Astrophysics Data System (ADS)
Chervonyi, Yuri; Lunin, Oleg
2015-09-01
We construct the Killing(-Yano) tensors for a large class of charged black holes in higher dimensions and study general properties of such tensors, in particular, their behavior under string dualities. Killing(-Yano) tensors encode the symmetries beyond isometries, which lead to insights into dynamics of particles and fields on a given geometry by providing a set of conserved quantities. By analyzing the eigenvalues of the Killing tensor, we provide a prescription for constructing several conserved quantities starting from a single object, and we demonstrate that Killing tensors in higher dimensions are always associated with ellipsoidal coordinates. We also determine the transformations of the Killing(-Yano) tensors under string dualities, and find the unique modification of the Killing-Yano equation consistent with these symmetries. These results are used to construct the explicit form of the Killing(-Yano) tensors for the Myers-Perry black hole in arbitrary number of dimensions and for its charged version.
Wilson loops in open string theory
Shiraishi, K.
1988-02-01
Wilson loop elements on torus are introduced into the partition function of open strings as Polyakov's path integral at one-loop level. Mass spectra from compactification and expected symmetry breaking are illustrated by choosing the correct weight for the contributions from annulus and Mobius strip. The authors show that Jacobi's imaginary transformation connects the mass spectra with the Wilson loops. The application to thermo-partition function and cosmological implications are briefly discussed.
A class of exact classical solutions to string theory.
Coley, A A
2002-12-31
We show that the recently obtained class of spacetimes for which all of the scalar curvature invariants vanish (which can be regarded as generalizations of pp-wave spacetimes) are exact solutions in string theory to all perturbative orders in the string tension scale. As a result the spectrum of the theory can be explicitly obtained, and these spacetimes are expected to provide some hints for the study of superstrings on more general backgrounds. Since these Lorentzian spacetimes suffer no quantum corrections to all loop orders they may also offer insights into quantum gravity.
Aspects of time-dependent solutions of string theory
NASA Astrophysics Data System (ADS)
Fabinger, Michal
Most of our present knowledge of string theory pertains to time-independent backgrounds. Time-dependent backgrounds are in general much harder to understand, and pose a number of interesting questions. In the first part of this dissertation, we study light-like singularities in string theory. We discuss physical properties of the parabolic orbifold and the null-brane orbifold of Minkowski space, and we show how a large class of light-like singularities gets repaired by string worldsheet instantons. The second part of the dissertation is devoted to the study of physical systems related to double analytic continuations of black holes. In particular, we discuss M-theory compactified on a non-supersymmetric interval, which can decay by nucleation of bubbles of nothing. We also study the evolution of spacetimes obtained by a double analytic continuation of Kerr black holes. We compute particle creation in these spacetimes, and explain its relation to non-local deformations of the string worldsheet action. The main motivation for the work presented in the last part of the dissertation is to gain information about a possible holographic description of de Sitter space. We study the entropy of de Sitter flux compactifications, and the entropy of their deformations containing D-brane domain walls. We find a string scale correspondence point at which the thermodynamic entropy of the spacetime and the statistical entropy on the D-brane domain walls agree up to coefficients of order one.
N =2⋆ from topological amplitudes in string theory
NASA Astrophysics Data System (ADS)
Florakis, Ioannis; Zein Assi, Ahmad
2016-08-01
In this paper, we explicitly construct string theory backgrounds that realise the so-called N =2⋆ gauge theory. We prove the consistency of our models by calculating their partition function and obtaining the correct gauge theory spectrum. We further provide arguments in favour of the universality of our construction which covers a wide class of models all of which engineer the same gauge theory. We reproduce the corresponding Nekrasov partition function once the Ω-deformation is included and the appropriate field theory limit taken. This is achieved by calculating the topological amplitudes Fg in the string models. In addition to heterotic and type II constructions, we also realise the mass deformation in type I theory, thus leading to a natural way of uplifting the result to the instanton sector.
Entanglement Entropy in Two-Dimensional String Theory.
Hartnoll, Sean A; Mazenc, Edward A
2015-09-18
To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space. PMID:26430982
sigma model approach to the heterotic string theory
Sen, A.
1985-09-01
Relation between the equations of motion for the massless fields in the heterotic string theory, and the conformal invariance of the sigma model describing the propagation of the heterotic string in arbitrary background massless fields is discussed. It is emphasized that this sigma model contains complete information about the string theory. Finally, we discuss the extension of the Hull-Witten proof of local gauge and Lorentz invariance of the sigma-model to higher order in ..cap alpha..', and the modification of the transformation laws of the antisymmetric tensor field under these symmetries. Presence of anomaly in the naive N = 1/2 supersymmetry transformation is also pointed out in this context. 12 refs.
Entanglement Entropy in Two-Dimensional String Theory.
Hartnoll, Sean A; Mazenc, Edward A
2015-09-18
To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.
Black strings in Gauss-Bonnet theory are unstable
NASA Astrophysics Data System (ADS)
Giacomini, Alex; Oliva, Julio; Vera, Aldo
2015-05-01
We report the existence of unstable s-wave modes for black strings in Gauss-Bonnet theory (which is quadratic in the curvature) in seven dimensions. This theory admits analytic uniform black strings that are, in the transverse section, black holes of the same Gauss-Bonnet theory in six dimensions. All the components of the perturbation can be written in terms of a single component and its derivatives. For this, we find a master equation that admits bounded solutions provided the characteristic time of the exponential growth of the perturbation is related to the wave number along the extra direction, as in general relativity. It is known that these configurations suffer from a thermal instability; therefore, the results presented here provide evidence for the Gubser-Mitra conjecture in the context of Gauss-Bonnet theory. Because of the nontriviality of the curvature of the background, all of the components of the metric perturbation appear in the linearized equations. Similar to spherical black holes, the black strings should be obtained as the short-distance limit r ≪α1 /2 of the black-string solution of Einstein-Gauss-Bonnet theory (which is not known analytically), where α is the Gauss-Bonnet coupling.
The infrared/ultraviolet connection in string theory
NASA Astrophysics Data System (ADS)
Toumbas, Nicolaos K.
In conventional (20th century) physics, high energy or high momentum came to be associated with short distances. The physics of the 21st century is likely to be dominated by a very different perspective. According to the infrared/ultraviolet connection which underlies much of our new understanding of string theory and its connection to gravity, physics of increasing energy or momentum is governed by increasingly large distances. In this thesis, we investigate thoroughly several such examples of infrared/ultraviolet mixing that occur in string theory and analyze their consequences and implications for gravity. Examples include the growth of particle size with momentum, giant gravitons, the infrared/ultraviolet connection in the holographic description of AdS spaces, space/time non commutativity in the context of open string theories and the spacetime uncertainty principle of string theory DxDt~l2s . We also study the consequences of similar uncertainty principles that occur in non-commutative geometry where the coordinates of space do not commute. An important consequence of the non-commutativity is the fact that the particles described by non-commutative field theories have a spatial extension which is proportional to their momentum. This in turn leads to unfamiliar violations of the conventional decoupling of infrared and ultraviolet degrees of freedom in these theories. A final chapter is concerned with the description of large brane configurations in type IIA string theory whose low energy dynamics is described by the Quantum Hall effect. An interesting interplay of infrared/ultraviolet mixing phenomena occurs in the description.
From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.
Pepe, M; Wiese, U-J
2009-05-15
We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.
From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.
Pepe, M; Wiese, U-J
2009-05-15
We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model. PMID:19518940
Four-qubit entanglement classification from string theory.
Borsten, L; Dahanayake, D; Duff, M J; Marrani, A; Rubens, W
2010-09-01
We invoke the black-hole-qubit correspondence to derive the classification of four-qubit entanglement. The U-duality orbits resulting from timelike reduction of string theory from D=4 to D=3 yield 31 entanglement families, which reduce to nine up to permutation of the four qubits. PMID:20867503
Grand Unification as a Bridge Between String Theory and Phenomenology
Pati, Jogesh C.
2006-06-09
In the first part of the talk, I explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity--be it string/M theory or a reincarnation--this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2){sub L} x SU(2){sub R} x SU(4){sup c} or SO(10) symmetry in 4D in explaining (1) observed neutrino oscillations, (2) baryogenesis via leptogenesis, and (3) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.
Four-qubit entanglement classification from string theory.
Borsten, L; Dahanayake, D; Duff, M J; Marrani, A; Rubens, W
2010-09-01
We invoke the black-hole-qubit correspondence to derive the classification of four-qubit entanglement. The U-duality orbits resulting from timelike reduction of string theory from D=4 to D=3 yield 31 entanglement families, which reduce to nine up to permutation of the four qubits.
What every physicist should know about string theory
Witten, Edward
2015-11-15
Some of nature’s rhymes—the appearance of similar structures in different areas of physics—underlie the way that string theory potentially unifies gravity with the other forces of nature and eliminates the ultraviolet divergences that plague quantum gravity.
Grand Unification as a Bridge Between String Theory and Phenomenology
NASA Astrophysics Data System (ADS)
Pati, Jogesh C.
In the first part of this paper, we explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity — be it string/M-theory or a reincarnation — this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2)L × SU(2)R × SU(4)c or SO(10) symmetry in 4D in explaining (i) observed neutrino oscillations, (ii) baryogenesis via leptogenesis, and (iii) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in μ → eγ, τ → μγ, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M-theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Open parabosonic string theory between two parallel Dp-branes
Hamam, D.; Belaloui, N.
2012-06-27
We investigate an open parabosonic string theory between two parallel Dp-branes. The spectrum is constructed and the partition function is derived. A common chord between the development of this latter and the degeneracy of the states for each mass level is obtained. The theory is consistent and with no tachyon. The Virasoro algebra is derived and compared to the one of the ordinary case.
String theory, quantum phase transitions, and the emergent Fermi liquid.
Cubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad
2009-07-24
A central problem in quantum condensed matter physics is the critical theory governing the zero-temperature quantum phase transition between strongly renormalized Fermi liquids as found in heavy fermion intermetallics and possibly in high-critical temperature superconductors. We found that the mathematics of string theory is capable of describing such fermionic quantum critical states. Using the anti-de Sitter/conformal field theory correspondence to relate fermionic quantum critical fields to a gravitational problem, we computed the spectral functions of fermions in the field theory. By increasing the fermion density away from the relativistic quantum critical point, a state emerges with all the features of the Fermi liquid.
Millicharged dark matter in quantum gravity and string theory.
Shiu, Gary; Soler, Pablo; Ye, Fang
2013-06-14
We examine the millicharged dark matter scenario from a string theory perspective. In this scenario, kinetic and mass mixings of the photon with extra U(1) bosons are claimed to give rise to small electric charges, carried by dark matter particles, whose values are determined by continuous parameters of the theory. This seems to contradict folk theorems of quantum gravity that forbid the existence of irrational charges in theories with a single massless gauge field. By considering the underlying structure of the U(1) mass matrix that appears in type II string compactifications, we show that millicharges arise exclusively through kinetic mixing, and require the existence of at least two exactly massless gauge bosons.
Interpolating the Coulomb phase of little string theory
Lin, Ying -Hsuan; Shao, Shu -Heng; Wang, Yifan; Yin, Xi
2015-12-03
We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity onmore » the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. As a result, we also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.« less
Interpolating the Coulomb phase of little string theory
Lin, Ying -Hsuan; Shao, Shu -Heng; Wang, Yifan; Yin, Xi
2015-12-03
We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity on the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. As a result, we also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.
Interpolating the Coulomb phase of little string theory
NASA Astrophysics Data System (ADS)
Lin, Ying-Hsuan; Shao, Shu-Heng; Wang, Yifan; Yin, Xi
2015-12-01
We study up to 8-derivative terms in the Coulomb branch effective action of (1, 1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity on the Coulomb branch, numerically from SU( k) SYM and DSLST respectively, for k = 2 , 3 , 4 , 5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. We also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2 , 0) little string theory.
On natural inflation and moduli stabilisation in string theory
NASA Astrophysics Data System (ADS)
Palti, Eran
2015-10-01
Natural inflation relies on the existence of an axion decay constant which is super-Planckian. In string theory only sub-Planckian axion decay constants have been found in any controlled regime. However in field theory it is possible to generate an enhanced super-Planckian decay constant by an appropriate aligned mixing between axions with individual sub-Planckian decay constants. We study the possibility of such a mechanism in string theory. In particular we construct a new realisation of an alignment scenario in type IIA string theory compactifications on a Calabi-Yau where the alignment is induced through fluxes. Within field theory the original decay constants are taken to be independent of the parameters which induce the alignment. In string theory however they are moduli dependent quantities and so interact gravitationally with the physics responsible for the mixing. We show that this gravitational effect of the fluxes on the moduli can precisely cancel any enhancement of the effective decay constant. This censorship of an effective super-Planckian decay constant depends on detailed properties of Calabi-Yau moduli spaces and occurs for all the examples and classes that we study. We expand these results to a general superpotential assuming only that the axion superpartners are fixed supersymmetrically and are able to show for a large class of Calabi-Yau manifolds, but not all, that the cancellation effect occurs and is independent of the superpotential. We also study simple models where the moduli are fixed non-supersymmetrically and find that similar cancellation behaviour can emerge. Finally we make some comments on a possible generalisation to axion monodromy inflation models.
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
None
2016-07-12
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher
Yukawa unification in heterotic string theory
NASA Astrophysics Data System (ADS)
Buchbinder, Evgeny I.; Constantin, Andrei; Gray, James; Lukas, Andre
2016-08-01
We analyze Yukawa unification in the context of E8×E8 heterotic Calabi-Yau models which rely on breaking to a grand unified theory (GUT) via a nonflat gauge bundle and subsequent Wilson line breaking to the standard model. Our focus is on underlying GUT theories with gauge group S U (5 ) or S O (10 ). We provide a detailed analysis of the fact that, in contrast to traditional field theory GUTs, the underlying GUT symmetry of these models does not enforce Yukawa unification. Using this formalism, we present various scenarios where Yukawa unification can occur as a consequence of additional symmetries. These additional symmetries arise naturally in some heterotic constructions, and we present an explicit heterotic line bundle model which realizes one of these scenarios.
Quantum gravity, dynamical phase-space and string theory
NASA Astrophysics Data System (ADS)
Freidel, Laurent; Leigh, Robert G.; Minic, Djordje
2014-08-01
In a natural extension of the relativity principle, we speculate that a quantum theory of gravity involves two fundamental scales associated with both dynamical spacetime as well as dynamical momentum space. This view of quantum gravity is explicitly realized in a new formulation of string theory which involves dynamical phase-space and in which spacetime is a derived concept. This formulation naturally unifies symplectic geometry of Hamiltonian dynamics, complex geometry of quantum theory and real geometry of general relativity. The spacetime and momentum space dynamics, and thus dynamical phase-space, is governed by a new version of the renormalization group (RG).
[Mathematics and string theory]. [Annual progress report
Not Available
1992-09-01
Over the past year our research activities concentrated around: (1) non-commutative differential geometry and its connections with quantum physics and (2) 2-dimensional(super) conformal quantum field theories and related non-linear {sigma}-models. This paper discusses these topics.
String theory: results, magic and doubts
NASA Astrophysics Data System (ADS)
Rabinovici, Eliezer
2013-12-01
This talk was given at a special place and on a special occasion for a special audience. It describes the results, magic and doubts that an attempt to construct a theory based on the idea that the basic constituents of matter can also be extended objects has led to. The emphasis is on the spirit behind the ideas.
Tachyon solutions in boundary and open string field theory
Calcagni, Gianluca; Nardelli, Giuseppe
2008-12-15
We construct rolling tachyon solutions of open and boundary string field theory (OSFT and BSFT, respectively), in the bosonic and supersymmetric (susy) case. The wildly oscillating solution of susy OSFT is recovered, together with a family of time-dependent BSFT solutions, for the bosonic and susy string. These are parametrized by an arbitrary constant r involved in solving the Green equation of the target fields. When r=0 we recover previous results in BSFT, whereas for r attaining the value predicted by OSFT it is shown that the bosonic OSFT solution is the derivative of the boundary one; in the supersymmetric case the relation between the two solutions is more complicated. This technical correspondence sheds some light on the nature of wild oscillations, which appear in both theories whenever r>0.
Massive higher spin states in string theory and gravitational quadrupoles
Giannakis, I. |; Liu, J.T.; Porrati, M. ||
1999-05-01
In this paper we study three point functions of the type II superstring involving one graviton and two massive states, focusing in particular on the spin- (7) /(2) fermions at the first mass level. Defining a gravitational quadrupole {open_quotes}{ital h} factor,{close_quotes} we find that the nonminimal interactions of string states in general are parametrized by h{ne}1, in contrast with the preferred field theory value of h=1 (for tree-level unitarity). This difference arises from the fact that consistent gravitational interactions of strings are related to the presence of a complete tower of massive states, not present in the ordinary field theory case. {copyright} {ital 1999} {ital The American Physical Society}
Status of Some Exact Results on Conformally Invariant Effective String Theories
Dass, N. D. Hari
2011-05-23
Numerical studies of Flux Tubes in d = 3,4 QCD and the strong evidence thereby for them being described by free Bosonic String theory to order R{sup -}3, where R is the string length, will be briefly reviewed. The Polchinski-Strominger Effective String Theory approach and our recent work in constructing them to all orders will then be described. A proof will be presented that to all orders these theories have the same spectrum as free Bosonic String Theory. I will conclude my attempts to compliment these results on the basis of canonical QFT and the implications for QCD-Strings.
Density functional theory for polymeric systems in 2D
NASA Astrophysics Data System (ADS)
Słyk, Edyta; Roth, Roland; Bryk, Paweł
2016-06-01
We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim’s first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT.
Density functional theory for polymeric systems in 2D.
Słyk, Edyta; Roth, Roland; Bryk, Paweł
2016-06-22
We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim's first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT. PMID:27115343
Worldsheet theory of light-cone gauge noncritical strings on higher genus Riemann surfaces
NASA Astrophysics Data System (ADS)
Ishibashi, Nobuyuki; Murakami, Koichi
2016-06-01
It is possible to formulate light-cone gauge string field theory in noncritical dimensions. Such a theory corresponds to conformal gauge worldsheet theory with nonstandard longitudinal part. We study the longitudinal part of the worldsheet theory on higher genus Riemann surfaces. The results in this paper shall be used to study the dimensional regularization of light-cone gauge string field theory.
Supersymmetry and String Theory: Beyond the Standard Model
NASA Astrophysics Data System (ADS)
Dine, Michael
2007-01-01
The past decade has witnessed dramatic developments in the field of theoretical physics. This book is a comprehensive introduction to these recent developments. It contains a review of the Standard Model, covering non-perturbative topics, and a discussion of grand unified theories and magnetic monopoles. It introduces the basics of supersymmetry and its phenomenology, and includes dynamics, dynamical supersymmetry breaking, and electric-magnetic duality. The book then covers general relativity and the big bang theory, and the basic issues in inflationary cosmologies before discussing the spectra of known string theories and the features of their interactions. The book also includes brief introductions to technicolor, large extra dimensions, and the Randall-Sundrum theory of warped spaces. This will be of great interest to graduates and researchers in the fields of particle theory, string theory, astrophysics and cosmology. The book contains several problems, and password protected solutions will be available to lecturers at www.cambridge.org/9780521858410. Provides reader with tools to confront limitations of the Standard Model Includes several exercises and problems Solutions are available to lecturers at www.cambridge.org/9780521858410
String theory and pre-big bang cosmology
NASA Astrophysics Data System (ADS)
Gasperini, M.; Veneziano, G.
2016-09-01
In string theory, the traditional picture of a Universe that emerges from the inflation of a very small and highly curved space-time patch is a possibility, not a necessity: quite different initial conditions are possible, and not necessarily unlikely. In particular, the duality symmetries of string theory suggest scenarios in which the Universe starts inflating from an initial state characterized by very small curvature and interactions. Such a state, being gravitationally unstable, will evolve towards higher curvature and coupling, until string-size effects and loop corrections make the Universe "bounce" into a standard, decreasing-curvature regime. In such a context, the hot big bang of conventional cosmology is replaced by a "hot big bounce" in which the bouncing and heating mechanisms originate from the quantum production of particles in the high-curvature, large-coupling pre-bounce phase. Here we briefly summarize the main features of this inflationary scenario, proposed a quarter century ago. In its simplest version (where it represents an alternative and not a complement to standard slow-roll inflation) it can produce a viable spectrum of density perturbations, together with a tensor component characterized by a "blue" spectral index with a peak in the GHz frequency range. That means, phenomenologically, a very small contribution to a primordial B-mode in the CMB polarization, and the possibility of a large enough stochastic background of gravitational waves to be measurable by present or future gravitational wave detectors.
Arrow of time in string theory
NASA Astrophysics Data System (ADS)
McInnes, Brett
2007-10-01
Inflation allows the problem of the arrow of time to be understood as a question about the structure of spacetime: why was the intrinsic curvature of the earliest spatial sections so much better behaved than it might have been? This is really just the complement of a more familiar problem: what mechanism prevents the extrinsic curvature of the earliest spatial sections from diverging, as classical general relativity suggests? We argue that the stringy version of “creation from nothing”, sketched by Ooguri, Vafa, and Verlinde, solves both of these problems at once. The argument, while very simple, hinges on some of the deepest theorems in global differential geometry. These results imply that when a spatially toral spacetime is created from nothing, the earliest spatial sections are forced to be [quasi-classically] exactly locally isotropic. This local isotropy, in turn, forces the inflaton into its minimal-entropy state. The theory explains why the arrow does not reverse in black holes or in a cosmic contraction, if any.
Effective string theory for vortex lines in fluids and superfluids
NASA Astrophysics Data System (ADS)
Horn, Bart; Nicolis, Alberto; Penco, Riccardo
2015-10-01
We discuss the effective string theory of vortex lines in ordinary fluids and low-temperature superfluids, by describing the bulk fluid flow in terms of a two-form field to which vortex lines can couple. We derive the most general low-energy effective Lagrangian that is compatible with (spontaneously broken) Poincaré invariance and worldsheet reparameterization invariance. This generalizes the effective action developed in [1, 2]. By applying standard field-theoretical techniques, we show that certain low-energy coupling constants — most notably the string tension — exhibit RG running already at the classical level. We discuss applications of our techniques to the study of Kelvin waves, vortex rings, and the coupling to bulk sound modes.
Applications of the holographic principle in string theory
NASA Astrophysics Data System (ADS)
Button, Bradly Kevin
The holographic principle has become an extraordinary tool in theoretical physics, most notably in the form of the Anti-deSitter Conformal Field Theory (AdS/CFT) correspondence, in which classical gravitational degrees of freedom in N-dimensions are related quantum field theory degrees of freedom in N -- 1 dimensions in the limit of a large number of fields. Here we present an account of the AdS/CFT correspondence, also known as the gauge/gravity duality, from its origins in the large N 'tHooft expansion, up to Maldacena's proposal that type IIB string theory in the presence of D-branes at low energy is dual to an N = 4, d = 4, U(N) super Yang-Mills on AdS5 . S5 . We begin with an extensive review of (super)string theory including D-branes. We then present the general formulation of the AdS/CFT in the supergravity background of AdS5 x S5 , along with several examples of how it is used in terms of the identification of bulk fields with operators on the boundary of a CFT. We move on to discuss two applications of the gauge/gravity duality. The first is the application of the holographic gauge/gravity correspondence to the QCD k-string. The second applies the AdS/CFT formalism to a Kerr black hole solution embedded in 10-dimensional heterotic sting theory. These two applications of the holographic gauge/gravity duality comprise the original work presented here. We follow with summaries and discussions of the background material, the original work, and future investigations.
Anomalies in non-polynomial closed string field theory
NASA Astrophysics Data System (ADS)
Kaku, Michio
1990-11-01
The complete classical action for the non-polynomial closed string field theory was written down last year by the author and the Kyoto group. It successfully reproduces all closed string tree diagrams, but fails to reproduce modular invariant loop amplitudes. In this paper we show that the classical action is also riddled with gauge anomalies. Thus, the classical action is not really gauge invariant and fails as a quantum theory. The presence of gauge anomalies and the violation of modular invariance appear to be a disaster for the theory. Actually, this is a blessing in disguise. We show that by adding new non-polynomial terms to the action, we can simultaneously eliminate both the gauge anomalies and the modular-violating loop diagrams. We show this explicitly at the one loop level and also for an infinite class of p-puncture, genus- g amplitudes, making use of a series of non-trivial identities. The theory is thus an acceptable quantum theory. We comment on the origin of this strange link between local gauge anomalies and global modular invariance.
New dualities from orientifold transitions Part II: string theory
NASA Astrophysics Data System (ADS)
García-Etxebarria, Iñaki; Heidenreich, Ben; Wrase, Timm
2013-10-01
We present a string theoretical description, given in terms of branes and orientifolds wrapping vanishing cycles, of the dual pairs of gauge theories analyzed in [1]. Based on the resulting construction we argue that the duality that we observe in field theory is inherited from S-duality of type IIB string theory. We analyze in detail the complex cone over the zeroth del Pezzo surface and discuss an infinite family of orbifolds of flat space. For the del Pezzo case we describe the system in terms of large volume objects, and show that in this language the duality can be understood from the strongly coupled behavior of the O7+ plane, which we analyze using simple F-theory considerations. For all cases we also give a different argument based on the existence of appropriate torsional components of the 3-form flux lattice. Along the way we clarify some aspects of the description of orientifolds in the derived category of coherent sheaves, and in particular we discuss the important role played by exotic orientifolds — ordinary orientifolds composed with auto-equivalences of the category — when describing orientifolds of ordinary quiver gauge theories.
Stable Non-Supersymmetric Throats in String Theory
Kachru, Shamit; Simic, Dusan; Trivedi, Sandip P.; /Tata Inst. /Stanford U., ITP /SLAC
2011-06-28
We construct a large class of non-supersymmetric AdS-like throat geometries in string theory by taking non-supersymmetric orbifolds of supersymmetric backgrounds. The scale of SUSY breaking is the AdS radius, and the dual field theory has explicitly broken supersymmetry. The large hierarchy of energy scales in these geometries is stable. We establish this by showing that the dual gauge theories do not have any relevant operators which are singlets under the global symmetries. When the geometries are embedded in a compact internal space, a large enough discrete subgroup of the global symmetries can still survive to prevent any singlet relevant operators from arising. We illustrate this by embedding one case in a non-supersymmetric orbifold of a Calabi-Yau manifold. These examples can serve as a starting point for obtaining Randall-Sundrum models in string theory, and more generally for constructing composite Higgs or technicolor-like models where strongly coupled dynamics leads to the breaking of electro-weak symmetry. Towards the end of the paper, we briefly discuss how bulk gauge fields can be incorporated by introducing D7-branes in the bulk, and also show how the strongly coupled dynamics can lead to an emergent weakly coupled gauge theory in the IR with matter fields including scalars.
2D Potential theory using complex functions and conformal mapping
NASA Astrophysics Data System (ADS)
Le Maire, Pauline; Munschy, Marc
2016-04-01
For infinitely horizontally extended bodies, functions that describe potential and field equations (gravity and magnetics) outside bodies are 2D and harmonic. The consequence of this property is that potential and field equations can be written as complex analytic functions. We define these complex functions whose real part is the commonly used real function and imaginary part is its Hilbert transform. Using data or synthetic cases the transformation is easily performed in the Fourier domain by setting to zero all values for negative frequencies. Written as complex functions of the complex variable, equations of potential and field in gravity and magnetics for different kinds of geometries are simple and correspond to powers of the inverse of the distance. For example, it is easily shown that for a tilted dyke, the dip and the apparent inclination have the same effect on the function and consequently that it is not possible, with data, to compute one of both values without knowing the other. Conformal mapping is an original way to display potential field functions. Considering that the complex variable corresponds to the real axis, complex potential field functions resume to a limaçon, a curve formed by the path of the point fixed to a circle when that circle rolls around the outside of another circle. For example, the point corresponding to the maximum distance to the origin of the complex magnetic field due to a cylinder, corresponds to the maximum of the analytic signal as defined by Nabighan in 1972 and its phase corresponds to the apparent inclination. Several applications are shown in different geological contexts using aeromagnetic data.
Counting all dyons in {N} = 4 string theory
NASA Astrophysics Data System (ADS)
Dabholkar, Atish; Gomes, João; Murthy, Sameer
2011-05-01
For dyons in heterotic string theory compactified on a six-torus, with electric charge vector Q and magnetic charge vector P, the positive integer I ≡ gcd( Q ∧ P) is an invariant of the U-duality group. We propose the microscopic theory for computing the spectrum of all dyons for all values of I, generalizing earlier results that exist only for the simplest case of I = 1. Our derivation uses a combination of arguments from duality, 4d-5d lift, and a careful analysis of fermionic zero modes. The resulting degeneracy agrees with the black hole degeneracy for large charges and with the degeneracy of field-theory dyons for small charges. It naturally satisfies several physical requirements including integrality and duality invariance. As a byproduct, we also derive the microscopic (0 , 4) superconformal field theory relevant for computing the spectrum of five-dimensional Strominger-Vafa black holes in ALE backgrounds and count the resulting degeneracies.
String junction transitions and marginal stability in N=2 EN theories
NASA Astrophysics Data System (ADS)
Ohtake, Yukiko
2002-01-01
We study marginal stability of BPS states in four-dimensional N=2 theories with EN global symmetry. We use the D3-brane probe realization where BPS states correspond to string webs in the affine EN 7-brane background. We construct string webs involving loops and find a transition between a loop string web and an open string. The transition describes a new phenomenon occurring on marginal stability curves.
Towards universal axion inflation and reheating in string theory
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Plauschinn, Erik
2014-09-01
The recent BICEP2 measurements of B-modes indicate a large tensor-to-scalar ratio in inflationary cosmology, which points towards trans-Planckian evolution of the inflaton. We propose possible string-theory realizations thereof. Schemes for natural and axion monodromy inflation are presented in the framework of the type IIB large volume scenario. The inflaton in both cases is given by the universal axion and its potential is generated by F-terms. Our models are shown to feature a natural mechanism for inflaton decay into predominantly Standard Model particles. We assume that the (flux) landscape admits points where the masses of the saxions (including the dilaton) are hierarchically different from the mass of C0. In particular, apart from the nearly massless axion of the big four-cycle in a LVS, C0 can be the lightest closed-string modulus, making it a good candidate for the inflaton. For natural inflation, the potential of the axion is generated by non-perturbative effects from fluxed E3-instantons, whereas for axion monodromy inflation the axion C0 can appear quadratically in the flux induced scalar potential. There exists a mechanism guaranteeing that inflaton decay at the end of inflation predominantly goes into standard model (SM) degrees of freedom. This last point is one of the very interesting aspects of the models considered in this Letter. Note furthermore that the relevant axion potentials are F-terms in an effective spontaneously-broken supergravity theory, which is in the same spirit as [18].Finally, note that an axion decay constant f>Mpl corresponds to the non-perturbative (F-theory) regime gs>1 of the type IIB superstring. We collect some indications that the LVS scenario might be trustable even for string coupling constants slightly larger than one, but of course conclusive evidence requires the parametric control over infinitely many perturbative corrections to the Kähler potential.
NASA Astrophysics Data System (ADS)
Rauhala, U. A.
2013-12-01
Array algebra of photogrammetry and geodesy unified multi-linear matrix and tensor operators in an expansion of Gaussian adjustment calculus to general matrix inverses and solutions of inverse problems to find all, or some optimal, parametric solutions that satisfy the available observables. By-products in expanding array and tensor calculus to handle redundant observables resulted in general theories of estimation in mathematical statistics and fast transform technology of signal processing. Their applications in gravity modeling and system automation of multi-ray digital image and terrain matching evolved into fast multi-nonlinear differential and integral array calculus. Work since 1980's also uncovered closed-form inverse Taylor and least squares Newton-Raphson-Gauss perturbation solutions of nonlinear systems of equations. Fast nonlinear integral matching of array wavelets enabled an expansion of the bundle adjustment to 4-D stereo imaging and range sensing where real-time stereo sequence and waveform phase matching enabled data-to-info conversion and compression on-board advanced sensors. The resulting unified array calculus of spacetime sensing is applicable in virtually any math and engineering science, including recent work in spacetime physics. The paper focuses on geometric spacetime reconstruction from its image projections inspired by unified relativity and string theories. The collinear imaging equations of active object space shutter of special relativity are expanded to 4-D Lorentz transform. However, regular passive imaging and shutter inside the sensor expands the law of special relativity by a quantum geometric explanation of 4-D photogrammetry. The collinear imaging equations provide common sense explanations to the 10 (and 26) dimensional hyperspace concepts of a purely geometric string theory. The 11-D geometric M-theory is interpreted as a bundle adjustment of spacetime images using 2-D or 5-D membrane observables of image, string and
Stationary charged scalar clouds around black holes in string theory
NASA Astrophysics Data System (ADS)
Bernard, Canisius
2016-10-01
It was reported that Kerr-Newman black holes can support linear charged scalar fields in their exterior regions. These stationary massive charged scalar fields can form bound states, which are called stationary scalar clouds. In this paper, we show that Kerr-Sen black holes can also support stationary massive charged scalar clouds by matching the near- and far-region solutions of the radial part of the Klein-Gordon wave equation. We also review stationary scalar clouds within the background of static electrically charged black hole solutions in the low-energy limit of heterotic string field theory, namely, the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black holes.
1+1 dimensional compactifications of string theory.
Goheer, Naureen; Kleban, Matthew; Susskind, Leonard
2004-05-14
We argue that stable, maximally symmetric compactifications of string theory to 1+1 dimensions are in conflict with holography. In particular, the finite horizon entropies of the Rindler wedge in 1+1 dimensional Minkowski and anti-de Sitter space, and of the de Sitter horizon in any dimension, are inconsistent with the symmetries of these spaces. The argument parallels one made recently by the same authors, in which we demonstrated the incompatibility of the finiteness of the entropy and the symmetries of de Sitter space in any dimension. If the horizon entropy is either infinite or zero, the conflict is resolved.
Is it Really Naked? On Cosmic Censorship in String Theory
Frolov, A
2004-09-30
We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counter example to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the ''no black hole'' argument breaks.
Is it really naked? On cosmic censorship in string theory
Frolov, Andrei V.
2004-11-15
We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counterexample to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the 'no black hole' argument breaks.
Gauge transformation of double field theory for open string
NASA Astrophysics Data System (ADS)
Ma, Chen-Te
2015-09-01
We combine symmetry structures of ordinary (parallel directions) and dual (transversal directions) coordinates to construct the Dirac-Born-Infeld theory. The ordinary coordinates are associated with the Neumann boundary conditions and the dual coordinates are associated with the Dirichlet boundary conditions. Gauge fields become scalar fields by exchanging the ordinary and dual coordinates. A gauge transformation of a generalized metric is governed by the generalized Lie derivative. The gauge transformation of the massless closed string theory gives the C -bracket, but the gauge transformation of the open string theory gives the F -bracket. The F -bracket with the strong constraints is different from the Courant bracket by an exact one-form. This exact one-form should come from the one-form gauge field. Based on a symmetry point of view, we deduce a suitable action with a nonzero H -flux at the low-energy level. From an equation of motion of the scalar dilaton, it defines a generalized scalar curvature. Finally, we construct a double sigma model with a boundary term and show that this model with constraints is classically equivalent to the ordinary sigma model.
Janiszewski, Stefan; Karch, Andreas
2013-02-22
We argue that generic nonrelativistic quantum field theories with a holographic description are dual to Hořava gravity. We construct explicit examples of this duality embedded in string theory by starting with relativistic dual pairs and taking a nonrelativistic scaling limit.
Monochromatic Wannier Functions in the Theory of 2D Photonic Crystals and Photonic Crystal Fibers
Mazhirina, Yu. A.; Melnikov, L. A.
2011-10-03
The use of the monochromatic Wannier functions which have the temporal dependence as (exp(-i{omega}t)) in the theory of 2D photonic crystals and photonic crystal fibers is proposed. Corresponding equations and formulae are derived and discussed.
D-brane Instantons in Type II String Theory
Blumenhagen, Ralph; Cvetic, Mirjam; Kachru, Shamit; Weigand, Timo; /SLAC
2009-06-19
We review recent progress in determining the effects of D-brane instantons in N=1 supersymmetric compactifications of Type II string theory to four dimensions. We describe the abstract D-brane instanton calculus for holomorphic couplings such as the superpotential, the gauge kinetic function and higher fermionic F-terms. This includes a discussion of multi-instanton effects and the implications of background fluxes for the instanton sector. Our presentation also highlights, but is not restricted to the computation of D-brane instanton effects in quiver gauge theories on D-branes at singularities. We then summarize the concrete consequences of stringy D-brane instantons for the construction of semi-realistic models of particle physics or SUSY-breaking in compact and non-compact geometries.
Life at the interface of particle physics and string theory
NASA Astrophysics Data System (ADS)
Schellekens, A. N.
2013-10-01
If the results of the first LHC run are not betraying us, many decades of particle physics are culminating in a complete and consistent theory for all nongravitational physics: the standard model. But despite this monumental achievement there is a clear sense of disappointment: many questions remain unanswered. Remarkably, most unanswered questions could just be environmental, and disturbingly to some the existence of life may depend on that environment. Meanwhile there has been increasing evidence that the seemingly ideal candidate for answering these questions, string theory, gives an answer few people initially expected: a large “landscape” of possibilities that can be realized in a multiverse and populated by eternal inflation. At the interface of “bottom-up” and “top-down” physics, a discussion of anthropic arguments becomes unavoidable. Developments in this area are reviewed, focusing especially on the last decade.
Phenomenology of TeV little string theory from holography.
