NASA Astrophysics Data System (ADS)
Lotsch, Bettina V.
2015-07-01
Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.
2D semiconductor optoelectronics
NASA Astrophysics Data System (ADS)
Novoselov, Kostya
The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.
E-2D Advanced Hawkeye Aircraft (E-2D AHE)
2015-12-01
Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined
Optoelectronics with 2D semiconductors
NASA Astrophysics Data System (ADS)
Mueller, Thomas
2015-03-01
Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.
Highly crystalline 2D superconductors
NASA Astrophysics Data System (ADS)
Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro
2016-12-01
Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.
Sevrin, A.
1993-06-01
After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.
2D quasiperiodic plasmonic crystals
Bauer, Christina; Kobiela, Georg; Giessen, Harald
2012-01-01
Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871
NASA Astrophysics Data System (ADS)
Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong
2016-11-01
Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.
Georgi, Howard; Kats, Yevgeny
2008-09-26
We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.
Quantum coherence selective 2D Raman–2D electronic spectroscopy
Spencer, Austin P.; Hutson, William O.; Harel, Elad
2017-01-01
Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541
Quantum coherence selective 2D Raman-2D electronic spectroscopy
NASA Astrophysics Data System (ADS)
Spencer, Austin P.; Hutson, William O.; Harel, Elad
2017-03-01
Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.
Quantum coherence selective 2D Raman-2D electronic spectroscopy.
Spencer, Austin P; Hutson, William O; Harel, Elad
2017-03-10
Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.
NKG2D ligands as therapeutic targets
Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.
2013-01-01
The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565
Quantitative 2D liquid-state NMR.
Giraudeau, Patrick
2014-06-01
Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.
Annotated Bibliography of EDGE2D Use
J.D. Strachan and G. Corrigan
2005-06-24
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
Staring 2-D hadamard transform spectral imager
Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.
2006-02-07
A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Brittle damage models in DYNA2D
Faux, D.R.
1997-09-01
DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.
NASA Astrophysics Data System (ADS)
Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.
2006-02-01
A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.
2-d Finite Element Code Postprocessor
Sanford, L. A.; Hallquist, J. O.
1996-07-15
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
Chemical Approaches to 2D Materials.
Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang
2016-08-01
Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.
Orthotropic Piezoelectricity in 2D Nanocellulose
NASA Astrophysics Data System (ADS)
García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.
2016-10-01
The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.
Orthotropic Piezoelectricity in 2D Nanocellulose
García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.
2016-01-01
The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364
Orthotropic Piezoelectricity in 2D Nanocellulose.
García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M
2016-10-06
The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V(-1), ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.
2D microwave imaging reflectometer electronics
Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.
2014-11-15
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
Large Area Synthesis of 2D Materials
NASA Astrophysics Data System (ADS)
Vogel, Eric
Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.
Fang, Yuan; Yushmanov, Pavel V; Furó, István
2016-12-08
Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.
2D Distributed Sensing Via TDR
2007-11-02
plate VEGF CompositeSensor Experimental Setup Air 279 mm 61 78 VARTM profile: slope RTM profile: rectangle 22 1 Jul 2003© 2003 University of Delaware...2003 University of Delaware All rights reserved Vision: Non-contact 2D sensing ü VARTM setup constructed within TL can be sensed by its EM field: 2D...300.0 mm/ns. 1 2 1 Jul 2003© 2003 University of Delaware All rights reserved Model Validation “ RTM Flow” TDR Response to 139 mm VEGC
Inkjet printing of 2D layered materials.
Li, Jiantong; Lemme, Max C; Östling, Mikael
2014-11-10
Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.
Parallel Stitching of 2D Materials.
Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing
2016-03-23
Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.
Beckett, Phil
2012-01-01
The technique of two-dimensional (2D) gel electrophoresis is a powerful tool for separating complex mixtures of proteins, but since its inception in the mid 1970s, it acquired the stigma of being a very difficult application to master and was generally used to its best effect by experts. The introduction of commercially available immobilized pH gradients in the early 1990s provided enhanced reproducibility and easier protocols, leading to a pronounced increase in popularity of the technique. However gel-to-gel variation was still difficult to control without the use of technical replicates. In the mid 1990s (at the same time as the birth of "proteomics"), the concept of multiplexing fluorescently labeled proteins for 2D gel separation was realized by Jon Minden's group and has led to the ability to design experiments to virtually eliminate gel-to-gel variation, resulting in biological replicates being used for statistical analysis with the ability to detect very small changes in relative protein abundance. This technology is referred to as 2D difference gel electrophoresis (2D DIGE).
Parallel stitching of 2D materials
Ling, Xi; Wu, Lijun; Lin, Yuxuan; ...
2016-01-27
Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-01-01
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-02-06
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.
Compatible embedding for 2D shape animation.
Baxter, William V; Barla, Pascal; Anjyo, Ken-Ichi
2009-01-01
We present new algorithms for the compatible embedding of 2D shapes. Such embeddings offer a convenient way to interpolate shapes having complex, detailed features. Compared to existing techniques, our approach requires less user input, and is faster, more robust, and simpler to implement, making it ideal for interactive use in practical applications. Our new approach consists of three parts. First, our boundary matching algorithm locates salient features using the perceptually motivated principles of scale-space and uses these as automatic correspondences to guide an elastic curve matching algorithm. Second, we simplify boundaries while maintaining their parametric correspondence and the embedding of the original shapes. Finally, we extend the mapping to shapes' interiors via a new compatible triangulation algorithm. The combination of our algorithms allows us to demonstrate 2D shape interpolation with instant feedback. The proposed algorithms exhibit a combination of simplicity, speed, and accuracy that has not been achieved in previous work.
Schottky diodes from 2D germanane
NASA Astrophysics Data System (ADS)
Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.
2016-07-01
We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.
Extrinsic Cation Selectivity of 2D Membranes
2017-01-01
From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333
Static & Dynamic Response of 2D Solids
Lin, Jerry
1996-07-15
NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.
Explicit 2-D Hydrodynamic FEM Program
Lin, Jerry
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.
Quasiparticle interference in unconventional 2D systems
NASA Astrophysics Data System (ADS)
Chen, Lan; Cheng, Peng; Wu, Kehui
2017-03-01
At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.
Compact 2-D graphical representation of DNA
NASA Astrophysics Data System (ADS)
Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana
2003-05-01
We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.
2D Metals by Repeated Size Reduction.
Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui
2016-10-01
A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.
Realistic and efficient 2D crack simulation
NASA Astrophysics Data System (ADS)
Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek
2010-04-01
Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.
Engineering light outcoupling in 2D materials.
Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali
2015-02-11
When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.
Irreversibility-inversions in 2D turbulence
NASA Astrophysics Data System (ADS)
Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido
2016-11-01
We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.
2D superconductivity by ionic gating
NASA Astrophysics Data System (ADS)
Iwasa, Yoshi
2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially
Periodically sheared 2D Yukawa systems
Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán
2015-10-15
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.
ENERGY LANDSCAPE OF 2D FLUID FORMS
Y. JIANG; ET AL
2000-04-01
The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.
Codon Constraints on Closed 2D Shapes,
2014-09-26
19843$ CODON CONSTRAINTS ON CLOSED 2D SHAPES Go Whitman Richards "I Donald D. Hoffman’ D T 18 Abstract: Codons are simple primitives for describing plane...RSONAL AUT"ORtIS) Richards, Whitman & Hoffman, Donald D. 13&. TYPE OF REPORT 13b. TIME COVERED N/A P8 AT F RRrT t~r. Ago..D,) is, PlE COUNT Reprint...outlines, if figure and ground are ignored. Later, we will address the problem of indexing identical codon descriptors that have different figure
Remarks on thermalization in 2D CFT
NASA Astrophysics Data System (ADS)
de Boer, Jan; Engelhardt, Dalit
2016-12-01
We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.
Microwave Assisted 2D Materials Exfoliation
NASA Astrophysics Data System (ADS)
Wang, Yanbin
Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.
2-D or not 2-D, that is the question: A Northern California test
Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D
2005-06-06
Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2
Transition to turbulence: 2D directed percolation
NASA Astrophysics Data System (ADS)
Chantry, Matthew; Tuckerman, Laurette; Barkley, Dwight
2016-11-01
The transition to turbulence in simple shear flows has been studied for well over a century, yet in the last few years has seen major leaps forward. In pipe flow, this transition shows the hallmarks of (1 + 1) D directed percolation, a universality class of continuous phase transitions. In spanwisely confined Taylor-Couette flow the same class is found, suggesting the phenomenon is generic to shear flows. However in plane Couette flow the largest simulations and experiments to-date find evidence for a discrete transition. Here we study a planar shear flow, called Waleffe flow, devoid of walls yet showing the fundamentals of planar transition to turbulence. Working with a quasi-2D yet Navier-Stokes derived model of this flow we are able to attack the (2 + 1) D transition problem. Going beyond the system sizes previously possible we find all of the required scalings of directed percolation and thus establish planar shears flow in this class.
2D quantum gravity from quantum entanglement.
Gliozzi, F
2011-01-21
In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.
Simulation of Yeast Cooperation in 2D.
Wang, M; Huang, Y; Wu, Z
2016-03-01
Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse.
2D Electrostatic Actuation of Microshutter Arrays
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
Graphene suspensions for 2D printing
NASA Astrophysics Data System (ADS)
Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.
2016-04-01
It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).
Canard configured aircraft with 2-D nozzle
NASA Technical Reports Server (NTRS)
Child, R. D.; Henderson, W. P.
1978-01-01
A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.
Numerical Evaluation of 2D Ground States
NASA Astrophysics Data System (ADS)
Kolkovska, Natalia
2016-02-01
A ground state is defined as the positive radial solution of the multidimensional nonlinear problem
Metrology for graphene and 2D materials
NASA Astrophysics Data System (ADS)
Pollard, Andrew J.
2016-09-01
The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the
Persistence Measures for 2d Soap Froth
NASA Astrophysics Data System (ADS)
Feng, Y.; Ruskin, H. J.; Zhu, B.
Soap froths as typical disordered cellular structures, exhibiting spatial and temporal evolution, have been studied through their distributions and topological properties. Recently, persistence measures, which permit representation of the froth as a two-phase system, have been introduced to study froth dynamics at different length scales. Several aspects of the dynamics may be considered and cluster persistence has been observed through froth experiment. Using a direct simulation method, we have investigated persistent properties in 2D froth both by monitoring the persistence of survivor cells, a topologically independent measure, and in terms of cluster persistence. It appears that the area fraction behavior for both survivor and cluster persistence is similar for Voronoi froth and uniform froth (with defects). Survivor and cluster persistent fractions are also similar for a uniform froth, particularly when geometries are constrained, but differences observed for the Voronoi case appear to be attributable to the strong topological dependency inherent in cluster persistence. Survivor persistence, on the other hand, depends on the number rather than size and position of remaining bubbles and does not exhibit the characteristic decay to zero.
SEM signal emulation for 2D patterns
NASA Astrophysics Data System (ADS)
Sukhov, Evgenii; Muelders, Thomas; Klostermann, Ulrich; Gao, Weimin; Braylovska, Mariya
2016-03-01
The application of accurate and predictive physical resist simulation is seen as one important use model for fast and efficient exploration of new patterning technology options, especially if fully qualified OPC models are not yet available at an early pre-production stage. The methodology of using a top-down CD-SEM metrology to extract the 3D resist profile information, such as the critical dimension (CD) at various resist heights, has to be associated with a series of presumptions which may introduce such small, but systematic CD errors. Ideally, the metrology effects should be carefully minimized during measurement process, or if possible be taken into account through proper metrology modeling. In this paper we discuss the application of a fast SEM signal emulation describing the SEM image formation. The algorithm is applied to simulated resist 3D profiles and produces emulated SEM image results for 1D and 2D patterns. It allows estimating resist simulation quality by comparing CDs which were extracted from the emulated and from the measured SEM images. Moreover, SEM emulation is applied for resist model calibration to capture subtle error signatures through dose and defocus. Finally, it should be noted that our SEM emulation methodology is based on the approximation of physical phenomena which are taking place in real SEM image formation. This approximation allows achieving better speed performance compared to a fully physical model.
Competing coexisting phases in 2D water
NASA Astrophysics Data System (ADS)
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-05-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.
Competing coexisting phases in 2D water
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-01-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018
NASA Astrophysics Data System (ADS)
Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John
2016-05-01
We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.
2D discrete Fourier transform on sliding windows.
Park, Chun-Su
2015-03-01
Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions.
MAGNUM2D. Radionuclide Transport Porous Media
Langford, D.W.; Baca, R.G.
1989-03-01
MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.
MAGNUM2D. Radionuclide Transport Porous Media
Langford, D.W.; Baca, R.G.
1988-08-01
MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.
Generates 2D Input for DYNA NIKE & TOPAZ
Hallquist, J. O.; Sanford, Larry
1996-07-15
MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ
Sanford, L.; Hallquist, J.O.
1992-02-24
MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
NIKE2D96. Static & Dynamic Response of 2D Solids
Raboin, P.; Engelmann, B.; Halquist, J.O.
1992-01-24
NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.
CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping
Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea
2016-01-01
TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact
CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.
Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea
2015-01-01
TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer
Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays
NASA Astrophysics Data System (ADS)
Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.
2006-04-01
We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.
Differential CYP 2D6 metabolism alters primaquine pharmacokinetics.
Potter, Brittney M J; Xie, Lisa H; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T; Bandara Herath, H M T; Dhammika Nanayakkara, N P; Tekwani, Babu L; Walker, Larry A; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Marcsisin, Sean R
2015-04-01
Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.
Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials
NASA Technical Reports Server (NTRS)
Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.
1993-01-01
Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.
Computational Screening of 2D Materials for Photocatalysis.
Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G
2015-03-19
Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.
Synthetic Covalent and Non-Covalent 2D Materials.
Boott, Charlotte E; Nazemi, Ali; Manners, Ian
2015-11-16
The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.
Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.
Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios
2016-09-07
van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs.
NASA Astrophysics Data System (ADS)
Magarill, L. I.; Entin, M. V.
2016-12-01
The electron absorption and the edge photocurrent of a 2D topological insulator are studied for transitions between edge states to 2D states. The circular polarized light is found to produce the edge photocurrent, the direction of which is determined by light polarization and edge orientation. It is shown that the edge-state current is found to exceed the 2D current owing to the topological protection of the edge states.
Energy Efficiency of D2D Multi-User Cooperation.
Zhang, Zufan; Wang, Lu; Zhang, Jie
2017-03-28
The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.
Integrating Mobile Multimedia into Textbooks: 2D Barcodes
ERIC Educational Resources Information Center
Uluyol, Celebi; Agca, R. Kagan
2012-01-01
The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…
Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.
Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo
2016-09-01
Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.
Adaptation algorithms for 2-D feedforward neural networks.
Kaczorek, T
1995-01-01
The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).
Regulation of ligands for the NKG2D activating receptor
Raulet, David H.; Gasser, Stephan; Gowen, Benjamin G.; Deng, Weiwen; Jung, Heiyoun
2014-01-01
NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection. PMID:23298206
2D materials and van der Waals heterostructures.
Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H
2016-07-29
The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.
New generation transistor technologies enabled by 2D crystals
NASA Astrophysics Data System (ADS)
Jena, D.
2013-05-01
The discovery of graphene opened the door to 2D crystal materials. The lack of a bandgap in 2D graphene makes it unsuitable for electronic switching transistors in the conventional field-effect sense, though possible techniques exploiting the unique bandstructure and nanostructures are being explored. The transition metal dichalcogenides have 2D crystal semiconductors, which are well-suited for electronic switching. We experimentally demonstrate field effect transistors with current saturation and carrier inversion made from layered 2D crystal semiconductors such as MoS2, WS2, and the related family. We also evaluate the feasibility of such semiconducting 2D crystals for tunneling field effect transistors for low-power digital logic. The article summarizes the current state of new generation transistor technologies either proposed, or demonstrated, with a commentary on the challenges and prospects moving forward.
Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice.
Pan, Xian; Jeong, Hyunyoung
2015-07-01
Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼ 50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter.
Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng
2016-08-04
Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.
Efficient 2D MRI relaxometry using compressed sensing
NASA Astrophysics Data System (ADS)
Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.
2015-06-01
Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.
2D vs. 3D mammography observer study
NASA Astrophysics Data System (ADS)
Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent
2011-03-01
Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.
Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei
2017-04-01
Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd.
NKG2D receptor and its ligands in host defense
Lanier, Lewis L.
2015-01-01
NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808
NKG2D Receptor and Its Ligands in Host Defense.
Lanier, Lewis L
2015-06-01
NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8(+) T cells, and subsets of CD4(+) T cells, invariant NKT cells (iNKT), and γδ T cells. In humans, NKG2D transmits signals by its association with the DAP10 adapter subunit, and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least eight genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and posttranslation. In general, healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyperproliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves as a mechanism for the immune system to detect and eliminate cells that have undergone "stress." Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system, and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases.
2-D Versus 3-D Magnetotelluric Data Interpretation
NASA Astrophysics Data System (ADS)
Ledo, Juanjo
2005-09-01
In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.
Recent advances in 2D materials for photocatalysis.
Luo, Bin; Liu, Gang; Wang, Lianzhou
2016-04-07
Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.
Comparison of 2D and 3D gamma analyses
Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer
2014-02-15
Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must
Double resonance rotational spectroscopy of CH2D+
NASA Astrophysics Data System (ADS)
Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar
2016-09-01
Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.
Recovering 3D particle size distributions from 2D sections
NASA Astrophysics Data System (ADS)
Cuzzi, Jeffrey N.; Olson, Daniel M.
2017-03-01
We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible, and practical method to do this; show which of these techniques gives the most faithful conversions; and provide (online) short computer codes to calculate both 2D-3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter.
Phonon thermal conduction in novel 2D materials
NASA Astrophysics Data System (ADS)
Xu, Xiangfan; Chen, Jie; Li, Baowen
2016-12-01
Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.
Recent developments in 2D layered inorganic nanomaterials for sensing
NASA Astrophysics Data System (ADS)
Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar
2015-08-01
Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.
Phonon thermal conduction in novel 2D materials.
Xu, Xiangfan; Chen, Jie; Li, Baowen
2016-12-07
Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.
Exact Solution of Ising Model in 2d Shortcut Network
NASA Astrophysics Data System (ADS)
Shanker, O.
We give the exact solution to the Ising model in the shortcut network in the 2D limit. The solution is found by mapping the model to the square lattice model with Brascamp and Kunz boundary conditions.
Technical Review of the UNET2D Hydraulic Model
Perkins, William A.; Richmond, Marshall C.
2009-05-18
The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.
Reconstruction-based 3D/2D image registration.
Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo
2005-01-01
In this paper we present a novel 3D/2D registration method, where first, a 3D image is reconstructed from a few 2D X-ray images and next, the preoperative 3D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure. Because the quality of the reconstructed image is generally low, we introduce a novel asymmetric mutual information similarity measure, which is able to cope with low image quality as well as with different imaging modalities. The novel 3D/2D registration method has been evaluated using standardized evaluation methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray images of two spine phantoms, for which gold standard registrations were known. In terms of robustness, reliability and capture range the proposed method outperformed the gradient-based method and the method based on digitally reconstructed radiographs (DRRs).
Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.
Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin
2016-03-09
Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.
Dominant 2D magnetic turbulence in the solar wind
NASA Technical Reports Server (NTRS)
Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.
1995-01-01
There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.
Studying Zeolite Catalysts with a 2D Model System
Boscoboinik, Anibal
2016-12-07
Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.
ORION96. 2-d Finite Element Code Postprocessor
Sanford, L.A.; Hallquist, J.O.
1992-02-02
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
Emerging and potential opportunities for 2D flexible nanoelectronics
NASA Astrophysics Data System (ADS)
Zhu, Weinan; Park, Saungeun; Akinwande, Deji
2016-05-01
The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.
Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics.
Nemilentsau, Andrei; Low, Tony; Hanson, George
2016-02-12
Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.
RNA folding pathways and kinetics using 2D energy landscapes.
Senter, Evan; Dotu, Ivan; Clote, Peter
2015-01-01
RNA folding pathways play an important role in various biological processes, such as (i) the hok/sok (host-killing/suppression of killing) system in E. coli to check for sufficient plasmid copy number, (ii) the conformational switch in spliced leader (SL) RNA from Leptomonas collosoma, which controls trans splicing of a portion of the '5 exon, and (iii) riboswitches--portions of the 5' untranslated region of messenger RNA that regulate genes by allostery. Since RNA folding pathways are determined by the energy landscape, we describe a novel algorithm, FFTbor2D, which computes the 2D projection of the energy landscape for a given RNA sequence. Given two metastable secondary structures A, B for a given RNA sequence, FFTbor2D computes the Boltzmann probability p(x, y) = Z(x,y)/Z that a secondary structure has base pair distance x from A and distance y from B. Using polynomial interpolationwith the fast Fourier transform,we compute p(x, y) in O(n(5)) time and O(n(2)) space, which is an improvement over an earlier method, which runs in O(n(7)) time and O(n(4)) space. FFTbor2D has potential applications in synthetic biology, where one might wish to design bistable switches having target metastable structures A, B with favorable pathway kinetics. By inverting the transition probability matrix determined from FFTbor2D output, we show that L. collosoma spliced leader RNA has larger mean first passage time from A to B on the 2D energy landscape, than 97.145% of 20,000 sequences, each having metastable structures A, B. Source code and binaries are freely available for download at http://bioinformatics.bc.edu/clotelab/FFTbor2D. The program FFTbor2D is implemented in C++, with optional OpenMP parallelization primitives.
Supported and Free-Standing 2D Semimetals
2015-01-15
of this effort on focusing on rare- earth arsenides (RE-A), although not a van der Waals 2D solid, nonetheless, exhibits substantial 2D quantum size...this effort on focusing on rare- earth arsenides (RE- A), although not a van der Waals 20 solid, nonetheless, exhibits substantial 20 quantum size...Brongersma and S.R. Bank, "Rare- earth monopnictide alloys for tunable, epitaxial metals" in preparation. iii. S. Rahimi, E. M. Krivoy, J. Lee, M. E
Application of 2-D graphical representation of DNA sequence
NASA Astrophysics Data System (ADS)
Liao, Bo; Tan, Mingshu; Ding, Kequan
2005-10-01
Recently, we proposed a 2-D graphical representation of DNA sequence [Bo Liao, A 2-D graphical representation of DNA sequence, Chem. Phys. Lett. 401 (2005) 196-199]. Based on this representation, we consider properties of mutations and compute the similarities among 11 mitochondrial sequences belonging to different species. The elements of the similarity matrix are used to construct phylogenic tree. Unlike most existing phylogeny construction methods, the proposed method does not require multiple alignment.
phase_space_cosmo_fisher: Fisher matrix 2D contours
NASA Astrophysics Data System (ADS)
Stark, Alejo
2016-11-01
phase_space_cosmo_fisher produces Fisher matrix 2D contours from which the constraints on cosmological parameters can be derived. Given a specified redshift array and cosmological case, 2D marginalized contours of cosmological parameters are generated; the code can also plot the derivatives used in the Fisher matrix. In addition, this package can generate 3D plots of qH^2 and other cosmological quantities as a function of redshift and cosmology.
A simultaneous 2D/3D autostereo workstation
NASA Astrophysics Data System (ADS)
Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius
2012-03-01
We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.
Phylogenetic tree construction based on 2D graphical representation
NASA Astrophysics Data System (ADS)
Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa
2006-04-01
A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.
Regulation of NKG2D ligand gene expression.
Eagle, Robert A; Traherne, James A; Ashiru, Omodele; Wills, Mark R; Trowsdale, John
2006-03-01
The activating immunoreceptor NKG2D has seven known host ligands encoded by the MHC class I chain-related MIC and ULBP/RAET genes. Why there is such diversity of NKG2D ligands is not known but one hypothesis is that they are differentially expressed in different tissues in response to different stresses. To explore this, we compared expression patterns and promoters of NKG2D ligand genes. ULBP/RAET genes were transcribed independent of each other in a panel of cell lines. ULBP/RAET gene expression was upregulated on infection with human cytomegalovirus; however, a clinical strain, Toledo, induced expression more slowly than did a laboratory strain, AD169. ULBP4/RAET1E was not induced by infection with either strain. To investigate the mechanisms behind the similarities and differences in NKG2D ligand gene expression a comparative sequence analysis of NKG2D ligand gene putative promoter regions was conducted. Sequence alignments demonstrated that there was significant sequence diversity; however, one region of high similarity between most of the genes is evident. This region contains a number of potential transcription factor binding sites, including those involved in shock responses and sites for retinoic acid-induced factors. Promoters of some NKG2D ligand genes are polymorphic and several sequence alterations in these alleles abolished putative transcription factor binding.
CYP2D6 variability in populations from Venezuela.
Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin
2016-12-01
CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.
2D microscopic model of graphene fracture properties
NASA Astrophysics Data System (ADS)
Hess, Peter
2015-05-01
An analytical two-dimensional (2D) microscopic fracture model based on Morse-type interaction is derived containing no adjustable parameter. From the 2D Young’s moduli and 2D intrinsic strengths of graphene measured by nanoindentation based on biaxial tension and calculated by density functional theory for uniaxial tension the widely unknown breaking force, line or edge energy, surface energy, fracture toughness, and strain energy release rate were determined. The simulated line energy agrees well with ab initio calculations and the fracture toughness of perfect graphene sheets is in good agreement with molecular dynamics simulations and the fracture toughness evaluated for defective graphene using the Griffith relation. Similarly, the estimated critical strain energy release rate agrees well with result of various theoretical approaches based on the J-integral and surface energy. The 2D microscopic model, connecting 2D and three-dimensional mechanical properties in a consistent way, provides a versatile relationship to easily access all relevant fracture properties of pristine 2D solids.
