Science.gov

Sample records for 2d symplectic fermions

  1. Bose symmetry and chiral decomposition of 2D fermionic determinants

    NASA Astrophysics Data System (ADS)

    Abreu, E. M. C.; Banerjee, R.; Wotzasek, C.

    1998-01-01

    We show in a precise way, either in the fermionic or its bosonized version, that Bose symmetry provides a systematic way to carry out the chiral decomposition of the two-dimensional fermionic determinant. Interpreted properly, we show that there is no obstruction of this decomposition to gauge invariance, as is usually claimed. Finally, a new way of interpreting the Polyakov-Wiegman identity is proposed.

  2. Viscous dissipation in 2D fluid dynamics as a symplectic process and its metriplectic representation

    NASA Astrophysics Data System (ADS)

    Blender, Richard; Badin, Gualtiero

    2017-03-01

    Dissipation can be represented in Hamiltonian mechanics in an extended phase space as a symplectic process. The method uses an auxiliary variable which represents the excitation of unresolved dynamics and a Hamiltonian for the interaction between the resolved dynamics and the auxiliary variable. This method is applied to viscous dissipation (including hyper-viscosity) in a two-dimensional fluid, for which the dynamics is non-canonical. We derive a metriplectic representation and suggest a measure for the entropy of the system.

  3. Long-lived magnetoexcitons in 2D-fermion system

    NASA Astrophysics Data System (ADS)

    Kulik, L. V.; Zhuravlev, A. S.; Gorbunov, A. V.; Timofeev, V. B.; Kukushkin, I. V.

    2017-01-01

    The paper addresses the experimental technique that, when applied to a 2D-electron system in the integer quantum Hall regime with filling factor ν = 2 (the Hall insulating state), allows resonant excitation of magnetoexcitons, their detection, control of an ensemble of long-lived triplet excitons and investigation of their radiationless decay related to exciton spin relaxation into the ground state. The technique proposed enables independent control of photoexcited electrons and Fermi-holes using photoinduced resonance reflection spectra as well as estimate with a reasonable degree of accuracy the resulting density of photoinduced electron-hole pairs bound into magnetoexcitons. The mere existence of triplet excitons was directly established by inelastic light scattering spectra which were analyzed to determine the value of singlet-triplet exciton splitting. It was found that the lifetimes of triplet excitons conditioned by electron spin relaxation in highly perfect GaAs/AlGaAs heterostructures with highly mobile 2D electrons are extremely long exceeding 100 μs at T < 1 K. The paper presents a qualitative explanation of the long-spin relaxation lifetimes which are unprecedented for translation-invariant 2D systems. This enabled us to create sufficiently high concentrations of triplet magnetoexcitons, electrically neutral excitations following Bose-Einstein statistics, in a Fermi electron system and investigate their collective properties. At sufficiently high densities of triplet magnetoexcitons and low temperatures, T < 1 K, the degenerate magnetofermionic system exhibits condensation of the triplet magnetoexcitons into a qualitatively new collective state with unusual properties which occurs in the space of generalized moments (magnetic translation vectors). The occurrence of a condensed phase is accompanied with a significant decrease in the viscosity of the photoexcited system, which is responsible for electron spin transport at macroscopic distances, as well

  4. Symplectically invariant flow equations for N = 2, D = 4 gauged supergravity with hypermultiplets

    NASA Astrophysics Data System (ADS)

    Klemm, Dietmar; Petri, Nicolò; Rabbiosi, Marco

    2016-04-01

    We consider N = 2 supergravity in four dimensions, coupled to an arbitrary number of vector- and hypermultiplets, where abelian isometries of the quaternionic hyperscalar target manifold are gauged. Using a static and spherically or hyperbolically symmetric ansatz for the fields, a one-dimensional effective action is derived whose variation yields all the equations of motion. By imposing a sort of Dirac charge quantization condition, one can express the complete scalar potential in terms of a superpotential and write the action as a sum of squares. This leads to first-order flow equations, that imply the second-order equations of motion. The first-order flow turns out to be driven by Hamilton's characteristic function in the Hamilton-Jacobi formalism, and contains among other contributions the superpotential of the scalars. We then include also magnetic gaugings and generalize the flow equations to a symplectically covariant form. Moreover, by rotating the charges in an appropriate way, an alternative set of non-BPS first-order equations is obtained that corresponds to a different squaring of the action. Finally, we use our results to derive the attractor equations for near-horizon geometries of extremal black holes.

  5. Blue Phosphorene Oxide: Strain-Tunable Quantum Phase Transitions and Novel 2D Emergent Fermions

    NASA Astrophysics Data System (ADS)

    Zhu, Liyan; Wang, Shan-Shan; Guan, Shan; Liu, Ying; Zhang, Tingting; Chen, Guibin; Yang, Shengyuan A.

    2016-10-01

    Tunable quantum phase transitions and novel emergent fermions in solid state materials are fascinating subjects of research. Here, we propose a new stable two-dimensional (2D) material, the blue phosphorene oxide (BPO), which exhibits both. Based on first-principles calculations, we show that its equilibrium state is a narrow-bandgap semiconductor with three bands at low energy. Remarkably, a moderate strain can drive a semiconductor-to-semimetal quantum phase transition in BPO. At the critical transition point, the three bands cross at a single point at Fermi level, around which the quasiparticles are a novel type of 2D pseudospin-1 fermions. Going beyond the transition, the system becomes a symmetry-protected semimetal, for which the conduction and valence bands touch quadratically at a single Fermi point that is protected by symmetry, and the low-energy quasiparticles become another novel type of 2D double Weyl fermions. We construct effective models characterizing the phase transition and these novel emergent fermions, and we point out several exotic effects, including super Klein tunneling, supercollimation, and universal optical absorbance. Our result reveals BPO as an intriguing platform for the exploration of fundamental properties of quantum phase transitions and novel emergent fermions, and also suggests its great potential in nanoscale device applications.

  6. Chiral fermion dynamics in 2d magnetic vortices: Manifestation of momentum-spin-locking

    NASA Astrophysics Data System (ADS)

    Pötz, W.; Hammer, René

    2016-11-01

    The electronic surface-states of a topological insulator in the presence of an in-plane magnetization vortex M (ϕ)=M (cos(Φ+νϕ), sin(Φ+νϕ)) are investigated theoretically. For a general angle of magnetization Φ∈[0 ,2 π) and topological charge ν = 1, the modifications to the zero-mass single Dirac cone dispersion are treated exactly and the spectrum of bound eigenstates which forms in the energy window ±M cos(Φ) is derived. The space-time resolved dynamics of Dirac fermions in the presence of such vortices is studied numerically using a single-cone (2 + 1)D finite-difference scheme. In the continuous spectral region, Φ-dependent scattering of Dirac fermions at the vortex is observed. Depending on the type of vortex ( Φ, ν) and the impact parameter, the propagation direction of the Dirac fermion is changed: the magnetization of the vortex exerts a torque onto the fermion spin which, by momentum-spin locking associated with the helical Dirac states, results in an in-plane rotation of the propagation direction of the scattered Dirac fermion. In head-on collisions of a Gaussian wave-packet with ν = 1 vortices a Φ-dependent lensing effect is seen in our simulations. Depending on the direction of incidence, the vortex Φ=-π/2 , ν = 2 is identified as a coherent particle-beam splitter or "condenser" in head-on collisions.

  7. Equation of State of Ultracold Fermions in the 2D BEC-BCS Crossover Region.

    PubMed

    Boettcher, I; Bayha, L; Kedar, D; Murthy, P A; Neidig, M; Ries, M G; Wenz, A N; Zürn, G; Jochim, S; Enss, T

    2016-01-29

    We report the experimental measurement of the equation of state of a two-dimensional Fermi gas with attractive s-wave interactions throughout the crossover from a weakly coupled Fermi gas to a Bose gas of tightly bound dimers as the interaction strength is varied. We demonstrate that interactions lead to a renormalization of the density of the Fermi gas by several orders of magnitude. We compare our data near the ground state and at finite temperature with predictions for both fermions and bosons from quantum Monte Carlo simulations and Luttinger-Ward theory. Our results serve as input for investigations of close-to-equilibrium dynamics and transport in the two-dimensional system.

  8. Composite Fermion States near 3/2 Hosted by a High-Mobility 2D Hole System

    NASA Astrophysics Data System (ADS)

    Zhang, Po; Liu, Ruiyuan; Wang, Jianli; Zhang, Chi; Yang, Changli; Lu, Li; Pfeiffer, Loren; West, Ken; Du, Rui-Rui

    Magnetotransport experiments of Carbon-doped GaAs/AlGaAs 2D hole gas (2DHG) have revealed a variety of interesting phenomena previous not seen in the 2DEG counterpart. For example, it was found that the effective g -factor of 2DHG is large enough to cause Landau level crossing even at ~1 T, and the product of gm* (where m* is the hole effective mass) increases with total magnetic field. Such level crossings could have profound influences on the fractional quantum Hall states in the relevant magnetic fields. We systematically investigate the composite fermion states near 3/2 in C-doped high-mobility 2DHG by tilted-magnetic field experiments, and map out the Landau levels and composite fermion spectra as a function of hole density and tilt angles. Preliminary results and brief discussions will be presented. The work at Peking University were supported by National Basic Research Program of China Grants 2012CB921301 and 2014CB920901, and by Collaborative Innovation Center of Quantum Matter.

  9. Functional renormalization group and bosonization as a solver for 2D fermionic Hubbard models

    NASA Astrophysics Data System (ADS)

    Schuetz, Florian; Marston, Brad

    2007-03-01

    The functional renormalization group (fRG) provides an unbiased framework to analyze competing instabilities in two-dimensional electron systems and has been used extensively over the past decade [1]. In order to obtain an equally unbiased tool to interprete the flow, we investigate the combination of a many-patch, one-loop calculation with higher dimensional bosonization [2] of the resulting low-energy action. Subsequently a semi-classical approximation [3] can be used to describe the resulting phases. The spinless Hubbard model on a square lattice with nearest neighbor repulsion is investigated as a test case. [1] M. Salmhofer and C. Honerkamp, Prog. Theor. Phys. 105, 1 (2001). [2] A. Houghton, H.-J. Kwon, J. B. Marston, Adv.Phys. 49, 141 (2000); P. Kopietz, Bosonization of interacting fermions in arbitrary dimensions, (Springer, Berlin, 1997). [3] H.-H. Lin, L. Balents, M. P. A. Fisher, Phys. Rev. B 56, 6569 6593 (1997); J. O. Fjaerestad, J. B. Marston, U. Schollwoeck, Ann. Phys. (N.Y.) 321, 894 (2006).

  10. Exponentially fitted symplectic integrator

    NASA Astrophysics Data System (ADS)

    Simos, T. E.; Vigo-Aguiar, Jesus

    2003-01-01

    In this paper a procedure for constructing efficient symplectic integrators for Hamiltonian problems is introduced. This procedure is based on the combination of the exponential fitting technique and symplecticness conditions. Based on this procedure, a simple modified Runge-Kutta-Nyström second-order algebraic exponentially fitted method is developed. We give explicitly the symplecticness conditions for the modified Runge-Kutta-Nyström method. We also give the exponential fitting and trigonometric fitting conditions. Numerical results indicate that the present method is much more efficient than the “classical” symplectic Runge-Kutta-Nyström second-order algebraic method introduced by M.P. Calvo and J.M. Sanz-Serna [J. Sci. Comput. (USA) 14, 1237 (1993)]. We note that the present procedure is appropriate for all near-unimodal systems.

  11. Symplectic Clifford Algebraic Field Theory.

    NASA Astrophysics Data System (ADS)

    Dixon, Geoffrey Moore

    We develop a mathematical framework on which is built a theory of fermion, scalar, and gauge vector fields. This field theory is shown to be equivalent to the original Weinberg-Salam model of weak and electromagnetic interactions, but since the new framework is more rigid than that on which the original Weinberg-Salam model was built, a concomitant reduction in the number of assumptions lying outside of the framework has resulted. In particular, parity violation is actually hiding within our framework, and with little difficulty we are able to manifest it. The mathematical framework upon which we build our field theory is arrived at along two separate paths. The first is by the marriage of a Clifford algebra and a Lie superalgebra, the result being called a super Clifford algebra. The second is by providing a new characterization for a Clifford algebra employing its generators and a symmetric array of metric coefficients. Subsequently we generalize this characterization to the case of an antisymmetric array of metric coefficients, and we call the algebra which results a symplectic Clifford algebra. It is upon one of these that we build our field theory, and it is shown that this symplectic Clifford algebra is a particular subalgebra of a super Clifford algebra. The final ingredient is the operation of bracketing which involves treating the elements of our algebra as endomorphisms of a particular inner product space, and employing this space and its inner product to provide us with maps from our algebra to the reals. It is this operation which enables us to manifest the parity violation hiding in our algebra.

  12. Evidence of a short-range incommensurate d-wave charge order from a fermionic two-loop renormalization group calculation of a 2D model with hot spots

    SciTech Connect

    Carvalho, Vanuildo S de; Freire, Hermann

    2014-09-15

    The two-loop renormalization group (RG) calculation is considerably extended here for the two-dimensional (2D) fermionic effective field theory model, which includes only the so-called “hot spots” that are connected by the spin-density-wave (SDW) ordering wavevector on a Fermi surface generated by the 2D t−t{sup ′} Hubbard model at low hole doping. We compute the Callan–Symanzik RG equation up to two loops describing the flow of the single-particle Green’s function, the corresponding spectral function, the Fermi velocity, and some of the most important order-parameter susceptibilities in the model at lower energies. As a result, we establish that–in addition to clearly dominant SDW correlations–an approximate (pseudospin) symmetry relating a short-range incommensurated-wave charge order to the d-wave superconducting order indeed emerges at lower energy scales, which is in agreement with recent works available in the literature addressing the 2D spin-fermion model. We derive implications of this possible electronic phase in the ongoing attempt to describe the phenomenology of the pseudogap regime in underdoped cuprates.

  13. Multi-symplectic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; McKenzie, J. F.; Zank, G. P.; Zank

    2014-10-01

    A multi-symplectic formulation of ideal magnetohydrodynamics (MHD) is developed based on the Clebsch variable variational principle in which the Lagrangian consists of the kinetic minus the potential energy of the MHD fluid modified by constraints using Lagrange multipliers that ensure mass conservation, entropy advection with the flow, the Lin constraint, and Faraday's equation (i.e. the magnetic flux is Lie dragged with the flow). The analysis is also carried out using the magnetic vector potential à where α=Ã. d x is Lie dragged with the flow, and B=∇×Ã. The multi-symplectic conservation laws give rise to the Eulerian momentum and energy conservation laws. The symplecticity or structural conservation laws for the multi-symplectic system corresponds to the conservation of phase space. It corresponds to taking derivatives of the momentum and energy conservation laws and combining them to produce n(n-1)/2 extra conservation laws, where n is the number of independent variables. Noether's theorem for the multi-symplectic MHD system is derived, including the case of non-Cartesian space coordinates, where the metric plays a role in the equations.

  14. The Siegel Upper Half Space is a Marsden-Weinstein Quotient: Symplectic Reduction and Gaussian Wave Packets

    NASA Astrophysics Data System (ADS)

    Ohsawa, Tomoki

    2015-09-01

    We show that the Siegel upper half space is identified with the Marsden-Weinstein quotient obtained by symplectic reduction of the cotangent bundle with O(2 d)-symmetry. The reduced symplectic form on corresponding to the standard symplectic form on turns out to be a constant multiple of the symplectic form on obtained by Siegel. Our motivation is to understand the geometry behind two different formulations of the Gaussian wave packet dynamics commonly used in semiclassical mechanics. Specifically, we show that the two formulations are related via the symplectic reduction.

  15. Conjugate symplectic B-series

    NASA Astrophysics Data System (ADS)

    Hairer, Ernst; Zbinden, Christophe J.

    2012-09-01

    For the long-time integration of Hamiltonian differential equations the use of symplectic methods is recommended. In practice it is often sufficient to apply a method that is conjugate (up to a sufficiently high order) to a symplectic integrator. This article gives a criterion on the conjugate symplecticity of methods that can be represented as a B-series. It allows to characterize the conjugate symplecticity of a large class of numerical integrators including Lobatto IIIA and Lobatto IIIB methods, as well as energy-preserving collocation methods.

  16. Exotic quantum phase transitions of 2+1d Dirac fermions, and connections to 2d and 3d topological insulators

    NASA Astrophysics Data System (ADS)

    Slagle, Kevin

    2015-03-01

    Using determinant quantum Monte Carlo simulations, we demonstrate that an extended Hubbard model on a bilayer honeycomb lattice has two novel quantum phase transitions, each with connections to symmetry protected topological states. 1) The first is a continuous phase transition between the weakly interacting gapless Dirac fermion phase and a strongly interacting fully gapped and symmetric trivial phase. Because there is no spontaneous symmetry breaking, this transition cannot be described by the standard Gross-Neveu model. We argue that this phase transition is related to the Z16 classification of the topological superconductor 3He-B phase with interactions. 2) The second is a quantum critical point between a quantum spin Hall insulator with spin Sz conservation and the previously mentioned strongly interacting gapped phase. At the critical point the single particle excitations remain gapped, while spin and charge gaps close. We argue that this transition is described by a bosonic O(4) nonlinear sigma model field theory with a topological Θ-term.

  17. Partial dynamical symmetry in a fermion system

    PubMed

    Escher; Leviatan

    2000-02-28

    The relevance of the partial dynamical symmetry concept for an interacting fermion system is demonstrated. Hamiltonians with partial SU(3) symmetry are presented in the framework of the symplectic shell model of nuclei and shown to be closely related to the quadrupole-quadrupole interaction. Implications are discussed for the deformed light nucleus 20Ne.

  18. Symplectic integrators for spin systems

    NASA Astrophysics Data System (ADS)

    McLachlan, Robert I.; Modin, Klas; Verdier, Olivier

    2014-06-01

    We present a symplectic integrator, based on the implicit midpoint method, for classical spin systems where each spin is a unit vector in R3. Unlike splitting methods, it is defined for all Hamiltonians and is O (3)-equivariant, i.e., coordinate-independent. It is a rare example of a generating function for symplectic maps of a noncanonical phase space. It yields a new integrable discretization of the spinning top.

  19. Birkhoffian symplectic algorithms derived from Hamiltonian symplectic algorithms

    NASA Astrophysics Data System (ADS)

    Xin-Lei, Kong; Hui-Bin, Wu; Feng-Xiang, Mei

    2016-01-01

    In this paper, we focus on the construction of structure preserving algorithms for Birkhoffian systems, based on existing symplectic schemes for the Hamiltonian equations. The key of the method is to seek an invertible transformation which drives the Birkhoffian equations reduce to the Hamiltonian equations. When there exists such a transformation, applying the corresponding inverse map to symplectic discretization of the Hamiltonian equations, then resulting difference schemes are verified to be Birkhoffian symplectic for the original Birkhoffian equations. To illustrate the operation process of the method, we construct several desirable algorithms for the linear damped oscillator and the single pendulum with linear dissipation respectively. All of them exhibit excellent numerical behavior, especially in preserving conserved quantities. Project supported by the National Natural Science Foundation of China (Grant No. 11272050), the Excellent Young Teachers Program of North China University of Technology (Grant No. XN132), and the Construction Plan for Innovative Research Team of North China University of Technology (Grant No. XN129).

  20. The symplectic group and classical mechanics.

    PubMed

    Dragt, Alex J

    2005-06-01

    The symplectic group is the underlying symmetry group for Hamiltonian dynamics. Yet relatively little is commonly known about its properties including its Lie structure and representations. This paper describes and summarizes some of these properties; and, as a first application of symplectic group theory, provides a symplectic classification of all first-order differential equations in an even number of variables.

  1. A pseudo third order symplectic integrator

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Yao; Wu, Xin; Lu, Ben-Kui

    2005-01-01

    The symplectic integrator has been regarded as one of the optimal tools for research on qualitative secular evolution of Hamiltonian systems in solar system dynamics. An integrable and separate Hamiltonian system H = H0 + Σi=1NɛiHi (ɛi ≪ 1) forms a pseudo third order symplectic integrator, whose accuracy is approximately equal to that of the first order corrector of the Wisdom-Holman second order symplectic integrator or that of the Forest-Ruth fourth order symplectic integrator. In addition, the symplectic algorithm with force gradients is also suited to the treatment of the Hamiltonian system H = H0(q,p) + ɛH1(q), with accuracy better than that of the original symplectic integrator but not superior to that of the corresponding pseudo higher order symplectic integrator.

  2. Nonlinear Symplectic Attitude Estimation for Small Satellites

    DTIC Science & Technology

    2006-08-01

    accuracy and constants of motion accuracy when applied to standard EKF theory for satellite attitude estimation (symplectic EKF, or SKF 𔄁 ). This...determine the source of the performance difference between the IEKF and the SF, the SF is compared to the symplectic EKF ( SKF ) in Ref 17. The SF is...contrast, the SKF combines a symplectic dynamical model with the standard EKF algorithm. Figure 4 illustrates that, given the same initial conditions

  3. On Lorentz Transformations in Symplectic Deformations

    SciTech Connect

    Cuesta, R.; Sabido, M.; Guzman, W.

    2010-07-12

    In this paper we study noncommutative Lorentz transformations using symplectic deformations. In this framework we define an infinitesimal line element that is invariant under this noncommutative Lorentz transformations. Using the symplectic geometry formalism, we find that noncommutative Lorentz transformations intertwine the canonical momentums with canonical position coordinates.

  4. Fermion Superfluidity

    NASA Technical Reports Server (NTRS)

    Strecker, Kevin; Truscott, Andrew; Partridge, Guthrie; Chen, Ying-Cheng

    2003-01-01

    Dual evaporation gives 50 million fermions at T = 0.1 T(sub F). Demonstrated suppression of interactions by coherent superposition - applicable to atomic clocks. Looking for evidence of Cooper pairing and superfluidity.

  5. Lattice fermions

    NASA Technical Reports Server (NTRS)

    Wilczek, Frank

    1987-01-01

    A simple heuristic proof of the Nielsen-Ninomaya theorem is given. A method is proposed whereby the multiplication of fermion species on a lattice is reduced to the minimal doubling, in any dimension, with retention of appropriate chiral symmetries. Also, it is suggested that use of spatially thinned fermion fields is likely to be a useful and appropriate approximation in QCD - in any case, it is a self-checking one.

  6. Composite fermion-boson mapping for fermionic lattice models.

    PubMed

    Zhao, J; Jiménez-Hoyos, C A; Scuseria, G E; Huerga, D; Dukelsky, J; Rombouts, S M A; Ortiz, G

    2014-11-12

    We present a mapping of elementary fermion operators onto a quadratic form of composite fermionic and bosonic cluster operators. The mapping is an exact isomorphism as long as the physical constraint of one composite particle per cluster is satisfied. This condition is treated on average in a composite particle mean-field approach, which consists of an ansatz that decouples the composite fermionic and bosonic sectors. The theory is tested on the 1D and 2D Hubbard models. Using a Bogoliubov determinant for the composite fermions and either a coherent or Bogoliubov state for the bosons, we obtain a simple and accurate procedure for treating the Mott insulating phase of the Hubbard model with mean-field computational cost.

  7. On local invariants of singular symplectic forms

    NASA Astrophysics Data System (ADS)

    Domitrz, Wojciech

    2017-04-01

    We find a complete set of local invariants of singular symplectic forms with the structurally stable Martinet hypersurface on a 2 n-dimensional manifold. In the C-analytic category this set consists of the Martinet hypersurface Σ2, the restriction of the singular symplectic form ω to TΣ2 and the kernel of ω n - 1 at the point p ∈Σ2. In the R-analytic and smooth categories this set contains one more invariant: the canonical orientation of Σ2. We find the conditions to determine the kernel of ω n - 1 at p by the other invariants. In dimension 4 we find sufficient conditions to determine the equivalence class of a singular symplectic form-germ with the structurally smooth Martinet hypersurface by the Martinet hypersurface and the restriction of the singular symplectic form to it. We also study the singular symplectic forms with singular Martinet hypersurfaces. We prove that the equivalence class of such singular symplectic form-germ is determined by the Martinet hypersurface, the canonical orientation of its regular part and the restriction of the singular symplectic form to its regular part if the Martinet hypersurface is a quasi-homogeneous hypersurface with an isolated singularity.

  8. Spin Tqfts and Fermionic Phases of Matter

    NASA Astrophysics Data System (ADS)

    Gaiotto, Davide; Kapustin, Anton

    We study lattice constructions of gapped fermionic phases of matter. We show that the construction of fermionic Symmetry Protected Topological orders by Gu and Wen has a hidden dependence on a discrete spin structure on the Euclidean space-time. The spin structure is needed to resolve ambiguities which are otherwise present. An identical ambiguity is shown to arise in the fermionic analog of the string-net construction of 2D topological orders. We argue that the need for a spin structure is a general feature of lattice models with local fermionic degrees of freedom and is a lattice analog of the spinstatistics relation.

  9. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  10. Symplectic Attitude Estimation for Small Satellites

    DTIC Science & Technology

    2006-01-01

    give the SKF , which outperforms the standard EKF in the presence of nonlinearity and low measurement noise in the 1-D case. Building on this result, a...six-state SKF is compared to an EKF of the same order for satellite attitude estimation. Simulation of a stan- dard small satellite mission...1-D case, a symplectic propagator is com- bined with Extended Kalman Filter (EKF) equations to give a symplectic Kalman Filter ( SKF ). The SKF’s

  11. Symplectic method in quantum cosmology

    SciTech Connect

    Silva, E. V. Correa; Monerat, G. A.; Oliveira-Neto, G.; Neves, C.; Ferreira Filho, L. G.

    2009-08-15

    In the present work, we study the quantum cosmology description of Friedmann-Robertson-Walker models in the presence of a generic perfect fluid and a cosmological constant, which may be positive or negative. We work in Schutz's variational formalism and the three-dimensional spatial sections may have positive, negative, or zero constant curvature. If one uses the scale factor and its canonically conjugated momentum as the phase space variables that describe the geometrical sector of these models, one obtains Wheeler-DeWitt equations with operator ordering ambiguities. In order to avoid those ambiguities and simplify the quantum treatment of the models, we follow references [Edesio M. Barbosa, Jr. and Nivaldo A. Lemos, Gen. Relativ. Gravit. 38, 1609 (2006).][Edesio M. Barbosa, Jr. and Nivaldo A. Lemos, Phys. Rev. D 78, 023504 (2008).] and introduce new phase space variables. We explicitly demonstrate, using the symplectic method, that the transformation leading from the old set of variables to the new one is canonical.

  12. Hourglass Fermions

    NASA Astrophysics Data System (ADS)

    Wang, Zhijun; Alexandradinata, A.; Cava, Robert J.; Bernevig, B. Andrei

    Spatial symmetries in crystals are distinguished by whether they preserve the spatial origin. We show how this basic geometric property gives rise to a new topology in band insulators. We study spatial symmetries that translate the origin by a fraction of the lattice period, and find that these nonsymmorphic symmetries protect a novel surface fermion whose dispersion is shaped like an hourglass; surface bands connect one hourglass to the next in an unbreakable zigzag pattern. These exotic fermions are materialized in the large-gap insulators: KHg X (X = As,Sb,Bi), which we propose as the first material class whose topology relies on nonsymmorphic symmetries. Beside the hourglass fermion, a different surface of KHg X manifests a 3D generalization of the quantum spin Hall effect. To describe the bulk topology of nonsymmorphic crystals, we propose a non-Abelian generalization of the geometric theory of polarization. Our nontrivial topology originates not from an inversion of the parity quantum numbers, but rather of the rotational quantum numbers, which we propose as a fruitful in the search for topological materials. Finally, KHg X uniquely exemplifies a cohomological insulator, a concept that we will introduce in a companion work.

  13. A possible symplectic framework for Radon-type transforms

    NASA Astrophysics Data System (ADS)

    Cahen, Michel; Grouy, Thibaut; Gutt, Simone

    2016-07-01

    Our project is to define Radon-type transforms in symplectic geometry. The chosen framework consists of symplectic symmetric spaces whose canonical connection is of Ricci-type. They can be considered as symplectic analogues of the spaces of constant holomorphic curvature in Kählerian Geometry. They are characterized amongst a class of symplectic manifolds by the existence of many totally geodesic symplectic submanifolds. We present a particular class of Radon type transforms, associating to a smooth compactly supported function on a homogeneous manifold M, a function on a homogeneous space N of totally geodesic submanifolds of M, and vice versa. We describe some spaces M and N in such Radon-type duality with M a model of symplectic symmetric space with Ricci-type canonical connection and N an orbit of totally geodesic symplectic submanifolds.

  14. On the Langlands correspondence for symplectic motives

    NASA Astrophysics Data System (ADS)

    Gross, B. H.

    2016-08-01

    We present a refinement of the global Langlands correspondence for symplectic motives. Using the local theory of generic representations of odd orthogonal groups, we define a new vector in the associated automorphic representation, which is the tensor product of test vectors for the Whittaker functionals.

  15. Symplectic integration approach for metastable systems

    NASA Astrophysics Data System (ADS)

    Klotins, E.

    2006-03-01

    Nonadiabatic behavior of metastable systems modeled by anharmonic Hamiltonians is reproduced by the Fokker-Planck and imaginary time Schrödinger equation scheme with subsequent symplectic integration. Example solutions capture ergodicity breaking, reassure the H-theorem of global stability [M. Shiino, Phys. Rev. A 36, 2393 (1987)], and reproduce spatially extended response under alternate source fields.

  16. Hamiltonian vector fields on almost symplectic manifolds

    NASA Astrophysics Data System (ADS)

    Vaisman, Izu

    2013-09-01

    Let (M, ω) be an almost symplectic manifold (ω is a nondegenerate, not closed, 2-form). We say that a vector field X of M is locally Hamiltonian if LXω = 0, d(i(X)ω) = 0, and it is Hamiltonian if, furthermore, the 1-form i(X)ω is exact. Such vector fields were considered in Fassò and Sansonetto ["Integrable almost-symplectic Hamiltonian systems," J. Math. Phys. 48, 092902 (2007)], 10.1063/1.2783937, under the name of strongly Hamiltonian, and a corresponding action-angle theorem was proven. Almost symplectic manifolds may have few, nonzero, Hamiltonian vector fields, or even none. Therefore, it is important to have examples and it is our aim to provide such examples here. We also obtain some new general results. In particular, we show that the locally Hamiltonian vector fields generate a Dirac structure on M and we state a reduction theorem of the Marsden-Weinstein type. A final section is dedicated to almost symplectic structures on tangent bundles.

  17. General local energy-preserving integrators for solving multi-symplectic Hamiltonian PDEs

    NASA Astrophysics Data System (ADS)

    Li, Yu-Wen; Wu, Xinyuan

    2015-11-01

    In this paper we propose and investigate a general approach to constructing local energy-preserving algorithms which can be of arbitrarily high order in time for solving Hamiltonian PDEs. This approach is based on the temporal discretization using continuous Runge-Kutta-type methods, and the spatial discretization using pseudospectral methods or Gauss-Legendre collocation methods. The local energy conservation law of our new schemes is analyzed in detail. The effectiveness of the novel local energy-preserving integrators is demonstrated by coupled nonlinear Schrödinger equations and 2D nonlinear Schrödinger equations with external fields. Our new schemes are compared with some classical multi-symplectic and symplectic schemes in numerical experiments. The numerical results show the remarkable long-term behaviour of our new schemes.

  18. k-symplectic structures and absolutely trianalytic subvarieties in hyperkähler manifolds

    NASA Astrophysics Data System (ADS)

    Soldatenkov, Andrey; Verbitsky, Misha

    2015-06-01

    Let (M, I, J, K) be a hyperkähler manifold, and Z ⊂(M, I) a complex subvariety in (M, I) . We say that Z is trianalytic if it is complex analytic with respect to J and K, and absolutely trianalytic if it is trianalytic with respect to any hyperkähler triple of complex structures (M, I, J‧, K‧) containing I. For a generic complex structure I on M, all complex subvarieties of (M, I) are absolutely trianalytic. It is known that the normalization Z‧ of a trianalytic subvariety is smooth; we prove that b2(Z‧) ⩾b2(M), when M has maximal holonomy (that is, M is IHS). To study absolutely trianalytic subvarieties further, we define a new geometric structure, called k-symplectic structure; this structure is a generalization of hypersymplectic structure. A k-symplectic structure on a 2 d-dimensional manifold X is a k-dimensional space R of closed 2-forms on X which all have rank 2 d or d. It is called non-degenerate if the set of all degenerate forms in R is a smooth, non-degenerate quadric hypersurface in R. We consider absolutely trianalytic tori in a hyperkähler manifold M of maximal holonomy. We prove that any such torus is equipped with a non-degenerate k-symplectic structure, where k =b2(M) . We show that the tangent bundle TX of a k-symplectic manifold is a Clifford module over a Clifford algebra Cl(k - 1) . Then an absolutely trianalytic torus in a hyperkähler manifold M with b2(M) ⩾ 2 r + 1 is at least 2 r - 1-dimensional.

  19. The Categorification of Fermions

    NASA Astrophysics Data System (ADS)

    Wang, Na; Wang, Rui; Wang, Zhi-Xi; Wu, Ke; Yang, Jie; Yang, Zi-Feng

    2015-02-01

    In this paper, we lift Fermions to functors acting on some homotopy category by the Boson-Fermion correspondence and get the categorified relations of Fermions. In this way, both the categorified Bosons and the categorified Fermions can be viewed as functors on the same category. We also give actions of these functors on the charged Young diagrams (or equivalently Maya diagrams), so that the classical theory of Boson-Fermion correspondence is very well recovered as a result of such a categorification.

  20. Symplectic integrator for molecular dynamics of a protein in water

    NASA Astrophysics Data System (ADS)

    Ishida, Hisashi; Nagai, Yoshinori; Kidera, Akinori

    1998-01-01

    The symplectic integrator is an algorithm for solving equations of motion, preserving the volume in phase space and ensuring a stable simulation. We carried out molecular dynamics simulations of liquid water and a protein in water using several variations of symplectic integrators. It was found that a fourth-order symplectic integrator of Calvo and Sanz-Serna generated a trajectory of much higher accuracy than the conventional Verlet and Gear methods with the same requirements for CPU time.

  1. Symplectic discretization for spectral element solution of Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Zhao, Yanmin; Dai, Guidong; Tang, Yifa; Liu, Qinghuo

    2009-08-01

    Applying the spectral element method (SEM) based on the Gauss-Lobatto-Legendre (GLL) polynomial to discretize Maxwell's equations, we obtain a Poisson system or a Poisson system with at most a perturbation. For the system, we prove that any symplectic partitioned Runge-Kutta (PRK) method preserves the Poisson structure and its implied symplectic structure. Numerical examples show the high accuracy of SEM and the benefit of conserving energy due to the use of symplectic methods.

  2. Noncommutative scalar fields from symplectic deformation

    SciTech Connect

    Daoud, M.; Hamama, A.

    2008-02-15

    This paper is concerned with the quantum theory of noncommutative scalar fields in two dimensional space-time. It is shown that the noncommutativity originates from the the deformation of symplectic structures. The quantization is performed and the modes expansions of the fields, in the presence of an electromagnetic background, are derived. The Hamiltonian of the theory is given and the degeneracies lifting, induced by the deformation, is also discussed.

  3. Comparison of several symplectic and quasi-symplectic methods in solar system dynamics

    NASA Astrophysics Data System (ADS)

    Wan, Xiaosheng; Huang, Tianyi

    2002-07-01

    Symplectic methods are so far the best numerical methods for qualitative exploration in solar system dynamics. They maintain the symplectic structure and key properties of Hamiltonian systems and do not bring in any artificial dissipation, making possible long-term numerical integrations with a large step size. The symplectic method that has been widely adopted in references on qualitative studies of solar system dynamics is the method worked out by Wisdom and Holman (SYA). It is built in the Jacobian coordinate system and takes an approximation of the Hamiltonian. The Wisdom and Holman's method for an exact Hamiltonian is abbreviated as SYP. Actually a symplectic integrator can be built in the barycentric coordinate system (SYS), which separates the Hamiltonian into two parts, the potential energy and the kinetic energy. Here we propose a quasi-symplectic method SYQ in the barycentric coordinate system. An extensive comparative study of these four types of methods is given, especially on their computation efficiency and error accumulation. This research draws the following conclusion. Considering that symplectic integrators are mainly used in exploring the qualitative evolution of dynamical systems and a high precision is not required, SYS should not be recommended in solar system dynamics for its low efficiency. During a 108 years integration, SYP methods cause almost the same errors on the positions of the planets but they take about 40% more computing time. We thus believe that SYP cannot compete with SYA or SYQ, but it is hard to tell SYA or SYQ is better. Our research has also shown that resonances play a role in keeping the orbit configuration of a planetary system during long-term numerical integrations.

  4. Higher-order force gradient symplectic algorithms

    NASA Astrophysics Data System (ADS)

    Chin, Siu A.; Kidwell, Donald W.

    2000-12-01

    We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.

  5. A SYMPLECTIC INTEGRATOR FOR HILL'S EQUATIONS

    SciTech Connect

    Quinn, Thomas; Barnes, Rory; Perrine, Randall P.; Richardson, Derek C.

    2010-02-15

    Hill's equations are an approximation that is useful in a number of areas of astrophysics including planetary rings and planetesimal disks. We derive a symplectic method for integrating Hill's equations based on a generalized leapfrog. This method is implemented in the parallel N-body code, PKDGRAV, and tested on some simple orbits. The method demonstrates a lack of secular changes in orbital elements, making it a very useful technique for integrating Hill's equations over many dynamical times. Furthermore, the method allows for efficient collision searching using linear extrapolation of particle positions.

  6. Heavy fermion quantum criticality.

    PubMed

    Nazario, Zaira; Santiago, David I

    2008-09-26

    During the last few years, investigations of rare-earth materials have made clear that heavy fermion quantum criticality exhibits novel physics not fully understood. In this work, we write for the first time the effective action describing the low energy physics of the system. The f fermions are replaced by a dynamical scalar field whose nonzero expected value corresponds to the heavy fermion phase. The effective theory is amenable to numerical studies as it is bosonic, circumventing the fermion sign problem. Via effective action techniques, renormalization group studies, and Callan-Symanzik resummations, we describe the heavy fermion criticality and predict the heavy fermion critical dynamical susceptibility and critical specific heat. The specific heat coefficient exponent we obtain (0.39) is in excellent agreement with the experimental result at low temperatures (0.4).

  7. Reduced dynamics and Lagrangian submanifolds of symplectic manifolds

    NASA Astrophysics Data System (ADS)

    García-Toraño Andrés, E.; Guzmán, E.; Marrero, J. C.; Mestdag, T.

    2014-06-01

    In this paper, we will see that the symplectic creed by Weinstein ‘everything is a Lagrangian submanifold’ also holds for Hamilton-Poincaré and Lagrange-Poincaré reduction. In fact, we show that solutions of the Hamilton-Poincaré equations and of the Lagrange-Poincaré equations are in one-to-one correspondence with distinguished curves in a Lagrangian submanifold of a symplectic manifold. For this purpose, we will combine the concept of a Tulczyjew triple with Marsden-Weinstein symplectic reduction.

  8. Connectance and stability of nonlinear symplectic systems

    NASA Astrophysics Data System (ADS)

    Laveder, D.; Cosentino, M.; Lega, Elena; Froeschlé, C.

    2008-09-01

    We have revisited the problem of the transition from ordered to chaotic motion for increasing number of degrees of freedom in nonlinear symplectic maps. Following the pioneer work of Froeschlé (Phys. Rev. A 18, 277 281, 1978) we investigate such systems as a function of the number of couplings among the equations of motion, i.e. as a function of a parameter called connectance since the seminal paper of Gardner and Ashby (Nature 228, 784, 1970) about linear systems. We compare two different models showing that in the nonlinear case the connectance has to be intended as the fraction of explicit dynamical couplings among degrees of freedom, rather than the fraction of non-zero elements in a given matrix. The chaoticity increases then with the connectance until the system is fully coupled.

  9. A brief introduction to symplectic integrators and recent results

    SciTech Connect

    Channell, P.J.

    1994-02-01

    The author begins with a brief synopsis about Hamiltonian systems and symplectic maps. A symplectic integrator is a symplectic map {phi}(q,p;t) that systematically approximates the time t flow of a Hamiltonian system. Systematic means: (1) in time step, t, i.e. the error should vanish as some power of the time step, and (2) in order of approximation, i.e. one would like a hierarchy of such {phi} that have errors that vanish as successively higher powers of the time step. At present the authors known two general types of symplectic integrators: (1) implicit integrators that are derived from a generating function or from algebraic conditions on Runge-Kutta schemes, and (2) explicit integrators that are derived from integrable Hamiltonians or from algebraic conditions on Runge-Kutta schemes.

  10. Poisson and symplectic structures on Lie algebras. I

    NASA Astrophysics Data System (ADS)

    Alekseevsky, D. V.; Perelomov, A. M.

    1997-06-01

    The purpose of this paper is to describe a new class of Poisson and symplectic structures on Lie algebras. This gives a new class of solutions of the classical Yang-Baxter equation. The class of elementary Lie algebras is defined and the Poisson and symplectic structures for them are described. The algorithm is given for description of all closed 2-forms and of symplectic structures on any Lie algebra G, which is decomposed into semidirect sum of elementary subalgebras. Using these results we obtain the description of closed 2-forms and symplectic forms (if they exist) on the Borel subalgebra B(G) of semisimple Lie algebra G. As a byproduct, we get description of the second cohomology group H2( B( G)).

  11. Symplectic test particle encounters: a comparison of methods

    NASA Astrophysics Data System (ADS)

    Wisdom, Jack

    2017-01-01

    A new symplectic method for handling encounters of test particles with massive bodies is presented. The new method is compared with several popular methods (RMVS3, SYMBA, and MERCURY). The new method compares favourably.

  12. Unity of quark and lepton interactions with symplectic gauge symmetry

    SciTech Connect

    Rajpoot, S.