Antoniadis, Ignatios; Arvanitaki, Asimina; Dimopoulos, Savas; Giveon, Amit
2012-02-24
We study the graviton phenomenology of TeV little string theory by exploiting its holographic gravity dual five-dimensional theory. This dual corresponds to a linear dilaton background with a large bulk that constrains the standard model fields on the boundary of space. The linear dilaton geometry produces a unique Kaluza-Klein graviton spectrum that exhibits a ~TeV mass gap followed by a near continuum of narrow resonances that are separated from each other by only ~30 GeV. Resonant production of these particles at the LHC is the signature of this framework that distinguishes it from large extra dimensions, where the Kaluza-Klein states are almost a continuum with no mass gap, and warped models, where the states are separated by a TeV.
Finite temperature solitons in nonlocal field theories from p-adic strings
Biswas, Tirthabir; Cembranos, Jose A. R.; Kapusta, Joseph I.
2010-10-15
Nonlocal field theories which arise from p-adic string theories have vacuum soliton solutions. We find the soliton solutions at finite temperature. These solutions become important for the partition function when the temperature exceeds m{sub s}/g{sub o}{sup 2}, where m{sub s} is the string mass scale and g{sub o} is the open string coupling.
Composite strings in (2+1)-dimensional anisotropic weakly coupled Yang-Mills theory
Orland, Peter
2008-01-15
The small-scale structure of a string connecting a pair of static sources is explored for the weakly coupled anisotropic SU(2) Yang-Mills theory in (2+1) dimensions. A crucial ingredient in the formulation of the string Hamiltonian is the phenomenon of color smearing of the string constituents. The quark-antiquark potential is determined. We close with some discussion of the standard, fully Lorentz-invariant Yang-Mills theory.
Daniel Heineman Prize: QCD, strings and black holes: A duality between gravity and field theory
NASA Astrophysics Data System (ADS)
Maldacena, Juan
2007-04-01
We discuss Yang Mills theory with a large number of colors. In this limit it becomes a theory of strings. We describe the string theory associated to the most supersymmetric version of Yang Mills theory. These strings live in a ten dimensional curved space. Thus supersymmetric Yang Mills theory is related to the ordinary ten dimensional superstring theory which describes quantum gravity. We will review some results in this area and discuss some recent developments. We will also discuss the implications for black hole entropy and the black hole information puzzle.
A New Lorentz Violating Nonlocal Field Theory From String-Theory
Ganor, Ori J.
2007-10-04
A four-dimensional field theory with a qualitatively new type of nonlocality is constructed from a setting where Kaluza-Klein particles probe toroidally compactified string theory with twisted boundary conditions. In this theory fundamental particles are not pointlike and occupy a volume proportional to their R-charge. The theory breaks Lorentz invariance but appears to preserve spatial rotations. At low energies, it is approximately N=4 Super Yang-Mills theory, deformed by an operator of dimension seven. The dispersion relation of massless modes in vacuum is unchanged, but under certain conditions in this theory, particles can travel at superluminal velocities.
Introduction to string field theory. A pedestrian approach to the covariant formulation
West, G.B.
1986-01-01
A relatively elementary account is given of what a string field represents and what is involved in the construction of its covariant action. Emphasis is on drawing a correspondence with similar problems in ordinary field theory and, particularly, using the language and mathematics used in ordinary field theory. Only the free string is discussed. 17 refs., 3 figs. (LEW)
de Sitter Space in Non-Critical String Theory
Silverstein, Eva M
2002-08-13
Supercritical string theories in D > 10 dimensions with no moduli are described, generalizing the asymmetric orientifold construction of one of the authors [1]. By taking the number of dimensions to be large and turning on fluxes, dilaton potentials are generated with nontrivial minima at arbitrarily small cosmological constant and D-dimensional string coupling, separated by a barrier from a flat-space linear dilaton region, but possibly suffering from strong coupling problems. The general issue of the decay of a de Sitter vacuum to flat space is discussed. For relatively small barriers, such decays are described by gravitational instantons. It is shown that for a sufficiently large potential barrier, the bubble wall crosses the horizon. At the same time the instanton decay time exceeds the Poincare recurrence time. It is argued that the inclusion of such instantons is neither physically meaningful nor consistent with basic principles such as causality. This raises the possibility that such de Sitter vacua are effectively stable. In the case of the supercritical flux models, decays to the linear dilaton region can be forbidden by such large barriers, but decays to lower flux vacua including AdS minima nevertheless proceed consistently with this criterion. These models provide concrete examples in which cosmological constant reduction by flux relaxation can be explored.
Knots and Gamma Classes in Open Topological String Theory
NASA Astrophysics Data System (ADS)
Mahowald, Matthew
This thesis explores some mathematical applications of string dualities in open topological string theory and presents some new techniques for studying and computing open Gromov-Witten invariants. First, we prove a mild generalization of the gamma class formula of [BCR13], and show that it applies in two novel examples: the quintic threefold Q with Lagrangian given by the real quintic QR Q, and for Lagrangians LK ? X = O P1 (--1, --1) obtained from the conormal bundles of (r, s) torus knots K ? S3 via the conifold transition. Disk enumeration on (Q, Q R ) was first considered in [PSW08], and disk enumeration for (X, LK) was studied in winding-1 in [DSV13]. The gamma class formula agrees with the results of [DSV13] and [PSW08], and we generalize the formula of [DSV13] to arbitrary winding. Next we study a relationship between mirror symmetry and knot contact homology described in [AENV14, AV12]. For knots K ? S 3 , large-N duality relates open Gromov-Witten theory on (X, L_K ) to SU (N) Chern-Simons theory on (S3, K). We use the conjecture of [AV12] to compute open Gromov-Witten invariants of (X, L K) through mirror symmetry in many examples, including several non-toric knots. We also find further evidence for this conjecture: for ( r, s) torus knots, we find a formula for the genus-0, 1-boundary-component, degree-d, winding-w open Gromov-Witten invariants of (X, LK ) using localization. This formula agrees with the results of the mirror symmetry calculation. Moreover, using this formula, we describe a method for obtaining the augmentation polynomial of a knot K from the open Gromov-Witten invariants of ( X, LK ). This method is shown to correctly recover the augmentation polynomial for the unknot and (3, 2) torus knot.
Towards natural inflation from weakly coupled heterotic string theory
NASA Astrophysics Data System (ADS)
Abe, Hiroyuki; Kobayashi, Tatsuo; Otsuka, Hajime
2015-06-01
We propose natural inflation from the heterotic string theory on the "Swiss-Cheese" Calabi-Yau manifold with multiple U(1) magnetic fluxes. Such multiple U(1) magnetic fluxes stabilize the same number of the linear combination of the universal axion and Kähler axions, and one of the Kähler axions is identified as the inflaton. This axion decay constant can be determined by the size of one-loop corrections to the gauge kinetic function of the hidden gauge groups, which leads effectively to the trans-Planckian axion decay constant consistent with the Planck data. During the inflation, the real parts of the moduli are also stabilized by employing the nature of the "Swiss-Cheese" Calabi-Yau manifold.
Nonabelian 2D gauge theories for determinantal Calabi-Yau varieties
NASA Astrophysics Data System (ADS)
Jockers, Hans; Kumar, Vijay; Lapan, Joshua M.; Morrison, David R.; Romo, Mauricio
2012-11-01
The two-dimensional supersymmetric gauged linear sigma model (GLSM) with abelian gauge groups and matter fields has provided many insights into string theory on Calabi-Yau manifolds of a certain type: complete intersections in toric varieties. In this paper, we consider two GLSM constructions with nonabelian gauge groups and charged matter whose infrared CFTs correspond to string propagation on determinantal Calabi-Yau varieties, furnishing another broad class of Calabi-Yau geometries in addition to complete intersections. We show that these two models — which we refer to as the PAX and the PAXY model — are dual descriptions of the same low-energy physics. Using GLSM techniques, we determine the quantum Kähler moduli space of these varieties and find no disagreement with existing results in the literature.
Cylindrically symmetric, static strings with a cosmological constant in Brans-Dicke theory
Delice, Oezguer
2006-12-15
The static cylindrically symmetric vacuum solutions with a cosmological constant in the framework of the Brans-Dicke theory are investigated. Some of these solutions admitting Lorentz boost invariance along the symmetry axis correspond to local, straight cosmic strings with a cosmological constant. Some physical properties of such solutions are studied. These strings apply attractive or repulsive forces on the test particles. A smooth matching is also performed with a recently introduced interior thick string solution with a cosmological constant.
String theory--the physics of string-bending and other electric guitar techniques.
Grimes, David Robert
2014-01-01
Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed. PMID:25054880
String Theory - The Physics of String-Bending and Other Electric Guitar Techniques
Grimes, David Robert
2014-01-01
Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed. PMID:25054880
String theory--the physics of string-bending and other electric guitar techniques.
Grimes, David Robert
2014-01-01
Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed.
Power-law singularities in string theory and M-theory
NASA Astrophysics Data System (ADS)
Papadopoulos, G.
2004-11-01
We extend the definition of the Szekeres Iyer power-law singularities to supergravity, string and M-theory backgrounds, and find that are characterized by Kasner-type exponents. The near singularity geometries of brane and some intersecting brane backgrounds are investigated and the exponents are computed. The Penrose limits of some of these power-law singularities have profiles A ~ u-γ for γ >= 2. We find the range of the exponents for which γ = 2 and the frequency squares are bounded by 1/4. We propose some qualitative tests for deciding whether a null or timelike spacetime singularity can be resolved within string theory and M-theory based on the near singularity geometry and its Penrose limits.
Anthropic reasoning and typicality in multiverse cosmology and string theory
NASA Astrophysics Data System (ADS)
Weinstein, Steven
2006-06-01
Anthropic arguments in multiverse cosmology and string theory rely on the weak anthropic principle (WAP). We show that the principle is fundamentally ambiguous. It can be formulated in one of two ways, which we refer to as WAP1 and WAP2. We show that WAP2, the version most commonly used in anthropic reasoning, makes no physical predictions unless supplemented by a further assumption of 'typicality', and we argue that this assumption is both misguided and unjustified. WAP1, however, requires no such supplementation; it directly implies that any theory that assigns a non-zero probability to our universe predicts that we will observe our universe with probability one. We argue, therefore, that WAP1 is preferable, and note that it has the benefit of avoiding the inductive overreach characteristic of much anthropic reasoning. Thanks to Yuri Balashov, Gordon Belot, Rob Caldwell, Marcelo Gleiser, Brad Monton, Ken Olum, Jim Peebles, Lee Smolin and Alex Vilenkin for helpful discussions and comments on an earlier draft.
Pathomechanisms in rheumatoid arthritis--time for a string theory?
Weyand, Cornelia M; Goronzy, Jörg J
2006-04-01
RA is a quintessential autoimmune disease with a growing number of cells, mediators, and pathways implicated in this tissue-injurious inflammation. Now Kuhn and colleagues have provided convincing evidence that autoantibodies reacting with citrullinated proteins, known for their sensitivity and specificity as biomarkers in RA, enhance tissue damage in collagen-induced arthritis (see the related article beginning on page 961). This study adds yet another soldier to the growing army of autoaggressive mechanisms that underlie RA. With great success researchers have dismantled the pathogenic subunits of RA, adding gene to gene, molecule to molecule, and pathway to pathway in an ever more complex scheme of dysfunction. The complexity of the emerging disease model leaves us speechless. It seems that with this wealth of data available, we need to develop a new theory for this disease. We may want to seek guidance from our colleagues in physics and mathematics who have successfully integrated their knowledge of elementary particles and the complexity of their interacting forces by formulating the string theory.
Two-dimensional String Theory from the c = 1 Matrix Model
NASA Astrophysics Data System (ADS)
Dhar, Avinash
1996-02-01
We identify the nonlocal and nonlinear operator in the c = 1 matrix model which satisfies the tachyron β-function equation of 2-dimensional string theory in flat-space and linear-dilaton background. This reinforces the viewpoint thata nonlocal transform is required to extract the space-time physics of the 2-dimensional strong theory from the matrix model. We also comment on the realization of the W-infinity symmetry of the matrix model in the string theory.
On the Minimal Length Uncertainty Relation and the Foundations of String Theory
Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu
2011-01-01
We review our work on the minimal length uncertainty relation as suggested by perturbative string theory. We discuss simple phenomenological implications of the minimal length uncertainty relation and then argue that the combination of the principles of quantum theory and general relativity allow for a dynamical energy-momentum space. We discuss the implication of this for the problem of vacuum energy and the foundations of nonperturbative string theory.
NASA Astrophysics Data System (ADS)
Bantilan, H.; Brewer, J. T.; Ishii, T.; Lewis, W. E.; Romatschke, P.
2016-09-01
Very different strongly interacting quantum systems such as Fermi gases, quark-gluon plasmas formed in high-energy ion collisions, and black holes studied theoretically in string theory are known to exhibit quantitatively similar damping of hydrodynamic modes. It is not known if such similarities extend beyond the hydrodynamic limit. Do nonhydrodynamic collective modes in Fermi gases with strong interactions also match those from string theory calculations? In order to answer this question, we use calculations based on string theory to make predictions for modes outside the hydrodynamic regime in trapped Fermi gases. These predictions are amenable to direct testing with current state-of-the-art cold atom experiments.
Composite diholes and intersecting brane-antibrane configurations in string/M-theory
NASA Astrophysics Data System (ADS)
Chattaraputi, Auttakit; Emparan, Roberto; Taormina, Anne
2000-05-01
We construct new configurations of oppositely charged, static black hole pairs (diholes) in four dimensions which are solutions of low energy string/M-theory. The black holes are extremal and have four different charges. We also consider diholes in other theories with an arbitrary number of abelian gauge fields and scalars, where the black holes can be regarded as composite objects. We uplift the four-charge solutions to higher dimensions in order to describe intersecting brane-antibrane systems in string and M-theory. The properties of the strings and membranes stretched in between these branes and antibranes are studied. Several other generic features of these solutions are discussed.
Searching for inflation in simple string theory models: An astrophysical perspective
NASA Astrophysics Data System (ADS)
Hertzberg, Mark P.; Tegmark, Max; Kachru, Shamit; Shelton, Jessie; Özcan, Onur
2007-11-01
Attempts to connect string theory with astrophysical observation are hampered by a jargon barrier, where an intimidating profusion of orientifolds, Kähler potentials, etc. dissuades cosmologists from attempting to work out the astrophysical observables of specific string theory solutions from the recent literature. We attempt to help bridge this gap by giving a pedagogical exposition with detailed examples, aimed at astrophysicists and high energy theorists alike, of how to compute predictions for familiar cosmological parameters when starting with a 10-dimensional string theory action. This is done by investigating inflation in string theory, since inflation is the dominant paradigm for how early universe physics determines cosmological parameters. We analyze three explicit string models from the recent literature, each containing an infinite number of vacuum solutions. Our numerical investigation of some natural candidate inflatons, the so-called “moduli fields,” fails to find inflation. We also find in the simplest models that, after suitable field redefinitions, vast numbers of these vacua differ only in an overall constant multiplying the effective inflaton potential, a difference which affects neither the potential’s shape nor its ability to support slow-roll inflation. This illustrates that even having an infinite number of vacua does not guarantee having inflating ones. This may be an artifact of the simplicity of the models that we study. Instead, more complicated string theory models appear to be required, suggesting that identifying the inflating subset of the string landscape will be challenging.
Reheating-volume measure in the string theory landscape
NASA Astrophysics Data System (ADS)
Winitzki, Sergei
2008-12-01
I recently proposed the “reheating-volume” (RV) prescription as a possible solution to the measure problem in “multiverse” cosmology. The goal of this work is to extend the RV measure to scenarios involving bubble nucleation, such as the string theory landscape. In the spirit of the RV prescription, I propose to calculate the distribution of observable quantities in a landscape that is conditioned in probability to nucleate a finite total number of bubbles to the future of an initial bubble. A general formula for the relative number of bubbles of different types can be derived. I show that the RV measure is well defined and independent of the choice of the initial bubble type, as long as that type supports further bubble nucleation. Applying the RV measure to a generic landscape, I find that the abundance of Boltzmann brains is always negligibly small compared with the abundance of ordinary observers in the bubbles of the same type. As an illustration, I present explicit results for a toy landscape containing four vacuum states, and for landscapes with a single high-energy vacuum and a large number of low-energy vacua.
Reheating-volume measure in the string theory landscape
Winitzki, Sergei
2008-12-15
I recently proposed the ''reheating-volume'' (RV) prescription as a possible solution to the measure problem in ''multiverse'' cosmology. The goal of this work is to extend the RV measure to scenarios involving bubble nucleation, such as the string theory landscape. In the spirit of the RV prescription, I propose to calculate the distribution of observable quantities in a landscape that is conditioned in probability to nucleate a finite total number of bubbles to the future of an initial bubble. A general formula for the relative number of bubbles of different types can be derived. I show that the RV measure is well defined and independent of the choice of the initial bubble type, as long as that type supports further bubble nucleation. Applying the RV measure to a generic landscape, I find that the abundance of Boltzmann brains is always negligibly small compared with the abundance of ordinary observers in the bubbles of the same type. As an illustration, I present explicit results for a toy landscape containing four vacuum states, and for landscapes with a single high-energy vacuum and a large number of low-energy vacua.
The Moduli Space and M(Atrix) Theory of 9d N=1 Backgrounds of M/String Theory
Aharony, Ofer; Komargodski, Zohar; Patir, Assaf; /Weizmann Inst.
2007-03-21
We discuss the moduli space of nine dimensional N = 1 supersymmetric compactifications of M theory/string theory with reduced rank (rank 10 or rank 2), exhibiting how all the different theories (including M theory compactified on a Klein bottle and on a Moebius strip, the Dabholkar-Park background, CHL strings and asymmetric orbifolds of type II strings on a circle) fit together, and what are the weakly coupled descriptions in different regions of the moduli space. We argue that there are two disconnected components in the moduli space of theories with rank 2. We analyze in detail the limits of the M theory compactifications on a Klein bottle and on a Moebius strip which naively give type IIA string theory with an uncharged orientifold 8-plane carrying discrete RR flux. In order to consistently describe these limits we conjecture that this orientifold non-perturbatively splits into a D8-brane and an orientifold plane of charge (-1) which sits at infinite coupling. We construct the M(atrix) theory for M theory on a Klein bottle (and the theories related to it), which is given by a 2 + 1 dimensional gauge theory with a varying gauge coupling compactified on a cylinder with specific boundary conditions. We also clarify the construction of the M(atrix) theory for backgrounds of rank 18, including the heterotic string on a circle.
Local cosmic strings in Brans-Dicke theory with a cosmological constant
Delice, Oezguer
2006-09-15
It is known that Vilenkin's phenomenological equation of state for static straight cosmic strings is inconsistent with Brans-Dicke theory. We will prove that, in the presence of a cosmological constant, this equation of state is consistent with Brans-Dicke theory. The general solution of the full nonlinear field equations, representing the interior of a cosmic string with a cosmological constant, is also presented.
The role of heuristic appraisal in conflicting assessments of string theory
NASA Astrophysics Data System (ADS)
Camilleri, Kristian; Ritson, Sophie
2015-08-01
Over the last three decades, string theory has emerged as one of the leading hopes for a consistent theory of quantum gravity that unifies particle physics with general relativity. Despite the fact that string theory has been a thriving research program for the better part of three decades, it has been subjected to extensive criticism from a number of prominent physicists. The aim of this paper is to obtain a clearer picture of where the conflict lies in competing assessments of string theory, through a close reading of the argumentative strategies employed by protagonists on both sides. Although it has become commonplace to construe this debate as stemming from different attitudes to the absence of testable predictions, we argue that this presents an overly simplified view of the controversy, which ignores the critical role of heuristic appraisal. While string theorists and their defenders see the theoretical achievements of the string theory program as providing strong indication that it is 'on the right track', critics have challenged such claims, by calling into question the status of certain 'solved problems' and its purported 'explanatory coherence'. The debates over string theory are therefore particularly instructive from a philosophical point of view, not only because they offer important insights into the nature of heuristic appraisal and theoretical progress, but also because they raise deep questions about what constitutes a solved problem and an explanation in fundamental physics.
Julius Edgar Lilienfeld Prize Lecture: The Higgs Boson, String Theory, and the Real World
NASA Astrophysics Data System (ADS)
Kane, Gordon
2012-03-01
In this talk I'll describe how string theory is exciting because it can address most, perhaps all, of the questions we hope to understand about our world: why quarks and leptons make up our world, what forces form our world, cosmology, parity violation, and much more. I'll explain why string theory is testable in basically the same ways as the rest of physics, and why much of what is written about that is misleading. String theory is already or soon being tested in several ways, including correctly predicting the recently observed Higgs boson properties and mass, and predictions for dark matter, LHC physics, cosmological history, and more, from work in the increasingly active subfield ``string phenomenology.''
Walking the landscape: The distribution and evolution of string theory vacua
NASA Astrophysics Data System (ADS)
Saltman, Alexander Harry
The number of perturbatively stable compactifications of string theory appears to be quite large, even when limited to those with a cosmological constant. Although the richness of this "landscape" of vacua may offer solutions to some outstanding problems, notably the cosmological constant problem, it also may dramatically reduce the predictivity of string theory. I demonstrate two classes of vacua that have so far been little explored, but that are quite possibly larger than the more well-known classes. In addition to enumerating possible vacua, it is necessary to study the selection rules that may govern the probability of ending up in a particular vacuum starting from a hot, small early universe. To this end, I also discuss certain topology-changing transitions between string compactifications that progress through the condensation of a tachyon, and therefore are essentially irreversible. These transitions have distinct low-energy signatures and suggest that string theory may have a preference for topologically simple compactifications.
Hawking radiation as tunneling from charged black holes in 0A string theory
NASA Astrophysics Data System (ADS)
Kim, Hongbin
2011-09-01
There has been much work on explaining Hawking radiation as a quantum tunneling process through horizons. Basically, this intuitive picture requires the calculation of the imaginary part of the action for outgoing particle. And two ways are known for achieving this goal: the null-geodesic method and the Hamilton-Jacobi method. We apply these methods to the charged black holes in 2D dilaton gravity which is originated from the low energy effective theory of type 0A string theory. We derive the correct Hawking temperature of the black holes including the effect of the back reaction of the radiation, and obtain the entropy by using the 1st law of black hole thermodynamics. For fixed-charge ensemble, the 0A black holes are free of phase transition and thermodynamically stable regardless of mass-charge ratio. We show this by interpreting the back reaction term as the inverse of the heat capacity of the black holes. Finally, the possibility of the phase transition in the fixed-potential ensemble is discussed.
String Theory, the Crisis in Particle Physics and the Ascent of Metaphoric Arguments
NASA Astrophysics Data System (ADS)
Schroer, Bert
This essay presents a critical evaluation of the concepts of string theory and its impact on particle physics. The point of departure is a historical review of four decades of string theory within the broader context of six decades of failed attempts at an autonomous S matrix approach to particle theory. The central message, contained in Secs. 5 and 6, is that string theory is not what its name suggests, namely a theory of objects in space-time whose localization is string-instead of pointlike. Contrary to popular opinion, the oscillators corresponding to the Fourier models of a quantum-mechanical string do not become embedded in space-time and neither does the "range space" of a chiral conformal QFT acquire the interpretation of stringlike-localized quantum matter. Rather, string theory represents a solution to a problem which enjoyed some popularity in the 1960s: find a principle which, similar to the SO(4,2) group in the case of the hydrogen spectrum, determines an infinite component wave function with a (realistic) mass/spin spectrum. Instead of the group theory used in the old failed attempts, it creates this mass/spin spectrum by combining an internal oscillator quantum mechanics with a pointlike-localized quantum-field-theoretic object, i.e. the mass/spin tower "sits" over one point and does not arise from a wiggling string in space-time. The widespread acceptance of a theory whose interpretation has been based on metaphoric reasoning had a corroding influence on particle theory, a point which will be illustrated in the last section with some remarks of a more sociological nature. These remarks also lend additional support to observations on connections between the discourse in particle physics and the present Zeitgeist of the post-Cold War period that are made in the introduction.
Gauge invariant perturbation theory and non-critical string models of Yang-Mills theories
NASA Astrophysics Data System (ADS)
Lugo, Adrián R.; Sturla, Mauricio B.
2010-04-01
We carry out a gauge invariant analysis of certain perturbations of D - 2-branes solutions of low energy string theories. We get generically a system of second order coupled differential equations, and show that only in very particular cases it is possible to reduce it to just one differential equation. Later, we apply it to a multi-parameter, generically singular family of constant dilaton solutions of non-critical string theories in D dimensions, a generalization of that recently found in arXiv:0709.0471 [hep-th]. According to arguments coming from the holographic gauge theory-gravity correspondence, and at least in some region of the parameters space, we obtain glue-ball spectra of Yang-Mills theories in diverse dimensions, putting special emphasis in the scalar metric perturbations not considered previously in the literature in the non critical setup. We compare our numerical results to those studied previously and to lattice results, finding qualitative and in some cases, tuning properly the parameters, quantitative agreement. These results seem to show some kind of universality of the models, as well as an irrelevance of the singular character of the solutions. We also develop the analysis for the T-dual, non trivial dilaton family of solutions, showing perfect agreement between them.
Friedan, D.H.; Martinec, E.J.; Shenker, S.H.
1988-12-01
The present contract supported work by Daniel H. Frieden, Emil J, Martinec and Stephen H. Shenker (principal investigators), Research Associates, and graduate students in theoretical physics at the University of Chicago. Research has been conducted in areas of string theory and two dimensional conformal and superconformal field theory. The ultimate objectives have been: to expose the fundamental structure of string theory so as to eventually make possible effective nonperturbative calculations and thus a comparison of sting theory with experiment, the complete classification of all two dimensional conformal and superconformal field theories thus giving a complete description of all classical ground states of string and of all possible two (and 1 + 1) dimensional critical phenomena, and the development of methods to describe, construct and solve two dimensional field theories. Work has also been done on skyrmion and strong interaction physics.
Quantum equivalence of noncommutative and Yang-Mills gauge theories in 2D and matrix theory
Ydri, Badis
2007-05-15
We construct noncommutative U(1) gauge theory on the fuzzy sphere S{sub N}{sup 2} as a unitary 2Nx2N matrix model. In the quantum theory the model is equivalent to a non-Abelian U(N) Yang-Mills theory on a two-dimensional lattice with two plaquettes. This equivalence holds in the 'fuzzy sphere' phase where we observe a 3rd order phase transition between weak-coupling and strong-coupling phases of the gauge theory. In the matrix phase we have a U(N) gauge theory on a single point.
Investigations in gauge theories, topological solitons and string theories. Final report
Not Available
1993-06-01
This is the Final Report on a supported research project on theoretical particle physics entitled ``Investigations in Gauge Theories, Topological Solitons and String Theories.`` The major theme of particle theory pursued has been within the rubric of the standard model, particularly on the interplay between symmetries and dynamics. Thus, the research has been carried out primarily in the context of gauge with or without chiral fermions and in effective chiral lagrangian field theories. The topics studied include the physical implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in a wide range of theories. A wide range of techniques of group theory, differential geometry and function theory have been applied to probe topological and conformal properties of quantum field theories in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD,the phenomenology of a possibly strongly interacting Higgs sector within the minimal standard model, and the relevance of solitonic ideas to non-perturbative phenomena at SSC energies.
Behavior of boundary string field theory associated with integrable massless flow.
Fujii, A; Itoyama, H
2001-06-01
We put forward an idea that the boundary entropy associated with integrable massless flow of thermodynamic Bethe ansatz (TBA) is identified with tachyon action of boundary string field theory. We show that the temperature parametrizing a massless flow in the TBA formalism can be identified with tachyon energy for the classical action at least near the ultraviolet fixed point, i.e., the open string vacuum.
String Theory, Chern-Simons Theory and the Fractional Quantum Hall Effect
NASA Astrophysics Data System (ADS)
Moore, Nathan Paul
In this thesis we explore two interesting relationships between string theory and quantum field theory. Firstly, we develop an equivalence between two Hilbert spaces: (i) the space of states of U(1)n Chern-Simons theory with a certain class of tridiagonal matrices of coupling constants (with corners) on T2; and (ii) the space of ground states of strings on an associated mapping torus with T2 fiber. The equivalence is deduced by studying the space of ground states of SL(2,Z)-twisted circle compactifications of U(1) gauge theory, connected with a Janus configuration, and further compactified on T2. The equality of dimensions of the two Hilbert spaces (i) and (ii) is equivalent to a known identity on determinants of tridiagonal matrices with corners. The equivalence of operator algebras acting on the two Hilbert spaces follows from a relation between the Smith normal form of the Chern-Simons coupling constant matrix and the isometry group of the mapping torus, as well as the torsion part of its first homology group. Secondly, the Fractional Quantum Hall Effect appears as part of the low-energy description of the Coulomb branch of the A1 (2,0)-theory formulated on (S1 x R 2)/Zk, where the generator of Zk acts as a combination of translation on S1 and rotation by 2pi/k on R2. At low-energy the configuration is described in terms of a 4+1D Super-Yang-Mills theory on a cone (R 2/Zk) with additional 2+1D degrees of freedom at the tip of the cone. Fractionally charged quasi-particles have a natural description in terms of BPS strings of the (2,0)-theory. We analyze the large k limit, where a smooth cigar-geometry provides an alternative description. In this framework a W-boson can be modeled as a bound state of k quasi-particles. The W-boson becomes a Q-ball, and it can be described by a soliton solution of BPS monopole equations on a certain auxiliary curved space. We show that axisymmetric solutions of these equations correspond to singular maps from AdS 3 to AdS2, and we
Gauge coupling unification and light exotica in string theory.
Raby, Stuart; Wingerter, Akin
2007-08-01
In this Letter we consider the consequences for the CERN Large Hadron Collider of light vectorlike exotica with fractional electric charge. It is shown that such states are found in orbifold constructions of the heterotic string. Moreover, these exotica are consistent with gauge coupling unification at one loop, even though they do not come in complete multiplets of SU(5).
Cosmological and wormhole solutions in low-energy effective string theory
Cadoni, M. INFN, Sezione di Cagliari, Via Ada Negri 18, I---09127 Cagliari ); Cavaglia, M. INFN, Sezione di Cagliari, Via Ada Negri 18, I-09127 Cagliari )
1994-11-15
We derive and study a class of cosmological and wormhole solutions of low-energy effective string field theory. We consider a general four-dimensional string effective action where moduli of the compactified manifold and the electromagnetic field are present. The cosmological solutions of the two-dimensional effective theory obtained by dimensional reduction of the former are discussed. In particular we demonstrate that the two-dimensional theory possesses a scale-factor duality invariance. Eucidean four-dimensional instantons describing the nucleation of the baby universes are found and the probability amplitude for the nucleation process given.
NASA Astrophysics Data System (ADS)
Mazhari, Najmeh Al Sadat; Momeni, Davood; Myrzakulov, Ratbay; Gholizade, Hosein; Raza, Muhammad
2016-10-01
An alternative method of developing the theory of non-equilibrium two dimensional holographic superconductor is to start from the definition of a time dependent $AdS_3$ background. As originally proposed, many of these formulae were cast in exponential form, but the adoption of the numeric method of expression throughout the bulk serves to show more clearly the relationship between the various parameters. The time dependence behaviour of the scalar condensation and Maxwell fields are fitted numerically. A usual value for Maxwell field on AdS horizon is $\\exp(-bt)$, and the exponential $\\log$ ratio is therefore $10^{-8} s^{-1}$. The coefficient $b$ of the time in the exponential term $\\exp(-bt)$ can be interpreted as a tool to measure the degree of dynamical instability, its reciprocal $\\frac{1}{b}$ is the time in which the disturbance is multiplied in the ratio. A discussion of some of the exponential formulae is given by the scalar field $\\psi(z,t)$ near the AdS boundary. It might be possible that a long interval would elapse the system which tends to the equilibrium state when the normal mass and conformal dimensions emerged. A somewhat curious calculation has been made, to illustrate the holographic entanglement entropy for this system. The foundation of all this calculation is, of course, a knowledge of multiple (connected and disconnected) extremal surfaces. There are several cases in which exact and approximate solutions are jointly used, a variable numerical quantity is represented by a graph, and the principles of approximation are then applied to determine related numerical quantities. In the case of the disconnected phase with a finite extremal are, we find a discontinuity in the first derivative of the entanglement entropy as the conserved charge $J$ is increased.
Transfer of learning between 2D and 3D sources during infancy: Informing theory and practice
Barr, Rachel
2010-01-01
The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a 2-Dimensional (2D) representation and a 3-Dimensional (3D) object. Understanding the conditions under which young children might accomplish this particular kind of transfer is important because by 2 years of age 90% of US children are viewing television on a daily basis. Recent research shows that children can imitate actions presented on television using the corresponding real-world objects, but this same research also shows that children learn less from television than they do from live demonstrations until they are at least 3 years old; termed the video deficit effect. At present, there is no coherent theory to account for the video deficit effect; how learning is disrupted by this change in context is poorly understood. The aims of the present review are (1) to review the conditions under which children transfer learning between 2D images and 3D objects during early childhood, and (2) to integrate developmental theories of memory processing into the transfer of learning from media literature using Hayne’s (2004) developmental representational flexibility account. The review will conclude that studies on the transfer of learning between 2D and 3D sources have important theoretical implications for general developmental theories of cognitive development, and in particular the development of a flexible representational system, as well as policy implications for early education regarding the potential use and limitations of media as effective teaching tools during early childhood. PMID:20563302
Chiral scale and conformal invariance in 2D quantum field theory.
Hofman, Diego M; Strominger, Andrew
2011-10-14
It is well known that a local, unitary Poincaré-invariant 2D quantum field theory with a global scaling symmetry and a discrete non-negative spectrum of scaling dimensions necessarily has both a left and a right local conformal symmetry. In this Letter, we consider a chiral situation beginning with only a left global scaling symmetry and do not assume Lorentz invariance. We find that a left conformal symmetry is still implied, while right translations are enhanced either to a right conformal symmetry or a left U(1) Kac-Moody symmetry.
Supersymmetric structure of the bosonic string theory in the Beltrami parametrization
NASA Astrophysics Data System (ADS)
de Oliveira, M. Werneck; Schweda, M.; Sorella, S. P.
1993-09-01
We show that the bosonic string theory quantized in the Beltrami parametrization possesses a supersymmetric structure like the vector-supersymmetry already observed in topological field theories. Supported in part by the ``Fonds zur Förderung der Wissenschaftlichen Forschung'', M008-Lise Meitner Fellowship.
Symmetries and vanishing couplings in string-derived low energy effective field theory
Kobayashi, Tatsuo
2012-07-27
We study 4D low-energy effective field theory, derived from heterotic string theory on the orbifolds. In particular, we study Abelian and non-Abelian discrete symmetries and their anomalies. Furthermore, stringy computations also provide with stringy coupling selection rules.
Basic Brackets of a 2D Model for the Hodge Theory Without its Canonical Conjugate Momenta
NASA Astrophysics Data System (ADS)
Kumar, R.; Gupta, S.; Malik, R. P.
2016-06-01
We deduce the canonical brackets for a two (1+1)-dimensional (2D) free Abelian 1-form gauge theory by exploiting the beauty and strength of the continuous symmetries of a Becchi-Rouet-Stora-Tyutin (BRST) invariant Lagrangian density that respects, in totality, six continuous symmetries. These symmetries entail upon this model to become a field theoretic example of Hodge theory. Taken together, these symmetries enforce the existence of exactly the same canonical brackets amongst the creation and annihilation operators that are found to exist within the standard canonical quantization scheme. These creation and annihilation operators appear in the normal mode expansion of the basic fields of this theory. In other words, we provide an alternative to the canonical method of quantization for our present model of Hodge theory where the continuous internal symmetries play a decisive role. We conjecture that our method of quantization is valid for a class of field theories that are tractable physical examples for the Hodge theory. This statement is true in any arbitrary dimension of spacetime.
2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement
Anber, Mohamed M.; Poppitz, Erich; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.
2012-08-16
We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.
High-energy zero-norm states and symmetries of string theory.
Chan, Chuan-Tsung; Ho, Pei-Ming; Lee, Jen-Chi; Teraguchi, Shunsuke; Yang, Yi
2006-05-01
High-energy limit of zero-norm states in the old covariant first quantized spectrum of the 26D open bosonic string, together with the assumption of a smooth behavior of string theory in this limit, are used to derive infinitely many linear relations among the leading high-energy, fixed-angle behavior of four-point functions of different string states. As a result, ratios among all high-energy scattering amplitudes of four arbitrary string states can be calculated algebraically and the leading order amplitudes can be expressed in terms of that of four tachyons as conjectured by Gross in 1988. A dual calculation can also be performed and equivalent results are obtained by taking the high-energy limit of Virasoro constraints. Finally, we compute all high-energy scattering amplitudes of three tachyons and one massive state at the leading order by saddle-point approximation to verify our results.
NASA Astrophysics Data System (ADS)
Haghighat, Babak; Iqbal, Amer; Kozçaz, Can; Lockhart, Guglielmo; Vafa, Cumrun
2015-03-01
M2 branes suspended between adjacent parallel M5 branes lead to light strings, the `M-strings'. In this paper we compute the elliptic genus of M-strings, twisted by maximally allowed symmetries that preserve 2 d (2, 0) supersymmetry. In a codimension one subspace of parameters this reduces to the elliptic genus of the (4, 4) supersymmetric A n-1 quiver theory in 2 d. We contrast the elliptic genus of N M-strings with the (4, 4) sigma model on the N-fold symmetric product of . For N = 1 they are the same, but for N > 1 they are close, but not identical. Instead the elliptic genus of (4, 4) N M-strings is the same as the elliptic genus of (4, 0) sigma models on the N-fold symmetric product of , but where the right-moving fermions couple to a modification of the tangent bundle. This construction arises from a dual A n-1 quiver 6 d gauge theory with U(1) gauge groups. Moreover, we compute the elliptic genus of domain walls which separate different numbers of M2 branes on the two sides of the wall.