2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine.
Khan, Aamar F; Brownson, Dale A C; Randviir, Edward P; Smith, Graham C; Banks, Craig E
2016-10-04
Crystalline 2D hexagonal boron nitride (2D-hBN) nanosheets are explored as a potential electrocatalyst toward the electroanalytical sensing of dopamine (DA). The 2D-hBN nanosheets are electrically wired via a drop-casting modification process onto a range of commercially available carbon supporting electrodes, including glassy carbon (GC), boron-doped diamond (BDD), and screen-printed graphitic electrodes (SPEs). 2D-hBN has not previously been explored toward the electrochemical detection/electrochemical sensing of DA. We critically evaluate the potential electrocatalytic performance of 2D-hBN modified electrodes, the effect of supporting carbon electrode platforms, and the effect of "mass coverage" (which is commonly neglected in the 2D material literature) toward the detection of DA. The response of 2D-hBN modified electrodes is found to be largely dependent upon the interaction between 2D-hBN and the underlying supporting electrode material. For example, in the case of SPEs, modification with 2D-hBN (324 ng) improves the electrochemical response, decreasing the electrochemical oxidation potential of DA by ∼90 mV compared to an unmodified SPE. Conversely, modification of a GC electrode with 2D-hBN (324 ng) resulted in an increased oxidation potential of DA by ∼80 mV when compared to the unmodified electrode. We explore the underlying mechanisms of the aforementioned examples and infer that electrode surface interactions and roughness factors are critical considerations. 2D-hBN is utilized toward the sensing of DA in the presence of the common interferents ascorbic acid (AA) and uric acid (UA). 2D-hBN is found to be an effective electrocatalyst in the simultaneous detection of DA and UA at both pH 5.0 and 7.4. The peak separations/resolution between DA and UA increases by ∼70 and 50 mV (at pH 5.0 and 7.4, respectively, when utilizing 108 ng of 2D-hBN) compared to unmodified SPEs, with a particularly favorable response evident in pH 5.0, giving rise to a
Regulation of ligands for the activating receptor NKG2D
Mistry, Anita R; O'Callaghan, Chris A
2007-01-01
The outcome of an encounter between a cytotoxic cell and a potential target cell depends on the balance of signals from inhibitory and activating receptors. Natural Killer group 2D (NKG2D) has recently emerged as a major activating receptor on T lymphocytes and natural killer cells. In both humans and mice, multiple different genes encode ligands for NKG2D, and these ligands are non-classical major histocompatibility complex class I molecules. The NKG2D–ligand interaction triggers an activating signal in the cell expressing NKG2D and this promotes cytotoxic lysis of the cell expressing the ligand. Most normal tissues do not express ligands for NKG2D, but ligand expression has been documented in tumour and virus-infected cells, leading to lysis of these cells. Tight regulation of ligand expression is important. If there is inappropriate expression in normal tissues, this will favour autoimmune processes, whilst failure to up-regulate the ligands in pathological conditions would favour cancer development or dissemination of intracellular infection. PMID:17614877
Rotation invariance principles in 2D/3D registration
NASA Astrophysics Data System (ADS)
Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels C.; Jacob, Augustinus L.; Regazzoni, Pietro; Messmer, Peter
2003-05-01
2D/3D patient-to-computed tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 2D/3D registration is the fast that finding a registration includes sovling a minimization problem in six degrees-of-freedom in motion. This results in considerable time expenses since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations aroudn a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of its original value. The method was implemented and extensively tested on simulated x-ray images of a pelvis. We conclude that this hardware-indepenent optimization of 2D/3D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.
2D nanostructures for water purification: graphene and beyond.
Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C
2016-08-18
Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.
2D Materials for Optical Modulation: Challenges and Opportunities.
Yu, Shaoliang; Wu, Xiaoqin; Wang, Yipei; Guo, Xin; Tong, Limin
2017-02-21
Owing to their atomic layer thickness, strong light-material interaction, high nonlinearity, broadband optical response, fast relaxation, controllable optoelectronic properties, and high compatibility with other photonic structures, 2D materials, including graphene, transition metal dichalcogenides and black phosphorus, have been attracting increasing attention for photonic applications. By tuning the carrier density via electrical or optical means that modifies their physical properties (e.g., Fermi level or nonlinear absorption), optical response of the 2D materials can be instantly changed, making them versatile nanostructures for optical modulation. Here, up-to-date 2D material-based optical modulation in three categories is reviewed: free-space, fiber-based, and on-chip configurations. By analysing cons and pros of different modulation approaches from material and mechanism aspects, the challenges faced by using these materials for device applications are presented. In addition, thermal effects (e.g., laser induced damage) in 2D materials, which are critical to practical applications, are also discussed. Finally, the outlook for future opportunities of these 2D materials for optical modulation is given.
2D DIGE saturation labeling for minute sample amounts.
Arnold, Georg J; Fröhlich, Thomas
2012-01-01
The 2D DIGE technique, based on fluorophores covalently linked to amino acid side chain residues and the concept of an internal standard, has significantly improved reproducibility, sensitivity, and the dynamic range of protein quantification. In saturation DIGE, sulfhydryl groups of cysteines are labeled with cyanine dyes to completion, providing a so far unraveled sensitivity for protein detection and quantification in 2D gel-based proteomic experiments. Only a few micrograms of protein per 2D gel facilitate the analysis of about 2,000 analytes from complex mammalian cell or tissue samples. As a consequence, 2D saturation DIGE is the method of choice when only minute sample amounts are available for quantitative proteome analysis at the level of proteins rather than peptides. Since very low amounts of samples have to be handled in a reproducible manner, saturation DIGE-based proteomic experiments are technically demanding. Moreover, successful saturation DIGE approaches require a strict adherence to adequate reaction conditions at each step. This chapter is dedicated to colleagues already experienced in 2D PAGE protein separation and intends to support the establishment of this ultrasensitive technique in proteomic workgroups. We provide basic guidelines for the experimental design and discuss crucial aspects concerning labeling chemistry, sample preparation, and pitfalls caused by labeling artifacts. A detailed step-by-step protocol comprises all aspects from initial sample preparation to image analysis and statistical evaluation. Furthermore, we describe the generation of preparative saturation DIGE gels necessary for mass spectrometry-based spot identification.
Mermin–Wagner fluctuations in 2D amorphous solids
Illing, Bernd; Fritschi, Sebastian; Kaiser, Herbert; Klix, Christian L.; Maret, Georg; Keim, Peter
2017-01-01
In a recent commentary, J. M. Kosterlitz described how D. Thouless and he got motivated to investigate melting and suprafluidity in two dimensions [Kosterlitz JM (2016) J Phys Condens Matter 28:481001]. It was due to the lack of broken translational symmetry in two dimensions—doubting the existence of 2D crystals—and the first computer simulations foretelling 2D crystals (at least in tiny systems). The lack of broken symmetries proposed by D. Mermin and H. Wagner is caused by long wavelength density fluctuations. Those fluctuations do not only have structural impact, but additionally a dynamical one: They cause the Lindemann criterion to fail in 2D in the sense that the mean squared displacement of atoms is not limited. Comparing experimental data from 3D and 2D amorphous solids with 2D crystals, we disentangle Mermin–Wagner fluctuations from glassy structural relaxations. Furthermore, we demonstrate with computer simulations the logarithmic increase of displacements with system size: Periodicity is not a requirement for Mermin–Wagner fluctuations, which conserve the homogeneity of space on long scales. PMID:28137872
Sparse radar imaging using 2D compressed sensing
NASA Astrophysics Data System (ADS)
Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying
2014-10-01
Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.
Mean flow and anisotropic cascades in decaying 2D turbulence
NASA Astrophysics Data System (ADS)
Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki
2015-11-01
Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.
2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings
NASA Astrophysics Data System (ADS)
Wang, Hui; Li, Xugang; Krause, Lars; Görög, Mark; Schüler, Oliver; Hauslage, Jens; Hemmersbach, Ruth; Kircher, Stefan; Lasok, Hanna; Haser, Thomas; Rapp, Katja; Schmidt, Jürgen; Yu, Xin; Pasternak, Taras; Aubry-Hivet, Dorothée; Tietz, Olaf; Dovzhenko, Alexander; Palme, Klaus; Ditengou, Franck Anicet
2016-04-01
Ground-based simulators of microgravity such as fast rotating 2-D clinostats are valuable tools to study gravity related processes. We describe here a versatile g-value-adjustable 2-D clinostat that is suitable for plant analysis. To avoid seedling adaptation to 1 g after clinorotation, we designed chambers that allow rapid fixation. A detailed protocol for fixation, RNA isolation and the analysis of selected genes is described. Using this clinostat we show that mRNA levels of LONG HYPOCOTYL 5 (HY5), MIZU-KUSSEI 1 (MIZ1) and microRNA MIR163 are down-regulated in 5-day-old Arabidopsis thaliana roots after 3 min and 6 min of clinorotation using a maximal reduced g-force of 0.02 g, hence demonstrating that this 2-D clinostat enables the characterization of early transcriptomic events during root response to microgravity. We further show that this 2-D clinostat is able to compensate the action of gravitational force as both gravitropic-dependent statolith sedimentation and subsequent auxin redistribution (monitoring D R5 r e v :: G F P reporter) are abolished when plants are clinorotated. Our results demonstrate that 2-D clinostats equipped with interchangeable growth chambers and tunable rotation velocity are suitable for studying how plants perceive and respond to simulated microgravity.
Secretory pathways generating immunosuppressive NKG2D ligands
Baragaño Raneros, Aroa; Suarez-Álvarez, Beatriz; López-Larrea, Carlos
2014-01-01
Natural Killer Group 2 member D (NKG2D) activating receptor, present on the surface of various immune cells, plays an important role in activating the anticancer immune response by their interaction with stress-inducible NKG2D ligands (NKG2DL) on transformed cells. However, cancer cells have developed numerous mechanisms to evade the immune system via the downregulation of NKG2DL from the cell surface, including the release of NKG2DL from the cell surface in a soluble form. Here, we review the mechanisms involved in the production of soluble NKG2DL (sNKG2DL) and the potential therapeutic strategies aiming to block the release of these immunosuppressive ligands. Therapeutically enabling the NKG2D-NKG2DL interaction would promote immunorecognition of malignant cells, thus abrogating disease progression. PMID:25050215
Splashing transients of 2D plasmons launched by swift electrons
Lin, Xiao; Kaminer, Ido; Shi, Xihang; Gao, Fei; Yang, Zhaoju; Gao, Zhen; Buljan, Hrvoje; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Zhang, Baile
2017-01-01
Launching of plasmons by swift electrons has long been used in electron energy–loss spectroscopy (EELS) to investigate the plasmonic properties of ultrathin, or two-dimensional (2D), electron systems. However, the question of how a swift electron generates plasmons in space and time has never been answered. We address this issue by calculating and demonstrating the spatial-temporal dynamics of 2D plasmon generation in graphene. We predict a jet-like rise of excessive charge concentration that delays the generation of 2D plasmons in EELS, exhibiting an analog to the hydrodynamic Rayleigh jet in a splashing phenomenon before the launching of ripples. The photon radiation, analogous to the splashing sound, accompanies the plasmon emission and can be understood as being shaken off by the Rayleigh jet–like charge concentration. Considering this newly revealed process, we argue that previous estimates on the yields of graphene plasmons in EELS need to be reevaluated. PMID:28138546
Available information in 2D motional Stark effect imaging.
Creese, Mathew; Howard, John
2010-10-01
Recent advances in imaging techniques have allowed the extension of the standard polarimetric 1D motional Stark effect (MSE) diagnostic to 2D imaging of the internal magnetic field of fusion devices [J. Howard, Plasma Phys. Controlled Fusion 50, 125003 (2008)]. This development is met with the challenge of identifying and extracting the new information, which can then be used to increase the accuracy of plasma equilibrium and current density profile determinations. This paper develops a 2D analysis of the projected MSE polarization orientation and Doppler phase shift. It is found that, for a standard viewing position, the 2D MSE imaging system captures sufficient information to allow imaging of the internal vertical magnetic field component B(Z)(r,z) in a tokamak.
Perception-based reversible watermarking for 2D vector maps
NASA Astrophysics Data System (ADS)
Men, Chaoguang; Cao, Liujuan; Li, Xiang
2010-07-01
This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.
Microscale 2D separation systems for proteomic analysis
Xu, Xin; Liu, Ke; Fan, Z. Hugh
2012-01-01
Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786
2D materials for photon conversion and nanophotonics
NASA Astrophysics Data System (ADS)
Tahersima, Mohammad H.; Sorger, Volker J.
2015-09-01
The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.
Rapid-scan coherent 2D fluorescence spectroscopy.
Draeger, Simon; Roeding, Sebastian; Brixner, Tobias
2017-02-20
We developed pulse-shaper-assisted coherent two-dimensional (2D) electronic spectroscopy in liquids using fluorescence detection. A customized pulse shaper facilitates shot-to-shot modulation at 1 kHz and is employed for rapid scanning over all time delays. A full 2D spectrum with 15 × 15 pixels is obtained in approximately 6 s of measurement time (plus further averaging if needed). Coherent information is extracted from the incoherent fluorescence signal via 27-step phase cycling. We exemplify the technique on cresyl violet in ethanol and recover literature-known oscillations as a function of population time. Signal-to-noise behavior is analyzed as a function of the amount of averaging. Rapid scanning provides a 2D spectrum with a root-mean-square error of < 0.05 after 1 min of measurement time.
2D-3D transition of gold cluster anions resolved
NASA Astrophysics Data System (ADS)
Johansson, Mikael P.; Lechtken, Anne; Schooss, Detlef; Kappes, Manfred M.; Furche, Filipp
2008-05-01
Small gold cluster anions Aun- are known for their unusual two-dimensional (2D) structures, giving rise to properties very different from those of bulk gold. Previous experiments and calculations disagree about the number of gold atoms nc where the transition to 3D structures occurs. We combine trapped ion electron diffraction and state of the art electronic structure calculations to resolve this puzzle and establish nc=12 . It is shown that theoretical studies using traditional generalized gradient functionals are heavily biased towards 2D structures. For a correct prediction of the 2D-3D crossover point it is crucial to use density functionals yielding accurate jellium surface energies, such as the Tao-Perdew-Staroverov-Scuseria (TPSS) functional or the Perdew-Burke-Ernzerhof functional modified for solids (PBEsol). Further, spin-orbit effects have to be included, and large, flexible basis sets employed. This combined theoretical-experimental approach is promising for larger gold and other metal clusters.
IUPAP Award: Ion transport in 2D materials
NASA Astrophysics Data System (ADS)
Bao, Wenzhong
Intercalation in 2D materials drastically influences both physical and chemical properties, which leads to a new degree of freedom for fundamental studies and expands the potential applications of 2D materials. In this talk, I will discuss our work in the past two years related to ion intercalation of 2D materials, including insertion of Li and Na ions in graphene and MoS2. We focused on both fundamental mechanism and potential application, e.g. we measured in-situ optical transmittance spectra and electrical transport properties of few-layer graphene (FLG) nanostructures upon electrochemical lithiation/delithiation. By observing a simultaneous increase of both optical transmittance and DC conductivity, strikingly different from other materials, we proposed its application as a next generation transparent electrode.
2d-retrieval For Mipas-envisat
NASA Astrophysics Data System (ADS)
Steck, T.; von Clarmann, T.; Grabowski, U.; Höpfner, M.
Limb sounding of the Earth's atmosphere provides vertically high resolved profiles of geophysical parameters. The long ray path through the atmosphere makes limb sounders sensitive to even little abundant species. On the other hand, horizontal in- homogeneities, if not taken into account properly, can cause systematic errors within the retrieval process. Especially for limb emission measurements in the mid IR, at- mopheric temperature gradients result in considerable vmr retrieval errors if they are neglected. We present a dedicated method of taking full 2D fields of state parameters (indepen- dent of tangent points) into account in the forward model and in the retrieval. The basic idea is that the 2D state vector is updated sequentially for each limb scan. This method is applied to the 2D retrieval of temperature and vmr for simulated radiances as expected from MIPAS-ENVISAT.
Genetics, genomics, and evolutionary biology of NKG2D ligands.
Carapito, Raphael; Bahram, Seiamak
2015-09-01
Human and mouse NKG2D ligands (NKG2DLs) are absent or only poorly expressed by most normal cells but are upregulated by cell stress, hence, alerting the immune system in case of malignancy or infection. Although these ligands are numerous and highly variable (at genetic, genomic, structural, and biochemical levels), they all belong to the major histocompatibility complex class I gene superfamily and bind to a single, invariant, receptor: NKG2D. NKG2D (CD314) is an activating receptor expressed on NK cells and subsets of T cells that have a key role in the recognition and lysis of infected and tumor cells. Here, we review the molecular diversity of NKG2DLs, discuss the increasing appreciation of their roles in a variety of medical conditions, and propose several explanations for the evolutionary force(s) that seem to drive the multiplicity and diversity of NKG2DLs while maintaining their interaction with a single invariant receptor.
Graphene based 2D-materials for supercapacitors
NASA Astrophysics Data System (ADS)
Palaniselvam, Thangavelu; Baek, Jong-Beom
2015-09-01
Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.
Chemical vapour deposition: Transition metal carbides go 2D
Gogotsi, Yury
2015-08-17
Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a highmore » crystallinity and very low defect concentration.« less
Optoelectronics based on 2D TMDs and heterostructures
NASA Astrophysics Data System (ADS)
Huo, Nengjie; Yang, Yujue; Li, Jingbo
2017-03-01
2D materials including graphene and TMDs have proven interesting physical properties and promising optoelectronic applications. We reviewed the growth, characterization and optoelectronics based on 2D TMDs and their heterostructures, and demonstrated their unique and high quality of performances. For example, we observed the large mobility, fast response and high photo-responsivity in MoS2, WS2 and WSe2 phototransistors, as well as the novel performances in vdW heterostructures such as the strong interlayer coupling, am-bipolar and rectifying behaviour, and the obvious photovoltaic effect. It is being possible that 2D family materials could play an increasingly important role in the future nano- and opto-electronics, more even than traditional semiconductors such as silicon.
Applications of Doppler Tomography in 2D and 3D
NASA Astrophysics Data System (ADS)
Richards, M.; Budaj, J.; Agafonov, M.; Sharova, O.
2010-12-01
Over the past few years, the applications of Doppler tomography have been extended beyond the usual calculation of 2D velocity images of circumstellar gas flows. This technique has now been used with the new Shellspec spectrum synthesis code to demonstrate the effective modeling of the accretion disk and gas stream in the TT Hya Algol binary. The 2D tomography procedure projects all sources of emission onto a single central (Vx, Vy) velocity plane even though the gas is expected to flow beyond that plane. So, new 3D velocity images were derived with the Radioastronomical Approach method by assuming a grid of Vz values transverse to the central 2D plane. The 3D approach has been applied to the U CrB and RS Vul Algol-type binaries to reveal substantial flow structures beyond the central velocity plane.
Chemical vapour deposition: Transition metal carbides go 2D
Gogotsi, Yury
2015-08-17
Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties^{1, 2}. Recently, nanometre-thin 2D transition metal carbides have also joined this family^{3}. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity^{4}. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a high crystallinity and very low defect concentration.
Real-time 2-D temperature imaging using ultrasound.
Liu, Dalong; Ebbini, Emad S
2010-01-01
We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy.
Towards functional assembly of 3D and 2D nanomaterials
NASA Astrophysics Data System (ADS)
Jacobs, Christopher B.; Wang, Kai; Ievlev, Anton V.; Muckley, Eric S.; Ivanov, Ilia N.
2016-09-01
Functional assemblies of materials can be realized by tuning the work function and band gap of nanomaterials by rational material selection and design. Here we demonstrate the structural assembly of 2D and 3D nanomaterials and show that layering a 2D material monolayer on a 3D metal oxide leads to substantial alteration of both the surface potential and optical properties of the 3D material. A 40 nm thick film of polycrystalline NiO was produced by room temperature rf-sputtering, resulting in a 3D nanoparticle assembly. Chemical vapor deposition (CVD) grown 10-30 μm WS2 flakes (2D material) were placed on the NiO surface using a PDMS stamp transfer technique. The 2D/3D WS2/NiO assembly was characterized using confocal micro Raman spectroscopy to evaluate the vibrational properties and using Kelvin probe force microscopy (KPFM) to evaluate the surface potential. Raman maps of the 2D/3D assembly show spatial non-uniformity of the A1g mode ( 418 cm-1) and the disorder-enhanced longitudinal acoustic mode, 2LA(M) ( 350 cm-1), suggesting that the WS2 exists in a strained condition on when transferred onto 3D polycrystalline NiO. KPFM measurements show that single layer WS2 on SiO2 has a surface potential 75 mV lower than that of SiO2, whereas the surface potential of WS2 on NiO is 15 mV higher than NiO, indicating that WS2 could act as electron donor or acceptor depending on the 3D material it is interfaced with. Thus 2D and 3D materials can be organized into functional assemblies with electron flow controlled by the WS2 either as the electron donor or acceptor.
Laboratory Experiments On Continually Forced 2d Turbulence
NASA Astrophysics Data System (ADS)
Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.
There has been much recent interest in the advection of tracers by 2D turbulence in geophysical flows. While there is a large body of literature on decaying 2D turbulence or forced 2D turbulence in unbounded domains, there have been very few studies of forced turbulence in bounded domains. In this study we present new experimental results from a continuously forced quasi 2D turbulent field. The experiments are performed in a square Perspex tank filled with water. The flow is made quasi 2D by a steady background rotation. The rotation rate of the tank has a small (<8 %) sinusoidal perturbation which leads to the periodic formation of eddies in the corners of the tank. When the oscillation period of the perturbation is greater than an eddy roll-up time-scale, dipole structures are observed to form. The dipoles can migrate away from the walls, and the interior of the tank is continually filled with vortexs. From experimental visualizations the length scale of the vortexs appears to be largely controlled by the initial formation mechanism and large scale structures are not observed to form at large times. Thus the experiments provide a simple way of cre- ating a continuously forced 2D turbulent field. The resulting structures are in contrast with most previous laboratory experiments on 2D turbulence which have investigated decaying turbulence and have observed the formations of large scale structure. In these experiments, decaying turbulence had been produced by a variety of methods such as the decaying turbulence in the wake of a comb of rods (Massen et al 1999), organiza- tion of vortices in thin conducting liquids (Cardoso et al 1994) or in rotating systems where there are sudden changes in angular rotation rate (Konijnenberg et al 1998). Results of dye visualizations, particle tracking experiments and a direct numerical simulation will be presented and discussed in terms of their oceanographic application. Bibliography Cardoso,O. Marteau, D. &Tabeling, P
2dF grows up: Echidna for the AAT
NASA Astrophysics Data System (ADS)
McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg
2008-07-01
We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.
Noninvasive deep Raman detection with 2D correlation analysis
NASA Astrophysics Data System (ADS)
Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug
2014-07-01
The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.
Evaluation of 2D ceramic matrix composites in aeroconvective environments
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza
1992-01-01
An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.
Radiative heat transfer in 2D Dirac materials.
Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R
2015-06-03
We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.
Quantum process tomography by 2D fluorescence spectroscopy
Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán
2015-06-07
Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.
Radiative heat transfer in 2D Dirac materials
Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.
2015-05-12
We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.
Experimental validation of equations for 2D DIC uncertainty quantification.
Reu, Phillip L.; Miller, Timothy J.
2010-03-01
Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.
Scale Invariance in 2D BCS-BEC Crossover
NASA Astrophysics Data System (ADS)
Sensarma, Rajdeep; Taylor, Edward; Randeria, Mohit
2013-03-01
In 2D BCS-BEC crossover, the frequency of the breathing mode in a harmonic trap, as well as the lower edge of the radio frequency spectroscopy response, show remarkable scale-invariance throughout the crossover regime, i.e. they are independent of the coupling constant. Using functional integral methods, we study the behaviour of these quantities in the 2D BCS-BEC crossover and comment on the possible reasons for this scale independence. RS was supported by DAE, Govt. of India. MR was supported by NSF Grant No. DMR-1006532. ET was supported by NSERC and the Canadian Institute for Advanced Research.
Closed-shell and open-shell 2D nanographenes.
Sun, Zhe; Wu, Jishan
2014-01-01
This chapter describes a series of two-dimensional (2D) expanded arene networks, also known as nanographenes, with either closed-shell or open-shell electronic structure in the ground state. These systems are further categorized into three classes on a basis of different edge structures: those with zigzag edges only, those with armchair edges only, and those possessing both. Distinctive physical properties of these 2D aromatic systems are closely related to their structural characteristics and provide great potential for them as materials for different applications.
2D Log-Gabor Wavelet Based Action Recognition
NASA Astrophysics Data System (ADS)
Li, Ning; Xu, De
The frequency response of log-Gabor function matches well the frequency response of primate visual neurons. In this letter, motion-salient regions are extracted based on the 2D log-Gabor wavelet transform of the spatio-temporal form of actions. A supervised classification technique is then used to classify the actions. The proposed method is robust to the irregular segmentation of actors. Moreover, the 2D log-Gabor wavelet permits more compact representation of actions than the recent neurobiological models using Gabor wavelet.