    1982-07-01

    Properties of symplectic groups are reviewed and the gauge structure of Sp(2n) derived. The electroweak unification of leptons within Sp(8) gauge symmetry and grand unification of quarks and leptons within Sp(10) gauge symmetry are discussed.

  13. Symmetries of the Space of Linear Symplectic Connections

    NASA Astrophysics Data System (ADS)

    Fox, Daniel J. F.

    2017-01-01

    There is constructed a family of Lie algebras that act in a Hamiltonian way on the symplectic affine space of linear symplectic connections on a symplectic manifold. The associated equivariant moment map is a formal sum of the Cahen-Gutt moment map, the Ricci tensor, and a translational term. The critical points of a functional constructed from it interpolate between the equations for preferred symplectic connections and the equations for critical symplectic connections. The commutative algebra of formal sums of symmetric tensors on a symplectic manifold carries a pair of compatible Poisson structures, one induced from the canonical Poisson bracket on the space of functions on the cotangent bundle polynomial in the fibers, and the other induced from the algebraic fiberwise Schouten bracket on the symmetric algebra of each fiber of the cotangent bundle. These structures are shown to be compatible, and the required Lie algebras are constructed as central extensions of their! linear combinations restricted to formal sums of symmetric tensors whose first order term is a multiple of the differential of its zeroth order term.

  14. A modified symplectic PRK scheme for seismic wave modeling

    NASA Astrophysics Data System (ADS)

    Liu, Shaolin; Yang, Dinghui; Ma, Jian

    2017-02-01

    A new scheme for the temporal discretization of the seismic wave equation is constructed based on symplectic geometric theory and a modified strategy. The ordinary differential equation in terms of time, which is obtained after spatial discretization via the spectral-element method, is transformed into a Hamiltonian system. A symplectic partitioned Runge-Kutta (PRK) scheme is used to solve the Hamiltonian system. A term related to the multiplication of the spatial discretization operator with the seismic wave velocity vector is added into the symplectic PRK scheme to create a modified symplectic PRK scheme. The symplectic coefficients of the new scheme are determined via Taylor series expansion. The positive coefficients of the scheme indicate that its long-term computational capability is more powerful than that of conventional symplectic schemes. An exhaustive theoretical analysis reveals that the new scheme is highly stable and has low numerical dispersion. The results of three numerical experiments demonstrate the high efficiency of this method for seismic wave modeling.

  15. Entanglement in fermionic systems

    SciTech Connect

    Banuls, Mari-Carmen; Cirac, J. Ignacio; Wolf, Michael M.

    2007-08-15

    The anticommuting properties of fermionic operators, together with the presence of parity conservation, affect the concept of entanglement in a composite fermionic system. Hence different points of view can give rise to different reasonable definitions of separable and entangled states. Here we analyze these possibilities and the relationship between the different classes of separable states. The behavior of the various classes when taking multiple copies of a state is also studied, showing that some of the differences vanish in the asymptotic regime. In particular, in the case of only two fermionic modes all the classes become equivalent in this limit. We illustrate the differences and relations by providing a complete characterization of all the sets defined for systems of two fermionic modes. The results are applied to Gibbs states of infinite chains of fermions whose interaction corresponds to a XY Hamiltonian with transverse magnetic field.

  16. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  17. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  18. A symplectic coherent beam-beam model

    SciTech Connect

    Furman, M.A.

    1989-05-01

    We consider a simple one-dimensional model to study the effects of the beam-beam force on the coherent dynamics of colliding beams. The key ingredient is a linearized beam-beam kick. We study only the quadrupole modes, with the dynamical variables being the 2nd-order moments of the canonical variables q, p. Our model is self-consistent in the sense that no higher order moments are generated by the linearized beam-beam kicks, and that the only source of violation of symplecticity is the radiation. We discuss the round beam case only, in which vertical and horizontal quantities are assumed to be equal (though they may be different in the two beams). Depending on the values of the tune and beam intensity, we observe steady states in which otherwise identical bunches have sizes that are equal, or unequal, or periodic, or behave chaotically from turn to turn. Possible implications of luminosity saturation with increasing beam intensity are discussed. Finally, we present some preliminary applications to an asymmetric collider. 8 refs., 8 figs.

  19. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  20. Canonical gravity with fermions

    SciTech Connect

    Bojowald, Martin; Das, Rupam

    2008-09-15

    Canonical gravity in real Ashtekar-Barbero variables is generalized to allow for fermionic matter. The resulting torsion changes several expressions in Holst's original vacuum analysis, which are summarized here. This in turn requires adaptations to the known loop quantization of gravity coupled to fermions, which is discussed on the basis of the classical analysis. As a result, parity invariance is not manifestly realized in loop quantum gravity.

  1. DPI: Symplectic mapping for binary star systems for the Mercury software package

    NASA Astrophysics Data System (ADS)

    Turrini, D.

    2015-04-01

    DPI is a FORTRAN77 library that supplies the symplectic mapping method for binary star systems for the Mercury N-Body software package (ascl:1201.008). The binary symplectic mapping is implemented as a hybrid symplectic method that allows close encounters and collisions between massive bodies and is therefore suitable for planetary accretion simulations.

  2. Symplectic structures related with higher order variational problems

    NASA Astrophysics Data System (ADS)

    Kijowski, Jerzy; Moreno, Giovanni

    2015-06-01

    In this paper, we derive the symplectic framework for field theories defined by higher order Lagrangians. The construction is based on the symplectic reduction of suitable spaces of iterated jets. The possibility of reducing a higher order system of partial differential equations to a constrained first-order one, the symplectic structures naturally arising in the dynamics of a first-order Lagrangian theory, and the importance of the Poincaré-Cartan form for variational problems, are all well-established facts. However, their adequate combination corresponding to higher order theories is missing in the literature. Here we obtain a consistent and truly finite-dimensional canonical formalism, as well as a higher order version of the Poincaré-Cartan form. In our exposition, the rigorous global proofs of the main results are always accompanied by their local coordinate descriptions, indispensable to work out practical examples.

  3. DECREASING COMPUTING TIME WITH SYMPLECTIC CORRECTORS IN ADAPTIVE TIMESTEPPING ROUTINES

    SciTech Connect

    Kaib, Nathan A.; Quinn, Thomas; Brasser, Ramon

    2011-01-15

    It has previously been shown that varying the numerical timestep during a symplectic orbital integration leads to a random walk in energy and angular momentum, destroying the phase space-conserving property of symplectic integrators. Here we show that when altering the timestep symplectic correctors can be used to reduce this error to a negligible level. Furthermore, these correctors can also be employed to avoid a large error introduction when changing the Hamiltonian's partitioning. We have constructed a numerical integrator using this technique that is nearly as accurate as widely used fixed-step routines. In addition, our algorithm is drastically faster for integrations of highly eccentricitic, large semimajor axis orbits, such as those found in the Oort Cloud.

  4. Symplectic geometry spectrum regression for prediction of noisy time series

    NASA Astrophysics Data System (ADS)

    Xie, Hong-Bo; Dokos, Socrates; Sivakumar, Bellie; Mengersen, Kerrie

    2016-05-01

    We present the symplectic geometry spectrum regression (SGSR) technique as well as a regularized method based on SGSR for prediction of nonlinear time series. The main tool of analysis is the symplectic geometry spectrum analysis, which decomposes a time series into the sum of a small number of independent and interpretable components. The key to successful regularization is to damp higher order symplectic geometry spectrum components. The effectiveness of SGSR and its superiority over local approximation using ordinary least squares are demonstrated through prediction of two noisy synthetic chaotic time series (Lorenz and Rössler series), and then tested for prediction of three real-world data sets (Mississippi River flow data and electromyographic and mechanomyographic signal recorded from human body).

  5. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  6. Highly Anisotropic Dirac Fermions in Square Graphynes.

    PubMed

    Zhang, L Z; Wang, Z F; Wang, Zhiming M; Du, S X; Gao, H-J; Liu, Feng

    2015-08-06

    We predict a family of 2D carbon (C) allotropes, square graphynes (S-graphynes) that exhibit highly anisotropic Dirac fermions, using first-principle calculations within density functional theory. They have a square unit-cell containing two sizes of square C rings. The equal-energy contour of their 3D band structure shows a crescent shape, and the Dirac crescent has varying Fermi velocities from 0.6 × 10(5) to 7.2 × 10(5) m/s along different k directions. Near the Fermi level, the Dirac crescent can be nicely expressed by an extended 2D Dirac model Hamiltonian. Furthermore, tight-binding band fitting reveals that the Dirac crescent originates from the next-nearest-neighbor interactions between C atoms. S-graphynes may be used to build new 2D electronic devices taking advantages of their highly directional charge transport.

  7. Explicit K-symplectic algorithms for charged particle dynamics

    NASA Astrophysics Data System (ADS)

    He, Yang; Zhou, Zhaoqi; Sun, Yajuan; Liu, Jian; Qin, Hong

    2017-02-01

    We study the Lorentz force equation of charged particle dynamics by considering its K-symplectic structure. As the Hamiltonian of the system can be decomposed as four parts, we are able to construct the numerical methods that preserve the K-symplectic structure based on Hamiltonian splitting technique. The newly derived numerical methods are explicit, and are shown in numerical experiments to be stable over long-term simulation. The error convergency as well as the long term energy conservation of the numerical solutions is also analyzed by means of the Darboux transformation.

  8. Symplectic and multisymplectic Lobatto methods for the ``good'' Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Aydın, A.; Karasözen, B.

    2008-08-01

    In this paper, we construct second order symplectic and multisymplectic integrators for the "good" Boussineq equation using the two-stage Lobatto IIIA-IIIB partitioned Runge-Kutta method, which yield an explicit scheme and is equivalent to the classical central difference approximation to the second order spatial derivative. Numerical dispersion properties and the stability of both integrators are investigated. Numerical results for different solitary wave solutions confirm the excellent long time behavior of symplectic and multisymplectic integrators by preserving local and global energy and momentum.

  9. Symmetric and symplectic ERKN methods for oscillatory Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoxia; You, Xiong; Shi, Wei; Liu, Zhongli

    2012-01-01

    The ERKN methods proposed by H. Yang et al. [Comput. Phys. Comm. 180 (2009) 1777] are an important improvement of J.M. Franco's ARKN methods for perturbed oscillators [J.M. Franco, Comput. Phys. Comm. 147 (2002) 770]. This paper focuses on the symmetry and symplecticity conditions for ERKN methods solving oscillatory Hamiltonian systems. Two examples of symmetric and symplectic ERKN (SSERKN) methods of orders two and four respectively are constructed. The phase and stability properties of the new methods are analyzed. The results of numerical experiments show the robustness and competence of the SSERKN methods compared with some well-known methods in the literature.

  10. Proton spin tracking with symplectic integration of orbit motion

    SciTech Connect

    Luo, Y.; Dutheil, Y.; Huang, H.; Meot, F.; Ranjbar, V.

    2015-05-03

    Symplectic integration had been adopted for orbital motion tracking in code SimTrack. SimTrack has been extensively used for dynamic aperture calculation with beam-beam interaction for the Relativistic Heavy Ion Collider (RHIC). Recently proton spin tracking has been implemented on top of symplectic orbital motion in this code. In this article, we will explain the implementation of spin motion based on Thomas-BMT equation, and the benchmarking with other spin tracking codes currently used for RHIC. Examples to calculate spin closed orbit and spin tunes are presented too.

  11. Polygon sign rules of Majorana fermions in two-dimensional topological superconductors

    NASA Astrophysics Data System (ADS)

    Cheng, Qiu-Bo; He, Jing; Yu, Jing; Zhao, Xiao-Ming; Kou, Su-Peng

    2016-09-01

    Recently, Majorana fermions (MFs) have attracted intensive attention due to their exotic statistics and possible applications in topological quantum computation. They are proposed to exist in various two-dimensional (2D) topological systems, such as px + ipy topological superconductor (SC) and nanowire-superconducting hybridization system. In this paper, we point out that Majorana fermions in different topological systems obey different types of polygon sign rules. A numerical approach is described to identify the type of polygon sign rule of the Majorana fermions. Applying the approach to study two 2D topological systems, we find that vortex-induced Majorana fermions obey topological polygon sign rule and line-defect-induced Majorana fermions obey normal polygon sign rule.

  12. Scattering of fermions by gravitons

    NASA Astrophysics Data System (ADS)

    Ulhoa, S. C.; Santos, A. F.; Khanna, Faqir C.

    2017-04-01

    The interaction between gravitons and fermions is investigated in the teleparallel gravity. The scattering of fermions and gravitons in the weak field approximation is analyzed. The transition amplitudes of M\\varnothing ller, Compton and new gravitational scattering are calculated.

  13. Bipartite Composite Fermion States

    NASA Astrophysics Data System (ADS)

    Sreejith, G. J.; Tőke, C.; Wójs, A.; Jain, J. K.

    2011-08-01

    We study a class of ansatz wave functions in which composite fermions form two correlated “partitions.” These “bipartite” composite fermion states are demonstrated to be very accurate for electrons in a strong magnetic field interacting via a short-range 3-body interaction potential over a broad range of filling factors. Furthermore, this approach gives accurate approximations for the exact Coulomb ground state at 2+3/5 and 2+4/7 and is thus a promising candidate for the observed fractional quantum Hall states at the hole conjugate fractions at 2+2/5 and 2+3/7.

  14. Bipartite composite fermion States.

    PubMed

    Sreejith, G J; Toke, C; Wójs, A; Jain, J K

    2011-08-19

    We study a class of ansatz wave functions in which composite fermions form two correlated "partitions." These "bipartite" composite fermion states are demonstrated to be very accurate for electrons in a strong magnetic field interacting via a short-range 3-body interaction potential over a broad range of filling factors. Furthermore, this approach gives accurate approximations for the exact Coulomb ground state at 2+3/5 and 2+4/7 and is thus a promising candidate for the observed fractional quantum Hall states at the hole conjugate fractions at 2+2/5 and 2+3/7.

  15. A survey of open problems in symplectic integration

    SciTech Connect

    McLachlan, R.I.; Scovel, C.

    1993-10-15

    In the past few years there has been a substantial amount of research on symplectic integration. The subject is only part of a program concerned with numerically preserving a system`s inherent geometrical structures. Volume preservation, reversibility, local conservation laws for elliptic equations, and systems with integral invariants are but a few examples of such invariant structures. In many cases one requires a numerical method to stay in the smallest possible appropriate group of phase space maps. It is not the authors` opinion that symplecticity, for example, automatically makes a numerical method superior to all others, but it is their opinion that it should be taken seriously and that a conscious, informed decision be made in that regard. The authors present here a survey of open problems in symplectic integration, including other problems from the larger program. This is not intended as a review of symplectic integration and is naturally derived from the authors` own research interests. At present, this survey is incomplete, but the authors hope the help of the colleagues to be able to include in the proceedings of this conference a more comprehensive survey. Many of the problems mentioned here call for numerical experimentation, some for application of suggested but untested methods, some for new methods, and some for theorems, Some envisage large research programs.

  16. Critical exponents from infinite-dimensional symplectic algebras

    NASA Astrophysics Data System (ADS)

    Altschüler, D.

    1985-11-01

    Unitary representations of the Virasoro algebra with centrala c = 1 - 6/(n + 2) are important in the study of two-dimensional models in statistical mechanics. It is shown that they can be constructed using Kac-Moody algebras of symplectic type. At the same time, this provides a simple derivation of the critical exponents.

  17. 2. QUANTUM HALL EFFECT: Magnetooptics of composite fermions

    NASA Astrophysics Data System (ADS)

    Kukushkin, I. V.; Smet, J. H.; von Klitzing, K.; Eberl, K.

    2001-10-01

    The Fermi energy and the Zeeman splitting of composite fermions are measured from the temperature dependence of the electron spin polarization at v = 1/2. We demonstrate that the Zeeman splitting of composite fermions is enhanced by a factor of 2.5 due to the interaction between CFs. The latter is very sensitive on the finite width of the 2D channel. The spin polarization at v = 1/3 and v = 2/3 displays an activated behavior and the derived spin-wave gaps are compared with simultaneously measured transport values.

  18. Fermionic T-duality in fermionic double space

    NASA Astrophysics Data System (ADS)

    Nikolić, B.; Sazdović, B.

    2017-04-01

    In this article we offer the interpretation of the fermionic T-duality of the type II superstring theory in double space. We generalize the idea of double space doubling the fermionic sector of the superspace. In such doubled space fermionic T-duality is represented as permutation of the fermionic coordinates θα and θbarα with the corresponding fermionic T-dual ones, ϑα and ϑbarα, respectively. Demanding that T-dual transformation law has the same form as initial one, we obtain the known form of the fermionic T-dual NS-R and R-R background fields. Fermionic T-dual NS-NS background fields are obtained under some assumptions. We conclude that only symmetric part of R-R field strength and symmetric part of its fermionic T-dual contribute to the fermionic T-duality transformation of dilaton field and analyze the dilaton field in fermionic double space. As a model we use the ghost free action of type II superstring in pure spinor formulation in approximation of constant background fields up to the quadratic terms.

  19. Fermion number anomaly with the fluffy mirror fermion

    NASA Astrophysics Data System (ADS)

    Okumura, Ken-ichi; Suzuki, Hiroshi

    2016-12-01

    Quite recently, Grabowska and Kaplan presented a 4-dimensional lattice formulation of chiral gauge theories based on the chiral overlap operator. We study this formulation from the perspective of the fermion number anomaly and possible associated phenomenology. A simple argument shows that the consistency of the formulation implies that the fermion with the opposite chirality to the physical one, the "fluffy mirror fermion" or "fluff", suffers from the fermion number anomaly in the same magnitude (with the opposite sign) as the physical fermion. This immediately shows that if at least one of the fluff quarks is massless, the formulation provides a simple viable solution to the strong CP problem. Also, if the fluff interacts with gravity essentially in the same way as the physical fermion, the formulation can realize the asymmetric dark matter scenario.

  20. Symmetries, pseudosymmetries and conservation laws in Lagrangian and Hamiltonian k-symplectic formalisms

    NASA Astrophysics Data System (ADS)

    Munteanu, Florian

    2016-01-01

    In this paper, we will present Lagrangian and Hamiltonian k-symplectic formalisms, we will recall the notions of symmetry and conservation law and we will define the notion of pseudosymmetry as a natural extension of symmetry. Using symmetries and pseudosymmetries, without the help of a Noether type theorem, we will obtain new kinds of conservation laws for k-symplectic Hamiltonian systems and k-symplectic Lagrangian systems.

  1. Life on the Edge of Chaos: Orbital Mechanics and Symplectic Integration

    NASA Astrophysics Data System (ADS)

    Newman, William I.; Hyman, James M.

    1998-09-01

    Symplectic mapping techniques have become very popular among celestial mechanicians and molecular dynamicists. The word "symplectic" was coined by Hermann Weyl (1939), exploiting the Greek root for a word meaning "complex," to describe a Lie group with special geometric properties. A symplectic integration method is one whose time-derivative satisfies Hamilton's equations of motion (Goldstein, 1980). When due care is paid to the standard computational triad of consistency, accuracy, and stability, a numerical method that is also symplectic offers some potential advantages. Varadarajan (1974) at UCLA was the first to formally explore, for a very restrictive class of problems, the geometric implications of symplectic splittings through the use of Lie series and group representations. Over the years, however, a "mythology" has emerged regarding the nature of symplectic mappings and what features are preserved. Some of these myths have already been shattered by the computational mathematics community. These results, together with new ones we present here for the first time, show where important pitfalls and misconceptions reside. These misconceptions include that: (a) symplectic maps preserve conserved quantities like the energy; (b) symplectic maps are equivalent to the exact computation of the trajectory of a nearby, time-independent Hamiltonian; (c) complicated splitting methods (i.e., "maps in composition") are not symplectic; (d) symplectic maps preserve the geometry associated with separatrices and homoclinic points; and (e) symplectic maps possess artificial resonances at triple and quadruple frequencies. We verify, nevertheless, that using symplectic methods together with traditional safeguards, e.g. convergence and scaling checks using reduced step sizes for integration schemes of sufficient order, can provide an important exploratory and development tool for Solar System applications.

  2. Tripartite composite fermion states

    NASA Astrophysics Data System (ADS)

    Sreejith, G. J.; Wu, Ying-Hai; Wójs, A.; Jain, J. K.

    2013-06-01

    The Read-Rezayi wave function is one of the candidates for the fractional quantum Hall effect at filling fraction ν=2+⅗, and thereby also its hole conjugate at 2+⅖. We study a general class of tripartite composite fermion wave functions, which reduce to the Rezayi-Read ground state and quasiholes for appropriate quantum numbers, but also allow a construction of wave functions for quasiparticles and neutral excitations by analogy to the standard composite fermion theory. We present numerical evidence in finite systems that these trial wave functions capture well the low energy physics of a four-body model interaction. We also compare the tripartite composite fermion wave functions with the exact Coulomb eigenstates at 2+⅗, and find reasonably good agreement. The ground state as well as several excited states of the four-body interaction are seen to evolve adiabatically into the corresponding Coulomb states for N=15 particles. These results support the plausibility of the Read-Rezayi proposal for the 2+⅖ and 2+⅗ fractional quantum Hall effect. However, certain other proposals also remain viable, and further study of excitations and edge states will be necessary for a decisive establishment of the physical mechanism of these fractional quantum Hall states.

  3. (Strongly interacting fermion system)

    SciTech Connect

    Not Available

    1990-01-01

    Research has been concentrated primarily in three areas: heavy fermions, physics of high-temperature superconductivity, and electronic properties. In heavy fermions a peak in the attenuation coefficient of ultrasound just below the superconducting transition temperature can be explained in the context of conventional (BCS) superconductivity theory by recognizing how profoundly that theory is reorganized in heavy fermion systems in which the sound velocity is comparable to electron Fermi velocity. In high-temperature superconductors there have been development of a model for magnetism in one alloy which shows unusual first-order phase transitions in a magnetic field, a possible mechanism for high-temperature superconductivity based on an electric quadrupole moment of Cu in tetragonal crystal geometry, and a neat resolution of a paradox between a theory connecting gaps in spectrum with the degeneracy of the system and a prominent current theoretical view that there is a gap and no degeneracy. It turns out there is a topological degeneracy that had not been previously recognized. In electronic structure we have shown that the finite element approach can be used for electronic systems with an efficient code using more than a half-million local basis functions. In addition, we have developed a variational principle for determining optimal meshes for solving differential equations --- such as the Schroedinger equation.

  4. Finding four dimensional symplectic maps with reduced chaos: Preliminary results

    SciTech Connect

    Weishi Wan; Cary, J.R.; Shasharina, S.G.

    1998-06-01

    A method for finding integrable four-dimensional symplectic maps is outlined. The method relies on solving for parameter values at which the linear stability factors of the fixed points of the map have the values corresponding to integrability. This method is applied to accelerator lattices in order to increase dynamic aperture. Results show a increase of the dynamic aperture after correction, which implies the validity of the method.

  5. Gauge Properties Of The Guiding Center Variational Symplectic Integrator

    SciTech Connect

    J. Squire, H. Qin and W. Tang

    2012-03-05

    Recently, variational symplectic algorithms have been developed for the long-time simulation of charged particles in magnetic fields1-3. As a direct consequence of their derivation from a discrete variational principle, these algorithms have very good long-time energy conservation, as well as exactly preserving discrete momenta. We present stability results for these algorithms, focusing on understanding how explicit variational integrators can be designed for this type of system. It is found that for explicit algorithms an instability arises because the discrete symplectic structure does not become the continuous structure in the t → 0 limit. We examine how a generalized gauge transformation can be used to put the Lagrangian in the "antisymmetric discretization gauge," in which the discrete symplectic structure has the correct form, thus eliminating the numerical instability. Finally, it is noted that the variational guiding center algorithms are not electromagnetically gauge invariant. By designing a model discrete Lagrangian, we show that the algorithms are approximately gauge invariant as long as A and are relatively smooth. A gauge invariant discrete Lagrangian is very important in a variational particle-in-cell algorithm where it ensures current continuity and preservation of Gauss's law4.

  6. Multi-symplectic, Lagrangian, one-dimensional gas dynamics

    NASA Astrophysics Data System (ADS)

    Webb, G. M.

    2015-05-01

    The equations of Lagrangian, ideal, one-dimensional, compressible gas dynamics are written in a multi-symplectic form using the Lagrangian mass coordinate m and time t as independent variables, and in which the Eulerian position of the fluid element x = x(m, t) is one of the dependent variables. This approach differs from the Eulerian, multi-symplectic approach using Clebsch variables. Lagrangian constraints are used to specify equations for xm, xt, and St consistent with the Lagrangian map, where S is the entropy of the gas. We require St = 0 corresponding to advection of the entropy S with the flow. We show that the Lagrangian Hamiltonian equations are related to the de Donder-Weyl multi-momentum formulation. The pullback conservation laws and the symplecticity conservation laws are discussed. The pullback conservation laws correspond to invariance of the action with respect to translations in time (energy conservation) and translations in m in Noether's theorem. The conservation law due to m-translation invariance gives rise to a novel nonlocal conservation law involving the Clebsch variable r used to impose ∂S(m, t)/∂t = 0. Translation invariance with respect to x in Noether's theorem is associated with momentum conservation. We obtain the Cartan-Poincaré form for the system, and use it to obtain a closed ideal of two-forms representing the equation system.

  7. Construction of Large Period Symplectic Maps by Interpolative Methods

    SciTech Connect

    Warnock, Robert; Cai, Yunhai; Ellison, James A.; /New Mexico U.

    2009-12-17

    The goal is to construct a symplectic evolution map for a large section of an accelerator, say a full turn of a large ring or a long wiggler. We start with an accurate tracking algorithm for single particles, which is allowed to be slightly non-symplectic. By tracking many particles for a distance S one acquires sufficient data to construct the mixed-variable generator of a symplectic map for evolution over S, given in terms of interpolatory functions. Two ways to find the generator are considered: (1) Find its gradient from tracking data, then the generator itself as a line integral. (2) Compute the action integral on many orbits. A test of method (1) has been made in a difficult example: a full turn map for an electron ring with strong nonlinearity near the dynamic aperture. The method succeeds at fairly large amplitudes, but there are technical difficulties near the dynamic aperture due to oddly shaped interpolation domains. For a generally applicable algorithm we propose method (2), realized with meshless interpolation methods.

  8. Gauge properties of the guiding center variational symplectic integrator

    NASA Astrophysics Data System (ADS)

    Squire, J.; Qin, H.; Tang, W. M.

    2012-05-01

    Variational symplectic algorithms have recently been developed for carrying out long-time simulation of charged particles in magnetic fields [H. Qin and X. Guan, Phys. Rev. Lett. 100, 035006 (2008); H. Qin, X. Guan, and W. Tang, Phys. Plasmas (2009); J. Li, H. Qin, Z. Pu, L. Xie, and S. Fu, Phys. Plasmas 18, 052902 (2011)]. As a direct consequence of their derivation from a discrete variational principle, these algorithms have very good long-time energy conservation, as well as exactly preserving discrete momenta. We present stability results for these algorithms, focusing on understanding how explicit variational integrators can be designed for this type of system. It is found that for explicit algorithms, an instability arises because the discrete symplectic structure does not become the continuous structure in the t →0 limit. We examine how a generalized gauge transformation can be used to put the Lagrangian in the "antisymmetric discretization gauge," in which the discrete symplectic structure has the correct form, thus eliminating the numerical instability. Finally, it is noted that the variational guiding center algorithms are not electromagnetically gauge invariant. By designing a model discrete Lagrangian, we show that the algorithms are approximately gauge invariant as long as A and φ are relatively smooth. A gauge invariant discrete Lagrangian is very important in a variational particle-in-cell algorithm where it ensures current continuity and preservation of Gauss's law [J. Squire, H. Qin, and W. Tang (to be published)].

  9. Multi-symplectic structure of fully nonlinear weakly dispersive internal gravity waves

    NASA Astrophysics Data System (ADS)

    Clamond, Didier; Dutykh, Denys

    2016-08-01

    In this short communication, we present the multi-symplectic structure for the two-layer Serre-Green-Naghdi equations describing the evolution of large amplitude internal gravity water waves when both layers are shallow. We consider only a two-layer stratification with rigid bottom and lid for simplicity, generalisations to several layers being conceivable. This multi-symplectic formulation allows the application of various multi-symplectic integrators (such as Euler or Preissman box schemes) that preserve exactly the multi-symplecticity at the discrete level.

  10. Splitting K-symplectic methods for non-canonical separable Hamiltonian problems

    NASA Astrophysics Data System (ADS)

    Zhu, Beibei; Zhang, Ruili; Tang, Yifa; Tu, Xiongbiao; Zhao, Yue

    2016-10-01

    Non-canonical Hamiltonian systems have K-symplectic structures which are preserved by K-symplectic numerical integrators. There is no universal method to construct K-symplectic integrators for arbitrary non-canonical Hamiltonian systems. However, in many cases of interest, by using splitting, we can construct explicit K-symplectic methods for separable non-canonical systems. In this paper, we identify situations where splitting K-symplectic methods can be constructed. Comparative numerical experiments in three non-canonical Hamiltonian problems show that symmetric/non-symmetric splitting K-symplectic methods applied to the non-canonical systems are more efficient than the same-order Gauss' methods/non-symmetric symplectic methods applied to the corresponding canonicalized systems; for the non-canonical Lotka-Volterra model, the splitting algorithms behave better in efficiency and energy conservation than the K-symplectic method we construct via generating function technique. In our numerical experiments, the favorable energy conservation property of the splitting K-symplectic methods is apparent.

  11. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  12. Multifractality and Conformal Invariance at 2D Metal-Insulator Transition in the Spin-Orbit Symmetry Class

    NASA Astrophysics Data System (ADS)

    Obuse, H.; Subramaniam, A. R.; Furusaki, A.; Gruzberg, I. A.; Ludwig, A. W. W.

    2007-04-01

    We study the multifractality (MF) of critical wave functions at boundaries and corners at the metal-insulator transition (MIT) for noninteracting electrons in the two-dimensional (2D) spin-orbit (symplectic) universality class. We find that the MF exponents near a boundary are different from those in the bulk. The exponents at a corner are found to be directly related to those at a straight boundary through a relation arising from conformal invariance. This provides direct numerical evidence for conformal invariance at the 2D spin-orbit MIT. The presence of boundaries modifies the MF of the whole sample even in the thermodynamic limit.

  13. Fermion mass without symmetry breaking

    NASA Astrophysics Data System (ADS)

    Catterall, Simon

    2016-01-01

    We examine a model of reduced staggered fermions in three dimensions interacting through an SO (4) invariant four fermion interaction. The model is similar to that considered in a recent paper by Ayyer and Chandrasekharan [1]. We present theoretical arguments and numerical evidence which support the idea that the system develops a mass gap for sufficiently strong four fermi coupling without producing a symmetry breaking fermion bilinear condensate. Massless and massive phases appear to be separated by a continuous phase transition.

  14. Hadron Properties with FLIC Fermions

    SciTech Connect

    James Zanotti; Wolodymyr Melnitchouk; Anthony Williams; J Zhang

    2003-07-01

    The Fat-Link Irrelevant Clover (FLIC) fermion action provides a new form of nonperturbative O(a)-improvement in lattice fermion actions offering near continuum results at finite lattice spacing. It provides computationally inexpensive access to the light quark mass regime of QCD where chiral nonanalytic behavior associated with Goldstone bosons is revealed. The motivation and formulation of FLIC fermions, its excellent scaling properties and its low-lying hadron mass phenomenology are presented.

  15. An accurate symplectic calculation of the inboard magnetic footprint from statistical topological noise and field errors in the DIII-D

    SciTech Connect

    Punjabi, Alkesh; Ali, Halima

    2011-02-15

    Any canonical transformation of Hamiltonian equations is symplectic, and any area-preserving transformation in 2D is a symplectomorphism. Based on these, a discrete symplectic map and its continuous symplectic analog are derived for forward magnetic field line trajectories in natural canonical coordinates. The unperturbed axisymmetric Hamiltonian for magnetic field lines is constructed from the experimental data in the DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The equilibrium Hamiltonian is a highly accurate, analytic, and realistic representation of the magnetic geometry of the DIII-D. These symplectic mathematical maps are used to calculate the magnetic footprint on the inboard collector plate in the DIII-D. Internal statistical topological noise and field errors are irreducible and ubiquitous in magnetic confinement schemes for fusion. It is important to know the stochasticity and magnetic footprint from noise and error fields. The estimates of the spectrum and mode amplitudes of the spatial topological noise and magnetic errors in the DIII-D are used as magnetic perturbation. The discrete and continuous symplectic maps are used to calculate the magnetic footprint on the inboard collector plate of the DIII-D by inverting the natural coordinates to physical coordinates. The combination of highly accurate equilibrium generating function, natural canonical coordinates, symplecticity, and small step-size together gives a very accurate calculation of magnetic footprint. Radial variation of magnetic perturbation and the response of plasma to perturbation are not included. The inboard footprint from noise and errors are dominated by m=3, n=1 mode. The footprint is in the form of a toroidally winding helical strip. The width of stochastic layer scales as (1/2) power of amplitude. The area of footprint scales as first power of amplitude. The physical parameters such as toroidal angle, length, and poloidal angle covered before striking, and the

  16. Cloaking two-dimensional fermions

    SciTech Connect

    Lin, De-Hone

    2011-09-15

    A cloaking theory for a two-dimensional spin-(1/2) fermion is proposed. It is shown that the spinor of the two-dimensional fermion can be cloaked perfectly through controlling the fermion's energy and mass in a specific manner moving in an effective vector potential inside a cloaking shell. Different from the cloaking of three-dimensional fermions, the scaling function that determines the invisible region is uniquely determined by a nonlinear equation. It is also shown that the efficiency of the cloaking shell is unaltered under the Aharonov-Bohm effect.

  17. Dynamics of Quarks in a 2D Flux Tube

    SciTech Connect

    Koshelkin, Andrey V.; Wong, Cheuk-Yin

    2015-01-01

    On the basis of a compactification of the (3+1) into (1+1) dimensional space-time [1], the quark states inside the 2D flux tube are studied for the case of a linear transverse confining potential. The derived states are classified by both the projections of the orbital momentum and the spin along the tube direction. The spectrum of the fermion states is evaluated. It is found that the energy eigenvalues of the quarks appear to be approximately related to the square root of the eigenvalues of the two-dimensional harmonic oscillator.

  18. Global phase diagram of two-dimensional Dirac fermions in random potentials

    NASA Astrophysics Data System (ADS)

    Ryu, S.; Mudry, C.; Ludwig, A. W. W.; Furusaki, A.

    2012-06-01

    Anderson localization is studied for two flavors of massless Dirac fermions in two-dimensional space perturbed by static disorder that is invariant under a chiral symmetry (chS) and a time-reversal symmetry (TRS) operation which, when squared, is equal either to plus or minus the identity. The former TRS (symmetry class BDI) can, for example, be realized when the Dirac fermions emerge from spinless fermions hopping on a two-dimensional lattice with a linear energy dispersion such as the honeycomb lattice (graphene) or the square lattice with π flux per plaquette. The latter TRS is realized by the surface states of three-dimensional Z2-topological band insulators in symmetry class CII. In the phase diagram parametrized by the disorder strengths, there is an infrared stable line of critical points for both symmetry classes BDI and CII. Here we discuss a “global phase diagram” in which disordered Dirac fermion systems in all three chiral symmetry classes, AIII, CII, and BDI, occur in four quadrants, sharing one corner which represents the clean Dirac fermion limit. This phase diagram also includes symmetry classes AII [e.g., appearing at the surface of a disordered three-dimensional Z2-topological band insulator in the spin-orbit (symplectic) symmetry class] and D (e.g., the random bond Ising model in two dimensions) as boundaries separating regions of the phase diagram belonging to the three chS classes AIII, BDI, and CII. Moreover, we argue that physics of Anderson localization in the CII phase can be presented in terms of a non-linear-σ model (NLσM) with a Z2-topological term. We thereby complete the derivation of topological or Wess-Zumino-Novikov-Witten terms in the NLσM description of disordered fermionic models in all ten symmetry classes relevant to Anderson localization in two spatial dimensions.

  19. Complete Boson-Fermion Model of Superconductivity

    NASA Astrophysics Data System (ADS)

    de Llano, Manuel

    2003-03-01

    The unification of the 1957 BCS theory with that of Bose-Einstein condensation (BEC) that gives roughly good first-principles transition temperature Tc predictions in either 2D or 3D for all of the ``Uemura plot'' ``exotic'' or conventional superconductors without abandoning the much-maligned phonon interaction mechanism has recently been achieved [1]-[3]. The same dynamical mechanism also allows for room-temperature superconductivity. The only condition is that one depart moderately from the perfect electron (e)-/hole (h)-Cooper-pair (CP) symmetry to which BCS (and indeed also the somewhat more general BCS-Bose crossover) theory are restricted by construction. It now becomes feasible to explain, among other things, why largely all superconductors empirically have substantially higher T_c's if their normal-state charge carriers are holes rather than electrons. A complete (in the sense that 2h-CPs are not ignored) boson-fermion model (CBFM) has been developed that reduces in the appropriate special cases to: a) ordinary BCS theory for weak boson-fermion coupling; b) the BCS-Bose ``crossover'' theory dating back to 1967; and, for no 2h-CPs to: c) the 1989 boson-fermion (BF) BEC model by T.D. Lee et al. of superconductors which without 2h-CPs is unrelated to BCS theory; d) an ideal BF binary-gas model [4] predicting nonzero BEC T_c's even in 2D; and finally to e) ordinary BEC (1925). The CBFM is a BF statistical model similar to those developed in the mid-50's by Schafroth, Blatt & Butler but which now includes 2h-CPs on an equal footing with 2e-CPs, and which unlike these models also contains the empirically well-established fermionic energy gap. [1] V.V. Tolmachev, Phys. Lett. A 266, 400 (2000). [2] M. Fortes, M.A. Solis, M. de Llano & V.V. Tolmachev, Physica C 364, 95 (2001). [3] M. de Llano & V.V. Tolmachev, Physica A 317, 546 (2003). [4] M. Casas, N.J. Davidson, M. de Llano, T.A. Mamedov, A. Puente, R.M. Quick, A. Rigo & M.A. Solis, Physica A 295, 146 (2001

  20. Novel p-wave superfluids of fermionic polar molecules

    PubMed Central

    Fedorov, A. K.; Matveenko, S. I.; Yudson, V. I.; Shlyapnikov, G. V.

    2016-01-01

    Recently suggested subwavelength lattices offer remarkable prospects for the observation of novel superfluids of fermionic polar molecules. It becomes realistic to obtain a topological p-wave superfluid of microwave-dressed polar molecules in 2D lattices at temperatures of the order of tens of nanokelvins, which is promising for topologically protected quantum information processing. Another foreseen novel phase is an interlayer p-wave superfluid of polar molecules in a bilayer geometry. PMID:27278711

  1. Covariant differential calculi on quantum symplectic superspace S Pq 1 | 2

    NASA Astrophysics Data System (ADS)

    Celik, Salih

    2017-02-01

    A unitary orthosymplectic quantum supergroup is introduced. Two covariant differential calculi on the quantum superspace S Pq 1 | 2 are presented. The h-deformed symplectic superspaces via a contraction of the q-deformed symplectic superspaces are obtained. A new h-deformation of the Heisenberg superalgebra is given.

  2. Modified symplectic schemes with nearly-analytic discrete operators for acoustic wave simulations

    NASA Astrophysics Data System (ADS)

    Liu, Shaolin; Yang, Dinghui; Lang, Chao; Wang, Wenshuai; Pan, Zhide

    2017-04-01

    Using a structure-preserving algorithm significantly increases the computational efficiency of solving wave equations. However, only a few explicit symplectic schemes are available in the literature, and the capabilities of these symplectic schemes have not been sufficiently exploited. Here, we propose a modified strategy to construct explicit symplectic schemes for time advance. The acoustic wave equation is transformed into a Hamiltonian system. The classical symplectic partitioned Runge-Kutta (PRK) method is used for the temporal discretization. Additional spatial differential terms are added to the PRK schemes to form the modified symplectic methods and then two modified time-advancing symplectic methods with all of positive symplectic coefficients are then constructed. The spatial differential operators are approximated by nearly-analytic discrete (NAD) operators, and we call the fully discretized scheme modified symplectic nearly analytic discrete (MSNAD) method. Theoretical analyses show that the MSNAD methods exhibit less numerical dispersion and higher stability limits than conventional methods. Three numerical experiments are conducted to verify the advantages of the MSNAD methods, such as their numerical accuracy, computational cost, stability, and long-term calculation capability.

  3. Canonical and symplectic analysis for three dimensional gravity without dynamics

    NASA Astrophysics Data System (ADS)

    Escalante, Alberto; Osmart Ochoa-Gutiérrez, H.

    2017-03-01

    In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev-Jackiw symplectic approach is developed; we report the complete set of Faddeev-Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev-Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev-Jackiw and Dirac's formalism are briefly discussed.

  4. Higher-order symplectic Born-Oppenheimer molecular dynamics

    SciTech Connect

    Niklasson, Anders; Bock, Nicolas; Challacombe, Matt; Odell, Anders; Delin, Anna; Johansson, Borje

    2009-01-01

    The extended Lagrangian formulation of time-reversible Born-Oppenheimer molecular dynamics (TR-BOMD) enables the use of geometric integrators in the propagation of both the nuclear and the electronic degrees of freedom on the Born-Oppenheimer potential energy surface. Different symplectic integrators up to the 6th order have been adapted and optimized to TR-BOMD in the framework of ab initio self-consistent-field theory. It is shown how the accuracy can be significantly improved compared to a conventional Verlet integration at the same level of computational cost, in particular for the case of very high accuracy requirements.

  5. Method to render second order beam optics programs symplectic

    SciTech Connect

    Douglas, D.; Servranckx, R.V.