Stability of false vacuum in supersymmetric theories with cosmic strings
Kumar, Brijesh; Yajnik, Urjit A.
2009-03-15
We study the stability of supersymmetry breaking vacuum in the presence of cosmic strings arising in the messenger sector. For certain ranges of the couplings, the desired supersymmetry breaking vacua become unstable against decay into phenomenologically unacceptable vacua. This sets constraints on the range of allowed values of the coupling constants appearing in the models and more generally on the chosen dynamics of gauge symmetry breaking.
Instability of black strings in the third-order Lovelock theory
NASA Astrophysics Data System (ADS)
Giacomini, Alex; Henríquez-Báez, Carla; Lagos, Marcela; Oliva, Julio; Vera, Aldo
2016-05-01
We show that homogeneous black strings of third-order Lovelock theory are unstable under s-wave perturbations. This analysis is done in dimension D =9 , which is the lowest dimension that allows the existence of homogeneous black strings in a theory that contains only the third-order Lovelock term in the Lagrangian. As is the case in general relativity, the instability is produced by long wavelength perturbations and it stands for the perturbative counterpart of a thermal instability. We also provide a comparative analysis of the instabilities of black strings at a fixed radius in general relativity, Gauss-Bonnet, and third-order Lovelock theories. We show that the minimum critical wavelength that triggers the instability grows with the power of the curvature defined in the Lagrangian. The maximum exponential growth during the time of the perturbation is the largest in general relativity and it decreases with the number of curvatures involved in the Lagrangian.
Supersymmetric extended string field theory in NSn sector and NSn - 1-R sector
NASA Astrophysics Data System (ADS)
Asano, Masako; Kato, Mitsuhiro
2016-09-01
We construct a class of quadratic gauge invariant actions for extended string fields defined on the tensor product of open superstring state space for multiple open string Neveu-Schwarz (NS) sectors with or without one Ramond (R) sector. The basic idea is the same as for the bosonic extended string field theory developed by the authors [1]. The theory for NSn sector and NS n - 1-R sector contains general n-th rank tensor fields and (n - 1)-th rank spinor-tensor fields in the massless spectrum respectively. In principle, consistent gauge invariant actions for any generic type of 10-dimensional massive or massless tensor or spinor-tensor fields can be extracted from the theory. We discuss some simple examples of bosonic and fermionic massless actions.
NASA Astrophysics Data System (ADS)
Ortín, Tomás
2015-03-01
1. Differential geometry; 2. Symmetries and Noether's theorems; 3. A perturbative introduction to general relativity; 4. Action principles for gravity; 5. Pure N=1,2,d=4 supergravities; 6. Matter-coupled N=1,d=4 supergravity; 7. Matter-coupled N=2,d=4 supergravity; 8. A generic description of all the N>2,d=4 SUEGRAS; 9. Matter-coupled N=1,d=5 supergravity; 10. Conserved charges in general relativity; 11. The Schwarzschild black hole; 12. The Reissner-Nordström black hole; 13. The Taub-NUT solution; 14. Gravitational pp-waves; 15. The Kaluza-Klein black hole; 16. Dilaton and dilaton/axion black holes; 17. Unbroken supersymmetry I: supersymmetric vacua; 18. Unbroken supersymmetry II: partially supersymmetric solutions; 19. Supersymmetric black holes from supergravity; 20. String theory; 21. The string effective action and T duality; 22. From eleven to four dimensions; 23. The type-IIB superstring and type-II T duality; 24. Extended objects; 25. The extended objects of string theory; 26. String black holes in four and five dimensions; 27. The FGK formalism for (single, static) black holes and branes; Appendices: A.1 Lie groups, symmetric spaces, and Yang-Mills fields; A.2 The irreducible, non-symmetric Riemannian spaces of special holonomy; A.3 Miscellanea on the symplectic group; A.4 Gamma matrices and spinors; A.5 Kähler geometry; A.6 Special Kähler geometry; A.7 Quaternionic-Kähler geometry.
Cascading gauge theory on dS4 and String Theory landscape
NASA Astrophysics Data System (ADS)
Buchel, Alex; Galante, Damián A.
2014-06-01
Placing anti-D3 branes at the tip of the conifold in Klebanov-Strassler geometry provides a generic way of constructing meta-stable de Sitter (dS) vacua in String Theory. A local geometry of such vacua exhibit gravitational solutions with a D3 charge measured at the tip opposite to the asymptotic charge. We discuss a restrictive set of such geometries, where anti-D3 branes are smeared at the tip. Such geometries represent holographic dual of cascading gauge theory in dS4 with or without chiral symmetry breaking. We find that in the phase with unbroken chiral symmetry the D3 charge at the tip is always positive. Furthermore, this charge is zero in the phase with spontaneously broken chiral symmetry. We show that the effective potential of the chirally symmetric phase is lower than that in the symmetry broken phase, i.e., there is no spontaneous chiral symmetry breaking for cascading gauge theory in dS4. The positivity of the D3 brane charge in smooth de-Sitter deformed conifold geometries with fluxes presents difficulties in uplifting AdS vacua to dS ones in String Theory via smeared anti-D3 branes. First, turning on fluxes on Calabi-Yau compactifications of type IIB string theory produces highly warped geometry with stabilized complex structure (but not Kähler) moduli of the compactification [3]; Next, including non-perturbative effects (which are under control given the unbroken supersymmetry), one obtains anti-de Sitter (AdS4) vacua with all moduli fixed; Finally, one uses anti-D3 branes of type IIB string theory to uplift AdS4 to de Sitter (dS4) vacua. As the last step of the construction completely breaks supersymmetry, it is much less controlled. In fact, in [4-7] it was argued that putting anti-D3 branes at the tip of the Klebanov-Strassler (KS) [8] geometry (as done in KKLT construction) leads to a naked singularity. Whether or not the resulting singularity is physical is subject to debates. When M4=dS4 and the chiral symmetry is unbroken, the D3 brane
Dirichlet branes and nonperturbative aspects of supersymmetric string and gauge theories
Yin, Zheng
1999-05-01
In chapter 1 the author reviews some elements of string theory relevant to the rest of this report. He touches on both the classical, i.e. perturbative, string physics before D-branes rise to prominence, and some of the progresses they brought forth. In chapter 2 he proceeds to give an exact algebraic formulation of D-branes in curved spaces. This allows one to classify them in backgrounds of interest and study their geometric properties. He applies this formalism to string theory on Calabi-Yau and other supersymmetry preserving manifolds. Then he studies the behavior of the D-branes under mirror symmetry in chapter 3. Mirror symmetry is known to be a symmetry of string theory perturbatively. He finds evidence for its nonperturbative validity when D-branes are also considered and compute some dynamical consequences. In chapter 4 he turns to examine the consistency of curved and/or intersecting D-brane configurations. They have been used recently to extract information about the field theories that arise in certain limits. It turns out that there are potential quantum mechanical inconsistencies associated with them. What saves the day are certain subtle topological properties of D-branes. This resolution has implications for the conserved charges carried by the D-branes, which he computes for the cases studied in chapter 2. In chapter 5 he uses intersecting brane configurations to study three dimensional supersymmetric gauge theories. There is also a mirror symmetry there that, among other things, exchanges classical and quantum mechanical quantities of a (mirror) pair of theories. It has an elegant realization in term of a symmetry of string theory involving D-branes. The author employs it to study a wide class of 3d models. He also predicts new mirror pairs and unconventional 3d field theories without Lagrangian descriptions.
Abelian spatial string tension in finite temperature SU(2) gauge theory
NASA Astrophysics Data System (ADS)
Sekiguchi, Takashige; Ishiguro, Katsuya
2016-09-01
We investigate Abelian and monopole contributions to spatial string tension in the deconfined phase of finite temperature SU(2) gauge theory without imposing any gauge fixing conditions. Lattice calculations of non-Abelian and Abelian spatial string tensions from the Wilson action at gauge coupling β = 2.74 and lattice volume 243 × N t (Nt = {24, 8, 6, 4, 2}) show that these string tensions agree with each other within error bars at any adopted value of Nt, which implies Abelian dominance. From measurements of non-Abelian, Abelian and monopole forces that arise from the corresponding spatial string tension, furthermore, we find the tendency that the monopole contribution to the spatial string tension can be almost as large as the non-Abelian and Abelian ones. The temperature dependence of the calculated non-Abelian and Abelian spatial string tensions allows us to conclude that the concept of dimensional reduction holds both for non-Abelian and Abelian sectors at temperatures higher than twice the critical temperature.
First order string theory and the Kodaira-Spencer equations. I
NASA Astrophysics Data System (ADS)
Gamayun, O.; Losev, A. S.; Marshakov, A.
2009-09-01
We consider first-order bosonic string theory, perturbed by the primary operator, corresponding to deformation of the target-space complex structure. We compute the effective action in this theory and find that its consistency with the world-sheet conformal invariance requires necessarily the Kodaira-Spencer equations to be satisfied by target-space Beltrami differentials. We discuss the symmetries of the theory and its reformulation in terms of the vielbein background fields.
QCD axion as a bridge between string theory and flavor physics
NASA Astrophysics Data System (ADS)
Ahn, Y. H.
2016-04-01
We construct a string-inspired model, motivated by the flavored Peccei-Quinn (PQ) axions, as a useful bridge between flavor physics and string theory. The key feature is two anomalous gauged U (1 ) symmetries, responsible for both the fermion mass hierarchy problem of the standard model and the strong C P problem, that combine string theory with flavor physics and severely constrain the form of the F- and D-term contributions to the potential. In the context of supersymmetric moduli stabilization we stabilize the size moduli with positive masses while leaving two axions massless and one axion massive. We demonstrate that, while the massive gauge bosons eat the two axionic degrees of freedom, two axionic directions survive to low energies as the flavored PQ axions.
Ion acoustic wave collapse via two-ion wave decay: 2D Vlasov simulation and theory
NASA Astrophysics Data System (ADS)
Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan
2015-11-01
The decay of ion acoustic waves (IAWs) via two-ion wave decay may transfer energy from the electric field of the IAWs to the particles, resulting in a significant heating of resonant particles. This process has previously been shown in numerical simulations to decrease the plasma reflectivity due to stimulated Brillouin scattering. Two-ion wave decay is a fundamental property of ion acoustic waves that occurs over most if not all of the parameter space of relevance to inertial confinement fusion experiments, and can lead to a sudden collapse of IAWs. The treatment of all species kinetically, and in particular the electrons, is required to describe the decay process correctly. We present fully kinetic 2D+2V Vlasov simulations of IAWs undergoing decay to a highly nonlinear turbulent state using the code LOKI. The scaling of the decay rate with characteristic plasma parameters and wave amplitude is shown. A new theory describing two-ion wave decay in 2D, that incorporates key kinetic properties of the electrons, is presented and used to explain quantitatively for the first time the observed decay of IAWs. Work performed under auspices of U.S. DoE by LLNL, Contract DE-AC52-07NA2734. Funded by LDRD 15-ERD-038 and supported by LLNL Grand Challenge allocation.
String theory clues for the low-ℓ CMB ?
NASA Astrophysics Data System (ADS)
Kitazawa, N.; Sagnotti, A.
2015-05-01
"Brane Supersymmetry Breaking" is a peculiar string-scale mechanism that can unpair Bose and Fermi excitations in orientifold models. It results from the simultaneous presence, in the vacuum, of collections of D-branes and orientifolds that are not mutually BPS, and is closely tied to the scale of string excitations. It also leaves behind, for a mixing of dilaton and internal breathing mode, an exponential potential that is just too steep for a scalar to emerge from the initial singularity while descending it. As a result, in this class of models the scalar can generically bounce off the exponential wall, and this dynamics brings along, in the power spectrum, an infrared depression typically followed by a pre-inflationary peak. We elaborate on a possible link between this type of bounce and the low-ℓ end of the CMB angular power spectrum. For the first 32 multipoles, one can reach a 50% reduction in χ2 with respect to the standard ΛCDM setting.
Probability distribution of the index in gauge theory on 2d non-commutative geometry
NASA Astrophysics Data System (ADS)
Aoki, Hajime; Nishimura, Jun; Susaki, Yoshiaki
2007-10-01
We investigate the effects of non-commutative geometry on the topological aspects of gauge theory using a non-perturbative formulation based on the twisted reduced model. The configuration space is decomposed into topological sectors labeled by the index ν of the overlap Dirac operator satisfying the Ginsparg-Wilson relation. We study the probability distribution of ν by Monte Carlo simulation of the U(1) gauge theory on 2d non-commutative space with periodic boundary conditions. In general the distribution is asymmetric under ν mapsto -ν, reflecting the parity violation due to non-commutative geometry. In the continuum and infinite-volume limits, however, the distribution turns out to be dominated by the topologically trivial sector. This conclusion is consistent with the instanton calculus in the continuum theory. However, it is in striking contrast to the known results in the commutative case obtained from lattice simulation, where the distribution is Gaussian in a finite volume, but the width diverges in the infinite-volume limit. We also calculate the average action in each topological sector, and provide deeper understanding of the observed phenomenon.
World Sheet Commuting beta-gamma CFT and Non-Relativistic StringTheories
Kim, Bom Soo
2007-08-30
We construct a sigma model in two dimensions with Galilean symmetry in flat target space similar to the sigma model of the critical string theory with Lorentz symmetry in 10 flat spacetime dimensions. This is motivated by the works of Gomis and Ooguri[1] and Danielsson et. al.[2, 3]. Our theory is much simpler than their theory and does not assume a compact coordinate. This non-relativistic string theory has a bosonic matter {beta}{gamma} CFT with the conformal weight of {beta} as 1. It is natural to identify time as a linear combination of {gamma} and {bar {gamma}} through an explicit realization of the Galilean boost symmetry. The angle between {gamma} and {bar {gamma}} parametrizes one parameter family of selection sectors. These selection sectors are responsible for having a non-relativistic dispersion relation without a nontrivial topology in the non-relativistic setup, which is one of the major differences from the previous works[1, 2, 3]. This simple theory is the non-relativistic analogue of the critical string theory, and there are many different avenues ahead to be investigated. We mention a possible consistent generalization of this theory with different conformal weights for the {beta}{gamma} CFT. We also mention supersymmetric generalizations of these theories.
NASA Astrophysics Data System (ADS)
Brevik, Iver
2012-09-01
The main part of this paper is to present an updated review of the Casimir energy at zero and finite temperature for the transverse oscillations of a piecewise uniform closed string. We make use of three different regularizations: the cutoff method, the complex contour integration method and the zeta-function method. The string model is relativistic, in the sense that the velocity of sound is for each string piece set equal to the velocity of light. In this sense the theory is analogous to the electromagnetic theory in a dielectric medium in which the product of permittivity and permeability is equal to unity (an isorefractive medium). We demonstrate how the formalism works for a two-piece string, and for a 2N-piece string, and show how in the latter case a compact recursion relation serves to facilitate the formalism considerably. The Casimir energy turns out to be negative, and the more so the larger the number of pieces in the string. The two-piece string is quantized in D-dimensional spacetime, in the limit when the ratio between the two tensions is very small. We calculate the free energy and other thermodynamic quantities, demonstrate scaling properties, and comment finally on the meaning of the Hagedorn critical temperature for the two-piece string. Thereafter, as a novel development we present a scalar field theory for a real field in three-dimensional space in a potential rising linearly with a longitudinal coordinate z in the interval 0 < z < 1, and which is thereafter held constant on a horizontal plateau. The potential is taken as a rough model of the two-piece string potential under simplifying conditions, when the length ratio between the pieces is replaced formally with the mentioned length parameter z. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.
On the Ricci tensor in the common sector of type II string theory
NASA Astrophysics Data System (ADS)
Agricola, I.; Friedrich, T.; Nagy, P.-A.; Puhle, C.
2005-07-01
Let ∇ be a metric connection with totally skew-symmetric torsion T on a Riemannian manifold. Given a spinor field Ψ and a dilaton function Φ, the basic equations in the common sector of type II string theory are \\fl \
String Representation of the Dual Ginzburg-Landau Theory Beyond the London Limit
NASA Astrophysics Data System (ADS)
Koma, M.; Koma, Y.; Ebert, D.; Toki, H.
2003-08-01
The effective string action of the color-electric flux tube in the dual Ginzburg-Landau (DGL) theory is studied by performing a path-integral analysis by taking into account the finite thickness of the flux tube. A modified Yukawa interaction appears as a boundary contribution and is reduced into the ordinary Yukawa interaction in the London Limit.
Bit-string physics: A novel theory of everything
Noyes, H.P.
1994-08-01
We encode the quantum numbers of the standard model of quarks and leptons using constructed bitstrings of length 256. These label a grouting universe of bit-strings of growing length that eventually construct a finite and discrete space-time with reasonable cosmological properties. Coupling constants and mass ratios, computed from closure under XOR and a statistical hypothesis, using only {h_bar}, c and m{sub p} to fix our units of mass, length and time in terms of standard (meterkilogram-second) metrology, agree with the first four to seven significant figures of accepted experimental results. Finite and discrete conservation laws and commutation relations insure the essential characteristics of relativistic quantum mechanics, including particle-antiparticle pair creation. The correspondence limit in (free space) Maxwell electromagnetism and Einstein gravitation is consistent with the Feynman-Dyson-Tanimura ``proof.``
Realistic four-generation MSSM in Type II string theory
NASA Astrophysics Data System (ADS)
Belitsky, A. V.; Lebed, Richard F.; Mayes, Van E.
2011-03-01
We construct a four-generation MSSM with rank-4 Yukawa matrices from intersecting D6 branes on a T6 / (Z2 ×Z2) orientifold. The Yukawa matrices obtained provide an example of Flavor Democracy (FD), where the Yukawa couplings are all nearly equal. Mass hierarchies may then be generated by slight perturbations away from FD. We find that it is possible to obtain hierarchical masses for the quarks and leptons of each generation and mixings between them. In addition, the tree-level gauge couplings are unified at the string scale. Finally, we also construct similar models with one, two, and three generations in which the rank of the Yukawa matrices is equal to the number of generations in each model.
General N=1 supersymmetric flux vacua of massive type IIA string theory.
Behrndt, Klaus; Cvetic, Mirjam
2005-07-01
We derive conditions for the existence of four-dimensional N=1 supersymmetric flux vacua of massive type IIA string theory with general supergravity fluxes turned on. For an SU(3) singlet Killing spinor, we show that such flux vacua exist when the internal geometry is nearly Kähler. The geometry is not warped, all the allowed fluxes are proportional to the mass parameter, and the dilaton is fixed by a ratio of (quantized) fluxes. The four-dimensional cosmological constant, while negative, becomes small in the vacuum with the weak string coupling.
Cosmic strings and superconducting cosmic strings
NASA Technical Reports Server (NTRS)
Copeland, Edmund
1988-01-01
The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.
Self-tuning flat domain walls in 5D gravity and string theory
Kachru, Shamit; Schulz, Michael; Silverstein, Eva
2000-08-15
We present Poincare-invariant domain wall (''three-brane'') solutions to some five-dimensional effective theories which can arise naturally in string theory. In particular, we find theories where Poincare-invariant solutions exist for arbitrary values of the brane tension, for certain restricted forms of the bulk interactions. We describe examples in string theory where it would be natural for the quantum corrections to the tension of the brane (arising from quantum fluctuations of modes with support on the brane) to maintain the required form of the action. In such cases, the Poincare-invariant solutions persist in the presence of these quantum corrections to the brane tension, so that no 4D cosmological constant is generated by these modes. (c) 2000 The American Physical Society.
A solvable toy model for tachyon condensation in string field theory
NASA Astrophysics Data System (ADS)
Zwiebach, Barton
2000-09-01
The lump solution of phi3 field theory provides a toy model for unstable D-branes of bosonic string theory. The field theory living on this lump is itself a cubic field theory involving a tachyon, two additional scalar fields, and a scalar field continuum. Its action can be written explicitly because the fluctuation spectrum of the lump turns out to be governed by a solvable Schroedinger equation; the l = 3 case of a series of reflectionless potentials. We study the multiscalar tachyon potential both exactly and in the level expansion, obtaining insight into issues of convergence, branches of the solution space, and the mechanism for removal of states after condensation. In particular we find an interpretation for the puzzling finite domain of definition of string field marginal parameters.
Cosmic string configuration in a five dimensional Brans-Dicke theory
Bezerra, V. B.; Ferreira, C. N.; Marques, G. de A
2010-01-15
We consider a scalar field interacting with a cosmic string configuration. The origin of the scalar field is given by a compactification mechanism in the context of a five-dimensional Brans-Dicke theory. We analyze the behavior of a charged cosmic string given by the Maxwell-Chern-Simons term on the 3-brane. The Cosmic Microwave Background Radiation constraint is used to analyze the possibility of optical activity effect in connection with the Brans-Dicke parameter {omega}. We show that the dilatons produced by a cosmic string can decay into gauge bosons with masses given by the compactification modes. The Brans-Dicke parameter {omega} imposes stringent constraints on the mass of the dilaton and help us to understand the energy scales. In this scenario the lifetime of the dilaton which decays into light gauge bosons as well as the dependence of this phenomenon with the Brans-Dicke parameter are estimated.
Holographic Wilson Loops and Fermions in Consistent Truncations of String Theory and M-Theory
NASA Astrophysics Data System (ADS)
Faraggi, Alberto T.
In the holographic framework, a half-BPS Wilson loop in N = 4 supersymmetric Yang-Mills theory in the fundamental, symmetric or antisymmetric representation of
Exact string theory model of closed timelike curves and cosmological singularities
Johnson, Clifford V.; Svendsen, Harald G.
2004-12-15
We study an exact model of string theory propagating in a space-time containing regions with closed timelike curves (CTCs) separated from a finite cosmological region bounded by a big bang and a big crunch. The model is an nontrivial embedding of the Taub-NUT geometry into heterotic string theory with a full conformal field theory (CFT) definition, discovered over a decade ago as a heterotic coset model. Having a CFT definition makes this an excellent laboratory for the study of the stringy fate of CTCs, the Taub cosmology, and the Milne/Misner-type chronology horizon which separates them. In an effort to uncover the role of stringy corrections to such geometries, we calculate the complete set of {alpha}{sup '} corrections to the geometry. We observe that the key features of Taub-NUT persist in the exact theory, together with the emergence of a region of space with Euclidean signature bounded by timelike curvature singularities. Although such remarks are premature, their persistence in the exact geometry is suggestive that string theory is able to make physical sense of the Milne/Misner singularities and the CTCs, despite their pathological character in general relativity. This may also support the possibility that CTCs may be viable in some physical situations, and may be a natural ingredient in pre-big bang cosmological scenarios.
M theory through the looking glass: Tachyon condensation in the E{sub 8} heterotic string
Horava, Petr; Keeler, Cynthia A.
2008-03-15
We study the spacetime decay to nothing in string theory and M-theory. First we recall a nonsupersymmetric version of heterotic M-theory, in which bubbles of nothing--connecting the two E{sub 8} boundaries by a throat--are expected to be nucleated. We argue that the fate of this system should be addressed at weak string coupling, where the nonperturbative instanton instability is expected to turn into a perturbative tachyonic one. We identify the unique string theory that could describe this process: The heterotic model with one E{sub 8} gauge group and a singlet tachyon. We then use world sheet methods to study the tachyon condensation in the Neveu-Schwarz-Ramond formulation of this model, and show that it induces a world sheet super-Higgs effect. The main theme of our analysis is the possibility of making meaningful alternative gauge choices for world sheet supersymmetry, in place of the conventional superconformal gauge. We show in a version of unitary gauge how the world sheet gravitino assimilates the Goldstino and becomes dynamical. This picture clarifies recent results of Hellerman and Swanson. We also present analogs of R{sub {xi}} gauges, and note the importance of logarithmic conformal field theories in the context of tachyon condensation.
Bordered surfaces, off-shell amplitudes, sewing, and string field theory
Carlip, S.
1989-04-01
These lectures will deal with the current status of the sewing problem. The rationale for this approach is that any nonperturbative string theory must reproduce the Polyakov path integral as a perturbation series. If our experience in ordinary field theory is a guide --- and admittedly it may not be --- the terms in such a perturbation series, like Feynman diagrams, are likely to be built up from simple ''vertices'' and ''propagators,'' which can themselves be represented as (off-shell) Polyakov amplitudes. Hence an understanding of how to put together simple components into more complicated world sheet amplitudes is likely to give us much-needed information about the structure of nonperturbative string theory. To understand sewing, we must first understand the building blocks, off-shell Polyakov amplitudes. This is the subject of my first lecture. Next, we will explore the sewing of conformal field theories at a fixed conformal structure, that is, the reconstruction of correlation functions for a fixed surface /Sigma/ from those on a pair of surfaces /Sigma//sub 1/ and /Sigma//sub 2/ obtained by cutting /Sigma/ along a closed curve. We will then look at the problem of sewing amplitudes, integrals of correlation functions over moduli space. This will necessitate an understanding of how to build the moduli space of a complicated surface from simpler moduli spaces. Finally, we will briefly examine vertices and string field theories. 48 refs., 10 figs.
2D Global Rayleigh Wave Attenuation Model Using Finite Frequency Focusing and Defocusing Theory
NASA Astrophysics Data System (ADS)
Ma, Z.; Masters, G.; Dalton, C. A.
2015-12-01
We have developed an efficient technique to process and measure surface-wave amplitude and phase from a large collection of seismic waveforms. These amplitude and phase data sets are used to jointly invert for 2D phase velocity and attenuation maps. As demonstrated by Dalton and Ekstrom (2006), correcting for the effects of focusing and defocusing by elastic structure is crucial in order to obtain reliable attenuation structures. A robust theory that can reliably predict focusing-defocusing effects and is insensitive to the details of making the phase velocity maps is preferred. Great circle ray theory can give useful predictions for the focusing-defocusing effects if careful attention is paid to how the phase velocity model is smoothed. However, the predictions of the finite frequency kernels are more robust at the low-intermediate frequency range (below 25mHz) and suggest that they are better suited as a basis for inversion.We invert for the phase velocity, attenuation, source, and receiver terms simultaneously. Our models provide 60-70% variance reduction to the raw data though the source terms are the biggest contribution to the fit of the data. The attenuation maps show structures that correlate well with surface tectonics and the age-dependent trend of attenuation is clearly seen in the ocean basins. We have also identified problematic stations and earthquake sources as a by-product of our data selection process. Although our approach was developed for a global study, it can be extended to regional studies. Our first regional-scale application of this approach is to the Atlantic upper mantle.
Unitary matrix models and 2D quantum gravity
Dalley, S. . Joseph Henry Labs.); Johnson, C.V.; Morris, T.R. . Dept. of Physics); Watterstam, A. )
1992-09-21
In this paper the KdV and modified KdV integrable hierarchies are shown to be different descriptions of the same 2D gravitational system - open-closed string theory. Non-perturbative solutions of the multicritical unitary matrix models map to non-singular solutions of the renormalization group equation for the string susceptibility, [P, Q] = Q. The authors also demonstrate that the large-N solutions of unitary matrix integrals in external fields, studied by Gross and Newman, equal the non-singular pure closed-string solutions of [[bar P], Q] = Q.
M-theory through the looking glass: Tachyon condensation in the E8 heterotic string
Horava, Petr; Horava, Petr; Keeler, Cynthia A.
2007-09-20
We study the spacetime decay to nothing in string theory and M-theory. First we recall a nonsupersymmetric version of heterotic M-theory, in which bubbles of nothing -- connecting the two E_8 boundaries by a throat -- are expected to be nucleated. We argue that the fate of this system should be addressed at weak string coupling, where the nonperturbative instanton instability is expected to turn into a perturbative tachyonic one. We identify the unique string theory that could describe this process: The heterotic model with one E_8 gauge group and a singlet tachyon. We then use worldsheet methods to study the tachyon condensation in the NSR formulation of this model, and show that it induces a worldsheet super-Higgs effect. The main theme of our analysis is the possibility of making meaningful alternative gauge choices for worldsheet supersymmetry, in place of the conventional superconformal gauge. We show in a version of unitary gauge how the worldsheet gravitino assimilates the goldstino and becomes dynamical. This picture clarifies recent results of Hellerman and Swanson. We also present analogs of R_\\xi gauges, and note the importance of logarithmic CFT in the context of tachyon condensation.
Instanton-monopole correspondence from M-branes on S1 and little string theory
NASA Astrophysics Data System (ADS)
Hohenegger, Stefan; Iqbal, Amer; Rey, Soo-Jong
2016-03-01
We study Bogomol'nyi-Prasad-Sommerfield (BPS) excitations in M5-M2-brane configurations with a compact transverse direction, which are also relevant for type IIa and IIb little string theories. These configurations are dual to a class of toric elliptically fibered Calabi-Yau manifolds XN with manifest S L (2 ,Z )×S L (2 ,Z ) modular symmetry. They admit two dual gauge theory descriptions. For both, the nonperturbative partition function can be written as an expansion of the topological string partition function of XN with respect to either of the two modular parameters. We analyze the resulting BPS-counting functions in detail and find that they can be fully constructed as linear combinations of the BPS-counting functions of M5-M2-brane configurations with noncompact transverse directions. For certain M2-brane configurations, we also find that the free energies in the two dual theories agree with each other, which points to a new correspondence between instanton and monopole configurations. These results are also a manifestation of T-duality between type IIa and IIb little string theories.
Topics in Cosmic String Physics and Vacuum Stability of Field Theories
NASA Astrophysics Data System (ADS)
Dasgupta, Indranil
1998-01-01
In this thesis I examine aspects of the vacuum state of quantum field theories. Namely, I study topological defects in the vacuum which appear as localized regions of non-zero energy density if the model system is unable to relax to a homogeneous and isotropic ground state because of topological constraints. I also examine the stability of the so called false vacua in theories that have multiple vacuum states with different energy densities. I first consider topological defects in the form of strings and independently the decay of false vacua in models of particle physics where the presence of either defects or of false vacua leads to interesting phenomenology. Then I describe a situation in which the defects arising from topological properties of the vacuum in turn affect the stability of the vacuum itself. In the first part of this work (chapters 2 and 3), I explore the phenomenology of cosmic strings. I introduce new string-like topological defects that resemble pairs of strings bound together. I give an existence proof of these 'binary strings' and then develop their cosmological properties in detail. I then propose a simple extension of the Standard Model in which cosmic strings may form and then decay through baryon number violating interactions leading to baryogenesis. I show that the model has distinct and testable signatures. In the second part of this work (chapters 4 and 5), I examine the vacua of several proposed models of gauge mediated dynamical supersymmetry breaking and show that the viable vacua are often unstable. I develop a rigorous theory for approximating vacuum tunneling rates in multi-scalar field theories and by computing bounds on the decay rate of the vacua in these models obtain useful constraints on the parameter space. In the final part of this work (chapter 6), I develop a theory of vacuum tunneling induced by topological defects. I show that defects can speed up vacuum tunneling rates by seeding new kinds of bubbles during a first
Roiban, Radu; Volovich, Anastasia
2004-09-24
It has recently been proposed that the D-instanton expansion of the open topological B model on P(3|4) is equivalent to the perturbative expansion of the maximally supersymmetric Yang-Mills theory in four dimensions. In this letter we show how to construct the gauge theory results for all n-point conjugate-maximal-helicity-violating amplitudes by computing the integral over the moduli space of curves of degree n-3 in P(3|4), providing strong support to the string theory construction.
Topological B-model and cˆ=1 string theory
NASA Astrophysics Data System (ADS)
Hyun, Seungjoon; Oh, Kyungho; Park, Jong-Dae; Yi, Sang-Heon
2005-11-01
We study the topological B-model on a deformed Z orbifolded conifold by investigating variation of complex structures via quantum Kodaira-Spencer theories. The fermionic/brane formulation together with systematic utilization of symmetries of the geometry gives rise to a free fermion realization of the amplitudes. We derive Ward identities which solve the perturbed free energy exactly. We also obtain the corresponding Kontsevich-like matrix model. All these confirm the recent conjecture on the connection of the theory with cˆ=1 type 0A string theory compactified at the radius R=√{α/2}.
Topological Landau-Ginzburg model of two-dimensional string theory
NASA Astrophysics Data System (ADS)
Ghoshal, Debashis; Mukhi, Sunil
1994-08-01
We study a topological Landau-Ginzburg model with superpotential W( X) = X-1. This is argued to be equivalent to c = 1 string theory compactified at the self-dual radius. We compute the tree-level correlation function of N tachyons in this theory and show their agreement with matrix-model results. We also discuss the nature of contract terms, the perturbed superpotential and the flow of operators in the small phase space. The role of gravitational descendants in this theory is examined, and the tachyon two-point function in genus 1 is obtained using a conjectured modification of the gravitational recursion relations.
String-Coupled Pendulum Oscillators: Theory and Experiment.
ERIC Educational Resources Information Center
Moloney, Michael J.
1978-01-01
A coupled-oscillator system is given which is readily set up, using only household materials. The normal-mode analysis of this system is worked out, and an experiment or demonstration is recommended in which one verifies the theory by measuring two times and four lengths. (Author/GA)
Some Comments on the String Singularity of the Yang-Mills-Higgs Theory
NASA Astrophysics Data System (ADS)
Lim, Kok-Geng; Teh, Rosy
2010-07-01
We are going to make use of the regulated polar angle which had been introduced by Boulware et al.. to show that in the SU(2) Yang-Mills-Higgs theory when the magnetic monopole is carried by the gauge field, the Higgs field does not carry the monopole and vice versa. In the Yang-Mills-Higgs theory, our solution shows that when the parameter ɛ ≠ 0, the monopole is carried by the gauge field and there is a string singularity in the gauge field. When the parameter ɛ → 0, the monopole is transferred from the gauge field to the Higgs field and the string singularity disappeared. The solution is only singular at the origin, that is at r = 0 as it becomes the Wu-Yang monopole.
New aspects of the Casimir energy theory for a piecewise uniform string
Brevik, I.; Elizalde, E. )
1994-05-15
The Casimir energy for the transverse oscillations of a piecewise uniform closed string is calculated. The string consists of two parts (I and II) each having in general different tension and mass density but adjusted in such a way that the velocity of sound always equals the velocity of light. This model was introduced by Brevik and Nielsen, and the present paper contains new developments of the theory, in particular, a very simple regularization of the energy density. Using the technique introduced by van Kampen, Nijboer, and Schram, the Casimir energy is written as a contour integral, from which the energy can be readily calculated, for arbitrary length [ital s]=[ital L][sub II]/[ital L][sub I] and tension [ital x]=[ital T][sub I]/[ital T][sub II] ratios. Also, the finite temperature version of the theory is constructed.
String states, loops and effective actions in noncommutative field theory and matrix models
NASA Astrophysics Data System (ADS)
Steinacker, Harold C.
2016-09-01
Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.
NASA Astrophysics Data System (ADS)
March, N. H.; Moreno, A. J.
2016-06-01
The critical exponent ν for randomly branched polymers with dimensionality d equal to 3, is known exactly as 1/2. Here, we invoke an already available string theory model to predict the remaining static critical exponents. Utilizing results of Hsu et al. (Comput Phys Commun. 2005;169:114-116), results are added for d = 8. Experiment plus simulation would now be important to confirm, or if necessary to refine, the proposed values.
Topological String Models for the Generalized Two-Dimensional Yang-Mills Theories
NASA Astrophysics Data System (ADS)
Sugawara, Y.
1996-06-01
We discuss some aspects of the large N expansions of the generalized two-dimensional Yang-Mills theories (gYM2), and especially, clarify the geometrical meanings of the higher Casimirs. Based on these results we attempt to extend the Cordes-Moore-Ramgoolam topological string model describing the ordinary YM2 to those describing gYM2. The concept of ``deformed gravitational descendants'' will be introduced for this purpose.
Renormalized Polyakov loop in the deconfined phase of SU(N) gauge theory and gauge-string duality.
Andreev, Oleg
2009-05-29
We use gauge-string duality to analytically evaluate the renormalized Polyakov loop in pure Yang-Mills theories. For SU(3), the result is in quite good agreement with lattice simulations for a broad temperature range.
Mirage Models Confront the LHC: The Phenomenology of String-Motivated Effective Field Theories
NASA Astrophysics Data System (ADS)
Kaufman, Bryan
In this dissertation, I study a class of string-motivated effective supergravity theories in light of data from the LHC. I will consider three models that exhibit so-called 'mirage mediation'. I first consider the Binetruy-Gaillard-Wu (BGW) model, a model arising from heterotic string theory in which the dilaton is stabilized via non-perturbative corrections to the Kahler metric. I then consider the Kachru-Kallosh-Linde-Trivedi (KKLT) model, a model of Type-IIB string theory compactified on a Calabi-Yau orientifold, and an extension known as deflected mirage mediation (DMM) where contributions from gauge mediation are added to those arising from gravity mediation and anomaly mediation. The sequence of these three models allows an exploration in which the three dominant methods of communicating SUSY breaking appear in differing ratios. For each model, I outline the extent to which the phenomenologically-motived parameter space can be ruled out by existing experimental data before discussing how the remaining parameter space may be probed by continuing studies at the LHC and dark matter direct detection experiments.