NASA Astrophysics Data System (ADS)
Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.
2007-09-01
This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it
Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E
2016-08-21
Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.
Discrepant Results in a 2-D Marble Collision
ERIC Educational Resources Information Center
Kalajian, Peter
2013-01-01
Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…
2-D Finite Element Cable and Box IEMP Analysis
Scivner, G.J.; Turner, C.D.
1998-12-17
A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.
2D Orthogonal Locality Preserving Projection for Image Denoising.
Shikkenawis, Gitam; Mitra, Suman K
2016-01-01
Sparse representations using transform-domain techniques are widely used for better interpretation of the raw data. Orthogonal locality preserving projection (OLPP) is a linear technique that tries to preserve local structure of data in the transform domain as well. Vectorized nature of OLPP requires high-dimensional data to be converted to vector format, hence may lose spatial neighborhood information of raw data. On the other hand, processing 2D data directly, not only preserves spatial information, but also improves the computational efficiency considerably. The 2D OLPP is expected to learn the transformation from 2D data itself. This paper derives mathematical foundation for 2D OLPP. The proposed technique is used for image denoising task. Recent state-of-the-art approaches for image denoising work on two major hypotheses, i.e., non-local self-similarity and sparse linear approximations of the data. Locality preserving nature of the proposed approach automatically takes care of self-similarity present in the image while inferring sparse basis. A global basis is adequate for the entire image. The proposed approach outperforms several state-of-the-art image denoising approaches for gray-scale, color, and texture images.
2D signature for detection and identification of drugs
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei
2011-06-01
The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.
Optoelectronics of supported and suspended 2D semiconductors
NASA Astrophysics Data System (ADS)
Bolotin, Kirill
2014-03-01
Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.
Graphene band structure and its 2D Raman mode
NASA Astrophysics Data System (ADS)
Narula, Rohit; Reich, Stephanie
2014-08-01
High-precision simulations are used to generate the 2D Raman mode of graphene under a range of screening conditions and laser energies EL. We reproduce the decreasing trend of the 2D mode FWHM vs EL and the nearly linearly increasing dispersion ∂ω2D/∂EL seen experimentally in freestanding (unscreened) graphene, and propose relations between these experimentally accessible quantities and the local, two-dimensional gradients |∇ | of the electronic and TO phonon bands. In light of state-of-the-art electronic structure calculations that acutely treat the long-range e-e interactions of isolated graphene and its experimentally observed 2D Raman mode, our calculations determine a 40% greater slope of the TO phonons about K than given by explicit phonon measurements performed in graphite or GW phonon calculations in graphene. We also deduce the variation of the broadening energy γ [EL] for freestanding graphene and find a nominal value γ ˜140 meV, showing a gradually increasing trend for the range of frequencies available experimentally.
Development of a MEMS 2D separations device
NASA Astrophysics Data System (ADS)
Bloschock, Kristen P.; Flyer, Jonathan N.; Schneider, Thomas W.; Hussam, Abul; Van Keuren, Edward R.
2004-12-01
A polymer based biochip for rapid 2D separations of peptides, proteins, and other biomedically relevant molecules was designed and fabricated. Like traditional 2D polyacrylamide gel electrophoresis (2D-PAGE) methods, the device will allow molecules to separate based on isoelectric point (pI) and molecular weight (MW). Our design, however, integrates both an initial capillary isoelectric focusing (cIEF) step followed by capillary electrophoresis (CE) in multiple parallel channels, all on a single microfluidic chip. Not only is the "lab-on-a-chip" design easier to use and less expensive, but the miniaturization of the device produces very rapid separations. Compared to traditional 2D-PAGE, which can take hours to complete, we estimate separation times on the order of seconds. Fluorescence detection will be used in the preliminary stages of testing, but the device also is equipped with integrated electrodes in the electrophoresis channels to perform multiplexed electrochemical detection for quantitative analysis. We will present preliminary results of the chip development and testing.
The 2dF Galaxy Redshift Survey: Preliminary Results
NASA Astrophysics Data System (ADS)
Maddox, Steve; 2DF Galaxy Redshift Survey Team; Bland-Hawthorn, Joss; Cannon, Russell; Cole, Shaun; Colless, Matthew; Collins, Chris; Couch, Warrick; Dalton, Gavin; Driver, Simon; Ellis, Richard; Efstathiou, George; Folkes, Simon; Frenk, Carlos; Glazebrook, Karl; Kaiser, Nick; Lahav, Ofer; Lumsden, Stuart; Peterson, Bruce; Peacock, John; Sutherland, Will; Taylor, Keith
Spectroscopic observations for a new survey of 250 000 galaxy redshifts are underway, using the 2dF instrument at the AAT. The input galaxy catalogue and commissioning data are described. The first result from the preliminary data is a new estimate of the galaxy luminosity function at
Volume Calculation of Venous Thrombosis Using 2D Ultrasound Images.
Dhibi, M; Puentes, J; Bressollette, L; Guias, B; Solaiman, B
2005-01-01
Venous thrombosis screening exams use 2D ultrasound images, from which medical experts obtain a rough idea of the thrombosis aspect and infer an approximate volume. Such estimation is essential to follow up the thrombosis evolution. This paper proposes a method to calculate venous thrombosis volume from non-parallel 2D ultrasound images, taking advantage of a priori knowledge about the thrombosis shape. An interactive ellipse fitting contour segmentation extracts the 2D thrombosis contours. Then, a Delaunay triangulation is applied to the set of 2D segmented contours positioned in 3D, and the area that each contour defines, to obtain a global thrombosis 3D surface reconstruction, with a dense triangulation inside the contours. Volume is calculated from the obtained surface and contours triangulation, using a maximum unit normal component approach. Preliminary results obtained on 3 plastic phantoms and 3 in vitro venous thromboses, as well as one in vivo case are presented and discussed. An error rate of volume estimation inferior to 4,5% for the plastic phantoms, and 3,5% for the in vitro venous thromboses was obtained.
ELLIPT2D: A Flexible Finite Element Code Written Python
Pletzer, A.; Mollis, J.C.
2001-03-22
The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.
Rheological Properties of Quasi-2D Fluids in Microgravity
NASA Technical Reports Server (NTRS)
Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha
2015-01-01
In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.
Validation and testing of the VAM2D computer code
Kool, J.B.; Wu, Y.S. )
1991-10-01
This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs.
NKG2D ligands mediate immunosurveillance of senescent cells
Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery
2016-01-01
Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797
Studying Zeolite Catalysts with a 2D Model System
Boscoboinik, Anibal
2016-12-14
Anibal Boscoboinik, a materials scientist at Brookhavenâs Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.
2D nanomaterials based electrochemical biosensors for cancer diagnosis.
Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei
2017-03-15
Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area.
NASA Astrophysics Data System (ADS)
Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.
2016-08-01
Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets
Giaddui, T; Yu, J; Xiao, Y; Jacobs, P; Manfredi, D; Linnemann, N
2015-06-15
Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance
Half-metallicity in 2D organometallic honeycomb frameworks.
Sun, Hao; Li, Bin; Zhao, Jin
2016-10-26
Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.
2d-LCA - an alternative to x-wires
NASA Astrophysics Data System (ADS)
Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim
2014-11-01
The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.
2D/3D Image Registration using Regression Learning
Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen
2013-01-01
In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278
Half-metallicity in 2D organometallic honeycomb frameworks
NASA Astrophysics Data System (ADS)
Sun, Hao; Li, Bin; Zhao, Jin
2016-10-01
Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.
A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.
Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong
2015-09-01
Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners.
2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures
NASA Astrophysics Data System (ADS)
Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali
2016-02-01
Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.
Gressier, F; Verstuyft, C; Hardy, P; Becquemont, L; Corruble, E
2015-01-01
The cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of most antidepressants. Comedication with a potent CYP2D6 inhibitor can convert patients with extensive metabolizer (EM) or ultra-rapid metabolizer (UM) genotypes into poor metabolizer (PM) phenotypes. Since comedication is frequent in depressed patients treated with antidepressants, we investigated the effect of the CYP2D6 composite phenotype on antidepressant efficacy, taking into account both the CYP2D6 genotype and comedication with CYP2D6 inhibitors. 87 Caucasian in patients with a major depressive episode were prospectively treated with flexible doses of antidepressant monotherapy as well as comedications and genotyped for the major CYP2D6 alleles (CYP2D6*3 rs35742686, *4 rs3892097, *5 del, *6 rs5030655, and *2xN). They were classified for CYP2D6 composite phenotype and assessed for antidepressant response after 4 weeks. In terms of genotypes (g), 6 subjects were UMg, 6 PMg, and 75 EMg. Ten patients were coprescribed a CYP2D6 inhibitor, resulting in the following composite phenotypes (cp): 5 UMcp, 16 PMcp, and 66 EMcp. Whereas none of the CYP2D6 genotypes were significantly associated with antidepressant response, UMcp had a lower antidepressant response than PMcp or EMcp (respectively: 39.0 ± 17.9, 50.0 ± 26.0, and 61.6 ± 23.4, p = 0.02). Despite small sample size, this study suggests that a CYP2D6 composite phenotype, taking into account both genotype and comedications with CYP2D6 inhibitors, could predict CYP2D6 substrate antidepressants response. Thus, to optimize antidepressant response, CYP2D6 genotype could be performed and comedications with CYP2D6 inhibitors should be avoided, when prescribing CYP2D6 substrate antidepressants.
2-D linear motion system. Innovative technology summary report
1998-11-01
The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology
Gold-standard performance for 2D hydrodynamic modeling
NASA Astrophysics Data System (ADS)
Pasternack, G. B.; MacVicar, B. J.
2013-12-01
Two-dimensional, depth-averaged hydrodynamic (2D) models are emerging as an increasingly useful tool for environmental water resources engineering. One of the remaining technical hurdles to the wider adoption and acceptance of 2D modeling is the lack of standards for 2D model performance evaluation when the riverbed undulates, causing lateral flow divergence and convergence. The goal of this study was to establish a gold-standard that quantifies the upper limit of model performance for 2D models of undulating riverbeds when topography is perfectly known and surface roughness is well constrained. A review was conducted of published model performance metrics and the value ranges exhibited by models thus far for each one. Typically predicted velocity differs from observed by 20 to 30 % and the coefficient of determination between the two ranges from 0.5 to 0.8, though there tends to be a bias toward overpredicting low velocity and underpredicting high velocity. To establish a gold standard as to the best performance possible for a 2D model of an undulating bed, two straight, rectangular-walled flume experiments were done with no bed slope and only different bed undulations and water surface slopes. One flume tested model performance in the presence of a porous, homogenous gravel bed with a long flat section, then a linear slope down to a flat pool bottom, and then the same linear slope back up to the flat bed. The other flume had a PVC plastic solid bed with a long flat section followed by a sequence of five identical riffle-pool pairs in close proximity, so it tested model performance given frequent undulations. Detailed water surface elevation and velocity measurements were made for both flumes. Comparing predicted versus observed velocity magnitude for 3 discharges with the gravel-bed flume and 1 discharge for the PVC-bed flume, the coefficient of determination ranged from 0.952 to 0.987 and the slope for the regression line was 0.957 to 1.02. Unsigned velocity
Instantons in 2D U(1) Higgs model and 2D CP(N-1) sigma models
NASA Astrophysics Data System (ADS)
Lian, Yaogang
2007-12-01
In this thesis I present the results of a study of the topological structures of 2D U(1) Higgs model and 2D CP N-1 sigma models. Both models have been studied using the overlap Dirac operator construction of topological charge density. The overlap operator provides a more incisive probe into the local topological structure of gauge field configurations than the traditional plaquette-based operator. In the 2D U(1) Higgs model, we show that classical instantons with finite sizes violate the negativity of topological charge correlator by giving a positive contribution to the correlator at non-zero separation. We argue that instantons in 2D U(1) Higgs model must be accompanied by large quantum fluctuations in order to solve this contradiction. In 2D CPN-1 sigma models, we observe the anomalous scaling behavior of the topological susceptibility chi t for N ≤ 3. The divergence of chi t in these models is traced to the presence of small instantons with a radius of order a (= lattice spacing), which are directly observed on the lattice. The observation of these small instantons provides detailed confirmation of Luscher's argument that such short-distance excitations, with quantized topological charge, should be the dominant topological fluctuations in CP1 and CP 2, leading to a divergent topological susceptibility in the continuum limit. For the CPN-1 models with N > 3 the topological susceptibility is observed to scale properly with the mass gap. Another topic presented in this thesis is an implementation of the Zolotarev optimal rational approximation for the overlap Dirac operator. This new implementation has reduced the time complexity of the overlap routine from O(N3 ) to O(N), where N is the total number of sites on the lattice. This opens up a door to more accurate lattice measurements in the future.
Optimizing sparse sampling for 2D electronic spectroscopy
NASA Astrophysics Data System (ADS)
Roeding, Sebastian; Klimovich, Nikita; Brixner, Tobias
2017-02-01
We present a new data acquisition concept using optimized non-uniform sampling and compressed sensing reconstruction in order to substantially decrease the acquisition times in action-based multidimensional electronic spectroscopy. For this we acquire a regularly sampled reference data set at a fixed population time and use a genetic algorithm to optimize a reduced non-uniform sampling pattern. We then apply the optimal sampling for data acquisition at all other population times. Furthermore, we show how to transform two-dimensional (2D) spectra into a joint 4D time-frequency von Neumann representation. This leads to increased sparsity compared to the Fourier domain and to improved reconstruction. We demonstrate this approach by recovering transient dynamics in the 2D spectrum of a cresyl violet sample using just 25% of the originally sampled data points.
D2-D1 phase transition of columnar liquid crystals
NASA Astrophysics Data System (ADS)
Sun, Y. F.; Swift, J.
1986-04-01
The D2-D1 phase transition in columnar liquid crystals of the HAT series [e.g., HAT11 (triphenelene hexa-n-dodecanoate)] is discussed within the framework of Landau theory. The order parameters which describe the transition are abstracted from a tensor density function, and are associated with two irreducible representations of the symmetry group of the high-temperature D2 phase. A mechanism for a first-order transition is then suggested in accordance with both theoretical considerations and the experimental result for the D2-D1 transition. Two possible arrangements of the herringbone structure of the D1 phase are obtained, each of which gives six orientational states in the low-temperature D1 phase.
Extreme Growth of Enstrophy on 2D Bounded Domains
NASA Astrophysics Data System (ADS)
Protas, Bartosz; Sliwiak, Adam
2016-11-01
We study the vortex states responsible for the largest instantaneous growth of enstrophy possible in viscous incompressible flow on 2D bounded domain. The goal is to compare these results with estimates obtained using mathematical analysis. This problem is closely related to analogous questions recently considered in the periodic setting on 1D, 2D and 3D domains. In addition to systematically characterizing the most extreme behavior, these problems are also closely related to the open question of the finite-time singularity formation in the 3D Navier-Stokes system. We demonstrate how such extreme vortex states can be found as solutions of constrained variational optimization problems which in the limit of small enstrophy reduce to eigenvalue problems. Computational results will be presented for circular and square domains emphasizing the effect of geometric singularities (corners of the domain) on the structure of the extreme vortex states. Supported by an NSERC (Canada) Discovery Grant.
Strength design with 2-d triaxial braid textile composites
Smith, L.V.; Swanson, S.R.
1994-12-31
Textile preforms are currently being considered as a possible means for reducing the cost of advanced fiber composites. This paper presents a methodology for strength design of carbon/epoxy 2-d braid fiber composites under general conditions of biaxial stress loading. A comprehensive investigation into the in-plane strength properties of 2-d braids has been carried out, using tubular specimens of AS4/1895 carbon fiber/epoxy made with the RTM process. The biaxial loadings involved both compression-compression and tension-tension biaxial tests. The results showed that failure under biaxial loading could be based on procedures similar to those developed for laminates, using critical strain values in the axial and braid direction fibers, but with degraded strength properties because of the undulating nature of -the fiber paths. A significant loss of strength was observed in the braid directions.
Band-structure engineering in conjugated 2D polymers.
Gutzler, Rico
2016-10-26
Conjugated polymers find widespread application in (opto)electronic devices, sensing, and as catalysts. Their common one-dimensional structure can be extended into the second dimension to create conjugated planar sheets of covalently linked molecules. Extending π-conjugation into the second dimension unlocks a new class of semiconductive polymers which as a consequence of their unique electronic properties can find usability in numerous applications. In this article the theoretical band structures of a set of conjugated 2D polymers are compared and information on the important characteristics band gap and valence/conduction band dispersion is extracted. The great variance in these characteristics within the investigated set suggests 2D polymers as exciting materials in which band-structure engineering can be used to tailor sheet-like organic materials with desired electronic properties.
Enhanced automated platform for 2D characterization of RFID communications
NASA Astrophysics Data System (ADS)
Vuza, Dan Tudor; Vlǎdescu, Marian
2016-12-01
The characterization of the quality of communication between an RFID reader and a transponder at all expected positions of the latter on the reader antenna is of primal importance for the evaluation of performance of an RFID system. Continuing the line of instruments developed for this purpose by the authors, the present work proposes an enhanced version of a previously introduced automated platform for 2D evaluation. By featuring higher performance in terms of mechanical speed, the new version allows to obtain 2D maps of communication with a higher resolution that would have been prohibitive in terms of test duration with the previous version. The list of measurement procedures that can be executed with the platform is now enlarged with additional ones, such as the determination of the variation of the magnetic coupling between transponder and antenna across the antenna surface and the utilization of transponder simulators for evaluation of the quality of communication.
Transition to chaos in an open unforced 2D flow
NASA Technical Reports Server (NTRS)
Pulliam, Thomas H.; Vastano, John A.
1993-01-01
The present numerical study of unsteady, low Reynolds number flow past a 2D airfoil attempts to ascertain the bifurcation sequence leading from simple periodic to complex aperiodic flow with rising Reynolds number, as well as to characterize the degree of chaos present in the aperiodic flow and assess the role of numerics in the modification and control of the observed bifurcation scenario. The ARC2D Navier-Stokes code is used in an unsteady time-accurate mode for most of these computations. The system undergoes a period-doubling bifurcation to chaos as the Reynolds number is increased from 800 to 1600; its chaotic attractors are characterized by estimates of the fractal dimension and partial Liapunov exponent spectra.
Hard and Soft Physics with 2D Materials
NASA Astrophysics Data System (ADS)
McEuen, Paul
With their remarkable structural, thermal, mechanical, optical, chemical, and electronic properties, 2D materials are truly special. For example, a graphene sheet can be made into a high-performance transistor, but it is also the ultimate realization of a thin mechanical sheet. Such sheets, first studied in detail by August Föppl over a hundred years ago, are notoriously complex, since they can bend, buckle, and crumple in a variety of ways. In this talk, I will discuss a number of experiments to probe these unusual materials, from the effects of ripples on the mechanical properties of a graphene sheet, to folding with atomically thin bimorphs, to the electronic properties of bilayer graphene solitons. Finally, I discuss how the Japanese paper art of kirigami (kiru = `to cut', kami = `paper') applied to 2D materials offers a route to mechanical metamaterials and the construction of nanoscale machines.
2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
Controlling avalanche criticality in 2D nano arrays
Zohar, Y. C.; Yochelis, S.; Dahmen, K. A.; Jung, G.; Paltiel, Y.
2013-01-01
Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments. PMID:23677142
FPCAS2D user's guide, version 1.0
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.
1994-01-01
The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.
Structural Complexity and Phonon Physics in 2D Arsenenes.
Carrete, Jesús; Gallego, Luis J; Mingo, Natalio
2017-03-15
In the quest for stable 2D arsenic phases, four different structures have been recently claimed to be stable. We show that, due to phonon contributions, the relative stability of those structures differs from previous reports and depends crucially on temperature. We also show that one of those four phases is in fact mechanically unstable. Furthermore, our results challenge the common assumption of an inverse correlation between structural complexity and thermal conductivity. Instead, a richer picture emerges from our results, showing how harmonic interactions, anharmonicity, and symmetries all play a role in modulating thermal conduction in arsenenes. More generally, our conclusions highlight how vibrational properties are an essential element to be carefully taken into account in theoretical searches for new 2D materials.
Controlling avalanche criticality in 2D nano arrays.
Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y
2013-01-01
Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.
Micro-structural Fluctuations in 2D Dusty Plasma Liquids
I Lin; Huang, Y.-H.; Teng, L.-W.
2007-07-13
We address structural fluctuations in a cold 2D dusty plasma liquid which is self-organized through the strong Coulomb coupling of the negatively charged micro-meter sized dust particles suspending in weakly ionized discharges. The 2D liquids consist of triangular type ordered domains surrounded by defect clusters, which can be reorganized through avalanche type hopping under the interplay of strong Coulomb coupling and thermal fluctuations. The spatio-temporal evolutions of the local bond-orientational order are directly tracked through digital optical microscopy. The power law scaling of the temporal persistence length of fluctuations is obtained for the cold liquid. The measurement of the conditional probability of the persistence lengths of the successive fluctuating cycles suggests certain types of the persistence length combinations are more preferred. The memory of persistence lasts a few fluctuating cycles.
2D FEM Heat Transfer & E&M Field Code
1992-04-02
TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.
Absolute state-selected total cross sections for the ion-molecule reactions O + (4S,2D,2P)+H2(D2)
NASA Astrophysics Data System (ADS)
Li, X.; Huang, Y.-L.; Flesch, G. D.; Ng, C. Y.
1997-01-01
Absolute total cross sections for the state-selected reactions of O+(4S,2D,2P)+H2 (D2) have been measured in the center-of-mass collision energy (Ec.m.) range of 0.02-12 eV. The cross sections for OH+ (OD+) from O+(2D)+H2 (D2) are slightly higher than those from O+(4S)+H2 (D2), whereas the OH+ (OD+) cross sections from O+ (2P)+H2 (D2) are ≈40% lower than those from O+(4S)+H2 (D2) and O+ (2D)+H2 (D2). At Ec.m.<0.5 eV, the total cross sections for OH+ (OD+) from O+ (4S)+H2 (D2) and O+(2D)+H2 (D2) are in accord with those predicted by the Langevin-Gioumousis-Stevenson model. Significantly higher cross sections are observed for H+ (D+) and H2+ (D2+) from O+(2D)+H2 (D2) and O+(2P)+H2 (D2), as compared to those from O+(4S)+H2 (D2). The exothermic nature of the O+(2D,2P)+H2 (D2) charge transfer collisions accounts for the high cross sections observed for H2+ (D2+). While the H+ (D+) ions observed in the O+(4S)+H2 (D2) reaction are identified with the H+ (D+)+O+H channel, the H+ (D+) ions from the reactions involving O+(2D) and O+(2P) are associated mostly with the H+ (D+)+OH (OD) channel, the formation of which obeys the spin-conservation rule. The comparison of the sum (σT) of cross sections for OH+ (OD+), H2+ (D2+), and H+ (D+) from O+(4S)+H2 (D2) to those from O+(2D)+H2 (D2) and O+(2P)+H2 (D2) shows that the σTs for O+(4S)+H2 (D2), O+(2D)+H2 (D2), and O+(2P)+H2 (D2) at Ec.m.<0.5 eV are comparable. At Ec.m.>0.5 eV, the σTs for O+(2P)+H2 (D2) are greater than those for O+(2D)+H2 (D2), which in turn are greater than those for O+(4S)+H2 (D2). This observation is attributed to the increase in the number of accessible product channels for reactions involving the excited O+(2D) and O+(2P) reactant ions.
Local Topological Order Inhibits Thermal Stability in 2D
NASA Astrophysics Data System (ADS)
Landon-Cardinal, Olivier; Poulin, David
2013-03-01
We study the robustness of quantum information stored in the degenerate ground space of a local, frustration-free Hamiltonian with commuting terms on a 2D spin lattice. On one hand, a macroscopic energy barrier separating the distinct ground states under local transformations would protect the information from thermal fluctuations. On the other hand, local topological order would shield the ground space from static perturbations. Here we demonstrate that local topological order implies a constant energy barrier, thus inhibiting thermal stability.
Synchronization of semiconductor laser arrays with 2D Bragg structures
NASA Astrophysics Data System (ADS)
Baryshev, V. R.; Ginzburg, N. S.
2016-08-01
A model of a planar semiconductor multi-channel laser is developed. In this model two-dimensional (2D) Bragg mirror structures are used for synchronizing radiation of multiple laser channels. Coupling of longitudinal and transverse waves can be mentioned as the distinguishing feature of these structures. Synchronization of 20 laser channels is demonstrated with a semi-classical approach based on Maxwell-Bloch equations.
Statistical analysis of quiet stance sway in 2-D.
Bakshi, Avijit; DiZio, Paul; Lackner, James R
2014-04-01
Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909-912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model's ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior-posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation.
Flow transitions in a 2D directional solidification model
NASA Technical Reports Server (NTRS)
Larroude, Philippe; Ouazzani, Jalil; Alexander, J. Iwan D.
1992-01-01
Flow transitions in a Two Dimensional (2D) model of crystal growth were examined using the Bridgman-Stockbarger me thod. Using a pseudo-spectral Chebyshev collocation method, the governing equations yield solutions which exhibit a symmetry breaking flow tansition and oscillatory behavior indicative of a Hopf bifurcation at higher values of Ra. The results are discussed from fluid dynamic viewpoint, and broader implications for process models are also addressed.