    1984-10-01

    We present evidence that second order matrix-based beam optics programs violate the symplectic condition. A simple method to avoid this difficulty, based on a generating function approach to evaluating transfer maps, is described. A simple example illustrating the non-symplectricity of second order matrix methods, and the effectiveness of our solution to the problem, is provided. We conclude that it is in fact possible to bring second order matrix optics methods to a canonical form. The procedure for doing so has been implemented in the program DIMAT, and could be implemented in programs such as TRANSPORT and TURTLE, making them useful in multiturn applications. 15 refs.

  6. Dynamical symmetries for fermions

    SciTech Connect

    Guidry, M.

    1989-01-01

    An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E{sub 2}) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs.

  7. Dirac Fermions in Borophene

    NASA Astrophysics Data System (ADS)

    Feng, Baojie; Sugino, Osamu; Liu, Ro-Ya; Zhang, Jin; Yukawa, Ryu; Kawamura, Mitsuaki; Iimori, Takushi; Kim, Howon; Hasegawa, Yukio; Li, Hui; Chen, Lan; Wu, Kehui; Kumigashira, Hiroshi; Komori, Fumio; Chiang, Tai-Chang; Meng, Sheng; Matsuda, Iwao

    2017-03-01

    Honeycomb structures of group IV elements can host massless Dirac fermions with nontrivial Berry phases. Their potential for electronic applications has attracted great interest and spurred a broad search for new Dirac materials especially in monolayer structures. We present a detailed investigation of the β12 sheet, which is a borophene structure that can form spontaneously on a Ag(111) surface. Our tight-binding analysis revealed that the lattice of the β12 sheet could be decomposed into two triangular sublattices in a way similar to that for a honeycomb lattice, thereby hosting Dirac cones. Furthermore, each Dirac cone could be split by introducing periodic perturbations representing overlayer-substrate interactions. These unusual electronic structures were confirmed by angle-resolved photoemission spectroscopy and validated by first-principles calculations. Our results suggest monolayer boron as a new platform for realizing novel high-speed low-dissipation devices.

  8. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  9. Several fourth-order force gradient symplectic algorithms

    NASA Astrophysics Data System (ADS)

    Xu, Jia; Wu, Xin

    2010-02-01

    By adding force gradient operators to symmetric compositions, we build a set of explicit fourth-order force gradient symplectic algorithms, including those of Chin and coworkers, for a separable Hamiltonian system with quadratic kinetic energy T and potential energy V. They are extended to solve a gravitational n-body Hamiltonian system that can be split into a Keplerian part H0 and a perturbation part H1 in Jacobi coordinates. It is found that the accuracy of each gradient scheme is greatly superior to that of the standard fourth-order Forest-Ruth symplectic integrator in T + V-type Hamiltonian decomposition, but they are both almost equivalent in the mean longitude and the relative position for H0 + H1-type decomposition. At the same time, there are no typical differences between the numerical performances of these gradient algorithms, either in the splitting of T + V or in the splitting of H0 + H1. In particular, compared with the former decomposition, the latter can dramatically improve the numerical accuracy. Because this extension provides a fast and high-precision method to simulate various orbital motions of n-body problems, it is worth recommending for practical computation.

  10. An hp symplectic pseudospectral method for nonlinear optimal control

    NASA Astrophysics Data System (ADS)

    Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong

    2017-01-01

    An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.

  11. Comment on "Symplectic integration of magnetic systems" by Stephen D. Webb [J. Comput. Phys. 270 (2014) 570-576

    NASA Astrophysics Data System (ADS)

    Zhang, Shuangxi; Jia, Yuesong; Sun, Qizhi

    2015-02-01

    Webb [1] proposed a method to get symplectic integrators of magnetic systems by Taylor expanding the discrete Euler-Lagrangian equations (DEL) which resulted from variational symplectic method by making the variation of the discrete action [2], and approximating the results to the order of O (h2), where h is the time step. And in that paper, Webb thought that the integrators obtained by that method are symplectic ones, especially, he treated Boris integrator (BI) as the symplectic one. However, we have questions about Webb's results. Theoretically the transformation of phase-space coordinates between two adjacent points induced by symplectic algorithm should conserve a symplectic 2-form [2-5]. As proved in Refs. [2,3], the transformations induced by the standard symplectic integrator derived from Hamilton and the variational symplectic integrator (VSI) [2,6] from Lagrangian should conserve a symplectic 2-forms. But the approximation of VSI to O (h2) obtained by that paper is hard to conserve a symplectic 2-form, contrary to the claim of [1]. In the next section, we will use BI as an example to support our point and will prove BI not to be a symplectic one but an integrator conserving discrete phase-space volume.

  12. Explicit symplectic algorithms based on generating functions for charged particle dynamics.

    PubMed

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H(x,p)=p_{i}f(x) or H(x,p)=x_{i}g(p). Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.

  13. Explicit symplectic algorithms based on generating functions for charged particle dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H (x ,p ) =pif (x ) or H (x ,p ) =xig (p ) . Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.

  14. A hybrid symplectic PIC/spectral scheme for one-dimensional electrostatic simulations

    SciTech Connect

    Doxas, I.; Cary, J.R.

    1996-12-31

    We develop a hybrid PIC/spectral integration scheme based on the explicit symplectic integrator of reference. We find that for low-accuracy short-term integration (5% accuracy over {omega}{sub p}t = 500) the second-order symplectic method is most efficient, outperforming the fourth-order method by 65% and non-symplectic methods such as Runge-Kutta, Bulirsch-Stoer and {open_quote}naive{close_quote} leap-frog by a factor of 3-10. For high-accuracy short-term integration (10{sup -4} over w{sub p}t = 500) the second-order symplectic method is 20% more efficient than both the fourth-order method and Bulirsch-Stoer, and a factor of 8-20 more efficient than Runge-Kutta and {open_quote}naive{close_quote} leap-frog. For long-term integration (w{sub p}t = 10{sup 5}) the second order symplectic method outperforms all non-symplectic methods by a factor of 8-20. We also show that the symplectic method is more robust to roundoff error than all other methods we tested, and that for simulations with a small number of particles per wavelength (usuall in plasma simulations) cubic spline interpolation is more efficient that linear interpolation.

  15. Spontaneous compactification and chiral fermions

    NASA Astrophysics Data System (ADS)

    Frampton, Paul H.; Yamamoto, Katsuji

    The question is addressed of which chiral fermions survive in spontaneously compactified solutions of the generalized Einstein-Yang-Mills field equations for higher even space-time dimensions. First, we study the allowed fermion representations of SU( N) which have no gauge or gravitational chiral anomalies in arbitrary even dimension and show how to find all such representations for the case of totally antisymmetric SU( N) tensors. Second, we look explicitly at monopole-induced spontaneous compactification in six dimensions; here, interesting chiral fermions in four dimensions do not occur easily but instead require highly artificial assignments of quantum numbers under the U(1) gauge group associated with the monopole. Finally, we consider instanton-induced spontaneous compactification in eight dimensions; for this case, we may readily obtain acceptable chiral fermions in four dimensions, including Georgi's three-family SU(11) model.

  16. Observing remnants by fermions' tunneling

    SciTech Connect

    Chen, D.Y.; Wu, H.W.; Yang, H. E-mail: iverwu@uestc.edu.cn

    2014-03-01

    The standard Hawking formula predicts the complete evaporation of black holes. In this paper, we introduce effects of quantum gravity into fermions' tunneling from Reissner-Nordstrom and Kerr black holes. The quantum gravity effects slow down the increase of Hawking temperatures. This property naturally leads to a residue mass in black hole evaporation. The corrected temperatures are affected by the quantum numbers of emitted fermions. Meanwhile, the temperature of the Kerr black hole is a function of θ due to the rotation.

  17. Fermions as generalized Ising models

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2017-04-01

    We establish a general map between Grassmann functionals for fermions and probability or weight distributions for Ising spins. The equivalence between the two formulations is based on identical transfer matrices and expectation values of products of observables. The map preserves locality properties and can be realized for arbitrary dimensions. We present a simple example where a quantum field theory for free massless Dirac fermions in two-dimensional Minkowski space is represented by an asymmetric Ising model on a euclidean square lattice.

  18. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  19. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  20. Majorana fermions in a box

    NASA Astrophysics Data System (ADS)

    Al-Hashimi, M. H.; Shalaby, A. M.; Wiese, U.-J.

    2017-03-01

    Motivated by potential applications to ultracold matter, we perform a theoretical study of Majorana fermions confined to a finite volume, whose boundary conditions are characterized by self-adjoint extension parameters. While the boundary conditions for Dirac fermions in (1 +1 )-d are characterized by a 1-parameter family, λ =-λ*, of self-adjoint extensions, for Majorana fermions λ is restricted to ±i . Based on this result, we compute the frequency spectrum of Majorana fermions confined to a 1-d interval. The boundary conditions for Dirac fermions confined to a 3-d region of space are characterized by a 4-parameter family of self-adjoint extensions, which is reduced to two distinct 1-parameter families for Majorana fermions. We also consider the problems related to the quantum mechanical interpretation of the Majorana equation as a single-particle equation. Furthermore, the equation is related to a relativistic Schrödinger equation that does not suffer from these problems. Here we restrict ourselves to theoretical considerations without yet focusing on concrete cold matter applications.

  1. Symplectic multiparticle tracking model for self-consistent space-charge simulation

    NASA Astrophysics Data System (ADS)

    Qiang, Ji

    2017-01-01

    Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.

  2. Fermions and gravitational gyrotropy

    NASA Astrophysics Data System (ADS)

    Helfer, Adam D.

    2016-12-01

    In conventional general relativity without torsion, high-frequency gravitational waves couple to the chiral number density of spin one-half quanta: the polarization of the waves is rotated by 2 π N5ℓPl2, where N5 is the chiral column density and ℓPl is the Planck length. This means that if a primordial distribution of gravitational waves with E-E or B-B correlations passed through a chiral density of fermions in the very early Universe, an E-B correlation will be generated. This in turn will give rise to E-B and T-B correlations in the cosmic microwave background (CMB). Less obviously but more primitively, the condition Albrecht called "cosmic coherence" would be violated, changing the restrictions on the class of admissible cosmological gravitational waves. This altered class of waves would, generally speaking, probe earlier physics than do the conventional waves; their effects on the CMB would be most pronounced for low (≲100 ) multipoles. Rough estimates indicate that if the tensor-to-scalar ratio is less than about 10-2, it will be hard to constrain a spatially homogeneous primordial N5 by present data.

  3. Symplectic maps and chromatic optics in particle accelerators

    SciTech Connect

    Cai, Yunhai

    2015-07-06

    Here, we have applied the nonlinear map method to comprehensively characterize the chromatic optics in particle accelerators. Our approach is built on the foundation of symplectic transfer maps of magnetic elements. The chromatic lattice parameters can be transported from one element to another by the maps. We also introduce a Jacobian operator that provides an intrinsic linkage between the maps and the matrix with parameter dependence. The link allows us to directly apply the formulation of the linear optics to compute the chromatic lattice parameters. As an illustration, we analyze an alternating-gradient cell with nonlinear sextupoles, octupoles, and decapoles and derive analytically their settings for the local chromatic compensation. Finally, the cell becomes nearly perfect up to the third-order of the momentum deviation.

  4. Symplectic maps and chromatic optics in particle accelerators

    DOE PAGES

    Cai, Yunhai

    2015-07-06

    Here, we have applied the nonlinear map method to comprehensively characterize the chromatic optics in particle accelerators. Our approach is built on the foundation of symplectic transfer maps of magnetic elements. The chromatic lattice parameters can be transported from one element to another by the maps. We also introduce a Jacobian operator that provides an intrinsic linkage between the maps and the matrix with parameter dependence. The link allows us to directly apply the formulation of the linear optics to compute the chromatic lattice parameters. As an illustration, we analyze an alternating-gradient cell with nonlinear sextupoles, octupoles, and decapoles andmore » derive analytically their settings for the local chromatic compensation. Finally, the cell becomes nearly perfect up to the third-order of the momentum deviation.« less

  5. Symplectic maps for the n-body problem - Stability analysis

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack; Holman, Matthew

    1992-01-01

    The stability of new symplectic n-body maps is examined from the point of view of nonlinear dynamics. The resonances responsible for the principal artifacts are identified. These are resonances between the stepsize and the difference of mean motions between pairs of planets. For larger stepsizes resonant perturbations are evident in the variation of the energy of the system corresponding to these stepsize resonances. It is shown that the principal instability of the method can be predicted and corresponds to the overlap of the stepsize resonances. It is noted that the analysis suggests that other artifacts will occur. For example, the overlap of a stepsize resonance with a resonance of the actual system may also give a region of chaotic behavior that is an artifact. It is pointed out that the fact that the principal artifacts corresponds to a particular set of stepsize resonances suggests that it may be possible to perturbatively remove the effect when the stepsize resonances are nonoverlapping.

  6. Symplectic maps for the n-body problem

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack; Holman, Matthew

    1991-01-01

    The present study generalizes the mapping method of Wisdom (1982) to encompass all gravitational n-body problems with a dominant central mass. The rationale for the generalized mapping method is discussed as well as details for the mapping for the n-body problem. Some refinements of the method are considered, and the relationship of the mapping method to other symplectic integration methods is shown. The method is used to compute the evolution of the outer planets for a billion years. The resulting evolution is compared to the 845 million year evolution of the outer planets performed on the Digital Orerry using standard numerical integration techniques. This calculation provides independent numerical confirmation of the result of Sussman and Wisdom (1988) that the motion of the planet Pluto is chaotic.

  7. Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform

    PubMed Central

    Hausel, Tamás

    2006-01-01

    A Fourier transform technique is introduced for counting the number of solutions of holomorphic moment map equations over a finite field. This technique in turn gives information on Betti numbers of holomorphic symplectic quotients. As a consequence, simple unified proofs are obtained for formulas of Poincaré polynomials of toric hyperkähler varieties (recovering results of Bielawski–Dancer and Hausel–Sturmfels), Poincaré polynomials of Hilbert schemes of points and twisted Atiyah–Drinfeld–Hitchin–Manin (ADHM) spaces of instantons on ℂ2 (recovering results of Nakajima–Yoshioka), and Poincaré polynomials of all Nakajima quiver varieties. As an application, a proof of a conjecture of Kac on the number of absolutely indecomposable representations of a quiver is announced. PMID:16606857

  8. Multipole Vortex Blobs (MVB): Symplectic Geometry and Dynamics

    NASA Astrophysics Data System (ADS)

    Holm, Darryl D.; Jacobs, Henry O.

    2017-03-01

    Vortex blob methods are typically characterized by a regularization length scale, below which the dynamics are trivial for isolated blobs. In this article, we observe that the dynamics need not be trivial if one is willing to consider distributional derivatives of Dirac delta functionals as valid vorticity distributions. More specifically, a new singular vortex theory is presented for regularized Euler fluid equations of ideal incompressible flow in the plane. We determine the conditions under which such regularized Euler fluid equations may admit vorticity singularities which are stronger than delta functions, e.g., derivatives of delta functions. We also describe the symplectic geometry associated with these augmented vortex structures, and we characterize the dynamics as Hamiltonian. Applications to the design of numerical methods similar to vortex blob methods are also discussed. Such findings illuminate the rich dynamics which occur below the regularization length scale and enlighten our perspective on the potential for regularized fluid models to capture multiscale phenomena.

  9. Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform

    NASA Astrophysics Data System (ADS)

    Hausel, Tamás

    2006-04-01

    A Fourier transform technique is introduced for counting the number of solutions of holomorphic moment map equations over a finite field. This technique in turn gives information on Betti numbers of holomorphic symplectic quotients. As a consequence, simple unified proofs are obtained for formulas of Poincaré polynomials of toric hyperkähler varieties (recovering results of Bielawski-Dancer and Hausel-Sturmfels), Poincaré polynomials of Hilbert schemes of points and twisted Atiyah-Drinfeld-Hitchin-Manin (ADHM) spaces of instantons on 2 (recovering results of Nakajima-Yoshioka), and Poincaré polynomials of all Nakajima quiver varieties. As an application, a proof of a conjecture of Kac on the number of absolutely indecomposable representations of a quiver is announced. quiver varieties | Weyl-Kac character formula

  10. Studying fermionic ghost imaging with independent photons

    NASA Astrophysics Data System (ADS)

    Liu, Jianbin; Zhou, Yu; Zheng, Huaibin; Chen, Hui; Li, Fu-li; Xu, Zhuo

    2016-12-01

    Ghost imaging with thermal fermions is calculated based on two-particle interference in Feynman's path integral theory. It is found that ghost imaging with thermal fermions can be simulated by ghost imaging with thermal bosons and classical particles. Photons in pseudothermal light are employed to experimentally study fermionic ghost imaging. Ghost imaging with thermal bosons and fermions is discussed based on the point-to-point (spot) correlation between the object and image planes. The employed method offers an efficient guidance for future ghost imaging with real thermal fermions, which may also be generalized to study other second-order interference phenomena with fermions.

  11. Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model.

    PubMed

    Chen, Cheng-Chien; Muechler, Lukas; Car, Roberto; Neupert, Titus; Maciejko, Joseph

    2016-08-26

    We study the two-dimensional (2D) Hubbard model using exact diagonalization for spin-1/2 fermions on the triangular and honeycomb lattices decorated with a single hexagon per site. In certain parameter ranges, the Hubbard model maps to a quantum compass model on those lattices. On the triangular lattice, the compass model exhibits collinear stripe antiferromagnetism, implying d-density wave charge order in the original Hubbard model. On the honeycomb lattice, the compass model has a unique, quantum disordered ground state that transforms nontrivially under lattice reflection. The ground state of the Hubbard model on the decorated honeycomb lattice is thus a 2D fermionic symmetry-protected topological phase. This state-protected by time-reversal and reflection symmetries-cannot be connected adiabatically to a free-fermion topological phase.

  12. Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model

    SciTech Connect

    Chen, Cheng-Chien; Muechler, Lukas; Car, Roberto; Neupert, Titus; Maciejko, Joseph

    2016-08-25

    We study the two-dimensional (2D) Hubbard model using exact diagonalization for spin-1/2 fermions on the triangular and honeycomb lattices decorated with a single hexagon per site. In certain parameter ranges, the Hubbard model maps to a quantum compass model on those lattices. On the triangular lattice, the compass model exhibits collinear stripe antiferromagnetism, implying d-density wave charge order in the original Hubbard model. On the honeycomb lattice, the compass model has a unique, quantum disordered ground state that transforms nontrivially under lattice reflection. The ground state of the Hubbard model on the decorated honeycomb lattice is thus a 2D fermionic symmetry-protected topological phase. This state—protected by time-reversal and reflection symmetries—cannot be connected adiabatically to a free-fermion topological phase.

  13. Fermi Blobs and the Symplectic Camel: A Geometric Picture of Quantum States

    NASA Astrophysics Data System (ADS)

    Gossona, Maurice A. De

    We have explained in previous work the correspondence between the standard squeezed coherent states of quantum mechanics, and quantum blobs, which are the smallest phase space units compatible with the uncertainty principle of quantum mechanics and having the symplectic group as a group of symmetries. In this work, we discuss the relation between quantum blobs and a certain level set (which we call "Fermi blob") introduced by Enrico Fermi in 1930. Fermi blobs allows us to extend our previous results not only to the excited states of the generalized harmonic oscillator in n dimensions, but also to arbitrary quadratic Hamiltonians. As is the case for quantum blobs, we can evaluate Fermi blobs using a topological notion, related to the uncertainty principle, the symplectic capacity of a phase space set. The definition of this notion is made possible by Gromov's symplectic non-squeezing theorem, nicknamed the "principle of the symplectic camel".

  14. Discrete spin structures and commuting projector models for two-dimensional fermionic symmetry-protected topological phases

    NASA Astrophysics Data System (ADS)

    Tarantino, Nicolas; Fidkowski, Lukasz

    2016-09-01

    We construct exactly solved commuting projector Hamiltonian lattice models for all known (2+1)-dimensional (2+1D) fermionic symmetry protected topological phases (SPTs) with on-site unitary symmetry group Gf=G ×Z2f , where G is finite and Z2f is the fermion parity symmetry. In particular, our models transcend the class of group supercohomology models, which realize some, but not all, fermionic SPTs in 2+1D. A natural ingredient in our construction is a discrete form of the spin structure of the 2D spatial surface M on which our model is defined, namely a "Kasteleyn" orientation of a certain graph associated with the lattice. As a special case, our construction yields commuting projector models for all eight members of the Z8 classification of 2D fermionic SPTs with G =Z2 .

  15. P T -Symmetric Real Dirac Fermions and Semimetals

    NASA Astrophysics Data System (ADS)

    Zhao, Y. X.; Lu, Y.

    2017-02-01

    Recently, Weyl fermions have attracted increasing interest in condensed matter physics due to their rich phenomenology originated from their nontrivial monopole charges. Here, we present a theory of real Dirac points that can be understood as real monopoles in momentum space, serving as a real generalization of Weyl fermions with the reality being endowed by the P T symmetry. The real counterparts of topological features of Weyl semimetals, such as Nielsen-Ninomiya no-go theorem, 2D subtopological insulators, and Fermi arcs, are studied in the P T symmetric Dirac semimetals and the underlying reality-dependent topological structures are discussed. In particular, we construct a minimal model of the real Dirac semimetals based on recently proposed cold atom experiments and quantum materials about P T symmetric Dirac nodal line semimetals.

  16. PT-Symmetric Real Dirac Fermions and Semimetals.

    PubMed

    Zhao, Y X; Lu, Y

    2017-02-03

    Recently, Weyl fermions have attracted increasing interest in condensed matter physics due to their rich phenomenology originated from their nontrivial monopole charges. Here, we present a theory of real Dirac points that can be understood as real monopoles in momentum space, serving as a real generalization of Weyl fermions with the reality being endowed by the PT symmetry. The real counterparts of topological features of Weyl semimetals, such as Nielsen-Ninomiya no-go theorem, 2D subtopological insulators, and Fermi arcs, are studied in the PT symmetric Dirac semimetals and the underlying reality-dependent topological structures are discussed. In particular, we construct a minimal model of the real Dirac semimetals based on recently proposed cold atom experiments and quantum materials about PT symmetric Dirac nodal line semimetals.

  17. Anatomy of fermionic entanglement and criticality in Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Meichanetzidis, K.; Cirio, M.; Pachos, J. K.; Lahtinen, V.

    2016-09-01

    We analyze in detail the effect of nontrivial band topology on the area-law behavior of the entanglement entropy in Kitaev's honeycomb model. By mapping the translationally invariant 2D spin model onto 1D fermionic subsystems, we identify those subsystems responsible for universal entanglement contributions in the gapped phases and those responsible for critical entanglement scaling in the gapless phases. For the gapped phases, we analytically show how the topological edge states contribute to the entanglement entropy and provide a universal lower bound for it. For the gapless semimetallic phases and topological phase transitions, the identification of the critical subsystems shows that they fall always into the Ising or the XY universality classes. As our study concerns the fermionic degrees of freedom in the honeycomb model, qualitatively similar results are expected to apply also to generic topological insulators and superconductors.

  18. Practical Symplectic Methods with Time Transformation for the Few-Body Problem

    NASA Astrophysics Data System (ADS)

    Mikkola, Seppo

    1997-02-01

    The use of the extended phase space and time transformations for constructing efficient symplectic algorithms for the investigation of long term behavior of hierarchical few-body systems is discussed. Numerical experiments suggest that the time-transformed generalized leap-frog, combined with symplectic correctors, is one of the most efficient methods for such studies. Applications extend from perturbed two-body motion to hierarchical many-body systems with large eccentricities.

  19. A symplectic Runge Kutta Nyström method with minimal phase-lag

    NASA Astrophysics Data System (ADS)

    van de Vyver, H.

    2007-07-01

    In this Letter we introduce a symplectic explicit RKN method for Hamiltonian systems with periodical solutions. The method has algebraic order three and phase-lag order six at a cost of three function evaluations per step. Numerical experiments show the relevance of the developed algorithm. It is found that the new method is much more efficient than the standard symplectic fourth-order method [M.P. Calvo, J.M. Sanz-Serna, SIAM J. Sci. Comput. 14 (1993) 936].

  20. Fermion localization on thick branes

    SciTech Connect

    Melfo, Alejandra; Pantoja, Nelson; Tempo, Jose David

    2006-02-15

    We consider chiral fermion confinement in scalar thick branes, which are known to localize gravity, coupled through a Yukawa term. The conditions for the confinement and their behavior in the thin-wall limit are found for various different BPS branes, including double walls and branes interpolating between different AdS{sub 5} spacetimes. We show that only one massless chiral mode is localized in all these walls, whenever the wall thickness is keep finite. We also show that, independently of wall's thickness, chiral fermionic modes cannot be localized in dS{sub 4} walls embedded in a M{sub 5} spacetime. Finally, massive fermions in double wall spacetimes are also investigated. We find that, besides the massless chiral mode localization, these double walls support quasilocalized massive modes of both chiralities.

  1. Local spin operators for fermion simulations

    NASA Astrophysics Data System (ADS)

    Whitfield, James D.; Havlíček, Vojtěch; Troyer, Matthias

    2016-09-01

    Digital quantum simulation of fermionic systems is important in the context of chemistry and physics. Simulating fermionic models on general purpose quantum computers requires imposing a fermionic algebra on qubits. The previously studied Jordan-Wigner and Bravyi-Kitaev transformations are two techniques for accomplishing this task. Here, we reexamine an auxiliary fermion construction which maps fermionic operators to local operators on qubits. The local simulation is performed by relaxing the requirement that the number of qubits should match the number of single-particle states. Instead, auxiliary sites are introduced to enable nonconsecutive fermionic couplings to be simulated with constant low-rank tensor products on qubits. The additional number of auxiliary qubits required per fermionic degree of freedom depends only on the degree of connectivity of the Hamiltonian. We connect the auxiliary fermion construction to topological models and give examples of the construction.

  2. Fermion production during and after axion inflation

    SciTech Connect

    Adshead, Peter; Sfakianakis, Evangelos I.

    2015-11-11

    We study derivatively coupled fermions in axion-driven inflation, specifically m{sub ϕ}{sup 2}ϕ{sup 2} and monodromy inflation, and calculate particle production during the inflationary epoch and the post-inflationary axion oscillations. During inflation, the rolling axion acts as an effective chemical potential for helicity which biases the gravitational production of one fermion helicity over the other. This mechanism allows for efficient gravitational production of heavy fermion states that would otherwise be highly suppressed. Following inflation, the axion oscillates and fermions with both helicities are produced as the effective frequency of the fermion field changes non-adiabatically. For certain values of the fermion mass and axion-fermion coupling strength, the two helicity states are produced asymmetrically, resulting in unequal number-densities of left- and right-helicity fermions.

  3. Hubbard Model study of Off Diagonally Confined fermions in a 2D Optical Lattice

    NASA Astrophysics Data System (ADS)

    Cone, Dave; Chiesa, Simone; Scalettar, Richard; Batrouni, George

    2010-03-01

    We report Quantum Monte Carlo simulations of a Hubbard Hamiltonian which incorporates a proposed new method for confining atoms in an optical lattice employing an inhomogeneous array of hopping matrix elements which trap atoms by going to zero at the lattice edges. This has been termed ``Off Diagonal Confinement (ODC)'' [1] to distinguish it from the more conventional use of a parabolic trap coupling to (diagonal) density operators. It has the advantage of producing systems which, while still being inhomogeneous, are entirely in the Mott phase, and allow simulations which are free of the sign problem at low temperatures. We analyze the effects of using ODC traps on the local density, density fluctuation, spin, and pairing correlation functions. Finally, we will discuss the advantages and importance of this new confinement technique for modeling correlated systems. Research supported by the Department of Energy, Office of Science SCIDAC program, DOE-DE-FC0206ER25793. [1] V.G. Rousseau et al., arXiv:0909.3543

  4. A Green's function decoupling scheme for the Edwards fermion-boson model.

    PubMed

    Edwards, D M; Ejima, S; Alvermann, A; Fehske, H

    2010-11-03

    Holes in a Mott insulator are represented by spinless fermions in the fermion-boson model introduced by Edwards. Although the physically interesting regime is for low to moderate fermion density, the model has interesting properties over the whole density range. It has previously been studied at half-filling in the one-dimensional (1D) case by numerical methods, in particular using exact diagonalization and the density matrix renormalization group (DMRG). In the present study the one-particle Green's function is calculated analytically by means of a decoupling scheme for the equations of motion, valid for arbitrary density in 1D, 2D and 3D with fairly large boson energy and zero boson relaxation parameter. The Green's function is used to compute some ground state properties, and the one-fermion spectral function, for fermion densities n = 0.1, 0.5 and 0.9 in the 1D case. The results are generally in good agreement with numerical results obtained using the DMRG and dynamical DMRG, and new light is shed on the nature of the ground state at different fillings. The Green's function approximation is sufficiently successful in 1D to justify future application to the 2D and 3D cases.

  5. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  6. Valleytronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong

    2016-11-01

    Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

  7. Constructing entanglement measures for fermions

    NASA Astrophysics Data System (ADS)

    Johansson, Markus; Raissi, Zahra

    2016-10-01

    In this paper we describe a method for finding polynomial invariants under stochastic local operations and classical communication (SLOCC) for a system of delocalized fermions shared between different parties, with global particle-number conservation as the only constraint. These invariants can be used to construct entanglement measures for different types of entanglement in such a system. It is shown that the invariants, and the measures constructed from them, take a nonzero value only if the state of the system allows for the observation of Bell-nonlocal correlations. Invariants of this kind are constructed for systems of two and three spin-1/2 fermions and examples of maximally entangled states are given that illustrate the different types of entanglement distinguished by the invariants. A general condition for the existence of SLOCC invariants and their associated measures is given as a relation between the number of fermions, their spin, and the number of spatial modes of the system. In addition, the effect of further constraints on the system, including the localization of a subset of the fermions, is discussed. Finally, a hybrid Ising-Hubbard Hamiltonian is constructed for which the ground state of a three-site chain exhibits a high degree of entanglement at the transition between a regime dominated by on-site interaction and a regime dominated by Ising interaction. This entanglement is well described by a measure constructed by the introduced method.

  8. Nonlinear fermions and coherent states

    NASA Astrophysics Data System (ADS)

    Trifonov, D. A.

    2012-06-01

    Nonlinear fermions of degree n (n-fermions) are introduced as particles with creation and annihilation operators obeying the simple nonlinear anticommutation relation AA† + A†nAn = 1. The (n + 1)th-order nilpotency of these operators follows from the existence of unique A-vacuum. Supposing appropriate (n + 1)th-order nilpotent para-Grassmann variables and integration rules the sets of n-fermion number states, ‘right’ and ‘left’ ladder operator coherent states (CS) and displacement-operator-like CS are constructed. The (n + 1) × (n + 1) matrix realization of the related para-Grassmann algebra is provided. General (n + 1)th-order nilpotent ladder operators of finite-dimensional systems are expressed as polynomials in terms of n-fermion operators. Overcomplete sets of (normalized) ‘right’ and ‘left’ eigenstates of such general ladder operators are constructed and their properties are briefly discussed. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  9. Wilson fermions at finite temperature

    SciTech Connect

    Creutz, M.

    1996-09-17

    The author conjectures on the phase structure expected for lattice gauge theory with two flavors of Wilson fermions, concentrating on large values of the hopping parameter. Numerous phases are expected, including the conventional confinement and deconfinement phases, as well as an Aoki phase with spontaneous breaking of flavor and parity and a large hopping phase corresponding to negative quark masses.

  10. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  11. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  12. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  13. Configurations of Points and the Symplectic Berry-Robbins Problem

    NASA Astrophysics Data System (ADS)

    Malkoun, Joseph

    2014-12-01

    We present a new problem on configurations of points, which is a new version of a similar problem by Atiyah and Sutcliffe, except it is related to the Lie group operatorname{Sp}(n), instead of the Lie group operatorname{U}(n). Denote by h a Cartan algebra of operatorname{Sp}(n), and Δ the union of the zero sets of the roots of operatorname{Sp}(n) tensored with R^3, each being a map from h otimes R^3 to R^3. We wish to construct a map (h otimes R^3) backslash Δ to operatorname{Sp}(n)/T^n which is equivariant under the action of the Weyl group W_n of operatorname{Sp}(n) (the symplectic Berry-Robbins problem). Here, the target space is the flag manifold of operatorname{Sp}(n), and T^n is the diagonal n-torus. The existence of such a map was proved by Atiyah and Bielawski in a more general context. We present an explicit smooth candidate for such an equivaria! nt map, which would be a genuine map provided a certain linear independence conjecture holds. We prove the linear independence conjecture for n=2.

  14. High-performance functional Renormalization Group calculations for interacting fermions

    NASA Astrophysics Data System (ADS)

    Lichtenstein, J.; Sánchez de la Peña, D.; Rohe, D.; Di Napoli, E.; Honerkamp, C.; Maier, S. A.

    2017-04-01

    We derive a novel computational scheme for functional Renormalization Group (fRG) calculations for interacting fermions on 2D lattices. The scheme is based on the exchange parametrization fRG for the two-fermion interaction, with additional insertions of truncated partitions of unity. These insertions decouple the fermionic propagators from the exchange propagators and lead to a separation of the underlying equations. We demonstrate that this separation is numerically advantageous and may pave the way for refined, large-scale computational investigations even in the case of complex multiband systems. Furthermore, on the basis of speedup data gained from our implementation, it is shown that this new variant facilitates efficient calculations on a large number of multi-core CPUs. We apply the scheme to the t ,t‧ Hubbard model on a square lattice to analyze the convergence of the results with the bond length of the truncation of the partition of unity. In most parameter areas, a fast convergence can be observed. Finally, we compare to previous results in order to relate our approach to other fRG studies.

  15. Fermion fractionalization to Majorana fermions in a dimerized Kitaev superconductor

    NASA Astrophysics Data System (ADS)

    Wakatsuki, Ryohei; Ezawa, Motohiko; Tanaka, Yukio; Nagaosa, Naoto

    2014-07-01

    We study theoretically a one-dimensional dimerized Kitaev superconductor model which belongs to BDI class with time-reversal, particle-hole, and chiral symmetries. There are two sources of the particle-hole symmetry, i.e., the sublattice symmetry and superconductivity. Accordingly, we define two types of topological numbers with respect to the chiral indices of normal and Majorana fermions, which offers an ideal laboratory to examine the interference between the two different physics within the same symmetry class. Phase diagram, zero-energy bound states, and conductance at normal metal/superconductor junction of this model are unveiled from this viewpoint. Especially, the electron fractionalization to the Majorana fermions showing the splitting of the local density of states is realized at the soliton of the dimerization in this model.

  16. Fermion Fractionalization to Majorana Fermions in Dimerized Kitaev Superconductor

    NASA Astrophysics Data System (ADS)

    Wakatsuki, Ryohei; Ezawa, Motohiko; Tanaka, Yukio; Nagaosa, Naoto

    2015-03-01

    We study theoretically a one-dimensional dimerized Kitaev superconductor model which belongs to BDI class with time-reversal, particle-hole, and chiral symmetries. There are two sources of the particle-hole symmetry, i.e., the sublattice symmetry and superconductivity. Accordingly, we define two types of topological numbers with respect to the chiral indices of normal and Majorana fermions, which offers an ideal laboratory to examine the interference between the two different physics within the same symmetry class. Phase diagram, zero-energy bound states, and conductance at normal metal/superconductor junction of this model are unveiled from this viewpoint. Especially, the electron fractionalization to the Majorana fermions showing the splitting of the local density of states is realized at the soliton of the dimerization in this model.

  17. Symplectic and Killing symmetries of AdS3 gravity: holographic vs boundary gravitons

    NASA Astrophysics Data System (ADS)

    Compère, G.; Mao, P.; Seraj, A.; Sheikh-Jabbari, M. M.

    2016-01-01

    The set of solutions to the AdS3 Einstein gravity with Brown-Henneaux boundary conditions is known to be a family of metrics labeled by two arbitrary periodic functions, respectively left and right-moving. It turns out that there exists an appropriate presymplectic form which vanishes on-shell. This promotes this set of metrics to a phase space in which the Brown-Henneaux asymptotic symmetries become symplectic symmetries in the bulk of spacetime. Moreover, any element in the phase space admits two global Killing vectors. We show that the conserved charges associated with these Killing vectors commute with the Virasoro symplectic symmetry algebra, extending the Virasoro symmetry algebra with two U(1) generators. We discuss that any element in the phase space falls into the coadjoint orbits of the Virasoro algebras and that each orbit is labeled by the U(1) Killing charges. Upon setting the right-moving function to zero and restricting the choice of orbits, one can take a near-horizon decoupling limit which preserves a chiral half of the symplectic symmetries. Here we show two distinct but equivalent ways in which the chiral Virasoro symplectic symmetries in the near-horizon geometry can be obtained as a limit of the bulk symplectic symmetries.

  18. Third-order symplectic integration method with inverse time dispersion transform for long-term simulation

    NASA Astrophysics Data System (ADS)

    Gao, Yingjie; Zhang, Jinhai; Yao, Zhenxing

    2016-06-01

    The symplectic integration method is popular in high-accuracy numerical simulations when discretizing temporal derivatives; however, it still suffers from time-dispersion error when the temporal interval is coarse, especially for long-term simulations and large-scale models. We employ the inverse time dispersion transform (ITDT) to the third-order symplectic integration method to reduce the time-dispersion error. First, we adopt the pseudospectral algorithm for the spatial discretization and the third-order symplectic integration method for the temporal discretization. Then, we apply the ITDT to eliminate time-dispersion error from the synthetic data. As a post-processing method, the ITDT can be easily cascaded in traditional numerical simulations. We implement the ITDT in one typical exiting third-order symplectic scheme and compare its performances with the performances of the conventional second-order scheme and the rapid expansion method. Theoretical analyses and numerical experiments show that the ITDT can significantly reduce the time-dispersion error, especially for long travel times. The implementation of the ITDT requires some additional computations on correcting the time-dispersion error, but it allows us to use the maximum temporal interval under stability conditions; thus, its final computational efficiency would be higher than that of the traditional symplectic integration method for long-term simulations. With the aid of the ITDT, we can obtain much more accurate simulation results but with a lower computational cost.

  19. Explicit Symplectic-like Integrators with Midpoint Permutations for Spinning Compact Binaries

    NASA Astrophysics Data System (ADS)

    Luo, Junjie; Wu, Xin; Huang, Guoqing; Liu, Fuyao

    2017-01-01

    We refine the recently developed fourth-order extended phase space explicit symplectic-like methods for inseparable Hamiltonians using Yoshida’s triple product combined with a midpoint permuted map. The midpoint between the original variables and their corresponding extended variables at every integration step is readjusted as the initial values of the original variables and their corresponding extended ones at the next step integration. The triple-product construction is apparently superior to the composition of two triple products in computational efficiency. Above all, the new midpoint permutations are more effective in restraining the equality of the original variables and their corresponding extended ones at each integration step than the existing sequent permutations of momenta and coordinates. As a result, our new construction shares the benefit of implicit symplectic integrators in the conservation of the second post-Newtonian Hamiltonian of spinning compact binaries. Especially for the chaotic case, it can work well, but the existing sequent permuted algorithm cannot. When dissipative effects from the gravitational radiation reaction are included, the new symplectic-like method has a secular drift in the energy error of the dissipative system for the orbits that are regular in the absence of radiation, as an implicit symplectic integrator does. In spite of this, it is superior to the same-order implicit symplectic integrator in accuracy and efficiency. The new method is particularly useful in discussing the long-term evolution of inseparable Hamiltonian problems.

  20. Multifractality and Conformal Invariance at 2D Metal-Insulator Transition in the Spin-Orbit Symmetry Class

    NASA Astrophysics Data System (ADS)

    Obuse, Hideaki; Subramaniam, Arvind; Furusaki, Akira; Gruzberg, Ilya; Ludwig, Andreas

    2007-03-01

    We study the multifractality of critical wave functions at boundaries and corners at the Anderson metal-insulator transition for noninteracting electrons in the two-dimensional (2D) spin-orbit (symplectic) universality class. We find that the multifractal exponents near a boundary are different from those in the bulk. The exponents at a corner are found to be directly related to those at a straight boundary through a relation arising from conformal invariance. This provides direct numerical evidence for conformal invariance at the 2D spin-orbit metal-insulator transition. We also show that the presence of boundaries modifies the multifractality of the whole sample even in the thermodynamic limit.

  1. Marginal fluctuations as instantons on M2/D2-branes

    NASA Astrophysics Data System (ADS)

    Naghdi, M.

    2014-03-01

    We introduce some (anti-) M/D-branes through turning on the corresponding field strengths of the 11- and 10-dimensional supergravity theories over spaces, where we use and for the internal spaces. Indeed, when we add M2/D2-branes on the same directions with the near horizon branes of the Aharony-Bergman-Jafferis-Maldacena model, all symmetries and supersymmetries are preserved trivially. In this case, we obtain a localized object just in the horizon. This normalizable bulk massless scalar mode is a singlet of and , and it agrees with a marginal boundary operator of the conformal dimension of . However, after performing a special conformal transformation, we see that the solution is localized in the Euclideanized space and is attributable to the included anti-M2/D2-branes, which are also necessary to ensure that there is no back-reaction. The resultant theory now breaks all supersymmetries to , while the other symmetries are so preserved. The dual boundary operator is then set up from the skew-whiffing of the representations and for the supercharges and scalars, respectively, while the fermions remain fixed in of the original theory. Besides, we also address another alternate bulk to boundary matching procedure through turning on one of the gauge fields of the full gauge group along the same lines with a similar situation to the one faced in the AdS/CFT correspondence. The latter approach covers the difficulty already faced with in the bulk-boundary matching procedure for as well.

  2. Yangians and Yang-Baxter R-operators for ortho-symplectic superalgebras

    NASA Astrophysics Data System (ADS)

    Fuksa, J.; Isaev, A. P.; Karakhanyan, D.; Kirschner, R.