Calabi-Yau compactifications of non-supersymmetric heterotic string theory
NASA Astrophysics Data System (ADS)
Blaszczyk, Michael; Nibbelink, Stefan Groot; Loukas, Orestis; Ruehle, Fabian
2015-10-01
Phenomenological explorations of heterotic strings have conventionally focused primarily on the E8×E8 theory. We consider smooth compactifications of all three ten-dimensional heterotic theories to exhibit the many similarities between the non-supersymmetric SO(16)×SO(16) theory and the related supersymmetric E8×E8 and SO(32) theories. In particular, we exploit these similarities to determine the bosonic and fermionic spectra of Calabi-Yau compactifications with line bundles of the non-supersymmetric string. We use elements of four-dimensional supersymmetric effective field theory to characterize the non-supersymmetric action at leading order and determine the Green-Schwarz induced axion couplings. Using these methods we construct a non-supersymmetric Standard Model(SM)-like theory. In addition, we show that it is possible to obtain SM-like models from the standard embedding using at least an order four Wilson line. Finally, we make a proposal of the states that live on five-branes in the SO(16)×SO(16) theory and find under certain assumptions the surprising result that anomaly factorization only admits at most a single brane solution.
NASA Astrophysics Data System (ADS)
Desmond, Timothy
In this dissertation I discern what Carl Jung calls the mandala image of the ultimate archetype of unity underlying and structuring cosmos and psyche by pointing out parallels between his transpersonal psychology and Stanford physicist Leonard Susskind's string theory. Despite his atheistic, materialistically reductionist interpretation of it, I demonstrate how Susskind's string theory of holographic information conservation at the event horizons of black holes, and the cosmic horizon of the universe, corroborates the following four topics about which Jung wrote: (1) his near-death experience of the cosmic horizon after a heart attack in 1944; ( 2) his equation relating psychic energy to mass, "Psyche=highest intensity in the smallest space" (1997, 162), which I translate into the equation, Psyche=Singularity; (3) his theory that the mandala, a circle or sphere with a central point, is the symbolic image of the ultimate archetype of unity through the union of opposites, which structures both cosmos and psyche, and which rises spontaneously from the collective unconscious to compensate a conscious mind torn by irreconcilable demands (1989, 334-335, 396-397); and (4) his theory of synchronicity. I argue that Susskind's inside-out black hole model of our Big Bang universe forms a geometrically perfect mandala: a central Singularity encompassed by a two-dimensional sphere which serves as a universal memory bank. Moreover, in precise fulfillment of Jung's theory, Susskind used that mandala to reconcile the notoriously incommensurable paradigms of general relativity and quantum mechanics, providing in the process a mathematically plausible explanation for Jung's near-death experience of his past, present, and future life simultaneously at the cosmic horizon. Finally, Susskind's theory also provides a plausible cosmological model to explain Jung's theory of synchronicity--meaningful coincidences may be tied together by strings at the cosmic horizon, from which they
Raman 2D-band splitting in graphene: theory and experiment.
Frank, Otakar; Mohr, Marcel; Maultzsch, Janina; Thomsen, Christian; Riaz, Ibtsam; Jalil, Rashid; Novoselov, Kostya S; Tsoukleri, Georgia; Parthenios, John; Papagelis, Konstantinos; Kavan, Ladislav; Galiotis, Costas
2011-03-22
We present a systematic experimental and theoretical study of the two-phonon (2D) Raman scattering in graphene under uniaxial tension. The external perturbation unveils that the 2D mode excited with 785 nm has a complex line-shape mainly due to the contribution of two distinct double resonance scattering processes (inner and outer) in the Raman signal. The splitting depends on the direction of the applied strain and the polarization of the incident light. The results give new insight into the nature of the 2D band and have significant implications for the use of graphene as reinforcement in composites since the 2D mode is crucial to assess how effectively graphene uptakes an applied stress or strain.
Character relations and replication identities in 2d Conformal Field Theory
NASA Astrophysics Data System (ADS)
Bantay, P.
2016-10-01
We study replication identities satisfied by conformal characters of a 2D CFT, providing a natural framework for a physics interpretation of the famous Hauptmodul property of Monstrous Moonshine, and illustrate the underlying ideas in simple cases.
First order string theory and the Kodaira-Spencer equations. II
NASA Astrophysics Data System (ADS)
Gamayun, O.; Marshakov, A.
2009-09-01
The first-order bosonic string theory, perturbed by primary operator, corresponding to the deformation of target-space complex structure is considered. We compute the correlation functions in this theory and study their divergencies. It is found, that consistency of these correlation functions with the world-sheet conformal invariance requires the Kodaira-Spencer equations to be satisfied by target-space Beltrami differentials. This statement is checked explicitly for the three-point and four-point correlators, containing one probe operator. We discuss the origin of these divergences and their relation with beta-functions or effective action and polyvertex structures in BRST approach.
Mirage Models Confront the LHC: Kähler-Stabilized Heterotic String Theory
NASA Astrophysics Data System (ADS)
Kaufman, Bryan; Nelson, Brent
2013-04-01
We begin the study of a class of string-motivated effective supergravity theories in light of current data from the CERN Large Hadron Collider (LHC). In particular, the case of heterotic string theory in which the dilaton is stabilized via non-perturbative corrections to the Kähler metric will be discussed. This model is highly constrained and therefore predictive. We find that most of the reasonable parameter space afforded to the model -- representing the strong dynamics of a presumed gaugino condensation in the hidden sector -- is now observationally disfavored by the LHC results. What limited parameter space that remains will be definitively explored within the first year of operation at √s = 13,, and much will be explored even before data-taking ends in 2013. Expected signatures for a number of benchmark points are discussed. This represents the first example of an explicit string-based model with the potential to be falsified by observational data. We find that the surviving space of the model makes a precise prediction as to the relation of many superpartner masses, as well as the manner in which the correct dark matter relic density is obtained. Implications for current and future dark matter search experiments are discussed.
Mirage Models Confront the LHC: Kähler-Stabilized Heterotic String Theory
NASA Astrophysics Data System (ADS)
Kaufman, Bryan; Nelson, Brent
2013-04-01
We begin the study of a class of string-motivated effective supergravity theories in light of current data from the CERN Large Hadron Collider (LHC). In particular, the case of heterotic string theory in which the dilaton is stabilized via non-perturbative corrections to the Kähler metric will be discussed. This model is highly constrained and therefore predictive. We find that most of the reasonable parameter space afforded to the model - representing the strong dynamics of a presumed gaugino condensation in the hidden sector - is now observationally disfavored by the LHC results. What limited parameter space that remains will be definitively explored within the first year of operation at √{ s} = 13 TeV , and much will be explored even before data-taking ends in 2013. Expected signatures for a number of benchmark points are discussed. This represents the first example of an explicit string-based model with the potential to be falsified by observational data. We find that the surviving space of the model makes a precise prediction as to the relation of many superpartner masses, as well as the manner in which the correct dark matter relic density is obtained. Implications for current and future dark matter search experiments are discussed.
Destabilization of 2D magnetic current sheets by resonance with bouncing electron - a new theory
NASA Astrophysics Data System (ADS)
Fruit, Gabriel; Louarn, Philippe; Tur, Anatoly
2016-07-01
In the general context of understanding the possible destabilization of the magnetotail before a substorm, we propose a kinetic model for electromagnetic instabilities in resonant interaction with trapped bouncing electrons. The geometry is clearly 2D and uses Harris sheet profile. Fruit et al. 2013 already used this model to investigate the possibilities of electrostatic instabilities. Tur et al. 2014 generalizes the model for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period (a few seconds). The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasi neutrality condition and the Ampere's law for the current density. The present talk will focus on the main results of this theory. The electrostatic version of the model may be applied to the near-Earth environment (8-12 R_{E}) where beta is rather low. It is showed that inclusion of bouncing electron motion may enhance strongly the growth rate of the classical drift wave instability. This model could thus explain the generation of strong parallel electric fields in the ionosphere and the formation of aurora beads with wavelength of a few hundreds of km. In the electromagnetic version, it is found that for mildly stretched current sheet (B_{z} > 0.1 B _{lobes}) undamped modes oscillate at typical electron bounce frequency with wavelength of the order of the plasma sheet thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in B_{z}/B _{lobes}, the mode becomes explosive (pure imaginary frequency) with typical growing rate of a few
Comparison of the 1D flux theory with a 2D hydrodynamic secondary settling tank model.
Ekama, G A; Marais, P
2004-01-01
The applicability of the 1D idealized flux theory (1DFT) for design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated from the 2D hydrodynamic model SettlerCAD using as a basis 35 full scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25 to 4.1 m side water depth, with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the sloping bottom shallow (1.5-2.5 m SWD) Dutch SSTs tested by STOWa and the Watts et al. SST, all with doubled SWDs, and the Darvill new (4.1 m) and old (2.5 m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also done. While the design of the internal features of the SST, such as baffling, have a marked influence on the effluent SS concentration for underloaded SSTs, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST, In the meantime until more information is obtained, it would appear that from the simulations so far that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais remains a reasonable value to apply in the design of full scale SSTs--for deep SSTs (4 m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5 m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, that this be avoided and that (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the
NASA Astrophysics Data System (ADS)
Yogurtcu, Osman N.; Johnson, Margaret E.
2015-08-01
The dynamics of association between diffusing and reacting molecular species are routinely quantified using simple rate-equation kinetics that assume both well-mixed concentrations of species and a single rate constant for parameterizing the binding rate. In two-dimensions (2D), however, even when systems are well-mixed, the assumption of a single characteristic rate constant for describing association is not generally accurate, due to the properties of diffusional searching in dimensions d ≤ 2. Establishing rigorous bounds for discriminating between 2D reactive systems that will be accurately described by rate equations with a single rate constant, and those that will not, is critical for both modeling and experimentally parameterizing binding reactions restricted to surfaces such as cellular membranes. We show here that in regimes of intrinsic reaction rate (ka) and diffusion (D) parameters ka/D > 0.05, a single rate constant cannot be fit to the dynamics of concentrations of associating species independently of the initial conditions. Instead, a more sophisticated multi-parametric description than rate-equations is necessary to robustly characterize bimolecular reactions from experiment. Our quantitative bounds derive from our new analysis of 2D rate-behavior predicted from Smoluchowski theory. Using a recently developed single particle reaction-diffusion algorithm we extend here to 2D, we are able to test and validate the predictions of Smoluchowski theory and several other theories of reversible reaction dynamics in 2D for the first time. Finally, our results also mean that simulations of reactive systems in 2D using rate equations must be undertaken with caution when reactions have ka/D > 0.05, regardless of the simulation volume. We introduce here a simple formula for an adaptive concentration dependent rate constant for these chemical kinetics simulations which improves on existing formulas to better capture non-equilibrium reaction dynamics from dilute
On loop equations in KdV exactly solvable string theory
Dalley, S. . Joseph Henry Labs.)
1992-05-10
In this paper, the non-perturbative behavior of macroscopic loop amplitudes in the exactly solvable string theories based on the KdV hierarchies is considered. Loop equations are presented for the real non-perturbative solutions living on the spectral half-line, allowed by the most general string equation ({bar P}, Q) = Q, where {bar P} generates scale transformations. In general the end of the half-line (the wall) is a non-perturbative parameter whose role is that of boundary cosmological constant. The properties are compared with the perturbative behavior and solutions of (P,Q) = 1. Detailed arguments are given for the (2,2m {minus} 1) models while generalization to the other (p,q) minimal models and c = 1 is briefly addressed.
NASA Astrophysics Data System (ADS)
Digal, Sanatan; Ray, Rajarshi; Saumia, P. S.; Srivastava, Ajit M.
2013-10-01
We analyze the dynamics of dark brushes connecting point vortices of strength ±1 formed in the isotropic-nematic phase transition of a thin layer of nematic liquid crystals, using a crossed polarizer set up. The evolution of the brushes is seen to be remarkably similar to the evolution of line defects in a three-dimensional nematic liquid crystal system. Even phenomena like the intercommutativity of strings are routinely observed in the dynamics of brushes. We test the hypothesis of a duality between the two systems by determining exponents for the coarsening of total brush length with time as well as shrinking of the size of an isolated loop. Our results show scaling behavior for the brush length as well as the loop size with corresponding exponents in good agreement with the 3D case of string defects.
Transfer of Learning between 2D and 3D Sources during Infancy: Informing Theory and Practice
ERIC Educational Resources Information Center
Barr, Rachel
2010-01-01
The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a two-dimensional (2D) representation and a three-dimensional (3D) object. Understanding the conditions under which young children might accomplish this…
Nonlocal String Theories on AdS{sub 3} x S{sup 3} and Stable Non-Supersymmetric Backgrounds
Silverstein, Eva M
2002-01-16
We exhibit a simple class of exactly marginal ''double-trace'' deformations of two dimensional CFTs which have AdS{sub 3} duals, in which the deformation is given by a product of left and right-moving U(1) currents. In this special case the deformation on AdS{sub 3} is generated by a local boundary term in three dimensions, which changes the physics also in the bulk via bulk-boundary propagators. However, the deformation is non-local in six dimensions and on the string worldsheet, like generic non-local string theories (NLSTs). Due to the simplicity of the deformation we can explicitly make computations in the non-local string theory and compare them to CFT computations, and we obtain precise agreement. We discuss the effect of the deformation on closed strings and on D-branes. The examples we analyze include a supersymmetry-breaking but exactly marginal ''double-trace'' deformation, which is dual to a string theory in which no destabilizing tadpoles are generated for moduli nonperturbatively in all couplings, despite the absence of supersymmetry. We explain how this cancellation works on the gravity side in string perturbation theory, and also non-perturbatively at leading order in the deformation parameter. We also discuss possible flat space limits of our construction.
Topological defects in alternative theories to cosmic inflation and string cosmology
NASA Astrophysics Data System (ADS)
Alexander, Stephon H. S.
The physics of the Early Universe is described in terms of the inflationary paradigm, which is based on a marriage between Einstein's general theory of relativity minimally coupled to quantum field theory. Inflation was posed to solve some of the outstanding problems of the Standard Big Bang Cosmology (SBB) such as the horizon, formation of structure and monopole problems. Despite its observational and theoretical successes, inflation is plagued with fine tuning and initial singularity problems. On the other hand, superstring/M theory, a theory of quantum gravity, possesses symmetries which naturally avoid space-time singularities. This thesis investigates alternative theories to cosmic inflation for solving the initial singularity, horizon and monopole problems, making use of topological defects. It was proposed by Dvali, Liu and Vaschaspati that the monopole problem can be solved without inflation if domain walls "sweep" up the monopoles in the early universe, thus reducing their number density significantly. Necessary for this mechanism to work is the presence of an attractive force between the monopole and the domain wall as well as a channel for the monopole's unwinding. We show numerically and analytically in two field theory models that for global defects the attraction is a universal result but the unwinding is model specific. The second part of this thesis investigates a string/M theory inspired model for solving the horizon problem. It was proposed by Moffat, Albrecht and Magueijo that the horizon problem is solved with a "phase transition" associated with a varying speed of light before the surface of last scattering. We provide a string/M theory mechanism based on assuming that our space-time is a D-3 brane probing a bulk supergravity black hole bulk background. This mechanism provides the necessary time variation of the velocity of light to solve the horizon problem. We suggest a mechanism which stablilizes the speed of light on the D-3 brane. We
Towards a world-sheet description of doubled geometry in string theory
NASA Astrophysics Data System (ADS)
Bakas, Ioannis; Lüst, Dieter; Plauschinn, Erik
2016-10-01
Starting from a sigma-model for a doubled target-space geometry, we show that the number of target-space dimensions can be reduced by half through a gauging procedure. We apply this formalism to a class of backgrounds relevant for double field theory, and illustrate how choosing different gaugings leads to string-theory configurations T-dual to each other. We furthermore discuss that given a conformal doubled theory, the reduced theories are conformal as well. As an example we consider the three-dimensional SU(2) WZW model and show that the only possible reduced backgrounds are the cigar and trumpet CFTs in two dimensions, which are indeed T-dual to each other.
Spontaneous symmetry breaking, and strings defects in hypercomplex gauge field theories
NASA Astrophysics Data System (ADS)
Cartas-Fuentevilla, R.; Meza-Aldama, O.
2016-02-01
Inspired by the appearance of split-complex structures in the dimensional reduction of string theory, and in the theories emerging as byproducts, we study the hypercomplex formulation of Abelian gauge field theories by incorporating a new complex unit to the usual complex one. The hypercomplex version of the traditional Mexican hat potential associated with the U(1) gauge field theory, corresponds to a hybrid potential with two real components, and with U(1)× SO(1,1) as symmetry group. Each component corresponds to a deformation of the hat potential, with the appearance of a new degenerate vacuum. Hypercomplex electrodynamics will show novel properties, such as spontaneous symmetry breaking scenarios with running masses for the vectorial and scalar Higgs fields, and such as Aharonov-Bohm type strings defects as exact solutions; these topological defects may be detected only by quantum interference of charged particles through gauge invariant loop integrals. In a particular limit, the hyperbolic electrodynamics does not admit topological defects associated with continuous symmetries.
Evidence for string substructure
Bergman, O.
1996-06-01
The author argues that the behavior of string theory at high temperature and high longitudinal boosts, combined with the emergence of p-branes as necessary ingredients in various string dualities, point to a possible reformulation of strings, as well as p-branes, as composites of bits. He reviews the string-bit models, and suggests generalizations to incorporate p-branes.
Bohr's Electron was Problematic for Einstein: String Theory Solved the Problem
NASA Astrophysics Data System (ADS)
Webb, William
2013-04-01
Neils Bohr's 1913 model of the hydrogen electron was problematic for Albert Einstein. Bohr's electron rotates with positive kinetic energies +K but has addition negative potential energies - 2K. The total net energy is thus always negative with value - K. Einstein's special relativity requires energies to be positive. There's a Bohr negative energy conflict with Einstein's positive energy requirement. The two men debated the problem. Both would have preferred a different electron model having only positive energies. Bohr and Einstein couldn't find such a model. But Murray Gell-Mann did! In the 1960's, Gell-Mann introduced his loop-shaped string-like electron. Now, analysis with string theory shows that the hydrogen electron is a loop of string-like material with a length equal to the circumference of the circular orbit it occupies. It rotates like a lariat around its centered proton. This loop-shape has no negative potential energies: only positive +K relativistic kinetic energies. Waves induced on loop-shaped electrons propagate their energy at a speed matching the tangential speed of rotation. With matching wave speed and only positive kinetic energies, this loop-shaped electron model is uniquely suited to be governed by the Einstein relativistic equation for total mass-energy. Its calculated photon emissions are all in excellent agreement with experimental data and, of course, in agreement with those -K calculations by Neils Bohr 100 years ago. Problem solved!
Analysis and Comparison of Information Theory-based Distances for Genomic Strings
NASA Astrophysics Data System (ADS)
Balzano, Walter; Cicalese, Ferdinando; Del Sorbo, Maria Rosaria; Vaccaro, Ugo
2008-07-01
Genomic string comparison via alignment are widely applied for mining and retrieval of information in biological databases. In some situation, the effectiveness of such alignment based comparison is still unclear, e.g., for sequences with non-uniform length and with significant shuffling of identical substrings. An alternative approach is the one based on information theory distances. Biological data information content is stored in very long strings of only four characters. In last ten years, several entropic measures have been proposed for genomic string analysis. Notwithstanding their individual merit and experimental validation, to the nest of our knowledge, there is no direct comparison of these different metrics. We shall present four of the most representative alignment-free distance measures, based on mutual information. Each one has a different origin and expression. Our comparison involves a sort of arrangement, to reduce different concepts to a unique formalism, so as it has been possible to construct a phylogenetic tree for each of them. The trees produced via these metrics are compared to the ones widely accepted as biologically validated. In general the results provided more evidence of the reliability of the alignment-free distance models. Also, we observe that one of the metrics appeared to be more robust than the other three. We believe that this result can be object of further researches and observations. Many of the results of experimentation, the graphics and the table are available at the following URL: http://people.na.infn.it/˜wbalzano/BIO
A unified viscous theory of lift and drag of 2-D thin airfoils and 3-D thin wings
NASA Technical Reports Server (NTRS)
Yates, John E.
1991-01-01
A unified viscous theory of 2-D thin airfoils and 3-D thin wings is developed with numerical examples. The viscous theory of the load distribution is unique and tends to the classical inviscid result with Kutta condition in the high Reynolds number limit. A new theory of 2-D section induced drag is introduced with specific applications to three cases of interest: (1) constant angle of attack; (2) parabolic camber; and (3) a flapped airfoil. The first case is also extended to a profiled leading edge foil. The well-known drag due to absence of leading edge suction is derived from the viscous theory. It is independent of Reynolds number for zero thickness and varies inversely with the square root of the Reynolds number based on the leading edge radius for profiled sections. The role of turbulence in the section induced drag problem is discussed. A theory of minimum section induced drag is derived and applied. For low Reynolds number the minimum drag load tends to the constant angle of attack solution and for high Reynolds number to an approximation of the parabolic camber solution. The parabolic camber section induced drag is about 4 percent greater than the ideal minimum at high Reynolds number. Two new concepts, the viscous induced drag angle and the viscous induced separation potential are introduced. The separation potential is calculated for three 2-D cases and for a 3-D rectangular wing. The potential is calculated with input from a standard doublet lattice wing code without recourse to any boundary layer calculations. Separation is indicated in regions where it is observed experimentally. The classical induced drag is recovered in the 3-D high Reynolds number limit with an additional contribution that is Reynold number dependent. The 3-D viscous theory of minimum induced drag yields an equation for the optimal spanwise and chordwise load distribution. The design of optimal wing tip planforms and camber distributions is possible with the viscous 3-D wing theory.
The viscosity to entropy ratio: From string theory motivated bounds to warm dense matter
Faussurier, G.; Libby, S. B.; Silvestrelli, P. L.
2014-07-04
Here, we study the ratio of viscosity to entropy density in Yukawa one-component plasmas as a function of coupling parameter at fixed screening, and in realistic warm dense matter models as a function of temperature at fixed density. In these two situations, the ratio is minimized for values of the coupling parameters that depend on screening, and for temperatures that in turn depend on density and material. In this context, we also examine Rosenfeld arguments relating transport coefficients to excess reduced entropy for Yukawa one-component plasmas. For these cases we show that this ratio is always above the lower-bound conjecture derived from string theory ideas.
The stochastic string model as a unifying theory of the term structure of interest rates
NASA Astrophysics Data System (ADS)
Bueno-Guerrero, Alberto; Moreno, Manuel; Navas, Javier F.
2016-11-01
We present the stochastic string model of Santa-Clara and Sornette (2001), as reformulated by Bueno-Guerrero et al. (2015), as a unifying theory of the continuous-time modeling of the term structure of interest rates. We provide several new results, such as: (a) an orthogonality condition for the volatilities in the Heath, Jarrow, and Morton (1992) (HJM) model, (b) the interpretation of multi-factor HJM models as approximations to a full infinite-dimensional model, (c) a result of consistency based on Hilbert spaces, and (d) a theorem for option valuation.
Numerical algebraic geometry: a new perspective on gauge and string theories
NASA Astrophysics Data System (ADS)
Mehta, Dhagash; He, Yang-Hui; Hauensteine, Jonathan D.
2012-07-01
There is a rich interplay between algebraic geometry and string and gauge theories which has been recently aided immensely by advances in computational algebra. However, symbolic (Gröbner) methods are severely limited by algorithmic issues such as exponential space complexity and being highly sequential. In this paper, we introduce a novel paradigm of numerical algebraic geometry which in a plethora of situations overcomes these shortcomings. The so-called `embarrassing parallelizability' allows us to solve many problems and extract physical information which elude symbolic methods. We describe the method and then use it to solve various problems arising from physics which could not be otherwise solved.
World Sheet Dynamics of Effective String Theory and the Gribov Ambiguity in QCD
NASA Astrophysics Data System (ADS)
Cooper, Patrick
This PhD thesis consists of a collection of results pertaining to effective string theory and quantum chromodynamics. A bijection is proven between manifestly ISO(1, p) x SO(D - p - 1) actions whose gapless degrees of freedom consist of Goldstone fields realizing the coset ISO(1, D - 1)/ISO(1, p) x SO(D - p - 1) non-linearly, and effective actions describing p + 1 dimensional surfaces embedded in a D dimensional Minkowskian target space. Continuing with effective strings, an interesting UV complete, albeit acausal theory is analyzed whose low energy effective action has a 'wrong sign' leading irrelevant operator. The constraints integrability puts on branon scattering is also catalogued in various dimensions, and in the presence of goldstini non-linearly realizing target space supersymmetry. An interesting hidden supersymmetry is discovered, for Green-Schwarz-like actions with an arbitrary coefficient preceding the Wess-Zumino term. Lastly, with regards to QCD, techniques from the program initiated by Vladimir Gribov in 1978 to investigate the effects of a non-perturbative residual gauge ambiguity are refined and applied to the Gribov-Zwanziger confinement scenario, showing an enhanced ghost propagator and divergent color coulomb potential. I then provide a careful analysis of how to correctly implement periodic boundary conditions in the finite temperature theory, which naively would be contradictory with the Maggiore-Schaden shift which is crucial to using familiar BRST cohomology techniques to define the subset of physical states of the Hilbert space.
The partition function of the supersymmetric two-dimensional black hole and little string theory
NASA Astrophysics Data System (ADS)
Israel, Dan; Kounnas, Costas; Pakman, Ari; Troost, Jan
2004-06-01
We compute the partition function of the supersymmetric two-dimensional euclidean black hole geometry described by the SL(2,Bbb R)/U(1) superconformal field theory. We decompose the result in terms of characters of the N = 2 superconformal symmetry. We point out puzzling sectors of states besides finding expected discrete and continuous contributions to the partition function. By adding an N = 2 minimal model factor of the correct central charge and projecting on integral N = 2 charges we compute the partition function of the background dual to little string theory in a double scaling limit. We show the precise correspondence between this theory and the background for NS5-branes on a circle, due to an exact description of the background as a null gauging of SL(2,Bbb R) × SU(2). Finally, we discuss the interplay between GSO projection and target space geometry.
Galvao, C.A.; Nutku, Y.
1996-12-01
mA third order Monge-Amp{grave e}re type equation of associativity that Dubrovin has obtained in 2-d topological field theory is formulated in terms of a variational principle subject to second class constraints. Using Dirac{close_quote}s theory of constraints this degenerate Lagrangian system is cast into Hamiltonian form and the Hamiltonian operator is obtained from the Dirac bracket. There is a new type of Kac-Moody algebra that corresponds to this Hamiltonian operator. In particular, it is not a W-algebra. {copyright} {ital 1996 American Institute of Physics.}
Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT
NASA Astrophysics Data System (ADS)
Song, Jaewon
2016-02-01
We study superconformal indices of 4d {N}=2 class S theories with certain irregular punctures called type I k,N . This class of theories include generalized Argyres-Douglas theories of type ( A k-1 , A N -1) and more. We conjecture the superconformal indices in certain simplified limits based on the TQFT structure of the class S theories by writing an expression for the wave function corresponding to the puncture I k,N . We write the Schur limit of the wave function when k and N are coprime. When k = 2, we also conjecture a closed-form expression for the Hall-Littlewood index and the Macdonald index for odd N. Fromtheindex,wearguethatcertainshort-multipletwhichcanappearintheOPEof the stress-energy tensor is absent in the ( A 1 , A 2 n ) theory. We also discuss the mixed Schur indices for the {N}=1 class {S} theories with irregular punctures.
Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory.
Spencer, Austin P; Li, Hebin; Cundiff, Steven T; Jonas, David M
2015-04-30
A solution to Maxwell's equations in the three-dimensional frequency domain is used to calculate rephasing two-dimensional Fourier transform (2DFT) spectra of the D2 line of atomic rubidium vapor in argon buffer gas. Experimental distortions from the spatial propagation of pulses through the sample are simulated in 2DFT spectra calculated for the homogeneous Bloch line shape model. Spectral features that appear at optical densities of up to 3 are investigated. As optical density increases, absorptive and dispersive distortions start with peak shape broadening, progress to peak splitting, and ultimately result in a previously unexplored coherent transient twisting of the split peaks. In contrast to the low optical density limit, where the 2D peak shape for the Bloch model depends only on the total dephasing time, these distortions of the 2D peak shape at finite optical density vary with the waiting time and the excited state lifetime through coherent transient effects. Experiment-specific conditions are explored, demonstrating the effects of varying beam overlap within the sample and of pseudo-time domain filtering. For beam overlap starting at the sample entrance, decreasing the length of beam overlap reduces the line width along the ωτ axis but also reduces signal intensity. A pseudo-time domain filter, where signal prior to the center of the last excitation pulse is excluded from the FID-referenced 2D signal, reduces propagation distortions along the ωt axis. It is demonstrated that 2DFT rephasing spectra cannot take advantage of an excitation-detection transformation that can eliminate propagation distortions in 2DFT relaxation spectra. Finally, the high optical density experimental 2DFT spectrum of rubidium vapor in argon buffer gas [J. Phys. Chem. A 2013, 117, 6279-6287] is quantitatively compared, in line width, in depth of peak splitting, and in coherent transient peak twisting, to a simulation with optical density higher than that reported.
Truncated conformal space approach for 2D Landau–Ginzburg theories
Coser, A.; Beria, M.; Brandino, G. P.; Konik, R. M.; Mussardo, G.
2014-12-10
In this study, We examine the spectrum of Landau–Ginzburg theories in 1 + 1 dimensions using the truncated conformal space approach employing a compactified boson. We study these theories both in their broken and unbroken phases. We first demonstrate that we can reproduce the expected spectrum of a Φ² theory (i.e. a free massive boson) in this framework. We then turn to Φ⁴ in its unbroken phase and compare our numerical results with the predictions of two-loop perturbation theory, finding excellent agreement. We then analyze the broken phase of Φ⁴ where kink excitations together with their bound states are present.more » We confirm the semiclassical predictions for this model on the number of stable kink-antikink bound states. We also test the semiclassics in the double well phase of Φ⁶ Landau-Ginzburg theory, again finding agreement.« less
Modularity and 4D-2D spectral equivalences for large- N gauge theories with adjoint matter
NASA Astrophysics Data System (ADS)
Basar, Gökçe; Cherman, Aleksey; Dienes, Keith R.; McGady, David A.
2016-06-01
In recent work, we demonstrated that the confined-phase spectrum of non-supersymmetric pure Yang-Mills theory coincides with the spectrum of the chiral sector of a two-dimensional conformal field theory in the large- N limit. This was done within the tractable setting in which the gauge theory is compactified on a three-sphere whose radius is small compared to the strong length scale. In this paper, we generalize these observations by demonstrating that similar results continue to hold even when massless adjoint matter fields are introduced. These results hold for both thermal and (-1) F -twisted partition functions, and collectively suggest that the spectra of large- N confining gauge theories are organized by the symmetries of two-dimensional conformal field theories.
Truncated conformal space approach for 2D Landau–Ginzburg theories
Coser, A.; Beria, M.; Brandino, G. P.; Konik, R. M.; Mussardo, G.
2014-12-10
In this study, We examine the spectrum of Landau–Ginzburg theories in 1 + 1 dimensions using the truncated conformal space approach employing a compactified boson. We study these theories both in their broken and unbroken phases. We first demonstrate that we can reproduce the expected spectrum of a Φ² theory (i.e. a free massive boson) in this framework. We then turn to Φ⁴ in its unbroken phase and compare our numerical results with the predictions of two-loop perturbation theory, finding excellent agreement. We then analyze the broken phase of Φ⁴ where kink excitations together with their bound states are present. We confirm the semiclassical predictions for this model on the number of stable kink-antikink bound states. We also test the semiclassics in the double well phase of Φ⁶ Landau-Ginzburg theory, again finding agreement.
Turok, N.
1987-11-01
It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation. 17 refs., 1 fig.
NASA Technical Reports Server (NTRS)
Turok, Neil
1988-01-01
It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation.
Vetterli, C F; Furedy, J J
1985-07-01
The string measure of evoked potential (EP) complexity is based on a new error theory of intelligence, which differs from the older speed-based formulations which focus on EP latency rather than complexity. In this note we first raise a methodological problem of arbitrariness with respect to one version of the string measure. We then provide a comparative empirical assessment of EP-IQ correlations with respect to a revised string measure (which does not suffer from the methodological problem), a latency measure, and another measure of EP complexity: average voltage. This assessment indicates that the string measure, in particular, yields quite disorderly results, and that, in general, the results favor the speed over the error formulation.
NASA Technical Reports Server (NTRS)
Bennett, David P.
1988-01-01
Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.
Bennett, D.P.
1988-07-01
Cosmic strings are linear topological defects that are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation that are based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characteristic microwave background anistropy. It has recently been discovered by F. Bouchet and myself that details of cosmic string evolution are very different from the so-called ''standard model'' that has been assumed in most of the string induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain. 29 refs., 9 figs.
Mirage models confront the LHC: Kähler-stabilized heterotic string theory
NASA Astrophysics Data System (ADS)
Kaufman, Bryan L.; Nelson, Brent D.; Gaillard, Mary K.
2013-07-01
We begin the study of a class of string-motivated effective supergravity theories in light of current data from the CERN Large Hadron Collider (LHC). The case of heterotic string theory, in which the dilaton is stabilized via nonperturbative corrections to the Kähler metric, will be considered first. The model, which represents the strong dynamics of a presumed gaugino condensation in the hidden sector, is highly constrained and therefore predictive. We find that much of the parameter space associated with confined hidden sector gauge groups up to rank five is now observationally disfavored by the LHC results. Most of the theoretically motivated parameter space that remains can be probed with data that has already been collected, and most of the remainder will be definitively explored within the first year of operation at s=13TeV. Expected signatures for a number of benchmark points are discussed. We find that the surviving space of the model makes a precise prediction as to the relation of many superpartner masses, as well as the manner in which the correct dark matter relic density is obtained. Implications for current and future dark matter search experiments are discussed.
Mirage models confront the LHC. II. Flux-stabilized type IIB string theory
NASA Astrophysics Data System (ADS)
Kaufman, Bryan L.; Nelson, Brent D.
2014-04-01
We continue the study of a class of string-motivated effective supergravity theories in light of current data from the CERN Large Hadron Collider (LHC). In this installment we consider type IIB string theory compactified on a Calabi-Yau orientifold in the presence of fluxes, in the manner originally formulated by Kachru et al. We allow for a variety of potential uplift mechanisms and embeddings of the Standard Model field content into D3-and D7-brane configurations. We find that an uplift sector independent of the Kähler moduli, as is the case with anti-D3-branes, is inconsistent with data unless the matter and Higgs sectors are localized on D7 branes exclusively, or are confined to twisted sectors between D3-and D7-branes. We identify regions of parameter space for all possible D-brane configurations that remain consistent with Planck observations on the dark matter relic density and measurements of the CP-even Higgs mass at the LHC. Constraints arising from LHC searches at √s =8 TeV and the LUX dark matter detection experiment are discussed. The discovery prospects for the remaining parameter space at dark matter direct-detection experiments are described, and signatures for detection of superpartners at the LHC with √s =14 TeV are analyzed.
Star products on graded manifolds and α′-corrections to Courant algebroids from string theory
Deser, Andreas
2015-09-15
Courant algebroids, originally used to study integrability conditions for Dirac structures, have turned out to be of central importance to study the effective supergravity limit of string theory. The search for a geometric description of T-duality leads to Double Field Theory (DFT), whose gauge algebra is governed by the C-bracket, a generalization of the Courant bracket in the sense that it reduces to the latter by solving a specific constraint. Recently, in DFT deformations of the C-bracket and O(d, d)-invariant bilinear form to first order in the closed string sigma model coupling, α′ were derived by analyzing the transformation properties of the Neveu-Schwarz B-field. By choosing a particular Poisson structure on the Drinfel’d double corresponding to the Courant algebroid structure of the generalized tangent bundle, we are able to interpret the C-bracket and bilinear form in terms of Poisson brackets. As a result, we reproduce the α′-deformations for a specific solution to the strong constraint of DFT as expansion of a graded version of the Moyal-Weyl star product.
Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT
Song, Jaewon
2016-02-05
We present superconformal indices of 4d N = 2 class S theories with certain irregular punctures called type Ik,N. This class of theories include generalized Argyres-Douglas theories of type (Ak-1, AN-1) and more. We conjecture the superconformal indices in certain simplifi ed limits based on the TQFT structure of the class S theories by writing an expression for the wave function corresponding to the puncture Ik,N. We write the Schur limit of the wave function when k and N are coprime. When k = 2, we also conjecture a closed-form expression for the Hall-Littlewood index and the Macdonald index formore » odd N. From the index, we argue that certain short-multiplet which can appear in the OPE of the stress-energy tensor is absent in the (A1,A2n) theory. In addition, we discuss the mixed Schur indices for the N = 1 class S theories with irregular punctures.« less
Untangling tracer trajectories and clarifying coherence in 2D flows using braid theory
NASA Astrophysics Data System (ADS)
Filippi, Margaux; Atis, Séverine; Thiffeault, Jean-Luc; Budišić, Marko; Allshouse, Michael; Peacock, Thomas
2014-11-01
Interpreting ocean surface transport is crucial to many areas of oceanography, ranging from marine ecology to pollution management. To better understand surface mixing, we investigate a braid theory method to detect transport barriers bounding coherent structures in two-dimensional fluid flows. Whereas most existing techniques rely on an extensive spatiotemporal knowledge of the flow field, we seek to identify these structures from sparse data sets involving trajectories of a few tracer particles or floats. We present the results of model and laboratory experimental studies to test the robustness and applicability of the braid theory method, and discuss the potential applicability to oceanic data sets.
Learning control system design based on 2-D theory - An application to parallel link manipulator
NASA Technical Reports Server (NTRS)
Geng, Z.; Carroll, R. L.; Lee, J. D.; Haynes, L. H.