Vertical heterostructures based on graphene and other 2D materials
Antonova, I. V.
2016-01-15
Recent advances in the fabrication of vertical heterostructures based on graphene and other dielectric and semiconductor single-layer materials, including hexagonal boron nitride and transition-metal dichalcogenides, are reviewed. Significant progress in this field is discussed together with the great prospects for the development of vertical heterostructures for various applications, which are associated, first of all, with reconsideration of the physical principles of the design and operation of device structures based on graphene combined with other 2D materials.
Fully automated 2D-3D registration and verification.
Varnavas, Andreas; Carrell, Tom; Penney, Graeme
2015-12-01
Clinical application of 2D-3D registration technology often requires a significant amount of human interaction during initialisation and result verification. This is one of the main barriers to more widespread clinical use of this technology. We propose novel techniques for automated initial pose estimation of the 3D data and verification of the registration result, and show how these techniques can be combined to enable fully automated 2D-3D registration, particularly in the case of a vertebra based system. The initialisation method is based on preoperative computation of 2D templates over a wide range of 3D poses. These templates are used to apply the Generalised Hough Transform to the intraoperative 2D image and the sought 3D pose is selected with the combined use of the generated accumulator arrays and a Gradient Difference Similarity Measure. On the verification side, two algorithms are proposed: one using normalised features based on the similarity value and the other based on the pose agreement between multiple vertebra based registrations. The proposed methods are employed here for CT to fluoroscopy registration and are trained and tested with data from 31 clinical procedures with 417 low dose, i.e. low quality, high noise interventional fluoroscopy images. When similarity value based verification is used, the fully automated system achieves a 95.73% correct registration rate, whereas a no registration result is produced for the remaining 4.27% of cases (i.e. incorrect registration rate is 0%). The system also automatically detects input images outside its operating range.
Report of the 1988 2-D Intercomparison Workshop, chapter 3
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar
1989-01-01
Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.
2D Hybrid Nanostructured Dirac Materials for Broadband Transparent Electrodes.
Guo, Yunfan; Lin, Li; Zhao, Shuli; Deng, Bing; Chen, Hongliang; Ma, Bangjun; Wu, Jinxiong; Yin, Jianbo; Liu, Zhongfan; Peng, Hailin
2015-08-05
Broadband transparent electrodes based on 2D hybrid nanostructured Dirac materials between Bi2 Se3 and graphene are synthesized using a chemical vapor deposition (CVD) method. Bi2 Se3 nanoplates are preferentially grown along graphene grain boundaries as "smart" conductive patches to bridge the graphene boundary. These hybrid films increase by one- to threefold in conductivity while remaining highly transparent over broadband wavelength. They also display outstanding chemical stability and mechanical flexibility.
Parallel-pipeline 2-D DCT/IDCT processor chip
NASA Astrophysics Data System (ADS)
Ruiz, G. A.; Michell, J. A.; Buron, A.
2005-06-01
This paper describes the architecture of an 8x8 2-D DCT/IDCT processor with high throughput and a cost-effective architecture. The 2D DCT/IDCT is calculated using the separability property, so that its architecture is made up of two 1-D processors and a transpose buffer (TB) as intermediate memory. This transpose buffer presents a regular structure based on D-type flip-flops with a double serial input/output data-flow very adequate for pipeline architectures. The processor has been designed with parallel and pipeline architecture to attain high throughput, reduced hardware and maximum efficiency in all arithmetic elements. This architecture allows that the processing elements and arithmetic units work in parallel at half the frequency of the data input rate, except for normalization of transform which it is done in a multiplier operating at maximum frequency. Moreover, it has been verified that the precision analysis of the proposed processor meets the demands of IEEE Std. 1180-1990 used in video codecs ITU-T H.261 and ITU-T H.263. This processor has been conceived using a standard cell design methodology and manufactured in a 0.35-μm CMOS CSD 3M/2P 3.3V process. It has an area of 6.25 mm2 (the core is 3mm2) and contains a total of 11.7k gates, of which 5.8k gates are flip-flops. A data input rate frequency of 300MHz has been established with a latency of 172 cycles for the 2-D DCT and 178 cycles for the 2-D IDCT. The computing time of a block is close to 580ns. Its performances in computing speed as well as hardware complexity indicate that the proposed design is suitable for HDTV applications.
FASTWO - A 2-D interactive algebraic grid generator
NASA Technical Reports Server (NTRS)
Luh, Raymond Ching-Chung; Lombard, C. K.
1988-01-01
This paper presents a very simple and effective computational procedure, FASTWO, for generating patched composite finite difference grids in 2-D for any geometry. Major components of the interactive graphics based method that is closely akin to and borrows many tools from transfinite interpolation are highlighted. Several grids produced by FASTWO are shown to illustrate its powerful capability. Comments about extending the methodology to 3-D are also given.
Energy level transitions of gas in a 2D nanopore
Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.
2015-10-27
An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.
2D Lattices of Ferromagnetic Nanoparticles as Supermagnetics
1999-06-18
Supermagnetics DISTRIBUTION: Approved for public release, distribution unlimited Availability: Hard copy only. This paper is part of the following report: TITLE...Technology" OAN.01 i St Petersburg, Russia, June 14-18, 1999 © 1999 loffe Institute 2D lattices of ferromagnetic nanoparticles as supermagnetics A. A...temperature the system became ordered due to the dipole interaction of particles. Such a state of the system was defined as supermagnetic [ ]. The critical
2D and 3D Traveling Salesman Problem
ERIC Educational Resources Information Center
Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt
2011-01-01
When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…
Numerical 2D-modeling of multiroll leveling
NASA Astrophysics Data System (ADS)
Mathieu, N.; Potier-Ferry, M.; Zahrouni, H.
2016-10-01
Multiroll leveling is a forming process used in the metals industries (aluminum, steel, …) in order to correct flatness defects and minimize residual stresses in strips thanks to alternating bending. This work proposes a Finite Element 2D model to simulate the metal sheet conveying through the machine. Obtained results (plastic strain and residual stress distributions through thickness) are analysed. Strip deformation, after elastic springback and potential buckling, is also predicted (residual curvatures).
2-D Signal Generation Using State-Space Formulation.
1985-12-01
published that have established nonoptical .~ -~ Iimage processing as a viable area of research. A large portion of this research emphasizes the linear...research and the study of time-discrete linear systems. This thesis develops the discrete model of Roesser [Ref. 5] for linear image processing which... THESIS 2-D SIGNAL GENERATION USING STATE-SPACE FORMULATION - • by (.) Evangelos Theofilou December 1985 • Thesis Advisor: Sydney R. Parker Approved
Geometric properties of quasiperiodic orbits of 2D Hamiltonian systems
NASA Astrophysics Data System (ADS)
Adrover, A.; Giona, M.
1999-08-01
By enforcing the isomorphism between the group SL(2, R ) and linear fractional transforms, this letter shows that, for quasi-periodic orbits of 2D area-preserving maps possessing regions of chaotic behavior, the vector tangent to the quasiperiodic orbit can be obtained from the dynamics of the associated linear fractional transforms (obtained from the differential of the map), which is Cesaro convergent. Several implications of this geometric result are addressed.
[3D display of sequential 2D medical images].
Lu, Yisong; Chen, Yazhu
2003-12-01
A detailed review is given in this paper on various current 3D display methods for sequential 2D medical images and the new development in 3D medical image display. True 3D display, surface rendering, volume rendering, 3D texture mapping and distributed collaborative rendering are discussed in depth. For two kinds of medical applications: Real-time navigation system and high-fidelity diagnosis in computer aided surgery, different 3D display methods are presented.
NASA High-Speed 2D Photogrammetric Measurement System
NASA Technical Reports Server (NTRS)
Dismond, Harriett R.
2012-01-01
The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.
2D:4D Ratio and its Implications in Medicine
Jeevanandam, Saravanakumar
2016-01-01
Digit ratios, especially 2D:4D ratio, a potential proxy marker for prenatal androgen exposure shows sexual dimorphism. Existing literature and recent research show accumulating evidence on 2D:4D ratio showing correlations with various phenotypic traits in humans. Ratio of 2D:4D is found to correlate negatively to testosterone and positively to oestrogen in the foetus. Interestingly, it is constant since birth and not influenced by the adult hormone levels. Usually, males have lower ratios when compared to females. Prenatal androgen exposure and therefore, digit ratios have been reported to be associated with numerical competencies, spatial skills, handedness, cognitive abilities, academic performance, sperm counts, personalities and prevalence of obesity, migraine, eating disorders, depression, myopia, autism etc. The authors have attempted to write a brief account on the digit ratios and the dimorphism observed in various physiological, psychological and behavioural traits. Also, the authors have discussed the relevant molecular basics and the methods of measurement of digit ratios. PMID:28208851
2D optical beam splitter using diffractive optical elements (DOE)
NASA Astrophysics Data System (ADS)
Wen, Fung J.; Chung, Po S.
2006-09-01
A novel approach for optical beam distribution into a 2-dimensional (2-D) packaged fiber arrays using 2-D Dammann gratings is investigated. This paper focuses on the design and fabrication of the diffractive optical element (DOE) and investigates the coupling efficiencies of the beamlets into a packaged V-grooved 2x2 fibre array. We report for the first time experimental results of a 2-D optical signal distribution into a packaged 2x2 fibre array using Dammann grating. This grating may be applicable to the FTTH network as it can support sufficient channels with good output uniformity together with low polarization dependent loss (PDL) and acceptable insertion loss. Using an appropriate optimization algorithm (the steepest descent algorithm in this case), the optimum profile for the gratings can be calculated. The gratings are then fabricated on ITO glass using electron-beam lithography. The overall performance of the design shows an output uniformity of around 0.14 dB and an insertion loss of about 12.63 dB, including the DOE, focusing lens and the packaged fiber array.
Shear viscosity measurements in a 2D Yukawa liquid
NASA Astrophysics Data System (ADS)
Nosenko, Volodymyr
2005-03-01
Shear viscosity was measured for a 2D strongly-coupled Yukawa liquid. First, we formed a dilute monolayer suspension of microspheres in a partially-ionized rarefied gas, i.e., a dusty plasma. In the absence of manipulation, the suspension forms a 2D triangular lattice. We used a new in-situ method of applying a shear stress using the scattering forces applied by counter-propagating laser beams. The lattice melted and a shear flow formed. Using digital video microscopy for direct imaging and particle tracking, the microscopic dynamics of the shear flow are observed. Averaging the velocities of individual microspheres, a velocity flow profile was calculated. Using the Navier-Stokes equation with an additional frictional term to account for gas drag, we fit the velocity profile. The fit yielded the value of the shear viscosity. The kinematic viscosity of our particle suspension is of order 1 mm^2s-1, which is comparable to that for liquid water. We believe this is the first report of a rheological measurement in a 2D dusty plasma. This talk is based on V. Nosenko and J. Goree, PRL 93, 155004 (2004).
Hybrid 3D-2D printing for bone scaffolds fabrication
NASA Astrophysics Data System (ADS)
Seleznev, V. A.; Prinz, V. Ya
2017-02-01
It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.
Volumetric elasticity imaging with a 2-D CMUT array.
Fisher, Ted G; Hall, Timothy J; Panda, Satchi; Richards, Michael S; Barbone, Paul E; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve
2010-06-01
This article reports the use of a two-dimensional (2-D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio-frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare three-dimensional (3-D) elasticity imaging methods. Typical 2-D motion tracking for elasticity image formation was compared with three different methods of 3-D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2-D search), planar search, combination of multiple planes and plane independent guided search. The cross-correlation between the predeformation and motion-compensated postdeformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3-D modulus reconstruction, high quality 3-D displacement estimates yielded accurate and low noise modulus reconstruction.
Building 3D scenes from 2D image sequences
NASA Astrophysics Data System (ADS)
Cristea, Paul D.
2006-05-01
Sequences of 2D images, taken by a single moving video receptor, can be fused to generate a 3D representation. This dynamic stereopsis exists in birds and reptiles, whereas the static binocular stereopsis is common in mammals, including humans. Most multimedia computer vision systems for stereo image capture, transmission, processing, storage and retrieval are based on the concept of binocularity. As a consequence, their main goal is to acquire, conserve and enhance pairs of 2D images able to generate a 3D visual perception in a human observer. Stereo vision in birds is based on the fusion of images captured by each eye, with previously acquired and memorized images from the same eye. The process goes on simultaneously and conjointly for both eyes and generates an almost complete all-around visual field. As a consequence, the baseline distance is no longer fixed, as in the case of binocular 3D view, but adjustable in accordance with the distance to the object of main interest, allowing a controllable depth effect. Moreover, the synthesized 3D scene can have a better resolution than each individual 2D image in the sequence. Compression of 3D scenes can be achieved, and stereo transmissions with lower bandwidth requirements can be developed.
A novel point cloud registration using 2D image features
NASA Astrophysics Data System (ADS)
Lin, Chien-Chou; Tai, Yen-Chou; Lee, Jhong-Jin; Chen, Yong-Sheng
2017-01-01
Since a 3D scanner only captures a scene of a 3D object at a time, a 3D registration for multi-scene is the key issue of 3D modeling. This paper presents a novel and an efficient 3D registration method based on 2D local feature matching. The proposed method transforms the point clouds into 2D bearing angle images and then uses the 2D feature based matching method, SURF, to find matching pixel pairs between two images. The corresponding points of 3D point clouds can be obtained by those pixel pairs. Since the corresponding pairs are sorted by their distance between matching features, only the top half of the corresponding pairs are used to find the optimal rotation matrix by the least squares approximation. In this paper, the optimal rotation matrix is derived by orthogonal Procrustes method (SVD-based approach). Therefore, the 3D model of an object can be reconstructed by aligning those point clouds with the optimal transformation matrix. Experimental results show that the accuracy of the proposed method is close to the ICP, but the computation cost is reduced significantly. The performance is six times faster than the generalized-ICP algorithm. Furthermore, while the ICP requires high alignment similarity of two scenes, the proposed method is robust to a larger difference of viewing angle.
Resolving 2D Amorphous Materials with Scanning Probe Microscopy
NASA Astrophysics Data System (ADS)
Burson, Kristen M.; Buechner, Christin; Lewandowski, Adrian; Heyde, Markus; Freund, Hans-Joachim
Novel two-dimensional (2D) materials have garnered significant scientific interest due to their potential technological applications. Alongside the emphasis on crystalline materials, such as graphene and hexagonal BN, a new class of 2D amorphous materials must be pursued. For amorphous materials, a detailed understanding of the complex structure is necessary. Here we present a structural study of 2D bilayer silica on Ru(0001), an insulating material which is weakly coupled to the substrate. Atomic structure has been determined with a dual mode atomic force microscopy (AFM) and scanning tunneling microscopy (STM) sensor in ultra-high vacuum (UHV) at low temperatures, revealing a network of different ring sizes. Liquid AFM measurements with sub-nanometer resolution bridge the gap between clean UHV conditions and the environments that many material applications demand. Samples are grown and characterized in vacuum and subsequently transferred to the liquid AFM. Notably, the key structural features observed, namely nanoscale ring networks and larger holes to the substrate, show strong quantitative agreement between the liquid and UHV microscopy measurements. This provides direct evidence for the structural stability of these silica films for nanoelectronics and other applications. KMB acknowledges support from the Alexander von Humboldt Foundation.
F-theory and 2d (0, 2) theories
NASA Astrophysics Data System (ADS)
Schäfer-Nameki, Sakura; Weigand, Timo
2016-05-01
F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N = (0 , 2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0 , 2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0 , 2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0 , 2) GLSM is realized via different T-branes or gluing data in F-theory.
An Intercomparison of 2-D Models Within a Common Framework
NASA Technical Reports Server (NTRS)
Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Jackman, Charles H.; Fleming, Eric L.; Considine, David B.; Kinnison, Douglas E.; Connell, Peter S.; Rotman, Douglas A.; Bhartia, P. K. (Technical Monitor)
2002-01-01
A model intercomparison among the Atmospheric and Environmental Research (AER) 2-D model, the Goddard Space Flight Center (GSFC) 2-D model, and the Lawrence Livermore National Laboratory 2-D model allows us to separate differences due to model transport from those due to the model's chemical formulation. This is accomplished by constructing two hybrid models incorporating the transport parameters of the GSFC and LLNL models within the AER model framework. By comparing the results from the native models (AER and e.g. GSFC) with those from the hybrid model (e.g. AER chemistry with GSFC transport), differences due to chemistry and transport can be identified. For the analysis, we examined an inert tracer whose emission pattern is based on emission from a High Speed Civil Transport (HSCT) fleet; distributions of trace species in the 2015 atmosphere; and the response of stratospheric ozone to an HSCT fleet. Differences in NO(y) in the upper stratosphere are found between models with identical transport, implying different model representations of atmospheric chemical processes. The response of O3 concentration to HSCT aircraft emissions differs in the models from both transport-dominated differences in the HSCT-induced perturbations of H2O and NO(y) as well as from differences in the model represent at ions of O3 chemical processes. The model formulations of cold polar processes are found to be the most significant factor in creating large differences in the calculated ozone perturbations
Volumetric Elasticity Imaging with a 2D CMUT Array
Fisher, Ted G.; Hall, Timothy J.; Panda, Satchi; Richards, Michael S.; Barbone, Paul E.; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve
2010-01-01
This paper reports the use of a two-dimensional (2D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare 3D elasticity imaging methods. Typical 2D motion tracking for elasticity image formation was compared to three different methods of 3D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2D search), planar search, combination of multiple planes, and plane independent guided search. The cross correlation between the pre-deformation and motion-compensated post-deformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3D modulus reconstruction, high quality 3D displacement estimates yielded accurate and low noise modulus reconstruction. PMID:20510188
Murine cytomegalovirus regulation of NKG2D ligands.
Lenac, Tihana; Arapović, Jurica; Traven, Luka; Krmpotić, Astrid; Jonjić, Stipan
2008-06-01
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes morbidity risk in immunologically suppressed and immunodeficient patients including congenital infections. Approaches to curb the consequences of HCMV infections are restricted by a lack of complete understanding of viral pathogenesis. The infection of mice with murine cytomegalovirus (MCMV) as a model of HCMV infection has been particularly useful in elucidating the role of innate and adaptive immune response mechanisms. A large number of cytomegalovirus genes modulate the innate and the adaptive host immune response. The products of several MCMV genes are involved in subverting the natural killer (NK) cell response by down-modulating cellular ligands for the NKG2D receptor expressed on NK cells and CD8(+) T cells. Mutant viruses lacking these immunoevasion genes are attenuated with respect to virus growth in vivo. Given the importance of the NKG2D receptor in controlling both NK- and T cell-mediated immunity, it is of tremendous importance to understand the molecular mechanisms and consequences of viral regulation of the NKG2D ligands.
Design Application Translates 2-D Graphics to 3-D Surfaces
NASA Technical Reports Server (NTRS)
2007-01-01
Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.
2D depiction of nonbonding interactions for protein complexes.
Zhou, Peng; Tian, Feifei; Shang, Zhicai
2009-04-30
A program called the 2D-GraLab is described for automatically generating schematic representation of nonbonding interactions across the protein binding interfaces. The input file of this program takes the standard PDB format, and the outputs are two-dimensional PostScript diagrams giving intuitive and informative description of the protein-protein interactions and their energetics properties, including hydrogen bond, salt bridge, van der Waals interaction, hydrophobic contact, pi-pi stacking, disulfide bond, desolvation effect, and loss of conformational entropy. To ensure these interaction information are determined accurately and reliably, methods and standalone programs employed in the 2D-GraLab are all widely used in the chemistry and biology community. The generated diagrams allow intuitive visualization of the interaction mode and binding specificity between two subunits in protein complexes, and by providing information on nonbonding energetics and geometric characteristics, the program offers the possibility of comparing different protein binding profiles in a detailed, objective, and quantitative manner. We expect that this 2D molecular graphics tool could be useful for the experimentalists and theoreticians interested in protein structure and protein engineering.
Broadband THz Spectroscopy of 2D Nanoscale Materials
NASA Astrophysics Data System (ADS)
Chen, Lu; Tripathi, Shivendra; Huang, Mengchen; Hsu, Jen-Feng; D'Urso, Brian; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy
Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides (TMDC) have attracted intense research interest in the past decade. Their unique electronic and optical properties offer the promise of novel optoelectronic applications in the terahertz regime. Recently, generation and detection of broadband terahertz (10 THz bandwidth) emission from 10-nm-scale LaAlO3/SrTiO3 nanostructures created by conductive atomic force microscope (c-AFM) lithography has been demonstrated . This unprecedented control of THz emission at 10 nm length scales creates a pathway toward hybrid THz functionality in 2D-material/LaAlO3/SrTiO3 heterostructures. Here we report initial efforts in THz spectroscopy of 2D nanoscale materials with resolution comparable to the dimensions of the nanowire (10 nm). Systems under investigation include graphene, single-layer molybdenum disulfide (MoS2), and tungsten diselenide (WSe2) nanoflakes. 1. Y. Ma, et al., Nano Lett. 13, 2884 (2013). We gratefully acknowledge financial support from the following agencies and grants: AFOSR (FA9550-12-1-0268 (JL, PRI), FA9550-12-1-0342 (CBE)), ONR (N00014-13-1-0806 (JL, CBE), N00014-15-1-2847 (JL)), NSF DMR-1124131 (JL, CBE) and DMR-1234096 (CBE).
Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)
2016-10-24
Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant
Koh, Kwi Hye; Pan, Xian; Shen, Hong-Wu; Arnold, Samuel L M; Yu, Ai-Ming; Gonzalez, Frank J; Isoherranen, Nina; Jeong, Hyunyoung
2014-02-07
Substrates of a major drug-metabolizing enzyme CYP2D6 display increased elimination during pregnancy, but the underlying mechanisms are unknown in part due to a lack of experimental models. Here, we introduce CYP2D6-humanized (Tg-CYP2D6) mice as an animal model where hepatic CYP2D6 expression is increased during pregnancy. In the mouse livers, expression of a known positive regulator of CYP2D6, hepatocyte nuclear factor 4α (HNF4α), did not change during pregnancy. However, HNF4α recruitment to CYP2D6 promoter increased at term pregnancy, accompanied by repressed expression of small heterodimer partner (SHP). In HepG2 cells, SHP repressed HNF4α transactivation of CYP2D6 promoter. In transgenic (Tg)-CYP2D6 mice, SHP knockdown led to a significant increase in CYP2D6 expression. Retinoic acid, an endogenous compound that induces SHP, exhibited decreased hepatic levels during pregnancy in Tg-CYP2D6 mice. Administration of all-trans-retinoic acid led to a significant decrease in the expression and activity of hepatic CYP2D6 in Tg-CYP2D6 mice. This study provides key insights into mechanisms underlying altered CYP2D6-mediated drug metabolism during pregnancy, laying a foundation for improved drug therapy in pregnant women.
Garaud, Pascale; Brummell, Nicholas
2015-12-10
Fingering convection (otherwise known as thermohaline convection) is an instability that occurs in stellar radiative interiors in the presence of unstable compositional gradients. Numerical simulations have been used in order to estimate the efficiency of mixing induced by this instability. However, fully three-dimensional (3D) computations in the parameter regime appropriate for stellar astrophysics (i.e., low Prandtl number) are prohibitively expensive. This raises the question of whether two-dimensional (2D) simulations could be used instead to achieve the same goals. In this work, we address this issue by comparing the outcome of 2D and 3D simulations of fingering convection at low Prandtl number. We find that 2D simulations are never appropriate. However, we also find that the required 3D computational domain does not have to be very wide: the third dimension only needs to contain a minimum of two wavelengths of the fastest-growing linearly unstable mode to capture the essentially 3D dynamics of small-scale fingering. Narrow domains, however, should still be used with caution since they could limit the subsequent development of any large-scale dynamics typically associated with fingering convection.
Prinz, V Ya; Seleznev, Vladimir
2016-12-13
It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.
Widom, Julia R; Johnson, Neil P; von Hippel, Peter H; Marcus, Andrew H
2013-02-01
We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analog of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS) - a fluorescence-detected variation of 2D electronic spectroscopy - to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point-dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 Å ± 0.5 Å, twist angle θ12 = 5° ± 5°), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV-2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein-nucleic acid complexes.
Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin
2005-04-01
This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney.
2D Seismic Reflection Data across Central Illinois
Smith, Valerie; Leetaru, Hannes
2014-09-30
In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made
Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy
NASA Astrophysics Data System (ADS)
Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander
2014-07-01
The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin "wrapping", i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.
Digit ratio (2D:4D), salivary testosterone, and handedness.
Beaton, Alan A; Rudling, Nick; Kissling, Christian; Taurines, Regine; Thome, Johannes
2011-03-01
The length of the index finger relative to that of the ring finger, the 2D:4D ratio, has been taken to be a marker of the amount of testosterone (T) that was present in the foetal environment (Manning, Scutt, Wilson, & Lewis-Jones, 1998). It has also been suggested (Geschwind & Galaburda, 1987) that elevated levels of foetal T are associated with left-handedness and that adult levels of circulating T might relate to foetal levels (Jamison, Meier, & Campbell, 1993). We used multiple regression analyses to investigate whether there is any relationship between either left or right hand 2D:4D ratio and handedness. We also examined whether adult levels of salivary T (or cortisol, used as a control hormone) predict digit ratio and/or handedness. Although the 2D:4D ratio of neither the left nor the right hand was related to handedness, the difference between the digit ratios of the right and left hands, D(R-L), was a significant predictor of handedness and of the performance difference between the hands on a peg-moving task, supporting previous findings (Manning & Peters, 2009; Manning et al., 1998; Manning, Trivers, Thornhill, & Singh, 2000; Stoyanov, Marinov, & Pashalieva, 2009). Adult circulating T levels did not predict the digit ratio of the left or right hand; nor was there a significant relationship between concentrations of salivary T (or cortisol) and either hand preference or asymmetry in manual skill. We suggest that the association between D(R-L) and hand preference arises because D(R-L) is a correlate of sensitivity to T in the developing foetus.