    2017-04-01

    Yang-Baxter relations symmetric with respect to the ortho-symplectic superalgebras are studied. We start with the formulation of graded algebras and the linear superspace carrying the vector (fundamental) representation of the ortho-symplectic supergroup. On this basis we study the analogy of the Yang-Baxter operators considered earlier for the cases of orthogonal and symplectic symmetries: the vector (fundamental) R-matrix, the L-operator defining the Yangian algebra and its first and second order evaluations. We investigate the condition for L (u) in the case of the truncated expansion in inverse powers of u and give examples of Lie algebra representations obeying these conditions. We construct the R-operator intertwining two superspinor representations and study the fusion of L-operators involving the tensor product of such representations.

  3. Conjugate symplecticity of second-order linear multi-step methods

    NASA Astrophysics Data System (ADS)

    Feng, Quan-Dong; Jiao, Yan-Dong; Tang, Yi-Fa

    2007-06-01

    We review the two different approaches for symplecticity of linear multi-step methods (LMSM) by Eirola and Sanz-Serna, Ge and Feng, and by Feng and Tang, Hairer and Leone, respectively, and give a numerical example between these two approaches. We prove that in the conjugate relation with and being LMSMs, if is symplectic, then the B-series error expansions of , and of the form are equal to those of trapezoid, mid-point and Euler forward schemes up to a parameter [theta] (completely the same when [theta]=1), respectively, this also partially solves a problem due to Hairer. In particular we indicate that the second-order symmetric leap-frog scheme Z2=Z0+2[tau]J-1[backward difference]H(Z1) cannot be conjugate-symplectic via another LMSM.

  4. Natural star-products on symplectic manifolds and related quantum mechanical operators

    SciTech Connect

    Błaszak, Maciej Domański, Ziemowit

    2014-05-15

    In this paper is considered a problem of defining natural star-products on symplectic manifolds, admissible for quantization of classical Hamiltonian systems. First, a construction of a star-product on a cotangent bundle to an Euclidean configuration space is given with the use of a sequence of pair-wise commuting vector fields. The connection with a covariant representation of such a star-product is also presented. Then, an extension of the construction to symplectic manifolds over flat and non-flat pseudo-Riemannian configuration spaces is discussed. Finally, a coordinate free construction of related quantum mechanical operators from Hilbert space over respective configuration space is presented. -- Highlights: •Invariant representations of natural star-products on symplectic manifolds are considered. •Star-products induced by flat and non-flat connections are investigated. •Operator representations in Hilbert space of considered star-algebras are constructed.

  5. Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients

    NASA Astrophysics Data System (ADS)

    Cui-Cui, Liao; Jin-Chao, Cui; Jiu-Zhen, Liang; Xiao-Hua, Ding

    2016-01-01

    In this paper, we propose a variational integrator for nonlinear Schrödinger equations with variable coefficients. It is shown that our variational integrator is naturally multi-symplectic. The discrete multi-symplectic structure of the integrator is presented by a multi-symplectic form formula that can be derived from the discrete Lagrangian boundary function. As two examples of nonlinear Schrödinger equations with variable coefficients, cubic nonlinear Schrödinger equations and Gross-Pitaevskii equations are extensively studied by the proposed integrator. Our numerical simulations demonstrate that the integrator is capable of preserving the mass, momentum, and energy conservation during time evolutions. Convergence tests are presented to verify that our integrator has second-order accuracy both in time and space. Project supported by the National Natural Science Foundation of China (Grant No. 11401259) and the Fundamental Research Funds for the Central Universities, China (Grant No. JUSRR11407).

  6. Full-turn symplectic map from a generator in a Fourier-spline basis

    SciTech Connect

    Berg, J.S.; Warnock, R.L.; Ruth, R.D.; Forest, E.

    1993-04-01

    Given an arbitrary symplectic tracking code, one can construct a full-turn symplectic map that approximates the result of the code to high accuracy. The map is defined implicitly by a mixed-variable generating function. The implicit definition is no great drawback in practice, thanks to an efficient use of Newton`s method to solve for the explicit map at each iteration. The generator is represented by a Fourier series in angle variables, with coefficients given as B-spline functions of action variables. It is constructed by using results of single-turn tracking from many initial conditions. The method has been appliedto a realistic model of the SSC in three degrees of freedom. Orbits can be mapped symplectically for 10{sup 7} turns on an IBM RS6000 model 320 workstation, in a run of about one day.

  7. A construction of a large family of commuting pairs of integrable symplectic birational four-dimensional maps.

    PubMed

    Petrera, Matteo; Suris, Yuri B

    2017-02-01

    We give a construction of completely integrable four-dimensional Hamiltonian systems with cubic Hamilton functions. Applying to the corresponding pairs of commuting quadratic Hamiltonian vector fields the so called Kahan-Hirota-Kimura discretization scheme, we arrive at pairs of birational four-dimensional maps. We show that these maps are symplectic with respect to a symplectic structure that is a perturbation of the standard symplectic structure on [Formula: see text], and possess two independent integrals of motion, which are perturbations of the original Hamilton functions and which are in involution with respect to the perturbed symplectic structure. Thus, these maps are completely integrable in the Liouville-Arnold sense. Moreover, under a suitable normalization of the original pairs of vector fields, the pairs of maps commute and share the invariant symplectic structure and the two integrals of motion.

  8. A variational multi-symplectic particle-in-cell algorithm with smoothing functions for the Vlasov-Maxwell system

    SciTech Connect

    Xiao, Jianyuan; Liu, Jian; Qin, Hong; Yu, Zhi

    2013-10-15

    Smoothing functions are commonly used to reduce numerical noise arising from coarse sampling of particles in particle-in-cell (PIC) plasma simulations. When applying smoothing functions to symplectic algorithms, the conservation of symplectic structure should be guaranteed to preserve good conservation properties. In this paper, we show how to construct a variational multi-symplectic PIC algorithm with smoothing functions for the Vlasov-Maxwell system. The conservation of the multi-symplectic structure and the reduction of numerical noise make this algorithm specifically suitable for simulating long-term dynamics of plasmas, such as those in the steady-state operation or long-pulse discharge of a super-conducting tokamak. The algorithm has been implemented in a 6D large scale PIC code. Numerical examples are given to demonstrate the good conservation properties of the multi-symplectic algorithm and the reduction of the noise due to the application of smoothing function.

  9. Superdeformations and fermion dynamical symmetries

    SciTech Connect

    Wu, Cheng-Li . Dept. of Physics and Atmospheric Science Tennessee Univ., Knoxville, TN . Dept. of Physics and Astronomy Joint Inst. for Heavy Ion Research, Oak Ridge, TN )

    1990-01-01

    In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU{sub 3} of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU{sub 3} fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU{sub 3} symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting {gamma}-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs.

  10. Complete characterization of fourth-order symplectic integrators with extended-linear coefficients.

    PubMed

    Chin, Siu A

    2006-02-01

    The structure of symplectic integrators up to fourth order can be completely and analytically understood when the factorization (split) coefficients are related linearly but with a uniform nonlinear proportional factor. The analytic form of these extended-linear symplectic integrators greatly simplified proofs of their general properties and allowed easy construction of both forward and nonforward fourth-order algorithms with an arbitrary number of operators. Most fourth-order forward integrators can now be derived analytically from this extended-linear formulation without the use of symbolic algebra.

  11. A Differential Algebraic Integration Algorithm for Symplectic Mappings in Systems with Three-Dimensional Magnetic Field

    SciTech Connect

    Chang, P

    2004-09-15

    A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction region in high energy colliders.

  12. GENERAL: Symplectic-energy-first integrators of discrete mechanico-electrical dynamical systems

    NASA Astrophysics Data System (ADS)

    Fu, Jing-Li; Chen, Ben-Yong; Tang, Yi-Fa; Fu, Hao

    2008-11-01

    A discrete total variation calculus with variable time steps is presented for mechanico-electrical systems where there exist non-potential and dissipative forces. By using this discrete variation calculus, the symplectic-energy-first integrators for mechanico-electrical systems are derived. To do this, the time step adaptation is employed. The discrete variational principle and the Euler-Lagrange equation are derived for the systems. By using this discrete algorithm it is shown that mechanico-electrical systems are not symplectic and their energies are not conserved unless they are Lagrange mechanico-electrical systems. A practical example is presented to illustrate these results.

  13. Parametric symplectic partitioned Runge-Kutta methods with energy-preserving properties for Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Wang, Dongling; Xiao, Aiguo; Li, Xueyang

    2013-02-01

    Based on W-transformation, some parametric symplectic partitioned Runge-Kutta (PRK) methods depending on a real parameter α are developed. For α=0, the corresponding methods become the usual PRK methods, including Radau IA-IA¯ and Lobatto IIIA-IIIB methods as examples. For any α≠0, the corresponding methods are symplectic and there exists a value α∗ such that energy is preserved in the numerical solution at each step. The existence of the parameter and the order of the numerical methods are discussed. Some numerical examples are presented to illustrate these results.

  14. Explicit high-order symplectic integrators for charged particles in general electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Tao, Molei

    2016-12-01

    This article considers non-relativistic charged particle dynamics in both static and non-static electromagnetic fields, which are governed by nonseparable, possibly time-dependent Hamiltonians. For the first time, explicit symplectic integrators of arbitrary high-orders are constructed for accurate and efficient simulations of such mechanical systems. Performances superior to the standard non-symplectic method of Runge-Kutta are demonstrated on two examples: the first is on the confined motion of a particle in a static toroidal magnetic field used in tokamak; the second is on how time-periodic perturbations to a magnetic field inject energy into a particle via parametric resonance at a specific frequency.

  15. Transport of Massless Dirac Fermions in Non-topological Type Edge States

    PubMed Central

    Latyshev, Yu I.; Orlov, A. P.; Volkov, V. A.; Enaldiev, V. V.; Zagorodnev, I. V.; Vyvenko, O. F.; Petrov, Yu V.; Monceau, P.

    2014-01-01

    There are two types of intrinsic surface states in solids. The first type is formed on the surface of topological insulators. Recently, transport of massless Dirac fermions in the band of “topological” states has been demonstrated. States of the second type were predicted by Tamm and Shockley long ago. They do not have a topological background and are therefore strongly dependent on the properties of the surface. We study the problem of the conductivity of Tamm-Shockley edge states through direct transport experiments. Aharonov-Bohm magneto-oscillations of resistance are found on graphene samples that contain a single nanohole. The effect is explained by the conductivity of the massless Dirac fermions in the edge states cycling around the nanohole. The results demonstrate the deep connection between topological and non-topological edge states in 2D systems of massless Dirac fermions. PMID:25524881

  16. Topological superfluid state of fermions on a p-band optical square lattice

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Jie; He, Jing; Zang, Chun-Li; Kou, Su-Peng

    2012-08-01

    In this paper we study an interacting mixture of ultracold spinless fermions on the s band and bosons on the p band in a 2D square optical lattice, of which the effective model is reduced to a p-band fermionic system with nearest-neighbor attractive interaction. From this effective p-band model, we find a translation symmetry protected Z2 topological superfluid that is characterized by a special fermion parity pattern at high-symmetry points in momentum space k=(0,0), (0,π), (π,0), (π,π). Such Z2 topological superfluid supports the robust Majorana edge modes and a new type of low-energy excitation—(supersymmetric) Z2 link excitation.

  17. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  18. Multipartite concurrence for identical-fermion systems

    NASA Astrophysics Data System (ADS)

    Majtey, A. P.; Bouvrie, P. A.; Valdés-Hernández, A.; Plastino, A. R.

    2016-03-01

    We study the problem of detecting multipartite entanglement among indistinguishable fermionic particles. A multipartite concurrence for pure states of N identical fermions, each one having a d -dimensional single-particle Hilbert space, is introduced. Such an entanglement measure, in particular, is optimized for maximally entangled states of three identical fermions that play a role analogous to the usual (qubit) Greenberger-Horne-Zeilinger state. In addition, it is shown that the fermionic multipartite concurrence can be expressed as the mean value of an observable, provided two copies of the composite state are available.

  19. Aharonov-Bohm radiation of fermions

    SciTech Connect

    Chu Yizen; Mathur, Harsh; Vachaspati, Tanmay

    2010-09-15

    We analyze Aharonov-Bohm radiation of charged fermions from oscillating solenoids and cosmic strings. We find that the angular pattern of the radiation has features that differ significantly from that for bosons. For example, fermionic radiation in the lowest harmonic is approximately isotropically distributed around an oscillating solenoid, whereas for bosons the radiation is dipolar. We also investigate the spin polarization of the emitted fermion-antifermion pair. Fermionic radiation from kinks and cusps on cosmic strings is shown to depend linearly on the ultraviolet cutoff, suggesting strong emission at an energy scale comparable to the string energy scale.

  20. STOUT SMEARING FOR TWISTED FERMIONS.

    SciTech Connect

    SCHOLZ,W.; JANSEN, K.; McNEILE, C.; MONTVAY, I.; RICHARDS, C.; URBACH, C.; WENGER, U.

    2007-07-30

    The effect of Stout smearing is investigated in numerical simulations with twisted mass Wilson quarks. The phase transition near zero quark mass is studied on 12{sup 3} x 24, 16{sup 3} x 32 and 24{sup 3} x 48 lattices at lattice spacings a {approx_equal} 0.1-0.125 fm. The phase structure of Wilson fermions with twisted mass ({mu}) has been investigated in [1,2]. As it is explained there, the observed first order phase transition limits the minimal pion mass which can be reached in simulations at a given lattice spacing: m{sub k}{sup min} {approx_equal} {theta}(a). The phase structure is schematically depicted in the left panel of Fig. I . The phase transition can be observed in simulations with twisted mass fermions, for instance, as a ''jump'' or even metastabilities in the average plaquette value as a function of the hopping parameter ({kappa}). One possibility to weaken the phase transition and therefore allow for lighter pion masses at a given lattice spacing is to use an improved gauge action like the DBW2, Iwasaki, or tree-level Symanzik (tlSym) improved gauge action instead of the simple Wilson gauge action. This has been successfully demonstrated in [3,4,5]. Here we report on our attempts to use a smeared gauge field in the fermion lattice Dirac operator to further reduce the strength of the phase transition. This is relevant in simulations with N{sub f} = 2 + 1 + 1 (u,d,s,c) quark flavors [6] where the first order phase transition becomes stronger compared to N{sub f} = 2 simulations. The main impact of the above mentioned improved gauge actions on the gauge fields occurring in simulations is to suppress short range fluctuations (''dislocations'') and the associated ''exceptionally small'' eigenvalues of the fermion matrix. The same effect is expected from smearing the gauge field links in the fermion action. The cumulated effect of the improved gauge action and smeared links should allow for a smaller pion mass at a given lattice spacing and volume. Our

  1. Dipole oscillations in fermionic mixtures

    SciTech Connect

    Chiacchiera, S.; Macri, T.; Trombettoni, A.

    2010-03-15

    We study dipole oscillations in a general fermionic mixture. Starting from the Boltzmann equation, we classify the different solutions in the parameter space through the number of real eigenvalues of the small oscillations matrix. We discuss how this number can be computed using the Sturm algorithm and its relation with the properties of the Laplace transform of the experimental quantities. After considering two components in harmonic potentials having different trapping frequencies, we study dipole oscillations in three-component mixtures. Explicit computations are done for realistic experimental setups using the classical Boltzmann equation without intraspecies interactions. A brief discussion of the application of this classification to general collective oscillations is also presented.

  2. Fermion dipole moment and holography

    NASA Astrophysics Data System (ADS)

    Kulaxizi, Manuela; Rahman, Rakibur

    2015-12-01

    In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.

  3. Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model

    DOE PAGES

    Chen, Cheng-Chien; Muechler, Lukas; Car, Roberto; ...

    2016-08-25

    We study the two-dimensional (2D) Hubbard model using exact diagonalization for spin-1/2 fermions on the triangular and honeycomb lattices decorated with a single hexagon per site. In certain parameter ranges, the Hubbard model maps to a quantum compass model on those lattices. On the triangular lattice, the compass model exhibits collinear stripe antiferromagnetism, implying d-density wave charge order in the original Hubbard model. On the honeycomb lattice, the compass model has a unique, quantum disordered ground state that transforms nontrivially under lattice reflection. The ground state of the Hubbard model on the decorated honeycomb lattice is thus a 2D fermionicmore » symmetry-protected topological phase. This state—protected by time-reversal and reflection symmetries—cannot be connected adiabatically to a free-fermion topological phase.« less

  4. Nonlinear SCHRÖDINGER Equations on Super Symmetric Spaces Related to Orthogonal-Symplectic Lie Superalgebras

    NASA Astrophysics Data System (ADS)

    Canoglu, Ahmet; Güldogan, Bahri; Salihoglu, Selâmi

    We obtain new integrable coupled nonlinear partial differential equations by assuming the soliton connection having values in orthogonal-symplectic Lie superalgebras [B(m, n), C(n), D(m, n)]. These equations are coupled Nonlinear Schrödinger equations on various super symmetric spaces.

  5. Improved Leap-Frog Symplectic Integrators for Orbits of Small Eccentricity in the Perturbed Kepler Problem

    NASA Astrophysics Data System (ADS)

    Guzzo, Massimiliano

    2001-07-01

    I have improved the precision of the leap-frog symplectic integrators for perturbed Kepler problems at small eccentricities, without significant loss of CPU time. The integration scheme proposed is competitive, in some situations, with the so-called mixed variable integrators.

  6. A fourth order modified trigonometrically fitted symplectic Runge-Kutta-Nyström method

    NASA Astrophysics Data System (ADS)

    Kalogiratou, Z.; Monovasilis, Th.; Simos, T. E.

    2013-10-01

    In this work we construct a modified trigonometrically fitted symplectic Runge Kutta Nyström method based on the forth order five stages method of Calvo and Sanz-Serna. We apply the new method on the numerical integration of the two-body problem.

  7. Diagonally Implicit Symplectic Runge-Kutta Methods with High Algebraic and Dispersion Order

    PubMed Central

    Cong, Y. H.; Jiang, C. X.

    2014-01-01

    The numerical integration of Hamiltonian systems with oscillating solutions is considered in this paper. A diagonally implicit symplectic nine-stages Runge-Kutta method with algebraic order 6 and dispersion order 8 is presented. Numerical experiments with some Hamiltonian oscillatory problems are presented to show the proposed method is as competitive as the existing same type Runge-Kutta methods. PMID:24977178

  8. An optimized formulation for Deprit-type Lie transformations of Taylor maps for symplectic systems

    SciTech Connect

    Shi, Jicong; Yan, Yiton T.

    1993-06-01

    An optimized iterative formulation is presented for directly transforming a Taylor map of a symplectic system into a Deprit-type Lie transformation, which is a composition of a linear transfer matrix and a single Lie transformation, to an arbitrary order.

  9. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  10. Quantum electrodynamics with complex fermion mass

    SciTech Connect

    McKellar, B.J.H. . School of Physics); Wu, D.D. . School of Physics Academia Sinica, Beijing, BJ . Inst. of High Energy Physics Superconducting Super Collider Lab., Dallas, TX )

    1991-08-01

    The quantum electrodynamics (QED) with a complex fermion mass -- that is, a fermion mass with a chiral phase -- is restudied, together with its chirally rotated version. We show how fake electric dipole moment can be obtained and how to avoid it. 10 refs.

  11. Mass-induced transition in fermion number

    SciTech Connect

    Aragao de Carvalho, C.; Pureza, J. M.

    1989-05-15

    We show that if we increase the mass of fermions in interaction with a topological (kink) scalar background in 1+1 dimensions, the fractional fermion number of the system will eventually vanish. The transition is sharp and corresponds to the disappearance of localized states from the spectrum of a Dirac operator which is exactly solvable. Possible applications to different physical systems are discussed.

  12. Coherent states in the fermionic Fock space

    NASA Astrophysics Data System (ADS)

    Oeckl, Robert

    2015-01-01

    We construct the coherent states in the sense of Gilmore and Perelomov for the fermionic Fock space. Our treatment is from the outset adapted to the infinite-dimensional case. The fermionic Fock space becomes in this way a reproducing kernel Hilbert space of continuous holomorphic functions.

  13. Superalgebra and fermion-boson symmetry

    PubMed Central

    Miyazawa, Hironari

    2010-01-01

    Fermions and bosons are quite different kinds of particles, but it is possible to unify them in a supermultiplet, by introducing a new mathematical scheme called superalgebra. In this article we discuss the development of the concept of symmetry, starting from the rotational symmetry and finally arriving at this fermion-boson (FB) symmetry. PMID:20228617

  14. Tunable Dirac fermion dynamics in topological insulators.

    PubMed

    Chen, Chaoyu; Xie, Zhuojin; Feng, Ya; Yi, Hemian; Liang, Aiji; He, Shaolong; Mou, Daixiang; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Yu, Li; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Zhou, X J

    2013-01-01

    Three-dimensional topological insulators are characterized by insulating bulk state and metallic surface state involving relativistic Dirac fermions which are responsible for exotic quantum phenomena and potential applications in spintronics and quantum computations. It is essential to understand how the Dirac fermions interact with other electrons, phonons and disorders. Here we report super-high resolution angle-resolved photoemission studies on the Dirac fermion dynamics in the prototypical Bi2(Te,Se)3 topological insulators. We have directly revealed signatures of the electron-phonon coupling and found that the electron-disorder interaction dominates the scattering process. The Dirac fermion dynamics in Bi2(Te3-xSex) topological insulators can be tuned by varying the composition, x, or by controlling the charge carriers. Our findings provide crucial information in understanding and engineering the electron dynamics of the Dirac fermions for fundamental studies and potential applications.

  15. Fermion hierarchy from sfermion anarchy

    DOE PAGES

    Altmannshofer, Wolfgang; Frugiuele, Claudia; Harnik, Roni

    2014-12-31

    We present a framework to generate the hierarchical flavor structure of Standard Model quarks and leptons from loops of superpartners. The simplest model consists of the minimal supersymmetric standard model with tree level Yukawa couplings for the third generation only and anarchic squark and slepton mass matrices. Agreement with constraints from low energy flavor observables, in particular Kaon mixing, is obtained for supersymmetric particles with masses at the PeV scale or above. In our framework both the second and the first generation fermion masses are generated at 1-loop. Despite this, a novel mechanism generates a hierarchy among the first andmore » second generations without imposing a symmetry or small parameters. A second-to-first generation mass ratio of order 100 is typical. The minimal supersymmetric standard model thus includes all the necessary ingredients to realize a fermion spectrum that is qualitatively similar to observation, with hierarchical masses and mixing. The minimal framework produces only a few quantitative discrepancies with observation, most notably the muon mass is too low. Furthermore, we discuss simple modifications which resolve this and also investigate the compatibility of our model with gauge and Yukawa coupling Unification.« less

  16. Cosmology of fermionic dark matter

    SciTech Connect

    Boeckel, Tillmann; Schaffner-Bielich, Juergen

    2007-11-15

    We explore a model for a fermionic dark matter particle family which decouples from the rest of the particles when at least all standard model particles are in equilibrium. We calculate the allowed ranges for mass and chemical potential to be compatible with big bang nucleosynthesis (BBN) calculations and WMAP data for a flat universe with dark energy ({omega}{sub {lambda}}{sup 0}=0.72, {omega}{sub M}{sup 0}=0.27, h=0.7). Futhermore we estimate the free streaming length for fermions and antifermions to allow comparison to large scale structure data (LSS). We find that for dark matter decoupling when all standard model particles are present even the least restrictive combined BBN calculation and WMAP results allow us to constrain the initial dark matter chemical potential to a highest value of 6.3 times the dark matter temperature. In this case, the resulting mass range is at most 1.8 eV{<=}m{<=}53 eV, where the upper bound scales linearly with g{sub eff}{sup s}(T{sub Dec}). From LSS we find that, similar to ordinary warm dark matter models, the particle mass has to be larger than {approx}500 eV [meaning g{sub eff}{sup s}(T{sub Dec})>10{sup 3}] to be compatible with observations of the Ly {alpha} forest at high redshift, but still the dark matter chemical potential over temperature ratio can exceed unity.

  17. Fermion hierarchy from sfermion anarchy

    SciTech Connect

    Altmannshofer, Wolfgang; Frugiuele, Claudia; Harnik, Roni

    2014-12-31

    We present a framework to generate the hierarchical flavor structure of Standard Model quarks and leptons from loops of superpartners. The simplest model consists of the minimal supersymmetric standard model with tree level Yukawa couplings for the third generation only and anarchic squark and slepton mass matrices. Agreement with constraints from low energy flavor observables, in particular Kaon mixing, is obtained for supersymmetric particles with masses at the PeV scale or above. In our framework both the second and the first generation fermion masses are generated at 1-loop. Despite this, a novel mechanism generates a hierarchy among the first and second generations without imposing a symmetry or small parameters. A second-to-first generation mass ratio of order 100 is typical. The minimal supersymmetric standard model thus includes all the necessary ingredients to realize a fermion spectrum that is qualitatively similar to observation, with hierarchical masses and mixing. The minimal framework produces only a few quantitative discrepancies with observation, most notably the muon mass is too low. Furthermore, we discuss simple modifications which resolve this and also investigate the compatibility of our model with gauge and Yukawa coupling Unification.

  18. Thermalization of Fermionic Quantum Walkers

    NASA Astrophysics Data System (ADS)

    Hamza, Eman; Joye, Alain

    2017-03-01

    We consider the discrete time dynamics of an ensemble of fermionic quantum walkers moving on a finite discrete sample, interacting with a reservoir of infinitely many quantum particles on the one dimensional lattice. The reservoir is given by a fermionic quasifree state, with free discrete dynamics given by the shift, whereas the free dynamics of the non-interacting quantum walkers in the sample is defined by means of a unitary matrix. The reservoir and the sample exchange particles at specific sites by a unitary coupling and we study the discrete dynamics of the coupled system defined by the iteration of the free discrete dynamics acting on the unitary coupling, in a variety of situations. In particular, in absence of correlation within the particles of the reservoir and under natural assumptions on the sample's dynamics, we prove that the one- and two-body reduced density matrices of the sample admit large times limits characterized by the state of the reservoir which are independent of the free dynamics of the quantum walkers and of the coupling strength. Moreover, the corresponding asymptotic density profile in the sample is flat and the correlations of number operators have no structure, a manifestation of thermalization.

  19. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  20. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  1. Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2.

    PubMed

    Liu, Jinyu; Hu, Jin; Cao, Huibo; Zhu, Yanglin; Chuang, Alyssa; Graf, D; Adams, D J; Radmanesh, S M A; Spinu, L; Chiorescu, I; Mao, Zhiqiang

    2016-07-28

    Layered compounds AMnBi2 (A = Ca, Sr, Ba, or rare earth element) have been established as Dirac materials. Dirac electrons generated by the two-dimensional (2D) Bi square net in these materials are normally massive due to the presence of a spin-orbital coupling (SOC) induced gap at Dirac nodes. Here we report that the Sb square net in an isostructural compound BaMnSb2 can host nearly massless Dirac fermions. We observed strong Shubnikov-de Haas (SdH) oscillations in this material. From the analyses of the SdH oscillations, we find key signatures of Dirac fermions, including light effective mass (~0.052m0; m0, mass of free electron), high quantum mobility (1280 cm(2)V(-1)S(-1)) and a π Berry phase accumulated along cyclotron orbit. Compared with AMnBi2, BaMnSb2 also exhibits much more significant quasi two-dimensional (2D) electronic structure, with the out-of-plane transport showing nonmetallic conduction below 120 K and the ratio of the out-of-plane and in-plane resistivity reaching ~670. Additionally, BaMnSb2 also exhibits a G-type antiferromagnetic order below 283 K. The combination of nearly massless Dirac fermions on quasi-2D planes with a magnetic order makes BaMnSb2 an intriguing platform for seeking novel exotic phenomena of massless Dirac electrons.

  2. Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2

    PubMed Central

    Liu, Jinyu; Hu, Jin; Cao, Huibo; Zhu, Yanglin; Chuang, Alyssa; Graf, D.; Adams, D. J.; Radmanesh, S. M. A.; Spinu, L.; Chiorescu, I.; Mao, Zhiqiang

    2016-01-01

    Layered compounds AMnBi2 (A = Ca, Sr, Ba, or rare earth element) have been established as Dirac materials. Dirac electrons generated by the two-dimensional (2D) Bi square net in these materials are normally massive due to the presence of a spin-orbital coupling (SOC) induced gap at Dirac nodes. Here we report that the Sb square net in an isostructural compound BaMnSb2 can host nearly massless Dirac fermions. We observed strong Shubnikov-de Haas (SdH) oscillations in this material. From the analyses of the SdH oscillations, we find key signatures of Dirac fermions, including light effective mass (~0.052m0; m0, mass of free electron), high quantum mobility (1280 cm2V−1S−1) and a π Berry phase accumulated along cyclotron orbit. Compared with AMnBi2, BaMnSb2 also exhibits much more significant quasi two-dimensional (2D) electronic structure, with the out-of-plane transport showing nonmetallic conduction below 120 K and the ratio of the out-of-plane and in-plane resistivity reaching ~670. Additionally, BaMnSb2 also exhibits a G-type antiferromagnetic order below 283 K. The combination of nearly massless Dirac fermions on quasi-2D planes with a magnetic order makes BaMnSb2 an intriguing platform for seeking novel exotic phenomena of massless Dirac electrons. PMID:27466151

  3. Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2

    NASA Astrophysics Data System (ADS)

    Liu, Jinyu; Hu, Jin; Cao, Huibo; Zhu, Yanglin; Chuang, Alyssa; Graf, D.; Adams, D. J.; Radmanesh, S. M. A.; Spinu, L.; Chiorescu, I.; Mao, Zhiqiang

    2016-07-01

    Layered compounds AMnBi2 (A = Ca, Sr, Ba, or rare earth element) have been established as Dirac materials. Dirac electrons generated by the two-dimensional (2D) Bi square net in these materials are normally massive due to the presence of a spin-orbital coupling (SOC) induced gap at Dirac nodes. Here we report that the Sb square net in an isostructural compound BaMnSb2 can host nearly massless Dirac fermions. We observed strong Shubnikov-de Haas (SdH) oscillations in this material. From the analyses of the SdH oscillations, we find key signatures of Dirac fermions, including light effective mass (~0.052m0 m0, mass of free electron), high quantum mobility (1280 cm2V‑1S‑1) and a π Berry phase accumulated along cyclotron orbit. Compared with AMnBi2, BaMnSb2 also exhibits much more significant quasi two-dimensional (2D) electronic structure, with the out-of-plane transport showing nonmetallic conduction below 120 K and the ratio of the out-of-plane and in-plane resistivity reaching ~670. Additionally, BaMnSb2 also exhibits a G-type antiferromagnetic order below 283 K. The combination of nearly massless Dirac fermions on quasi-2D planes with a magnetic order makes BaMnSb2 an intriguing platform for seeking novel exotic phenomena of massless Dirac electrons.

  4. Duality Between Spin Networks and the 2D Ising Model

    NASA Astrophysics Data System (ADS)

    Bonzom, Valentin; Costantino, Francesco; Livine, Etera R.

    2016-06-01

    The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.

  5. Evidence for Symplectic Symmetry in AbInitio No-Core Shell Model Results for Light Nuclei

    NASA Astrophysics Data System (ADS)

    Dytrych, Tomáš; Sviratcheva, Kristina D.; Bahri, Chairul; Draayer, Jerry P.; Vary, James P.

    2007-04-01

    Clear evidence for symplectic symmetry in low-lying states of C12 and O16 is reported. Eigenstates of C12 and O16, determined within the framework of the no-core shell model using the J-matrix inverse scattering potential with A≤16 (JISP16) nucleon-nucleon (NN) realistic interaction, typically project at the 85% 90% level onto a few of the most deformed symplectic basis states that span only a small fraction of the full model space. The results are nearly independent of whether the bare or renormalized effective interactions are used in the analysis. The outcome confirms Elliott’s SU(3) model which underpins the symplectic scheme, and above all, points to the relevance of a symplectic no-core shell model that can reproduce experimental B(E2) values without effective charges as well as deformed spatial modes associated with clustering phenomena in nuclei.

  6. Noncommutativity Parameter and Composite Fermions

    NASA Astrophysics Data System (ADS)

    Jellal, Ahmed

    We determine some particular values of the noncommutativity parameter θ and show that the Murthy Shankar approach is in fact a particular case of a more general one. Indeed, using the fractional quantum Hall effect (FQHE) experimental data, we give a measurement of θ. This measurement can be obtained by considering some values of the filling factor ν and other ingredients, magnetic field B and electron density ρ. Moreover, it is found that θ can be quantized either fractionally or integrally in terms of the magnetic length l0 and the quantization is exactly what Murthy and Shankar formulated recently for the FQHE. On the other hand, we show that the mapping of the FQHE in terms of the composite fermion basis has a noncommutative geometry nature and therefore there is a more general way than the Murthy Shankar method to do this mapping.

  7. New fermions in the bulk

    NASA Astrophysics Data System (ADS)

    de Brito, K. P. S.; da Rocha, Roldão

    2016-10-01

    The spinor fields on 5-dimensional Lorentzian manifolds are classified according to the geometric Fierz identities, which involve their bilinear covariants. Based upon this classification, which generalises the celebrated 4-dimensional Lounesto classification of spinor fields, new non-trivial classes of 5-dimensional spinor fields are hence found, with important potential applications regarding bulk fermions and their subsequent localisation on brane-worlds. In addition, quaternionic bilinear covariants are used to derive the quaternionic spin density through the truncated exterior bundle. In order to accomplish the realisation of these new spinors, a Killing vector field is constructed on the horizon of a 5-dimensional Kerr black hole. This Killing vector field is shown to reach the time-like Killing vector field at spatial infinity through a current 1-form density, constructed with the new derived spinor fields. The current density is, moreover, expressed as the fünfbein component, assuming a condensed form.

  8. Flavor symmetries and fermion masses

    SciTech Connect

    Rasin, Andrija

    1994-04-01

    We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, Vub/Vcb = √mu/mc and Vtd/Vts = √md/ms, are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay β → sγ constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tanβ, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model.

  9. Instantons and Massless Fermions in Two Dimensions

    DOE R&D Accomplishments Database

    Callan, C. G. Jr.; Dashen, R.; Gross, D. J.

    1977-05-01

    The role of instantons in the breakdown of chiral U(N) symmetry is studied in a two dimensional model. Chiral U(1) is always destroyed by the axial vector anomaly. For N = 2 chiral SU(N) is also spontaneously broken yielding massive fermions and three (decoupled) Goldstone bosons. For N greater than or equal to 3 the fermions remain massless. Realistic four dimensional theories are believed to behave in a similar way but the critical N above which the fermions cease to be massive is not known in four dimensions.

  10. Fermion localization on a split brane

    SciTech Connect

    Chumbes, A. E. R.; Vasquez, A. E. O.; Hott, M. B.

    2011-05-15

    In this work we analyze the localization of fermions on a brane embedded in five-dimensional, warped and nonwarped, space-time. In both cases we use the same nonlinear theoretical model with a nonpolynomial potential featuring a self-interacting scalar field whose minimum energy solution is a soliton (a kink) which can be continuously deformed into a two-kink. Thus a single brane splits into two branes. The behavior of spin 1/2 fermions wave functions on the split brane depends on the coupling of fermions to the scalar field and on the geometry of the space-time.

  11. Entanglement in fermion systems and quantum metrology

    NASA Astrophysics Data System (ADS)

    Benatti, F.; Floreanini, R.; Marzolino, U.

    2014-03-01

    Entanglement in fermion many-body systems is studied using a generalized definition of separability based on partitions of the set of observables, rather than on particle tensor products. In this way, the characterizing properties of nonseparable fermion states can be explicitly analyzed, allowing a precise description of the geometric structure of the corresponding state space. These results have direct applications in fermion quantum metrology: Sub-shot-noise accuracy in parameter estimation can be obtained without the need of a preliminary state entangling operation.

  12. Two-dimensional fermionic Hong-Ou-Mandel interference with massless Dirac fermions

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Leuenberger, Michael N.

    2014-08-01

    We propose a two-dimensional Hong-Ou-Mandel (HOM) type interference experiment for massless Dirac fermions in graphene and 3D topological insulators. Since massless Dirac fermions exhibit linear dispersion, similar to photons in vacuum, they can be used to obtain the HOM interference intensity pattern as a function of the delay time between two massless Dirac fermions. We show that while the Coulomb interaction leads to a significant change in the angle dependence of the tunneling of two identical massless Dirac fermions incident from opposite sides of a potential barrier, it does not affect the HOM interference pattern. We apply our formalism to develop a massless Dirac fermion beam splitter (BS) for controlling the transmission and reflection coefficients. We calculate the resulting time-resolved correlation function for two identical massless Dirac fermions scattering off the BS.

  13. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  14. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  15. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  16. 2D/3D switchable displays

    NASA Astrophysics Data System (ADS)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  17. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L. A.; Hallquist, J. O.

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  18. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  19. General form of the boson-fermion interaction in the interacting boson-fermion model-2

    NASA Astrophysics Data System (ADS)

    Matus, F. A.; Barea, J.

    2017-03-01

    The boson-fermion interaction in the interacting boson-fermion model-2 (IBFM-2) is derived in a systematic and general form from a quadrupole-quadrupole force using several nondegenerate levels. The boson-fermion quadrupole operator employed is obtained from the boson-fermion image of the one nucleon transfer operator which in turn can be calculated following two alternative schemes: the Otsuka-Arima-Iachello and generalized Holstein-Primakoff schemes. Four different terms (two quadrupole and two exchange) were obtained. Application of the new expressions to a single-j model is studied and analyzed.

  20. Ab initio calculations in the symplectic no-core configuration interaction framework

    NASA Astrophysics Data System (ADS)

    McCoy, Anna; Caprio, Mark; Dytrych, Tomas

    2016-09-01

    A major challenge in quantitatively predicting nuclear structure directly from realistic nucleon-nucleon interactions, i.e., ab initio, arises due to an explosion in the dimension of the traditional Slater determinant basis as the number of nucleons and included shells increases. The need for including highly excited configurations arises, in large part, because the kinetic energy induces strong coupling across shells. However, the kinetic energy conserves symplectic symmetry. By combining this symplectic symmetry with the no-core configuration interaction (NCCI) framework, we reduce the size of basis necessary to obtain accurate results for p-shell nuclei. Supported by the US DOE under Grants DE-AC05-06OR23100 and DE-FG02-95ER-40934, and the Czech Science Foundation under Grant No. 16-16772S.

  1. Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation

    SciTech Connect

    Sha, Wei . E-mail: ws108@ahu.edu.cn; Huang, Zhixiang; Wu, Xianliang; Chen, Mingsheng

    2007-07-01

    An explicit fourth-order finite-difference time-domain (FDTD) scheme using the symplectic integrator is applied to electromagnetic simulation. A feasible numerical implementation of the symplectic FDTD (SFDTD) scheme is specified. In particular, new strategies for the air-dielectric interface treatment and the near-to-far-field (NFF) transformation are presented. By using the SFDTD scheme, both the radiation and the scattering of three-dimensional objects are computed. Furthermore, the energy-conserving characteristic hold for the SFDTD scheme is verified under long-term simulation. Numerical results suggest that the SFDTD scheme is more efficient than the traditional FDTD method and other high-order methods, and can save computational resources.

  2. A reciprocity law and the skew Pieri rule for the symplectic group

    NASA Astrophysics Data System (ADS)

    Howe, Roger; Lávička, Roman; Lee, Soo Teck; Souček, Vladimír

    2017-03-01

    We use the theory of skew duality to show that decomposing the tensor product of k irreducible representations of the symplectic group Sp2 m=Sp2 m(ℂ ) is equivalent to branching from Sp2n to Sp2 n1×⋯ ×Sp2 nk , where n ,n1,… ,nk are positive integers such that n =n1+⋯ +nk and the njs depend on m as well as the representations in the tensor product. Using this result and a work of Lepowsky, we obtain a skew Pieri rule for Sp2m, i.e., a description of the irreducible decomposition of the tensor product of an irreducible representation of the symplectic group Sp2m with a fundamental representation.

  3. A new family of four-dimensional symplectic and integrable mappings

    NASA Astrophysics Data System (ADS)

    Capel, H. W.; Sahadevan, R.

    2001-01-01

    We investigate the generalisations of the Quispel, Roberts and Thompson (QRT) family of mappings in the plane leaving a rational quadratic expression invariant to the case of four variables. We assume invariance of the rational expression under a cyclic permutation of variables and we impose a symplectic structure with Poisson brackets of the Weyl type. All mappings satisfying these conditions are shown to be integrable either as four-dimensional mappings with two explicit integrals which are in involution with respect to the symplectic structure and which can also be inferred from the periodic reductions of the double-discrete versions of the modified Korteweg-deVries ( ΔΔMKdV) and sine-Gordon ( ΔΔsG) equations or by reduction to two-dimensional mappings with one integral of the symmetric QRT family.

  4. The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation

    NASA Astrophysics Data System (ADS)

    Dong, Huanhe; Zhang, Yong; Zhang, Xiaoen

    2016-07-01

    A discrete matrix spectral problem is presented and the hierarchy of discrete integrable systems is derived. Their Hamiltonian structures are established. As to the discrete integrable system, nonlinearization of the spatial parts of the Lax pairs and the adjoint Lax pairs generate a new integrable symplectic map. Based on the theory, a new integrable symplectic map and a family of finite-dimension completely integrable systems are given. Especially, two explicit equations are obtained under the Bargmann constraint. Finally, the symmetry of the discrete equation is provided according to the recursion operator and the seed symmetry. Although the solutions of the discrete equations have been gained by many methods, there are few articles that solving the discrete equation via the symmetry. So the solution of the discrete lattice equation is obtained through the symmetry theory.

  5. Thermostatistics of bosonic and fermionic Fibonacci oscillators

    NASA Astrophysics Data System (ADS)

    Algin, Abdullah; Arik, Metin; Senay, Mustafa; Topcu, Gozde

    2017-01-01

    In this work, we first introduce some new properties concerning the Fibonacci calculus. We then discuss the thermostatistics of gas models of two-parameter deformed oscillators, called bosonic and fermionic Fibonacci oscillators, in the thermodynamical limit. In this framework, we analyze the behavior of two-parameter deformed mean occupation numbers describing the Fibonacci-type bosonic and fermionic intermediate-statistics particles. A virial expansion of the equation of state for the bosonic Fibonacci oscillators’ gas model is obtained in both two and three dimensions, and the first five virial coefficients are derived in terms of the real independent deformation parameters p and q. The effect of bosonic and fermionic p, q-deformation on the thermostatistical properties of Fibonacci-type p, q-boson and p, q-fermion gas models are also discussed. The results obtained in this work can be useful for investigating some exotic quasiparticle states encountered in condensed matter systems.