1990-01-01
An approach to iterative learning control system design based on two-dimensional system theory is presented. A two-dimensional model for the iterative learning control system which reveals the connections between learning control systems and two-dimensional system theory is established. A learning control algorithm is proposed, and the convergence of learning using this algorithm is guaranteed by two-dimensional stability. The learning algorithm is applied successfully to the trajectory tracking control problem for a parallel link robot manipulator. The excellent performance of this learning algorithm is demonstrated by the computer simulation results.
Analytic theory for the selection of 2-D needle crystal at arbitrary Peclet number
NASA Technical Reports Server (NTRS)
Tanveer, Saleh
1989-01-01
An accurate analytic theory is presented for the velocity selection of a two-dimensional needle crystal for arbitrary Peclet number for small values of the surface tension parameter. The velocity selection is caused by the effect of transcendentally small terms which are determined by analytic continuation to the complex plane and analysis of nonlinear equations. The work supports the general conclusion of previous small Peclet number analytical results of other investigators, though there are some discrepancies in details. It also addresses questions raised on the validity of selection theory owing to assumptions made on shape corrections at large distances from the tip.
Space time filling branes in non-critical (super) string theories
NASA Astrophysics Data System (ADS)
Lugo, Adrián R.; Sturla, Mauricio B.
2008-03-01
We consider solutions of (super) gravities associated to non-critical (super) string theories in arbitrary space-time dimension D=p+3, that describe generically non-extremal black p-branes charged under NSNS or RR gauge fields, embedded in some non-critical vacuum. In the case of vacuum (uncharged) backgrounds, we solve completely the problem obtaining all the possible solutions, that consist of the (p+1)-dimensional Minkowski space-times a linear dilaton times an S, and a three parameter family of solutions that includes (p+1)-dimensional Minkowski space-times the cigar, and its T-dual (p+1)-dimensional Minkowski space-times the trumpet. For NSNS charged solutions, we also solve in closed form the problem, obtaining several families of solutions, that include in particular the fundamental non-critical string solution embedded in the cigar vacuum, recently found in [A.R. Lugo, M.B. Sturla, Phys. Lett. B 637 (2006) 338, hep-th/0604202], a solution that we interpret as a fundamental non-critical string embedded in the linear dilaton vacuum, and a two-parameter family of regular curvature solutions asymptotic to AdS×S. In the case of RR charged D p-branes solutions, an ansatz allows us to find a non-conformal, constant curvature, asymptotically AdS space, T-dual to AdS, together with a two-parameter family of solutions that includes the non-conformal, AdS black hole like solution associated with the earlier space. The solutions obtained by T-duality are Einstein spaces consisting of a two-parameter family of conformal, constant dilaton solutions, that include, in particular, the AdS black hole of [S. Kuperstein, J. Sonnenschein, JHEP 0407 (2004) 049, hep-th/0403254]. We speculate about the possible applications of some of them in the framework of the gauge-gravity correspondence.
NASA Astrophysics Data System (ADS)
Caporaso, Nicola; Cirafici, Michele; Griguolo, Luca; Pasquetti, Sara; Seminara, Domenico; Szabo, Richard J.
2006-01-01
We continue our study of the large N phase transition in q-deformed Yang-Mills theory on the sphere and its role in connecting topological strings to black hole entropy. We study in detail the chiral theory defined in terms of uncoupled single U(N) representations at large N and write down the resulting partition function by means of the topological vertex. The emergent toric geometry has three Kähler parameters, one of which corresponds to the expected fibration over Bbb P1. By taking a suitable double-scaling limit we recover the chiral Gross-Taylor string expansion. To analyse the phase transition we construct a matrix model which describes the chiral gauge theory. It has three distinct phases, one of which should be described by the closed topological string expansion. We verify this expectation by explicit comparison between the matrix model and the chiral topological string free energies. We also show that the critical point in the pertinent phase of the matrix model corresponds to a divergence of the topological string perturbation series.
Density functional theory of freezing for binary mixtures of 2D superparamagnetic colloids.
Mukherjee, Manjori; Mishra, Pankaj; Löwen, Hartmut
2014-11-19
Density functional theory of freezing is used to study the phase diagram of a binary mixture of superparamagnetic colloidal particles in two dimensions. The particles interact via a purely repulsive potential that scales as the inverse cube of the inter-particle separation. This corresponds to a magnetic dipole interaction where the dipoles are induced by an external magnetic field applied normal to the plane. The pair correlation functions needed as input information in the density functional theory are calculated by the hypernetted chain integral equation closure. Considering the freezing into a disordered triangular solid phase, a spindle phase diagram is found for the susceptibility ratio 0.9 of the species, which changes to an azeotrope at a ratio 0.8. A eutectic-like phase diagram with an intervening solid phase emerges for the susceptibility ratio 0.7. The results are verifiable in real-space experiments on superparamagnetic colloids in external magnetic fields.
Surface-invariants in 2D classical Yang-Mills theory
Diaz, Rafael; Fuenmayor, E.; Leal, Lorenzo
2006-03-15
We study a method to obtain invariants under area-preserving diffeomorphisms associated to closed curves in the plane from classical Yang-Mills theory in two dimensions. Taking as starting point the Yang-Mills field coupled to nondynamical particles carrying chromo-electric charge, and by means of a perturbative scheme, we obtain the first two contributions to the on-shell action, which are area-invariants. A geometrical interpretation of these invariants is given.
FAST TRACK COMMUNICATION: Poisson-sigma model for 2D gravity with non-metricity
NASA Astrophysics Data System (ADS)
Adak, M.; Grumiller, D.
2007-10-01
We present a Poisson-sigma model describing general 2D dilaton gravity with non-metricity, torsion and curvature. It involves three arbitrary functions of the dilaton field, two of which are well known from metric compatible theories, while the third one characterizes the local strength of non-metricity. As an example we show that α' corrections in 2D string theory can generate (target space) non-metricity.
String Theory Origin of Dyonic N=8 Supergravity and Its Chern-Simons Duals.
Guarino, Adolfo; Jafferis, Daniel L; Varela, Oscar
2015-08-28
We clarify the higher-dimensional origin of a class of dyonic gaugings of D=4 N=8 supergravity recently discovered, when the gauge group is chosen to be ISO(7). This dyonically gauged maximal supergravity arises from consistent truncation of massive IIA supergravity on S^6, and its magnetic coupling constant descends directly from the Romans mass. The critical points of the supergravity uplift to new four-dimensional anti-de Sitter space (AdS4) massive type IIA vacua. We identify the corresponding three-dimensional conformal field theory (CFT3) duals as super-Chern-Simons-matter theories with simple gauge group SU(N) and level k given by the Romans mass. In particular, we find a critical point that uplifts to the first explicit N=2 AdS4 massive IIA background. We compute its free energy and that of the candidate dual Chern-Simons theory by localization to a solvable matrix model, and find perfect agreement. This provides the first AdS4/CFT3 precision match in massive type IIA string theory. PMID:26371639
String Theory Origin of Dyonic N=8 Supergravity and Its Chern-Simons Duals.
Guarino, Adolfo; Jafferis, Daniel L; Varela, Oscar
2015-08-28
We clarify the higher-dimensional origin of a class of dyonic gaugings of D=4 N=8 supergravity recently discovered, when the gauge group is chosen to be ISO(7). This dyonically gauged maximal supergravity arises from consistent truncation of massive IIA supergravity on S^6, and its magnetic coupling constant descends directly from the Romans mass. The critical points of the supergravity uplift to new four-dimensional anti-de Sitter space (AdS4) massive type IIA vacua. We identify the corresponding three-dimensional conformal field theory (CFT3) duals as super-Chern-Simons-matter theories with simple gauge group SU(N) and level k given by the Romans mass. In particular, we find a critical point that uplifts to the first explicit N=2 AdS4 massive IIA background. We compute its free energy and that of the candidate dual Chern-Simons theory by localization to a solvable matrix model, and find perfect agreement. This provides the first AdS4/CFT3 precision match in massive type IIA string theory.
Moduli stabilization with F-term uplifting in heterotic string theory
Jeong, Kwang Sik; Shin, Seodong
2009-02-15
We discuss the role of F-term uplifting in stabilizing moduli within the framework of heterotic string theory. It turns out that the uplifting sector plays an important role in fixing the volume modulus at one of the self-dual points of a modular invariant potential. For the volume modulus stabilized at a self-dual point, the F-term uplifting leads to the dilation stabilization which can naturally yield the mirage mediation pattern of soft supersymmetry breaking terms. Generalizing to the case with anomalous U(1) gauge symmetry, we also find that the U(1) sector generically gives a contribution to sfermion masses comparable to the dilaton-mediated one while maintaining the mirage mediation pattern.
The viscosity to entropy ratio: From string theory motivated bounds to warm dense matter
Faussurier, G.; Libby, S. B.; Silvestrelli, P. L.
2014-07-04
Here, we study the ratio of viscosity to entropy density in Yukawa one-component plasmas as a function of coupling parameter at fixed screening, and in realistic warm dense matter models as a function of temperature at fixed density. In these two situations, the ratio is minimized for values of the coupling parameters that depend on screening, and for temperatures that in turn depend on density and material. In this context, we also examine Rosenfeld arguments relating transport coefficients to excess reduced entropy for Yukawa one-component plasmas. For these cases we show that this ratio is always above the lower-bound conjecturemore » derived from string theory ideas.« less
Black holes in many dimensions at the CERN Large Hadron Collider: testing critical string theory.
Hewett, JoAnne L; Lillie, Ben; Rizzo, Thomas G
2005-12-31
We consider black hole production at the CERN Large Hadron Collider (LHC) in a generic scenario with many extra dimensions where the standard model fields are confined to a brane. With approximately 20 dimensions the hierarchy problem is shown to be naturally solved without the need for large compactification radii. We find that in such a scenario the properties of black holes can be used to determine the number of extra dimensions, . In particular, we demonstrate that measurements of the decay distributions of such black holes at the LHC can determine if is significantly larger than 6 or 7 with high confidence and thus can probe one of the critical properties of string theory compactifications.
Pure gauge configurations and tachyon solutions to string field theories equations of motion
NASA Astrophysics Data System (ADS)
Aref'eva, Irina Ya.; Gorbachev, Roman V.; Grigoryev, Dmitry A.; Khromov, Pavel N.; Maltsev, Maxim V.; Medvedev, Peter B.
2009-05-01
In construction of analytical solutions to open string field theories pure gauge configurations parameterized by wedge states play an essential role. These pure gauge configurations are constructed as perturbation expansions and to guaranty that these configurations are asymptotical solutions to equations of motion one needs to study convergence of the perturbation expansions. We demonstrate that for the large parameter of the perturbation expansion these pure gauge truncated configurations give divergent contributions to the equation of motion on the subspace of the wedge states. We perform this demonstration numerically for the pure gauge configurations related to tachyon solutions for the bosonic and NS fermionic SFT. By the numerical calculations we also show that the perturbation expansions are cured by adding extra terms. These terms are nothing but the terms necessary to make valued the Sen conjectures.
AdS{sub 3} backgrounds from 10D effective action of heterotic string theory
Dominis Prester, Predrag
2010-02-15
We present a method for calculating solutions and corresponding central charges for backgrounds with AdS{sub 3} and S{sup k} factors in {alpha}{sup '}-exact fashion from the full tree-level low-energy effective action of heterotic string theory. Three examples are explicitly presented: AdS{sub 3}xS{sup 3}xT{sup 4}, AdS{sub 3}xS{sup 2}xS{sup 1}xT{sup 4}, and AdS{sub 3}xS{sup 3}xS{sup 3}xS{sup 1}. Crucial property which enabled our analysis is vanishing of the Riemann tensor calculated from connection with ''{sigma}-model torsion.'' We show the following: (i) Chern-Simons terms are the only source of {alpha}{sup '} corrections not only in BPS, but also in non-BPS cases, suggesting a possible extension of general method of Kraus and Larsen, (ii) our results are in agreement with some conjectures on the form of the part of tree-level Lagrangian not connected to a mixed Chern-Simons term by supersymmetry (and present in all supersymmetric string theories), (iii) new {alpha}{sup '}-exact result for central charges in AdS{sub 3}xS{sup 3}xS{sup 3}xS{sup 1} geometry. As a tool we used our generalization of Sen's E-function formalism to AdS{sub p} with p>2, and paid special attention to proper definition of asymptotic charges.
Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory
NASA Astrophysics Data System (ADS)
Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun
2010-09-01
We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2% , and the growth-rate parameter by ˜5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.
Yielding in a strongly aggregated colloidal gel: 2D simulations and theory
NASA Astrophysics Data System (ADS)
Roy, Saikat; Tirumkudulu, Mahesh
2015-11-01
We investigated the micro-structural details and the mechanical response under uniaxial compression of the strongly aggregating gel starting from low to high packing fraction.The numerical simulations account for short-range inter-particle attractions, normal and tangential deformation at particle contacts,sliding and rolling friction, and preparation history. It is observed that in the absence of rolling resistance(RR),the average coordination number varies only slightly with compaction whereas it is significant in the presence of RR. The particle contact distribution is isotropic throughout the consolidation process. In both cases, the yield strain is constant with the volume fraction. The modulus values are very similar at different attraction, and with and without RR implying that the elastic modulus does not scale with attraction.The modulus was found to be a weak function of the preparation history. The increase in yield stress with volume fraction is a consequence of the increased elastic modulus of the network. However, the yield stress scales similarly both with and without RR. The power law exponent of 5.4 is in good agreement with previous simulation results. A micromechanical theory is also proposed to describe the stress versus strain relation for the gelled network.
Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory
Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun
2010-09-15
We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.
Exact results for the low energy AdS 4 × 3 string theory
NASA Astrophysics Data System (ADS)
Fabbri, Alessandro; Fioravanti, Davide; Piscaglia, Simone; Tateo, Roberto
2013-11-01
We derive the Thermodynamic Bethe Ansatz equations for the relativistic sigma model describing the AdS 4 × 3 string II A theory at strong coupling (i.e. in the Alday-Maldacena decoupling limit). The corresponding Y -system involves an infinite number of Y functions and is of a new type, although it shares a peculiar feature with the Y -system for AdS 4 × 3. A truncation of the equations at level p and a further generalisation to generic rank N allow us an alternative description of the theory as the N =4, p = ∞ representative in an infinite family of models corresponding to the conformal cosets ( N -1) p × U(1), perturbed by a relevant composite field ϕ ( N,p) = ϕ[( N -1) p ] × ϕ [U(1)] that couples the two independent conformal field theories. The calculation of the ultraviolet central charge confirms the conjecture by Basso and Rej and the conformal dimension of the perturbing operator, at every N and p, is obtained using the Y-system periodicity. The conformal dimension of ϕ[( N -1) p ] matches that of the field identified by Fendley while discussing integrability issues for the purely bosonic N -1 sigma model.
Remark on Calabi-Yau vacua of the string theory and the cosmological constant problem
NASA Astrophysics Data System (ADS)
Park, Eun Kyung; Kwon, Pyung Seong
2013-08-01
In the first part of the paper we study solitonic properties of the Calabi-Yau vacua of the string theory. We observe that the Calabi-Yau threefolds of the string theory may be thought of as Neveu-Schwarz-Neveu-Schwarz (NS-NS) objects whose masses are proportional to 1/gs2. In the second part, which is the main part of this paper, we propose, based on the viewpoint that our three-dimensional space is a stack of Bogomol’nyi-Prasad-Sommerfield (BPS) D3-branes located at the conifold singularity of the Calabi-Yau threefold, a new mechanism to address the cosmological constant problem in the framework of the conventional compactifications, where the n-form fluxes including NS-NS three-form are all turned off. In this mechanism the four-dimensional cosmological constant λ appears as two types, NS-NS type and R-R type, of vacuum energies on the brane plus supersymmetry breaking term, which constitute a brane action density I^brane, and sum of these three terms of I^brane are forced to vanish by field equations so that λ adjusts itself to zero as a result. Also in this mechanism the d=4 supersymmetry is broken in the brane region, while still maintaining λ=0. The supersymmetry breaking occurs as a result of the gauge symmetry breaking of the R-R four-form arising at the quantum level. The substance of the supersymmetry breaking term is a vacuum energy density (of the brane region) arising from the quantum excitations with components along the transverse directions to the D3-brane. We generalize the above mechanism to the case of the flux compactifications where the fluxes are all turned on to stabilize the moduli. In the generalized theory λ appears as I^brane plus the scalar potential Vscalar for the moduli, in contrast to the case of the ordinary flux compactifications where λ is simply given by Vscalar. Also in this theory any nonzero Vscalar arising from perturbative or nonperturbative corrections is gauged away by the gauge arbitrariness of I^brane and the
Aspects of string dualities: Orientifolds, F-theory and super D-branes and the M5-brane
NASA Astrophysics Data System (ADS)
Park, Jaemo
We probe string dualities by using the orientifold and F- theory, and by investigating world volume actions of super D-branes and super M-branes. We first study orientifolds in various dimensions. We construct orientifolds dual to M-theory compactified on the Klein bottle and on the Mobius band, respectively. Six-dimensional orientifolds with N = 1 supersymmetry are constructed. They have multiple tensor multiplets, which cannot be obtained by the conventional Calabi-Yau compactifications. We find F-theory duals for some of these models, thereby making manifest the phase transitions involving the tensionless strings these models can have. We construct orientifold and F-theory duals of the heterotic string models constructed by Chaudhuri, Hockney and Lykken (CHL) and study N = 2 supersymmetric F-theory vacua in six dimensions. Next, we construct the supersymmetric world volume action of the M-theory 5-brane in a flat eleven-dimensional background. Finally, dual D-brane actions are obtained by carrying out a duality transformation of the world volume gauge field of the D-brane and their properties are studied.
Conforming the measured lifetimes of the 5 d 2D3 /2 ,5 /2 states in Cs with theory
NASA Astrophysics Data System (ADS)
Sahoo, B. K.
2016-02-01
We find very good agreement between our theoretically evaluated lifetimes of the 5 d 2D3 /2 and 5 d 2D5 /2 states of Cs with the experimental values reported by DiBerardino et al. [Phys. Rev. A 57, 4204 (1998), 10.1103/PhysRevA.57.4204], which were demonstrated to disagree with an earlier rigorous theoretical study [Safronova and Clark, Phys. Rev. A 69, 040501(R) (2004), 10.1103/PhysRevA.69.040501] and with the other available precise measurement [Hoeling et al., Opt. Lett. 21, 74 (1996), 10.1364/OL.21.000074]. In this work, we carry out calculations of the radiative transition matrix elements using many variants of relativistic many-body methods, mainly in the coupled-cluster theory framework, and analyze the propagation of electron correlation effects to elucidate their roles in accurate evaluations of the matrix elements. We also demonstrate contributions explicitly from Dirac-Coulomb interactions, frequency-independent Breit interaction, and lower order quantum electrodynamics effects. Uncertainties in these matrix elements due to different possible sources of errors are estimated. By combining our calculated radiative matrix elements with the experimental values of the transition wavelengths, we obtain the transition probabilities due to both the allowed and the lower order forbidden channels. Adding these quantities together, the lifetimes of the above two states are determined precisely and plausible reasons for the reported inconsistencies between the earlier theoretical calculations and the experimental results are pointed out.
UV completions for non-critical strings
NASA Astrophysics Data System (ADS)
Apruzzi, Fabio; Hassler, Falk; Heckman, Jonathan J.; Melnikov, Ilarion V.
2016-07-01
Compactifications of the physical superstring to two dimensions provide a general template for realizing 2D conformal field theories coupled to worldsheet gravity, i.e. non-critical string theories. Motivated by this observation, in this paper we determine the quasi-topological 8D theory which governs the vacua of 2D N = (0, 2) gauged linear sigma models (GLSMs) obtained from compactifications of type I and heterotic strings on a Calabi-Yau fourfold. We also determine the quasi-topological 6D theory governing the 2D vacua of intersecting 7-branes in compactifications of F-theory on an elliptically fibered Calabi-Yau fivefold, where matter fields and interaction terms localize on lower-dimensional subspaces, i.e. defect operators. To cancel anomalies / cancel tadpoles, these GLSMs must couple to additional chiral sectors, which in some cases do not admit a known description in terms of a UV GLSM. Additionally, we find that constructing an anomaly free spectrum can sometimes break supersymmetry due to spacetime filling anti-branes. We also study various canonical examples such as the standard embedding of heterotic strings on a Calabi-Yau fourfold and F-theoretic "rigid clusters" with no local deformation moduli of the elliptic fibration.
NASA Astrophysics Data System (ADS)
Groot Nibbelink, Stefan; Parr, Erik
2016-08-01
Inspired by the tachyon-free nonsupersymmetric heterotic SO (16 )×SO (16 ) string we consider a special class of nonsupersymmetric field theories: those that can be obtained from supersymmetric field theories by supersymmetry-breaking twists. We argue that such theories, like their supersymmetric counterparts, may still possess some fermionic symmetries as leftovers of the supergauge transformations and have special one-loop nonrenormalization properties due to holomorphicity. In addition, we extend the supergraph techniques to these theories to calculate some explicit supersymmetry-breaking corrections.
Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures.
Yu, Yiling; Cao, Linyou
2012-06-18
We present an intuitive, simple theoretical model, coupled leaky mode theory (CLMT), to analyze the light absorption of 2D, 1D, and 0D semiconductor nanostructures. This model correlates the light absorption of nanostructures to the optical coupling between incident light and leaky modes of the nanostructure. Unlike conventional methods such as Mie theory that requests specific physical features of nanostructures to evaluate the absorption, the CLMT model provides an unprecedented capability to analyze the absorption using eigen values of the leaky modes. Because the eigenvalue shows very mild dependence on the physical features of nanostructures, we can generally apply one set of eigenvalues calculated using a real, constant refractive index to calculations for the absorption of various nanostructures with different sizes, different materials, and wavelength-dependent complex refractive index. This CLMT model is general, simple, yet reasonably accurate, and offers new intuitive physical insights that the light absorption of nanostructures is governed by the coupling efficiency between incident light and leaky modes of the structure.
A megaxion at 750 GeV as a first hint of low scale string theory
NASA Astrophysics Data System (ADS)
Ibáñez, Luis E.; Martín-Lozano, Víctor
2016-07-01
Low scale string models naturally have axion-like pseudoscalars which couple directly to gluons and photons (but not W 's) at tree level. We show how they typically get tree level masses in the presence of closed string fluxes , consistent with the axion discrete gauge symmetry, in a way akin of the axion monodromy of string inflation and relaxion models. We discuss the possibility that the hints for a resonance at 750 GeV recently reported at ATLAS and CMS could correspond to such a heavy axion state ( megaxion). Adjusting the production rate and branching ratios suggest the string scale to be of order M s ≃ 7-104 TeV, depending on the compactification geometry. If this interpretation was correct, one extra Z' gauge boson could be produced before reaching the string threshold at LHC and future colliders.
On Algebraic Singularities, Finite Graphs and D-Brane Gauge Theories: A String Theoretic Perspective
NASA Astrophysics Data System (ADS)
He, Yang-Hui
2002-09-01
In this writing we shall address certain beautiful inter-relations between the construction of 4-dimensional supersymmetric gauge theories and resolution of algebraic singularities, from the perspective of String Theory. We review in some detail the requisite background in both the mathematics, such as orbifolds, symplectic quotients and quiver representations, as well as the physics, such as gauged linear sigma models, geometrical engineering, Hanany-Witten setups and D-brane probes. We investigate aspects of world-volume gauge dynamics using D-brane resolutions of various Calabi-Yau singularities, notably Gorenstein quotients and toric singularities. Attention will be paid to the general methodology of constructing gauge theories for these singular backgrounds, with and without the presence of the NS-NS B-field, as well as the T-duals to brane setups and branes wrapping cycles in the mirror geometry. Applications of such diverse and elegant mathematics as crepant resolution of algebraic singularities, representation of finite groups and finite graphs, modular invariants of affine Lie algebras, etc. will naturally arise. Various viewpoints and generalisations of McKay's Correspondence will also be considered. The present work is a transcription of excerpts from the first three volumes of the author's PhD thesis which was written under the direction of Prof. A. Hanany - to whom he is much indebted - at the Centre for Theoretical Physics of MIT, and which, at the suggestion of friends, he posts to the ArXiv pro hac vice; it is his sincerest wish that the ensuing pages might be of some small use to the beginning student.
T4 fibrations over Calabi-Yau two-folds and non-Kähler manifolds in string theory
NASA Astrophysics Data System (ADS)
Lin, Hai
2016-08-01
We construct a geometric model of eight-dimensional manifolds and realize them in the context of type II string theory. These eight-manifolds are constructed by non-trivial T4 fibrations over Calabi-Yau two-folds. These give rise to eight-dimensional non-Kähler Hermitian manifolds with SU (4) structure. The eight-manifold is also a circle fibration over a seven-dimensional G2 manifold with skew torsion. The eight-manifolds of this type appear as internal manifolds with SU (4) structure in type IIB string theory with F3 and F7 fluxes. These manifolds have generalized calibrated cycles in the presence of fluxes.
NASA Astrophysics Data System (ADS)
Derendinger, J.-P.; Scrucca, C. A.; Uranga, A. M.
2006-11-01
This special issue is devoted to the proceedings of the conference 'Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, from the 16 to the 20 of January 2006. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools which have become a traditional rendezvous for young researchers of the community. The previous one was held at SISSA, in Trieste, Italy, in February 2005, and the next one will take place again at CERN, in January 2007. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of five general lectures of four hours each, whose notes are published in the present proceedings, and five working group discussion sessions, focused on specific topics of the network research program. It was attended by approximately 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress and to the open problems in string theory. String theory is expected to provide insights into the description of systems where the role of gravity is crucial. One prominent example of such systems are time-dependent backgrounds with big bang singularities, whose status in string theory is reviewed in the lecture notes by Ben Craps. In another main problem in quantum gravity, string theory gives a fascinating microscopic description of black holes and their properties. The lectures by Shiraz Minwalla review the thermal properties of black holes from their microscopic description in terms of a holographically dual large N field theory. Progress in the description of black hole microstates, and its interplay with the macroscopic description in terms of supergravity solutions via the
Dirac-born-infeld and k-inflation: The CMB anisotropies from string theory
NASA Astrophysics Data System (ADS)
Ringeval, Christophe
2010-01-01
Inflationary models within string theory exhibit unusual scalar field dynamics involving non-minimal kinetic terms and generically referred to as k-inflation. In this situation, the standard slow-roll approach used to determine the behavior of the primordial cosmological perturbations cannot longer be used. We present a generic method, based on the uniform approximation, to analytically derive the primordial power spectra of scalar and tensor perturbations. At leading order, the scalar spectral index, its running and the tensor-to-scalar ratio are modified by the new dynamics. We provide their new expression, correct previous results at next-to-leading order and clarify the definition of what is the tensor-to-scalar ratio when the sound horizon and Hubble radius are not the same. Finally, we discuss the constraints the parameters encoding the non-minimal kinetic terms have to satisfy, such as the sound speed and the energy scale of k-inflation, in view of the fifth year Wilkinson Microwave Anisotropy Probe (WMAP5) data.
Cvetic, Mirjam; Richter, Robert; Weigand, Timo
2007-10-15
We perform a detailed conformal field theory analysis of D2-brane instanton effects in four-dimensional type IIA string vacua with intersecting D6-branes. In particular, we explicitly compute instanton induced fermion two-point couplings which play the role of perturbatively forbidden Majorana mass terms for right-handed neutrinos or MSSM {mu} terms. These results can readily be extended to higher-dimensional operators. In concrete realizations of such nonperturbative effects, the Euclidean D2-brane has to wrap a rigid, supersymmetric cycle with strong constraints on the zero-mode structure. Their implications for type IIA compactifications on the T{sup 6}/(Z{sub 2}xZ{sub 2}) orientifold with discrete torsion are analyzed. We also construct a local supersymmetric GUT-like model allowing for a class of Euclidean D2-branes whose fermionic zero modes meet all the constraints for generating Majorana masses in the phenomenologically allowed regime. Together with perturbatively realized Dirac masses, these nonperturbative couplings give rise to the seesaw mechanism.
Ooguri, H.
1995-08-01
In physics, solvable models have played very important roles. Understanding a simple model in detail teaches us a lot about more complicated models in generic situations. Five years ago, C. Vafa and I found that the closed N = 2 string theory, that is a string theory with the N = 2 local supersymmetry on the worldsheet, is classically equivalent to the self-dual Einstein gravity in four spacetime dimensions. Thus this string theory is solvable at the classical level. More recently, we have examined the N = 2 string partition function for spacial compactifications, and computed it to all order in the string perturbation expansion. The fact that such computation is possible at all suggests that the N = 2 string theory is solvable even quantum mechanically.
NASA Astrophysics Data System (ADS)
Chen, C. C.; Kikuchi, Y.
Three-point one-loop amplitude for the graviton is considered in the string theory compactified on orbifolds with N=1 supersymmetry. We show that the amplitude leads to the vanishing correction to the Newton’s constant.
NASA Astrophysics Data System (ADS)
Derendinger, J.-P.; Orlando, D.; Uranga, A.
2008-11-01
This special issue is devoted to the proceedings of the conference 'RTN Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, on the 21 25 January 2008. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools, which represents what is by now a well established tradition. The previous ones have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006. The next one will again take place at CERN, in February 2009. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in the present proceedings, and five working group discussion sessions, focused on specific topics of the network research program. It was attended by approximatively 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years is the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti-de Sitter spacetimes with gauge theories. The duality relates the weak coupling regime of one system to the strongly coupled regime of the other, and is therefore very non-trivial to test beyond the supersymmetry-protected BPS sector. One of the key ideas to quantitatively match several quantities on both sides is the use of integrability, both in the gauge theory and the string side. The lecture notes by Nick Dorey provide a pedagogical introduction to the fascinating topic of integrability in AdS/CFT. On the string theory side, progress has
NASA Astrophysics Data System (ADS)
Aharony, Ofer; Marsano, Joseph; Minwalla, Shiraz; Wiseman, Toby
2004-11-01
We review and extend earlier work that uses the AdS/CFT correspondence to relate the black-hole black-string transition of gravitational theories on a circle to a phase transition in maximally supersymmetric (1 + 1)-dimensional SU(N) gauge theories at large N, again compactified on a circle. We perform gravity calculations to determine a likely phase diagram for the strongly coupled gauge theory. We then directly study the phase structure of the same gauge theory, now at weak 't Hooft coupling. In the interesting temperature regime for the phase transition, the (1 + 1)-dimensional theory reduces to a (0 + 1)-dimensional bosonic theory, which we solve using Monte Carlo methods. We find strong evidence that the weakly coupled gauge theory also exhibits a black hole black string-like phase transition in the large N limit. We demonstrate that a simple Landau Ginzburg-like model describes the behaviour near the phase transition remarkably well. The weak coupling transition appears to be close to the cusp between a first-order and a second-order transition.
NASA Astrophysics Data System (ADS)
Uranga, A. M.
2009-11-01
This special section is devoted to the proceedings of the conference `Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland 9-13 February 2009. This event is part of a yearly series of scientific schools, which represents a well established tradition. Previous events have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006, January 2007 and January 2008, and were funded by the European Mobility Research and Training Network `Constituents, Fundamental Forces and Symmetries of the Universe'. The next event will take place again at CERN, in January 2010. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in this special section, and six working group discussion sessions, focused on specific topics of the network research program. It was well attended by over 200 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years has been the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti de Sitter spacetimes with certain quantum (gauge) field theories. The duality has recently been applied to understanding the hydrodynamical properties of a hot plasma in gauge theories (like the quark-gluon plasma created in heavy ion collisions at the RHIC experiment at Brookhaven, and soon at the LHC at CERN) in terms of a dual gravitational AdS theory in the presence of a black hole. These developments were reviewed in the lecture notes by M Rangamani. In addition, the AdS/CFT duality has been proposed as a tool to study interesting physical properties in other
NASA Astrophysics Data System (ADS)
Caporaso, Nicola; Cirafici, Michele; Griguolo, Luca; Pasquetti, Sara; Seminara, Domenico; Szabo, Richard J.
2006-01-01
We examine the problem of counting bound states of BPS black holes on local Calabi-Yau threefolds which are fibrations over a Riemann surface by computing the partition function of q-deformed Yang-Mills theory on the Riemann surface. We study in detail the genus zero case and obtain, at finite N, the instanton expansion of the gauge theory. It can be written exactly as the partition function for U(N) Chern-Simons gauge theory on a Lens space, summed over all non-trivial vacua, plus a tower of non-perturbative instanton contributions. The correspondence between two and three dimensional gauge theories is elucidated by an explicit mapping between two-dimensional Yang-Mills instantons and flat connections on the Lens space. In the large N limit we find a peculiar phase structure in the model. At weak string coupling the theory reduces exactly to the trivial flat connection sector with instanton contributions exponentially suppressed, and the topological string partition function on the resolved conifold is reproduced in this regime. At a certain critical point all non-trivial vacua contribute, instantons are enhanced and the theory appears to undergo a phase transition into a strong coupling regime. We rederive these results by performing a saddle-point approximation to the exact partition function. We obtain a q-deformed version of the Douglas-Kazakov equation for two-dimensional Yang-Mills theory on the sphere, whose one-cut solution below the transition point reproduces the resolved conifold geometry. Above the critical point we propose a two-cut solution that should reproduce the chiral-antichiral dynamics found for black holes on the Calabi-Yau threefold and the Gross-Taylor string in the undeformed limit. The transition from the strong coupling phase to the weak coupling phase appears to be of third order.
Yukawa couplings in string theory: the case for F-theory GUT's
NASA Astrophysics Data System (ADS)
Font, Anamaría
2015-11-01
We study the pattern of Yukawa couplings in local F-theory SU(5) GUT's. Couplings for the third family of quarks and leptons appear at the perturbative level, but to reproduce the observed couplings for the lighter families requires non-perturbative dynamics. We show that corrections due to instanton effects do lead to a Yukawa matrix with a hierarchical structure. Our results apply to both down-like and up- like 10 × 10 × 5 couplings. The models include magnetic fluxes needed for a chiral spectrum and for symmetry breaking down to the Standard Model. We compute the holomorphic couplings via residues and then obtain the physical couplings taking into account the normalization of wavefunction profiles. Combining non-perturbative corrections and magnetic fluxes allows to fit the measured masses and hierarchies of the third and second generations in the Standard Model.
Ahn, C.
1989-08-01
We study two aspects of one loop structures in quantum field theories which describe two different areas of particle physics: the one loop unitarity behavior of the Standard Model of electroweak interactions and modular invariance of string model theory. Loop expansion has its importance in that it contains quantum fluctuations due to all physical states in the theory. Therefore, by studying the various models to one loop, we can understand how the contents of the theory can contribute to physically measurable quantities and how the consistency at quantum level restricts the physical states of the theory, as well. In the first half of the thesis, we study one loop corrections to the process {ital e}{sup +}{ital e}{sup {minus}} {yields} {ital W}{sup +}{ital W}{sup {minus}}. In this process, there is a delicate unitarity-saving cancellation between s-channel and t-channel tree level Feynman diagrams. If the one loop contribution due to heavy particles corrects the channels asymmetrically, the cancellation, hence unitarity, will be delayed up to the mass scale of these heavy particles. We refer to this phenomena as the unitarity delay effect. Due to this effect, cross section below these mass scales can have significant radiative corrections which may provide an appropriate window through which we can see the high energy structure of the Standard Model from relatively low energy experiments. In the second half, we will show how quantum consistency can restrict the physical states in string theory. 53 refs., 13 figs.
NASA Astrophysics Data System (ADS)
Reddy, D. R. K.; Naidu, R. L.; Sobhan Babu, K.; Dasu Naidu, K.
2014-01-01
In this paper, a spatially homogeneous and anisotropic Bianchi type-V cosmological model is considered in a scalar-tensor theory of gravitation proposed by Saez and Ballester (in Phys. Lett. A 113:467, 1986) when the source for energy momentum tensor is a bulk viscous fluid containing one dimensional cosmic strings. The field equations being highly non-linear, we obtain a determinate solution using the plausible physical conditions (i) the scalar of expansion of the space-time is proportional to shear scalar (ii) the baratropic equation of state for pressure and density and (iii) the bulk viscous pressure is proportional to the energy density. It is interesting to observe that cosmic strings do not survive in this model. Some physical and kinematical properties of the model are also discussed.
Becker, Katrin; Becker, Melanie; Krause, Axel
2006-08-15
We show that all three conditions for the cosmological relevance of heterotic cosmic strings, the right tension, stability and a production mechanism at the end of inflation, can be met in the strongly coupled M-theory regime. Whereas cosmic strings generated from weakly coupled heterotic strings have the well-known problems posed by Witten in 1985, we show that strings arising from M5-branes wrapped around 4-cycles (divisors) of a Calabi-Yau in heterotic M-theory compactifications solve these problems in an elegant fashion.
Subcritical string and large N QCD
Thorn, Charles B.
2008-10-15
We pursue the possibility of using subcritical string theory in 4 spacetime dimensions to establish a string dual for large N QCD. In particular we study the even G-parity sector of the 4 dimensional Neveu-Schwarz dual resonance model as the natural candidate for this string theory. Our point of view is that the open string dynamics given by this model will determine the appropriate subcritical closed string theory, a tree level background of which should describe the sum of planar multiloop open string diagrams. We examine the one-loop open string diagram, which contains information about the closed string spectrum at weak coupling. Higher loop open string diagrams will be needed to determine closed string interactions. We also analyze the field theory limit of the one-loop open string diagram and recover the correct running coupling behavior of the limiting gauge theory.