Quantitation of protein in samples prepared for 2-D electrophoresis.
Berkelman, Tom
2008-01-01
The concentration of protein in a sample prepared for two dimensional (2-D) electrophoretic analysis is usually determined by protein assay. Reasons for this include the following. (1) Protein quantitation ensures that the amount of protein to be separated is appropriate for the gel size and visualization method. (2) Protein quantitation facilitates comparison among similar samples, as image-based analysis is simplified when equivalent quantities of proteins have been loaded on the gels to be compared. (3) Quantitation is necessary in cases where the protein sample is labeled with dye before separation (1,2). The labeling chemistry is affected by the dye to protein ratio so it is essential to know the protein concentration before setting up the labeling reaction.A primary consideration with quantitating protein in samples prepared for 2-D electrophoresis is interference by nonprotein substances that may be present in the sample. These samples generally contain chaotropic solubilizing agents, detergents, reductants, buffers or carrier ampholytes, all of which potentially interfere with protein quantitation. The most commonly used protein assays in proteomics research are colorimetric assays in which the presence of protein causes a color change that can be measured spectrophotometrically (3). All protein assays utilize standards, a dilution series of a known concentration of a known protein, to create a standard curve. Two methods will be considered that circumvent some of the problems associated with interfering substances and are well suited for samples prepared for 2-D electrophoresis. The first method (4.1.1) relies on a color change that occurs upon binding of a dye to protein and the second (4.1.2) relies on binding and reduction of cupric ion (Cu2+) ion to cuprous ion (Cu+) by proteins.
Long-lived magnetoexcitons in 2D-fermion system
NASA Astrophysics Data System (ADS)
Kulik, L. V.; Zhuravlev, A. S.; Gorbunov, A. V.; Timofeev, V. B.; Kukushkin, I. V.
2017-01-01
The paper addresses the experimental technique that, when applied to a 2D-electron system in the integer quantum Hall regime with filling factor ν = 2 (the Hall insulating state), allows resonant excitation of magnetoexcitons, their detection, control of an ensemble of long-lived triplet excitons and investigation of their radiationless decay related to exciton spin relaxation into the ground state. The technique proposed enables independent control of photoexcited electrons and Fermi-holes using photoinduced resonance reflection spectra as well as estimate with a reasonable degree of accuracy the resulting density of photoinduced electron-hole pairs bound into magnetoexcitons. The mere existence of triplet excitons was directly established by inelastic light scattering spectra which were analyzed to determine the value of singlet-triplet exciton splitting. It was found that the lifetimes of triplet excitons conditioned by electron spin relaxation in highly perfect GaAs/AlGaAs heterostructures with highly mobile 2D electrons are extremely long exceeding 100 μs at T < 1 K. The paper presents a qualitative explanation of the long-spin relaxation lifetimes which are unprecedented for translation-invariant 2D systems. This enabled us to create sufficiently high concentrations of triplet magnetoexcitons, electrically neutral excitations following Bose-Einstein statistics, in a Fermi electron system and investigate their collective properties. At sufficiently high densities of triplet magnetoexcitons and low temperatures, T < 1 K, the degenerate magnetofermionic system exhibits condensation of the triplet magnetoexcitons into a qualitatively new collective state with unusual properties which occurs in the space of generalized moments (magnetic translation vectors). The occurrence of a condensed phase is accompanied with a significant decrease in the viscosity of the photoexcited system, which is responsible for electron spin transport at macroscopic distances, as well
2D to 3D conversion implemented in different hardware
NASA Astrophysics Data System (ADS)
Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli
2015-02-01
Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.
Numerical modelling of spallation in 2D hydrodynamics codes
NASA Astrophysics Data System (ADS)
Maw, J. R.; Giles, A. R.
1996-05-01
A model for spallation based on the void growth model of Johnson has been implemented in 2D Lagrangian and Eulerian hydrocodes. The model has been extended to treat complete separation of material when voids coalesce and to describe the effects of elevated temperatures and melting. The capabilities of the model are illustrated by comparison with data from explosively generated spall experiments. Particular emphasis is placed on the prediction of multiple spall effects in weak, low melting point, materials such as lead. The correlation between the model predictions and observations on the strain rate dependence of spall strength is discussed.
Beam-Plasma Instabilities in a 2D Yukawa Lattice
Kyrkos, S.; Kalman, G. J.; Rosenberg, M.
2009-06-05
We consider a 2D Yukawa lattice of grains, with a beam of other charged grains moving in the lattice plane. In contrast to Vlasov plasmas, where the electrostatic instability excited by the beam is only longitudinal, here both longitudinal and transverse instabilities of the lattice phonons can develop. We determine and compare the transverse and longitudinal growth rates. The growth rate spectrum in wave number space exhibits remarkable gaps where no instability can develop. Depending on the system parameters, the transverse instability can be selectively excited.
Transport Experiments on 2D Correlated Electron Physics in Semiconductors
Tsui, Daniel
2014-03-24
This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.
Quantum Oscillations in an Interfacial 2D Electron Gas.
Zhang, Bingop; Lu, Ping; Liu, Henan; Lin, Jiao; Ye, Zhenyu; Jaime, Marcelo; Balakirev, Fedor F.; Yuan, Huiqiu; Wu, Huizhen; Pan, Wei; Zhang, Yong
2016-01-01
Recently, it has been predicted that topological crystalline insulators (TCIs) may exist in SnTe and Pb_{1-x}Sn_{x}Te thin films [1]. To date, most studies on TCIs were carried out either in bulk crystals or thin films, and no research activity has been explored in heterostructures. We present here the results on electronic transport properties of the 2D electron gas (2DEG) realized at the interfaces of PbTe/ CdTe (111) heterostructures. Evidence of topological state in this interfacial 2DEG was observed.
2D Magneto-Optical Trapping of Diatomic Molecules
NASA Astrophysics Data System (ADS)
Hummon, Matthew T.; Yeo, Mark; Stuhl, Benjamin K.; Collopy, Alejandra L.; Xia, Yong; Ye, Jun
2013-04-01
We demonstrate one- and two-dimensional transverse laser cooling and magneto-optical trapping of the polar molecule yttrium (II) oxide (YO). In a 1D magneto-optical trap (MOT), we characterize the magneto-optical trapping force and decrease the transverse temperature by an order of magnitude, from 25 to 2 mK, limited by interaction time. In a 2D MOT, we enhance the intensity of the YO beam and reduce the transverse temperature in both transverse directions. The approach demonstrated here can be applied to many molecular species and can also be extended to 3D.
Black liquor gasification phase 2D final report
Kohl, A.L.; Stewart, A.E.
1988-06-01
This report covers work conducted by Rockwell International under Amendment 5 to Subcontract STR/DOE-12 of Cooperative Agreement DE-AC-05-80CS40341 between St. Regis Corporation (now Champion International) and the Department of Energy (DOE). The work has been designated Phase 2D of the overall program to differentiate it from prior work under the same subcontract. The overall program is aimed at demonstrating the feasibility of and providing design data for the Rockwell process for gasifying Kraft black liquor. In this process, concentrated black liquor is converted into low-Btu fuel gas and reduced melt by reaction with air in a specially designed gasification reactor.
2D/3D Synthetic Vision Navigation Display
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, jason L.
2008-01-01
Flight-deck display software was designed and developed at NASA Langley Research Center to provide two-dimensional (2D) and three-dimensional (3D) terrain, obstacle, and flight-path perspectives on a single navigation display. The objective was to optimize the presentation of synthetic vision (SV) system technology that permits pilots to view multiple perspectives of flight-deck display symbology and 3D terrain information. Research was conducted to evaluate the efficacy of the concept. The concept has numerous unique implementation features that would permit enhanced operational concepts and efficiencies in both current and future aircraft.
Experimental validation of 2-D generalized geometric super resolved approach
NASA Astrophysics Data System (ADS)
Borkowski, Amikam; Zalevsky, Zeev; Cohen, Nadav; Hadas, Zadok; Marom, Emanuel; Javidi, Bahram
2014-01-01
In this paper, we generalize the method of using a 2-D moving binary random mask to overcome the geometrical resolution limitation of an imaging sensor. The spatial blurring is caused by the size of the imaging sensor pixels which yield insufficient spatial sampling. The mask is placed in an intermediate image plane and can be shifted in any direction while keeping the sensor as well as all other optical components fixed. Out of the set of images that are captured and registered, a high resolution image can be composed. In addition, this proposed approach reduces the amount of required computations and it has an improved robustness to spatial noise.
NGMIX: Gaussian mixture models for 2D images
NASA Astrophysics Data System (ADS)
Sheldon, Erin
2015-08-01
NGMIX implements Gaussian mixture models for 2D images. Both the PSF profile and the galaxy are modeled using mixtures of Gaussians. Convolutions are thus performed analytically, resulting in fast model generation as compared to methods that perform the convolution in Fourier space. For the galaxy model, NGMIX supports exponential disks and de Vaucouleurs and Sérsic profiles; these are implemented approximately as a sum of Gaussians using the fits from Hogg & Lang (2013). Additionally, any number of Gaussians can be fit, either completely free or constrained to be cocentric and co-elliptical.
Ultrathin 2D Metal-Organic Framework Nanosheets.
Zhao, Meiting; Wang, Yixian; Ma, Qinglang; Huang, Ying; Zhang, Xiao; Ping, Jianfeng; Zhang, Zhicheng; Lu, Qipeng; Yu, Yifu; Xu, Huan; Zhao, Yanli; Zhang, Hua
2015-12-02
A facile surfactant-assisted bottom-up synthetic method to prepare a series of freestanding ultrathin 2D M-TCPP (M = Zn, Cu, Cd or Co, TCPP = tetrakis(4-carboxyphenyl)porphyrin) nanosheets with a thickness of sub-10 nm is developed. As a proof-of-concept application, some of them are successfully used as new platforms for DNA detection. The Cu-TCPP nanosheet-based sensor shows excellent fluorescent sensing performance and is used for the simultaneous detection of multiple DNA targets.
2D photonic crystal and its angular reflective azimuthal spectrum
NASA Astrophysics Data System (ADS)
Senderakova, Dagmar; Drzik, Milan; Tomekova, Juliana
2016-12-01
Contemporary, attention is paid to photonic crystals, which can strongly modify light propagation through them and enable a controllable light manipulation. The contribution is focused on a sub-wavelength 2D structure formed by Al2O3 layer on silicon substrate, patterned with periodic hexagonal lattice of deep air holes. Using various laser sources of light at single wavelength, azimuthal angle dependence of the mirror-like reflected light intensity was recorded photo-electrically. The results obtained can be used to sample the band-structure of leaky modes of the photonic crystal more reliably and help us to map the photonic dispersion diagram.
Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.
2009-01-01
VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.
Fracture surfaces of heterogeneous materials: A 2D solvable model
NASA Astrophysics Data System (ADS)
Katzav, E.; Adda-Bedia, M.; Derrida, B.
2007-05-01
Using an elastostatic description of crack growth based on the Griffith criterion and the principle of local symmetry, we present a stochastic model describing the propagation of a crack tip in a 2D heterogeneous brittle material. The model ensures the stability of straight cracks and allows for the study of the roughening of fracture surfaces. When neglecting the effect of the nonsingular stress, the problem becomes exactly solvable and yields analytic predictions for the power spectrum of the paths. This result suggests an alternative to the conventional power law analysis often used in the analysis of experimental data.
Optical diffraction by ordered 2D arrays of silica microspheres
NASA Astrophysics Data System (ADS)
Shcherbakov, A. A.; Shavdina, O.; Tishchenko, A. V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.
2017-03-01
The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality.
Efficient 2d full waveform inversion using Fortran coarray
NASA Astrophysics Data System (ADS)
Ryu, Donghyun; Kim, ahreum; Ha, Wansoo
2016-04-01
We developed a time-domain seismic inversion program using the coarray feature of the Fortran 2008 standard to parallelize the algorithm. We converted a 2d acoustic parallel full waveform inversion program with Message Passing Interface (MPI) to a coarray program and examined performance of the two inversion programs. The results show that the speed of the waveform inversion program using the coarray is slightly faster than that of the MPI version. The standard coarray lacks features for collective communication; however, it can be improved in following standards since it is introduced recently. The parallel algorithm can be applied for 3D seismic data processing.
Interplay between Anderson and Stark Localization in 2D Lattices
Kolovsky, A. R.
2008-11-07
This Letter studies the dynamics of a quantum particle in 2D lattices with on-site disorder in the presence of a static field. It is shown that the particle is localized along the field direction, while in the orthogonal direction to the field it shows diffusive dynamics for algebraically large times. For weak disorder an analytical expression for the diffusion coefficient is obtained by mapping the problem to a band random matrix. This expression is confirmed by numerical simulations of the particle's dynamics, which also indicate the existence of a universal equation for the diffusion coefficient, valid for an arbitrary disorder strength.
Calculation of 2D electronic band structure using matrix mechanics
NASA Astrophysics Data System (ADS)
Pavelich, R. L.; Marsiglio, F.
2016-12-01
We extend previous work, applying elementary matrix mechanics to one-dimensional periodic arrays (to generate energy bands), to two-dimensional arrays. We generate band structures for the square-lattice "2D Kronig-Penney model" (square wells), the "muffin-tin" potential (circular wells), and Gaussian wells. We then apply the method to periodic arrays of more than one atomic site in a unit cell, specifically to the case of materials with hexagonal lattices like graphene. These straightforward extensions of undergraduate-level calculations allow students to readily determine band structures of current research interest.
Dynamics of Quarks in a 2D Flux Tube
Koshelkin, Andrey V.; Wong, Cheuk-Yin
2015-01-01
On the basis of a compactification of the (3+1) into (1+1) dimensional space-time [1], the quark states inside the 2D flux tube are studied for the case of a linear transverse confining potential. The derived states are classified by both the projections of the orbital momentum and the spin along the tube direction. The spectrum of the fermion states is evaluated. It is found that the energy eigenvalues of the quarks appear to be approximately related to the square root of the eigenvalues of the two-dimensional harmonic oscillator.
3D surface configuration modulates 2D symmetry detection.
Chen, Chien-Chung; Sio, Lok-Teng
2015-02-01
We investigated whether three-dimensional (3D) information in a scene can affect symmetry detection. The stimuli were random dot patterns with 15% dot density. We measured the coherence threshold, or the proportion of dots that were the mirror reflection of the other dots in the other half of the image about a central vertical axis, at 75% accuracy with a 2AFC paradigm under various 3D configurations produced by the disparity between the left and right eye images. The results showed that symmetry detection was difficult when the corresponding dots across the symmetry axis were on different frontoparallel or inclined planes. However, this effect was not due to a difference in distance, as the observers could detect symmetry on a slanted surface, where the depth of the two sides of the symmetric axis was different. The threshold was reduced for a hinge configuration where the join of two slanted surfaces coincided with the axis of symmetry. Our result suggests that the detection of two-dimensional (2D) symmetry patterns is subject to the 3D configuration of the scene; and that coplanarity across the symmetry axis and consistency between the 2D pattern and 3D structure are important factors for symmetry detection.
Meshfree natural vibration analysis of 2D structures
NASA Astrophysics Data System (ADS)
Kosta, Tomislav; Tsukanov, Igor
2014-02-01
Determination of resonance frequencies and vibration modes of mechanical structures is one of the most important tasks in the product design procedure. The main goal of this paper is to describe a pioneering application of the solution structure method (SSM) to 2D structural natural vibration analysis problems and investigate the numerical properties of the method. SSM is a meshfree method which enables construction of the solutions to the engineering problems that satisfy exactly all prescribed boundary conditions. This method is capable of using spatial meshes that do not conform to the shape of a geometric model. Instead of using the grid nodes to enforce boundary conditions, it employs distance fields to the geometric boundaries and combines them with the basis functions and prescribed boundary conditions at run time. This defines unprecedented geometric flexibility of the SSM as well as the complete automation of the solution procedure. In the paper we will explain the key points of the SSM as well as investigate the accuracy and convergence of the proposed approach by comparing our results with the ones obtained using analytical methods or traditional finite element analysis. Despite in this paper we are dealing with 2D in-plane vibrations, the proposed approach has a straightforward generalization to model vibrations of 3D structures.
2D Radiative Transfer in Magnetically Confined Structures
NASA Astrophysics Data System (ADS)
Heinzel, P.; Anzer, U.
2003-01-01
Magnetically confined structures in the solar atmosphere exhibit a large complexity in their shapes and physical conditions. As an example, we show the case of so-called magnetic dips in prominences which are in magnetohydrostatic equilibria. For such models we solve 2D non-LTE multilevel problem for hydrogen with PRD in Lyman resonance lines. The iterative technique used is based on the MALI approach with simple diagonal ALO and SC formal solver. To compute the hydrogen ionization balance, the preconditioned MALI equations are linearized with respect to atomic level populations and electron density and solved iteratively using the Newton-Raphson scheme. Two additional problems are addressed: (i) an adequate iteration method for cases when the column-mass scale is used in one of the two dimensions but varies along the other dimension (which has a geometrical scaling); and (ii) a possibility of using AMR (Adaptive Mesh Refinement) algorithms to account for steep 2D gradients of selected variables (temperature, density, etc.).
2D Gridded Surface Data Value-Added Product
Tang, Q; Xie, S
2015-08-30
This report describes the Atmospheric Radiation Measurement (ARM) Best Estimate (ARMBE) 2-dimensional (2D) gridded surface data (ARMBE2DGRID) value-added product. Spatial variability is critically important to many scientific studies, especially those that involve processes of great spatial variations at high temporal frequency (e.g., precipitation, clouds, radiation, etc.). High-density ARM sites deployed at the Southern Great Plains (SGP) allow us to observe the spatial patterns of variables of scientific interests. The upcoming megasite at SGP with its enhanced spatial density will facilitate the studies at even finer scales. Currently, however, data are reported only at individual site locations at different time resolutions for different datastreams. It is difficult for users to locate all the data they need and requires extra effort to synchronize the data. To address these problems, the ARMBE2DGRID value-added product merges key surface measurements at the ARM SGP sites and interpolates the data to a regular 2D grid to facilitate the data application.
Peak width issues with generalised 2D correlation NMR spectroscopy
NASA Astrophysics Data System (ADS)
Kirwan, Gemma M.; Adams, Michael J.
2008-12-01
Two-dimensional spectral correlation analysis is shown to be sensitive to fluctuations in spectral peak width as a function of perturbation variable. This is particularly significant where peak width fluctuations are of similar order of magnitude as the peak width values themselves and where changes in peak width are not random but are, for example, proportional to intensity. In such cases these trends appear in the asynchronous matrix as false peaks that serve to interfere with interpretation of the data. Complex, narrow band spectra such as provided by 1H NMR spectroscopy are demonstrated to be prone to such interference. 2D correlation analysis was applied to a series of NMR spectra corresponding to a commercial wine fermentation, in which the samples collected over a period of several days exhibit dramatic changes in concentration of minor and major components. The interference due to changing peak width effects is eliminated by synthesizing the recorded spectra using a constant peak width value prior to performing 2D correlation analysis.
Reconstruction of a 2D seismic wavefield by seismic gradiometry
NASA Astrophysics Data System (ADS)
Maeda, Takuto; Nishida, Kiwamu; Takagi, Ryota; Obara, Kazushige
2016-12-01
We reconstructed a 2D seismic wavefield and obtained its propagation properties by using the seismic gradiometry method together with dense observations of the Hi-net seismograph network in Japan. The seismic gradiometry method estimates the wave amplitude and its spatial derivative coefficients at any location from a discrete station record by using a Taylor series approximation. From the spatial derivatives in horizontal directions, the properties of a propagating wave packet, including the arrival direction, slowness, geometrical spreading, and radiation pattern can be obtained. In addition, by using spatial derivatives together with free-surface boundary conditions, the 2D vector elastic wavefield can be decomposed into divergence and rotation components. First, as a feasibility test, we performed an analysis with a synthetic seismogram dataset computed by a numerical simulation for a realistic 3D medium and the actual Hi-net station layout. We confirmed that the wave amplitude and its spatial derivatives were very well-reproduced for period bands longer than 25 s. Applications to a real large earthquake showed that the amplitude and phase of the wavefield were well reconstructed, along with slowness vector. The slowness of the reconstructed wavefield showed a clear contrast between body and surface waves and regional non-great-circle-path wave propagation, possibly owing to scattering. Slowness vectors together with divergence and rotation decomposition are expected to be useful for determining constituents of observed wavefields in inhomogeneous media.
2D Quantum Transport Modeling in Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.
2001-01-01
We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on an equal footing. Electron bandstructure is treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are consistent with 1D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller leakage current than the longer gate length device without a significant trade-off in on-current.
Magnetic gating of a 2D topological insulator
NASA Astrophysics Data System (ADS)
Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.
2016-09-01
Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic ‘gate’ representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate.
Mass loss in 2D rotating stellar models
Lovekin, Caterine; Deupree, Bob
2010-10-05
Radiatively driven mass loss is an important factor in the evolution of massive stars . The mass loss rates depend on a number of stellar parameters, including the effective temperature and luminosity. Massive stars are also often rapidly rotating, which affects their structure and evolution. In sufficiently rapidly rotating stars, both the effective temperature and radius vary significantly as a function of latitude, and hence mass loss rates can vary appreciably between the poles and the equator. In this work, we discuss the addition of mass loss to a 2D stellar evolution code (ROTORC) and compare evolution sequences with and without mass loss. Preliminary results indicate that a full 2D calculation of mass loss using the local effective temperature and luminosity can significantly affect the distribution of mass loss in rotating main sequence stars. More mass is lost from the pole than predicted by 1D models, while less mass is lost at the equator. This change in the distribution of mass loss will affect the angular momentum loss, the surface temperature and luminosity, and even the interior structure of the star. After a single mass loss event, these effects are small, but can be expected to accumulate over the course of the main sequence evolution.
2D vibrational properties of epitaxial silicene on Ag(111)
NASA Astrophysics Data System (ADS)
Solonenko, Dmytro; Gordan, Ovidiu D.; Le Lay, Guy; Sahin, Hasan; Cahangirov, Seymur; Zahn, Dietrich R. T.; Vogt, Patrick
2017-03-01
The two-dimensional silicon allotrope, silicene, could spur the development of new and original concepts in Si-based nanotechnology. Up to now silicene can only be epitaxially synthesized on a supporting substrate such as Ag(111). Even though the structural and electronic properties of these epitaxial silicene layers have been intensively studied, very little is known about its vibrational characteristics. Here, we present a detailed study of epitaxial silicene on Ag(111) using in situ Raman spectroscopy, which is one of the most extensively employed experimental techniques to characterize 2D materials, such as graphene, transition metal dichalcogenides, and black phosphorous. The vibrational fingerprint of epitaxial silicene, in contrast to all previous interpretations, is characterized by three distinct phonon modes with A and E symmetries. Both, energies and symmetries of theses modes are confirmed by ab initio theory calculations. The temperature dependent spectral evolution of these modes demonstrates unique thermal properties of epitaxial silicene and a significant electron-phonon coupling. These results unambiguously support the purely two-dimensional character of epitaxial silicene up to about 300 °C, whereupon a 2D-to-3D phase transition takes place. The detailed fingerprint of epitaxial silicene will allow us to identify it in different environments or to study its modifications.
Conformal Laplace superintegrable systems in 2D: polynomial invariant subspaces
NASA Astrophysics Data System (ADS)
Escobar-Ruiz, M. A.; Miller, Willard, Jr.
2016-07-01
2nd-order conformal superintegrable systems in n dimensions are Laplace equations on a manifold with an added scalar potential and 2n-1 independent 2nd order conformal symmetry operators. They encode all the information about Helmholtz (eigenvalue) superintegrable systems in an efficient manner: there is a 1-1 correspondence between Laplace superintegrable systems and Stäckel equivalence classes of Helmholtz superintegrable systems. In this paper we focus on superintegrable systems in two-dimensions, n = 2, where there are 44 Helmholtz systems, corresponding to 12 Laplace systems. For each Laplace equation we determine the possible two-variate polynomial subspaces that are invariant under the action of the Laplace operator, thus leading to families of polynomial eigenfunctions. We also study the behavior of the polynomial invariant subspaces under a Stäckel transform. The principal new results are the details of the polynomial variables and the conditions on parameters of the potential corresponding to polynomial solutions. The hidden gl 3-algebraic structure is exhibited for the exact and quasi-exact systems. For physically meaningful solutions, the orthogonality properties and normalizability of the polynomials are presented as well. Finally, for all Helmholtz superintegrable solvable systems we give a unified construction of one-dimensional (1D) and two-dimensional (2D) quasi-exactly solvable potentials possessing polynomial solutions, and a construction of new 2D PT-symmetric potentials is established.