  6. Majorana Fermions and Topology in Superconductors

    NASA Astrophysics Data System (ADS)

    Sato, Masatoshi; Fujimoto, Satoshi

    2016-07-01

    Topological superconductors are novel classes of quantum condensed phases, characterized by topologically nontrivial structures of Cooper pairing states. On the surfaces of samples and in vortex cores of topological superconductors, Majorana fermions, which are particles identified with their own anti-particles, appear as Bogoliubov quasiparticles. The existence and stability of Majorana fermions are ensured by bulk topological invariants constrained by the symmetries of the systems. Majorana fermions in topological superconductors obey a new type of quantum statistics referred to as non-Abelian statistics, which is distinct from bose and fermi statistics, and can be utilized for application to topological quantum computation. Also, Majorana fermions give rise to various exotic phenomena such as "fractionalization", non-local correlation, and "teleportation". A pedagogical review of these subjects is presented. We also discuss interaction effects on topological classification of superconductors, and the basic properties of Weyl superconductors.

  7. Bilinear forms on fermionic Novikov algebras

    NASA Astrophysics Data System (ADS)

    Chen, Zhiqi; Zhu, Fuhai

    2007-05-01

    Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in formal variational calculus. Fermionic Novikov algebras correspond to a certain Hamiltonian super-operator in a super-variable. In this paper, we show that there is a remarkable geometry on fermionic Novikov algebras with non-degenerate invariant symmetric bilinear forms, which we call pseudo-Riemannian fermionic Novikov algebras. They are related to pseudo-Riemannian Lie algebras. Furthermore, we obtain a procedure to classify pseudo-Riemannian fermionic Novikov algebras. As an application, we give the classification in dimension <=4. Motivated by the one in dimension 4, we construct some examples in high dimensions.

  8. Chiral fermions in asymptotically safe quantum gravity.

    PubMed

    Meibohm, J; Pawlowski, J M

    2016-01-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  9. Quantum-Gas Microscope for Fermionic Atoms

    NASA Astrophysics Data System (ADS)

    Cheuk, Lawrence W.; Nichols, Matthew A.; Okan, Melih; Gersdorf, Thomas; Ramasesh, Vinay V.; Bakr, Waseem S.; Lompe, Thomas; Zwierlein, Martin W.

    2015-05-01

    We realize a quantum-gas microscope for fermionic 40K atoms trapped in an optical lattice, which allows one to probe strongly correlated fermions at the single-atom level. We combine 3D Raman sideband cooling with high-resolution optics to simultaneously cool and image individual atoms with single-lattice-site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site-resolved imaging of fermions enables the direct observation of magnetic order, time-resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement.

  10. Fermionic Orbital Optimization in Tensor Network States

    NASA Astrophysics Data System (ADS)

    Krumnow, C.; Veis, L.; Legeza, Ö.; Eisert, J.

    2016-11-01

    Tensor network states and specifically matrix-product states have proven to be a powerful tool for simulating ground states of strongly correlated spin models. Recently, they have also been applied to interacting fermionic problems, specifically in the context of quantum chemistry. A new freedom arising in such nonlocal fermionic systems is the choice of orbitals, it being far from clear what choice of fermionic orbitals to make. In this Letter, we propose a way to overcome this challenge. We suggest a method intertwining the optimization over matrix product states with suitable fermionic Gaussian mode transformations. The described algorithm generalizes basis changes in the spirit of the Hartree-Fock method to matrix-product states, and provides a black box tool for basis optimization in tensor network methods.

  11. Two-photon interactions with Majorana fermions

    NASA Astrophysics Data System (ADS)

    Latimer, David C.

    2016-11-01

    Because Majorana fermions are their own antiparticles, their electric and magnetic dipole moments must vanish, leaving the anapole moment as their only static electromagnetic property. But the existence of induced dipole moments is not necessarily prohibited. Through a study of real Compton scattering, we explore the constraints that the Majorana fermion's self-conjugate nature has on induced moments. In terms of the Compton amplitude, we find no constraints if the interactions are separately invariant under charge conjugation, parity, and time reversal. However, if the interactions are odd under parity and even under time reversal, then these contributions to the Compton amplitude must vanish. We employ a simple model to confirm these general findings via explicit calculation of the Majorana fermion's polarizabilities. We then use these polarizabilities to estimate the cross section for s -wave annihilation of two Majorana fermions into photons. The cross section is larger than a naive estimate might suggest.

  12. Beyond Graphene: Electronic and Mechanical Properties of Defective 2-D Materials

    NASA Astrophysics Data System (ADS)

    Terrones, Humberto

    One of the challenges in the production of 2-D materials is the synthesis of defect free systems which can achieve the desired properties for novel applications. However, the reality so far indicates that we need to deal with defective systems and understand their main features in order to perform defect engineering in such a way that we can engineer a new material. In this talk I discuss first, the introduction of defects in a hierarchic way starting from 2-D graphene to form giant Schwarzites or graphene foams, which also can exhibit further defects, thus we can have several levels of defectiveness. In this context, it will be shown that giant Schwarzites, depending on their symmetry, can exhibit Dirac-Fermion behavior and further, possess protected topological states as shown by other authors. Regarding the mechanical properties of these systems, it is possible to tune the Poisson Ratio by the addition of defects, thus shedding light to the explanation of the almost zero Poisson ratios in experimentally obtained graphene foams. Second, the idea of Haeckelites, a planar sp2 graphene-like structure with heptagons and pentagons, can be extended to transition metal dichalcogenides (TMDs) with square and octagonal-like defects, finding semi-metallic behaviors with Dirac-Fermions, and even topological insulating properties. National Science Foundation (EFRI-1433311).

  13. The physics and chemistry of heavy fermions.

    PubMed Central

    Fisk, Z; Sarrao, J L; Smith, J L; Thompson, J D

    1995-01-01

    The heavy fermions are a subset of the f-electron intermetallic compounds straddling the magnetic/nonmagnetic boundary. Their low-temperature properties are characterized by an electronic energy scale of order 1-10 K. Among the low-temperature ground states observed in heavy fermion compounds are exotic superconductors and magnets, as well as unusual semiconductors. We review here the current experimental and theoretical understanding of these systems. PMID:11607558

  14. Evolution of boson-fermion stars

    NASA Astrophysics Data System (ADS)

    Valdez-Alvarado, Susana; Palenzuela, Carlos; Alic, Daniela; Ureña-López, L. Arturo; Becerril, Ricardo

    2012-08-01

    The boson-fermion stars can be modeled with a complex scalar field coupled minimally to a perfect fluid (i.e., without viscosity and non-dissipative). We present a study of these solutions and their dynamical evolution by solving numerically the Einstein-Klein-Gordon-Hydrodynamic (EKGHD) system. It is shown that stable configurations exist, but stability of general configurations depends finely upon the number of bosons and fermions.

  15. Canonical approach to Ginsparg-Wilson fermions

    SciTech Connect

    Matsui, Kosuke; Okamoto, Tomohito; Fujiwara, Takanori

    2005-06-01

    Based upon the lattice Dirac operator satisfying the Ginsparg-Wilson relation, we investigate canonical formulation of massless fermion on the spatial lattice. For free fermion system exact chiral symmetry can be implemented without species doubling. In the presence of gauge couplings the chiral symmetry is violated. We show that the divergence of the axial vector current is related to the chiral anomaly in the classical continuum limit.

  16. Inhomogeneous state of few-fermion superfluids.

    PubMed

    Bugnion, P O; Lofthouse, J A; Conduit, G J

    2013-07-26

    The few-fermion atomic gas is an ideal setting to explore inhomogeneous superfluid pairing analogous to the Larkin-Ovchinnikov state. Two up and one down-spin atom is the minimal configuration that displays an inhomogeneous pairing density, whereas imbalanced systems containing more fermions present a more complex pairing topology. With more than eight atoms trapped the system approaches the macroscopic superfluid limit. An oblate trap with a central barrier offers a direct experimental probe of pairing inhomogeneity.

  17. A fourth order modified trigonometrically fitted symplectic Runge-Kutta-Nyström method

    NASA Astrophysics Data System (ADS)

    Kalogiratou, Z.; Monovasilis, Th.; Simos, T. E.

    2014-12-01

    In this work we construct a modified trigonometrically fitted symplectic Runge Kutta Nyström method based on the fourth order five stages method of Calvo and Sanz-Serna (1994). We apply the new method on the numerical integration of the two-dimensional harmonic oscillator, the two-body problem, a perturbed two-body problem and two two-dimensional nonlinear oscillatory Hamiltonian systems.

  18. Characteristic classes of star products on Marsden-Weinstein reduced symplectic manifolds

    NASA Astrophysics Data System (ADS)

    Reichert, Thorsten

    2017-04-01

    In this note we consider a quantum reduction scheme in deformation quantization on symplectic manifolds proposed by Bordemann, Herbig and Waldmann based on BRST cohomology. We explicitly construct the induced map on equivalence classes of star products which will turn out to be an analogue to the Kirwan map in the Cartan model of equivariant cohomology. As a byproduct, we shall see that every star product on a (suitable) reduced manifold is equivalent to a reduced star product.

  19. Characteristic classes of star products on Marsden-Weinstein reduced symplectic manifolds

    NASA Astrophysics Data System (ADS)

    Reichert, Thorsten

    2016-12-01

    In this note we consider a quantum reduction scheme in deformation quantization on symplectic manifolds proposed by Bordemann, Herbig and Waldmann based on BRST cohomology. We explicitly construct the induced map on equivalence classes of star products which will turn out to be an analogue to the Kirwan map in the Cartan model of equivariant cohomology. As a byproduct, we shall see that every star product on a (suitable) reduced manifold is equivalent to a reduced star product.

  20. Solving the spin-2 Gross-Pitaevskii equation using exact nonlinear dynamics and symplectic composition

    NASA Astrophysics Data System (ADS)

    Symes, L. M.; Blakie, P. B.

    2017-01-01

    We develop numerical methods for solving the spin-2 Gross-Pitaevskii equation. The basis of our work is a two-way splitting of this evolution equation that leads to two exactly solvable subsystems. Utilizing second-order and fourth-order composition schemes we realize two fully symplectic integration algorithms, the first such algorithms for evolving spin-2 condensates. We demonstrate the accuracy of these algorithms against other methods on application to an exact continuous wave solution that we derive.

  1. Inverse scattering method and soliton double solution family for the general symplectic gravity model

    SciTech Connect

    Gao Yajun

    2008-08-15

    A previously established Hauser-Ernst-type extended double-complex linear system is slightly modified and used to develop an inverse scattering method for the stationary axisymmetric general symplectic gravity model. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method applied fine and effective. As an application, a concrete family of soliton double solutions for the considered theory is obtained.

  2. Solving the spin-2 Gross-Pitaevskii equation using exact nonlinear dynamics and symplectic composition.

    PubMed

    Symes, L M; Blakie, P B

    2017-01-01

    We develop numerical methods for solving the spin-2 Gross-Pitaevskii equation. The basis of our work is a two-way splitting of this evolution equation that leads to two exactly solvable subsystems. Utilizing second-order and fourth-order composition schemes we realize two fully symplectic integration algorithms, the first such algorithms for evolving spin-2 condensates. We demonstrate the accuracy of these algorithms against other methods on application to an exact continuous wave solution that we derive.

  3. Quantum Gas Microscope for Fermionic Atoms

    NASA Astrophysics Data System (ADS)

    Okan, Melih; Cheuk, Lawrence; Nichols, Matthew; Lawrence, Katherine; Zhang, Hao; Zwierlein, Martin

    2016-05-01

    Strongly interacting fermions define the properties of complex matter throughout nature, from atomic nuclei and modern solid state materials to neutron stars. Ultracold atomic Fermi gases have emerged as a pristine platform for the study of many-fermion systems. In this poster we demonstrate the realization of a quantum gas microscope for fermionic 40 K atoms trapped in an optical lattice and the recent experiments which allows one to probe strongly correlated fermions at the single atom level. We combine 3D Raman sideband cooling with high- resolution optics to simultaneously cool and image individual atoms with single lattice site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site resolved imaging of fermions enables the direct observation of magnetic order, time resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement. NSF, AFOSR-PECASE, AFOSR-MURI on Exotic Phases of Matter, ARO-MURI on Atomtronics, ONR, a Grant from the Army Research Office with funding from the DARPA OLE program, and the David and Lucile Packard Foundation.

  4. Shell-model representations of the proton-neutron symplectic model

    NASA Astrophysics Data System (ADS)

    Ganev, H. G.

    2015-07-01

    The representation theory of the recently introduced proton-neutron symplectic model in the many-particle Hilbert space is considered. The relation of the Sp(12, R) irreducible representations (irreps) with the shell-model classification of the basis states is considered by extending of the state space to the direct product space of SU p (3) ⊗ SU n (3) irreps, generalizing in this way the Elliott's SU(3) model for the case of two-component system. The Sp(12, R) model appears then as a natural multi-major-shell extension of the generalized proton-neutron SU(3) scheme, which takes into account the core collective excitations of monopole and quadrupole, as well as dipole type associated with the giant resonance vibrational degrees of freedom. Each Sp(12, R) irreducible representation is determined by a symplectic bandhead or an intrinsic U(6) space which can be fixed by the underlying proton-neutron shell-model structure, so the theory becomes completely compatible with the Pauli principle. It is shown that this intrinsic U(6) structure is of vital importance for the appearance of the low-lying collective bands without involving a mixing of different symplectic irreps. The full range of low-lying collective states can then be described by the microscopically based intrinsic U(6) structure, renormalized by coupling to the giant resonance vibrations.

  5. Fast and reliable symplectic integration for planetary system N-body problems

    NASA Astrophysics Data System (ADS)

    Hernandez, David M.

    2016-06-01

    We apply one of the exactly symplectic integrators, which we call HB15, of Hernandez & Bertschinger, along with the Kepler problem solver of Wisdom & Hernandez, to solve planetary system N-body problems. We compare the method to Wisdom-Holman (WH) methods in the MERCURY software package, the MERCURY switching integrator, and others and find HB15 to be the most efficient method or tied for the most efficient method in many cases. Unlike WH, HB15 solved N-body problems exhibiting close encounters with small, acceptable error, although frequent encounters slowed the code. Switching maps like MERCURY change between two methods and are not exactly symplectic. We carry out careful tests on their properties and suggest that they must be used with caution. We then use different integrators to solve a three-body problem consisting of a binary planet orbiting a star. For all tested tolerances and time steps, MERCURY unbinds the binary after 0 to 25 years. However, in the solutions of HB15, a time-symmetric HERMITE code, and a symplectic Yoshida method, the binary remains bound for >1000 years. The methods' solutions are qualitatively different, despite small errors in the first integrals in most cases. Several checks suggest that the qualitative binary behaviour of HB15's solution is correct. The Bulirsch-Stoer and Radau methods in the MERCURY package also unbind the binary before a time of 50 years, suggesting that this dynamical error is due to a MERCURY bug.

  6. Isotropic Landau levels of relativistic and non-relativistic fermions in 3D flat space

    NASA Astrophysics Data System (ADS)

    Li, Yi; Wu, Congjun

    2012-02-01

    The usual Landau level quantization, as demonstrated in the 2D quantum Hall effect, is crucially based on the planar structure. In this talk, we explore its 3D counterpart possessing the full 3D rotational symmetry as well as the time reversal symmetry. We construct the Landau level Hamiltonians in 3 and higher dimensional flat space for both relativistic and non-relativistic fermions. The 3D cases with integer fillings are Z2 topological insulators. The non-relativistic version describes spin-1/2 fermions coupling to the Aharonov-Casher SU(2) gauge field. This system exhibits flat Landau levels in which the orbital angular momentum and the spin are coupled with a fixed helicity. Each filled Landau level contributes one 2D helical Dirac Fermi surface at an open boundary, which demonstrates the Z2 topological nature. A natural generalization to Dirac fermions is found as a square root problem of the above non-relativistic version, which can also be viewed as the Dirac equation defined on the phase space. All these Landau level problems can be generalized to arbitrary high dimensions systematically. [4pt] [1] Yi Li and Congjun Wu, arXiv:1103.5422.[0pt] [2] Yi Li, Ken Intriligator, Yue Yu and Congjun Wu, arXiv:1108.5650.

  7. Iterants, Fermions and Majorana Operators

    NASA Astrophysics Data System (ADS)

    Kauffman, Louis H.

    Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.

  8. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  9. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  10. Orthotropic Piezoelectricity in 2D Nanocellulose.

    PubMed

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V(-1), ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  11. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  12. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  13. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  14. Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.

    PubMed

    Fang, Yuan; Yushmanov, Pavel V; Furó, István

    2016-12-08

    Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  15. 2D Distributed Sensing Via TDR

    DTIC Science & Technology

    2007-11-02

    plate VEGF CompositeSensor Experimental Setup Air 279 mm 61 78 VARTM profile: slope RTM profile: rectangle 22 1 Jul 2003© 2003 University of Delaware...2003 University of Delaware All rights reserved Vision: Non-contact 2D sensing ü VARTM setup constructed within TL can be sensed by its EM field: 2D...300.0 mm/ns. 1 2 1 Jul 2003© 2003 University of Delaware All rights reserved Model Validation “ RTM Flow” TDR Response to 139 mm VEGC

  16. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  17. Rooting issue for a lattice fermion formulation similar to staggered fermions but without taste mixing

    SciTech Connect

    Adams, David H.

    2008-05-15

    To investigate the viability of the 4th root trick for the staggered fermion determinant in a simpler setting, we consider a 2-taste (flavor) lattice fermion formulation with no taste mixing but with exact taste-nonsinglet chiral symmetries analogous to the taste-nonsinglet U(1){sub A} symmetry of staggered fermions. Creutz's objections to the rooting trick apply just as much in this setting. To counter them we show that the formulation has robust would-be zero modes in topologically nontrivial gauge backgrounds, and that these manifest themselves in a viable way in the rooted fermion determinant and also in the disconnected piece of the pseudoscalar meson propagator as required to solve the U(1) problem. Also, our rooted theory is heuristically seen to be in the right universality class for QCD if the same is true for an unrooted mixed fermion action theory.

  18. Heavy fermion behavior explained by bosons

    NASA Technical Reports Server (NTRS)

    Kallio, A.; Poykko, S.; Apaja, V.

    1995-01-01

    Conventional heavy fermion (HF) theories require existence of massive fermions. We show that heavy fermion phenomena can also be simply explained by existence of bosons with moderate mass but temperature dependent concentration below the formation temperature T(sub B), which in turn is close to room temperature. The bosons B(++) are proposed to be in chemical equilibrium with a system of holes h(+): B(++) = h(+) + h(+). This equilibrium is governed by a boson breaking function f(T), which determines the decreasing boson density and the increasing fermion density with increasing temperature. Since HF-compounds are hybridized from minimum two elements, we assume in addition existence of another fermion component h(sub s)(+) with temperature independent density. This spectator component is thought to be the main agent in binding the bosons in analogy with electronic or muonic molecules. Using a linear boson breaking function we can explain temperature dependence of the giant linear specific heat coefficient gamma(T) coming essentially from bosons. The maxima in resistivity, Hall coefficient, and susceptibility are explained by boson localization effects due to the Wigner crystallization. The antiferromagnetic transitions in turn are explained by similar localization of the pairing fermion system when their density n(sub h)(T(sub FL)) becomes lower than n(sub WC), the critical density of Wigner crystallization. The model applies irrespective whether a compound is superconducting or not. The same model explains the occurrence of low temperature antiferromagnetism also in high-T(sub c) superconductors. The double transition in UPt3 is proposed to be due to the transition of the pairing fermion liquid from spin polarized to unpolarized state.

  19. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  20. The basics of 2D DIGE.

    PubMed

    Beckett, Phil

    2012-01-01

    The technique of two-dimensional (2D) gel electrophoresis is a powerful tool for separating complex mixtures of proteins, but since its inception in the mid 1970s, it acquired the stigma of being a very difficult application to master and was generally used to its best effect by experts. The introduction of commercially available immobilized pH gradients in the early 1990s provided enhanced reproducibility and easier protocols, leading to a pronounced increase in popularity of the technique. However gel-to-gel variation was still difficult to control without the use of technical replicates. In the mid 1990s (at the same time as the birth of "proteomics"), the concept of multiplexing fluorescently labeled proteins for 2D gel separation was realized by Jon Minden's group and has led to the ability to design experiments to virtually eliminate gel-to-gel variation, resulting in biological replicates being used for statistical analysis with the ability to detect very small changes in relative protein abundance. This technology is referred to as 2D difference gel electrophoresis (2D DIGE).

  1. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; ...

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  2. Experimental observation of two massless Dirac-fermion gases in graphene-topological insulator heterostructure

    NASA Astrophysics Data System (ADS)

    Bian, Guang; Chung, Ting-Fung; Chen, Chaoyu; Liu, Chang; Chang, Tay-Rong; Wu, Tailung; Belopolski, Ilya; Zheng, Hao; Xu, Su-Yang; Sanchez, Daniel S.; Alidoust, Nasser; Pierce, Jonathan; Quilliams, Bryson; Barletta, Philip P.; Lorcy, Stephane; Avila, José; Chang, Guoqing; Lin, Hsin; Jeng, Horng-Tay; Asensio, Maria-Carmen; Chen, Yong P.; Zahid Hasan, M.

    2016-06-01

    Graphene and topological insulators (TI) possess two-dimensional (2D) Dirac fermions with distinct physical properties. Integrating these two Dirac materials in a single device creates interesting opportunities for exploring new physics of interacting massless Dirac fermions. Here we report on a practical route to experimental fabrication of graphene-Sb2Te3 heterostructure. The graphene-TI heterostructures are prepared by using a dry transfer of chemical-vapor-deposition grown graphene film. ARPES measurements confirm the coexistence of topological surface states of Sb2Te3 and Dirac π bands of graphene, and identify the twist angle in the graphene-TI heterostructure. The results suggest a potential tunable electronic platform in which two different Dirac low-energy states dominate the transport behavior.

  3. Berezinskii-Kosterlitz-Thouless transition to the superconducting state of heavy-fermion superlattices.

    PubMed

    She, Jian-Huang; Balatsky, Alexander V

    2012-08-17

    We propose an explanation of the superconducting transitions discovered in the heavy-fermion superlattices by Mizukami et al. [Nature Phys. 7, 849 (2011)] in terms of Berezinskii-Kosterlitz-Thouless (BKT) transition. We observe that the effective mass mismatch between the heavy-fermion superconductor and the normal metal regions provides an effective barrier that enables quasi-2D superconductivity in such systems. We show that the resistivity data, both with and without magnetic field, are consistent with BKT transition. Furthermore, we study the influence of a nearby magnetic quantum critical point on the vortex system and find that the vortex core energy can be significantly reduced due to magnetic fluctuations. Further reduction of the gap with decreasing number of layers is understood as a result of pair breaking effect of Yb ions at the interface.

  4. Fermionic entanglement that survives a black hole

    SciTech Connect

    Martin-Martinez, Eduardo; Leon, Juan

    2009-10-15

    We introduce an arbitrary number of accessible modes when analyzing bipartite entanglement degradation due to Unruh effect between two partners Alice and Rob. Under the single mode approximation (SMA) a fermion field only had a few accessible levels due to Pauli exclusion principle conversely to bosonic fields which had an infinite number of excitable levels. This was argued to justify entanglement survival in the fermionic case in the SMA infinite acceleration limit. Here we relax SMA. Hence, an infinite number of modes are excited as the observer Rob accelerates, even for a fermion field. We will prove that, despite this analogy with the bosonic case, entanglement loss is limited. We will show that this comes from fermionic statistics through the characteristic structure it imposes on the infinite dimensional density matrix for Rob. Surprisingly, the surviving entanglement is independent of the specific maximally entangled state chosen, the kind of fermionic field analyzed, and the number of accessible modes considered. We shall discuss whether this surviving entanglement goes beyond the purely statistical correlations, giving insight concerning the black hole information paradox.

  5. Evidence of Topological Nodal-Line Fermions in ZrSiSe and ZrSiTe

    NASA Astrophysics Data System (ADS)

    Hu, Jin; Tang, Zhijie; Liu, Jinyu; Liu, Xue; Zhu, Yanglin; Graf, David; Myhro, Kevin; Tran, Son; Lau, Chun Ning; Wei, Jiang; Mao, Zhiqiang

    2016-07-01

    A Dirac nodal-line semimetal phase, which represents a new quantum state of topological materials, has been experimentally realized only in a few systems, including PbTaSe2 , PtSn4 , and ZrSiS. In this Letter, we report evidence of nodal-line fermions in ZrSiSe and ZrSiTe probed in de Haas-van Alphen quantum oscillations. Although ZrSiSe and ZrSiTe share a similar layered structure with ZrSiS, our studies show the Fermi surface (FS) enclosing a Dirac nodal line has a 2D character in ZrSiTe, in contrast with 3D-like FS in ZrSiSe and ZrSiS. Another important property revealed in our experiment is that the nodal-line fermion density in this family of materials (˜1020 cm-3 ) is much higher than the Dirac fermion density of other topological materials with discrete nodes. In addition, we have demonstrated ZrSiSe and ZrSiTe single crystals can be thinned down to 2D atomic thin layers through microexfoliation, which offers the first platform to explore exotic properties of topological nodal-line fermions in low dimensions.

  6. Evidence of Topological Nodal-Line Fermions in ZrSiSe and ZrSiTe.

    PubMed

    Hu, Jin; Tang, Zhijie; Liu, Jinyu; Liu, Xue; Zhu, Yanglin; Graf, David; Myhro, Kevin; Tran, Son; Lau, Chun Ning; Wei, Jiang; Mao, Zhiqiang

    2016-07-01

    A Dirac nodal-line semimetal phase, which represents a new quantum state of topological materials, has been experimentally realized only in a few systems, including PbTaSe_{2}, PtSn_{4}, and ZrSiS. In this Letter, we report evidence of nodal-line fermions in ZrSiSe and ZrSiTe probed in de Haas-van Alphen quantum oscillations. Although ZrSiSe and ZrSiTe share a similar layered structure with ZrSiS, our studies show the Fermi surface (FS) enclosing a Dirac nodal line has a 2D character in ZrSiTe, in contrast with 3D-like FS in ZrSiSe and ZrSiS. Another important property revealed in our experiment is that the nodal-line fermion density in this family of materials (∼10^{20}  cm^{-3}) is much higher than the Dirac fermion density of other topological materials with discrete nodes. In addition, we have demonstrated ZrSiSe and ZrSiTe single crystals can be thinned down to 2D atomic thin layers through microexfoliation, which offers the first platform to explore exotic properties of topological nodal-line fermions in low dimensions.

  7. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  8. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  9. Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states

    NASA Astrophysics Data System (ADS)

    Corboz, Philippe; Orús, Román; Bauer, Bela; Vidal, Guifré

    2010-04-01

    We explain how to implement, in the context of projected entangled-pair states (PEPSs), the general procedure of fermionization of a tensor network introduced in P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009). The resulting fermionic PEPS, similar to previous proposals, can be used to study the ground state of interacting fermions on a two-dimensional lattice. As in the bosonic case, the cost of simulations depends on the amount of entanglement in the ground state and not directly on the strength of interactions. The present formulation of fermionic PEPS leads to a straightforward numerical implementation that allowed us to recycle much of the code for bosonic PEPS. We demonstrate that fermionic PEPS are a useful variational ansatz for interacting fermion systems by computing approximations to the ground state of several models on an infinite lattice. For a model of interacting spinless fermions, ground state energies lower than Hartree-Fock results are obtained, shifting the boundary between the metal and charge-density wave phases. For the t-J model, energies comparable with those of a specialized Gutzwiller-projected ansatz are also obtained.

  10. Spectrum structure of a fermion on Bloch branes with two scalar–fermion couplings

    NASA Astrophysics Data System (ADS)

    Xie, Qun-Ying; Guo, Heng; Zhao, Zhen-Hua; Du, Yun-Zhi; Zhang, Yu-Peng

    2017-03-01

    It is known that the Bloch brane is generated by an odd scalar field ϕ and an even one χ. In order to localize a bulk fermion on the Bloch brane, the coupling between the fermion and scalars should be introduced. There are two localization mechanisms in the literature, the Yukawa coupling -η \\bar{\\Psi}{{F}1}≤ft(φ,χ \\right) \\Psi and non-Yukawa coupling λ \\bar{\\Psi}{ΓM}{{\\partial}M}{{F}2}≤ft(φ,χ \\right){γ5} \\Psi . The Yukawa coupling has been considered. In this paper, we consider both couplings between the fermion and the scalars with {{F}1}={χm}{φ2p+1} and {{F}2}={χn}{φ2q} , and investigate the localization and spectrum structure of the fermion on the Bloch brane. It is found that the left-handed fermion zero mode can be localized on the Bloch brane under some conditions, and the effective potentials have rich structure and may be volcano-like, finite square well-like, and infinite potentials. As a result, the spectrum consists of a series of resonant Kaluza–Klein fermions, finite or infinite numbers of bound Kaluza–Klein fermions. Especially, we find a new feature of the introduction of both couplings: the spectrum for the case of finite square well-like potentials contains discrete quasi-localized and localized massive KK modes simultaneously.

  11. Dirac fermions in an antiferromagnetic semimetal

    NASA Astrophysics Data System (ADS)

    Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng

    2016-12-01

    Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals. All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry . Here we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections and demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.

  12. Plutonium-Based Heavy-Fermion Systems

    NASA Astrophysics Data System (ADS)

    Bauer, E. D.; Thompson, J. D.

    2015-03-01

    An effective mass of charge carriers that is significantly larger than the mass of a free electron develops at low temperatures in certain lanthanide- and actinide-based metals, including those formed with plutonium, owing to strong electron-electron interactions. This heavy-fermion mass is reflected in a substantially enhanced electronic coefficient of specific heat γ, which for elemental Pu is much larger than that of normal metals. By our definition, there are twelve Pu-based heavy-fermion compounds, most discovered recently, whose basic properties are known and discussed. Relative to other examples, these Pu-based heavy-fermion systems are particularly complex owing in part to the possible simultaneous presence of multiple, nearly degenerate 5fn configurations. This complexity poses significant opportunities as well as challenges, including understanding the origin of unconventional superconductivity in some of these materials.

  13. Plaquette boson-fermion model of cuprates

    NASA Astrophysics Data System (ADS)

    Altman, Ehud; Auerbach, Assa

    2002-03-01

    The strongly interacting Hubbard model on the square lattice is reduced to the low energy plaquette boson fermion model (PBFM). The four bosons (an antiferromagnon triplet and a d-wave hole pair), and the fermions are defined by the lowest plaquette eigenstates. We apply the contractor renormalization method of Morningstar and Weinstein to compute the boson effective interactions. The range-3 truncation error is found to be very small, signaling short hole-pair and magnon coherence lengths. The pair-hopping and magnon interactions are comparable, which explains the rapid destruction of antiferromagnetic order with emergence of superconductivity, and validates a key assumption of the projected SO(5) theory. A vacuum crossing at larger doping marks a transition into the overdoped regime. With hole fermions occupying small Fermi pockets and Andreev coupled to hole pair bosons, the PBFM yields several testable predictions for photoemission, tunneling asymmetry, and entropy measurements.

  14. Thermofield dynamics and Casimir effect for fermions

    SciTech Connect

    Queiroz, H. . E-mail: hebe@fis.ufba.br; Silva, J.C. da . E-mail: jcsilva@cefetba.br; Khanna, F.C. . E-mail: khanna@phys.ualberta.ca; Malbouisson, J.M.C. . E-mail: jmalbou@phys.ualberta.ca; Revzen, M. . E-mail: revzen@physics.technion.ac.il; Santana, A.E. . E-mail: asantana@fis.unb.br

    2005-05-01

    A generalization of the Bogoliubov transformation is developed to describe a space compactified fermionic field. The method is the fermionic counterpart of the formalism introduced earlier for bosons [Phys. Rev. A 66 (2002) 052101], and is based on the thermofield dynamics approach. We analyze the energy-momentum tensor for the Casimir effect of a free massless fermion field in a d-dimensional box at finite temperature. As a particular case the Casimir energy and pressure for the field confined in a three-dimensional parallelepiped box are calculated. It is found that the attractive or repulsive nature of the Casimir pressure on opposite faces changes depending on the relative magnitude of the edges. We also determine the temperature at which the Casimir pressure in a cubic box changes sign and estimate its value when the edge of the cube is of the order of the confining lengths for baryons.

  15. Fermionic light in common optical media.

    PubMed

    Novoa, David; Michinel, Humberto; Tommasini, Daniele

    2010-11-12

    Recent experiments have proved that the response to short laser pulses of common optical media, such as air or oxygen, can be described by focusing Kerr and higher order nonlinearities of alternating signs. Such media support the propagation of steady solitary waves. We argue by both numerical and analytical computations that the low-power fundamental bright solitons satisfy an equation of state which is similar to that of a degenerate gas of fermions at zero temperature. Considering, in particular, the propagation in both O2 and air, we also find that the high-power solutions behave like droplets of ordinary liquids. We then show how a grid of the fermionic light bubbles can be generated and forced to merge in a liquid droplet. This leads us to propose a set of experiments aimed at the production of both the fermionic and liquid phases of light, and at the demonstration of the transition from the former to the latter.

  16. Fermions on one or fewer kinks

    SciTech Connect

    Chu Yizen; Vachaspati, Tanmay

    2008-01-15

    We find the full spectrum of fermion bound states on a Z{sub 2} kink. In addition to the zero mode, there are int[2m{sub f}/m{sub s}] bound states, where m{sub f} is the fermion and m{sub s} the scalar mass. We also study fermion modes on the background of a well-separated kink-antikink pair. Using a variational argument, we prove that there is at least one bound state in this background, and that the energy of this bound state goes to zero with increasing kink-antikink separation, 2L, and faster than e{sup -a2L} where a=min(m{sub s},2m{sub f}). By numerical evaluation, we find some of the low lying bound states explicitly.

  17. Quantum Phases of Fermionic Cold Atoms Through Pairing and Dissociation

    NASA Astrophysics Data System (ADS)

    Lopez, Nicolas; Tsai, Shan-Wen; Timmermans, E.; Lin, Chi-Yong

    2011-03-01

    Cold atom experiments have realized molecule creation consisting of paired fermions and dissociation of weakly bound molecules into correlated fermions by tuning of the interactions with external fields [1,2]. We study many-body correlations in such system where molecules are weakly bound and therefore pairs of fermionic atoms convert into and dissociate from the bound molecule state. This exchange mediates a long-range interaction between the fermions. We consider a simple many-body Hamiltonian that includes the destruction of fermionic atom pairs to form single bosonic molecules and vice versa. We employ a functional renormalization-group approach to search for instabilities from the disordered quantum liquid phase that may arise from a boson mediated fermion-fermion interaction. We calculate the renormalized frequency-dependent fermion interactions vertices and renormalized molecular binding energy.

  18. Fermion boson metamorphosis in field theory

    SciTech Connect

    Ha, Y.K.

    1982-01-01

    In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered.

  19. Compatible embedding for 2D shape animation.

    PubMed

    Baxter, William V; Barla, Pascal; Anjyo, Ken-Ichi

    2009-01-01

    We present new algorithms for the compatible embedding of 2D shapes. Such embeddings offer a convenient way to interpolate shapes having complex, detailed features. Compared to existing techniques, our approach requires less user input, and is faster, more robust, and simpler to implement, making it ideal for interactive use in practical applications. Our new approach consists of three parts. First, our boundary matching algorithm locates salient features using the perceptually motivated principles of scale-space and uses these as automatic correspondences to guide an elastic curve matching algorithm. Second, we simplify boundaries while maintaining their parametric correspondence and the embedding of the original shapes. Finally, we extend the mapping to shapes' interiors via a new compatible triangulation algorithm. The combination of our algorithms allows us to demonstrate 2D shape interpolation with instant feedback. The proposed algorithms exhibit a combination of simplicity, speed, and accuracy that has not been achieved in previous work.

  20. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  1. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  2. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  3. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  4. Quasiparticle interference in unconventional 2D systems

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  5. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  6. 2D Metals by Repeated Size Reduction.

    PubMed

    Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui

    2016-10-01

    A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.

  7. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  8. Fermion-fermion scattering in quantum field theory with superconducting circuits.

    PubMed

    García-Álvarez, L; Casanova, J; Mezzacapo, A; Egusquiza, I L; Lamata, L; Romero, G; Solano, E

    2015-02-20

    We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations.

  9. Topological susceptibility in staggered fermion chiral perturbation theory

    SciTech Connect

    Billeter, Brian; DeTar, Carleton; Osborn, James

    2004-10-01

    The topological susceptibility of the vacuum in quantum chromodynamics has been simulated numerically using the Asqtad improved staggered fermion formalism. At nonzero lattice spacing, the residual fermion doublers (fermion tastes) in the staggered fermion formalism give contributions to the susceptibility that deviate from conventional continuum chiral perturbation theory. In this brief report, we estimate the taste-breaking artifact and compare it with results of recent simulations, finding that it accounts for roughly half of the scaling violation.

  10. Maximum entanglement in squeezed boson and fermion states

    SciTech Connect

    Khanna, F. C.; Malbouisson, J. M. C.; Santana, A. E.; Santos, E. S.

    2007-08-15

    A class of squeezed boson and fermion states is studied with particular emphasis on the nature of entanglement. We first investigate the case of bosons, considering two-mode squeezed states. Then we construct the fermion version to show that such states are maximum entangled, for both bosons and fermions. To achieve these results, we demonstrate some relations involving squeezed boson states. The generalization to the case of fermions is made by using Grassmann variables.

  11. Global analysis of fermion mixing with exotics

    NASA Technical Reports Server (NTRS)

    Nardi, Enrico; Roulet, Esteban; Tommasini, Daniele

    1991-01-01

    The limits are analyzed on deviation of the lepton and quark weak-couplings from their standard model values in a general class of models where the known fermions are allowed to mix with new heavy particles with exotic SU(2) x U(1) quantum number assignments (left-handed singlets or right-handed doublets). These mixings appear in many extensions of the electroweak theory such as models with mirror fermions, E(sub 6) models, etc. The results update previous analyses and improve considerably the existing bounds.

  12. Condensation of gauge interacting massless fermions

    SciTech Connect

    Siringo, Fabio

    2004-09-15

    A single massless fermionic field with an Abelian U(1) gauge interaction (electrodynamics of a massless Dirac fermion) is studied by a variational method. Even without the insertion of any extra interaction the vacuum is shown to be unstable towards a particle-antiparticle condensate. The single particle excitations do acquire a mass and behave as massive Fermi particles. An explicit low-energy gap equation has been derived and numerically solved. Some consequences of condensation and mass generation are discussed in the framework of the standard model.

  13. Massless rotating fermions inside a cylinder

    SciTech Connect

    Ambruş, Victor E.; Winstanley, Elizabeth

    2015-12-07

    We study rotating thermal states of a massless quantum fermion field inside a cylinder in Minkowski space-time. Two possible boundary conditions for the fermion field on the cylinder are considered: the spectral and MIT bag boundary conditions. If the radius of the cylinder is sufficiently small, rotating thermal expectation values are finite everywhere inside the cylinder. We also study the Casimir divergences on the boundary. The rotating thermal expectation values and the Casimir divergences have different properties depending on the boundary conditions applied at the cylinder. This is due to the local nature of the MIT bag boundary condition, while the spectral boundary condition is nonlocal.

  14. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  15. Irreversibility-inversions in 2D turbulence

    NASA Astrophysics Data System (ADS)

    Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido

    2016-11-01

    We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.

  16. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  17. A Survey of Symplectic and Collocation Integration Methods for Orbit Propagation

    NASA Technical Reports Server (NTRS)

    Jones, Brandon A.; Anderson, Rodney L.

    2012-01-01

    Demands on numerical integration algorithms for astrodynamics applications continue to increase. Common methods, like explicit Runge-Kutta, meet the orbit propagation needs of most scenarios, but more specialized scenarios require new techniques to meet both computational efficiency and accuracy needs. This paper provides an extensive survey on the application of symplectic and collocation methods to astrodynamics. Both of these methods benefit from relatively recent theoretical developments, which improve their applicability to artificial satellite orbit propagation. This paper also details their implementation, with several tests demonstrating their advantages and disadvantages.

  18. Teichmüller spaces as degenerated symplectic leaves in Dubrovin-Ugaglia Poisson manifolds

    NASA Astrophysics Data System (ADS)

    Chekhov, Leonid; Mazzocco, Marta

    2012-12-01

    In this paper, we study the Goldman bracket between geodesic length functions both on a Riemann surface Σg,s,0 of genus g with s=1,2 holes and on a Riemann sphere Σ0,1,n with one hole and n orbifold points of order two. We show that the corresponding Teichmüller spaces Tg,s,0 and T0,1,n are realised as real slices of degenerated symplectic leaves in the Dubrovin-Ugaglia Poisson algebra of upper-triangular matrices S with 1 on the diagonal.

  19. The gauge sector of the SME with Lorentz-symmetry violation by symplectic projector method

    NASA Astrophysics Data System (ADS)

    Belich, H.; Santos, M. A.; Orlando, M. T. D.

    2015-09-01

    We propose to analyze a modified electromagnetism inspired from the gauge sector of the Standard Model extension (SME). From the point of view of a canonical formulation, we carried out the usual analysis on the constraints structure of the odd sector (Carroll-Field-Jackiw term) and a Maxwell term with an effective metric. This effective metric is obtained by a vectorial decomposition of the CPT-even term, that is absorbed in the ordinary Maxwell term. Using symplectic projector method (SPM), we obtain the dispersions relations and we have verified conditions of stability to determine the valid spectrum.