Effective string action for the /U(1)×U(1) dual Ginzburg-Landau theory beyond the London limit
NASA Astrophysics Data System (ADS)
Koma, Yoshiaki; Koma, Miho; Ebert, Dietmar; Toki, Hiroshi
2003-01-01
The effective string action of the color-electric flux tube in the U(1)×U(1) dual Ginzburg-Landau (DGL) theory is studied by performing a path-integral analysis by taking into account the finite thickness of the flux tube. The DGL theory, corresponding to the low-energy effective theory of Abelian-projected SU(3) gluodynamics, can be expressed as a [U(1)] 3 dual Abelian Higgs (DAH) model with a certain constraint in the Weyl symmetric formulation. This formulation allows us to adopt quite similar path-integral techniques as in the U(1) DAH model, and therefore, the resulting effective string action in the U(1)×U(1) DGL theory has also quite a similar structure except the number of color degrees of freedom. A modified Yukawa interaction appears as a boundary contribution, which is completely due to the finite thickness of the flux tube, and is reduced into the ordinary Yukawa interaction in the deep type-II (London) limit.
Robles-Llana, Daniel; Rocek, Martin; Saueressig, Frank; Theis, Ulrich; Vandoren, Stefan
2007-05-25
We find the D(-1)- and D1-brane instanton contributions to the hypermultiplet moduli space of type IIB string compactifications on Calabi-Yau threefolds. These combine with known perturbative and world sheet instanton corrections into a single modular invariant function that determines the hypermultiplet low-energy effective action.
Quantum field theory in the space-time of a cosmic string
Linet, B.
1987-01-15
For a massive scalar field in the static cylindrically symmetric space-time describing a cosmic string, we determine explicitly the Euclidean Green's function. We obtain also an alternative local form which allows us to calculate the vacuum energy-momentum tensor. In the case of a conformal scalar field, we carry out completely the calculations.
Robles-Llana, Daniel; Rocek, Martin; Saueressig, Frank; Theis, Ulrich; Vandoren, Stefan
2007-05-25
We find the D(-1)- and D1-brane instanton contributions to the hypermultiplet moduli space of type IIB string compactifications on Calabi-Yau threefolds. These combine with known perturbative and world sheet instanton corrections into a single modular invariant function that determines the hypermultiplet low-energy effective action. PMID:17677762
An Algebraic Model for the mathfrak{su}(2|2) Light-Cone String Field Theory
NASA Astrophysics Data System (ADS)
Moriyama, S.
We first revisit the light-cone string field theory on the flat andpp-wave background. By our systematic analysis, we find that some unsatisfactions in the previous construction can be overcome. After that, we head for the construction of the LCSFT on the bubbling geometry with an isometry [mathfrak{psu}(2|2)]^2 ltimes {mathbb R}. We clarify the structure of expansion and propose toy models for it. This proceeding is based on the collaboration with Kishimoto [I. Kishimoto and S. Moriyama, J. High Energy Phys. textbf{08} (2010), 013, arXiv:1005.4719 (Ref. 1)].
Tensionless strings from worldsheet symmetries
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Chakrabortty, Shankhadeep; Parekh, Pulastya
2016-01-01
We revisit the construction of the tensionless limit of closed bosonic string theory in the covariant formulation in the light of Galilean conformal symmetry that rises as the residual gauge symmetry on the tensionless worldsheet. We relate the analysis of the fundamentally tensionless theory to the tensionless limit that is viewed as a contraction of worldsheet coordinates. Analysis of the quantum regime uncovers interesting physics. The degrees of freedom that appear in the tensionless string are fundamentally different from the usual string states. Through a Bogoliubov transformation on the worldsheet, we link the tensionless vacuum to the usual tensile vacuum. As an application, we show that our analysis can be used to understand physics of strings at very high temperatures and propose that these new degrees of freedom are naturally connected with the long-string picture of the Hagedorn phase of free string theory. We also show that tensionless closed strings behave like open strings.
NASA Astrophysics Data System (ADS)
Dai, Jian; Wu, Yong-Shi
2005-02-01
With the deconstruction technique, the geometric information of a torus can be encoded in a sequence of orbifolds. By studying the matrix theory on these orbifolds as quiver mechanics, we present a formulation that (de)constructs the torus of generic shape on which matrix theory is "compactified". The continuum limit of the quiver mechanics gives rise to a (1 + 2)-dimensional SYM. A hidden (fourth) dimension, that was introduced before in the matrix theory literature to argue for the electric-magnetic duality, can be easily identified in our formalism. We construct membrane wrapping states rigorously in terms of Dunford calculus in the context of matrix regularization. Unwanted degeneracy in the spectrum of the wrapping states is eliminated by using SL(2,Z) symmetry and the relations to the FD-string bound states. The dual IIB circle emerges in the continuum limit, constituting a critical evidence for IIB/M duality.
Duodenal parasites test; Giardia - string test ... To have this test, you swallow a string with a weighted gelatin capsule on the end. The string is pulled out 4 hours later. Any bile , blood, or mucus attached to ...
NASA Astrophysics Data System (ADS)
Rey, Soo-Jong; Suyama, Takao; Yamaguchi, Satoshi
2009-03-01
We study Wilson loop operators in three-dimensional, Script N = 6 superconformal Chern-Simons theory dual to IIA superstring theory on AdS4 × Bbb CBbb P3. Novelty of Wilson loop operators in this theory is that, for a given contour, there are two linear combinations of Wilson loop transforming oppositely under time-reversal transformation. We show that one combination is holographically dual to IIA fundamental string, while orthogonal combination is set to zero. We gather supporting evidences from detailed comparative study of generalized time-reversal transformations in both D2-brane worldvolume and ABJM theories. We then classify supersymmetric Wilson loops and find at most 1/6 supersymmetry. We next study Wilson loop expectation value in planar perturbation theory. For circular Wilson loop, we find features remarkably parallel to circular Wilson loop in Script N = 4 super Yang-Mills theory in four dimensions. First, all odd loop diagrams vanish identically and even loops contribute nontrivial contributions. Second, quantum corrected gauge and scalar propagators take the same form as those of Script N = 4 super Yang-Mills theory. Combining these results, we propose that expectation value of circular Wilson loop is given by Wilson loop expectation value in pure Chern-Simons theory times zero-dimensional Gaussian matrix model whose variance is specified by an interpolating function of `t Hooft coupling. We suggest the function interpolates smoothly between weak and strong coupling regime, offering new test ground of the AdS/CFT correspondence.
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.
1990-01-01
modifications are needed in the grid generation part of the program. This technical memorandum describes the theory and method used in GRID2D/3D.
NASA Astrophysics Data System (ADS)
Geistlinger, Helmut; Ataei-Dadavi, Iman; Mohammadian, Sadjad; Vogel, Hans-Jörg
2015-11-01
We study the impact of pore structure and surface roughness on capillary trapping of nonwetting gas phase during imbibition with water for capillary numbers between 10-7 and 5 × 10-5, within glass beads, natural sands, glass beads monolayers, and 2-D micromodels. The materials exhibit different roughness of the pore-solid interface. We found that glass beads and natural sands, which exhibit nearly the same grain size distribution, pore size distribution, and connectivity, showed a significant difference of the trapped gas phase of about 15%. This difference can be explained by the microstructure of the pore-solid interface. Based on the visualization of the trapping dynamics within glass beads monolayers and 2-D micromodels, we could show that bypass trapping controls the trapping process in glass beads monolayers, while snap-off trapping controls the trapping process in 2-D micromodels. We conclude that these different trapping processes are the reason for the different trapping efficiency, when comparing glass beads packs with natural sand packs. Moreover, for small capillary numbers of 10-6, we found that the cluster size distribution of trapped gas clusters of all 2-D and 3-D porous media can be described by a universal power law behavior predicted from percolation theory. This cannot be expected a priori for 2-D porous media, because bicontinuity of the two bulk phases is violated. Obviously, bicontinuity holds for the thin-film water phase and the bulk gas phase. The snap-off trapping process leads to ordinary bond percolation in front of the advancing bulk water phase and is the reason for the observed universal power law behavior in 2-D micromodels with rough surfaces.
New set of 2D/3D thermodynamic indices for proteins. A formalism based on “ Molten Globule” theory
NASA Astrophysics Data System (ADS)
Ruiz-Blanco Yasser, B.; García, Y.; Sotomayor-Torres, C. M.; Yovani, Marrero-Ponce
We define eight new macromolecular indices, and several related descriptors for proteins. The coarse grained methodology used for its deduction ensures its fast execution and becomes a powerful potential tool to explore large databases of protein structures. The indices are intended for stability studies, predicting Φ-values, predicting folding rate constants, protein QSAR/QSPR as well as protein alignment studies. Also, these indices could be used as scoring function in protein-protein docking or 3D protein structure prediction algorithms and any others applications which need a numerical code for proteins and/or residues from 2D or 3D format.
Generating the curvature perturbation at the end of inflation in string theory.
Lyth, David H; Riotto, Antonio
2006-09-22
In brane inflationary scenarios, the cosmological perturbations are supposed to originate from the vacuum fluctuations of the inflaton field corresponding to the position of the brane. We show that a significant, and possibly dominant, contribution to the curvature perturbation is generated at the end of inflation through the vacuum fluctuations of fields, other than the inflaton, which are light during the inflationary trajectory and become heavy at the brane-antibrane annihilation. These fields appear generically in string compactifications where the background geometry has exact or approximate isometries and parametrize the internal angular directions of the brane.
Inflation in string theory: A graceful exit to the real world
Cicoli, Michele; Mazumdar, Anupam
2011-03-15
The most important criteria for a successful inflation are: explaining the observed temperature anisotropy in the cosmic microwave background radiation, and exiting inflation in a vacuum where it can excite the standard model quarks and leptons required for the success of big bang nucleosynthesis. In this paper, we provide the first ever closed-string model of inflation where the inflaton couplings to hidden sector, moduli sector, and visible sector fields can be computed, showing that inflation can lead to reheating the standard model degrees of freedom before the electro-weak scale.
Generating the curvature perturbation at the end of inflation in string theory.
Lyth, David H; Riotto, Antonio
2006-09-22
In brane inflationary scenarios, the cosmological perturbations are supposed to originate from the vacuum fluctuations of the inflaton field corresponding to the position of the brane. We show that a significant, and possibly dominant, contribution to the curvature perturbation is generated at the end of inflation through the vacuum fluctuations of fields, other than the inflaton, which are light during the inflationary trajectory and become heavy at the brane-antibrane annihilation. These fields appear generically in string compactifications where the background geometry has exact or approximate isometries and parametrize the internal angular directions of the brane. PMID:17025948
NASA Astrophysics Data System (ADS)
Addazi, Andrea
2016-06-01
We discuss an alternative for baryon-violating six quarks transition in the context of low scale string theory. In particular, with MS = 10-103 TeV, such a transition can be mediated by two color-triplets through a quartic coupling with down-quarks, generated by exotic instantons, in a calculable and controllable way. We show how flavor-changing neutral currents (FCNCs) limits on color-triplet mass are well compatible with n ‑n¯ oscillation ones. If an n ‑n¯ transition was found, this would be an indirect hint for our model. This would strongly motivate searches for direct channels in proton-proton colliders. In fact, our model can be directly tested in an experimentally challenging 100-1000 TeV proton-proton collider, searching for our desired color-triplet states and an evidence for exotic instantons resonances, in addition to stringy Regge resonances, anomalous Z‧-bosons and gauged megaxion. In particular, our scenario can be related to the 750 GeV diphoton hint identifying it with the gauged megaxion dual to the B-field. On the other hand, this scenario is compatible with TeV-ish color triplets visible at large hadron collider (LHC) and with 1-10 TeV string scale, i.e. stringy resonances at LHC.
NASA Astrophysics Data System (ADS)
Addazi, Andrea
2016-06-01
We discuss an alternative for baryon-violating six quarks transition in the context of low scale string theory. In particular, with MS = 10-103 TeV, such a transition can be mediated by two color-triplets through a quartic coupling with down-quarks, generated by exotic instantons, in a calculable and controllable way. We show how flavor-changing neutral currents (FCNCs) limits on color-triplet mass are well compatible with n -n¯ oscillation ones. If an n -n¯ transition was found, this would be an indirect hint for our model. This would strongly motivate searches for direct channels in proton-proton colliders. In fact, our model can be directly tested in an experimentally challenging 100-1000 TeV proton-proton collider, searching for our desired color-triplet states and an evidence for exotic instantons resonances, in addition to stringy Regge resonances, anomalous Z‧-bosons and gauged megaxion. In particular, our scenario can be related to the 750 GeV diphoton hint identifying it with the gauged megaxion dual to the B-field. On the other hand, this scenario is compatible with TeV-ish color triplets visible at large hadron collider (LHC) and with 1-10 TeV string scale, i.e. stringy resonances at LHC.
Witten, Edward
2015-10-21
The Strings 2014 meeting was held at Princeton University June 23-27, 2014, co-sponsored by Princeton University and the Institute for Advanced Study. The goal of the meeting was to provide a stimulating and up-to-date overview of research in string theory and its relations to other areas of physics and mathematics, ranging from geometry to quantum field theory, condensed matter physics, and more. This brief report lists committee members and speakers but contains no scientific information. Note that the talks at Strings 2014 were videotaped and are available on the conference website: http://physics.princeton.edustrings2014/Talk_titles.shtml.
NASA Astrophysics Data System (ADS)
Kane, Gordon
2015-12-01
String/M-theory is an exciting framework within which we try to understand our universe and its properties. Compactified string/M-theories address and offer solutions to almost every important question and issue in particle physics and particle cosmology. But earlier goals of finding a top-down “vacuum selection” principle and deriving the 4D theory have not yet been realized. Does that mean we should stop trying, as nearly all string theorists have? Or can we proceed in the historical way to make a few generic, robust assumptions not closely related to observables, and follow where they lead to testable predictions and explanations? Making only very generic assumptions is a significant issue. I discuss how to try to proceed with this approach, particularly in M-theory compactified on a 7D manifold of G2 holonomy. One goal is to understand our universe as a string/M-theory vacuum for its own sake, in the long tradition of trying to understand our world, and what that implies. In addition, understanding our vacuum may be a prelude to understanding its connection to the multiverse.
NASA Astrophysics Data System (ADS)
Sumitomo, Yoske; Tye, S.-H. Henry; Wong, Sam S. C.
2013-07-01
We study a racetrack model in the presence of the leading α'-correction in flux compactification in Type IIB string theory, for the purpose of getting conceivable de-Sitter vacua in the large compactified volume approximation. Unlike the Kähler Uplift model studied previously, the α'-correction is more controllable for the meta-stable de-Sitter vacua in the racetrack case since the constraint on the compactified volume size is very much relaxed. We find that the vacuum energy density Λ for de-Sitter vacua approaches zero exponentially as the volume grows. We also analyze properties of the probability distribution of Λ in this class of models. As in other cases studied earlier, the probability distribution again peaks sharply at Λ = 0. We also study the Racetrack Kähler Uplift model in the Swiss-Cheese type model.
NASA Astrophysics Data System (ADS)
Adams, Allan Wilfred
This dissertation examines the condensation of closed string tachyons in nonsupersymmetric spacetimes. Closed string tachyons signal instabilities of the spacetime background which make perturbation theory around the chosen vacuum inconsistent. Non-perturbative techniques developed in studying supersymmetric geometries provide a powerful set of tools with which to re-examine the classic problem of closed string tachyons. Such approaches allow remarkably controlled and complete descriptions of the condensation of closed string tachyons in a broad class of non-supersymmetric theories. The text begins with a discussion of closed string tachyons in non-supersymmetric orbifolds of AdS5 x S 5, using the orbifolded dual CFT to study non-perturbative features of the tachyonic instabilities in the orbifolded spacetime. We then discuss localized closed string tachyons in orbifolds of flat space which break spacetime supersymmetry only at isolated curvature singularities. Using worldsheet and D-probe techniques to follow these systems beyond perturbation theory, we show that these localized tachyons resolve the spacetime as they condense, leading generically to smooth and asymptotically supersymmetric spacetimes. Finally, we discuss a proposal for removing these instabilities from the perturbative string which is motivated by our results on non-supersymmetric orbifolds of the AdS/CFT correspondence.
NASA Astrophysics Data System (ADS)
Kh., Lotfy
2012-06-01
In the present paper, we introduce the coupled theory (CD), Lord-Schulman (LS) theory, and Green-Lindsay (GL) theory to study the influences of a magnetic field and rotation on a two-dimensional problem of fibre-reinforced thermoelasticity. The material is a homogeneous isotropic elastic half-space. The method applied here is to use normal mode analysis to solve a thermal shock problem. Some particular cases are also discussed in the context of the problem. Deformation of a body depends on the nature of the force applied as well as the type of boundary conditions. Numerical results for the temperature, displacement, and thermal stress components are given and illustrated graphically in the absence and the presence of the magnetic field and rotation.
A Critical Review of the Research on the Extreme Male Brain Theory and Digit Ratio (2D:4D)
ERIC Educational Resources Information Center
Teatero, Missy L.; Netley, Charles
2013-01-01
Boys are more likely than girls to be diagnosed with an autism spectrum disorder (ASD). The extreme male brain (EMB) theory of ASD suggests that fetal testosterone (FT) exposure may underlie sex differences in autistic traits. A link between the organizational effects of FT on the brain and ASD is often drawn based on research using digit ratio…
NASA Technical Reports Server (NTRS)
Hanson, Donald B.
1994-01-01
A two dimensional linear aeroacoustic theory for rotor/stator interaction with unsteady coupling was derived and explored in Volume 1 of this report. Computer program CUP2D has been written in FORTRAN embodying the theoretical equations. This volume (Volume 2) describes the structure of the code, installation and running, preparation of the input file, and interpretation of the output. A sample case is provided with printouts of the input and output. The source code is included with comments linking it closely to the theoretical equations in Volume 1.
The fundamental non-critical string
NASA Astrophysics Data System (ADS)
Lugo, Adrián R.; Sturla, Mauricio B.
2006-06-01
We obtain the (super) gravity solution in arbitrary space-time dimension less than ten, that gives a low energy description of a fundamental string embedded in a non-critical vacuum, product of d-dimensional Minkowski space-time and a cigar-like geometry with scale r0. This solution, one of the few known examples of objects doubly localized, both at the origin of the transverse space as well as at the tip of the cigar, is determined by its charge Q under the Kalb-Ramond gauge field B, and presumably preserves, for even d, 2 d/2 supercharges. Moreover, we show that the solution is reliable at least in a region far away from both origins, as it is the case with the well known branes of critical string theory.
(MS)SM-like models on smooth Calabi-Yau manifolds from all three heterotic string theories
NASA Astrophysics Data System (ADS)
Groot Nibbelink, Stefan; Loukas, Orestis; Ruehle, Fabian
2015-09-01
We perform model searches on smooth Calabi-Yau compactifications for both the supersymmetric E8xE8 and SO(32) as well as for the non-supersymmetric SO(16)xSO(16) heterotic strings simultaneously. We consider line bundle backgrounds on both favorable CICYs with relatively small h_11 and the Schoen manifold. Using Gram matrices we systematically analyze the combined consequences of the Bianchi identities and the tree-level Donaldson-Uhlenbeck-Yau equations inside the Kahler cone. In order to evaluate the model building potential of the three heterotic theories on the various geometries, we perform computer-aided scans. We have generated a large number of GUT-like models (up to over a few hundred thousand on the various geometries for the three heterotic theories) which become (MS)SM-like upon using a freely acting Wilson line. For all three heterotic theories we present tables and figures summarizing the potentially phenomenologically interesting models which were obtained during our model scans.
Cosmic D-strings as axionic D-term strings
NASA Astrophysics Data System (ADS)
Blanco-Pillado, Jose J.; Dvali, Gia; Redi, Michele
2005-11-01
In this work we derive nonsingular BPS string solutions from an action that captures the essential features of a D-brane anti-D-brane system compactified to four dimensions. The model we consider is a supersymmetric Abelian Higgs model with a D-term potential coupled to an axion-dilaton multiplet. The strings in question are axionic D-term strings which we identify with the D-strings of type II string theory. In this picture the Higgs field represents the open string tachyon of the D-D¯ pair and the axion is dual to a Ramond-Ramond form. The crucial term allowing the existence of nonsingular BPS strings is the Fayet-Iliopoulos term, which is related to the tensions of the D-string and of the parent branes. Despite the presence of the axion, the strings are BPS and carry finite energy, due to the fact that the space gets very slowly decompactified away from the core, screening the long range axion field (or equivalently the theory approaches an infinitely weak 4D coupling). Within our 4D effective action we also identify another class of BPS string solutions (s-strings) which have no ten-dimensional analog, and can only exist after compactification.
Cosmic D-strings as axionic D-term strings
Blanco-Pillado, Jose J.; Dvali, Gia; Redi, Michele
2005-11-15
In this work we derive nonsingular BPS string solutions from an action that captures the essential features of a D-brane-anti-D-brane system compactified to four dimensions. The model we consider is a supersymmetric Abelian Higgs model with a D-term potential coupled to an axion-dilaton multiplet. The strings in question are axionic D-term strings which we identify with the D-strings of type II string theory. In this picture the Higgs field represents the open string tachyon of the D-D pair and the axion is dual to a Ramond-Ramond form. The crucial term allowing the existence of nonsingular BPS strings is the Fayet-Iliopoulos term, which is related to the tensions of the D-string and of the parent branes. Despite the presence of the axion, the strings are BPS and carry finite energy, due to the fact that the space gets very slowly decompactified away from the core, screening the long range axion field (or equivalently the theory approaches an infinitely weak 4D coupling). Within our 4D effective action we also identify another class of BPS string solutions (s-strings) which have no ten-dimensional analog, and can only exist after compactification.
Large- N limit of the non-local 2D Yang Mills and generalized Yang Mills theories on a cylinder
NASA Astrophysics Data System (ADS)
Saaidi, K.; Khorrami, M.
2002-04-01
The large-group behavior of the non-local YM_2's and gYM_2's on a cylinder or a disk is investigated. It is shown that this behavior is similar to that of the corresponding local theory, but with the area of the cylinder replaced by an effective area depending on the dominant representation. The critical areas for non-local YM_2's on a cylinder with some special boundary conditions are also obtained.
NASA Astrophysics Data System (ADS)
Harrell, S. D.; She, C.; Krueger, D. A.; Yuan, T.; Reising, S. C.
2008-12-01
The Chapman mechanism (1939) offers the accepted chemical pathway for the production of excited states of mesospheric sodium, leading to nightglow at two wavelengths: D2 (589.158 nm) and D1 (589.756 nm). While the Chapman mechanism leaves open the possibility that the intensity ratio of the two transitions may vary due to the chemical reaction involving atomic oxygen, early observations by Sipler and Biondi (1978) yielded the value of two within experimental error. Recent work by Slanger et al. (2005), however, showed that not only does the intensity ratio vary, but its value is related to the concentration ratio of atomic oxygen [O] to molecular oxygen [O2]. They proposed a modification of the Chapman mechanism involving two competing chemical pathways for sodium production to account for the observed variation. This paper will describe our compact, Faraday filter-based spectrometer to measure the D2/D1 intensity ratio of the sodium nightglow from the upper mesosphere. The novelty of this method also permits determination of the fractional contributions of the two chemical pathways to test the validity of the modified Chapman mechanism for Na chemistry, as well as to infer information about [O]/[O2]. Since the delineation between the two chemical pathways requires a spectral resolution of 0.0002 nm, this is not possible with any other existing instrument. With this spectrometer deployed at the Colorado State University sodium lidar facility (41°N, 105°W), we expect to be able to measure short-term variations of the sodium nightglow intensity ratio and the chemical pathway fraction, from which [O]/[O2] can be inferred. These observations may yield new insights into mesospheric chemistry, especially for atomic and molecular oxygen, which play a key role in upper atmospheric chemistry and dynamics.
ERIC Educational Resources Information Center
Mesa Public Schools, AZ.
Designed for music educators instructing grades 4 through 8 in string instruments, this Mesa (Arizona) public schools guide presents information on the string curriculum, orchestras, and practicing. The goals and objectives for string instruments delineate grade levels and how student skills will be verified. Following 17 curriculum goal tests,…
NASA Astrophysics Data System (ADS)
Rossing, Thomas D.
In the next three chapters we consider the science of hammered string instruments. In this chapter, we present a brief discussion of vibrating strings excited by a hard or soft hammer. Chapter 20 discusses the most important hammered string instrument, the piano - probably the most versatile and popular of all musical instruments. Chapter 21 discusses hammered dulcimers, especially the American folk dulcimer.
Factorization of chiral string amplitudes
NASA Astrophysics Data System (ADS)
Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye
2016-09-01
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.
k-strings as fundamental strings
NASA Astrophysics Data System (ADS)
Giataganas, Dimitrios
2015-05-01
It has been noticed that the k-string observables can be expressed in terms of the fundamental string ones. We identify a sufficient condition for a generic gravity dual background which when satisfied the mapping can be done. The condition is naturally related to a preserved quantity under the T-dualities acting on the Dp-brane describing the high representation Wilson loops. We also find the explicit relation between the observables of the heavy k-quark and the single quark states. As an application to our generic study and motivated by the fact that the anisotropic theories satisfy our condition, we compute the width of the k-string in these theories to find that the logarithmic broadening is still present, but the total result is affected by the anisotropy of the space.
String theory in polar coordinates and the vanishing of the one-loop Rindler entropy
NASA Astrophysics Data System (ADS)
Mertens, Thomas G.; Verschelde, Henri; Zakharov, Valentin I.
2016-08-01
We analyze the string spectrum of flat space in polar coordinates, following the small curvature limit of the SL(2,{R})/U(1) cigar CFT. We first analyze the partition function of the cigar itself, making some clarifications of the structure of the spectrum that have escaped attention up to this point. The superstring spectrum (type 0 and type II) is shown to exhibit an involution symmetry, that survives the small curvature limit. We classify all marginal states in polar coordinates for type II superstrings, with emphasis on their links and their superconformal structure. This classification is confirmed by an explicit large τ 2 analysis of the partition function. Next we compare three approaches towards the type II genus one entropy in Rindler space: using a sum-over-fields strategy, using a Melvin model approach as in [1] and finally using a saddle point method on the cigar partition function. In each case we highlight possible obstructions and motivate that the correct procedures yield a vanishing result: S = 0. We finally discuss how the QFT UV divergences of the fields in the spectrum disappear when computing the free energy and entropy using Euclidean techniques.
NASA Astrophysics Data System (ADS)
Wang, Jin; Ma, Jianyong; Zhou, Changhe
2014-11-01
A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.
Particles, strings and cosmology. PASCOS 98. Proceedings.
NASA Astrophysics Data System (ADS)
Nath, P.
The following topics were discussed: relativistic astrophysics and cosmology; dark matter; neutrinos; neutrino oscillations; CPT violation; electroweak physics; supersymmetry phenomenology; string theory; supergravity; gauge theories; gravitation.
Strings, branes and the self-dual solutions of Exceptional Field Theory
NASA Astrophysics Data System (ADS)
Berman, David S.; Rudolph, Felix J.
2015-05-01
It has been shown that membranes and fivebranes are wave-like or monopole-like solutions in some higher dimensional theory. Here the picture is completed by combining the wave and monopole solutions into a single solution of Exceptional Field Theory. This solution solves the twisted self-duality constraint. The 1/2 BPS brane spectrum, consisting of fundamental, solitonic and Dirichlet branes and their bound states, in ten- and eleven-dimensional supergravity may all be extracted from this single solution of Exceptional Field Theory. The solution's properties such as its asymptotic behavior at the core and at infinity are investigated.
The gravity of dark vortices: effective field theory for branes and strings carrying localized flux
NASA Astrophysics Data System (ADS)
Burgess, C. P.; Diener, R.; Williams, M.
2015-11-01
A Nielsen-Olesen vortex usually sits in an environment that expels the flux that is confined to the vortex, so flux is not present both inside and outside. We construct vortices for which this is not true, where the flux carried by the vortex also permeates the `bulk' far from the vortex. The idea is to mix the vortex's internal gauge flux with an external flux using off-diagonal kinetic mixing. Such `dark' vortices could play a phenomenological role in models with both cosmic strings and a dark gauge sector. When coupled to gravity they also provide explicit ultra-violet completions for codimension-two brane-localized flux, which arises in extra-dimensional models when the same flux that stabilizes extra-dimensional size is also localized on space-filling branes situated around the extra dimensions. We derive simple formulae for observables such as defect angle, tension, localized flux and on-vortex curvature when coupled to gravity, and show how all of these are insensitive to much of the microscopic details of the solutions, and are instead largely dictated by low-energy quantities. We derive the required effective description in terms of a world-sheet brane action, and derive the matching conditions for its couplings. We consider the case where the dimensions transverse to the bulk compactify, and determine how the on- and off-vortex curvatures and other bulk features depend on the vortex properties. We find that the brane-localized flux does not gravitate, but just renormalizes the tension in a magnetic-field independent way. The existence of an explicit UV completion puts the effective description of these models on a more precise footing, verifying that brane-localized flux can be consistent with sensible UV physics and resolving some apparent paradoxes that can arise with a naive (but commonly used) delta-function treatment of the brane's localization within the bulk.
Cosmic String Global Superconducting Dirac Born Infeld
NASA Astrophysics Data System (ADS)
Ikrima, Ika; Ramadhan, Handhika S.; Mart, Terry
2016-08-01
Superconducting cosmic string possibly plays an important role in the formation of the universe structure. The physics of this phenomenon has been explored by studying the field theory in the string interior. Numerical solutions of superconducting strings with all relevant fields are presented in this paper. The field is constructed from a generalization of the usual field theory of superconducting global string, but the kinetic term consists of the Dirac Born Infeld (DBI). Some changes in the characteristic of the superconducting string DBI from the usual superconducting string case have been observed. The observation includes physical mechanism of all related fields.
Keith Dienes
2016-07-12
We are currently in the throes of a potentially huge paradigm shift in physics. Motivated by recent developments in string theory and the discovery of the so-called "string landscape", physicists are beginning to question the uniqueness of fundamental theories of physics and the methods by which such theories might be understood and investigated. In this colloquium, I will give a non-technical introduction to the nature of this paradigm shift and how it developed. I will also discuss some of the questions to which it has led, and the nature of the controversies it has spawned.
Keith Dienes
2009-12-01
We are currently in the throes of a potentially huge paradigm shift in physics. Motivated by recent developments in string theory and the discovery of the so-called "string landscape", physicists are beginning to question the uniqueness of fundamental theories of physics and the methods by which such theories might be understood and investigated. In this colloquium, I will give a non-technical introduction to the nature of this paradigm shift and how it developed. I will also discuss some of the questions to which it has led, and the nature of the controversies it has spawned.
Twenty-five questions for string theorists
Binetruy, Pierre; Kane, G.L.; Lykken, Joseph D.; Nelson, Brent D.; /Pennsylvania U.
2005-09-01
In an effort to promote communication between the formal and phenomenological branches of the high-energy theory community, we provide a description of some important issues in supersymmetric and string phenomenology. We describe each within the context of string constructions, illustrating them with specific examples where applicable. Each topic culminates in a set of questions that we believe are amenable to direct consideration by string theorists, and whose answers we think could help connect string theory and phenomenology.
Burton, Julien; Petit, Joachim; Danloy, Emeric; Maggiora, Gerald M; Vercauteren, Daniel P
2013-07-01
Early prediction of ADME properties such as the cytochrome P450 (CYP) mediated drug-drug interactions is an important challenge in the drug discovery area. In this study, we propose to couple an original data mining approach based on Rough Set Theory (RST) to a structural description of molecules. The latter was achieved by using two types of structural keys: (1) the MACCS keys and (2) a set of five in-house fingerprints based on properties of the electron density distributions of chemical groups. The compounds considered are involved in the inhibition of CYP1A2 and CYP2D6. RST allowed the extraction of rules further used as classifiers to predict the inhibitory profile of an independent set of molecules. The results reached prediction accuracies of 90.6 and 88.2 % for CYP1A2 and CYP2D6, respectively. In addition, these classifiers were analyzed to determine which structural fragments were most used for building the rules, revealing relationships between the occurrence of particular molecular fragments and CYP inhibition. The results assessed RST as a suitable tool to build strongly predictive models and infer structure-activity rules associated with potency.
Instabilities of twisted strings
NASA Astrophysics Data System (ADS)
Forgács, Péter; Lukács, Árpád
2009-12-01
A linear stability analysis of twisted flux-tubes (strings) in an SU(2) semilocal theory — an Abelian-Higgs model with two charged scalar fields with a global SU(2) symmetry — is carried out. Here the twist refers to a relative phase between the two complex scalars (with linear dependence on, say, the z coordinate), and importantly it leads to a global current flowing along the the string. Such twisted strings bifurcate with the Abrikosov-Nielsen-Olesen (ANO) solution embedded in the semilocal theory. Our numerical investigations of the small fluctuation spectrum confirm previous results that twisted strings exhibit instabilities whose amplitudes grow exponentially in time. More precisely twisted strings with a single magnetic flux quantum admit a continuous family of unstable eigenmodes with harmonic z dependence, indexed by a wavenumber kin[-km, km]. Carrying out a perturbative semi-analytic analysis of the bifurcation, it is found that the purely numerical results are very well reproduced. This way one obtains not only a good qualitative description of the twisted solutions themselves as well as of their instabilities, but also a quantitative description of the numerical results. Our semi-analytic results indicate that in close analogy to the known instability of the embedded ANO vortex a twisted string is also likely to expand in size caused by the spreading out of its magnetic flux.
Universality in string interactions
NASA Astrophysics Data System (ADS)
Huang, Yu-tin; Schlotterer, Oliver; Wen, Congkao
2016-09-01
In this note, we provide evidence for universality in the low-energy expansion of tree-level string interactions. More precisely, in the α'-expansion of tree-level scattering amplitudes, we conjecture that the leading transcendental coefficient at each order in α' is universal for all perturbative string theories. We have checked this universality up to seven points and trace its origin to the ability to restructure the disk integrals of open bosonic string into those of the superstring. The accompanying kinematic functions have the same low-energy limit and do not introduce any transcendental numbers in their α'-corrections. Universality in the closed-string sector then follows from KLT-relations.
Wu Shuangqing
2009-08-15
The aim of this paper is to investigate the separability of a spin-1/2 spinor field in a five-dimensional rotating, charged black hole constructed by Cvetic and Youm in string theory, in the case when three U(1) charges are set equal. This black hole solution represents a natural generalization of the famous four-dimensional Kerr-Newman solution to five dimensions with the inclusion of a Chern-Simons term to the Maxwell equation. It is shown that the usual Dirac equation cannot be separated by variables in this general spacetime with two independent angular momenta. However if one supplements an additional counterterm into the usual Dirac operator, then the modified Dirac equation for the spin-1/2 spinor particles is separable in this rotating, charged Einstein-Maxwell-Chern-Simons black hole background geometry. A first-order symmetry operator that commutes with the modified Dirac operator has exactly the same form as that previously found in the uncharged Myers-Perry black hole case. It is expressed in terms of a rank-three totally antisymmetric tensor and its covariant derivative. This tensor obeys a generalized Killing-Yano equation and its square is a second-order symmetric Staeckel-Killing tensor admitted by the five-dimensional rotating, charged black hole spacetime.
NASA Astrophysics Data System (ADS)
Rossing, Thomas D.; Hanson, Roger J.
In the next eight chapters, we consider some aspects of the science of bowed string instruments, old and new. In this chapter, we present a brief discussion of bowed strings, a subject that will be developed much more thoroughly in Chap. 16. Chapters 13-15 discuss the violin, the cello, and the double bass. Chapter 17 discusses viols and other historic string instruments, and Chap. 18 discusses the Hutchins-Schelleng violin octet.
From the currency rate quotations onto strings and brane world scenarios
NASA Astrophysics Data System (ADS)
Horváth, D.; Pincak, R.
2012-11-01
In the paper, we study the projections of the real exchange rate dynamics onto the string-like topology. Our approach is inspired by the contemporary movements in the string theory. The string map of data is defined here by the boundary conditions, characteristic length, real valued and the method of redistribution of information. As a practical matter, this map represents the detrending and data standardization procedure. We introduced maps onto 1-end-point and 2-end-point open strings that satisfy the Dirichlet and Neumann boundary conditions. The questions of the choice of extra-dimensions, symmetries, duality and ways to the partial compactification are discussed. Subsequently, we pass to higher dimensional and more complex objects. The 2D-Brane was suggested which incorporated bid-ask spreads. Polarization by the spread was considered which admitted analyzing arbitrage opportunities on the market where transaction costs are taken into account. The model of the rotating string which naturally yields calculation of angular momentum is suitable for tracking of several currency pairs. The systematic way which allows one suggest more structured maps suitable for a simultaneous study of several currency pairs was analyzed by means of the Gâteaux generalized differential calculus. The effect of the string and brane maps on test data was studied by comparing their mean statistical characteristics. The study revealed notable differences between topologies. We review the dependence on the characteristic string length, mean fluctuations and properties of the intra-string statistics. The study explores the coupling of the string amplitude and volatility. The possible utilizations of the string theory approach in financial markets are slight.