DNN-state identification of 2D distributed parameter systems
NASA Astrophysics Data System (ADS)
Chairez, I.; Fuentes, R.; Poznyak, A.; Poznyak, T.; Escudero, M.; Viana, L.
2012-02-01
There are many examples in science and engineering which are reduced to a set of partial differential equations (PDEs) through a process of mathematical modelling. Nevertheless there exist many sources of uncertainties around the aforementioned mathematical representation. Moreover, to find exact solutions of those PDEs is not a trivial task especially if the PDE is described in two or more dimensions. It is well known that neural networks can approximate a large set of continuous functions defined on a compact set to an arbitrary accuracy. In this article, a strategy based on the differential neural network (DNN) for the non-parametric identification of a mathematical model described by a class of two-dimensional (2D) PDEs is proposed. The adaptive laws for weights ensure the 'practical stability' of the DNN-trajectories to the parabolic 2D-PDE states. To verify the qualitative behaviour of the suggested methodology, here a non-parametric modelling problem for a distributed parameter plant is analysed.
MESH2D GRID GENERATOR DESIGN AND USE
Flach, G.; Smith, F.
2012-01-20
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.
Facial biometrics based on 2D vector geometry
NASA Astrophysics Data System (ADS)
Malek, Obaidul; Venetsanopoulos, Anastasios; Androutsos, Dimitrios
2014-05-01
The main challenge of facial biometrics is its robustness and ability to adapt to changes in position orientation, facial expression, and illumination effects. This research addresses the predominant deficiencies in this regard and systematically investigates a facial authentication system in the Euclidean domain. In the proposed method, Euclidean geometry in 2D vector space is being constructed for features extraction and the authentication method. In particular, each assigned point of the candidates' biometric features is considered to be a 2D geometrical coordinate in the Euclidean vector space. Algebraic shapes of the extracted candidate features are also computed and compared. The proposed authentication method is being tested on images from the public "Put Face Database". The performance of the proposed method is evaluated based on Correct Recognition (CRR), False Acceptance (FAR), and False Rejection (FRR) rates. The theoretical foundation of the proposed method along with the experimental results are also presented in this paper. The experimental results demonstrate the effectiveness of the proposed method.
Spectroscopic properties of multilayered gold nanoparticle 2D sheets.
Yoshida, Akihito; Imazu, Keisuke; Li, Xinheng; Okamoto, Koichi; Tamada, Kaoru
2012-12-11
We report the fabrication technique and optical properties of multilayered two-dimensional (2D) gold nanoparticle sheets ("Au nanosheet"). The 2D crystalline monolayer sheet composed of Au nanoparticles shows an absorption peak originating from a localized surface plasmon resonance (LSPR). It was found that the absorption spectra dramatically change when the monolayers are assembled into the multilayers on different substrates (quartz or Au). In the case of the multilayers on Au thin film (d = 200 nm), the LSPR peak is shifted to longer wavelength at the near-IR region by increasing the number of layers. The absorbance also depends on the layer number and shows the nonlinear behavior. On the other hand, the multilayers on quartz substrate show neither such LSPR peak shift nor nonlinear response of absorbance. The layer number dependence on metal surfaces can be interpreted as the combined effects between the near-field coupling of the LSPR and the far-field optics of the stratified metamaterial films, as proposed in our previous study. We also report the spectroscopic properties of hybrid multilayers composed of two kinds of monolayers, i.e., Au nanosheet and Ag nanosheet. The combination of the different metal nanoparticle sheets realizes more flexible plasmonic color tuning.
Asymmetric 2D spatial beam filtering by photonic crystals
NASA Astrophysics Data System (ADS)
Gailevicius, D.; Purlys, V.; Maigyte, L.; Gaizauskas, E.; Peckus, M.; Gadonas, R.; Staliunas, K.
2016-04-01
Spatial filtering techniques are important for improving the spatial quality of light beams. Photonic crystals (PhCs) with a selective spatial (angular) transmittance can also provide spatial filtering with the added benefit transversal symmetries, submillimeter dimensions and monolithic integration in other devices, such as micro-lasers or semiconductor lasers. Workable bandgap PhC configurations require a modulated refractive index with period lengths that are approximately less than the wavelength of radiation. This imposes technical limitations, whereby the available direct laser write (DLW) fabrication techniques are limited in resolution and refractive index depth. If, however, a deflection mechanism is chosen instead, a functional filter PhC can be produced that is operational in the visible wavelength regime. For deflection based PhCs glass is an attractive choice as it is highly stable medium. 2D and 3D PhC filter variations have already been produced on soda-lime glass. However, little is known about how to control the scattering of PhCs when approaching the smallest period values. Here we look into the internal structure of the initially symmetric geometry 2D PhCs and associating it with the resulting transmittance spectra. By varying the DLW fabrication beam parameters and scanning algorithms, we show that such PhCs contain layers that are comprised of semi-tilted structure voxels. We show the appearance of asymmetry can be compensated in order to circumvent some negative effects at the cost of potentially maximum scattering efficiency.
2D Hilbert transform for phase retrieval of speckle fields
NASA Astrophysics Data System (ADS)
Gorsky, M. P.; Ryabyi, P. A.; Ivanskyi, D. I.
2016-09-01
The paper presents principal approaches to diagnosing the structure forming skeleton of the complex optical field. An analysis of optical field singularity algorithms depending on intensity discretization and image resolution has been carried out. An optimal approach is chosen, which allows to bring much closer the solution of the phase problem of localization speckle-field special points. The use of a "window" 2D Hilbert transform for reconstruction of the phase distribution of the intensity of a speckle field is proposed. It is shown that the advantage of this approach consists in the invariance of a phase map to a change of the position of the kernel of transformation and in a possibility to reconstruct the structure-forming elements of the skeleton of an optical field, including singular points and saddle points. We demonstrate the possibility to reconstruct the equi-phase lines within a narrow confidence interval, and introduce an additional algorithm for solving the phase problem for random 2D intensity distributions.
Dynamics of quasi 2D co-rotating vortex merger
NASA Astrophysics Data System (ADS)
Khandekar, Akshay G.
Merger of vortices is examined experimentally to compare the merger of slender parallel vortices generated coincidentally. It is known that like-sign vortices rotate around a common center of circulation and merger between the vortices may occur under certain conditions. This merger is dependent on the strength of the vortex circulation, distance of separation between the centers of the two vortices, ReGamma, and vorticity distribution. Quasi-2D experimental data is examined and merger relations are derived. The 2D experiments conducted in a vortex generator tank uses high aspect ratio rotating paddles. The vortex merger tank generates slender co-rotating vortices and are examined using PIV (Particle Image Velocimetry). Merger characteristics are compared at centerline, 25% span and 5% span for different circulation strengths. Symmetric and asymmetric mergers are studied and it is found that in both cases, the vortex pair rotates around an axis perpendicular to the plane of the vortex pair. Symmetric merger is seen to occur at the center between the two vortices whereas in asymmetric merger the stronger vortex breaks the weaker vortex filaments and continues to follow its path. Wall effects seem to have an effect of vortex braiding and vortex stretching. Closer to the wall, the merger time increases while the merged vortex dissipates faster than at the centerline.
Marginal fluctuations as instantons on M2/D2-branes
NASA Astrophysics Data System (ADS)
Naghdi, M.
2014-03-01
We introduce some (anti-) M/D-branes through turning on the corresponding field strengths of the 11- and 10-dimensional supergravity theories over spaces, where we use and for the internal spaces. Indeed, when we add M2/D2-branes on the same directions with the near horizon branes of the Aharony-Bergman-Jafferis-Maldacena model, all symmetries and supersymmetries are preserved trivially. In this case, we obtain a localized object just in the horizon. This normalizable bulk massless scalar mode is a singlet of and , and it agrees with a marginal boundary operator of the conformal dimension of . However, after performing a special conformal transformation, we see that the solution is localized in the Euclideanized space and is attributable to the included anti-M2/D2-branes, which are also necessary to ensure that there is no back-reaction. The resultant theory now breaks all supersymmetries to , while the other symmetries are so preserved. The dual boundary operator is then set up from the skew-whiffing of the representations and for the supercharges and scalars, respectively, while the fermions remain fixed in of the original theory. Besides, we also address another alternate bulk to boundary matching procedure through turning on one of the gauge fields of the full gauge group along the same lines with a similar situation to the one faced in the AdS/CFT correspondence. The latter approach covers the difficulty already faced with in the bulk-boundary matching procedure for as well.
2D Numerical MHD Models of Solar Explosive Events
NASA Astrophysics Data System (ADS)
Roussev, I.
2001-10-01
Observations of the Sun reveal a great variety of dynamic phenomena interpretable as a manifestation of magnetic reconnection. These range from small-scale 'Explosive events' seen in the 'quiet' Sun, through violent flares observed in active regions. The high degree of complexity of the magnetic field inferred from observations may locally produce a fruitful environment for the process of magnetic reconnection to take place. Explosive events are associated with regions undergoing magnetic flux cancellation. This thesis presents a 2-dimensional (2D) numerical study devoted to explore the idea that the salient spectral signatures seen in explosive events are most probably caused by bi-directional outflow jets as a results of an ongoing magnetic reconnection. In order to provide qualitative results needed for the better physical interpretation of solar explosive events, several models intended to represent a 'quiet' Sun transition of solar explosive events, several models intended to represent a 'quiet' Sun transition region undergoing magnetic reconnection are examined, in both unstratified and gravitationally stratified atmospheres. The magnetic reconnection is initiated in an ad hoc manner, and the dynamic evolution is followed by numerically solving the equations of 2D dissipative magnetohydrodynamics (MHD), including the effects of field-aligned thermal conduction, radiative losses, volumetric heating, and anomalous resistivity.
Preconditioning 2D Integer Data for Fast Convex Hull Computations.
Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L
2016-01-01
In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved.
Defect Dynamics and Zipping of 2D Colloidal Crystallites
NASA Astrophysics Data System (ADS)
Bowley, Chris; Smullin, Sylvia; Ling, Xinsheng
1998-03-01
We use video microscopy to study defect dynamics in 2D colloidal (charged polystyrene microspheres) crystallites formed at the water-air interface. For small 2D crystallites, one might expect to see free edge dislocations in such small systems since the cost of forming such defects scales logarithmically with the size of the crystallite. But we found that as soon as an edge dislocation forms, it quickly moves to the edge of the crystallite and disappears. This is due to an attraction with an image dislocation outside the edge. As a result, most crystallites are defect-free during most of the time. Interesting things happen when two crystallites try to bind to each other, or zip together. A sharp transition occurs at the shared edge of the two crystallites during the zipping process. This is clearly manifested by a sudden change in the relative velocity between two drifting crystallites or a sudden re-orientation of one of the crystallites relative to the other. This work was supported by the startup funds and a Richard Salomon Faculty Research Award from Brown University.
Influence of Elevation Data Source on 2D Hydraulic Modelling
NASA Astrophysics Data System (ADS)
Bakuła, Krzysztof; StĘpnik, Mateusz; Kurczyński, Zdzisław
2016-08-01
The aim of this paper is to analyse the influence of the source of various elevation data on hydraulic modelling in open channels. In the research, digital terrain models from different datasets were evaluated and used in two-dimensional hydraulic models. The following aerial and satellite elevation data were used to create the representation of terrain-digital terrain model: airborne laser scanning, image matching, elevation data collected in the LPIS, EuroDEM, and ASTER GDEM. From the results of five 2D hydrodynamic models with different input elevation data, the maximum depth and flow velocity of water were derived and compared with the results of the most accurate ALS data. For such an analysis a statistical evaluation and differences between hydraulic modelling results were prepared. The presented research proved the importance of the quality of elevation data in hydraulic modelling and showed that only ALS and photogrammetric data can be the most reliable elevation data source in accurate 2D hydraulic modelling.
2D NMR-spectroscopic screening reveals polyketides in ladybugs.
Deyrup, Stephen T; Eckman, Laura E; McCarthy, Patrick H; Smedley, Scott R; Meinwald, Jerrold; Schroeder, Frank C
2011-06-14
Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature's cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature's structure space and suggests that insect metabolomes remain vastly underexplored.
2D NMR-spectroscopic screening reveals polyketides in ladybugs
Deyrup, Stephen T.; Eckman, Laura E.; McCarthy, Patrick H.; Smedley, Scott R.; Meinwald, Jerrold; Schroeder, Frank C.
2011-01-01
Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature’s cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature’s structure space and suggests that insect metabolomes remain vastly underexplored. PMID:21646540
Electron-Phonon Scattering in Atomically Thin 2D Perovskites.
Guo, Zhi; Wu, Xiaoxi; Zhu, Tong; Zhu, Xiaoyang; Huang, Libai
2016-11-22
Two-dimensional (2D) atomically thin perovskites with strongly bound excitons are highly promising for optoelectronic applications. However, the nature of nonradiative processes that limit the photoluminescence (PL) efficiency remains elusive. Here, we present time-resolved and temperature-dependent PL studies to systematically address the intrinsic exciton relaxation pathways in layered (C4H9NH3)2(CH3NH3)n-1PbnI3n+1 (n = 1, 2, 3) structures. Our results show that scatterings via deformation potential by acoustic and homopolar optical phonons are the main scattering mechanisms for excitons in ultrathin single exfoliated flakes, exhibiting a T(γ) (γ = 1.3 to 1.9) temperature dependence for scattering rates. We attribute the absence of polar optical phonon and defect scattering to efficient screening of Coulomb potential, similar to what has been observed in 3D perovskites. These results establish an understanding of the origins of nonradiative pathways and provide guidelines for optimizing PL efficiencies of atomically thin 2D perovskites.
Interactive 2D to 3D stereoscopic image synthesis
NASA Astrophysics Data System (ADS)
Feldman, Mark H.; Lipton, Lenny
2005-03-01
Advances in stereoscopic display technologies, graphic card devices, and digital imaging algorithms have opened up new possibilities in synthesizing stereoscopic images. The power of today"s DirectX/OpenGL optimized graphics cards together with adapting new and creative imaging tools found in software products such as Adobe Photoshop, provide a powerful environment for converting planar drawings and photographs into stereoscopic images. The basis for such a creative process is the focus of this paper. This article presents a novel technique, which uses advanced imaging features and custom Windows-based software that utilizes the Direct X 9 API to provide the user with an interactive stereo image synthesizer. By creating an accurate and interactive world scene with moveable and flexible depth map altered textured surfaces, perspective stereoscopic cameras with both visible frustums and zero parallax planes, a user can precisely model a virtual three-dimensional representation of a real-world scene. Current versions of Adobe Photoshop provide a creative user with a rich assortment of tools needed to highlight elements of a 2D image, simulate hidden areas, and creatively shape them for a 3D scene representation. The technique described has been implemented as a Photoshop plug-in and thus allows for a seamless transition of these 2D image elements into 3D surfaces, which are subsequently rendered to create stereoscopic views.
Application Perspective of 2D+SCALE Dimension
NASA Astrophysics Data System (ADS)
Karim, H.; Rahman, A. Abdul
2016-09-01
Different applications or users need different abstraction of spatial models, dimensionalities and specification of their datasets due to variations of required analysis and output. Various approaches, data models and data structures are now available to support most current application models in Geographic Information System (GIS). One of the focuses trend in GIS multi-dimensional research community is the implementation of scale dimension with spatial datasets to suit various scale application needs. In this paper, 2D spatial datasets that been scaled up as the third dimension are addressed as 2D+scale (or 3D-scale) dimension. Nowadays, various data structures, data models, approaches, schemas, and formats have been proposed as the best approaches to support variety of applications and dimensionality in 3D topology. However, only a few of them considers the element of scale as their targeted dimension. As the scale dimension is concerned, the implementation approach can be either multi-scale or vario-scale (with any available data structures and formats) depending on application requirements (topology, semantic and function). This paper attempts to discuss on the current and new potential applications which positively could be integrated upon 3D-scale dimension approach. The previous and current works on scale dimension as well as the requirements to be preserved for any given applications, implementation issues and future potential applications forms the major discussion of this paper.
The effects of aging on haptic 2D shape recognition.
Overvliet, Krista E; Wagemans, J; Krampe, Ralf T
2013-12-01
We use the image-mediation model (Klatzky & Lederman, 1987) as a framework to investigate potential sources of adult age differences in the haptic recognition of two-dimensional (2D) shapes. This model states that the low-resolution, temporally sequential, haptic input is translated into a visual image, which is then reperceived through the visual processors, before it is matched against a long-term memory representation and named. In three experiments we tested groups of 12 older (mean age 73.11) and three groups of 12 young adults (mean age 22.80) each. In Experiment 1 we confirm age-related differences in haptic 2D shape recognition, and we show the typical age × complexity interaction. In Experiment 2 we show that if we facilitate the visual translation process, age differences become smaller, but only with simple shapes and not with the more complex everyday objects. In Experiment 3 we target the last step in the model (matching and naming) for complex stimuli. We found that age differences in exploration time were considerably reduced when this component process was facilitated by providing a category name. We conclude that the image-mediation model can explain adult-age differences in haptic recognition, particularly if the role of working memory in forming the transient visual image is considered. Our findings suggest that sensorimotor skills thought to rely on peripheral processes for the most part are critically constrained by age-related changes in central processing capacity in later adulthood.
Predicting non-square 2D dice probabilities
NASA Astrophysics Data System (ADS)
Pender, G. A. T.; Uhrin, M.
2014-07-01
The prediction of the final state probabilities of a general cuboid randomly thrown onto a surface is a problem that naturally arises in the minds of men and women familiar with regular cubic dice and the basic concepts of probability. Indeed, it was considered by Newton in 1664 (Newton 1967 The Mathematical Papers of Issac Newton vol I (Cambridge: Cambridge University Press) pp 60-1). In this paper we make progress on the 2D problem (which can be realized in 3D by considering a long cuboid, or alternatively a rectangular cross-sectioned dreidel). For the two-dimensional case we suggest that the ratio of the probabilities of landing on each of the two sides is given by \\frac{\\sqrt{{{k}^{2}}+{{l}^{2}}}-k}{\\sqrt{{{k}^{2}}+{{l}^{2}}}-l}\\frac{arctan \\frac{l}{k}}{arctan \\frac{k}{l}} where k and l are the lengths of the two sides. We test this theory both experimentally and computationally, and find good agreement between our theory, experimental and computational results. Our theory is known, from its derivation, to be an approximation for particularly bouncy or ‘grippy’ surfaces where the die rolls through many revolutions before settling. On real surfaces we would expect (and we observe) that the true probability ratio for a 2D die is a somewhat closer to unity than predicted by our theory. This problem may also have wider relevance in the testing of physics engines.
Trache, Tudor; Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas
2014-12-01
Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values.
Preliminary abatement device evaluation: 1D-2D KGM cyclone design
Technology Transfer Automated Retrieval System (TEKTRAN)
Cyclones are predominately used in controlling cotton gin particulate matter (PM) emissions. The most commonly used cyclone designs are the 2D-2D and 1D-3D; however other designs such as the 1D-2D KGM have or are currently being used. A 1D-2D cyclone has a barrel length equal to the barrel diamete...
Ellis, S W; Rowland, K; Ackland, M J; Rekka, E; Simula, A P; Lennard, M S; Wolf, C R; Tucker, G T
1996-01-01
Cytochrome P-450 2D6 (CYP2D6) is an important human drug-metabolizing enzyme responsible for the oxidation of more than 30 widely used therapeutic agents. The enzymes encoded by the published genomic [Kimura, Umeno, Skoda, Meyer and Gonzalez (1989) Am. J. Hum. Genet. 45, 889-904] and cDNA [Gonzalez, Skoda, Kimura, Umeno, Zanger, Nebert, Gelboin, Hardwick and Meyer (1988) Nature 331, 442-446] sequences of CYP2D6, and presumed to represent wild-type sequences, differ at residue 374 and encode valine (CYP2D6-Val) and methionine (CYP2D6-Met) respectively. The influence of this amino acid difference on cytochrome P-450 expression, ligand binding, catalysis and stereoselective oxidation of metoprolol was investigated by the heterologous expression of the corresponding cDNAs in the yeast Saccharomyces cerevisiae. The level of expression of apo- and holo-protein was similar with each form of CYP2D6 cDNA, and the binding affinities of a series of ligands to CYP2D6-Val and CYP2D6-Met were identical. The enantioselective O-demethylation and alpha-hydroxylation of metoprolol were also similar with each form of CYP2D6, O-demethylation being R-(+)- enantioselective (CYP2D6-Val: R/S, 1.6; CYP2D6-Met: R/S, 1.4), whereas alpha-hydroxylation showed a preference for S-(-)-metoprolol (CYP2D6-Val: R/S, 0.7; CYP2D6-Met: R/S, 0.8). However, although the favoured regiomer overall was O-demethylmetoprolol (ODM), the regioselectivity for O-demethylation of each metoprolol enantiomer was significantly greater for CYP2D6-Val [R-(+)-: ODM/alpha-hydroxymetoprolol (alpha OH), 5.9; S-(-)-: ODM/alpha OH, 2.5) than that observed for CYP2D6-Met [R-(+)-: ODM/alpha OH, 2.2; S-(-)-: ODM/alpha OH, 1.4]. The stereoselective properties of CYP2D6-Val were consistent with those observed for CYP2D6 in human liver microsomes. The difference in the stereoselective properties of CYP2D6-Val and CYP2D6-Met were rationalized with respect to a homology model of the active site of CYP2D6 based on an alignment with
Frequency of undetected CYP2D6 hybrid genes in clinical samples: impact on phenotype prediction.
Black, John Logan; Walker, Denise L; O'Kane, Dennis J; Harmandayan, Maria
2012-01-01
Cytochrome P450 2D6 (CYP2D6) is highly polymorphic. CYP2D6-2D7 hybrid genes can be present in samples containing CYP2D6*4 and CYP2D6*10 alleles. CYP2D7-2D6 hybrid genes can be present in samples with duplication signals and in samples with homozygous genotyping results. The frequency of hybrid genes in clinical samples is unknown. We evaluated 1390 samples for undetected hybrid genes by polymerase chain reaction (PCR) amplification, PCR fragment analysis, TaqMan copy number assays, DNA sequencing, and allele-specific primer extension assay. Of 508 CYP2D6*4-containing samples, 109 (21.5%) harbored CYP2D6*68 + *4-like, whereas 9 (1.8%) harbored CYP2D6*4N + *4-like. Of 209 CYP2D6*10-containing samples, 44 (21.1%) were found to have CYP2D6*36 + *10. Of 332 homozygous samples, 4 (1.2%) harbored a single CYP2D7-2D6 hybrid, and of 341 samples with duplication signals, 25 (7.3%) harbored an undetected CYP2D7-2D6 hybrid. Phenotype before and after accurate genotyping was predicted using a method in clinical use. The presence of hybrid genes had no effect on the phenotype prediction of CYP2D6*4- and CYP2D6*10-containing samples. Four of four (100%) homozygous samples containing a CYP2D7-2D6 gene had a change in predicted phenotype, and 23 of 25 (92%) samples with a duplication signal and a CYP2D7-2D6 gene had a change in predicted phenotype. Four novel genes were identified (CYP2D6*13A1 variants 1 and 2, CYP2D6*13G1, and CYP2D6*13G2), and two novel hybrid tandem structures consisting of CYP2D6*13B + *68×2 + *4-like and CYP2D6*13A1 variant 2 + *1×N were observed.
Interactive initialization of 2D/3D rigid registration
Gong, Ren Hui; Güler, Özgür; Kürklüoglu, Mustafa; Lovejoy, John; Yaniv, Ziv
2013-12-15
Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on the
The seismic analyzer: interpreting and illustrating 2D seismic data.
Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, M Eduard
2008-01-01
We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seismic data, such as deformed texturing and line and texture transfer functions. The illustrative rendering results in multi-attribute and scale invariant visualizations where features are represented clearly in both highly zoomed in and zoomed out views. Thumbnail views in combination with interactive appearance control allows for a quick overview of the data before detailed interpretation takes place. These techniques help reduce the work of seismic illustrators and interpreters.
2D ultrasonic elastography with lateral displacement estimation using statistics.
Zhang, Zhihong; Liu, Haolin; Cheng, Yangjie
2014-01-01
Ultrasound elastography is the method of obtaining relative stiffness information of biological tissue, which plays an important role in early diagnosis. Generally, a gradient-based strain imaging algorithm assumes that motion only occurs in an axial direction. However, because tissue has different relative stiffness, the scatter presents lateral motion under high freehand compression. Therefore, errors occur in estimating the cross-correlation phase in the calculation window. A 2D elastography algorithm with lateral displacement estimation using statistics was proposed to reduce errors. The new method was investigated through simulation, and the experiment confirmed that errors introduced by lateral tissue movement have been greatly reduced with no sacrifice of real-time ultrasonic imaging quality.
Effective Hamiltonians of 2D Spin Glass Clusters
NASA Astrophysics Data System (ADS)
Clement, Colin; Liarte, Danilo; Middleton, Alan; Sethna, James
2015-03-01
We have a method for directly identifying the clusters which are thought to dominate the dynamics of spin glasses. We also have a method for generating an effective Hamiltonian treating each cluster as an individual spin. We used these methods on a 2D Ising spin glass with Gaussian bonds. We study these systems by generating samples and correlation functions using a combination of Monte Carlo and high-performance numerically exact Pfaffian methods. With effective cluster Hamiltonians we can calculate the free energy asymmetry of the original clusters and perform a scaling analysis. The scaling exponents found are consistent with Domain-Wall Renormalization Group methods, and probe all length scales. We can also study the flow of these effective Hamiltonians by clustering the clustered spins, and we find that our hard spin Hamiltonians at high temperature retain accurate low-temperature fluctuations when compared to their parent models.