  20. Canonical functions, differential graded symplectic pairs in supergeometry, and Alexandrov-Kontsevich-Schwartz-Zaboronsky sigma models with boundaries

    NASA Astrophysics Data System (ADS)

    Ikeda, Noriaki; Xu, Xiaomeng

    2014-11-01

    Consistent boundary conditions for Alexandrov-Kontsevich-Schwartz-Zaboronsky (AKSZ) sigma models and the corresponding boundary theories are analyzed. As their mathematical structures, we introduce a generalization of differential graded symplectic manifolds, called twisted QP manifolds, in terms of graded symplectic geometry, canonical functions, and QP pairs. We generalize the AKSZ construction of topological sigma models to sigma models with Wess-Zumino terms and show that all the twisted Poisson-like structures known in the literature can actually be naturally realized as boundary conditions for AKSZ sigma models.

  1. Composite fermions and the field-tuned superconductor-insulator transition

    NASA Astrophysics Data System (ADS)

    Raghu, Srinivas; Mulligan, Michael

    In several two-dimensional films that exhibit a magnetic field-tuned superconductor to insulator transition (SIT), stable metallic phases have been observed. Building on the `dirty boson' description of the SIT, we suggest that the metallic region is analogous to the composite Fermi liquid observed about half-filled Landau levels of the two-dimensional electron gas. The composite fermions here are mobile vortices attached to one flux quantum of an emergent gauge field. The composite vortex liquid is a 2D non-Fermi liquid metal, which we argue is stable to weak quenched disorder. We describe several experimental consequences of the emergent composite vortex liquid.

  2. Composite fermions and the field-tuned superconductor-insulator transition

    NASA Astrophysics Data System (ADS)

    Mulligan, Michael; Raghu, S.

    2016-05-01

    In several two-dimensional films that exhibit a magnetic field-tuned superconductor to insulator transition (SIT), stable metallic phases have been observed. Building on the `dirty boson' description of the SIT, we suggest that the metallic region is analogous to the composite Fermi liquid observed about half-filled Landau levels of the two-dimensional electron gas. The composite fermions here are mobile vortices attached to one flux quantum of an emergent gauge field. The composite vortex liquid is a 2D non-Fermi liquid metal, which we argue is stable to weak quenched disorder. We describe several experimental consequences of the emergent composite vortex liquid.

  3. Precision constraints on extra fermion generations.

    PubMed

    Erler, Jens; Langacker, Paul

    2010-07-16

    There has been recent renewed interest in the possibility of additional fermion generations. At the same time there have been significant changes in the relevant electroweak precision constraints, in particular, in the interpretation of several of the low energy experiments. We summarize the various motivations for extra families and analyze them in view of the latest electroweak precision data.

  4. Entanglement of several blocks in fermionic chains

    NASA Astrophysics Data System (ADS)

    Ares, Filiberto; Esteve, José G.; Falceto, Fernando

    2014-12-01

    In this paper we propose an expression for the entanglement entropy of several intervals in a stationary state of a free, translational invariant Hamiltonian in a fermionic chain. We check numerically the accuracy of our proposal and conjecture a formula for the asymptotic behavior of principal submatrices of a Toeplitz matrix.

  5. Fermionic entanglement ambiguity in noninertial frames

    SciTech Connect

    Montero, Miguel; Martin-Martinez, Eduardo

    2011-06-15

    We analyze an ambiguity in previous works on entanglement of fermionic fields in noninertial frames. This ambiguity, related to the anticommutation properties of field operators, leads to nonunique results when computing entanglement measures for the same state. We show that the ambiguity disappears when we introduce detectors, which are in any case necessary as a means to probe the field entanglement.

  6. Observation of Weyl fermions in condensed matter

    NASA Astrophysics Data System (ADS)

    Ding, Hong

    In 1929, a German mathematician and physicist Hermann Weyl proposed that a massless solution of the Dirac equation represents a pair of new type of particles, the so-called Weyl fermions. However, their existence in particle physics remains elusive after more than eight decades, e.g., neutrino has been regarded as a Weyl fermion in the Standard Model until it was found to have mass. Recently, significant advances in topological materials have provided an alternative way to realize Weyl fermions in condensed matter as an emergent phenomenon. Weyl semimetals are predicted as a class of topological materials that can be regarded as three-dimensional analogs of graphene breaking time reversal or inversion symmetry. Electrons in a Weyl semimetal behave exactly as Weyl fermions, which have many exotic properties, such as chiral anomaly, magnetic monopoles in the crystal momentum space, and open Fermi arcs on the surface. In this talk I will report our experimental discovery of a Weyl semimetal in TaAs by observing Fermi arcs with a characteristic spin texture in the surface states and Weyl nodes in the bulk states using angle-resolved photoemission spectroscopy.

  7. Finite volume renormalization scheme for fermionic operators

    SciTech Connect

    Monahan, Christopher; Orginos, Kostas

    2013-11-01

    We propose a new finite volume renormalization scheme. Our scheme is based on the Gradient Flow applied to both fermion and gauge fields and, much like the Schr\\"odinger functional method, allows for a nonperturbative determination of the scale dependence of operators using a step-scaling approach. We give some preliminary results for the pseudo-scalar density in the quenched approximation.

  8. Odd frequency pairing of interacting Majorana fermions

    NASA Astrophysics Data System (ADS)

    Huang, Zhoushen; Woelfle, Peter; Balatsky, Alexandar

    Majorana fermions are rising as a promising key component in quantum computation. While the prevalent approach is to use a quadratic (i.e. non-interacting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd frequency behavior. It is stabilized when the coupling strength g is above a critical value gc. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory allowing to discuss a possible subleading admixture of even-frequency pairing. Work supported by USDOE DE-AC52-06NA25396 E304, Knut and Alice Wallenberg Foundation, and ERC DM-321031.

  9. Fermions Living in a Flat World

    SciTech Connect

    Jesus Anguiano-Galicia, Ma. de; Bashir, A.

    2006-09-25

    In a plane, parity transformation, which changes the sign of only one spatial coordinate, swaps the fermion fields living in two inequivalent representations. A parity invariant Lagrangian thus contains fields corresponding to both the representations. For such a Lagrangian, we show that we can also define a chiral symmetry.

  10. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  11. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  12. Codon Constraints on Closed 2D Shapes,

    DTIC Science & Technology

    2014-09-26

    19843$ CODON CONSTRAINTS ON CLOSED 2D SHAPES Go Whitman Richards "I Donald D. Hoffman’ D T 18 Abstract: Codons are simple primitives for describing plane...RSONAL AUT"ORtIS) Richards, Whitman & Hoffman, Donald D. 13&. TYPE OF REPORT 13b. TIME COVERED N/A P8 AT F RRrT t~r. Ago..D,) is, PlE COUNT Reprint...outlines, if figure and ground are ignored. Later, we will address the problem of indexing identical codon descriptors that have different figure

  13. Effect of Fermion Velocity on Phase Structure of QED3

    NASA Astrophysics Data System (ADS)

    Li, Jian-Feng; Feng, Hong-Tao; Zong, Hong-Shi

    2016-11-01

    Dynamical chiral symmetry breaking (DCSB) in thermal QED3 with fermion velocity is studied in the framework of Dyson-Schwinger equations. By adopting instantaneous approximation and neglecting the transverse component of gauge boson propagator at finite temperature, we numerically solve the fermion self-energy equation in the rainbow approximation. It is found that both DCSB and fermion chiral condensate are suppressed by fermion velocity. Moreover, the critical temperature decreases as fermion velocity increases. Supported in part by the National Natural Science Foundation of China under Grant No. 11535005 and the Natural Science Foundation of Jiangsu Province under Grant No. BK20130387

  14. Symplectic analysis of vertical random vibration for coupled vehicle track systems

    NASA Astrophysics Data System (ADS)

    Lu, F.; Kennedy, D.; Williams, F. W.; Lin, J. H.

    2008-10-01

    A computational model for random vibration analysis of vehicle-track systems is proposed and solutions use the pseudo excitation method (PEM) and the symplectic method. The vehicle is modelled as a mass, spring and damping system with 10 degrees of freedom (dofs) which consist of vertical and pitching motion for the vehicle body and its two bogies and vertical motion for the four wheelsets. The track is treated as an infinite Bernoulli-Euler beam connected to sleepers and hence to ballast and is regarded as a periodic structure. Linear springs couple the vehicle and the track. Hence, the coupled vehicle-track system has only 26 dofs. A fixed excitation model is used, i.e. the vehicle does not move along the track but instead the track irregularity profile moves backwards at the vehicle velocity. This irregularity is assumed to be a stationary random process. Random vibration theory is used to obtain the response power spectral densities (PSDs), by using PEM to transform this random multiexcitation problem into a deterministic harmonic excitation one and then applying symplectic solution methodology. Numerical results for an example include verification of the proposed method by comparing with finite element method (FEM) results; comparison between the present model and the traditional rigid track model and; discussion of the influences of track damping and vehicle velocity.

  15. Symplectic random vibration analysis of a vehicle moving on an infinitely long periodic track

    NASA Astrophysics Data System (ADS)

    Zhang, You-Wei; Lin, Jia-Hao; Zhao, Yan; Howson, W. P.; Williams, F. W.

    2010-10-01

    Based on the pseudo-excitation method (PEM), symplectic mathematical scheme and Schur decomposition, the random responses of coupled vehicle-track systems are analyzed. The vehicle is modeled as a spring-mass-damper system and the track is regarded as an infinitely long substructural chain consisting of three layers, i.e. the rails, sleepers and ballast. The vehicle and track are coupled via linear springs and the "moving-vehicle model" is adopted. The latter assumes that the vehicle moves along a static track for which the rail irregularity is further assumed to be a zero-mean valued stationary Gaussian random process. The problem is then solved efficiently as follows. Initially, PEM is used to transform the rail random excitations into deterministic harmonic excitations. The symplectic mathematical scheme is then applied to establish a low degree of freedom equation of motion with periodic coefficients. In turn these are transformed into a linear equation set whose upper triangular coefficient matrix is established using the Schur decomposition scheme. Finally, the frequency-dependent terms are separated from the load vector to avoid repeated computations for different frequencies associated with the pseudo-excitations. The proposed method is subsequently justified by comparison with a Monte-Carlo simulation; the fixed-vehicle model and the moving-vehicle model are compared and the influences of vehicle velocity and class of track on system responses are also discussed.

  16. Explicit high-order noncanonical symplectic algorithms for ideal two-fluid systems

    NASA Astrophysics Data System (ADS)

    Xiao, Jianyuan; Qin, Hong; Morrison, Philip J.; Liu, Jian; Yu, Zhi; Zhang, Ruili; He, Yang

    2016-11-01

    An explicit high-order noncanonical symplectic algorithm for ideal two-fluid systems is developed. The fluid is discretized as particles in the Lagrangian description, while the electromagnetic fields and internal energy are treated as discrete differential form fields on a fixed mesh. With the assistance of Whitney interpolating forms [H. Whitney, Geometric Integration Theory (Princeton University Press, 1957); M. Desbrun et al., Discrete Differential Geometry (Springer, 2008); J. Xiao et al., Phys. Plasmas 22, 112504 (2015)], this scheme preserves the gauge symmetry of the electromagnetic field, and the pressure field is naturally derived from the discrete internal energy. The whole system is solved using the Hamiltonian splitting method discovered by He et al. [Phys. Plasmas 22, 124503 (2015)], which was been successfully adopted in constructing symplectic particle-in-cell schemes [J. Xiao et al., Phys. Plasmas 22, 112504 (2015)]. Because of its structure preserving and explicit nature, this algorithm is especially suitable for large-scale simulations for physics problems that are multi-scale and require long-term fidelity and accuracy. The algorithm is verified via two tests: studies of the dispersion relation of waves in a two-fluid plasma system and the oscillating two-stream instability.

  17. Boundaries, mirror symmetry, and symplectic duality in 3d N=4 gauge theory

    NASA Astrophysics Data System (ADS)

    Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide; Hilburn, Justin

    2016-10-01

    We introduce several families of N=(2, 2) UV boundary conditions in 3d N=4 gaugetheoriesandstudytheirIRimagesinsigma-modelstotheHiggsandCoulomb branches. In the presence of Omega deformations, a UV boundary condition defines a pair of modules for quantized algebras of chiral Higgs- and Coulomb-branch operators, respec-tively, whose structure we derive. In the case of abelian theories, we use the formalism of hyperplane arrangements to make our constructions very explicit, and construct a half-BPS interface that implements the action of 3d mirror symmetry on gauge theories and boundary conditions. Finally, by studying two-dimensional compactifications of 3d N=4 gauge theories and their boundary conditions, we propose a physical origin for symplectic duality — an equivalence of categories of modules associated to families of Higgs and Coulomb branches that has recently appeared in the mathematics literature, and generalizes classic results on Koszul duality in geometric representation theory. We make several predictions about the structure of symplectic duality, and identify Koszul duality as a special case of wall crossing.

  18. Construction of symplectic maps for nonlinear motion of particles in accelerators

    NASA Astrophysics Data System (ADS)

    Berg, J. S.; Warnock, R. L.; Ruth, R. D.; Forest, É.

    1994-01-01

    We explore an algorithm for the construction of symplectic maps to describe nonlinear particle motion in circular accelerators. We emphasize maps for motion over one or a few full turns, which may provide an economical way of studying long-term stability in large machines such as the Superconducting Super Collider (SSC). The map is defined implicitly by a mixed-variable generating function, represented as a Fourier series in betatron angle variables, with coefficients given as B-spline functions of action variables and the total energy. Despite the implicit definition, iteration of the map proves to be a fast process. The method is illustrated with a realistic model of the SSC. We report extensive tests of accuracy and iteration time in various regions of phase space, and demonstrate the results by using single-turn maps to follow trajectories symplectically for 107 turns on a workstation computer. The same method may be used to construct the Poincaré map of Hamiltonian systems in other fields of physics.

  19. Energy/dissipation-preserving Birkhoffian multi-symplectic methods for Maxwell's equations with dissipation terms

    DOE PAGES

    Su, Hongling; Li, Shengtai

    2016-02-03

    In this study, we propose two new energy/dissipation-preserving Birkhoffian multi-symplectic methods (Birkhoffian and Birkhoffian box) for Maxwell's equations with dissipation terms. After investigating the non-autonomous and autonomous Birkhoffian formalism for Maxwell's equations with dissipation terms, we first apply a novel generating functional theory to the non-autonomous Birkhoffian formalism to propose our Birkhoffian scheme, and then implement a central box method to the autonomous Birkhoffian formalism to derive the Birkhoffian box scheme. We have obtained four formal local conservation laws and three formal energy global conservation laws. We have also proved that both of our derived schemes preserve the discrete versionmore » of the global/local conservation laws. Furthermore, the stability, dissipation and dispersion relations are also investigated for the schemes. Theoretical analysis shows that the schemes are unconditionally stable, dissipation-preserving for Maxwell's equations in a perfectly matched layer (PML) medium and have second order accuracy in both time and space. Numerical experiments for problems with exact theoretical results are given to demonstrate that the Birkhoffian multi-symplectic schemes are much more accurate in preserving energy than both the exponential finite-difference time-domain (FDTD) method and traditional Hamiltonian scheme. Finally, we also solve the electromagnetic pulse (EMP) propagation problem and the numerical results show that the Birkhoffian scheme recovers the magnitude of the current source and reaction history very well even after long time propagation.« less

  20. Energy/dissipation-preserving Birkhoffian multi-symplectic methods for Maxwell's equations with dissipation terms

    SciTech Connect

    Su, Hongling; Li, Shengtai

    2016-02-03

    In this study, we propose two new energy/dissipation-preserving Birkhoffian multi-symplectic methods (Birkhoffian and Birkhoffian box) for Maxwell's equations with dissipation terms. After investigating the non-autonomous and autonomous Birkhoffian formalism for Maxwell's equations with dissipation terms, we first apply a novel generating functional theory to the non-autonomous Birkhoffian formalism to propose our Birkhoffian scheme, and then implement a central box method to the autonomous Birkhoffian formalism to derive the Birkhoffian box scheme. We have obtained four formal local conservation laws and three formal energy global conservation laws. We have also proved that both of our derived schemes preserve the discrete version of the global/local conservation laws. Furthermore, the stability, dissipation and dispersion relations are also investigated for the schemes. Theoretical analysis shows that the schemes are unconditionally stable, dissipation-preserving for Maxwell's equations in a perfectly matched layer (PML) medium and have second order accuracy in both time and space. Numerical experiments for problems with exact theoretical results are given to demonstrate that the Birkhoffian multi-symplectic schemes are much more accurate in preserving energy than both the exponential finite-difference time-domain (FDTD) method and traditional Hamiltonian scheme. Finally, we also solve the electromagnetic pulse (EMP) propagation problem and the numerical results show that the Birkhoffian scheme recovers the magnitude of the current source and reaction history very well even after long time propagation.

  1. A symplectic pseudospectral method for nonlinear optimal control problems with inequality constraints.

    PubMed

    Wang, Xinwei; Peng, Haijun; Zhang, Sheng; Chen, Biaosong; Zhong, Wanxie

    2017-03-16

    A symplectic pseudospectral method based on the dual variational principle and the quasilinearization method is proposed and is successfully applied to solve nonlinear optimal control problems with inequality constraints in this paper. Nonlinear optimal control problem is firstly converted into a series of constraint linear-quadratic optimal control problems with the help of quasilinearization techniques. Then a symplectic pseudospectral method based on dual variational principle for solving the converted constrained linear-quadratic optimal control problems is developed. In the proposed method, inequality constraints which can be functions of pure state, pure control and mixed state-control are transformed into equality constraints with the help of parameteric variables. After that, state variables, costate variables and parametric variables are interpolated locally at Legendre-Gauss-Lobatto points. Finally, based on the parametric variational principle and complementary conditions, the converted problem is transformed into a standard linear complementary problem which can be solved easily. Numerical examples show that the proposed method is of high accuracy and efficiency.

  2. Variational symplectic algorithm for guiding center dynamics in the inner magnetosphere

    SciTech Connect

    Li Jinxing; Pu Zuyin; Xie Lun; Fu Suiyan; Qin Hong

    2011-05-15

    Charged particle dynamics in magnetosphere has temporal and spatial multiscale; therefore, numerical accuracy over a long integration time is required. A variational symplectic integrator (VSI) [H. Qin and X. Guan, Phys. Rev. Lett. 100, 035006 (2008) and H. Qin, X. Guan, and W. M. Tang, Phys. Plasmas 16, 042510 (2009)] for the guiding-center motion of charged particles in general magnetic field is applied to study the dynamics of charged particles in magnetosphere. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing the dynamics. The VSI conserves exactly a discrete Lagrangian symplectic structure and has better numerical properties over a long integration time, compared with standard integrators, such as the standard and adaptive fourth order Runge-Kutta (RK4) methods. Applying the VSI method to guiding-center dynamics in the inner magnetosphere, we can accurately calculate the particles'orbits for an arbitrary long simulating time with good conservation property. When a time-independent convection and corotation electric field is considered, the VSI method can give the accurate single particle orbit, while the RK4 method gives an incorrect orbit due to its intrinsic error accumulation over a long integrating time.

  3. Fermionic-mode entanglement in non-Markovian environment

    SciTech Connect

    Cheng, Jiong; Han, Yan; An, Qing-zhi; Zhou, Ling

    2015-03-15

    We evaluate the non-Markovian effects on the entanglement dynamics of a fermionic system interacting with two dissipative vacuum reservoirs. The exact solution of density matrix is derived by utilizing the Feynman–Vernon influence functional theory in the fermionic coherent state representation and the Grassmann calculus, which are valid for both the fermionic and bosonic baths, and their difference lies in the dependence of the parity of the initial states. The fermionic entanglement dynamics is presented by adding an additional restriction to the density matrix known as the superselection rules. Our analysis shows that the usual decoherence suppression schemes implemented in qubits systems can also be achieved for systems of identical fermions, and the initial state proves its importance in the evolution of fermionic entanglement. Our results provide a potential way to decoherence controlling of identical fermions.

  4. Remarks on thermalization in 2D CFT

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Engelhardt, Dalit

    2016-12-01

    We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.

  5. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  6. Analysis of the antiferromagnetic phase transitions of the 2D Kondo lattice

    NASA Astrophysics Data System (ADS)

    Jones, Barbara

    2010-03-01

    The Kondo lattice continues to present an interesting and relevant challenge, with its interactions between Kondo, RKKY, and coherent order. We present our study[1] of the antiferromagnetic quantum phase transitions of a 2D Kondo-Heisenberg square lattice. Starting from the nonlinear sigma model as a model of antiferromagnetism, we carry out a renormalization group analysis of the competing Kondo-RKKY interaction to one-loop order in an ɛ-expansion. We find a new quantum critical point (QCP) strongly affected by Kondo fluctuations. Near this QCP, there is a breakdown of hydrodynamic behavior, and the spin waves are logarithmically frozen out. The renormalization group results allow us to propose a new phase diagram near the antiferromagnetic fixed point of this 2D Kondo lattice model. The T=0 phase diagram contains four phases separated by a tetracritical point, the new QCP. For small spin fluctuations, we find a stable local magnetic moment antiferromagnet. For stronger coupling, region II is a metallic quantum disordered paramagnet. We find in region III a paramagnetic phase driven by Kondo interactions, with possible ground states of a heavy fermion liquid or a Kondo driven spin-liquid. The fourth phase is a spiral phase, or a large-Fermi-surface antiferromagnetic phase. We will describe these phases in more detail, including possible experimental confirmation of the spiral phase. The existence of the tetracritical point found here would be expected to affect the phase diagram at finite temperatures as well. In addition, It is hoped that these results, and particularly the Kondo interaction paramagnetic phase, will serve to bridge to solutions starting from the opposite limit, of a Kondo effect leading to a heavy fermion ground state. Work in collaboration with T. Tzen Ong. [4pt] [1] T. Ong and B. A. Jones, Phys. Rev. Lett. 103, 066405 (2009).

  7. Two-Dimensional Boron Hydride Sheets: High Stability, Massless Dirac Fermions, and Excellent Mechanical Properties.

    PubMed

    Jiao, Yalong; Ma, Fengxian; Bell, John; Bilic, Ante; Du, Aijun

    2016-08-22

    Two-dimensional (2D) boron sheets have been successfully synthesized in recent experiments, however, some important issues remain, including the dynamical instability, high energy, and the active surface of the sheets. In an attempt to stabilize 2D boron layers, we have used density functional theory and global minimum search with the particle-swarm optimization method to predict four stable 2D boron hydride layers, namely the C2/m, Pbcm, Cmmm, and Pmmn sheets. The vibrational normal mode calculations reveal all these structures are dynamically stable, indicating potential for successful experimental synthesis. The calculated Young's modulus indicates a high mechanical strength for the C2/m and Pbcm phases. Most importantly, the C2/m, Pbcm, and Pmmn structures exhibit Dirac cones with massless Dirac fermions and the Fermi velocities for the Pbcm and Cmmm structures are even higher than that of graphene. The Cmmm phase is reported as the first discovery of Dirac ring material among boron-based 2D structures. The unique electronic structure of the 2D boron hydride sheets makes them ideal for nanoelectronics applications.

  8. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  9. Günther's formalism (κ-symplectic formalism) in classical field theory: Skinner-Rusk approach and the evolution operator

    NASA Astrophysics Data System (ADS)

    Rey, Angel M.; Román-Roy, Narciso; Salgado, Modesto

    2005-05-01

    The first aim of this paper is to extend the Skinner-Rusk formalism on classical mechanics for first-order field theories. The second is to generalize the definition and properties of the evolution K-operator on classical mechanics for first-order field theories using in both cases Günther's formalism (k-symplectic formalism).

  10. A phase-preserving and low-dispersive symplectic partitioned Runge-Kutta method for solving seismic wave equations

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Yang, Dinghui

    2017-03-01

    The finite-difference method, which is an important numerical tool for solving seismic wave equations, is widely applied in wavefield simulation, wave-equation-based migration and inversion. As the seismic wave phase plays a critical role in forward simulation and inversion, it should be preserved during wavefield simulation. In this paper, we propose a type of phase-preserving stereomodelling method, which is simultaneously symplectic and low numerical dispersive. First, we propose three new time-marching schemes for solving wave equations that are optimal symplectic partitioned Runge-Kutta schemes with minimized phase errors. Relevant simulations on a harmonic oscillator show that even after 200,000 temporal iterations, our schemes can still avoid the phase drifting issue that appears in other symplectic schemes. We use these symplectic schemes as time integrators, and a numerically low dispersive operator called the stereomodelling discrete operator as a spatial discretization approach to solve seismic wave equations. Theoretical analysis on the stability conditions shows that the new methods are more stable than previous methods. We also investigate the numerical dispersion relations of the methods proposed in this study. To further investigate phase accuracy, we compare the numerical solutions generated by the proposed methods with analytic solutions. Several numerical experiments indicate that our proposed methods are efficient for various models and perform well with perfectly matched layer boundary conditions.

  11. Three-dimensional simple conformal symplectic particle-in-cell methods for simulations of high power microwave devices

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Wang, Jianguo; Chen, Zaigao; Cheng, Guoxin; Wang, Pan

    2016-08-01

    To overcome the staircase error in the traditional particle-in-cell (PIC) method, a three dimensional (3D) simple conformal (SC) symplectic PIC method is presented in this paper. The SC symplectic finite integration technique (FIT) scheme is used to advance the electromagnetic fields without reduction of the time step. Particles are emitted from conformal boundaries with the charge conserving emission scheme and moved by using the relativistic Newton-Lorentz force equation. The symplectic formulas of auxiliary-differential equation, complex frequency shifted perfectly matched layer (ADE-CFS-PML) are given for truncating the open boundaries, numerical results show that the maximum relative error of truncation is less than 90 dB. Based on the surface equivalence theorem, the computing algorithms of conformal signals' injection are given, numerical results show that the algorithms can give the right mode patterns and the errors of cutoff frequencies could be as low as 0.1%. To verify the conformal algorithms, a magnetically insulated line oscillator is simulated, and the results are compared to those provided by using the 2.5D UNIPIC code, which show that they agree well. The results also show that the high order symplectic integration method can suppress the numerical Cherenkov radiation.

  12. Reduction of a symplectic-like Lie algebroid with momentum map and its application to fiberwise linear Poisson structures

    NASA Astrophysics Data System (ADS)

    Marrero, Juan Carlos; Padrón, Edith; Rodríguez-Olmos, Miguel

    2012-04-01

    This paper addresses the problem of developing an extension of the Marsden-Weinstein reduction process to symplectic-like Lie algebroids, and in particular to the case of the canonical cover of a fiberwise linear Poisson structure, whose reduction process is the analog to cotangent bundle reduction in the context of Lie algebroids. Dedicated to the memory of Jerrold E Marsden

  13. Metal-insulator transition in two-dimensional random fermion systems of chiral symmetry classes

    NASA Astrophysics Data System (ADS)

    König, E. J.; Ostrovsky, P. M.; Protopopov, I. V.; Mirlin, A. D.

    2012-05-01

    Field-theoretical approach to Anderson localization in 2D disordered fermionic systems of chiral symmetry classes (BDI, AIII, CII) is developed. Important representatives of these symmetry classes are random hopping models on bipartite lattices at the band center. As was found by Gade and Wegner two decades ago within the sigma-model formalism, quantum interference effects in these classes are absent to all orders of perturbation theory. We demonstrate that the quantum localization effects emerge when the theory is treated nonperturbatively. Specifically, they are controlled by topological vortexlike excitations of the sigma models. We derive renormalization-group equations including these nonperturbative contributions. Analyzing them, we find that the 2D disordered systems of chiral classes undergo a metal-insulator transition driven by topologically induced Anderson localization. We also show that the Wess-Zumino and Z2 θ terms on surfaces of 3D topological insulators (in classes AIII and CII, respectively) overpower the vortex-induced localization.

  14. Transition to turbulence: 2D directed percolation

    NASA Astrophysics Data System (ADS)

    Chantry, Matthew; Tuckerman, Laurette; Barkley, Dwight

    2016-11-01

    The transition to turbulence in simple shear flows has been studied for well over a century, yet in the last few years has seen major leaps forward. In pipe flow, this transition shows the hallmarks of (1 + 1) D directed percolation, a universality class of continuous phase transitions. In spanwisely confined Taylor-Couette flow the same class is found, suggesting the phenomenon is generic to shear flows. However in plane Couette flow the largest simulations and experiments to-date find evidence for a discrete transition. Here we study a planar shear flow, called Waleffe flow, devoid of walls yet showing the fundamentals of planar transition to turbulence. Working with a quasi-2D yet Navier-Stokes derived model of this flow we are able to attack the (2 + 1) D transition problem. Going beyond the system sizes previously possible we find all of the required scalings of directed percolation and thus establish planar shears flow in this class.

  15. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  16. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse.

  17. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  18. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  19. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  20. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  1. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  2. Equilibration via Gaussification in Fermionic Lattice Systems

    NASA Astrophysics Data System (ADS)

    Gluza, M.; Krumnow, C.; Friesdorf, M.; Gogolin, C.; Eisert, J.

    2016-11-01

    In this Letter, we present a result on the nonequilibrium dynamics causing equilibration and Gaussification of quadratic noninteracting fermionic Hamiltonians. Specifically, based on two basic assumptions—clustering of correlations in the initial state and the Hamiltonian exhibiting delocalizing transport—we prove that non-Gaussian initial states become locally indistinguishable from fermionic Gaussian states after a short and well controlled time. This relaxation dynamics is governed by a power-law independent of the system size. Our argument is general enough to allow for pure and mixed initial states, including thermal and ground states of interacting Hamiltonians on large classes of lattices as well as certain spin systems. The argument gives rise to rigorously proven instances of a convergence to a generalized Gibbs ensemble. Our results allow us to develop an intuition of equilibration that is expected to be more generally valid and relates to current experiments of cold atoms in optical lattices.

  3. A closer look at the elementary fermions

    PubMed Central

    Goldhaber, Maurice

    2002-01-01

    Although there have been many experimental and theoretical efforts to measure and interpret small deviations from the standard model of particle physics, the gap that the model leaves in understanding why there are only three generations of the elementary fermions, with hierarchical masses, has not received the attention it deserves. I present here an attempt to fill this gap. Although our findings are mostly only qualitative, they nevertheless may be of heuristic value. Rules concerning the elementary fermions, some previously known and some new, lead to a number of conclusions and questions that seem worth pursuing. Some clarify the standard model, and others suggest possible modifications, the implications of which are discussed. PMID:11773637

  4. Possible Aoki phase for staggered fermions

    SciTech Connect

    Aubin, C.; Wang Qinghai

    2004-12-01

    The phase diagram for staggered fermions is discussed in the context of the staggered chiral Lagrangian, extending previous work on the subject. When the discretization errors are significant, there may be an Aoki-like phase for staggered fermions, where the remnant SO(4) taste-symmetry is broken down to SO(3). We solve explicitly for the mass spectrum in the 3-flavor degenerate mass case and discuss qualitatively the 2+1-flavor case. From numerical results we find that current simulations are outside the staggered-Aoki phase. As for near-future simulations with more-improved versions of the staggered action, it seems unlikely that these will be in the Aoki phase for any realistic value of the quark mass, although the evidence is not conclusive.

  5. Fractional Fermions with Non-Abelian Statistics

    NASA Astrophysics Data System (ADS)

    Klinovaja, Jelena; Loss, Daniel

    2013-03-01

    We introduce a novel class of low-dimensional topological tight-binding models that allow for bound states that are fractionally charged fermions and exhibit non-Abelian braiding statistics. The proposed model consists of a double (single) ladder of spinless (spinful) fermions in the presence of magnetic fields. We study the system analytically in the continuum limit as well as numerically in the tight-binding representation. We find a topological phase transition with a topological gap that closes and reopens as a function of system parameters and chemical potential. The topological phase is of the type BDI and carries two degenerate midgap bound states that are localized at opposite ends of the ladders. We show numerically that these bound states are robust against a wide class of perturbations.

  6. Unconventional superconductivity in heavy-fermion compounds

    SciTech Connect

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  7. Unconventional superconductivity in heavy-fermion compounds

    DOE PAGES

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates andmore » iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.« less

  8. Simulating fermions on a quantum computer

    NASA Astrophysics Data System (ADS)

    Ortiz, G.; Gubernatis, J. E.; Knill, E.; Laflamme, R.

    2002-07-01

    The real-time probabilistic simulation of quantum systems in classical computers is known to be limited by the so-called dynamical sign problem, a problem leading to exponential complexity. In 1981 Richard Feynman raised some provocative questions in connection to the "exact imitation" of such systems using a special device named a "quantum computer". Feynman hesitated about the possibility of imitating fermion systems using such a device. Here we address some of his concerns and, in particular, investigate the simulation of fermionic systems. We show how quantum computers avoid the sign problem in some cases by reducing the complexity from exponential to polynomial. Our demonstration is based upon the use of isomorphisms of algebras. We present specific quantum algorithms that illustrate the main points of our algebraic approach.

  9. Unconventional superconductivity in heavy-fermion compounds

    NASA Astrophysics Data System (ADS)

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-07-01

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion compounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. We conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  10. Peltier cooling of fermionic quantum gases.

    PubMed

    Grenier, Ch; Georges, A; Kollath, C

    2014-11-14

    We propose a cooling scheme for fermionic quantum gases, based on the principles of the Peltier thermoelectric effect and energy filtering. The system to be cooled is connected to another harmonically trapped gas acting as a reservoir. The cooling is achieved by two simultaneous processes: (i) the system is evaporatively cooled, and (ii) cold fermions from deep below the Fermi surface of the reservoir are injected below the Fermi level of the system, in order to fill the "holes" in the energy distribution. This is achieved by a suitable energy dependence of the transmission coefficient connecting the system to the reservoir. The two processes can be viewed as simultaneous evaporative cooling of particles and holes. We show that both a significantly lower entropy per particle and faster cooling rate can be achieved in this way than by using only evaporative cooling.

  11. Peltier Cooling of Fermionic Quantum Gases

    NASA Astrophysics Data System (ADS)

    Grenier, Ch.; Georges, A.; Kollath, C.

    2014-11-01

    We propose a cooling scheme for fermionic quantum gases, based on the principles of the Peltier thermoelectric effect and energy filtering. The system to be cooled is connected to another harmonically trapped gas acting as a reservoir. The cooling is achieved by two simultaneous processes: (i) the system is evaporatively cooled, and (ii) cold fermions from deep below the Fermi surface of the reservoir are injected below the Fermi level of the system, in order to fill the "holes" in the energy distribution. This is achieved by a suitable energy dependence of the transmission coefficient connecting the system to the reservoir. The two processes can be viewed as simultaneous evaporative cooling of particles and holes. We show that both a significantly lower entropy per particle and faster cooling rate can be achieved in this way than by using only evaporative cooling.

  12. Oriented chromite-diopside symplectic inclusions in olivine from lunar regolith delivered by "Luna-24" mission

    NASA Astrophysics Data System (ADS)

    Khisina, N. R.; Wirth, R.; Abart, R.; Rhede, D.; Heinrich, W.

    2013-03-01

    Calcium-chromium rich lamellae in olivine grain No. 1611 from the Luna-24 regolith were studied with FEG-EMPA and TEM. The lamellae consist of a worm-like intergrowth of FeCr2O4 chromite (Chr) and CaMgSi2O6 diopside (Di), with a Chr:Di modal proportion of 1:3. The linear extension of the lamellae and crystallographic orientation relationships among the symplectite phases and the olivine suggest that the lamellae nucleated at deformation defects in the olivine host. Calcium depletion haloes surrounding the lamellae amount to about 75 μm and indicate that the chromite + diopside lamellae were formed by segregation of calcium and chromium from the host olivine into the lamellae without addition of calcium and/or chromium from outside the olivine. The segregation of calcium and chromium and, consequently, the growth of the symplectic lamellae were diffusion-controlled. The segregation of a calcium-chromium component from the host olivine was associated with oxidation of divalent to trivalent chromium. Oxidation was facilitated by dehydrogenation, which was driven by decompression and/or a change in redox potential. Hydrogen point defects in the original olivine with H+ substituting for divalent cations on the M-sites provided the necessary electron acceptors for the oxidation of chromium and after electron transfer left olivine as molecular H2. The internal microstructure of the lamellae suggests that exsolution of the calcium-chromium rich lamellae from the host olivine and formation of the chromite-diopside symplectic intergrowth occurred simultaneously. The time scale derived from diffusion modeling of the calcium depletion haloes around the lamellae indicates a thermal event on the order of several months to several hundred years at most. Symplectic inclusions found in olivine from lunar, martian and terrestrial rocks are similar with respect to their shape, crystallographic orientation relationships, and internal microstructure of the spinel

  13. Superconductivity in the boson-fermion model with short range fermion repulsion

    NASA Astrophysics Data System (ADS)

    Kostyrko, Tomasz

    1998-03-01

    We consider influence of an on-site Coulomb repulsion U between fermions on superconducting properties of a two-component system of the wide band electrons hybridized with heavy boson-like local electron pairs^1,2. Within an RPA treatment valid for U< fermion bandwidth, we show that U almost completely suppresses superconductivity as long as a boson level stays above a Fermi level (BCS limit), reducing both Tc and a range of stability of an s-wave superconducting phase at T=0 K. In a Bose region, where the chemical potential remains pinned to the boson level, superconductivity is always stable at T=0 K and suppression of Tc is relatively small, especially for finite values of a boson mass. Above results are verified with the conclusions based on an effective t-J like hamiltonian derived by means of a canonical perturbation method from the boson-fermion model in a strong U limit. We show that the on-site boson-fermion hybridization is reduced by a factor of 2t/U (t - fermion hopping) and transforms into an intersite coupling supporting an extended s-wave superconducting order in this limit. [1em] 1. J. Ranninger and Robaszkiewicz, Physica B 135, 468 (1985). 2. R. Friedberg and T.D. Lee, Phys. Rev. B 40, 423 (1989).

  14. Fermionic Optical Lattices: A Computational Study

    DTIC Science & Technology

    2014-10-22

    Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 optical lattices, degenerate quantum gases , quantum control, correlation...with a different wavelength. We systematically determine the real - and momentum-space properties of these states. The crossover from 3D to two...fermions in square lattices. The phases are systematically characterized by the symmetry of the order parameter and the real - and momentum-space

  15. Renormalization group for non-relativistic fermions.

    PubMed

    Shankar, R

    2011-07-13

    A brief introduction is given to the renormalization group for non-relativistic fermions at finite density. It is shown that Landau's theory of the Fermi liquid arises as a fixed point (with the Landau parameters as marginal couplings) and its instabilities as relevant perturbations. Applications to related areas, nuclear matter, quark matter and quantum dots, are briefly discussed. The focus will be on explaining the main ideas to people in related fields, rather than addressing the experts.

  16. Quantum Algorithms for Fermionic Quantum Field Theories

    DTIC Science & Technology

    2014-04-28

    a theory in two spacetime dimensions with quartic interactions. The algorithm introduces new techniques to meet the additional challenges posed by...in fermionic field theories, exemplified by the massive Gross- Neveu model, a theory in two spacetime dimensions with quartic interactions. The...two spacetime dimensions with quartic interactions. Although our analysis is specific to this theory, our algorithm can be adapted to other massive

  17. Fermions in 5D brane world models

    NASA Astrophysics Data System (ADS)

    Smolyakov, Mikhail

    2016-10-01

    In the present manuscript the fermion fields in the background of 5D brane world models with compact extra dimension are examined. It is shown that the only case that allows one to perform the Kaluza-Klein decomposition in a mathematically consistent way without unnatural fine-tunings and possible pathologies, is the one which does not admit localization of the zero mode. The report is based on the results presented in [1].

  18. Strong coupling QED with two fermionic flavors

    SciTech Connect

    Wang, K.C.

    1990-11-01

    We report the recent results of our simulation of strong coupling QED, with non-compact action, on lattices 10{sup 4} and 16{sup 4}. Since we are dealing with two staggered fermionic flavors, we use hybrid algorithm to do the simulation. In addition to the measurement of the chiral order parameter {l angle}{bar {psi}}{psi}{r angle}, we also measure magnetic monopole susceptibility, {chi}, throughout the region of chiral transition. 6 refs., 6 figs.

  19. Optical Lattice Gases of Interacting Fermions

    DTIC Science & Technology

    2015-12-02

    theoretical research supported by this grant focused on discovering new phases of quantum matter for ultracold fermionic atoms or molecules confined in optical...Communications, including a review paper on the orbital physics of cold atoms in optical lattices [1] and a book chapter on topological insulators of cold... atoms [14]. A few significant results are highlighted below. 1. Novel phases of cold atoms on higher orbital bands. The research team discovered

  20. Giant magnetoresistance of edge current between fermion and spin topological systems

    NASA Astrophysics Data System (ADS)

    Slieptsov, Igor O.; Karnaukhov, Igor N.

    2015-07-01

    A spin-1/2 subsystem conjoined along a cut with a subsystem of spinless fermions in the state of topological insulator is studied on a honeycomb lattice. The model describes a junction between a 2D topological insulator and a 2D spin lattice with direction-dependent exchange interactions in topologically trivial and nontrivial phase states. The model Hamiltonian of the complex system is solved exactly by reduction to free Majorana fermions in a static ℤ2 gauge field. In contrast to junctions between topologically trivial phases, this junction is defined by chiral edge states and direct interaction between them for topologically nontrivial phases. As a result of the boundary interaction between chiral edge modes, the edge junction is defined by the Chern numbers of the subsystems: such gapless edge modes with the same (different) chirality switch on (off) an edge current between topological subsystems. The sign of the Chern number of spin subsystem is changed in an external magnetic field, thus the electric current strongly depends both on a direction and a value of an applied weak magnetic field. We provide a detailed analysis of the edge current and demonstrate how to switch on (off) the electric current in the magnetic field.