Arvanitaki, Asimina; Dimopoulos, Savas; Dubovsky, Sergei; Kaloper, Nemanja; March-Russell, John
2010-06-15
String theory suggests the simultaneous presence of many ultralight axions, possibly populating each decade of mass down to the Hubble scale 10{sup -33} eV. Conversely the presence of such a plenitude of axions (an axiverse) would be evidence for string theory, since it arises due to the topological complexity of the extra-dimensional manifold and is ad hoc in a theory with just the four familiar dimensions. We investigate how several upcoming astrophysical experiments will be observationally exploring the possible existence of such axions over a vast mass range from 10{sup -33} eV to 10{sup -10} eV. Axions with masses between 10{sup -33} eV to 10{sup -28} eV can cause a rotation of the cosmic microwave background polarization that is constant throughout the sky. The predicted rotation angle is independent of the scale of inflation and the axion decay constant, and is of order {alpha}{approx}1/137-within reach of the just launched Planck satellite. Axions in the mass range 10{sup -28} eV to 10{sup -18} eV give rise to multiple steps in the matter power spectrum, providing us with a snapshot of the axiverse that will be probed by galaxy surveys-such as BOSS, and 21 cm line tomography. Axions in the mass range 10{sup -22} eV to 10{sup -10} eV can affect the dynamics and gravitational wave emission of rapidly rotating astrophysical black holes through the Penrose superradiance process. When the axion Compton wavelength is of order of the black hole size, the axions develop superradiant atomic bound states around the black hole nucleus. Their occupation number grows exponentially by extracting rotational energy and angular momentum from the ergosphere, culminating in a rotating Bose-Einstein axion condensate emitting gravitational waves. For black holes lighter than {approx}10{sup 7} solar masses accretion cannot replenish the spin of the black hole, creating mass gaps in the spectrum of rapidly rotating black holes that diagnose the presence of destabilizing axions
Towards Integrability of Topological Strings I: Three-forms on Calabi Yau manifolds
NASA Astrophysics Data System (ADS)
Gerasimov, Anton A.; Shatashvili, Samson L.
2004-11-01
The precise relation between Kodaira-Spencer path integral and a particular wave function in seven dimensional quadratic field theory is established. The special properties of three-forms in 6d, as well as Hitchin's action functional, play an important role. The latter defines a quantum field theory similar to Polyakov's formulation of 2d gravity; the curious analogy with world-sheet action of bosonic string is also pointed out.
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2015-02-01
We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
Summing Planar Bosonic Open Strings
Bardakci, Korkut
2006-02-16
In earlier work, planar graphs of massless {phi}{sup 3} theory were summed with the help of the light cone world sheet picture and the mean field approximation. In the present article, the same methods are applied to the problem of summing planar bosonic open strings. They find that in the ground state of the system, string boundaries form a condensate on the world sheet, and a new string emerges from this summation. Its slope is always greater than the initial slope, and it remains non-zero even when the initial slope is set equal to zero. If they assume the initial string tends to a field a theory in the zero slope limit, this result provides evidence for string formation in field theory.
Fermionic Subspaces of the Bosonic String
NASA Astrophysics Data System (ADS)
Chattaraputi, A.; Englert, F.; Houart, L.; Taormina, A.
A universal symmetric truncation of the bosonic string Hilbert space yields all known closed fermionic string theories in ten dimensions, their D-branes and their open descendants. We highlight the crucial role played by group theory and two-dimensional conformal field theory in the construction and emphasize the predictive power of the truncation. Such circumstantial evidence points towards the existence of a mechanism which generates space-time fermions out of bosons dynamically within the framework of bosonic string theory.
Fermionic subspaces of the bosonic string
NASA Astrophysics Data System (ADS)
Chattaraputi, Auttakit; Englert, François; Houart, Laurent; Taormina, Anne
2003-06-01
A universal symmetric truncation of the bosonic string Hilbert space yields all known closed fermionic string theories in ten dimensions, their D-branes and their open descendants. We highlight the crucial role played by group theory and two-dimensional conformal field theory in the construction and emphasize the predictive power of the truncation. Such circumstantial evidence points towards the existence of a mechanism which generates spacetime fermions out of bosons dynamically within the framework of bosonic string theory.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Aboudi, Jacob
2000-01-01
The objective of this two-year project was to develop and deliver to the NASA-Glenn Research Center a two-dimensional higher-order theory, and related computer codes, for the analysis and design of cylindrical functionally graded materials/structural components for use in advanced aircraft engines (e.g., combustor linings, rotor disks, heat shields, brisk blades). To satisfy this objective, two-dimensional version of the higher-order theory, HOTCFGM-2D, and four computer codes based on this theory, for the analysis and design of structural components functionally graded in the radial and circumferential directions were developed in the cylindrical coordinate system r-Theta-z. This version of the higher-order theory is a significant generalization of the one-dimensional theory, HOTCFGM-1D, developed during the FY97 for the analysis and design of cylindrical structural components with radially graded microstructures. The generalized theory is applicable to thin multi-phased composite shells/cylinders subjected to steady-state thermomechanical, transient thermal and inertial loading applied uniformly along the axial direction such that the overall deformation is characterized by a constant average axial strain. The reinforcement phases are uniformly distributed in the axial direction, and arbitrarily distributed in the radial and circumferential direction, thereby allowing functional grading of the internal reinforcement in the r-Theta plane. The four computer codes fgmc3dq.cylindrical.f, fgmp3dq.cylindrical.f, fgmgvips3dq.cylindrical.f, and fgmc3dq.cylindrical.transient.f are research-oriented codes for investigating the effect of functionally graded architectures, as well as the properties of the multi-phase reinforcement, in thin shells subjected to thermomechanical and inertial loading, on the internal temperature, stress and (inelastic) strain fields. The reinforcement distribution in the radial and circumferential directions is specified by the user. The thermal
String fluid in local equilibrium
NASA Astrophysics Data System (ADS)
Schubring, Daniel; Vanchurin, Vitaly
2014-10-01
We study the solutions of string fluid equations under the assumption of a local equilibrium which was previously obtained in the context of the kinetic theory. We show that the fluid can be foliated into noninteracting submanifolds whose equations of motion are exactly that of the wiggly strings considered previously by Vilenkin and Carter. In a special case of negligible statistical variance in either the left- or the right-moving directions of microscopic strings, the submanifolds are described by the action of a null-current-carrying chiral string. When both variances vanish the submanifolds are described by the Nambu-Goto action and the string fluid reduces to the string dust introduced by Stachel.
Sokolowsky, Kathleen P; Bailey, Heather E; Hoffman, David J; Andersen, Hans C; Fayer, Michael D
2016-07-21
Two-dimensional infrared (2D IR) data are presented for a vibrational probe in three nematogens: 4-cyano-4'-pentylbiphenyl, 4-cyano-4'-octylbiphenyl, and 4-(trans-4-amylcyclohexyl)-benzonitrile. The spectral diffusion time constants in all three liquids in the isotropic phase are proportional to [T*/(T - T*)](1/2), where T* is 0.5-1 K below the isotropic-nematic phase transition temperature (TNI). Rescaling to a reduced temperature shows that the decays of the frequency-frequency correlation function (FFCF) for all three nematogens fall on the same curve, suggesting a universal dynamic behavior of nematogens above TNI. Spectral diffusion is complete before significant orientational relaxation in the liquid, as measured by optically heterodyne detected-optical Kerr effect (OHD-OKE) spectroscopy, and before any significant orientational randomization of the probe measured by polarization selective IR pump-probe experiments. To interpret the OHD-OKE and FFCF data, we constructed a mode coupling theory (MCT) schematic model for the relationships among three correlation functions: ϕ1, a correlator for large wave vector density fluctuations; ϕ2, the orientational correlation function whose time derivative is the observable in the OHD-OKE experiment; and ϕ3, the FFCF for the 2D IR experiment. The equations for ϕ1 and ϕ2 match those in the previous MCT schematic model for nematogens, and ϕ3 is coupled to the first two correlators in a straightforward manner. Resulting models fit the data very well. Across liquid crystals, the temperature dependences of the coupling constants show consistent, nonmonotonic behavior. A remarkable change in coupling occurs at ∼5 K above TNI, precisely where the rate of spectral diffusion in 5CB was observed to deviate from that of a similar nonmesogenic liquid.
Sokolowsky, Kathleen P; Bailey, Heather E; Hoffman, David J; Andersen, Hans C; Fayer, Michael D
2016-07-21
Two-dimensional infrared (2D IR) data are presented for a vibrational probe in three nematogens: 4-cyano-4'-pentylbiphenyl, 4-cyano-4'-octylbiphenyl, and 4-(trans-4-amylcyclohexyl)-benzonitrile. The spectral diffusion time constants in all three liquids in the isotropic phase are proportional to [T*/(T - T*)](1/2), where T* is 0.5-1 K below the isotropic-nematic phase transition temperature (TNI). Rescaling to a reduced temperature shows that the decays of the frequency-frequency correlation function (FFCF) for all three nematogens fall on the same curve, suggesting a universal dynamic behavior of nematogens above TNI. Spectral diffusion is complete before significant orientational relaxation in the liquid, as measured by optically heterodyne detected-optical Kerr effect (OHD-OKE) spectroscopy, and before any significant orientational randomization of the probe measured by polarization selective IR pump-probe experiments. To interpret the OHD-OKE and FFCF data, we constructed a mode coupling theory (MCT) schematic model for the relationships among three correlation functions: ϕ1, a correlator for large wave vector density fluctuations; ϕ2, the orientational correlation function whose time derivative is the observable in the OHD-OKE experiment; and ϕ3, the FFCF for the 2D IR experiment. The equations for ϕ1 and ϕ2 match those in the previous MCT schematic model for nematogens, and ϕ3 is coupled to the first two correlators in a straightforward manner. Resulting models fit the data very well. Across liquid crystals, the temperature dependences of the coupling constants show consistent, nonmonotonic behavior. A remarkable change in coupling occurs at ∼5 K above TNI, precisely where the rate of spectral diffusion in 5CB was observed to deviate from that of a similar nonmesogenic liquid. PMID:27363680
Strings and their compactification from the particle viewpoint
Slansky, R.
1986-01-01
A series of four lectures is given which deals with the particle formulation of string theory. An introductory lecture is given on where the idea of strings comes from and what strings are. An introduction is given to simple Lie algebras and their representations. Compactified strings and the heterotic theories are discussed, showing how infinite-dimensional Kac-Moody affine algebras can be spectrum generating algebras in (open) string theories. The spectrum of excited states of the heterotic string is examined, and comments are made on representations of affine algebras. Some aspects are shown of the algebraic structure of compactified closed bosonic strings. (LEW)
The vacuum interaction of magnetic strings
Bordag, M. )
1991-03-01
The author investigates the interaction of two parallel magnetic strings which is due to the perturbation of the vacuum state of a scalar massive field. The Green function with one string is studied in detail and the influence of the second string is found in perturbation theory. The Casimir is expressed in terms of Bessel functions.
NASA Astrophysics Data System (ADS)
Orantin, N.
2007-09-01
The 2-matrix model has been introduced to study Ising model on random surfaces. Since then, the link between matrix models and combinatorics of discrete surfaces has strongly tightened. This manuscript aims to investigate these deep links and extend them beyond the matrix models, following my work's evolution. First, I take care to define properly the hermitian 2 matrix model which gives rise to generating functions of discrete surfaces equipped with a spin structure. Then, I show how to compute all the terms in the topological expansion of any observable by using algebraic geometry tools. They are obtained as differential forms on an algebraic curve associated to the model: the spectral curve. In a second part, I show how to define such differentials on any algebraic curve even if it does not come from a matrix model. I then study their numerous symmetry properties under deformations of the algebraic curve. In particular, I show that these objects coincide with the topological expansion of the observable of a matrix model if the algebraic curve is the spectral curve of this model. Finally, I show that fine tuning the parameters ensure that these objects can be promoted to modular invariants and satisfy the holomorphic anomaly equation of the Kodaira-Spencer theory. This gives a new hint that the Dijkgraaf-Vafa conjecture is correct.
Cosmic strings from supersymmetric flat directions
Cui Yanou; Morrissey, David E.; Martin, Stephen P.; Wells, James D.
2008-02-15
Flat directions are a generic feature of the scalar potential in supersymmetric gauge field theories. They can arise, for example, from D-terms associated with an extra Abelian gauge symmetry. Even when supersymmetry is broken softly, there often remain directions in the scalar field space along which the potential is almost flat. Upon breaking a gauge symmetry along one of these almost-flat directions, cosmic strings may form. Relative to the standard cosmic string picture based on the Abelian Higgs model, these flat-direction cosmic strings have the extreme type-I properties of a thin gauge core surrounded by a much wider scalar field profile. We perform a comprehensive study of the microscopic, macroscopic, and observational characteristics of this class of strings. We find many differences from the standard string scenario, including stable higher winding-mode strings, the dynamical formation of higher mode strings from lower ones, and a resultant multitension scaling string network in the early universe. These strings are only moderately constrained by current observations, and their gravitational wave signatures may be detectable at future gravity wave detectors. Furthermore, there is the interesting but speculative prospect that the decays of cosmic string loops in the early universe could be a source of ultrahigh-energy cosmic rays or nonthermal dark matter. We also compare the observational signatures of flat-direction cosmic strings with those of ordinary cosmic strings as well as (p,q) cosmic strings motivated by superstring theory.
McAllister, Liam P.; Silverstein, Eva
2007-10-22
We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.
Vachaspati, Tanmay
2009-09-15
Recent astrophysical observations have motivated novel theoretical models of the dark matter sector. A class of such models predicts the existence of GeV scale cosmic strings that communicate with the standard model sector by Aharonov-Bohm interactions with electrically charged particles. We discuss the cosmology of these 'dark strings' and investigate possible observational signatures. More elaborate dark sector models are argued to contain hybrid topological defects that may also have observational signatures.
Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei
2016-06-13
The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of
Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei
2016-06-13
The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of
Transverse structure of the QCD string
Meyer, Harvey B.
2010-11-15
The characterization of the transverse structure of the QCD string is discussed. We formulate a conjecture as to how the stress-energy tensor of the underlying gauge theory couples to the string degrees of freedom. A consequence of the conjecture is that the energy density and the longitudinal-stress operators measure the distribution of the transverse position of the string, to leading order in the string fluctuations, whereas the transverse-stress operator does not. We interpret recent numerical measurements of the transverse size of the confining string and show that the difference of the energy and longitudinal-stress operators is a particularly natural probe at next-to-leading order. Second, we derive the constraints imposed by open-closed string duality on the transverse structure of the string. We show that a total of three independent ''gravitational'' form factors characterize the transverse profile of the closed string, and obtain the interpretation of recent effective string theory calculations: the square radius of a closed string of length {beta} defined from the slope of its gravitational form factor, is given by (d-1/2{pi}{sigma})log({beta}/4r{sub 0}) in d space dimensions. This is to be compared with the well-known result that the width of the open string at midpoint grows as (d-1/2{pi}{sigma})log(r/r{sub 0}). We also obtain predictions for transition form factors among closed-string states.
NASA Astrophysics Data System (ADS)
Feng, Tao; Wang, Jizhe; Tsui, Benjamin M. W.
2016-04-01
The camera of the conventional SPECT system requires a collimator to allow incoming photons from a specific range of incident angle to reach the detector. It is the major factor that determines the spatial resolution of the camera. Moreover, it also greatly reduces the number of detected photons and hence increases statistical fluctuations in the acquired image data. The goal of this paper is to propose a theory and design for a novel high resolution and high sensitivity SPECT system without conventional collimators. The key is to resolve the incident photons from all directional angles and detected by every detector bin. Special ‘attenuators’ were designed to ‘encode’ the incoming photons from different directions similar to coded aperture to form projection data for image reconstruction. Each encoded angular pattern of detected photons was recorded as one measurement. Different angular patterns were achieved by changing the configurations of the attenuators so that angular pattern of different measurements or measurement matrix (MM) is invertible, which guarantee a unique reconstructed image. In simulation, the attenuators were fitted on a virtual full-ring gamma camera, as an alternative to the collimators in conventional SPECT systems. To evaluate the performance of the new SPECT system, analytical simulated projection data in 2D scenario were generated from the XCAT phantom. Noisy simulation using 100 noise realizations suggests that the new attenuator design provides much improved image quality in terms of contrast-noise trade-offs (~30% improvement). The results suggest that the new design of using attenuators to replace collimator is feasible and could potentially improve sensitivity without sacrificing resolution in today’s SPECT systems.
The conformal anomaly of k-strings
NASA Astrophysics Data System (ADS)
Giudice, Pietro; Gliozzi, Ferdinando; Lottini, Stefano
2007-05-01
Simple scaling properties of correlation functions of a confining gauge theory in d-dimensions lead to the conclusion that k-string dynamics is described, in the infrared limit, by a two-dimensional conformal field theory with conformal anomaly c = (d-2)σk/σ, where σk is the k-string tension and σ that of the fundamental representation. This result applies to any gauge theory with stable k-strings. We check it in a 3D Bbb Z4 gauge model at finite temperature, where a string effect directly related to c can be clearly identified.
Gauge invariant actions for string models
Banks, T.
1986-06-01
String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs.
NASA Astrophysics Data System (ADS)
Rossing, Thomas D.
In the next ten chapters we will discuss the science of plucked string instruments. Acoustic guitars and lutes are discussed in Chap. 3. Portuguese guitars, used in fado music, are discussed in Chap. 4 and guitars in Chap. 5, while electric guitars are discussed in Chap. 22. Banjos are discussed in Chap. 5, while mandolins are the subject of Chap. 6. Zithers and psalteries, especially Baltic psalteries, are discussed in Chap. 7. Harpsichords are discussed in Chap. 8, while harps are discussed in Chap. 9 and 10. Finally, plucked string instruments from Asia, such as the kito, shamisen, biwa, gayageum, geomungo, ch'in, p'I-p'a, and sitar are discussed in Chap. 11. These instruments are very different in character and in their musical roles, but they all depend upon plucked strings vibrating and exciting one or more soundboards or radiating surfaces.
String bit models for superstring
Bergman, O.; Thorn, C.B.
1995-12-31
The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D {minus} 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D {minus} 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring.
Worldsheet geometries of ambitwistor string
NASA Astrophysics Data System (ADS)
Ohmori, Kantaro
2015-06-01
Mason and Skinner proposed the ambitwistor string theory which directly reproduces the formulas for the amplitudes of massless particles proposed by Cachazo, He and Yuan. In this paper we discuss geometries of the moduli space of worldsheets associated to the bosonic or the RNS ambitwistor string. Further, we investigate the factorization properties of the amplitudes when an internal momentum is near on-shell in the abstract CFT language. Along the way, we propose the existence of the ambitwistor strings with three or four fermionic worldsheet currents.
Study of Some Properties of Cosmic Strings.
NASA Astrophysics Data System (ADS)
Aryal, Mukunda Mani
This work deals with some of the properties of stringlike topological structures that can arise in reasonable models of grand unified theories. We study stringlike structures formed when a simply or multiply connected group breaks spontaneously to an unbroken subgroup. If the original group is simply connected then the unbroken subgroup has to have two or more disconnected components in order to produce strings. If the number of such components of the unbroken subgroup is n, we call the resulting string Zn strings. In this work I want to study some properties of Z2 and Z3 strings. In some cases the unbroken subgroup Z2 can be embedded in different U(1) subgroups of G, giving topologically equivalent but dynamically different strings. We obtain the string mass in terms of the Higg's field vacuum expectation value of various values of the gauge and quartic Higg's field coupling constants by numerical calculation. We find that in a wide range of realistic cases the lowest mass embedding gives strings which are gauge equivalent to antistrings, in which case solitons of Hindmarsh and Kibble do not occur. Statistical properties of Z2 and Z3 strings produced in a phase transition in the early universe are studied using a Monte Carlo simulation. For Z3 strings it is shown that the system is dominated by one infinite network of Brownian strings. We calculate the gravitational field of a global string and conclude that distinguishing a global string from a gauge string observationally appears difficult at best in case such strings actually exist in nature. Our calculation is in weak field approximation. We also calculate the gravitational field of a cosmic string passing through a Schwarzschild black hole. We consider the thermodynamics of such an object. It is shown that S = (1/4)A where S is the entropy and A is the horizon area. Finally we discuss some problems in string electrodynamics.
NASA Astrophysics Data System (ADS)
Bibak, Khodakhast; Kapron, Bruce M.; Srinivasan, Venkatesh
2016-09-01
Graphs embedded into surfaces have many important applications, in particular, in combinatorics, geometry, and physics. For example, ribbon graphs and their counting is of great interest in string theory and quantum field theory (QFT). Recently, Koch et al. (2013) [12] gave a refined formula for counting ribbon graphs and discussed its applications to several physics problems. An important factor in this formula is the number of surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group. The aim of this paper is to give an explicit and practical formula for the number of such epimorphisms. As a consequence, we obtain an 'equivalent' form of Harvey's famous theorem on the cyclic groups of automorphisms of compact Riemann surfaces. Our main tool is an explicit formula for the number of solutions of restricted linear congruence recently proved by Bibak et al. using properties of Ramanujan sums and of the finite Fourier transform of arithmetic functions.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.
Intended primarily for use by instrumental music teachers who do not have a major concentration in strings, this guide provides pertinent basic resources, materials, teaching--learning expectation, and a general overall guide to achievement levels at various stages of development. Discussions are presented of Choosing the Proper Method Book,…
Dynamical AdS strings across horizons
Ishii, Takaaki; Murata, Keiju
2016-03-01
We examine the nonlinear classical dynamics of a fundamental string in anti-deSitter spacetime. The string is dual to the flux tube between an external quark-antiquark pair in $N = 4$ super Yang-Mills theory. We perturb the string by shaking the endpoints and compute its time evolution numerically. We find that with sufficiently strong perturbations the string continues extending and plunges into the Poincare´ horizon. In the evolution, effective horizons are also dynamically created on the string worldsheet. The quark and antiquark are thus causally disconnected, and the string transitions to two straight strings. The forces acting on the endpoints vanishmore » with a power law whose slope depends on the perturbations. Lastly, the condition for this transition to occur is that energy injection exceeds the static energy between the quark-antiquark pair.« less
Dynamical AdS strings across horizons
NASA Astrophysics Data System (ADS)
Ishii, Takaaki; Murata, Keiju
2016-03-01
We examine the nonlinear classical dynamics of a fundamental string in anti-de Sitter spacetime. The string is dual to the flux tube between an external quark-antiquark pair in {N}=4 super Yang-Mills theory. We perturb the string by shaking the endpoints and compute its time evolution numerically. We find that with sufficiently strong perturbations the string continues extending and plunges into the Poincaré horizon. In the evolution, effective horizons are also dynamically created on the string worldsheet. The quark and antiquark are thus causally disconnected, and the string transitions to two straight strings. The forces acting on the endpoints vanish with a power law whose slope depends on the perturbations. The condition for this transition to occur is that energy injection exceeds the static energy between the quark-antiquark pair.
Radiation from cosmic string standing waves
Olum; Blanco-Pillado
2000-05-01
We have simulated large-amplitude standing waves on an Abelian-Higgs cosmic string in classical lattice field theory. The radiation rate falls exponentially with wavelength, as one would expect from the field profile around a gauge string. Our results agree with those of Moore and Shellard, but not with those of Vincent, Antunes, and Hindmarsh. The radiation rate falls too rapidly to sustain a scaling solution via direct radiation of particles from string length. There is thus reason to doubt claims of strong constraints on cosmic string theories from cosmic ray observations.
Zhang, Feng; Liao, Xiangke; Peng, Shaoliang; Cui, Yingbo; Wang, Bingqiang; Zhu, Xiaoqian; Liu, Jie
2016-06-01
' The de novo assembly of DNA sequences is increasingly important for biological researches in the genomic era. After more than one decade since the Human Genome Project, some challenges still exist and new solutions are being explored to improve de novo assembly of genomes. String graph assembler (SGA), based on the string graph theory, is a new method/tool developed to address the challenges. In this paper, based on an in-depth analysis of SGA we prove that the SGA-based sequence de novo assembly is an NP-complete problem. According to our analysis, SGA outperforms other similar methods/tools in memory consumption, but costs much more time, of which 60-70 % is spent on the index construction. Upon this analysis, we introduce a hybrid parallel optimization algorithm and implement this algorithm in the TianHe-2's parallel framework. Simulations are performed with different datasets. For data of small size the optimized solution is 3.06 times faster than before, and for data of middle size it's 1.60 times. The results demonstrate an evident performance improvement, with the linear scalability for parallel FM-index construction. This results thus contribute significantly to improving the efficiency of de novo assembly of DNA sequences. PMID:26403255
Zhang, Feng; Liao, Xiangke; Peng, Shaoliang; Cui, Yingbo; Wang, Bingqiang; Zhu, Xiaoqian; Liu, Jie
2016-06-01
' The de novo assembly of DNA sequences is increasingly important for biological researches in the genomic era. After more than one decade since the Human Genome Project, some challenges still exist and new solutions are being explored to improve de novo assembly of genomes. String graph assembler (SGA), based on the string graph theory, is a new method/tool developed to address the challenges. In this paper, based on an in-depth analysis of SGA we prove that the SGA-based sequence de novo assembly is an NP-complete problem. According to our analysis, SGA outperforms other similar methods/tools in memory consumption, but costs much more time, of which 60-70 % is spent on the index construction. Upon this analysis, we introduce a hybrid parallel optimization algorithm and implement this algorithm in the TianHe-2's parallel framework. Simulations are performed with different datasets. For data of small size the optimized solution is 3.06 times faster than before, and for data of middle size it's 1.60 times. The results demonstrate an evident performance improvement, with the linear scalability for parallel FM-index construction. This results thus contribute significantly to improving the efficiency of de novo assembly of DNA sequences.
Closed string amplitudes as single-valued open string amplitudes
NASA Astrophysics Data System (ADS)
Stieberger, Stephan; Taylor, Tomasz R.
2014-04-01
We show that the single trace heterotic N-point tree-level gauge amplitude ANHET can be obtained from the corresponding type I amplitude ANI by the single-valued (sv) projection: ANHET=sv(ANI). This projection maps multiple zeta values to single-valued multiple zeta values. The latter represent a subclass of multiple zeta values originating from single-valued multiple polylogarithms at unity. Similar relations between open and closed string amplitudes or amplitudes of different string vacua can be established. As a consequence the α‧-expansion of a closed string amplitude is dictated by that of the corresponding open string amplitude. The combination of single-valued projections, Kawai-Lewellen-Tye relations and Mellin correspondence reveal a unity of all tree-level open and closed superstring amplitudes together with the maximally supersymmetric Yang-Mills and supergravity theories.
Cosmic string evolution with a conserved charge
NASA Astrophysics Data System (ADS)
Oliveira, M. F.; Avgoustidis, A.; Martins, C. J. A. P.
2012-04-01
Cosmic strings with degrees of freedom beyond the standard Abrikosov-Nielsen-Olesen or Nambu-Goto strings are ubiquitous in field theory as well as in models with extra dimensions, such as string theoretic brane inflation scenarios. Here, we carry out an analytic study of a simplified version of one such cosmic string model. Specifically, we extend the velocity-dependent one-scale string evolution model to the case where there is a conserved microscopic charge on the string world sheet. We find that whether the standard scale-invariant evolution of the network is preserved or destroyed due to the presence of the charge will crucially depend on the amount of damping and energy losses experienced by the network. This suggests, among other things, that results derived in Minkowski space (field theory) simulations may not extend to the case of an expanding Universe.
Georgi, Howard; Kats, Yevgeny
2008-09-26
We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.
2d index and surface operators
NASA Astrophysics Data System (ADS)
Gadde, Abhijit; Gukov, Sergei
2014-03-01
In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.
Orbifold SUSY GUT from the Heterotic String
Kyae, Bumseok
2008-11-23
From the string partition function, we discuss the mass-shell and GSO projection conditions valid for Kaluza-Klein (KK) as well as massless states in the heterotic string theory compactifled on a nonprime orbifold. Using the obtained conditions we construct a 4D string standard model, which is embedded in a 6D SUSY GUT by including KK states above the compactiflcation scale. We discuss the stringy threshold corrections to gauge couplings, including the Wilson line effects.
Geometric precipices in string cosmology
Kaloper, Nemanja; Watson, Scott
2008-03-15
We consider the effects of graviton multiplet fields on transitions between string gas phases. Focusing on the dilaton field, we show that it may obstruct transitions between different thermodynamic phases of the string gas, because the sign of its dimensionally reduced, T-duality invariant, part is conserved when the energy density of the Universe is positive. Thus, many interesting solutions for which this sign is positive end up in a future curvature singularity. Because of this, some of the thermodynamic phases of the usual gravitating string gases behave like superselection sectors. For example, a past-regular Hagedorn phase and an expanding Friedmann-Robertson-Walker (FRW) phase dominated by string momentum modes cannot be smoothly connected in the framework of string cosmology with positive sources. The singularity separates them like a geometric precipice in the moduli space, preventing the dynamics of the theory from bridging across. Sources which simultaneously violate the positivity of energy and null energy condition (NEC) could modify these conclusions. We provide a quantitative measure of positivity of energy and NEC violations that would be necessary for such transitions. These effects must dominate the Universe at the moment of transition, altering the standard gas pictures. At present, it is not known how to construct such sources from first principles in string theory.
ERIC Educational Resources Information Center
Hoover, Todd F.
2010-01-01
The "Magic" String is a discrepant event that includes a canister with what appears to be the end of two strings protruding from opposite sides of it. Due to the way the strings are attached inside the canister, it appears as if the strings can magically switch the way they are connected. When one string end is pulled, the observer's expectation…
String mediated phase transitions
NASA Technical Reports Server (NTRS)
Copeland, ED; Haws, D.; Rivers, R.; Holbraad, S.
1988-01-01
It is demonstrated from first principles how the existence of string-like structures can cause a system to undergo a phase transition. In particular, the role of topologically stable cosmic string in the restoration of spontaneously broken symmetries is emphasized. How the thermodynamic properties of strings alter when stiffness and nearest neighbor string-string interactions are included is discussed.
Cosmic string formation by flux trapping
Blanco-Pillado, Jose J.; Olum, Ken D.; Vilenkin, Alexander
2007-11-15
We study the formation of cosmic strings by confining a stochastic magnetic field into flux tubes in a numerical simulation. We use overdamped evolution in a potential that is minimized when the flux through each face in the simulation lattice is a multiple of the fundamental flux quantum. When the typical number of flux quanta through a correlation-length-sized region is initially about 1, we find a string network similar to that generated by the Kibble-Zurek mechanism. With larger initial flux, the loop distribution and the Brownian shape of the infinite strings remain unchanged, but the fraction of length in infinite strings is increased. A 2D slice of the network exhibits bundles of strings pointing in the same direction, as in earlier 2D simulations. We find, however, that strings belonging to the same bundle do not stay together in 3D for much longer than the correlation length. As the initial flux per correlation length is decreased, there is a point at which infinite strings disappear, as in the Hagedorn transition.
Ambitwistor Strings in Four Dimensions
NASA Astrophysics Data System (ADS)
Geyer, Yvonne; Lipstein, Arthur E.; Mason, Lionel
2014-08-01
We develop ambitwistor string theories for four dimensions to obtain new formulas for tree-level gauge and gravity amplitudes with arbitrary amounts of supersymmetry. Ambitwistor space is the space of complex null geodesics in complexified Minkowski space, and in contrast to earlier ambitwistor strings, we use twistors rather than vectors to represent this space. Although superficially similar to the original twistor string theories of Witten, Berkovits, and Skinner, these theories differ in the assignment of world sheet spins of the fields, rely on both twistor and dual twistor representatives for the vertex operators, and use the ambitwistor procedure for calculating correlation functions. Our models are much more flexible, no longer requiring maximal supersymmetry, and the resulting formulas for amplitudes are simpler, having substantially reduced moduli. These are supported on the solutions to the scattering equations refined according to helicity and can be checked by comparison with corresponding formulas of Witten and of Cachazo and Skinner.
pp wave big bangs: Matrix strings and shrinking fuzzy spheres
Das, Sumit R.; Michelson, Jeremy
2005-10-15
We find pp wave solutions in string theory with null-like linear dilatons. These provide toy models of big bang cosmologies. We formulate matrix string theory in these backgrounds. Near the big bang 'singularity', the string theory becomes strongly coupled but the Yang-Mills description of the matrix string is weakly coupled. The presence of a second length scale allows us to focus on a specific class of non-Abelian configurations, viz. fuzzy cylinders, for a suitable regime of parameters. We show that, for a class of pp waves, fuzzy cylinders which start out big at early times dynamically shrink into usual strings at sufficiently late times.
String resonances at hadron colliders
NASA Astrophysics Data System (ADS)
Anchordoqui, Luis A.; Antoniadis, Ignatios; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lüst, Dieter; Stojkovic, Dejan; Taylor, Tomasz R.
2014-09-01
We consider extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. Assuming that the fundamental string mass scale Ms is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (integrated luminosity =3000 fb-1) with a center-of-mass energy of √s =14 TeV and at potential future pp colliders, HE-LHC and VLHC, operating at √s =33 and 100 TeV, respectively (with the same integrated luminosity). In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and γ +jet are completely independent of the details of compactification and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV) lowest massive Regge excitations are open to discovery at the ≥5σ in dijet (γ +jet) HL-LHC data. We also show that for n=1 the dijet discovery potential at HE-LHC and VLHC exceedingly improves: up to 15 TeV and 41 TeV, respectively. To compute the signal-to-noise ratio for n=2 resonances, we first carry out a complete calculation of all relevant decay widths of the second massive level string states (including decays into massless particles and a massive n=1 and a massless particle), where we rely on factorization and conformal field theory techniques. Helicity wave functions of arbitrary higher spin massive bosons are also constructed. We demonstrate that for string scales Ms≲10.5 TeV (Ms≲28 TeV) detection of n =2 Regge recurrences at HE-LHC (VLHC) would become the smoking gun for D
2005-07-01
Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.
NASA Astrophysics Data System (ADS)
Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve
2015-03-01
Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.
Open string decoupling and tachyon condensation
NASA Astrophysics Data System (ADS)
Chalmers, Gordon
2001-06-01
The amplitudes in perturbative open string theory are examined as functions of the tachyon condensate parameter. The boundary state formalism demonstrates the decoupling of the open string modes at the non-perturbative minima of the tachyon potential via a degeneration of open world-sheets and identifies an independence of the coupling constants gs and gYM at general values of the tachyon condensate. The closed string sector is generated at the quantum level; it is also generated at the classical level perturbatively through the condensation of propagating open string modes on the D-brane degrees of freedom.
Density fluctuations from strings and galaxy formation
NASA Technical Reports Server (NTRS)
Vilenkin, A.; Shafi, Q.
1983-01-01
The spectra of density fluctuations caused by strings in a universe dominated either by baryons, neutrinos, or axions are presented. Realistic scenarios for galaxy formation seem possible in all three cases. Examples of grand unified theories which lead to strings with the desired mass scales are given.
Higher dimensional cosmology with string vacuum energy
Nishimura, H.; Tabuse, M.
1987-05-01
The authors consider higher dimensional cosmology based on the closed bosonic string theory with the one-loop vacuum energy. It is concluded that the winding effect of strings around tori has a chance to prevent the extra space from expanding, even though the curvature of torus is zero.
Recurrence relations of Kummer functions and Regge string scattering amplitudes
NASA Astrophysics Data System (ADS)
Lee, Jen-Chi; Mitsuka, Yoshihiro
2013-04-01
We discover an infinite number of recurrence relations among Regge string scattering amplitudes [11, 30] of different string states at arbitrary mass levels in the open bosonic string theory. As a result, all Regge string scattering amplitudes can be algebraically solved up to multiplicative factors. Instead of decoupling zero-norm states in the fixed angle regime, the calculation is based on recurrence relations and addition theorem of Kummer functions of the second kind. These recurrence relations among Regge string scattering amplitudes are dual to linear relations or symmetries among high-energy fixed angle string scattering amplitudes discovered previously.
String pair production in a time-dependent gravitational field
Tolley, Andrew J.; Wesley, Daniel H.
2005-12-15
We study the pair creation of point particles and strings in a time-dependent, weak gravitational field. We find that, for massive string states, there are surprising and significant differences between the string and point-particle results. Central to our approach is the fact that a weakly curved spacetime can be represented by a coherent state of gravitons, and therefore we employ standard techniques in string perturbation theory. String and point-particle pairs are created through tree-level interactions between the background gravitons. In particular, we focus on the production of excited string states and perform explicit calculations of the production of a set of string states of arbitrary excitation level. The differences between the string and point-particle results may contain important lessons for the pair production of strings in the strong gravitational fields of interest in cosmology and black hole physics.
Worldsheet factorization for twistor-strings
NASA Astrophysics Data System (ADS)
Adamo, Tim
2014-04-01
We study the multiparticle factorization properties of two worldsheet theories which — at tree-level — describe the scattering of massless particles in four dimensions: the Berkovits-Witten twistor-string for = 4 super-Yang-Mills coupled to = 4 conformal supergravity, and the Skinner twistor-string for = 8 supergravity. By considering these string-like theories, we can study factorization at the level of the worldsheet before any Wick contractions or integrals have been performed; this is much simpler than considering the factorization properties of the amplitudes themselves. In Skinner's twistor-string this entails the addition of worldsheet gravity as well as a formalism that represents all external states in a manifestly symmetric way, which we develop explicitly at genus zero. We confirm that the scattering amplitudes of Skinner's theory, as well as the gauge theory amplitudes for the planar sector of the Berkovits-Witten theory, factorize appropriately at genus zero. In the non-planar sector, we find behavior indicative of conformal gravity in the Berkovits-Witten twistor-string. We contrast factorization in twistor-strings with the story in ordinary string theory, and also make some remarks on higher genus factorization and disconnected prescriptions.
Cooperative strings and glassy interfaces.
Salez, Thomas; Salez, Justin; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A
2015-07-01
We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam-Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel-Fulcher-Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer. PMID:26100908
Cooperative strings and glassy interfaces.
Salez, Thomas; Salez, Justin; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A
2015-07-01
We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam-Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel-Fulcher-Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer.
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less
NASA Astrophysics Data System (ADS)
Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John
2016-05-01
We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.
Zero-point length from string fluctuations
NASA Astrophysics Data System (ADS)
Fontanini, Michele; Spallucci, Euro; Padmanabhan, T.