Microwave Imaging with Infrared 2-D Lock-in Amplifier
NASA Astrophysics Data System (ADS)
Chiyo, Noritaka; Arai, Mizuki; Tanaka, Yasuhiro; Nishikata, Atsuhiro; Maeno, Takashi
We have developed a 3-D electromagnetic field measurement system using 2-D lock-in amplifier. This system uses an amplitude modulated electromagnetic wave source to heat a resistive screen. A very small change of temperature on a screen illuminated with the modulated electromagnetic wave is measured using an infrared thermograph camera. In this paper, we attempted to apply our system to microwave imaging. By placing conductor patches in front of the resistive screen and illuminating with microwave, the shape of each conductor was clearly observed as the temperature difference image of the screen. In this way, the conductor pattern inside the non-contact type IC card could be visualized. Moreover, we could observe the temperature difference image reflecting the shape of a Konnyaku (a gelatinous food made from devil's-tonge starch) or a dried fishbone, both as non-conducting material resembling human body. These results proved that our method is applicable to microwave see-through imaging.
A 2D histogram representation of images for pooling
NASA Astrophysics Data System (ADS)
Yu, Xinnan; Zhang, Yu-Jin
2011-03-01
Designing a suitable image representation is one of the most fundamental issues of computer vision. There are three steps in the popular Bag of Words based image representation: feature extraction, coding and pooling. In the final step, current methods make an M x K encoded feature matrix degraded to a K-dimensional vector (histogram), where M is the number of features, and K is the size of the codebook: information is lost dramatically here. In this paper, a novel pooling method, based on 2-D histogram representation, is proposed to retain more information from the encoded image features. This pooling method can be easily incorporated into state-of- the-art computer vision system frameworks. Experiments show that our approach improves current pooling methods, and can achieve satisfactory performance of image classification and image reranking even when using a small codebook and costless linear SVM.
Advecting Procedural Textures for 2D Flow Animation
NASA Technical Reports Server (NTRS)
Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.
Adaptive superplastic forming using NIKE2D with ISLAND
Engelmann, B.E.; Whirley, R.G.; Raboin, P.J.
1992-07-30
Superplastic forming has emerged as an important manufacturing process for producing near-net-shape parts. The design of a superplastic forming process is more difficult than conventional manufacturing operations, and is less amenable to trial and error approaches. This paper describes a superplastic forming process design capability incorporating nonlinear finite element analysis. The material constraints to allow superplastic behavior are integrated into an external constraint equation which is solved concurrently with the nonlinear finite element equations. The implementation of this approach using the ISLAND solution control language with the nonlinear finite element code NIKE2D is discussed in detail. Superplastic forming process design problems with one and two control parameters are presented as examples.
Tailoring the energy distribution and loss of 2D plasmons
NASA Astrophysics Data System (ADS)
Lin, Xiao; Rivera, Nicholas; López, Josué J.; Kaminer, Ido; Chen, Hongsheng; Soljačić, Marin
2016-10-01
The ability to tailor the energy distribution of plasmons at the nanoscale has many applications in nanophotonics, such as designing plasmon lasers, spasers, and quantum emitters. To this end, we analytically study the energy distribution and the proper field quantization of 2D plasmons with specific examples for graphene plasmons. We find that the portion of the plasmon energy contained inside graphene (energy confinement factor) can exceed 50%, despite graphene being infinitely thin. In fact, this very high energy confinement can make it challenging to tailor the energy distribution of graphene plasmons just by modifying the surrounding dielectric environment or the geometry, such as changing the separation distance between two coupled graphene layers. However, by adopting concepts of parity-time symmetry breaking, we show that tuning the loss in one of the two coupled graphene layers can simultaneously tailor the energy confinement factor and propagation characteristics, causing the phenomenon of loss-induced plasmonic transparency.
Bayesian 2D Current Reconstruction from Magnetic Images
NASA Astrophysics Data System (ADS)
Clement, Colin B.; Bierbaum, Matthew K.; Nowack, Katja; Sethna, James P.
We employ a Bayesian image reconstruction scheme to recover 2D currents from magnetic flux imaged with scanning SQUIDs (Superconducting Quantum Interferometric Devices). Magnetic flux imaging is a versatile tool to locally probe currents and magnetic moments, however present reconstruction methods sacrifice resolution due to numerical instability. Using state-of-the-art blind deconvolution techniques we recover the currents, point-spread function and height of the SQUID loop by optimizing the probability of measuring an image. We obtain uncertainties on these quantities by sampling reconstructions. This generative modeling technique could be used to develop calibration protocols for scanning SQUIDs, to diagnose systematic noise in the imaging process, and can be applied to many tools beyond scanning SQUIDs.
CFD code comparison for 2D airfoil flows
NASA Astrophysics Data System (ADS)
Sørensen, Niels N.; Méndez, B.; Muñoz, A.; Sieros, G.; Jost, E.; Lutz, T.; Papadakis, G.; Voutsinas, S.; Barakos, G. N.; Colonia, S.; Baldacchino, D.; Baptista, C.; Ferreira, C.
2016-09-01
The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3 × 106 and 15 × 106. The necessary grid resolution, domain size, and iterative convergence criteria to have consistent results are discussed, and suggestions are given for best practice. For the fully turbulent results four out of seven codes provide consistent results. For the laminar-turbulent transitional results only three out of seven provided results, and the agreement is generally lower than for the fully turbulent case.
2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus.
Pumera, Martin; Sofer, Zdeněk
2017-02-10
Two-dimensional materials are responsible for changing research in materials science. After graphene and its counterparts, graphane, fluorographene, and others were introduced, waves of renewed interest in 2D binary compounds occurred, such as in metal oxides, transition-metal dichalcogenides (most often represented by MoS2 ), metal oxy/hydroxide borides, and MXenes, to name the most prominent. Recently, interest has turned to two-dimensional monoelemental structures, such as monolayer black phosphorus and, very recently, to monolayer arsenic, antimony, and bismuth. Here, a short overview is provided of the area of exponentially increasing research in arsenene, antimonene, and bismuthene, which belong to the fifth main group of elements, the so-called pnictogens. A short review of historical work is provided, the properties of bulk allotropes of As, Sb, and Bi discussed, and then theoretical and experimental research on mono- and few-layered arsenene, antimonene, and bismuthene addressed, discussing their structures and properties.
Interpretive 2-D treatment of scrape-off-layer plasmas
Umansky, M.; Allen, A.; Daughton, W.
1996-12-31
The width of the scrape-off-layer in a tokamak is determined by cross field transport. In Alcator C-mod the plasma parameters in the scrape-off-layer are measured at upstream and divertor plate locations. We solve a 2-D scrape-off-layer heat conduction equation in the flux geometry (as determined by EFIT) of the C-mod experiment. Bolometric measurements are utilized for the radiative loss term. We use the end wall probe measurements of electron temperature as a boundary condition and the fast scanning probe measurements of upstream temperature are treated as constraints to determine the cross field transport and thermal conductivity. Results are compared with 1-D onion-skin-model predictions.
Model dielectric function for 2D semiconductors including substrate screening
Trolle, Mads L.; Pedersen, Thomas G.; Véniard, Valerie
2017-01-01
Dielectric screening of excitons in 2D semiconductors is known to be a highly non-local effect, which in reciprocal space translates to a strong dependence on momentum transfer q. We present an analytical model dielectric function, including the full non-linear q-dependency, which may be used as an alternative to more numerically taxing ab initio screening functions. By verifying the good agreement between excitonic optical properties calculated using our model dielectric function, and those derived from ab initio methods, we demonstrate the versatility of this approach. Our test systems include: Monolayer hBN, monolayer MoS2, and the surface exciton of a 2 × 1 reconstructed Si(111) surface. Additionally, using our model, we easily take substrate screening effects into account. Hence, we include also a systematic study of the effects of substrate media on the excitonic optical properties of MoS2 and hBN. PMID:28117326
The Anatomy of High-Performance 2D Similarity Calculations
Haque, Imran S.; Pande, Vijay S.
2011-01-01
Similarity measures based on the comparison of dense bit-vectors of two-dimensional chemical features are a dominant method in chemical informatics. For large-scale problems, including compound selection and machine learning, computing the intersection between two dense bit-vectors is the overwhelming bottleneck. We describe efficient implementations of this primitive, as well as example applications, using features of modern CPUs that allow 20-40x performance increases relative to typical code. Specifically, we describe fast methods for population count on modern x86 processors and cache-efficient matrix traversal and leader clustering algorithms that alleviate memory bandwidth bottlenecks in similarity matrix construction and clustering. The speed of our 2D comparison primitives is within a small factor of that obtained on GPUs, and does not require specialized hardware. PMID:21854053
Brillouin light scattering studies of 2D magnonic crystals.
Tacchi, S; Gubbiotti, G; Madami, M; Carlotti, G
2017-02-22
Magnonic crystals, materials with periodic modulation of their magnetic properties, represent the magnetic counterpart of photonic, phononic and plasmonic crystals, and have been largely investigated in recent years because of the possibility of using spin waves as a new means for carrying and processing information over a very large frequency bandwidth. Here, we review recent Brillouin light scattering studies of 2D magnonic crystals consisting of single- and bi-component arrays of interacting magnetic dots or antidot lattices. In particular, we discuss the principal properties of the magnonic band diagram of such systems, with emphasis given to its dependence on both magnetic and the geometrical parameters. Thanks to the possibility of tailoring their band structure by means of several degrees of freedom, planar magnonic crystals offer a good opportunity to design an innovative class of nanoscale microwave devices.
Brillouin light scattering studies of 2D magnonic crystals
NASA Astrophysics Data System (ADS)
Tacchi, S.; Gubbiotti, G.; Madami, M.; Carlotti, G.
2017-02-01
Magnonic crystals, materials with periodic modulation of their magnetic properties, represent the magnetic counterpart of photonic, phononic and plasmonic crystals, and have been largely investigated in recent years because of the possibility of using spin waves as a new means for carrying and processing information over a very large frequency bandwidth. Here, we review recent Brillouin light scattering studies of 2D magnonic crystals consisting of single- and bi-component arrays of interacting magnetic dots or antidot lattices. In particular, we discuss the principal properties of the magnonic band diagram of such systems, with emphasis given to its dependence on both magnetic and the geometrical parameters. Thanks to the possibility of tailoring their band structure by means of several degrees of freedom, planar magnonic crystals offer a good opportunity to design an innovative class of nanoscale microwave devices.
Symmetry detection of auxetic behaviour in 2D frameworks
NASA Astrophysics Data System (ADS)
Mitschke, H.; Schröder-Turk, G. E.; Mecke, K.; Fowler, P. W.; Guest, S. D.
2013-06-01
A symmetry-extended Maxwell treatment of the net mobility of periodic bar-and-joint frameworks is used to derive a sufficient condition for auxetic behaviour of a 2D material. The type of auxetic behaviour that can be detected by symmetry has Poisson's ratio -1, with equal expansion/contraction in all directions, and is here termed equiauxetic. A framework may have a symmetry-detectable equiauxetic mechanism if it belongs to a plane group that includes rotational axes of order n = 6, 4, or 3. If the reducible representation for the net mobility contains mechanisms that preserve full rotational symmetry (A modes), these are equiauxetic. In addition, for n = 6, mechanisms that halve rotational symmetry (B modes) are also equiauxetic.
Discrepant Results in a 2-D Marble Collision
NASA Astrophysics Data System (ADS)
Kalajian, Peter
2013-03-01
Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many schools. Substituting marbles on a table for air pucks introduces angular momentum and sliding friction so that simple video analysis will demonstrate that linear momentum is not conserved.1,2 Nevertheless, these labs offer students insights into the real-world application of physics. During a recent classroom trial, an unexpected result forced my students to think creatively and critically about what happened in the experiment.
HEXAGONAL ARRAY STRUCTURE FOR 2D NDE APPLICATIONS
Dziewierz, J.; Ramadas, S. N.; Gachagan, A.; O'Leary, R. L.
2010-02-22
This paper describes a combination of simulation and experimentation to evaluate the advantages offered by utilizing a hexagonal shaped array element in a 2D NDE array structure. The active material is a 1-3 connectivity piezoelectric composite structure incorporating triangular shaped pillars--each hexagonal array element comprising six triangular pillars. A combination of PZFlex, COMSOL and Matlab has been used to simulate the behavior of this device microstructure, for operation around 2.25 MHz, with unimodal behavior and low levels of mechanical cross-coupling predicted. Furthermore, the application of hexagonal array elements enables the array aperture to increase by approximately 30%, compared to a conventional orthogonal array matrix and hence will provide enhanced volumetric coverage and SNR. Prototype array configurations demonstrate good corroboration of the theoretically predicted mechanical cross-coupling between adjacent array elements (approx23 dB).
areaDetector: Software for 2-D Detectors in EPICS
Rivers, M.
2011-09-23
areaDetector is a new EPICS module designed to support 2-D detectors. It is modular C++ code that greatly simplifies the task of writing support for a new detector. It also supports plugins, which receive detector data from the driver and process it in some way. Existing plugins perform Region-Of-Interest extraction and analysis, file saving (in netCDF, HDF, TIFF and JPEG formats), color conversion, and export to EPICS records for image display in clients like ImageJ and IDL. Drivers have now been written for many of the detectors commonly used at synchrotron beamlines, including CCDs, pixel array and amorphous silicon detectors, and online image plates.
Robust 2D phase unwrapping based on multiresolution
NASA Astrophysics Data System (ADS)
Davidson, Gordon W.; Bamler, Richard
1996-12-01
An approach to 2D phase unwrapping for SAR interferometry is presented, based on separate steps of coarse phase and fine phase estimation. The coarse phase is constructed from instantaneous frequency estimates obtained using adaptive multiresolution, in which estimation is done of difference frequencies between resolution levels, and the frequency differences are summed over resolution levels such that a conservative phase gradient field is maintained. This allows a smoothed coarse unwrapped phase, which achieves the full terrain height, to be obtained with an unweighted least squares phase construction. The coarse phase is used to remove the bulk of the phase variation of the interferogram, allowing more accurate multilooking, and the resulting fine phase in unwrapped with weighted least squares. The unwrapping approach is verified on simulated interferograms.
TOPAZ2D validation status report, August 1990
Davis, B.
1990-08-01
Analytic solutions to two heat transfer problems were used to partially evaluate the performance TOPAZ, and LLNL finite element heat transfer code. The two benchmark analytic solutions were for: 2D steady state slab, with constant properties, constant uniform temperature boundary conditions on three sides, and constant temperature distribution according to a sine function on the fourth side; 1D transient non-linear, with temperature dependent conductivity and specific heat (varying such that the thermal diffusivity remained constant), constant heat flux on the front face and adiabatic conditions on the other face. The TOPAZ solution converged to the analytic solution in both the transient and the steady state problem. Consistent mass matrix type of analysis yielded best performance for the transient problem, in the late-time response; but notable unnatural anomalies were observed in the early-time temperature response at nodal locations near the front face. 5 refs., 22 figs.
Grid generation for general 2-D regions using hyperbolic equations
NASA Technical Reports Server (NTRS)
Cordova, Jeffrey Q.; Barth, Timothy J.
1988-01-01
A method for applying a hyperbolic grid generation scheme to the construction of meshes in general 2-D regions has been developed. This approach, which follows the theory developed by Steger and Chaussee (1980) and the algorithm outlined by Kinsey and Barth (1984), is based on improving local grid control. This is accomplished by adding an angle control source term to the equations and using a new algorithm for computing the volume source term. These modifications lead to superior methods for fixing the 'local' problems of hyperbolic grid generation, namely, propagation of initial discontinuities and formation of grid shocks (crossing grid lines). More importantly, a method for solving the global problem of constraining the grid with more than one boundary (internal grid generation) has been developed. These algorithms have been implemented in an interactive grid generation program and the results for several geometries are presented and discussed.
2D Quantum Mechanical Study of Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)
2000-01-01
With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.
2D kinematic signatures of boxy/peanut bulges
NASA Astrophysics Data System (ADS)
Iannuzzi, Francesca; Athanassoula, E.
2015-07-01
We study the imprints of boxy/peanut structures on the 2D line-of-sight kinematics of simulated disc galaxies. The models under study belong to a family with varying initial gas fraction and halo triaxiality, plus few other control runs with different structural parameters; the kinematic information was extracted using the Voronoi-binning technique and parametrized up to the fourth order of a Gauss-Hermite series. Building on a previous work for the long-slit case, we investigate the 2D kinematic behaviour in the edge-on projection as a function of the boxy/peanut strength and position angle; we find that for the strongest structures the highest moments show characteristic features away from the mid-plane in a range of position angles. We also discuss the masking effect of a classical bulge and the ambiguity in discriminating kinematically this spherically symmetric component from a boxy/peanut bulge seen end-on. Regarding the face-on case, we extend existing results to encompass the effect of a second buckling and find that this phenomenon spurs an additional set of even deeper minima in the fourth moment. Finally, we show how the results evolve when inclining the disc away from perfectly edge-on and face-on. The behaviour of stars born during the course of the simulations is discussed and confronted to that of the pre-existing disc. The general aim of our study is providing a handle to identify boxy/peanut structures and their properties in latest generation Integral Field Unit observations of nearby disc galaxies.
''Super 2D,'' Innovative seismic reprocessing: A case history
Conne, D.K.M.; Bolander, A.G.; MacDonald, R.J.; Strelioff, D.M.
1988-01-01
The ''Super 2D'' processing sequence involves taking a randomly oriented grid of multivintage two-dimensional seismic data and reprocessing to tie the data where required, then interpolating the data set to a regular grid suitable for three-dimensional processing and interpretation. A data set from Alberta, provided by a Canadian oil company, comprises 15 two-dimensional seismic lines collected and processed over a period of 6 years by various contractors. Field conditions, advances in technology, and changing objectives combined to result in a data set that densely sampled a small area, but did not tie in well enough to be interpreted as a whole. The data mistied in time, phase, and frequency, as well as having a problem with multiples in the zone of interest that had been partly attenuated in varying degrees. Therefore, the first objective of reprocessing was to resolve these problems. The authors' current land data processing sequence, which includes frequency balancing followed by source wavelet designature, F/K multiple attenuation, trim statics, and F-X filtering, as well as close attention to statics and velocity control, resolved all the mistie issues and produced a standardized data volume. This data volume was now suitable for the second stage of this sequence (i.e., interpolating to a regular grid and subsequent three-dimensional processing). The volume was three-dimensionally migrated (finite difference), filtered, and scaled. The full range of three-dimensional display and interpretational options, including loading on an interactive system, are now possible. This, along with standardizing the data set and improving the spatial location of events via three-dimensional migration are the key results of the ''Super 2D'' sequence.
Thermocapillary bubble dynamics in a 2D axis swirl domain
NASA Astrophysics Data System (ADS)
Alhendal, Yousuf; Turan, Ali
2014-09-01
The lack of significant buoyancy effects in zero-gravity conditions poses an issue with fluid transfer in a stagnant liquid. In this paper, bubble movement in a stagnant liquid is analysed and presented numerically using a computational fluid dynamics approach. The governing continuum and conservation equations for two-phase flow are solved using the commercial software package Ansys-Fluent v.13. The volume of fluid method is used to track the liquid/gas interface in 2D and 3D domains, which has been found to be a valuable tool for studying the phenomenon of gas-liquid interaction, and the validation results are in reasonable agreement with earlier experimental observations. The flow is driven via Marangoni influence induced by the temperature difference, which in turn drives the bubble from the cold to the hot region. The results indicate that the inherent velocity of bubbles decreases with an increase in Marangoni number; this is in agreement with the results of previous experiments conducted in Kang et al. (Microgravity Sci Technol 20:67-71, 2008). Some three-dimensional simulations will also be performed to compare and examine the results with two-dimensional simulations. The thermocapillary bubble flow in a 2D swirl axisymmetry driven by the rotation of the walls was also carried out for different angular velocities in zero gravity. The bubble migration speed was found to decrease with increasing angular velocity. This occurrence is due to an increase in the pressure gradient between the cylinder's outer wall and the axis of rotation, which forces the lowest pressure region to shift from the sides of the bubble to the axis of rotation. A deformation of the bubble and the formation of the two vortices inside the bubble are also observed. These new and original findings aim to help support research into space applications.
Thermocapillary bubble dynamics in a 2D axis swirl domain
NASA Astrophysics Data System (ADS)
Alhendal, Yousuf; Turan, Ali
2015-04-01
The lack of significant buoyancy effects in zero-gravity conditions poses an issue with fluid transfer in a stagnant liquid. In this paper, bubble movement in a stagnant liquid is analysed and presented numerically using a computational fluid dynamics approach. The governing continuum and conservation equations for two-phase flow are solved using the commercial software package Ansys-Fluent v.13. The volume of fluid method is used to track the liquid/gas interface in 2D and 3D domains, which has been found to be a valuable tool for studying the phenomenon of gas-liquid interaction, and the validation results are in reasonable agreement with earlier experimental observations. The flow is driven via Marangoni influence induced by the temperature difference, which in turn drives the bubble from the cold to the hot region. The results indicate that the inherent velocity of bubbles decreases with an increase in Marangoni number; this is in agreement with the results of previous experiments conducted in Kang et al. (Microgravity Sci Technol 20:67-71, 2008). Some three-dimensional simulations will also be performed to compare and examine the results with two-dimensional simulations. The thermocapillary bubble flow in a 2D swirl axisymmetry driven by the rotation of the walls was also carried out for different angular velocities in zero gravity. The bubble migration speed was found to decrease with increasing angular velocity. This occurrence is due to an increase in the pressure gradient between the cylinder's outer wall and the axis of rotation, which forces the lowest pressure region to shift from the sides of the bubble to the axis of rotation. A deformation of the bubble and the formation of the two vortices inside the bubble are also observed. These new and original findings aim to help support research into space applications.
2D Quantum Transport Modeling in Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.
E-2D Advanced Hawkeye: primary flight display
NASA Astrophysics Data System (ADS)
Paolillo, Paul W.; Saxena, Ragini; Garruba, Jonathan; Tripathi, Sanjay; Blanchard, Randy
2006-05-01
This paper is a response to the challenge of providing a large area avionics display for the E-2D AHE aircraft. The resulting display design provides a pilot with high-resolution visual information content covering an image area of almost three square feet (Active Area of Samsung display = 33.792cm x 27.0336 cm = 13.304" x 10.643" = 141.596 square inches = 0.983 sq. ft x 3 = 2.95 sq. ft). The avionics display application, design and performance being described is the Primary Flight Display for the E-2D Advanced Hawkeye aircraft. This cockpit display has a screen diagonal size of 17 inches. Three displays, with minimum bezel width, just fit within the available instrument panel area. The significant design constraints of supporting an upgrade installation have been addressed. These constraints include a display image size that is larger than the mounting opening in the instrument panel. This, therefore, requires that the Electromagnetic Interference (EMI) window, LCD panel and backlight all fit within the limited available bezel depth. High brightness and a wide dimming range are supported with a dual mode Cold Cathode Fluorescent Tube (CCFT) and LED backlight. Packaging constraints dictated the use of multiple U shaped fluorescent lamps in a direct view backlight design for a maximum display brightness of 300 foot-Lamberts. The low intensity backlight levels are provided by remote LEDs coupled through a fiber optic mesh. This architecture generates luminous uniformity within a minimum backlight depth. Cross-cockpit viewing is supported with ultra-wide field-of-view performance including contrast and the color stability of an advanced LCD cell design supports. Display system design tradeoffs directed a priority to high optical efficiency for minimum power and weight.
Role of cytochrome P450 2D6 genetic polymorphism in carvedilol hydroxylation in vitro
Wang, Zhe; Wang, Li; Xu, Ren-ai; Zhan, Yun-yun; Huang, Cheng-ke; Dai, Da-peng; Cai, Jian-ping; Hu, Guo-xin
2016-01-01
Cytochrome P450 2D6 (CYP2D6) is a highly polymorphic enzyme that catalyzes the metabolism of a great number of therapeutic drugs. Up to now, >100 allelic variants of CYP2D6 have been reported. Recently, we identified 22 novel variants in the Chinese population in these variants. The purpose of this study was to examine the enzymatic activity of the variants toward the CYP2D6 substrate carvedilol in vitro. The CYP2D6 proteins, including CYP2D6.1 (wild type), CYP2D6.2, CYP2D6.10, and 22 other novel CYP2D6 variants, were expressed from insect microsomes and incubated with carvedilol ranging from 1.0 μM to 50 μM at 37°C for 30 minutes. After termination, the carvedilol metabolites were extracted and detected using ultra-performance liquid chromatography tandem mass-spectrometry. Among the 24 CYP2D6 variants, CYP2D6.92 and CYP2D6.96 were catalytically inactive and the remaining 22 variants exhibited significantly decreased intrinsic clearance values (ranging from ~25% to 95%) compared with CYP2D6.1. The present data in vitro suggest that the newly found variants significantly reduced catalytic activities compared with CYP2D6.1. Given that CYP2D6 protein activities could affect carvedilol plasma levels, these findings are greatly relevant to personalized medicine. PMID:27354764
Uehara, Shotaro; Uno, Yasuhiro; Hagihira, Yuya; Murayama, Norie; Shimizu, Makiko; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi
2015-01-01
1. Although the New World non-human primate, the common marmoset (Callithrix jacchus), is a potentially useful animal model, comprehensive understanding of drug metabolizing enzymes is insufficient. 2. A cDNA encoding a novel cytochrome P450 (P450) 2D8 was identified in marmosets. The amino acid sequence deduced from P450 2D8 cDNA showed a high sequence identity (83-86%) with other primate P450 2Ds. Phylogenetic analysis showed that marmoset P450 2D8 was closely clustered with human P450 2D6, unlike P450 2Ds of miniature pig, dog, rabbit, guinea pig, mouse or rat. 3. Marmoset P450 2D8 mRNA was predominantly expressed in the liver and small intestine among the tissues types analyzed, whereas marmoset P450 2D6 mRNA was expressed predominantly in the liver where P450 2D protein was detected by immunoblotting. 4. By metabolic assays using marmoset P450 2D8 protein heterologously expressed in Escherichia coli, although P450 2D8 exhibits lower catalytic efficiency compared to marmoset and human P450 2D6 enzymes, P450 2D8 mediated O-demethylations of metoprolol and dextromethorphan and bufuralol 1'-hydroxylation. 5. These results suggest that marmoset P450 2D8 (also expressed in the extrahepatic tissues) has potential roles in drug metabolism in a similar manner to those of human and marmoset P450 2D6.