  1. Scalar meson spectroscopy with lattice staggered fermions

    SciTech Connect

    Bernard, Claude; DeTar, Carleton; Fu Ziwen; Prelovsek, Sasa

    2007-11-01

    With sufficiently light up and down quarks the isovector (a{sub 0}) and isosinglet (f{sub 0}) scalar meson propagators are dominated at large distance by two-meson states. In the staggered-fermion formulation of lattice quantum chromodynamics, taste-symmetry breaking causes a proliferation of two-meson states that further complicates the analysis of these channels. Many of them are unphysical artifacts of the lattice approximation. They are expected to disappear in the continuum limit. The staggered-fermion fourth-root procedure has its purported counterpart in rooted staggered chiral perturbation theory (rS{chi}PT). Fortunately, the rooted theory provides a strict framework that permits the analysis of scalar meson correlators in terms of only a small number of low-energy couplings. Thus the analysis of the point-to-point scalar meson correlators in this context gives a useful consistency check of the fourth-root procedure and its proposed chiral realization. Through numerical simulation we have measured correlators for both the a{sub 0} and f{sub 0} channels in the 'Asqtad' improved staggered-fermion formulation in a lattice ensemble with lattice spacing a=0.12 fm. We analyze those correlators in the context of rS{chi}PT and obtain values of the low-energy chiral couplings that are reasonably consistent with previous determinations.

  2. Composite gauge-bosons made of fermions

    NASA Astrophysics Data System (ADS)

    Suzuki, Mahiko

    2016-07-01

    We construct a class of Abelian and non-Abelian local gauge theories that consist only of matter fields of fermions. The Lagrangian is local and does not contain an auxiliary vector field nor a subsidiary condition on the matter fields. It does not involve an extra dimension nor supersymmetry. This Lagrangian can be extended to non-Abelian gauge symmetry only in the case of SU(2) doublet matter fields. We carry out an explicit diagrammatic computation in the leading 1 /N order to show that massless spin-one bound states appear with the correct gauge coupling. Our diagram calculation exposes the dynamical features that cannot be seen in the formal auxiliary vector-field method. For instance, it shows that the s -wave fermion-antifermion interaction in the 3S1 channel (ψ ¯ γμψ ) alone cannot form the bound gauge bosons; the fermion-antifermion pairs must couple to the d -wave state too. One feature common to our class of Lagrangian is that the Noether current does not exist. Therefore it evades possible conflict with the no-go theorem of Weinberg and Witten on the formation of the non-Abelian gauge bosons.

  3. Linear dependencies between composite fermion states

    NASA Astrophysics Data System (ADS)

    Meyer, M. L.; Liabøtrø, O.; Viefers, S.

    2016-09-01

    The formalism of composite fermions (CFs) has been one of the most prominent and successful approaches to describing the fractional quantum Hall effect, in terms of trial many-body wave functions. Testing the accuracy of the latter typically involves rather heavy numerical comparison to exact diagonalization results. Thus, optimizing computational efficiency has been an important technical issue in this field. One generic (and not yet fully understood) property of the CF approach is that it tends to overcount the number of linearly independent candidate states for fixed sets of quantum numbers. Technically speaking, CF Slater determinants that are orthogonal before projection to the lowest Landau level, may lead to wave functions that are identical, or possess linear dependencies, after projection. This leads to unnecessary computations, and has been pointed out in the literature both for fermionic and bosonic systems. We here present a systematic approach that enables us to reveal all linear dependencies between bosonic compact states in the lowest CF ‘cyclotron energy’ sub-band, and almost all dependencies in higher sub-bands, at the level of the CF Slater determinants, i.e. before projection, which implies a major computational simplification. Our approach is introduced for so-called simple states of two-species rotating bosons, and then generalized to generic compact bosonic states, both one- and two-species. Some perspectives also apply to fermionic systems. The identities and linear dependencies we find, are analytically exact for ‘brute force’ projection in the disk geometry.

  4. K(E10), supergravity and fermions

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Kleinschmidt, Axel; Nicolai, Hermann

    2006-08-01

    We study the fermionic extension of the E10/K(E10) coset model and its relation to eleven-dimensional supergravity. Finite-dimensional spinor representations of the compact subgroup K(E10) of E10(Bbb R) are studied and the supergravity equations are rewritten using the resulting algebraic variables. The canonical bosonic and fermionic constraints are also analysed in this way, and the compatibility of supersymmetry with local K(E10) is investigated. We find that all structures involving A9 levels ell = 0,1 and 2 nicely agree with expectations, and provide many non-trivial consistency checks of the existence of a supersymmetric extension of the E10/K(E10) coset model, as well as a new derivation of the `bosonic dictionary' between supergravity and coset variables. However, there are also definite discrepancies in some terms involving level ell = 3, which suggest the need for an extension of the model to infinite-dimensional faithful representations of the fermionic degrees of freedom.

  5. Magnetoresistance in paramagnetic heavy fermion metals.

    PubMed

    Parihari, D; Vidhyadhiraja, N S

    2009-10-07

    A theoretical study of magnetic field (h) effects on single-particle spectra and the transport quantities of heavy fermion metals in the paramagnetic phase is carried out. We have employed a non-perturbative local moment approach (LMA) to the asymmetric periodic Anderson model within the dynamical mean field framework. The lattice coherence scale ω(L), which is proportional within the LMA to the spin-flip energy scale, and has been shown in earlier studies to be the energy scale at which crossover to single-impurity physics occurs, increases monotonically with increasing magnetic field. The many body Kondo resonance in the density of states at the Fermi level splits into two, with the splitting being proportional to the field itself. For h≥0, we demonstrate adiabatic continuity from the strongly interacting case to a corresponding non-interacting limit, thus establishing Fermi liquid behaviour for heavy fermion metals in the presence of a magnetic field. In the Kondo lattice regime, the theoretically computed magnetoresistance is found to be negative in the entire temperature range. We argue that such a result could be understood at [Formula: see text] by field-induced suppression of spin-flip scattering and at [Formula: see text] through lattice coherence. The coherence peak in the heavy fermion resistivity diminishes and moves to higher temperatures with increasing field. Direct comparison of the theoretical results to the field dependent resistivity measurements in CeB(6) yields good agreement.

  6. On the symplectic integration of the discrete nonlinear Schrödinger equation with disorder

    NASA Astrophysics Data System (ADS)

    Gerlach, E.; Meichsner, J.; Skokos, C.

    2016-09-01

    We present several methods, which utilize symplectic integration techniques based on two and three part operator splitting, for numerically solving the equations of motion of the disordered, discrete nonlinear Schrödinger (DDNLS) equation, and compare their efficiency. Our results suggest that the most suitable methods for the very long time integration of this one-dimensional Hamiltonian lattice model with many degrees of freedom (of the order of a few hundreds) are the ones based on three part splits of the system's Hamiltonian. Two part split techniques can be preferred for relatively small lattices having up to N ≈ 70 sites. An advantage of the latter methods is the better conservation of the system's second integral, i.e. the wave packet's norm.

  7. Symplectic fourth-order maps for the collisional N -body problem

    NASA Astrophysics Data System (ADS)

    Dehnen, Walter; Hernandez, David M.

    2017-02-01

    We study analytically and experimentally certain symplectic and time-reversible N-body integrators which employ the Kepler solver for each pairwise interaction, including the method of Hernandez & Bertschinger. Owing to the Kepler solver, these methods treat close two-body interactions correctly, while close three-body encounters contribute to the truncation error at second order and above. The second-order errors can be corrected to obtain a fourth-order scheme with little computational overhead. We generalize this map to an integrator which employs the Kepler solver only for selected interactions and yet retains fourth-order accuracy without backward steps. In this case, however, two-body encounters not treated via the Kepler solver contribute to the truncation error.

  8. Persistence Measures for 2d Soap Froth

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Ruskin, H. J.; Zhu, B.

    Soap froths as typical disordered cellular structures, exhibiting spatial and temporal evolution, have been studied through their distributions and topological properties. Recently, persistence measures, which permit representation of the froth as a two-phase system, have been introduced to study froth dynamics at different length scales. Several aspects of the dynamics may be considered and cluster persistence has been observed through froth experiment. Using a direct simulation method, we have investigated persistent properties in 2D froth both by monitoring the persistence of survivor cells, a topologically independent measure, and in terms of cluster persistence. It appears that the area fraction behavior for both survivor and cluster persistence is similar for Voronoi froth and uniform froth (with defects). Survivor and cluster persistent fractions are also similar for a uniform froth, particularly when geometries are constrained, but differences observed for the Voronoi case appear to be attributable to the strong topological dependency inherent in cluster persistence. Survivor persistence, on the other hand, depends on the number rather than size and position of remaining bubbles and does not exhibit the characteristic decay to zero.

  9. SEM signal emulation for 2D patterns

    NASA Astrophysics Data System (ADS)

    Sukhov, Evgenii; Muelders, Thomas; Klostermann, Ulrich; Gao, Weimin; Braylovska, Mariya

    2016-03-01

    The application of accurate and predictive physical resist simulation is seen as one important use model for fast and efficient exploration of new patterning technology options, especially if fully qualified OPC models are not yet available at an early pre-production stage. The methodology of using a top-down CD-SEM metrology to extract the 3D resist profile information, such as the critical dimension (CD) at various resist heights, has to be associated with a series of presumptions which may introduce such small, but systematic CD errors. Ideally, the metrology effects should be carefully minimized during measurement process, or if possible be taken into account through proper metrology modeling. In this paper we discuss the application of a fast SEM signal emulation describing the SEM image formation. The algorithm is applied to simulated resist 3D profiles and produces emulated SEM image results for 1D and 2D patterns. It allows estimating resist simulation quality by comparing CDs which were extracted from the emulated and from the measured SEM images. Moreover, SEM emulation is applied for resist model calibration to capture subtle error signatures through dose and defocus. Finally, it should be noted that our SEM emulation methodology is based on the approximation of physical phenomena which are taking place in real SEM image formation. This approximation allows achieving better speed performance compared to a fully physical model.

  10. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  11. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  12. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  13. Semiclassical fermion pair creation in de Sitter spacetime

    SciTech Connect

    Stahl, Clément Eckhard, Strobel

    2015-12-17

    We present a method to semiclassically compute the pair creation rate of bosons and fermions in de Sitter spacetime. The results in the bosonic case agree with the ones in the literature. We find that for the constant electric field the fermionic and bosonic pair creation rate are the same. This analogy of bosons and fermions in the semiclassical limit is known from several flat spacetime examples.

  14. Mixtures of Bosonic and Fermionic atoms

    NASA Astrophysics Data System (ADS)

    Albus, Alexander

    2003-12-01

    The theory of atomic Boson-Fermion mixtures in the dilute limit beyond mean-field is considered in this thesis. Extending the formalism of quantum field theory we derived expressions for the quasi-particle excitation spectra, the ground state energy, and related quantities for a homogenous system to first order in the dilute gas parameter. In the framework of density functional theory we could carry over the previous results to inhomogeneous systems. We then determined to density distributions for various parameter values and identified three different phase regions: (i) a stable mixed regime, (ii) a phase separated regime, and (iii) a collapsed regime. We found a significant contribution of exchange-correlation effects in the latter case. Next, we determined the shift of the Bose-Einstein condensation temperature caused by Boson-Fermion interactions in a harmonic trap due to redistribution of the density profiles. We then considered Boson-Fermion mixtures in optical lattices. We calculated the criterion for stability against phase separation, identified the Mott-insulating and superfluid regimes both, analytically within a mean-field calculation, and numerically by virtue of a Gutzwiller Ansatz. We also found new frustrated ground states in the limit of very strong lattices. ----Anmerkung: Der Autor ist Träger des durch die Physikalische Gesellschaft zu Berlin vergebenen Carl-Ramsauer-Preises 2004 für die jeweils beste Dissertation der vier Universitäten Freie Universität Berlin, Humboldt-Universität zu Berlin, Technische Universität Berlin und Universität Potsdam. Ziel der Arbeit war die systematische theoretische Behandlung von Gemischen aus bosonischen und fermionischen Atomen in einem Parameterbereich, der sich zur Beschreibung von aktuellen Experimenten mit ultra-kalten atomaren Gasen eignet. Zuerst wurde der Formalismus der Quantenfeldtheorie auf homogene, atomare Boson-Fermion Gemische erweitert, um grundlegende Größen wie Quasiteilchenspektren

  15. Quantum Hall Effect of Massless Dirac Fermions and Free Fermions in Hofstadter's Butterfly

    NASA Astrophysics Data System (ADS)

    Yoshioka, Nobuyuki; Matsuura, Hiroyasu; Ogata, Masao

    2016-06-01

    We propose a new physical interpretation of the Diophantine equation of σxy for the Hofstadter problem. First, we divide the energy spectrum, or Hofstadter's butterfly, into smaller self-similar areas called "subcells", which were first introduced by Hofstadter to describe the recursive structure. We find that in the energy gaps between subcells, there are two ways to account for the quantization rule of σxy, that are consistent with the Diophantine equation: Landau quantization of (i) massless Dirac fermions or (ii) free fermions in Hofstadter's butterfly.

  16. 2D discrete Fourier transform on sliding windows.

    PubMed

    Park, Chun-Su

    2015-03-01

    Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions.

  17. Unpaired composite fermion, topological exciton, and zero mode.

    PubMed

    Sreejith, G J; Wójs, A; Jain, J K

    2011-09-23

    The paired state of composite fermions is expected to support two kinds of excitations: vortices and unpaired composite fermions. We construct an explicit microscopic description of the unpaired composite fermions, which we demonstrate to be accurate for a 3-body model interaction and, possibly, adiabatically connected to the Coulomb solution. This understanding reveals that an unpaired composite fermion carries with it a charge-neutral "topological" exciton, which, in turn, helps provide microscopic insight into the origin of zero modes, fusion rules, and energetics.

  18. Unpaired Composite Fermion, Topological Exciton, and Zero Mode

    NASA Astrophysics Data System (ADS)

    Sreejith, G. J.; Wójs, A.; Jain, J. K.

    2011-09-01

    The paired state of composite fermions is expected to support two kinds of excitations: vortices and unpaired composite fermions. We construct an explicit microscopic description of the unpaired composite fermions, which we demonstrate to be accurate for a 3-body model interaction and, possibly, adiabatically connected to the Coulomb solution. This understanding reveals that an unpaired composite fermion carries with it a charge-neutral “topological” exciton, which, in turn, helps provide microscopic insight into the origin of zero modes, fusion rules, and energetics.

  19. Wilson fermions and axion electrodynamics in optical lattices.

    PubMed

    Bermudez, A; Mazza, L; Rizzi, M; Goldman, N; Lewenstein, M; Martin-Delgado, M A

    2010-11-05

    We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.

  20. Fermion frontiers in vector lattice gauge theories: Proceedings. Volume 8

    SciTech Connect

    1998-11-01

    The inclusion of fermions into simulations of lattice gauge theories is very difficult both theoretically and numerically. With the presence of Teraflops-scale computers for lattice gauge theory, the authors wanted a forum to discuss new approaches to lattice fermions. The workshop concentrated on approaches which are ripe for study on such large machines. Although lattice chiral fermions are vitally important to understand, there is not technique at hand which is viable on these Teraflops-scale machines for real-world problems. The discussion was therefore focused on recent developments and future prospects for QCD-like theories. For the well-known fermion formulations, the Aoki phase in Wilson fermions, novelties of U{sub A}(1) symmetry and the {eta}{prime} for staggered fermions and new approaches for simulating the determinant for Wilson fermions were discussed. The newer domain-wall fermion formulation was reviewed, with numerical results given by many speakers. The fermion proposal of Friedberg, Lee and Pang was introduced. They also were able to compare and contrast the dependence of QCD and QCD-like SUSY theories on the number of quark flavors. These proceedings consist of several transparencies and a summary page from each speaker. This should serve to outline the major points made in each talk.

  1. Bosonization of fermions coupled to topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.

    2014-03-01

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space-time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy-momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space-time.

  2. Universal behavior of repulsive two-dimensional fermions in the vicinity of the quantum freezing point

    NASA Astrophysics Data System (ADS)

    Babadi, Mehrtash; Skinner, Brian; Fogler, Michael M.; Demler, Eugene

    2013-07-01

    We show by a meta-analysis of the available Quantum Monte Carlo (QMC) results that two-dimensional fermions with repulsive interactions exhibit universal behavior in the strongly correlated regime, and that their freezing transition can be described using a quantum generalization of the classical Hansen-Verlet freezing criterion. We calculate the liquid-state energy and the freezing point of the 2D dipolar Fermi gas (2DDFG) using a variational method by taking ground-state wave functions of 2D electron gas (2DEG) as trial states. A comparison with the recent fixed-node diffusion Monte Carlo analysis of the 2DDFG shows that our simple variational technique captures more than 95% of the correlation energy, and predicts the freezing transition within the uncertainty bounds of QMC. Finally, we utilize the ground-state wave functions of 2DDFG as trial states and provide a variational account of the effects of finite 2D confinement width. Our results indicate significant beyond mean-field effects. We calculate the frequency of collective monopole oscillations of the quasi-2D dipolar gas as an experimental demonstration of correlation effects.

  3. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1989-03-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  4. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1988-08-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  5. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  6. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  7. NIKE2D96. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Raboin, P.; Engelmann, B.; Halquist, J.O.

    1992-01-24

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  8. Theory of (2+1)-dimensional fermionic topological orders and fermionic/bosonic topological orders with symmetries

    NASA Astrophysics Data System (ADS)

    Lan, Tian; Kong, Liang; Wen, Xiao-Gang

    2016-10-01

    We propose a systematic framework to classify (2+1)-dimensional (2+1D) fermionic topological orders without symmetry and 2+1D fermionic/bosonic topological orders with symmetry G . The key is to use the so-called symmetric fusion category E to describe the symmetry. Here, E =sRep (Z2f) describing particles in a fermionic product state without symmetry, or E =sRep (Gf) [E =Rep (G )] describing particles in a fermionic (bosonic) product state with symmetry G . Then, topological orders with symmetry E are classified by nondegenerate unitary braided fusion categories over E , plus their modular extensions and total chiral central charges. This allows us to obtain a list that contains all 2+1D fermionic topological orders without symmetry. For example, we find that, up to p +i p fermionic topological orders, there are only four fermionic topological orders with one nontrivial topological excitation: (1) the K =( -1 0 0 2) fractional quantum Hall state, (2) a Fibonacci bosonic topological order stacking with a fermionic product state, (3) the time-reversal conjugate of the previous one, and (4) a fermionic topological order with chiral central charge c =1/4 , whose only topological excitation has non-Abelian statistics with spin s =1/4 and quantum dimension d =1 +√{2 } .

  9. Strongly Interacting Fermions in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Koetsier, A. O.

    2009-07-01

    This thesis explores certain extraordinary phenomena that occur when a gas of neutral atoms is cooled to the coldest temperatures in the universe --- much colder, in fact, than the electromagnetic radiation that permeates the vacuum of interstellar space. At those extreme temperatures, quantum effects dominate and the collective behaviour of the atoms can have unexpected consequences. For example, Bose-Einstein condensation may occur where the atoms lose their individual identities to coalesce into a macroscopic quantum particle. Although such ultracold atomic gases are interesting in their own right, much of the excitement generated in this field is due to the possibility that studying these gases could shed light on intractable problems in other areas of physics. This is predominantly due to the uniquely high degree of control over various physical parameters that ultracold atomic gases afford to experimentalists. Recent technological advances exploit this advantage to study quantum phenomena in a detail that would not be possible in other systems. For instance, atoms can be made to attract or repel each other, the strength of this interaction can be set to almost any value, and external potentials of various geometries and periodicities can be introduced. In this way, atoms can be used to model phenomena as diverse as the quark-gluon plasmas arising in high-energy particle physics, the colour superfluids conjectured to exist in the core of neutron stars, and the high-temperature superconductivity exhibited by electrons on the ion lattice of certain compounds. Indeed, ultracold atomic gases also have a demonstrated applicability to quantum information and computation. Due to a subtle interplay between electronic and nuclear spins known as the hyperfine interaction, atoms can have either an integer or half-integer total spin quantum number, making them either bosonic or fermionic at low temperatures, respectively. With the exception of chapter 7, the work

  10. Preservation of physical properties of stochastic Maxwell equations with additive noise via stochastic multi-symplectic methods

    SciTech Connect

    Chen, Chuchu Hong, Jialin Zhang, Liying

    2016-02-01

    Stochastic Maxwell equations with additive noise are a system of stochastic Hamiltonian partial differential equations intrinsically, possessing the stochastic multi-symplectic conservation law. It is shown that the averaged energy increases linearly with respect to the evolution of time and the flow of stochastic Maxwell equations with additive noise preserves the divergence in the sense of expectation. Moreover, we propose three novel stochastic multi-symplectic methods to discretize stochastic Maxwell equations in order to investigate the preservation of these properties numerically. We make theoretical discussions and comparisons on all of the three methods to observe that all of them preserve the corresponding discrete version of the averaged divergence. Meanwhile, we obtain the corresponding dissipative property of the discrete averaged energy satisfied by each method. Especially, the evolution rates of the averaged energies for all of the three methods are derived which are in accordance with the continuous case. Numerical experiments are performed to verify our theoretical results.

  11. Variational symplectic particle-in-cell simulation of nonlinear mode conversion from extraordinary waves to Bernstein waves

    SciTech Connect

    Xiao, Jianyuan; Liu, Jian; Qin, Hong; Yu, Zhi; Xiang, Nong

    2015-09-15

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments.

  12. A pseudo-differential calculus on non-standard symplectic space; Spectral and regularity results in modulation spaces

    PubMed Central

    Dias, Nuno Costa; de Gosson, Maurice; Luef, Franz; Prata, João Nuno

    2011-01-01

    The usual Weyl calculus is intimately associated with the choice of the standard symplectic structure on Rn⊕Rn. In this paper we will show that the replacement of this structure by an arbitrary symplectic structure leads to a pseudo-differential calculus of operators acting on functions or distributions defined, not on Rn but rather on Rn⊕Rn. These operators are intertwined with the standard Weyl pseudo-differential operators using an infinite family of partial isometries of L2(Rn)→L2(R2n) indexed by S(Rn). This allows us to obtain spectral and regularity results for our operators using Shubinʼs symbol classes and Feichtingerʼs modulation spaces. PMID:22158824

  13. Van Hove correlation functions for identical fermions

    NASA Astrophysics Data System (ADS)

    Macke, Wilhelm; Miesenböck, Helga M.; Hingerl, Kurt; Bachlechner, Martina E.

    1989-02-01

    For a quantum system of identical fermions a partition of the density-density correlation function in its ``self'' and ``distinct'' part is presented. These quantities show different properties than their classical counterparts, e.g., they violate the ``detailed balance'' and are not necessarily real. Nevertheless it can be expected that they will provide a good tool for a better description of the self-motion in many-particle systems and are therefore investigated in second-order perturbation theory of the interparticle potential.

  14. Fermions, Skyrmions and the 3-sphere

    NASA Astrophysics Data System (ADS)

    Goatham, Stephen W.; Krusch, Steffen

    2010-01-01

    This paper investigates a background charge one Skyrme field chirally coupled to light fermions on the 3-sphere. The Dirac equation for the system commutes with a generalized angular momentum or grand spin. It can be solved explicitly for a Skyrme configuration given by the hedgehog form. The energy spectrum and degeneracies are derived for all values of the grand spin. Solutions for non-zero grand spin are each characterized by a set of four polynomials. The paper also discusses the energy of the Dirac sea using zeta-function regularization.

  15. Boson formulation of fermion field theories

    SciTech Connect

    Ha, Y.K.

    1984-04-15

    The nonperturbative connection between a canonical Fermi field and a canonical Bose field in two dimensions is developed and its validity verified according to the tenets of quantum field theory. We advocate the point of view that a boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. Many features of the massless theory, such as dynamical mass generation with asymptotic-freedom behavior, hidden chiral symmetry, and connections with models of apparently different internal symmetries, are readily transparent through such fermion-boson metamorphosis.

  16. Dimensional Hierarchy of Fermionic Interacting Topological Phases

    NASA Astrophysics Data System (ADS)

    Queiroz, Raquel; Khalaf, Eslam; Stern, Ady

    2016-11-01

    We present a dimensional reduction argument to derive the classification reduction of fermionic symmetry protected topological phases in the presence of interactions. The dimensional reduction proceeds by relating the topological character of a d -dimensional system to the number of zero-energy bound states localized at zero-dimensional topological defects present at its surface. This correspondence leads to a general condition for symmetry preserving interactions that render the system topologically trivial, and allows us to explicitly write a quartic interaction to this end. Our reduction shows that all phases with topological invariant smaller than n are topologically distinct, thereby reducing the noninteracting Z classification to Zn.

  17. Staggered Fermion Thermodynamics using Anisotropic Lattices

    NASA Astrophysics Data System (ADS)

    Levkova, L.

    2003-05-01

    Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with 2-flavors of dynamical fermions where all bare parameters and hence the physics scales are kept constant while the temperature is changed in small steps by varying only the number of the time slices. The results from a series of zero-temperature scale setting simulations are used to determine the Karsch coefficients and the equation of state at finite temperatures.

  18. Discovering correlated fermions using quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Wagner, Lucas K.; Ceperley, David M.

    2016-09-01

    It has become increasingly feasible to use quantum Monte Carlo (QMC) methods to study correlated fermion systems for realistic Hamiltonians. We give a summary of these techniques targeted at researchers in the field of correlated electrons, focusing on the fundamentals, capabilities, and current status of this technique. The QMC methods often offer the highest accuracy solutions available for systems in the continuum, and, since they address the many-body problem directly, the simulations can be analyzed to obtain insight into the nature of correlated quantum behavior.

  19. Universal fermionic spectral functions from string theory.

    PubMed

    Gauntlett, Jerome P; Sonner, Julian; Waldram, Daniel

    2011-12-09

    We carry out the first holographic calculation of a fermionic response function for a strongly coupled d=3 system with an explicit D=10 or D=11 supergravity dual. By considering the supersymmetry current, we obtain a universal result applicable to all d=3 N=2 SCFTs with such duals. Surprisingly, the spectral function does not exhibit a Fermi surface, despite the fact that the system is at finite charge density. We show that it has a phonino pole and at low frequencies there is a depletion of spectral weight with a power-law scaling which is governed by a locally quantum critical point.

  20. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  1. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  2. Poincaré polynomials for Abelian symplectic quotients of pure r-qubits via wall-crossings

    NASA Astrophysics Data System (ADS)

    Molladavoudi, Saeid; Zainuddin, Hishamuddin

    2015-10-01

    In this paper, we compute a recursive wall-crossing formula for the Poincaré polynomials and Euler characteristics of Abelian symplectic quotients of a complex projective manifold under a special effective action of a torus with non-trivial characters. An analogy can be made with the space of pure states of a composite quantum system containing r-quantum bits under action of the maximal torus of Local Unitary operations.

  3. Symplectic time-average propagators for the Schrödinger equation with a time-dependent Hamiltonian.

    PubMed

    Blanes, Sergio; Casas, Fernando; Murua, Ander

    2017-03-21

    Several symplectic splitting methods of orders four and six are presented for the step-by-step time numerical integration of the Schrödinger equation when the Hamiltonian is a general explicitly time-dependent real operator. They involve linear combinations of the Hamiltonian evaluated at some intermediate points. We provide the algorithm and the coefficients of the methods, as well as some numerical examples showing their superior performance with respect to other available schemes.

  4. Symplectic time-average propagators for the Schrödinger equation with a time-dependent Hamiltonian

    NASA Astrophysics Data System (ADS)

    Blanes, Sergio; Casas, Fernando; Murua, Ander

    2017-03-01

    Several symplectic splitting methods of orders four and six are presented for the step-by-step time numerical integration of the Schrödinger equation when the Hamiltonian is a general explicitly time-dependent real operator. They involve linear combinations of the Hamiltonian evaluated at some intermediate points. We provide the algorithm and the coefficients of the methods, as well as some numerical examples showing their superior performance with respect to other available schemes.

  5. Classification of four-dimensional real Lie bialgebras of symplectic type and their Poisson-Lie groups

    NASA Astrophysics Data System (ADS)

    Abedi-Fardad, J.; Rezaei-Aghdam, A.; Haghighatdoost, Gh.

    2017-01-01

    We classify all four-dimensional real Lie bialgebras of symplectic type and obtain the classical r-matrices for these Lie bialgebras and Poisson structures on all the associated four-dimensional Poisson-Lie groups. We obtain some new integrable models where a Poisson-Lie group plays the role of the phase space and its dual Lie group plays the role of the symmetry group of the system.

  6. Charged fermions tunneling from accelerating and rotating black holes

    SciTech Connect

    Rehman, Mudassar; Saifullah, K. E-mail: saifullah@qau.edu.pk

    2011-03-01

    We study Hawking radiation of charged fermions from accelerating and rotating black holes with electric and magnetic charges. We calculate the tunneling probabilities of incoming and outgoing fermionic particles and find the Hawking temperature of these black holes. We also provide an explicit expression of the classical action for the massive and massless particles in the background of these black holes.

  7. Boson-fermion confusion: the string path to supersymmetry

    NASA Astrophysics Data System (ADS)

    Ramond, P.

    Reminiscences on the String origins of Supersymmetry are followed by a discussion of the importance of confusing bosons with fermions in building superstring theories in 9 + 1 dimensions. In eleven dimensions, the kinship between bosons and fermions is more subtle, and may involve the exceptional group F4.

  8. A streamlined method for chiral fermions on the lattice

    SciTech Connect

    Bodwin, G.T. . High Energy Physics Div.); Kovacs, E.V. )

    1992-11-10

    We discussed the use of renormalization counterterms to restore the chiral gauge symmetry in a lattice theory of Wilson fermions. We show that a large class of counterterms can be implemented automatically by making a simple modification to the fermion determinant.

  9. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems

    SciTech Connect

    Xiao, Jianyuan; Liu, Jian; He, Yang; Zhang, Ruili; Qin, Hong; Sun, Yajuan

    2015-11-15

    Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint http://arxiv.org/abs/arXiv:1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave.

  10. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems

    SciTech Connect

    Xiao, Jianyuan; Qin, Hong; Liu, Jian; He, Yang; Zhang, Ruili; Sun, Yajuan

    2015-11-01

    Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint arXiv: 1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave. (C) 2015 AIP Publishing LLC.

  11. WHFAST: a fast and unbiased implementation of a symplectic Wisdom-Holman integrator for long-term gravitational simulations

    NASA Astrophysics Data System (ADS)

    Rein, Hanno; Tamayo, Daniel

    2015-09-01

    We present WHFAST, a fast and accurate implementation of a Wisdom-Holman symplectic integrator for long-term orbit integrations of planetary systems. WHFAST is significantly faster and conserves energy better than all other Wisdom-Holman integrators tested. We achieve this by significantly improving the Kepler solver and ensuring numerical stability of coordinate transformations to and from Jacobi coordinates. These refinements allow us to remove the linear secular trend in the energy error that is present in other implementations. For small enough timesteps, we achieve Brouwer's law, i.e. the energy error is dominated by an unbiased random walk due to floating-point round-off errors. We implement symplectic correctors up to order 11 that significantly reduce the energy error. We also implement a symplectic tangent map for the variational equations. This allows us to efficiently calculate two widely used chaos indicators the Lyapunov characteristic number and the Mean Exponential Growth factor of Nearby Orbits. WHFAST is freely available as a flexible C package, as a shared library, and as an easy-to-use PYTHON module.

  12. Nonlinear receding horizon guidance for spacecraft formation reconfiguration on libration point orbits using a symplectic numerical method.

    PubMed

    Peng, Haijun; Jiang, Xin

    2016-01-01

    This paper studies a nonlinear receding horizon control guidance strategy for spacecraft formation reconfiguration on libration orbits in the Sun-Earth system. For comparison, a linear quadratic soft terminal control strategy is also considered for the same reconfiguration missions. A novel symplectic iterative numerical algorithm is proposed to obtain the optimal solution for the nonlinear receding horizon control strategy at each update instant. With the aid of the quasilinearization method, a high-efficiency structure-preserving symplectic method is introduced in the iterations, and the optimal control problem is replaced successfully by a series of sparse symmetrical linear equations. Several typical spacecraft formation reconfiguration missions including resizing, rotating and slewing reconfigurations and their combinations are numerically simulated to show the effectiveness of the nonlinear receding horizon guidance strategy based on the proposed symplectic algorithm. Through these simulations, the nonlinear receding horizon control strategy is shown to have obvious advantages in convergence and parameter sensitivity compared with a linear quadratic soft terminal control strategy. Monte Carlo stochastic simulations are used to test the robustness of the nonlinear receding horizon control guidance in dealing with measurement and execution errors.

  13. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems

    NASA Astrophysics Data System (ADS)

    Xiao, Jianyuan; Qin, Hong; Liu, Jian; He, Yang; Zhang, Ruili; Sun, Yajuan

    2015-11-01

    Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint arXiv:1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave.

  14. Fermion tunneling from higher-dimensional black holes

    SciTech Connect

    Lin Kai; Yang Shuzheng

    2009-03-15

    Via the semiclassical approximation method, we study the 1/2-spin fermion tunneling from a higher-dimensional black hole. In our work, the Dirac equations are transformed into a simple form, and then we simplify the fermion tunneling research to the study of the Hamilton-Jacobi equation in curved space-time. Finally, we get the fermion tunneling rates and the Hawking temperatures at the event horizon of higher-dimensional black holes. We study fermion tunneling of a higher-dimensional Schwarzschild black hole and a higher-dimensional spherically symmetric quintessence black hole. In fact, this method is also applicable to the study of fermion tunneling from four-dimensional or lower-dimensional black holes, and we will take the rainbow-Finsler black hole as an example in order to make the fact explicit.

  15. Observing fermionic statistics with photons in arbitrary processes

    PubMed Central

    Matthews, Jonathan C. F.; Poulios, Konstantinos; Meinecke, Jasmin D. A.; Politi, Alberto; Peruzzo, Alberto; Ismail, Nur; Wörhoff, Kerstin; Thompson, Mark G.; O'Brien, Jeremy L.

    2013-01-01

    Quantum mechanics defines two classes of particles-bosons and fermions-whose exchange statistics fundamentally dictate quantum dynamics. Here we develop a scheme that uses entanglement to directly observe the correlated detection statistics of any number of fermions in any physical process. This approach relies on sending each of the entangled particles through identical copies of the process and by controlling a single phase parameter in the entangled state, the correlated detection statistics can be continuously tuned between bosonic and fermionic statistics. We implement this scheme via two entangled photons shared across the polarisation modes of a single photonic chip to directly mimic the fermion, boson and intermediate behaviour of two-particles undergoing a continuous time quantum walk. The ability to simulate fermions with photons is likely to have applications for verifying boson scattering and for observing particle correlations in analogue simulation using any physical platform that can prepare the entangled state prescribed here. PMID:23531788

  16. Robust signatures detection of Majorana fermions in superconducting iron chains

    PubMed Central

    Chen, Hua-Jun; Fang, Xian-Wen; Chen, Chang-Zhao; Li, Yang; Tang, Xu-Dong

    2016-01-01

    We theoretically propose an optical means to detect Majorana fermions in superconducting iron (Fe) chains with a hybrid quantum dot-nanomechanical resonator system driven by two-tone fields, which is very different from the current tunneling spectroscopy experiments with electrical means. Based on the scheme, the phenomenon of Majorana modes induced transparency is demonstrated and a straightforward method to determine the quantum dot-Majorana fermions coupling strength is also presented. We further investigate the role of the nanomechanical resonator, and the resonator behaving as a phonon cavity enhances the exciton resonance spectrum, which is robust for detecting of Majorana fermions. The coherent optical spectrum affords a potential supplement to detecte Majorana fermions and supports Majorana fermions-based topological quantum computation in superconducting iron chains. PMID:27857149

  17. Superfluid and insulating phases of fermion mixtures in optical lattices.

    PubMed

    Iskin, M; Sá de Melo, C A R

    2007-08-24

    The ground state phase diagram of fermion mixtures in optical lattices is analyzed as a function of interaction strength, fermion filling factor, and tunneling parameters. In addition to standard superfluid, phase-separated or coexisting superfluid -- excess-fermion phases found in homogeneous or harmonically trapped systems, fermions in optical lattices have several insulating phases, including a molecular Bose-Mott insulator (BMI), a Fermi-Pauli (band) insulator (FPI), a phase-separated BMI-FPI mixture or a Bose-Fermi checkerboard (BFC). The molecular BMI phase is the fermion mixture counterpart of the atomic BMI found in atomic Bose systems, the BFC or BMI-FPI phases exist in Bose-Fermi mixtures, and lastly the FPI phase is particular to the Fermi nature of the constituent atoms of the mixture.

  18. Decays of bosonic and fermionic modes on a domain wall

    NASA Astrophysics Data System (ADS)

    Loginov, A. Yu.

    2017-03-01

    The decays of excited bosonic and excited fermionic modes in the external field of the domain wall are studied. The wave functions of the excited fermionic modes are found analytically in the external field approximation. Some properties of the fermionic modes are investigated. The reflection and transmission coefficients are calculated for fermion scattering from the domain wall. Properties of the reflection and transmission coefficients are studied. The decays of the first excited fermionic mode are investigated to the first order in the Yukawa coupling constant. The amplitudes, angular distributions, and widths of these decays are found by analytical and numerical methods. Decays of the excited bosonic mode are also investigated to the first order in the Yukawa and self-interaction coupling constants. The amplitudes, angular distributions, and widths of these decays are obtained analytically and by numerical methods.

  19. Robust signatures detection of Majorana fermions in superconducting iron chains

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Jun; Fang, Xian-Wen; Chen, Chang-Zhao; Li, Yang; Tang, Xu-Dong

    2016-11-01

    We theoretically propose an optical means to detect Majorana fermions in superconducting iron (Fe) chains with a hybrid quantum dot-nanomechanical resonator system driven by two-tone fields, which is very different from the current tunneling spectroscopy experiments with electrical means. Based on the scheme, the phenomenon of Majorana modes induced transparency is demonstrated and a straightforward method to determine the quantum dot-Majorana fermions coupling strength is also presented. We further investigate the role of the nanomechanical resonator, and the resonator behaving as a phonon cavity enhances the exciton resonance spectrum, which is robust for detecting of Majorana fermions. The coherent optical spectrum affords a potential supplement to detecte Majorana fermions and supports Majorana fermions-based topological quantum computation in superconducting iron chains.

  20. Quantum phases of AB 2 fermionic chains

    NASA Astrophysics Data System (ADS)

    Murcia-Correa, L. S.; Franco, R.; Silva-Valencia, J.

    2016-02-01

    A fermionic chain is a one-dimensional system with fermions that interact locally and can jump between sites in the lattice, in particular an AB n chain type, where A and B are sites that exhibit a difference in energy level of Δ and site B is repeated n-times, such that the unit cell has n +1 sites. A limit case of this model, called the ionic Hubbard model (n = 1), has been widely studied due to its interesting physics and applications. In this paper, we study the ground state of an AB 2 chain, which describes the material R 4[Pt 2(P 2O5H2)4X] · nH 2 O. Specifically, we consider a filling with two electrons per unit cell, and using the density matrix renormalization group method we found that the system exhibits the band insulator and Mott correlated insulator phases, as well as an intermediate phase between them. For couplings of Δ = 2,10 and 20, we estimate the critical points that separate these phases through the structure factor and the energy gap in the sector of charge and spin, finding that the position of the critical point rises as a function of Δ.

  1. Dynamical model for light composite fermions

    NASA Astrophysics Data System (ADS)

    Derman, Emanuel

    1981-04-01

    A simple dynamical model for the internal structure of the three light lepton and quark generations (νe,e,u,d), (νμ,μ,c,s), and (ντ,τ,t,b) is proposed. Each generation is constructed of only one fundamental massive generation F=(L∘,L-,U,D) with the same (SU3)c×SU2×U1 quantum numbers as the light generations, bound to a core of one or more massive Higgs bosons H, where H is the single physical Higgs boson necessary for spontaneous symmetry breaking in the standard model. For example, e-=[L-H], μ-=[L-HH], τ-=[L-HHH]. It is shown that the known binding force due to H exchange is attractive and strong enough to produce light bound states. Dynamical calculations for the bound-state composite fermions using the Bethe-Salpeter equation, together with some phenomenological imput, suggest MH~16 TeV and MF~100 GeV. It is likely that such bound states can have properties compatible with the up to now apparently elementary appearance of known fermions, for example, their Dirac magnetic moments and absence of intergeneration radiative decays (such as μ-->eδ). Phenomenological consequences and tests of the model are discussed.

  2. Dynamical model for light composite fermions

    SciTech Connect

    Derman, E.

    1981-04-01

    A simple dynamical model for the internal structure of the three light lepton and quark generations (..nu../sub e/,e,u,d), (..nu../sub ..mu../,..mu..,c,s), and (..nu../sub tau/,tau,t,b) is proposed. Each generation is constructed of only one fundamental massive generation F=(L-italic/sup 0/,L/sup -/,U,D) with the same (SU/sub 3/)/sub c/ x SU/sub 2/ x U/sub 1/ quantum numbers as the light generations, bound to a core of one or more massive Higgs bosons H, where H is the single physical Higgs boson necessary for spontaneous symmetry breaking in the standard model. For example, e/sup -/=L/sup -/H), ..mu../sup -/=L/sup -/HH), tau/sup -/=L/sup -/HHH). It is shown that the known binding force due to H exchange is attractive and strong enough to produce light bound states. Dynamical calculations for the bound-state composite fermions using the Bethe-Salpeter equation, together with some phenomenological imput, suggest M/sub H/approx.16 TeV and M/sub F/approx.100 GeV. It is likely that such bound states can have properties compatible with the up to now apparently elementary appearance of known fermions, for example, their Dirac magnetic moments and absence of intergeneration radiative decays (such as ..mu -->..e..gamma..). Phenomenological consequences and tests of the model are discussed.

  3. Pairing instabilities of Dirac composite fermions

    NASA Astrophysics Data System (ADS)

    Milovanović, M. V.; Ćirić, M. Dimitrijević; Juričić, V.