2006-02-01
One of the leading candidates for quantum gravity, viz. string theory, has the following features incorporated in it. (i) The full spacetime is higher-dimensional, with (possibly) compact extra-dimensions; (ii) there is a natural minimal length below which the concept of continuum spacetime needs to be modified by some deeper concept. On the other hand, the existence of a minimal length (zero-point length) in four-dimensional spacetime, with obvious implications as UV regulator, has been often conjectured as a natural aftermath of any correct quantum theory of gravity. We show that one can incorporate the apparently unrelated pieces of information-zero-point length, extra-dimensions, string T-duality-in a consistent framework. This is done in terms of a modified Kaluza-Klein theory that interpolates between (high-energy) string theory and (low-energy) quantum field theory. In this model, the zero-point length in four dimensions is a "virtual memory" of the length scale of compact extra-dimensions. Such a scale turns out to be determined by T-duality inherited from the underlying fundamental string theory. From a low energy perspective short distance infinities are cutoff by a minimal length which is proportional to the square root of the string slope, i.e., √{α‧}. Thus, we bridge the gap between the string theory domain and the low energy arena of point-particle quantum field theory.
NASA Astrophysics Data System (ADS)
Haghighat, Babak; Kozçaz, Can; Lockhart, Guglielmo; Vafa, Cumrun
2014-02-01
We consider M theory in the presence of M parallel M5-branes probing a transverse AN -1 singularity. This leads to a superconformal theory with (1,0) supersymmetry in six dimensions. We compute the supersymmetric partition function of this theory on a two-torus, with arbitrary supersymmetry preserving twists, using the topological vertex formalism. Alternatively, we show that this can also be obtained by computing the elliptic genus of an orbifold of recently studied M-strings. The resulting two-dimensional theory is a (4,0) supersymmetric quiver gauge theory whose Higgs branch corresponds to strings propagating on the moduli space of SU(N)M -1 instantons on R4, where the right-moving fermions are coupled to a particular bundle.
NASA Astrophysics Data System (ADS)
Frost, James E.; Jones, Garth A.
2014-11-01
The objective of this study is to investigate under what circumstances Förster theory of electronic (resonance) energy transfer breaks down in molecular aggregates. This is achieved by simulating the dynamics of exciton diffusion, on the femtosecond timescale, in molecular aggregates using the Liouville-von Neumann equation of motion. Specifically the focus of this work is the investigation of both spatial and temporal deviations between exciton dynamics driven by electronic couplings calculated from Förster theory and those calculated from quantum electrodynamics. The quantum electrodynamics (QED) derived couplings contain medium- and far-zone terms that do not exist in Förster theory. The results of the simulations indicate that Förster coupling is valid when the dipole centres are within a few nanometres of one another. However, as the distance between the dipole centres increases from 2 nm to 10 nm, the intermediate- and far-zone coupling terms play non-negligible roles and Förster theory begins to break down. Interestingly, the simulations illustrate how contributions to the exciton dynamics from the intermediate- and far-zone coupling terms of QED are quickly washed-out by the near-zone mechanism of Förster theory for lattices comprising closely packed molecules. On the other hand, in the case of sparsely packed arrays, the exciton dynamics resulting from the different theories diverge within the 100 fs lifetime of the trajectories. These results could have implications for the application of spectroscopic ruler techniques as well as design principles relating to energy harvesting materials.
Constraint Reasoning Over Strings
NASA Technical Reports Server (NTRS)
Koga, Dennis (Technical Monitor); Golden, Keith; Pang, Wanlin
2003-01-01
This paper discusses an approach to representing and reasoning about constraints over strings. We discuss how many string domains can often be concisely represented using regular languages, and how constraints over strings, and domain operations on sets of strings, can be carried out using this representation.
ERIC Educational Resources Information Center
Rias, Riaza Mohd; Zaman, Halimah Badioze
2011-01-01
Higher learning based instruction may be primarily concerned in most cases with the content of their academic lessons, and not very much with their instructional delivery. However, the effective application of learning theories and technology in higher education has an impact on student performance. With the rapid progress in the computer and…
Anchordoqui, Luis A.
2008-11-23
The LHC program will include the identification of events with single high-k{sub T} photons as probes of new physics. We show that this channel is uniquely suited to search for experimental evidence of TeV-scale open string theory.
LRS Bianchi type-I string cosmological models in f (R, T) gravity
NASA Astrophysics Data System (ADS)
Kanakavalli, T.; Ananda Rao, G.
2016-07-01
Spatially homogeneous and anisotropic LRS Bianchi type-I space time is investigated in the presence of cosmic string source in a modified theory of gravitation formulated by Harko et al. (Phys. Rev. D 84:024020, 2011). We have solved the field equations using the equations of state for strings and presented cosmological models which describe geometric string, Takabayasi string and Reddy string in this particular theory. Some physical and kinematical parameters of the models are computed and discussed their physical significance.
Beads + String = Atoms You Can See.
ERIC Educational Resources Information Center
Hermann, Christine K. F.
1998-01-01
Presents hands-on activities that give students a head start in learning the vocabulary and basic theory involved in understanding atomic structure. Uses beads to represent protons, neutrons, and electrons and string to represent orbitals. (DDR)
Orientifolds, RG flows, and closed string tachyons
Kachru, Shamit; Kumar, Jason; Silverstein, Eva
1999-07-26
We discuss the fate of certain tachyonic closed string theories from two perspectives. In both cases our approach involves studying directly configurations with finite negative tree-level cosmological constant. Closed string analogues of orientifolds, which carry negative tension, are argued to represent the minima of the tachyon potential in some cases. In other cases, we make use of the fact, noted in the early string theory literature, that strings can propagate on spaces of subcritical dimension at the expense of introducing a tree-level cosmological constant. The form of the tachyon vertex operator in these cases makes it clear that a subcritical-dimension theory results from tachyon condensation. Using results of Kutasov, we argue that in some Scherk-Schwarz models, for finely-tuned tachyon condensates, a minimal model CFT times a subcritical dimension theory results. In some instances, these two sets of ideas may be related by duality.
Spontaneous knotting of an agitated string.
Raymer, Dorian M; Smith, Douglas E
2007-10-16
It is well known that a jostled string tends to become knotted; yet the factors governing the "spontaneous" formation of various knots are unclear. We performed experiments in which a string was tumbled inside a box and found that complex knots often form within seconds. We used mathematical knot theory to analyze the knots. Above a critical string length, the probability P of knotting at first increased sharply with length but then saturated below 100%. This behavior differs from that of mathematical self-avoiding random walks, where P has been proven to approach 100%. Finite agitation time and jamming of the string due to its stiffness result in lower probability, but P approaches 100% with long, flexible strings. We analyzed the knots by calculating their Jones polynomials via computer analysis of digital photos of the string. Remarkably, almost all were identified as prime knots: 120 different types, having minimum crossing numbers up to 11, were observed in 3,415 trials. All prime knots with up to seven crossings were observed. The relative probability of forming a knot decreased exponentially with minimum crossing number and Möbius energy, mathematical measures of knot complexity. Based on the observation that long, stiff strings tend to form a coiled structure when confined, we propose a simple model to describe the knot formation based on random "braid moves" of the string end. Our model can qualitatively account for the observed distribution of knots and dependence on agitation time and string length.
String model for the dynamics of glass-forming liquids.
Pazmiño Betancourt, Beatriz A; Douglas, Jack F; Starr, Francis W
2014-05-28
We test the applicability of a living polymerization theory to describe cooperative string-like particle rearrangement clusters (strings) observed in simulations of a coarse-grained polymer melt. The theory quantitatively describes the interrelation between the average string length L, configurational entropy Sconf, and the order parameter for string assembly Φ without free parameters. Combining this theory with the Adam-Gibbs model allows us to predict the relaxation time τ in a lower temperature T range than accessible by current simulations. In particular, the combined theories suggest a return to Arrhenius behavior near Tg and a low T residual entropy, thus avoiding a Kauzmann "entropy crisis." PMID:24880303
String model for the dynamics of glass-forming liquids.
Pazmiño Betancourt, Beatriz A; Douglas, Jack F; Starr, Francis W
2014-05-28
We test the applicability of a living polymerization theory to describe cooperative string-like particle rearrangement clusters (strings) observed in simulations of a coarse-grained polymer melt. The theory quantitatively describes the interrelation between the average string length L, configurational entropy Sconf, and the order parameter for string assembly Φ without free parameters. Combining this theory with the Adam-Gibbs model allows us to predict the relaxation time τ in a lower temperature T range than accessible by current simulations. In particular, the combined theories suggest a return to Arrhenius behavior near Tg and a low T residual entropy, thus avoiding a Kauzmann "entropy crisis."
The String and the Cosmic Bounce
NASA Astrophysics Data System (ADS)
Bozza, V.
2014-04-01
String theory introduces a new fundamental scale (the string length) that is expected to regularize the singularities of classical general relativity. In a cosmological context, the Big Bang is no longer regarded as the beginning of time, but just a transition between a Pre-Big Bang collapse phase and the current expansion. We will review old and recent attempts to build consistent bouncing cosmologies inspired to string theories, discussing their solved and unsolved problems, focussing on the observables that may distinguish them from standard inflationary scenarios.
Mirage pattern from the heterotic string
Loewen, Valeri; Nilles, Hans Peter
2008-05-15
We provide a simple example of dilaton stabilization in the framework of heterotic string theory. It requires a gaugino condensate and an uplifting sector similar to the one postulated in type IIB string theory. Its signature is a hybrid mediation of supersymmetry breakdown with a variant of a mirage pattern for the soft breaking terms. The setup is suited for the discussion of heterotic minimal supersymmetric standard model candidates.
Cosmic strings - A problem or a solution?
NASA Technical Reports Server (NTRS)
Bennett, David P.; Bouchet, Francois R.
1988-01-01
The most fundamental issue in the theory of cosmic strings is addressed by means of Numerical Simulations: the existence of a scaling solution. The resolution of this question will determine whether cosmic strings can form the basis of an attractive theory of galaxy formation or prove to be a cosmological disaster like magnetic monopoles or domain walls. After a brief discussion of our numerical technique, results are presented which, though still preliminary, offer the best support to date of this scaling hypothesis.
Effective string description of confining flux tubes
NASA Astrophysics Data System (ADS)
Brandt, Bastian B.; Meineri, Marco
2016-08-01
We review the current knowledge about the theoretical foundations of the effective string theory for confining flux tubes and the comparison of the predictions to pure gauge lattice data. A concise presentation of the effective string theory is provided, incorporating recent developments. We summarize the predictions for the spectrum and the profile/width of the flux tube and their comparison to lattice data. The review closes with a short summary of open questions for future research.
Macroscopic constraints on string unification
Taylor, T.R.
1989-03-01
The comparison of sting theory with experiment requires a huge extrapolation from the microscopic distances, of order of the Planck length, up to the macroscopic laboratory distances. The quantum effects give rise to large corrections to the macroscopic predictions of sting unification. I discus the model-independent constraints on the gravitational sector of string theory due to the inevitable existence of universal Fradkin-Tseytlin dilatons. 9 refs.
NASA Astrophysics Data System (ADS)
Stepanchuk, A.
2015-05-01
We present a semiclassical derivation of the tree-level and 1-loop dressing phases in the massive sector of string theory on Ad{{S}3}× {{S}3}× {{T}4} supplemented by Ramond-Ramond and Neveu-Schwarz-Neveu-Schwarz 3-form fluxes. In analogy with the Ad{{S}5}× {{S}5} case, we use the dressing method to obtain scattering solutions for dyonic giant magnons which allows us to determine the semiclassical bound-state S-matrix and its 1-loop correction. We also find that the 1-loop correction to the dyonic giant magnon energy vanishes. Looking at the relation between the bound-state picture and elementary magnons in terms of the fusion procedure we deduce the elementary dressing phases. In both the semiclassical and 1-loop cases we find agreement with recent proposals from finite-gap equations and unitarity cut methods. Further, we find consistency with the finite-gap picture by determining the resolvent for the dyonic giant magnon from the semiclassical bosonic scattering data.
String duality and black holes
NASA Astrophysics Data System (ADS)
Kalara, S.; Nanopoulos, D. V.
1991-09-01
In the context of (semi) classical general relativity, the physics of black holes poses many unanswered and unsettling questions. Notable among them are the loss of quantum coherence, which casts doubts on the basic foundations of quantum mechanics, and the understanding of the enormous entropy carried by black holes which is at odds with strong ``no hair'' theorems. We point out that in string theory, black-hole type solutions (S-black holes) carry local discrete charges inherited from the duality symmetries of the string, which allow S-black holes to carry ``quantum hair''. It is further noted that the conservation of the discrete charges and the presence of quantum hair precludes the information about a quantum state from being completely lost in the black hole thus rescuing quantum coherence. We also note that a large number of quantum hair carried by S-black holes may explain their enormous entropy, i.e. it is the duality symmetry of the string theory which redeems outstanding problems of black-hole dynamics. We also discuss a possible description of black holes as solitons of string theory. Supported in part by DOE Grant DE-AS05-81 ER40039.
NASA Astrophysics Data System (ADS)
Noronha, Jorge
2010-02-01
We show that in four-dimensional gauge theories dual to five-dimensional Einstein gravity coupled to a single scalar field in the bulk, the derivative of the single heavy quark free energy in the deconfined phase is dFQ(T)/dT˜-1/cs2(T), where cs(T) is the speed of sound. This general result provides a direct link between the softest point in the equation of state of strongly-coupled plasmas and the deconfinement phase transition described by the expectation value of the Polyakov loop. We give an explicit example of a gravity dual with black hole solutions that can reproduce the lattice results for the expectation value of the Polyakov loop and the thermodynamics of SU(3) Yang-Mills theory in the (nonperturbative) temperature range between Tc and 3Tc.
Jackson, Mark G.
2007-04-15
The spectrum of (p,q) bound states of F- and D-strings has a distinctive square-root tension formula that is hoped to be a hallmark of fundamental cosmic strings. We point out that the Bogomol'nyi-Prasad-Sommerfield (BPS) bound for vortices in N=2 supersymmetric Abelian-Higgs models also takes the square-root form. In contrast to string theory, the most general supersymmetric field theoretic model allows for (p,q,r) strings, with three classes of strings rather than two. Unfortunately, we find that there do not exist BPS solutions except in the trivial case. The issue of whether there exist non-BPS solutions which may closely resemble the square-root form is left as an open question.
Kahler stabilized, modular invariant heterotic string models
Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.
2007-03-19
We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binétruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.
Comments on the symmetry of AdS6 solutions in string/M-theory and Killing spinor equations
NASA Astrophysics Data System (ADS)
Kim, Hyojoong; Kim, Nakwoo
2016-09-01
It was recently pointed out in [1] that AdS6 solutions in IIB theory enjoy an extended symmetry structure and the consistent truncation to D = 4 internal space leads to a nonlinear sigma model with target SL (3 , R) / SO (2 , 1). We continue to study the purely bosonic D = 4 effective action, and elucidate how the addition of scalar potential term still allows Killing spinor equations in the absence of gauge fields. In particular, the potential turns out to be a single diagonal component of the coset representative. Furthermore, we perform a general analysis of the integrability conditions of Killing spinor equations and establish that the effective action can be in fact generalized to arbitrary sizes and signatures, e.g. with target SL (n , R) / SO (p , n - p) and the scalar potential expressible by a single diagonal component of the coset representative. We also comment on a similar construction and its generalizations of effective D = 5 purely bosonic non-linear sigma model action related to AdS6 in M-theory.
NASA Astrophysics Data System (ADS)
Caselle, Michele; Panero, Marco; Pellegrini, Roberto; Vadacchino, Davide
2015-01-01
In U(1) lattice gauge theory in three spacetime dimensions, the problem of confinement can be studied analytically in a semi-classical approach, in terms of a gas of monopoles with Coulomb-like interactions. In addition, this theory can be mapped to a spin model via an exact duality transformation, which allows one to perform high-precision numerical studies of the confining potential. Taking advantage of these properties, we carried out an accurate investigation of the effective string describing the low-energy properties of flux tubes in this confining gauge theory. We found striking deviations from the expected Nambu-Goto-like behavior, and, for the first time, evidence for contributions that can be described by a term proportional to the extrinsic curvature of the effective string worldsheet. Such term is allowed by Lorentz invariance, and its presence in the infrared regime of the U(1) model was indeed predicted by Polyakov several years ago. Our results show that this term scales as expected according to Polyakov's solution, and becomes the dominant contribution to the effective string action in the continuum limit. We also demonstrate analytically that the corrections to the confining potential induced by the extrinsic curvature term can be related to the partition function of the massive perturbation of a c = 1 bosonic conformal field theory. The implications of our results for SU( N ) Yang-Mills theories in three and in four spacetime dimensions are discussed.
Cosmic microwave anisotropies from BPS semilocal strings
Urrestilla, Jon; Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Liddle, Andrew R E-mail: n.bevis@imperial.ac.uk E-mail: martin.kunz@physics.unige.ch
2008-07-15
We present the first ever calculation of cosmic microwave background (CMB) anisotropy power spectra from semilocal cosmic strings, obtained via simulations of a classical field theory. Semilocal strings are a type of non-topological defect arising in some models of inflation motivated by fundamental physics, and are thought to relax the constraints on the symmetry breaking scale as compared to models with (topological) cosmic strings. We derive constraints on the model parameters, including the string tension parameter {mu}, from fits to cosmological data, and find that in this regard Bogomol'nyi-Prasad-Sommerfield (BPS) semilocal strings resemble global textures more than topological strings. The observed microwave anisotropy at l=10 is reproduced if G{mu} = 5.3 Multiplication-Sign 10{sup -6} (G is Newton's constant). However as with other defects the spectral shape does not match observations, and in models with inflationary perturbations plus semilocal strings the 95% confidence level upper bound is G{mu}<2.0 Multiplication-Sign 10{sup -6} when CMB, Hubble key project and big bang nucleosynthesis data are used (cf G{mu}<0.9 Multiplication-Sign 10{sup -6} for cosmic strings). We additionally carry out a Bayesian model comparison of several models with and without defects, showing that models with defects are neither conclusively favoured nor disfavoured at present.
Ekama, G A; Marais, P
2004-02-01
The applicability of the one-dimensional idealized flux theory (1DFT) for the design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated with the two-dimensional computational fluid dynamics model SettlerCAD using as a basis 35 full-scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25-4.1m side water depth (SWD), with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the Watts et al. (Water Res. 30(9)(1996)2112) SST, with doubled SWDs and the Darvill new (4.1m) and old (2.5m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also performed. While the design of the internal features of the SST, such as baffling, has a marked influence on the effluent SS concentration while the SST is underloaded, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST. Until more information is obtained, it would appear from the simulations that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais (Water Pollut. Control 85(1)(1986)101) remains a reasonable value to apply in the design of full-scale SSTs-for deep SSTs (4m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, this be avoided and (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the
NASA Technical Reports Server (NTRS)
Hall, A. Daniel (Inventor); Davies, Francis J. (Inventor)
2007-01-01
Method and system are disclosed for determining individual string resistance in a network of strings when the current through a parallel connected string is unknown and when the voltage across a series connected string is unknown. The method/system of the invention involves connecting one or more frequency-varying impedance components with known electrical characteristics to each string and applying a frequency-varying input signal to the network of strings. The frequency-varying impedance components may be one or more capacitors, inductors, or both, and are selected so that each string is uniquely identifiable in the output signal resulting from the frequency-varying input signal. Numerical methods, such as non-linear regression, may then be used to resolve the resistance associated with each string.
ERIC Educational Resources Information Center
Novak, Jodie D.; Jacobs, Judith E.
2005-01-01
This article describes a variety of activities that ask students to identify, describe, compare, and classify symbol strings (algebraic expressions and equations). The activities use a collection of twelve symbol strings on cards. (Contains 2 figures.)
Steer, Daniele A.; Vachaspati, Tanmay
2011-02-15
The time-dependent metric of a cosmic string leads to an effective interaction between the string and photons--the ''gravitational Aharonov-Bohm'' effect--and causes cosmic strings to emit light. We evaluate the radiation of pairs of photons from cosmic strings and find that the emission from cusps, kinks and kink-kink collisions occurs with a flat spectrum at all frequencies up to the string scale. Further, cusps emit a beam of photons, kinks emit along a curve, and the emission at a kink-kink collision is in all directions. The emission of light from cosmic strings could provide an important new observational signature of cosmic strings that is within reach of current experiments for a range of string tensions.
Pogosian, Levon; Wyman, Mark
2008-04-15
Detecting the parity-odd, or B-mode, polarization pattern in the cosmic microwave background radiation due to primordial gravity waves is considered to be the final observational key to confirming the inflationary paradigm. The search for viable models of inflation from particle physics and string theory has (re)discovered another source for B-modes: cosmic strings. Strings naturally generate as much vector-mode perturbation as they do scalar, producing B-mode polarization with a spectrum distinct from that expected from inflation itself. In a large set of models, B-modes arising from cosmic strings are more prominent than those expected from primordial gravity waves. In light of this, we study the physical underpinnings of string-sourced B-modes and the model dependence of the amplitude and shape of the C{sub l}{sup BB} power spectrum. Observational detection of a string-sourced B-mode spectrum would be a direct probe of post-inflationary physics near the grand unified theory (GUT) scale. Conversely, nondetection would put an upper limit on a possible cosmic string tension of G{mu} < or approx. 10{sup -7} within the next three years.
[The string of Einthoven's string galvanometer].
Wyers, P J
1996-01-01
The Dutch physiologist Willem Einthoven (1860-1927) published in 1901 his construction of a string galvanometer. With this apparatus he opened the era for electrocardiography. As the quality of his instrument largely depended on the string of the string galvanometer it is surprising to note that in his publications Einthoven never mentioned the exact way of producing the string. However, Einthoven's hand written laboratory notes are preserved at the Museum Boerhaave in Leiden. From these notes it comes clear what problems Einthoven had with the string. To get a very thin thread of quarts he first used the method of shooting the thread as was described by Boys (1887), later the blowing method of Nichols (1894). The silvering of the thread was done first chemically, later by cathode spray. In all cases premature breaking of the thread was a nuisance. Because of these failures Einthoven might have decided not to publish any details.
[The string of Einthoven's string galvanometer].
Wyers, P J
1996-01-01
The Dutch physiologist Willem Einthoven (1860-1927) published in 1901 his construction of a string galvanometer. With this apparatus he opened the era for electrocardiography. As the quality of his instrument largely depended on the string of the string galvanometer it is surprising to note that in his publications Einthoven never mentioned the exact way of producing the string. However, Einthoven's hand written laboratory notes are preserved at the Museum Boerhaave in Leiden. From these notes it comes clear what problems Einthoven had with the string. To get a very thin thread of quarts he first used the method of shooting the thread as was described by Boys (1887), later the blowing method of Nichols (1894). The silvering of the thread was done first chemically, later by cathode spray. In all cases premature breaking of the thread was a nuisance. Because of these failures Einthoven might have decided not to publish any details. PMID:11624925
Jorgensen, Douglas K.; Kuhns, Douglass J.; Wiersholm, Otto; Miller, Timothy A.
1993-01-01
The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.
Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.
1993-03-02
The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.
Donaire, M.; Rajantie, A.
2006-03-15
We argue that cosmic strings with high winding numbers generally form in first-order gauge symmetry breaking phase transitions, and we demonstrate this using computer simulations. These strings are heavier than single-winding strings and therefore more easily observable. Their cosmological evolution may also be very different.
NASA Astrophysics Data System (ADS)
Cardona, Biel; Gomis, Joaquim; Pons, Josep M.
2016-07-01
We construct the canonical action of a Carroll string doing the Carroll limit of a canonical relativistic string. We also study the Killing symmetries of the Carroll string, which close under an infinite dimensional algebra. The tensionless limit and the Carroll p-brane action are also discussed.
Keith, Matthew C L; Bolli, Roberto
2015-03-27
Although numerous preclinical investigations have consistently demonstrated salubrious effects of c-kit(pos) cardiac cells administered after myocardial infarction, the mechanism of action remains highly controversial. We and others have found little or no evidence that these cells differentiate into mature functional cardiomyocytes, suggesting paracrine effects. In this review, we propose a new paradigm predicated on a comprehensive analysis of the literature, including studies of cardiac development; we have (facetiously) dubbed this conceptual construct "string theory" of c-kit(pos) cardiac cells because it reconciles multifarious and sometimes apparently discrepant results. There is strong evidence that, during development, the c-kit receptor is expressed in different pools of cardiac progenitors (some capable of robust cardiomyogenesis and others with little or no contribution to myocytes). Accordingly, c-kit positivity, in itself, does not define the embryonic origins, lineage capabilities, or differentiation capacities of specific cardiac progenitors. C-kit(pos) cells derived from the first heart field exhibit cardiomyogenic potential during development, but these cells are likely depleted shortly before or after birth. The residual c-kit(pos) cells found in the adult heart are probably of proepicardial origin, possess a mesenchymal phenotype (resembling bone marrow mesenchymal stem/stromal cells), and are capable of contributing significantly only to nonmyocytic lineages (fibroblasts, smooth muscle cells, and endothelial cells). If these 2 populations (first heart field and proepicardium) express different levels of c-kit, the cardiomyogenic potential of first heart field progenitors might be reconciled with recent results of c-kit(pos) cell lineage tracing studies. The concept that c-kit expression in the adult heart identifies epicardium-derived, noncardiomyogenic precursors with a mesenchymal phenotype helps to explain the beneficial effects of c
Keith, Matthew C L; Bolli, Roberto
2015-03-27
Although numerous preclinical investigations have consistently demonstrated salubrious effects of c-kit(pos) cardiac cells administered after myocardial infarction, the mechanism of action remains highly controversial. We and others have found little or no evidence that these cells differentiate into mature functional cardiomyocytes, suggesting paracrine effects. In this review, we propose a new paradigm predicated on a comprehensive analysis of the literature, including studies of cardiac development; we have (facetiously) dubbed this conceptual construct "string theory" of c-kit(pos) cardiac cells because it reconciles multifarious and sometimes apparently discrepant results. There is strong evidence that, during development, the c-kit receptor is expressed in different pools of cardiac progenitors (some capable of robust cardiomyogenesis and others with little or no contribution to myocytes). Accordingly, c-kit positivity, in itself, does not define the embryonic origins, lineage capabilities, or differentiation capacities of specific cardiac progenitors. C-kit(pos) cells derived from the first heart field exhibit cardiomyogenic potential during development, but these cells are likely depleted shortly before or after birth. The residual c-kit(pos) cells found in the adult heart are probably of proepicardial origin, possess a mesenchymal phenotype (resembling bone marrow mesenchymal stem/stromal cells), and are capable of contributing significantly only to nonmyocytic lineages (fibroblasts, smooth muscle cells, and endothelial cells). If these 2 populations (first heart field and proepicardium) express different levels of c-kit, the cardiomyogenic potential of first heart field progenitors might be reconciled with recent results of c-kit(pos) cell lineage tracing studies. The concept that c-kit expression in the adult heart identifies epicardium-derived, noncardiomyogenic precursors with a mesenchymal phenotype helps to explain the beneficial effects of c
Wave diffraction by a cosmic string
NASA Astrophysics Data System (ADS)
Fernández-Núñez, Isabel; Bulashenko, Oleg
2016-08-01
We show that if a cosmic string exists, it may be identified through characteristic diffraction pattern in the energy spectrum of the observed signal. In particular, if the string is on the line of sight, the wave field is shown to fit the Cornu spiral. We suggest a simple procedure, based on Keller's geometrical theory of diffraction, which allows to explain wave effects in conical spacetime of a cosmic string in terms of interference of four characteristic rays. Our results are supposed to be valid for scalar massless waves, including gravitational waves, electromagnetic waves, or even sound in case of condensed matter systems with analogous topological defects.
NASA Astrophysics Data System (ADS)
Isegawa, Miho; Liu, Fengyi; Maeda, Satoshi; Morokuma, Keiji
2014-10-01
We report reaction paths starting from N(2D) + H2O for doublet spin states, D0 and D1. The potential energy surfaces are explored in an automated fashion using the global reaction route mapping strategy. The critical points and reaction paths have been fully optimized at the complete active space second order perturbation theory level taking all valence electrons in the active space. In addition to direct dissociation pathways that would be dominant, three roaming processes, two roaming dissociation, and one roaming isomerization: (1) H2ON → H-O(H)N → H-HON → NO(2Π) + H2, (2) cis-HNOH → HNO-H → H-HNO → NO + H2, (3) H2NO → H-HNO → HNO-H → trans-HNOH, are confirmed on the D0 surface.
Non-Abelian strings in supersymmetric Yang-Mills
Shifman, M.
2012-09-26
I give a broad review of novel phenomena discovered in certain Yang-Mills theories: non-Abelian strings and confined monopoles. Then I explain how these phenomena allow one to study strong dynamics of gauge theories in four dimensions from two-dimensional models emerging on the string world sheet.
Cosmic superstring gravitational lensing phenomena: Predictions for networks of (p,q) strings
Shlaer, Benjamin; Wyman, Mark
2005-12-15
The unique, conical space-time created by cosmic strings brings about distinctive gravitational lensing phenomena. The variety of these distinctive phenomena is increased when the strings have nontrivial mutual interactions. In particular, when strings bind and create junctions, rather than intercommute, the resulting configurations can lead to novel gravitational lensing patterns. In this brief note, we use exact solutions to characterize these phenomena, the detection of which would be strong evidence for the existence of complex cosmic string networks of the kind predicted by string theory-motivated cosmic string models. We also correct some common errors in the lensing phenomenology of straight cosmic strings.
Ouk, Chanda-Malis; Zvereva-Loëte, Natalia; Scribano, Yohann; Bussery-Honvault, Béatrice
2012-10-30
Multireference single and double configuration interaction (MRCI) calculations including Davidson (+Q) or Pople (+P) corrections have been conducted in this work for the reactants, products, and extrema of the doublet ground state potential energy surface involved in the N((2)D) + CH(4) reaction. Such highly correlated ab initio calculations are then compared with previous PMP4, CCSD(T), W1, and DFT/B3LYP studies. Large relative differences are observed in particular for the transition state in the entrance channel resolving the disagreement between previous ab initio calculations. We confirm the existence of a small but positive potential barrier (3.86 ± 0.84 kJ mol(-1) (MR-AQCC) and 3.89 kJ mol(-1) (MRCI+P)) in the entrance channel of the title reaction. The correlation is seen to change significantly the energetic position of the two minima and five saddle points of this system together with the dissociation channels but not their relative order. The influence of the electronic correlation into the energetic of the system is clearly demonstrated by the thermal rate constant evaluation and it temperature dependance by means of the transition state theory. Indeed, only MRCI values are able to reproduce the experimental rate constant of the title reaction and its behavior with temperature. Similarly, product branching ratios, evaluated by means of unimolecular RRKM theory, confirm the NH production of Umemoto et al., whereas previous works based on less accurate ab initio calculations failed. We confirm the previous findings that the N((2)D) + CH(4) reaction proceeds via an insertion-dissociation mechanism and that the dominant product channels are CH(2)NH + H and CH(3) + NH.
NASA Astrophysics Data System (ADS)
Dando, Owen; Gregory, Ruth
1998-07-01
We examine the field equations of a self-gravitating global string in low energy superstring gravity, allowing for an arbitrary coupling of the global string to the dilaton. Massive and massless dilatons are considered. For the massive dilaton the spacetime is similar to the recently discovered non-singular time-dependent Einstein self-gravitating global string, but the massless dilaton generically gives a singular spacetime, even allowing for time dependence. We also demonstrate a time-dependent non-singular string-antistring configuration, in which the string pair causes a compactification of two of the spatial dimensions, albeit on a very large scale.
Semilocal cosmic string networks
Achucarro, Ana; Salmi, Petja; Urrestilla, Jon
2007-06-15
We report on a large-scale numerical study of networks of semilocal cosmic strings in flat space in the parameter regime in which they are perturbatively stable. We find a population of segments with an exponential length distribution and indications of a scaling network without significant loop formation. Very deep in the stability regime strings of superhorizon size grow rapidly and ''percolate'' through the box. We believe these should lead at late times to a population of infinite strings similar to topologically stable strings. However, the strings are very light; scalar gradients dominate the energy density, and the network has thus a global texturelike signature. As a result, the observational constraints, at least from the temperature power spectrum of the cosmic microwave background, on models predicting semilocal strings should be closer to those on global textures or monopoles, rather than on topologically stable gauged cosmic strings.
Smooth crossover transition from the {delta}-string to the Y-string three-quark potential
Dmitrasinovic, V.; Sato, Toru; Suvakov, Milovan
2009-09-01
We comment on the assertion made by Caselle et al.[M. Caselle, G. Delfino, P. Grinza, O. Jahn, and N. Magnoli, J. Stat. Mech. (2006) P008.] that the confining (string) potential for three quarks 'makes a smooth crossover transition from the {delta}-string to the Y-string configuration at interquark distances of around 0.8 fm'. We study the functional dependence of the three-quark confining potentials due to a Y-string, and the {delta} string and show that they have different symmetries, which lead to different constants of the motion (i.e. they belong to different 'universality classes' in the parlance of the theory of phase transitions). This means that there is no 'smooth crossover' between the two, when their string tensions are identical, except at the vanishing hyper-radius. We also comment on a certain two-body potential approximation to the Y-string potential.
Nonthermal dark matter from cosmic strings
Cui Yanou; Morrissey, David E.
2009-04-15
Cosmic strings can be created in the early universe during symmetry-breaking phase transitions, such as might arise if the gauge structure of the standard model is extended by additional U(1) factors at high energies. Cosmic strings presented in the early universe form a network of long horizon-length segments, as well as a population of closed string loops. The closed loops are unstable against decay, and can be a source of nonthermal particle production. In this work we compute the density of weakly-interacting massive particle dark matter formed by the decay of gauge theory cosmic string loops derived from a network of long strings in the scaling regime or under the influence of frictional forces. We find that for symmetry-breaking scales larger than 10{sup 10} GeV, this mechanism has the potential to account for the observed relic density of dark matter. For symmetry-breaking scales lower than this, the density of dark matter created by loop decays from a scaling string network lies below the observed value. In particular, the cosmic strings originating from a U(1) gauge symmetry broken near the electroweak scale, that could lead to a massive Z{sup '} gauge boson observable at the LHC, produces a negligibly small dark matter relic density by this mechanism.
NASA Astrophysics Data System (ADS)
Svenson, Eric Johan
Participants on the Invincible America Assembly in Fairfield, Iowa, and neighboring Maharishi Vedic City, Iowa, practicing Maharishi Transcendental Meditation(TM) (TM) and the TM-Sidhi(TM) programs in large groups, submitted written experiences that they had had during, and in some cases shortly after, their daily practice of the TM and TM-Sidhi programs. Participants were instructed to include in their written experiences only what they observed and to leave out interpretation and analysis. These experiences were then read by the author and compared with principles and phenomena of modern physics, particularly with quantum theory, astrophysics, quantum cosmology, and string theory as well as defining characteristics of higher states of consciousness as described by Maharishi Vedic Science. In all cases, particular principles or phenomena of physics and qualities of higher states of consciousness appeared qualitatively quite similar to the content of the given experience. These experiences are presented in an Appendix, in which the corresponding principles and phenomena of physics are also presented. These physics "commentaries" on the experiences were written largely in layman's terms, without equations, and, in nearly every case, with clear reference to the corresponding sections of the experiences to which a given principle appears to relate. An abundance of similarities were apparent between the subjective experiences during meditation and principles of modern physics. A theoretic framework for understanding these rich similarities may begin with Maharishi's theory of higher states of consciousness provided herein. We conclude that the consistency and richness of detail found in these abundant similarities warrants the further pursuit and development of such a framework.
Ali, Mir; Ruiz, Frenny; Saint-Victor, Carlos; Vazquez-Poritz, Justin F.
2009-08-15
We consider the behavior of open strings on anti-de Sitter wormholes in Gauss-Bonnet theory, which are the Gauss-Bonnet gravity duals of a pair of field theories. A string with both endpoints on the same side of the wormhole describes two charges within the same field theory, which exhibit Coulomb interaction for small separation. On the other hand, a string extending through the wormhole describes two charges which live in different field theories, and they exhibit a springlike confining potential. A transition occurs when there is a pair of charges present within each field theory: for small separation each pair of charges exhibits Coulomb interaction, while for large separation the charges in the different field theories pair up and exhibit confinement. Two steadily-moving charges in different field theories can occupy the same location provided that their speed is less than a critical speed, which also plays the role of a subluminal speed limit. However, for some wormhole backgrounds, charges moving at the critical speed cannot occupy the same location and energy is transferred from the leading charge to the lagging one. We also show that strings on anti-de Sitter wormholes in supergravity theories without higher-derivative curvature terms can exhibit these properties as well.
Schwarz, John H.
2001-07-01
Prophesy is just for fun. The more useful purpose of the exercise is to identify important issues and to stimulate thought about where they stand and how they might be resolved. The subject areas that are fair game include all of particle physics and cosmology.
NASA Astrophysics Data System (ADS)
Kunduri, Hari K.; Lucietti, James
2016-09-01
We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional U (1 )3 supergravity which is regular on and outside an event horizon of lens space topology L (2 ,1 ). The solution has seven independent parameters and uplifts to a family of 1 /8 -supersymmetric D1-D5-P black brane solutions to type IIB supergravity. The decoupling limit is asymptotically AdS3×S3×T4 , with a near-horizon geometry that is a twisted product of the near-horizon geometry of the extremal Bañados-Teitelboim-Zanelli black hole and L (2 ,1 )×T4, although it is not (locally) a product space in the bulk. We show that the decoupling limit of a special case of the black lens is related to that of a black ring by spectral flow, thereby supplying an account of its entropy. Analogous solutions of U (1 )N supergravity are also presented.