    2016-09-01

    Recently, a Dirac (particle-hole symmetric) description of composite fermions in the half-filled Landau level (LL) was proposed [D. T. Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027], and we study its possible consequences on BCS (Cooper) pairing of composite fermions (CFs). One of the main consequences is the existence of anisotropic states in single-layer and bilayer systems, which was previously suggested in Jeong and Park [J. S. Jeong and K. Park, Phys. Rev. B 91, 195119 (2015), 10.1103/PhysRevB.91.195119]. We argue that in the half-filled LL in the single-layer case the gapped states may sustain anisotropy, because isotropic pairings may coexist with anisotropic ones. Furthermore, anisotropic pairings with the addition of a particle-hole symmetry-breaking mass term may evolve into rotationally symmetric states, i.e., Pfaffian states of Halperin-Lee-Read (HLR) ordinary CFs. On the basis of the Dirac formalism, we argue that in the quantum Hall bilayer at total filling factor 1, with decreasing distance between the layers, weak pairing of p -wave paired CFs is gradually transformed from Dirac to ordinary, HLR-like, with a concomitant decrease in the CF number. Global characterization of low-energy spectra based on the Dirac CFs agrees well with previous calculations performed by exact diagonalization on a torus. Finally, we discuss features of the Dirac formalism when applied in this context.

  4. Search for Majorana fermions in topological superconductors.

    SciTech Connect

    Pan, Wei; Shi, Xiaoyan; Hawkins, Samuel D.; Klem, John Frederick

    2014-10-01

    The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).

  5. Terahertz Electrodynamics of Dirac Fermions in Graphene

    NASA Astrophysics Data System (ADS)

    Frenzel, Alex James

    Charge carriers in graphene mimic two-dimensional massless Dirac fermions with linear energy dispersion, resulting in unique optical and electronic properties. They exhibit high mobility and strong interaction with electromagnetic radiation over a broad frequency range. Interband transitions in graphene give rise to pronounced optical absorption in the mid-infrared to visible spectral range, where the optical conductivity is close to a universal value sigma_0 = pi e. 2/2h. Free-carrier intraband transitions, on the otherhand, cause low-frequency absorption, which varies significantly with charge density and results in strong light extinction at high carrier density. These properties together suggest a rich variety of possible optoelectronic applications for graphene. In this thesis, we investigate the optoelectronic properties of graphene by measuring transient photoconductivity with optical pump-terahertz probe spectroscopy. We demonstrate that graphene exhibits semiconducting positive photoconductivity near zero carrier density, which crosses over to metallic negative photoconductivity at high carrier density. These observations are accounted for by the interplay between photoinduced changes of both the Drude weight and carrier scattering rate. Our findings provide a complete picture to explain the opposite photoconductivity behavior reported in (undoped) graphene grown epitaxially and (doped) graphene grown by chemical vapor deposition. Our measurements also reveal the non-monotonic temperature dependence of the Drude weight in graphene, a unique property of two-dimensional massless Dirac fermions.

  6. Pure Pairing Modes in Trapped Fermion Systems

    NASA Astrophysics Data System (ADS)

    Capuzzi, P.; Hernández, E. S.; Szybisz, L.

    2013-05-01

    We present numerical predictions for the shape of the pairing fluctuations in harmonically trapped atomic 6Li with two spin projections, based on the fluiddynamical description of cold fermions with pairing interactions. In previous works it has been shown that when the equilibrium of a symmetric mixture is perturbed, the linearized fluiddynamic equations decouple into two sets, one containing the sound mode of fermion superfluids and the other the pairing mode. The latter corresponds to oscillations of the modulus of the complex gap and is driven by the kinetic energy densities of the particles and of the pairs. Assuming proportionality between the heat flux and the energy gradient, the particle kinetic energy undergoes a diffusive behavior and the diffusion parameter is the key parameter for the relaxation time scale. We examine a possible range of values for this parameter and find that the shape of the pairing oscillation is rather insensitive to the precise value of the transport coefficient. Moreover, the pairing fluctuation is largely confined to the center of the trap, and the energy of the pairing mode is consistent with the magnitude of the equilibrium gap.

  7. Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays

    NASA Astrophysics Data System (ADS)

    Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.

    2006-04-01

    We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.

  8. Differential CYP 2D6 metabolism alters primaquine pharmacokinetics.

    PubMed

    Potter, Brittney M J; Xie, Lisa H; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T; Bandara Herath, H M T; Dhammika Nanayakkara, N P; Tekwani, Babu L; Walker, Larry A; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Marcsisin, Sean R

    2015-04-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.

  9. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  10. Level Density In Interacting Boson-Fermion-Fermion Model (IBFFM) Of The Odd-Odd Nucleus 196Au

    SciTech Connect

    Kabashi, Skender; Bekteshi, Sadik

    2007-04-23

    The level density of the odd-odd nucleus 196Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM total level density is fitted by Gaussian and its tail is also fitted by Bethe formula and constant temperature Fermi gas model.

  11. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  12. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  13. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-07

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs.

  14. Variational Symplectic Algorithm for Whistler Wave Ray Tracing in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Crabtree, Chris; Rudakov, Leonid; Ganguli, Gurudas; Mithaiwala, Manish

    2012-10-01

    Whistler wave ray tracing in the inner magnetosphere using the full cold plasma dispersion relation is prone to producing drifts in frequencies that lead to inaccurate ray dynamics especially in the presence of both field aligned density structures (such as ducts and plasmapause boundaries) and sharp radial gradients in multi-species plasmas (such as ionospheric layers). The computation of accurate and quick ray trajectories are especially important for developing solutions to the wave kinetic equation including nonlinear (NL) effects such as induced scattering [1] where a large number of rays need to be time advanced and energy redistributed among rays. To facilitate such a calculation we have transformed the usual canonical ray tracing equations to an extended phase space Lagrangian framework and extended the variational symplectic integrator (VSI) [2] used for guiding-center dynamics to the ray tracing equations. The VSI conserves exactly a discrete Lagrangian structure and most importantly leads to bounds in the frequency drift that can develop.[4pt] [1] C. Crabtree, L. Rudakov, G. Ganguli, M. Mithaiwala, V. Galinsky, V. Shevchenko, Phys. Plasmas 19, 032903, (2012).[0pt] [2] H. Qin and X. Guan, Phys. Rev. Lett. 100, 035006 (2008).

  15. Commensurability Oscillations of Composite Fermions Induced by the Periodic Potential of a Wigner Crystal

    NASA Astrophysics Data System (ADS)

    Deng, H.; Liu, Y.; Jo, I.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.

    2016-08-01

    When the kinetic energy of a collection of interacting two-dimensional (2D) electrons is quenched at very high magnetic fields so that the Coulomb repulsion dominates, the electrons are expected to condense into an ordered array, forming a quantum Wigner crystal (WC). Although this exotic state has long been suspected in high-mobility 2D electron systems at very low Landau level fillings (ν ≪1 ), its direct observation has been elusive. Here we present a new technique and experimental results directly probing the magnetic-field-induced WC. We measure the magnetoresistance of a bilayer electron system where one layer has a very low density and is in the WC regime (ν ≪1 ), while the other ("probe") layer is near ν =1 /2 and hosts a sea of composite fermions (CFs). The data exhibit commensurability oscillations in the magnetoresistance of the CF layer, induced by the periodic potential of WC electrons in the other layer, and provide a unique, direct glimpse at the symmetry of the WC, its lattice constant, and melting. They also demonstrate a striking example of how one can probe an exotic many-body state of 2D electrons using equally exotic quasiparticles of another many-body state.

  16. (Strongly interacting fermion systems: Emphasis on heavy fermions: Annual performance report)

    SciTech Connect

    Not Available

    1987-01-01

    The research has been concentrated into two areas: heavy fermions and development of new methods for electronic properties (henceforth referred to as the ''electronic structure program''). This first area is going into deep hibernation due to the new interest in the high-T/sub c/ materials; notwithstanding this development, there has been significant progress. On the other hand, in the electronic structure program there has been a period of intense development which is just starting to yield results.

  17. Spin Polarization and Texture of the Fermi Arcs in the Weyl Fermion Semimetal TaAs.

    PubMed

    Xu, Su-Yang; Belopolski, Ilya; Sanchez, Daniel S; Neupane, Madhab; Chang, Guoqing; Yaji, Koichiro; Yuan, Zhujun; Zhang, Chenglong; Kuroda, Kenta; Bian, Guang; Guo, Cheng; Lu, Hong; Chang, Tay-Rong; Alidoust, Nasser; Zheng, Hao; Lee, Chi-Cheng; Huang, Shin-Ming; Hsu, Chuang-Han; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Komori, Fumio; Kondo, Takeshi; Shin, Shik; Lin, Hsin; Jia, Shuang; Hasan, M Zahid

    2016-03-04

    A Weyl semimetal is a new state of matter that hosts Weyl fermions as quasiparticle excitations. The Weyl fermions at zero energy correspond to points of bulk-band degeneracy, called Weyl nodes, which are separated in momentum space and are connected only through the crystal's boundary by an exotic Fermi arc surface state. We experimentally measure the spin polarization of the Fermi arcs in the first experimentally discovered Weyl semimetal TaAs. Our spin data, for the first time, reveal that the Fermi arcs' spin-polarization magnitude is as large as 80% and lies completely in the plane of the surface. Moreover, we demonstrate that the chirality of the Weyl nodes in TaAs cannot be inferred by the spin texture of the Fermi arcs. The observed nondegenerate property of the Fermi arcs is important for establishing its exact topological nature, which reveals that spins on the arc form a novel type of 2D matter. Additionally, the nearly full spin polarization we observed (∼80%) may be useful in spintronic applications.

  18. Charged fermions tunneling from regular black holes

    SciTech Connect

    Sharif, M. Javed, W.

    2012-11-15

    We study Hawking radiation of charged fermions as a tunneling process from charged regular black holes, i.e., the Bardeen and ABGB black holes. For this purpose, we apply the semiclassical WKB approximation to the general covariant Dirac equation for charged particles and evaluate the tunneling probabilities. We recover the Hawking temperature corresponding to these charged regular black holes. Further, we consider the back-reaction effects of the emitted spin particles from black holes and calculate their corresponding quantum corrections to the radiation spectrum. We find that this radiation spectrum is not purely thermal due to the energy and charge conservation but has some corrections. In the absence of charge, e = 0, our results are consistent with those already present in the literature.

  19. Fermionic Casimir effect with helix boundary condition

    NASA Astrophysics Data System (ADS)

    Zhai, Xiang-hua; Li, Xin-zhou; Feng, Chao-Jun

    2011-05-01

    In this paper, we consider the fermionic Casimir effect under a new type of space-time topology using the concept of quotient topology. The relation between the new topology and that in Feng and Li (Phys. Lett. B 691:167, 2010), Zhai et al. (Mod. Phys. Lett. A 26:669, 2011) is something like that between a Möbius strip and a cylindric. We obtain the exact results of the Casimir energy and force for the massless and massive Dirac fields in the ( D+1)-dimensional space-time. For both massless and massive cases, there is a Z 2 symmetry for the Casimir energy. To see the effect of the mass, we compare the result with that of the massless one and we found that the Casimir force approaches the result of the force in the massless case when the mass tends to zero and vanishes when the mass tends to infinity.

  20. Correlations between Majorana Fermions Through a Superconductor

    NASA Astrophysics Data System (ADS)

    Zyuzin, A. A.; Rainis, Diego; Klinovaja, Jelena; Loss, Daniel

    2013-08-01

    We consider a model of ballistic quasi-one-dimensional semiconducting wire with intrinsic spin-orbit interaction placed on the surface of a bulk s-wave superconductor (SC), in the presence of an external magnetic field. This setup has been shown to give rise to a topological superconducting state in the wire, characterized by a pair of Majorana-fermion (MF) bound states formed at the two ends of the wire. Here, we demonstrate that besides the well-known direct-overlap-induced energy splitting, the two MF bound states may hybridize via elastic tunneling processes through virtual quasiparticle states in the SC, giving rise to an additional energy splitting between MF states from the same as well as from different wires.

  1. Reasonable fermionic quantum information theories require relativity

    NASA Astrophysics Data System (ADS)

    Friis, Nicolai

    2016-03-01

    We show that any quantum information theory based on anticommuting operators must be supplemented by a superselection rule deeply rooted in relativity to establish a reasonable notion of entanglement. While quantum information may be encoded in the fermionic Fock space, the unrestricted theory has a peculiar feature: the marginals of bipartite pure states need not have identical entropies, which leads to an ambiguous definition of entanglement. We solve this problem, by proving that it is removed by relativity, i.e., by the parity superselection rule that arises from Lorentz invariance via the spin-statistics connection. Our results hence unveil a fundamental conceptual inseparability of quantum information and the causal structure of relativistic field theory.

  2. Hamiltonian description of composite fermions: Magnetoexciton dispersions

    NASA Astrophysics Data System (ADS)

    Murthy, Ganpathy

    1999-11-01

    A microscopic Hamiltonian theory of the FQHE, developed by Shankar and myself based on the fermionic Chern-Simons approach, has recently been quite successful in calculating gaps in fractional quantum hall states, and in predicting approximate scaling relations between the gaps of different fractions. I now apply this formalism towards computing magnetoexciton dispersions (including spin-flip dispersions) in the ν=13, 25, and 37 gapped fractions, and find approximate agreement with numerical results. I also analyze the evolution of these dispersions with increasing sample thickness, modelled by a potential soft at high momenta. New results are obtained for instabilities as a function of thickness for 25 and 37, and it is shown that the spin-polarized 25 state, in contrast to the spin-polarized 13 state, cannot be described as a simple quantum ferromagnet.

  3. Fermionic path integrals and local anomalies

    NASA Astrophysics Data System (ADS)

    Roepstorff, G.

    2003-05-01

    No doubt, the subject of path integrals proved to be an immensely fruitful human, i.e. Feynman's idea. No wonder it is more timely than ever. Some even claim that it is the most daring, innovative and revolutionary idea since the days of Heisenberg and Bohr. It is thus likely to generate enthusiasm, if not addiction among physicists who seek simplicity together with perfection. Professor Devreese's long-lasting interest in, if not passion on the subject stems from his firm conviction that, beyond being the tool of choice, path integration provides the key to all quantum phenomena, be it in solid state, atomic, molecular or particle physics as evidenced by the impressive list of publications at the address http://lib.ua.ac.be/AB/a867.html. In this note, I review a pitfall of fermionic path integrals and a way to get around it in situations relevant to the Standard Model of particle physics.

  4. Topological phases of fermions in one dimension

    NASA Astrophysics Data System (ADS)

    Fidkowski, Lukasz; Kitaev, Alexei

    2011-02-01

    In this paper we show how the classification of topological phases in insulators and superconductors is changed by interactions, in the case of one-dimensional systems. We focus on the time-reversal-invariant Majorana chain (BDI symmetry class). While the band classification yields an integer topological index k, it is known that phases characterized by values of k in the same equivalence class modulo 8 can be adiabatically transformed one to another by adding suitable interaction terms. Here we show that the eight equivalence classes are distinct and exhaustive, and provide a physical interpretation for the interacting invariant modulo 8. The different phases realize different Altland-Zirnbauer classes of the reduced density matrix for an entanglement bipartition into two half chains. We generalize these results to the classification of all one-dimensional gapped phases of fermionic systems with possible antiunitary symmetries, utilizing the algebraic framework of central extensions. We use matrix product state methods to prove our results.

  5. Penguin diagrams for improved staggered fermions

    SciTech Connect

    Lee, Weonjong

    2005-01-01

    We calculate, at the one-loop level, penguin diagrams for improved staggered fermion operators constructed using various fat links. The main result is that diagonal mixing coefficients with penguin operators are identical between the unimproved operators and the improved operators using such fat links as Fat7, Fat7+Lepage, Fat7, HYP (I) and HYP (II). In addition, it turns out that the off-diagonal mixing vanishes for those constructed using fat links of Fat7, Fat7 and HYP (II). This is a consequence of the fact that the improvement by various fat links changes only the mixing with higher dimension operators and off-diagonal operators. The results of this paper, combined with those for current-current diagrams, provide complete matching at the one-loop level with all corrections of O(g{sup 2}) included.

  6. Local entropy of a nonequilibrium fermion system

    NASA Astrophysics Data System (ADS)

    Stafford, Charles A.; Shastry, Abhay

    2017-03-01

    The local entropy of a nonequilibrium system of independent fermions is investigated and analyzed in the context of the laws of thermodynamics. It is shown that the local temperature and chemical potential can only be expressed in terms of derivatives of the local entropy for linear deviations from local equilibrium. The first law of thermodynamics is shown to lead to an inequality, not equality, for the change in the local entropy as the nonequilibrium state of the system is changed. The maximum entropy principle (second law of thermodynamics) is proven: a nonequilibrium distribution has a local entropy less than or equal to a local equilibrium distribution satisfying the same constraints. It is shown that the local entropy of the system tends to zero when the local temperature tends to zero, consistent with the third law of thermodynamics.

  7. New scheme for braiding Majorana fermions

    PubMed Central

    Wu, Long-Hua; Liang, Qi-Feng; Hu, Xiao

    2014-01-01

    Non-Abelian statistics can be achieved by exchanging two vortices in topological superconductors with each grabbing a Majorana fermion (MF) as zero-energy quasi-particle at the cores. However, in experiments it is difficult to manipulate vortices. In the present work, we propose a way to braid MFs without moving vortices. The only operation required in the present scheme is to turn on and off local gate voltages, which liberates a MF from its original host vortex and transports it along the prepared track. We solve the time-dependent Bogoliubov–de Gennes equation numerically, and confirm that the MFs are protected provided the switching of gate voltages for exchanging MFs are adiabatic, which takes only several nano seconds given reasonable material parameters. By monitoring the time evolution of MF wave-functions, we show that non-Abelian statistics is achieved. PMID:27877725

  8. Standard model fermions and N =8 supergravity

    NASA Astrophysics Data System (ADS)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2015-03-01

    In a scheme originally proposed by Gell-Mann, and subsequently shown to be realized at the SU (3 )×U (1 ) stationary point of maximal gauged SO(8) supergravity by Warner and one of the present authors, the 48 spin-1/2 fermions of the theory remaining after the removal of eight Goldstinos can be identified with the 48 quarks and leptons (including right-chiral neutrinos) of the Standard model, provided one identifies the residual SU(3) with the diagonal subgroup of the color group SU (3 )c and a family symmetry SU (3 )f . However, there remained a systematic mismatch in the electric charges by a spurion charge of ±1/6 . We here identify the "missing" U(1) that rectifies this mismatch, and that takes a surprisingly simple, though unexpected form.

  9. Effective fermion kinematics from modified quantum gravity

    NASA Astrophysics Data System (ADS)

    Alexandre, J.; Leite, J.

    2016-10-01

    We consider a classical fermion and a classical scalar, propagating on two different kinds of four-dimensional diffeomorphism breaking gravity backgrounds, and we derive the one-loop effective dispersion relation for matter, after integrating out gravitons. One gravity model involves quadratic divergences at one-loop, as in Einstein gravity, and the other model is the z = 3 non-projectable Horava-Lifshitz gravity, which involves logarithmic divergences only. Although these two models behave differently in the ultraviolet, the IR phenomenology for matter fields is comparable: (i) for generic values for the parameters, both models identify 1010 GeV as the characteristic scale above which they are not consistent with current upper bounds on Lorentz symmetry violation; (ii) for both models, there is always a fine-tuning of parameters which allows the cancellation of the indicator for Lorentz symmetry violation.

  10. Circular photogalvanic effect caused by the transitions between edge and 2D states in a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Magarill, L. I.; Entin, M. V.

    2016-12-01

    The electron absorption and the edge photocurrent of a 2D topological insulator are studied for transitions between edge states to 2D states. The circular polarized light is found to produce the edge photocurrent, the direction of which is determined by light polarization and edge orientation. It is shown that the edge-state current is found to exceed the 2D current owing to the topological protection of the edge states.

  11. A possible connection between massive fermions and dark energy

    SciTech Connect

    Goldman, Terrance; Stephenson, G J; Alsing, P M; Mckellar, B H J

    2009-01-01

    In a dense cloud of massive fermions interacting by exchange of a light scalar field, the effective mass of the fermion can become negligibly small. As the cloud expands, the effective mass and the total energy density eventually increase with decreasing density. In this regime, the pressure-density relation can approximate that required for dark energy. They apply this phenomenon to the expansion of the Universe with a very light scalar field and infer relations between the parameters available and cosmological observations. Majorana neutrinos at a mass that may have been recently determined, and fermions such as the Lightest Supersymmetric Particle (LSP) may both be consistent with current observations of dark energy.

  12. Einstein-Cartan gravity with Holst term and fermions

    SciTech Connect

    Kazmierczak, Marcin

    2009-03-15

    We investigate the consequences of the ambiguity of the minimal coupling procedure for Einstein-Cartan gravity with the Holst term and fermions. A new insight is provided into the nature and physical relevance of coupling procedures considered hitherto in the context of Ashtekar-Barbero-Immirzi formalism with fermions. The issue of physical effects of the Immirzi parameter in semiclassical theory is reinvestigated. We argue that the conclusive answer to the question of its measurability will not be possible until the more fundamental problem of nonuniqueness of gravity-induced fermion interaction in Einstein-Cartan theory is solved.

  13. Semiclassical approach for nonrelativistic fermions in low dimensions

    SciTech Connect

    Karabali, D.; Sakita, B. )

    1991-11-30

    This paper presents a collective field formalism for nonrelativistic fermions in one spatial dimension. A bosonization technique is used to convert the quantum mechanical fermionic problem to a bosonic one, which is further described as a second quantized Schrodinger field theory. A formulation in terms of current and density variables gives rise to the collective field representation. Applications of our formalism to the D = 1 Hermitian matrix model and the system of one-dimensional fermions in the presence of a weak electromagnetic field are discussed.

  14. Boundary effects and gapped dispersion in rotating fermionic matter

    NASA Astrophysics Data System (ADS)

    Ebihara, Shu; Fukushima, Kenji; Mameda, Kazuya

    2017-01-01

    We discuss the importance of boundary effects on fermionic matter in a rotating frame. By explicit calculations at zero temperature we show that the scalar condensate of fermion and anti-fermion cannot be modified by the rotation once the boundary condition is properly implemented. The situation is qualitatively changed at finite temperature and/or in the presence of a sufficiently strong magnetic field that supersedes the boundary effects. Therefore, to establish an interpretation of the rotation as an effective chemical potential, it is crucial to consider further environmental effects such as the finite temperature and magnetic field.

  15. Two-dimensional thermofield bosonization II: Massive fermions

    SciTech Connect

    Amaral, R.L.P.G.

    2008-11-15

    We consider the perturbative computation of the N-point function of chiral densities of massive free fermions at finite temperature within the thermofield dynamics approach. The infinite series in the mass parameter for the N-point functions are computed in the fermionic formulation and compared with the corresponding perturbative series in the interaction parameter in the bosonized thermofield formulation. Thereby we establish in thermofield dynamics the formal equivalence of the massive free fermion theory with the sine-Gordon thermofield model for a particular value of the sine-Gordon parameter. We extend the thermofield bosonization to include the massive Thirring model.

  16. Massless fermions and Kaluza--Klein theory with torsion

    SciTech Connect

    Wu, Y.; Zee, A.

    1984-09-01

    A pure Kaluza--Klein theory contains no massless fermion in four-dimensional theory. We investigate the effect of introducing torsion on the internal manifold and find that there are massless fermions. The hope is that given an isometry group the representation to which these fermions belong is fixed, in contrast to the situation in Yang--Mills theory. We show that this is indeed the case, but the representations do not appear to be the ones favored by current theoretical prejudice. The cases with parallelizable torsions on a group manifold as the internal manifold are analyzed in detail.

  17. Lattice fermions at non-zero temperature and chemical potential

    NASA Astrophysics Data System (ADS)

    Bender, I.; Rothe, H. J.; Stamatescu, I. O.; Wetzel, W.

    1993-06-01

    We study the free fermion gas at finite temperature and chemical potential in the lattice regularized version proposed by Hasenfratz and Karsch and by Kogut et al. Special emphasis is placed on the identification of the particle and antiparticle contributions to the partition function. In the case of naive fermions we show that the partition function no longer separates into particle-antiparticle contributions in the way familiar from the continuum formulation. The use of Wilson fermions, on the other hand, eliminates this unpleasant feature, and leads, after subtracting the vacuum contributions, to the familiar expressions for the average energy and charge densities.

  18. s-Wave collisional frequency shift of a fermion clock.

    PubMed

    Hazlett, Eric L; Zhang, Yi; Stites, Ronald W; Gibble, Kurt; O'Hara, Kenneth M

    2013-04-19

    We report an s-wave collisional frequency shift of an atomic clock based on fermions. In contrast to bosons, the fermion clock shift is insensitive to the population difference of the clock states, set by the first pulse area in Ramsey spectroscopy, θ(1). The fermion shift instead depends strongly on the second pulse area θ(2). It allows the shift to be canceled, nominally at θ(2)=π/2, but correlations perturb the null to slightly larger θ(2). The frequency shift is relevant for optical lattice clocks and increases with the spatial inhomogeneity of the clock excitation field, naturally larger at optical frequencies.

  19. Quantum atom optics with fermions from molecular dissociation.

    PubMed

    Kheruntsyan, K V

    2006-03-24

    We study a fermionic atom optics counterpart of parametric down-conversion with photons. This can be realized through dissociation of a Bose-Einstein condensate of molecular dimers consisting of fermionic atoms. We present a theoretical model describing the quantum dynamics of dissociation and find analytic solutions for mode occupancies and atomic pair correlations, valid in the short time limit. The solutions are used to identify upper bounds for the correlation functions, which are applicable to any fermionic system and correspond to ideal particle number-difference squeezing.

  20. Energy Efficiency of D2D Multi-User Cooperation.

    PubMed

    Zhang, Zufan; Wang, Lu; Zhang, Jie

    2017-03-28

    The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.

  1. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  2. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  3. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  4. Regulation of ligands for the NKG2D activating receptor

    PubMed Central

    Raulet, David H.; Gasser, Stephan; Gowen, Benjamin G.; Deng, Weiwen; Jung, Heiyoun

    2014-01-01

    NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection. PMID:23298206

  5. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  6. New generation transistor technologies enabled by 2D crystals

    NASA Astrophysics Data System (ADS)

    Jena, D.

    2013-05-01

    The discovery of graphene opened the door to 2D crystal materials. The lack of a bandgap in 2D graphene makes it unsuitable for electronic switching transistors in the conventional field-effect sense, though possible techniques exploiting the unique bandstructure and nanostructures are being explored. The transition metal dichalcogenides have 2D crystal semiconductors, which are well-suited for electronic switching. We experimentally demonstrate field effect transistors with current saturation and carrier inversion made from layered 2D crystal semiconductors such as MoS2, WS2, and the related family. We also evaluate the feasibility of such semiconducting 2D crystals for tunneling field effect transistors for low-power digital logic. The article summarizes the current state of new generation transistor technologies either proposed, or demonstrated, with a commentary on the challenges and prospects moving forward.

  7. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice.

    PubMed

    Pan, Xian; Jeong, Hyunyoung

    2015-07-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼ 50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter.

  8. 2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement

    SciTech Connect

    Anber, Mohamed M.; Poppitz, Erich; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.

    2012-08-16

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.

  9. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-04

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  10. Odd-frequency pairing of interacting Majorana fermions

    DOE PAGES

    Huang, Zhoushen; Wolfle, P.; Balatsky, Alexander V.

    2015-09-14

    In this study, Majorana fermions are rising as a promising key component in quantum computation. Although the prevalent approach is to use a quadratic (i.e., noninteracting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd-frequency behavior. It is stabilized when the coupling strength g is above a critical valuemore » gc. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory that allows discussing a possible subleading admixture of even-frequency pairing.« less

  11. Odd-frequency pairing of interacting Majorana fermions

    NASA Astrophysics Data System (ADS)

    Huang, Zhoushen; Wölfle, P.; Balatsky, A. V.

    2015-09-01

    Majorana fermions are rising as a promising key component in quantum computation. Although the prevalent approach is to use a quadratic (i.e., noninteracting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd-frequency behavior. It is stabilized when the coupling strength g is above a critical value gc. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory that allows discussing a possible subleading admixture of even-frequency pairing.

  12. Odd-frequency pairing of interacting Majorana fermions

    SciTech Connect

    Huang, Zhoushen; Wolfle, P.; Balatsky, Alexander V.

    2015-09-14

    In this study, Majorana fermions are rising as a promising key component in quantum computation. Although the prevalent approach is to use a quadratic (i.e., noninteracting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd-frequency behavior. It is stabilized when the coupling strength g is above a critical value gc. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory that allows discussing a possible subleading admixture of even-frequency pairing.

  13. Skyrmion Superfluidity in Two-Dimensional Interacting Fermionic Systems

    PubMed Central

    Palumbo, Giandomenico; Cirio, Mauro

    2015-01-01

    In this article we describe a multi-layered honeycomb lattice model of interacting fermions which supports a new kind of parity-preserving skyrmion superfluidity. We derive the low-energy field theory describing a non-BCS fermionic superfluid phase by means of functional fermionization. Such effective theory is a new kind of non-linear sigma model, which we call double skyrmion model. In the bi-layer case, the quasiparticles of the system (skyrmions) have bosonic statistics and replace the Cooper-pairs role. Moreover, we show that the model is also equivalent to a Maxwell-BF theory, which naturally establishes an effective Meissner effect without requiring a breaking of the gauge symmetry. Finally, we map effective superfluidity effects to identities among fermionic observables for the lattice model. This provides a signature of our theoretical skyrmion superfluidy that can be detected in a possible implementation of the lattice model in a real quantum system. PMID:26083978

  14. Influence of the fermionic exchange symmetry beyond Pauli's exclusion principle

    NASA Astrophysics Data System (ADS)

    Tennie, Felix; Vedral, Vlatko; Schilling, Christian

    2017-02-01

    Pauli's exclusion principle has a strong impact on the properties of most fermionic quantum systems. Remarkably, the fermionic exchange symmetry implies further constraints on the one-particle picture. By exploiting those generalized Pauli constraints, we derive a measure which quantifies the influence of the exchange symmetry beyond Pauli's exclusion principle. It is based on a geometric hierarchy induced by the exclusion principle constraints. We provide a proof of principle by applying our measure to a simple model. In that way, we conclusively confirm the physical relevance of the generalized Pauli constraints and show that the fermionic exchange symmetry can have an influence on the one-particle picture beyond Pauli's exclusion principle. Our findings provide a perspective on fermionic multipartite correlation since our measure allows one to distinguish between static and dynamic correlations.

  15. Strongly-interacting mirror fermions at the LHC

    NASA Astrophysics Data System (ADS)

    Triantaphyllou, George

    2017-03-01

    The introduction of mirror fermions corresponding to an interchange of leftwith right-handed fermion quantum numbers of the Standard Model can lead to a model according to which the BEH mechanism is just an effective manifestation of a more fundamental theory while the recently-discovered Higgs-like particle is composite. This is achieved by a non-abelian gauge symmetry encompassing three mirror-fermion families strongly coupled at energies near 1 TeV. The corresponding non-perturbative dynamics lead to dynamical mirror-fermion masses between 0.14 - 1.2 TeV. Furthermore, one expects the formation of composite states, i.e. "mirror mesons", with masses between 0.1 and 3 TeV. The number and properties of the resulting new degrees of freedom lead to a rich and interesting phenomenology, part of which is analyzed in the present work.

  16. High-order correlation of chaotic bosons and fermions

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Chao

    2016-08-01

    We theoretically study the high-order correlation functions of chaotic bosons and fermions. Based on the different parity of the Stirling number, the products of the first-order correlation functions are well classified and employed to represent the high-order correlation function. The correlation of bosons conduces a bunching effect, which will be enhanced as order N increases. Different from bosons, the anticommutation relation of fermions leads to the parity of the Stirling number, which thereby results in a mixture of bunching and antibunching behaviors in high-order correlation. By further investigating third-order ghost diffraction and ghost imaging, the differences between the high-order correlations of bosons and fermions are discussed in detail. A larger N will dramatically improve the ghost image quality for bosons, but a good strategy should be carefully chosen for the fermionic ghost imaging process due to its complex correlation components.

  17. Discovery of a Weyl fermion semimetal and topological Fermi arcs

    NASA Astrophysics Data System (ADS)

    Xu, Su-Yang; Belopolski, Ilya; Alidoust, Nasser; Neupane, Madhab; Bian, Guang; Zhang, Chenglong; Sankar, Raman; Chang, Guoqing; Yuan, Zhujun; Lee, Chi-Cheng; Huang, Shin-Ming; Zheng, Hao; Ma, Jie; Sanchez, Daniel S.; Wang, BaoKai; Bansil, Arun; Chou, Fangcheng; Shibayev, Pavel P.; Lin, Hsin; Jia, Shuang; Hasan, M. Zahid

    2015-08-01

    A Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent quasiparticles and admits a topological classification that protects Fermi arc surface states on the boundary of a bulk sample. This unusual electronic structure has deep analogies with particle physics and leads to unique topological properties. We report the experimental discovery of a Weyl semimetal, tantalum arsenide (TaAs). Using photoemission spectroscopy, we directly observe Fermi arcs on the surface, as well as the Weyl fermion cones and Weyl nodes in the bulk of TaAs single crystals. We find that Fermi arcs terminate on the Weyl fermion nodes, consistent with their topological character. Our work opens the field for the experimental study of Weyl fermions in physics and materials science.

  18. Fault tolerant quantum random number generator certified by Majorana fermions

    NASA Astrophysics Data System (ADS)

    Deng, Dong-Ling; Duan, Lu-Ming

    2013-03-01

    Braiding of Majorana fermions gives accurate topological quantum operations that are intrinsically robust to noise and imperfection, providing a natural method to realize fault-tolerant quantum information processing. Unfortunately, it is known that braiding of Majorana fermions is not sufficient for implementation of universal quantum computation. Here we show that topological manipulation of Majorana fermions provides the full set of operations required to generate random numbers by way of quantum mechanics and to certify its genuine randomness through violation of a multipartite Bell inequality. The result opens a new perspective to apply Majorana fermions for robust generation of certified random numbers, which has important applications in cryptography and other related areas. This work was supported by the NBRPC (973 Program) 2011CBA00300 (2011CBA00302), the IARPA MUSIQC program, the ARO and the AFOSR MURI program.

  19. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  20. 2D vs. 3D mammography observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  1. Generic super-exponential stability of elliptic equilibrium positions for symplectic vector fields

    NASA Astrophysics Data System (ADS)

    Niederman, Laurent

    2013-11-01

    In this article, we consider linearly stable elliptic fixed points (equilibrium) for a symplectic vector field and prove generic results of super-exponential stability for nearby solutions. We will focus on the neighborhood of elliptic fixed points but the case of linearly stable isotropic reducible invariant tori in a Hamiltonian system should be similar. More specifically, Morbidelli and Giorgilli have proved a result of stability over superexponentially long times if one considers an analytic Lagrangian torus, invariant for an analytic Hamiltonian system, with a diophantine translation vector which admits a sign-definite torsion. Then, the solutions of the system move very little over times which are super-exponentially long with respect to the inverse of the distance to the invariant torus. The proof proceeds in two steps: first one constructs a high-order Birkhoff normal form, then one applies the Nekhoroshev theory. Bounemoura has shown that the second step of this construction remains valid if the Birkhoff normal form linked to the invariant torus or the elliptic fixed point belongs to a generic set among the formal series. This is not sufficient to prove this kind of super-exponential stability results in a general setting. We should also establish that the most strongly non resonant elliptic fixed point or invariant torus in a Hamiltonian system admits Birkhoff normal forms fitted for the application of the Nekhoroshev theory. Actually, the set introduced by Bounemoura is already very large but not big enough to ensure that a typical Birkhoff normal form falls into this class. We show here that this property is satisfied generically in the sense of the measure (prevalence) through infinite-dimensional probe spaces (that is, an infinite number of parameters chosen at random) with methods similar to those developed in a paper of Gorodetski, Kaloshin and Hunt in another setting.

  2. Grassmann phase space methods for fermions. II. Field theory

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Jeffers, J.; Barnett, S. M.

    2017-02-01

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker-Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.

  3. Two-Loop Effective Action for Theories with Fermions

    NASA Astrophysics Data System (ADS)

    Faizullaev, B. A.; Musakhanov, M. M.

    1995-08-01

    On the basis of a new approach for the calculation of the effective action developed in our previous works we calculate the effective action (up to two-loop level) for some models containing fermion fields. This method allows us to calculate the fermionic part of the effective action properly. The two-loop contribution to the effective potential for the Nambu-Jona-Lasinio model is calculated and is shown to vanish.

  4. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.

    PubMed

    Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei

    2017-04-01

    Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd.

  5. NKG2D receptor and its ligands in host defense

    PubMed Central

    Lanier, Lewis L.

    2015-01-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808

  6. NKG2D Receptor and Its Ligands in Host Defense.

    PubMed

    Lanier, Lewis L

    2015-06-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8(+) T cells, and subsets of CD4(+) T cells, invariant NKT cells (iNKT), and γδ T cells. In humans, NKG2D transmits signals by its association with the DAP10 adapter subunit, and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least eight genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and posttranslation. In general, healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyperproliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves as a mechanism for the immune system to detect and eliminate cells that have undergone "stress." Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system, and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases.

  7. 2-D Versus 3-D Magnetotelluric Data Interpretation

    NASA Astrophysics Data System (ADS)

    Ledo, Juanjo

    2005-09-01

    In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.

  8. Gauge covariant fermion propagator in quenched, chirally symmetric quantum electrodynamics

    SciTech Connect

    Roberts, C.D.; Dong, Z.; Munczek, H.J.

    1995-08-01

    The chirally symmetric solution of the massless, quenched, Dyson-Schwinger equation (DSE) for the fermion propagator in three- and four-dimensional quantum electrodynamics was obtained. The DSEs are a valuable nonperturbative tool for studying field theories. In recent years a good deal of progress was made in addressing the limitations of the DSE approach in the study of Abelian gauge theories. Key to this progress is an understanding of the role of the dressed fermion/gauge-boson vertex in ensuring gauge covariance and multiplicative renormalizability of the solution of the fermion DSE. The solutions we obtain are manifestly gauge covariant and a general gauge covariance constraint on the fermion/gauge-boson vertex is presented, which motivates a vertex Ansatz that, for the first time, both satisfies the Ward identity when the fermion self-mass is zero and ensures gauge covariance of the fermion propagator. This research facilitates gauge-invariant, nonperturbative studies of continuum quantum electrodynamics and has already been used by others in studies of the chiral phase transition.

  9. Anyonic behavior of an intermediate-statistics fermion gas model.

    PubMed

    Algin, Abdullah; Irk, Dursun; Topcu, Gozde

    2015-06-01

    We study the high-temperature behavior of an intermediate-statistics fermionic gas model whose quantum statistical properties enable us to effectively deduce the details about both the interaction among deformed (quasi)particles and their anyonic behavior. Starting with a deformed fermionic grand partition function, we calculate, in the thermodynamical limit, several thermostatistical functions of the model such as the internal energy and the entropy by means of a formalism of the fermionic q calculus. For high temperatures, a virial expansion of the equation of state for the system is obtained in two and three dimensions and the first five virial coefficients are derived in terms of the model deformation parameter q. From the results obtained by the effect of fermionic deformation, it is found that the model parameter q interpolates completely between bosonlike and fermionic systems via the behaviors of the third and fifth virial coefficients in both two and three spatial dimensions and in addition it characterizes effectively the interaction among quasifermions. Our results reveal that the present deformed (quasi)fermion model could be very efficient and effective in accounting for the nonlinear behaviors in interacting composite particle systems.

  10. A note on the path integral representation for Majorana fermions

    NASA Astrophysics Data System (ADS)

    Greco, Andrés

    2016-04-01

    Majorana fermions are currently of huge interest in the context of nanoscience and condensed matter physics. Different to usual fermions, Majorana fermions have the property that the particle is its own anti-particle thus, they must be described by real fields. Mathematically, this property makes nontrivial the quantization of the problem due, for instance, to the absence of a Wick-like theorem. In view of the present interest on the subject, it is important to develop different theoretical approaches in order to study problems where Majorana fermions are involved. In this note we show that Majorana fermions can be studied in the context of field theories for constrained systems. Using the Faddeev-Jackiw formalism for quantum field theories with constraints, we derived the path integral representation for Majorana fermions. In order to show the validity of the path integral we apply it to an exactly solvable problem. This application also shows that it is rather simple to perform systematic calculations on the basis of the present framework.

  11. Recent advances in 2D materials for photocatalysis.

    PubMed

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-04-07

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  12. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  13. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  14. Recovering 3D particle size distributions from 2D sections

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Olson, Daniel M.

    2017-03-01

    We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible, and practical method to do this; show which of these techniques gives the most faithful conversions; and provide (online) short computer codes to calculate both 2D-3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter.

  15. Phonon thermal conduction in novel 2D materials

    NASA Astrophysics Data System (ADS)

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-01

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  16. Recent developments in 2D layered inorganic nanomaterials for sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  17. Phonon thermal conduction in novel 2D materials.

    PubMed

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-07

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  18. Exact Solution of Ising Model in 2d Shortcut Network

    NASA Astrophysics Data System (ADS)

    Shanker, O.

    We give the exact solution to the Ising model in the shortcut network in the 2D limit. The solution is found by mapping the model to the square lattice model with Brascamp and Kunz boundary conditions.

  19. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  20. Reconstruction-based 3D/2D image registration.

    PubMed

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    In this paper we present a novel 3D/2D registration method, where first, a 3D image is reconstructed from a few 2D X-ray images and next, the preoperative 3D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure. Because the quality of the reconstructed image is generally low, we introduce a novel asymmetric mutual information similarity measure, which is able to cope with low image quality as well as with different imaging modalities. The novel 3D/2D registration method has been evaluated using standardized evaluation methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray images of two spine phantoms, for which gold standard registrations were known. In terms of robustness, reliability and capture range the proposed method outperformed the gradient-based method and the method based on digitally reconstructed radiographs (DRRs).