Wang, Danxin; Poi, Ming J; Sun, Xiaochun; Gaedigk, Andrea; Leeder, J Steven; Sadee, Wolfgang
2014-01-01
Cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of 25% of clinically used drugs. Genetic polymorphisms cause substantial variation in CYP2D6 activity and serve as biomarkers guiding drug therapy. However, genotype-phenotype relationships remain ambiguous except for poor metabolizers carrying null alleles, suggesting the presence of yet unknown genetic variants. Searching for regulatory CYP2D6 polymorphisms, we find that a SNP defining the CYP2D6*2 allele, rs16947 [R296C, 17-60% minor allele frequency (MAF)], previously thought to convey normal activity, alters exon 6 splicing, thereby reducing CYP2D6 expression at least 2-fold. In addition, two completely linked SNPs (rs5758550/rs133333, MAF 13-42%) increase CYP2D6 transcription more than 2-fold, located in a distant downstream enhancer region (>100 kb) that interacts with the CYP2D6 promoter. In high linkage disequilibrium (LD) with each other, rs16947 and the enhancer SNPs form haplotypes that affect CYP2D6 enzyme activity in vivo. In a pediatric cohort of 164 individuals, rs16947 alone (minor haplotype frequency 28%) was associated with reduced CYP2D6 metabolic activity (measured as dextromethorphan/metabolite ratios), whereas rs5758550/rs133333 alone (frequency 3%) resulted in increased CYP2D6 activity, while haplotypes containing both rs16947 and rs5758550/rs133333 were similar to the wild-type. Other alleles used in biomarker panels carrying these variants such as CYP2D6*41 require re-evaluation of independent effects on CYP2D6 activity. The occurrence of two regulatory variants of high frequency and in high LD, residing on a long haplotype, highlights the importance of gene architecture, likely shaped by evolutionary selection pressures, in determining activity of encoded proteins.
ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data
NASA Astrophysics Data System (ADS)
Akca, Irfan
2016-04-01
ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discre-tized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole inversion procedure. The inversion routine is based on the smoothness constrained least squares method. In order to verify the program, responses of two test models and field data sets were inverted. The models inverted from the synthetic data sets are consistent with the original test models in both DC resistivity and IP cases. A field data set acquired in an archaeological site is also used for the verification of outcomes of the program in comparison with the excavation results.
Installed Transonic 2D Nozzle Nacelle Boattail Drag Study
NASA Technical Reports Server (NTRS)
Malone, Michael B.; Peavey, Charles C.
1999-01-01
The Transonic Nozzle Boattail Drag Study was initiated in 1995 to develop an understanding of how external nozzle transonic aerodynamics effect airplane performance and how strongly those effects are dependent on nozzle configuration (2D vs. axisymmetric). MDC analyzed the axisymmetric nozzle. Boeing subcontracted Northrop-Grumman to analyze the 2D nozzle. AU participants analyzed the AGARD nozzle as a check-out and validation case. Once the codes were checked out and the gridding resolution necessary for modeling the separated flow in this region determined, the analysis moved to the installed wing/body/nacelle/diverter cases. The boat tail drag validation case was the AGARD B.4 rectangular nozzle. This test case offered both test data and previous CFD analyses for comparison. Results were obtained for test cases B.4.1 (M=0.6) and B.4.2 (M=0.938) and compared very well with the experimental data. Once the validation was complete a CFD grid was constructed for the full Ref. H configuration (wing/body/nacelle/diverter) using a combination of patched and overlapped (Chimera) grids. This was done to ensure that the grid topologies and density would be adequate for the full model. The use of overlapped grids allowed the same grids from the full configuration model to be used for the wing/body alone cases, thus eliminating the risk of grid differences affecting the determination of the installation effects. Once the full configuration model was run and deemed to be suitable the nacelle/diverter grids were removed and the wing/body analysis performed. Reference H wing/body results were completed for M=0.9 (a=0.0, 2.0, 4.0, 6.0 and 8.0), M=1.1 (a=4.0 and 6.0) and M=2.4 (a=0.0, 2.0, 4.4, 6.0 and 8.0). Comparisons of the M=0.9 and M=2.4 cases were made with available wind tunnel data and overall comparisons were good. The axi-inlet/2D nozzle nacelle was analyzed isolated. The isolated nacelle data coupled with the wing/body result enabled the interference effects of the
Panserat, S; Mura, C; Gérard, N; Vincent-Viry, M; Galteau, M M; Jacoz-Aigrain, E; Krishnamoorthy, R
1995-01-01
1. The study of the CYP2D genotype and phenotype of a Caucasian family revealed that a XbaI-9 kb allele was associated with the poor metabolizer phenotype. 2. A Polymerase Chain Reaction (PCR)-based assay showed that the previously described mutations D6A and D6B are not associated with the XbaI-9 kb allele. 3. To explore the molecular basis of the poor metabolizer phenotype associated with the XbaI-9 kb allele, complete sequencing of the nine exons and intron-exon boundaries of the CYP2D6 gene was undertaken after amplification by PCR. 4. All the exons were successfully amplified using CYP2D6 gene-specific primers except exon 1 which required a combination of CYP2D7 gene-specific 5' primer and a CYP2D6 gene-specific 3' primer. 5. Sequence data derived from this amplified product revealed that the XbaI-9 kb allele corresponds to a novel rearrangement of the locus. This involved a deletion of an approximately 20 kilobase (kb) DNA segment generating a hybrid 5' CYP2D7/CYP2D6 3' gene. 6. The chimeric gene is non-functional presumably due to an insertion in exon 1 (characteristic of the exon 1 of the CYP2D7 gene) which causes a shift in the reading frame with premature termination of translation. Images Figure 1 Figure 2 Figure 4 PMID:8554938
Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications
NASA Astrophysics Data System (ADS)
Shahil, Khan Mohammad Farhan
Quasi two-dimensional (2D) materials obtained by the "graphene-like" exfoliation attracted tremendous attention. Such materials revealed unique electronic, thermal and optical properties, which can be potentially used in electronics, thermal management and energy conversion. This dissertation research addresses two separate but synergetic problems: (i) preparation and optical characterization of quasi-2D films of the bismuth-telluride (Bi 2Te3) family of materials, which demonstrate both thermoelectric and topological insulator properties; and (ii) investigation of thermal properties of composite materials prepared with graphene and few-layer graphene (FLG). The first part of dissertation reports properties of the exfoliated few-quintuple layers of Bi2Te3, Bi2Se3 and Sb 2Te3. Both non-resonant and resonant Raman scattering spectra have been investigated. It was found that the crystal symmetry breaking in few-quintuple films results in appearance of A1u-symmetry Raman peaks, which are not active in the bulk crystals. The scattering spectra measured under the 633-nm wavelength excitation reveals a number of resonant features, which could be used for analysis of the electronic and phonon processes in these materials. The obtained results help to understand the physical mechanisms of Raman scattering in the few-quintuple-thick films and can be used for nanometrology of topological insulator films on various substrates. The second part of the dissertation is dedicated to investigation of properties of composite materials prepared with graphene and FLG. It was found that the optimized mixture of graphene and multilayer graphene---produced by the high-yield inexpensive liquid-phase-exfoliation technique---can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300 % in the graphene-based polymer at the filler loading fraction f =10 vol. %. It was
The strength of heterogeneous volcanic rocks: A 2D approximation
NASA Astrophysics Data System (ADS)
Heap, Michael J.; Wadsworth, Fabian B.; Xu, Tao; Chen, Chong-feng; Tang, Chun'an
2016-06-01
Volcanic rocks typically contain heterogeneities in the form of crystals and pores. We investigate here the influence of such heterogeneity on the strength of volcanic rocks using an elastic damage mechanics model in which we numerically deform two-dimensional samples comprising low-strength elements representing crystals and zero-strength elements representing pores. These circular elements are stochastically generated so that there is no overlap in a medium representing the groundmass. Our modelling indicates that increasing the fraction of pores and/or crystals reduces the strength of volcanic rocks, and that increasing the pore fraction results in larger strength reductions than increasing the crystal fraction. The model also highlights an important weakening role for pore diameter, but finds that crystal diameter has a less significant influence for strength. To account for heterogeneity (pores and crystals), we propose an effective medium approach where we define an effective pore fraction ϕp‧ = Vp/(Vp + Vg) where Vp and Vg are the pore and groundmass fractions, respectively. Highly heterogeneous samples (containing high pore and/or crystal fractions) will therefore have high values of ϕp‧, and vice-versa. When we express our numerical samples (more than 200 simulations spanning a wide range of crystal and pore fractions) in terms of ϕp‧, we find that their strengths can be described by a single curve for a given pore diameter. To provide a predictive tool for the strength of heterogeneous volcanic rocks, we propose a modified version of 2D solution for the Sammis and Ashby (1986) pore-emanating crack model, a micromechanical model designed to estimate strength using microstructural attributes such as porosity, pore radius, and fracture toughness. The model, reformulated to include ϕp‧ (and therefore crystal fraction), captures the strength curves for our numerical simulations over a sample heterogeneity range relevant to volcanic systems. We find
2D/3D Visual Tracker for Rover Mast
NASA Technical Reports Server (NTRS)
Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria
2006-01-01
A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems
Chuang, Hsun-Jen; Chamlagain, Bhim; Koehler, Michael; Perera, Meeghage Madusanka; Yan, Jiaqiang; Mandrus, David; Tománek, David; Zhou, Zhixian
2016-03-09
We report a new strategy for fabricating 2D/2D low-resistance ohmic contacts for a variety of transition metal dichalcogenides (TMDs) using van der Waals assembly of substitutionally doped TMDs as drain/source contacts and TMDs with no intentional doping as channel materials. We demonstrate that few-layer WSe2 field-effect transistors (FETs) with 2D/2D contacts exhibit low contact resistances of ∼0.3 kΩ μm, high on/off ratios up to >10(9), and high drive currents exceeding 320 μA μm(-1). These favorable characteristics are combined with a two-terminal field-effect hole mobility μFE ≈ 2 × 10(2) cm(2) V(-1) s(-1) at room temperature, which increases to >2 × 10(3) cm(2) V(-1) s(-1) at cryogenic temperatures. We observe a similar performance also in MoS2 and MoSe2 FETs with 2D/2D drain and source contacts. The 2D/2D low-resistance ohmic contacts presented here represent a new device paradigm that overcomes a significant bottleneck in the performance of TMDs and a wide variety of other 2D materials as the channel materials in postsilicon electronics.
Chuang, Hsun -Jen; Chamlagain, Bhim; Koehler, Michael; ...
2016-02-04
Here, we report a new strategy for fabricating 2D/2D low-resistance ohmic contacts for a variety of transition metal dichalcogenides (TMDs) using van der Waals assembly of substitutionally doped TMDs as drain/source contacts and TMDs with no intentional doping as channel materials. We demonstrate that few-layer WSe2 field-effect transistors (FETs) with 2D/2D contacts exhibit low contact resistances of ~0.3 kΩ μm, high on/off ratios up to >109, and high drive currents exceeding 320 μA μm–1. These favorable characteristics are combined with a two-terminal field-effect hole mobility μFE ≈ 2 × 102 cm2 V–1 s–1 at room temperature, which increases to >2more » × 103 cm2 V–1 s–1 at cryogenic temperatures. We observe a similar performance also in MoS2 and MoSe2 FETs with 2D/2D drain and source contacts. The 2D/2D low-resistance ohmic contacts presented here represent a new device paradigm that overcomes a significant bottleneck in the performance of TMDs and a wide variety of other 2D materials as the channel materials in postsilicon electronics.« less
Projection-slice theorem based 2D-3D registration
NASA Astrophysics Data System (ADS)
van der Bom, M. J.; Pluim, J. P. W.; Homan, R.; Timmer, J.; Bartels, L. W.
2007-03-01
In X-ray guided procedures, the surgeon or interventionalist is dependent on his or her knowledge of the patient's specific anatomy and the projection images acquired during the procedure by a rotational X-ray source. Unfortunately, these X-ray projections fail to give information on the patient's anatomy in the dimension along the projection axis. It would be very profitable to provide the surgeon or interventionalist with a 3D insight of the patient's anatomy that is directly linked to the X-ray images acquired during the procedure. In this paper we present a new robust 2D-3D registration method based on the Projection-Slice Theorem. This theorem gives us a relation between the pre-operative 3D data set and the interventional projection images. Registration is performed by minimizing a translation invariant similarity measure that is applied to the Fourier transforms of the images. The method was tested by performing multiple exhaustive searches on phantom data of the Circle of Willis and on a post-mortem human skull. Validation was performed visually by comparing the test projections to the ones that corresponded to the minimal value of the similarity measure. The Projection-Slice Theorem Based method was shown to be very effective and robust, and provides capture ranges up to 62 degrees. Experiments have shown that the method is capable of retrieving similar results when translations are applied to the projection images.
Duality Between Spin Networks and the 2D Ising Model
NASA Astrophysics Data System (ADS)
Bonzom, Valentin; Costantino, Francesco; Livine, Etera R.
2016-06-01
The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.
Ab initio modeling of 2D layered organohalide lead perovskites
NASA Astrophysics Data System (ADS)
Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio
2016-04-01
A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place.
Defect formation and coarsening in hexagonal 2D curved crystals.
García, Nicolás A; Pezzutti, Aldo D; Register, Richard A; Vega, Daniel A; Gómez, Leopoldo R
2015-02-07
In this work we study the processes of defect formation and coarsening of two-dimensional (2D) curved crystal structures. These processes are found to strongly deviate from their counterparts in flat systems. In curved backgrounds the process of defect formation is deeply affected by the curvature, and at the onset of a phase transition the early density of defects becomes highly inhomogeneous. We observe that even a single growing crystal can produce varying densities of defects depending on its initial position and local orientation with regard to the substrate. This process is completely different from flat space, where grain boundaries are formed due to the impingement of different propagating crystals. Quenching the liquid into the crystal phase leads to the formation of a curved polycrystalline structure, characterized by complex arrays of defects. During annealing, mechanisms of geodesic curvature-driven grain boundary motion and defect annihilation lead to increasing crystalline order. Linear arrays of defects diffuse to regions of high curvature, where they are absorbed by disclinations. At the early stage of coarsening the density of dislocations is insensitive to the geometry while the population of isolated disclinations is deeply affected by curvature. The regions with high curvature act as traps for the diffusion of different structures of defects, including disclinations and domain walls.
Fracture morphology of 2-D carbon-carbon composition
NASA Technical Reports Server (NTRS)
Avery, W. B.; Herakovich, C. T.
1985-01-01
Out-of-plane tensile tests of a woven fabric carbon-carbon composite were performed in a scanning electron microscope equipped with a tensile stage and a videotape recording system. The composite was prepared from T-300 8-harness satin graphite fabric and a phenolic resin. The (0/90/0/90/0 sub 1/2) sub 2 laminate, with a Theta describing the orientation of the warp fibers of the fabric, was cured at 160 C and pyrolized at 871 C. This was followed by four cycles of resin impregnation, curing, and pyrolysis. A micrograph of the cross section of the composite is presented. Inspection of the specimen fracture surface revealed that the filaments had no residual matrix bonded to them. Further inspection revealed that the fracture was interlaminar in nature. Failure occurred where filaments of adjacent plies had the same orientation. Thus it is postulated that improvement in transverse tensile strength of 2-D carbon-carbon depends on the improvement of the filament-matrix bond strength.
Image Appraisal for 2D and 3D Electromagnetic Inversion
Alumbaugh, D.L.; Newman, G.A.
1999-01-28
Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.
2D/3D registration algorithm for lung brachytherapy
Zvonarev, P. S.; Farrell, T. J.; Hunter, R.; Wierzbicki, M.; Hayward, J. E.; Sur, R. K.
2013-02-15
Purpose: A 2D/3D registration algorithm is proposed for registering orthogonal x-ray images with a diagnostic CT volume for high dose rate (HDR) lung brachytherapy. Methods: The algorithm utilizes a rigid registration model based on a pixel/voxel intensity matching approach. To achieve accurate registration, a robust similarity measure combining normalized mutual information, image gradient, and intensity difference was developed. The algorithm was validated using a simple body and anthropomorphic phantoms. Transfer catheters were placed inside the phantoms to simulate the unique image features observed during treatment. The algorithm sensitivity to various degrees of initial misregistration and to the presence of foreign objects, such as ECG leads, was evaluated. Results: The mean registration error was 2.2 and 1.9 mm for the simple body and anthropomorphic phantoms, respectively. The error was comparable to the interoperator catheter digitization error of 1.6 mm. Preliminary analysis of data acquired from four patients indicated a mean registration error of 4.2 mm. Conclusions: Results obtained using the proposed algorithm are clinically acceptable especially considering the complications normally encountered when imaging during lung HDR brachytherapy.
Phase diagram of split 2D dipolar spin ice
NASA Astrophysics Data System (ADS)
Roscilde, Tommaso; Henry, Louis-Paul
2013-03-01
Long-ranged dipolar interactions, which are very natural in artificial square-lattice spin ice, can mask some of the most relevant aspects of spin-ice physics, as they remove the extensive degeneracy of the ground state manifold to give a unique ground state, and they bind monopole pairs into localized spin flips. Following an earlier idea of G. Möller and R. Moessner [Phys. Rev. Lett. 96, 237202 (2006)] we investigate how adding a third direction to square ice allows to recover fundamental traits of spin-ice physics even in the presence of dipolar interactions. Using Monte Carlo simulations based on a generalized loop algorithm, we explore the phase diagram of square dipolar spin ice in which horizontal and vertical dipoles are spatially separated in a third direction (split 2D spin ice). As a function of the splitting we recover a two-fold degenerate staggered state for coplanar dipoles, and a four-fold degenerate ``Manhattan'' state for strongly split dipoles, separated by a first order transition. The competition between the two states at intermediate splitting leads to a strong suppression of the ordering transition temperatures, and makes space for the observation of a hallmark of spin-ice physics in the paramagnetic phase: pinch points in the static structure factor.
The future of 2D metrology for display manufacturing
NASA Astrophysics Data System (ADS)
Sandstrom, Tor; Wahlsten, Mikael; Park, Youngjin
2016-10-01
The race to 800 PPI and higher in mobile devices and the transition to OLED displays are driving a dramatic development of mask quality: resolution, CDU, registration, and complexity. 2D metrology for large area masks is necessary and must follow the roadmap. Driving forces in the market place point to continued development of even more dense displays. State-of-the-art metrology has proven itself capable of overlay below 40 nm and registration below 65 nm for G6 masks. Future developments include incoming and recurrent measurements of pellicalized masks at the panel maker's factory site. Standardization of coordinate systems across supplier networks is feasible. This will enable better yield and production economy for both mask and panel maker. Better distortion correction methods will give better registration on the panels and relax the flatness requirements of the mask blanks. If panels are measured together with masks and the results are used to characterize the aligners, further quality and yield improvements are possible. Possible future developments include in-cell metrology and integration with other instruments in the same platform.
2D Vortex Motion Driven by a Background Vorticity Gradient.
NASA Astrophysics Data System (ADS)
Schecter, D. A.; Dubin, D. H. E.
1999-11-01
A background vorticity gradient can strongly influence the motion of vortices in 2D fluids. Examples are vortex motion in magnetized electron plasmas and hurricane tracks in planetary atmospheres.(See for example Huang, Fine and Driscoll, Phys. Rev. Lett. 74), 4424 (1995); C.G. Rossby, J. Mar. Res. 7, 175 (1948). Here, the vortex motion is examined numerically and analytically for the case of a point-like vortex in a background shear flow that is initially axisymmetric. The vortex acts to level the local background vorticity gradient. Conservation of angular momentum dictates that positive vortices (``clumps'') and negative vortices (``holes'') react oppositely: clumps move up the gradient, whereas holes move down the gradient. Both clumps and holes can be classified as either prograde or retrograde, depending on whether they rotate with or against the local background shear. An analysis, in which the background response to the vortex is linearized, gives the trajectory of a small retrograde vortex. When the vortex is prograde, the background response is nonlinear. A prograde vortex moves along the gradient at a slower rate that is given by a simple ``mix-and-move'' estimate. This rate vanishes when the local shear is sufficiently large, due to the trapping of background fluid around the vortex.
2D metal carbides and nitrides (MXenes) for energy storage
NASA Astrophysics Data System (ADS)
Anasori, Babak; Lukatskaya, Maria R.; Gogotsi, Yury
2017-01-01
The family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti3C2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. The availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenes allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. In this Review, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research.
2D-fractal based algorithms for nanoparticles characterization
NASA Astrophysics Data System (ADS)
Bonifazi, Giuseppe; Serranti, Silvia
2014-02-01
Fractal geometry concerns the study of non-Euclidean geometrical figures generated by a recursive sequence of mathematical operations. The proposed 2D-fractal approach was applied to characterise the image structure and texture generated by fine and ultra-fine particles when impacting on a flat surface. The work was developed with reference to particles usually produced by ultra-fine milling addressed to generate nano-particles population. In order to generate different particle populations to utilize in the study, specific milling actions have been thus performed adopting different milling actions and utilising different materials, both in terms of original size class distribution and chemical-physical attributes. The aim of the work was to develop a simple, reliable and low cost analytical set of procedures with the ability to establish correlations between particles detected by fractal characteristics and their milled-induced-properties (i.e. size class distribution, shape, surface properties, etc.). Such logic should constitute the core of a control engine addressed to realize a full monitoring of the milling process as well as to establish correlation between operative parameters, fed and resulting products characteristics.
Vorticity Generation by Rough Walls in 2D Decaying Turbulence
NASA Astrophysics Data System (ADS)
Tóth, Gábor; Jánosi, Imre M.
2015-12-01
In this work we present Lattice Boltzmann simulations of a decaying vortex array in a 2D rectangular domain, which is bounded by a random rough wall from one side. In order to separate the effects of the collisions with the rough wall, the opposite (smooth) rigid wall is placed at a larger distance from the center of the vortex array. Periodic boundary condition is imposed in the perpendicular direction. Well defined random roughness is generated by the widely studied Wolf-Villain surface growth algorithm. The main finding is that collisions with a rough wall generate excess vorticity compared with a smooth boundary, while the kinetic energy decreases monotonously. A proper measure is the integrated excess enstrophy, which exhibits an apparent maximum at an "optimal" roughness range. Numerical values of the excess enstrophy are very sensitive to a particular configuration (wall shape and vortex lattice randomization), however the "optimal" roughness exhibits surface features of similar characteristic sizes than that of the decaying vortices.
Interaction mechanism of biomolecules on vacancy defected 2D materials
NASA Astrophysics Data System (ADS)
Gürel, Hikmet Hakan; Salmankurt, Bahadır
2017-02-01
In this work, we present a first principles study of the adsorption of Adenine which is a nucleobases, Histide and Leucine molecules, which are the amino acids, on vacancy defected single layer materials such as graphene and phosphorene. Among these materials, graphene, which is a single layer honeycomb structure of carbon. Also, phosphorene is recently synthesized by mechanical exfoliation of the black phosphorus. Phosphorene forming a puckered honeycomb structure similar to silicene. However, unlike zero-bandgap graphene and silicene, phosphorene is a direct band gap semiconductor, which makes it very attractive for the nanoelectronic devices. According to the studies, local defects can always exist at any temperature. The most probable defect type is the single vacancy in the single layer honeycomb structures. Vacancy defects can be emerged during growth process and they change the properties of materials significantly. In this study, we show that how to manipulate interaction and binding mechanisms of biomolecules with 2D materials with increased chemical activity by vacancy defects.
Macroscopic Behavior of Nematics with D2d Symmetry
NASA Astrophysics Data System (ADS)
Pleiner, Harald; Brand, Helmut R.
2010-03-01
We discuss the symmetry properties and the macroscopic behavior of a nematic liquid crystal phase with D2d symmetry. Such a phase is a prime candidate for nematic phases made from banana-shaped molecules where the usual quadrupolar order coexists with octupolar (tetrahedratic) order. The resulting nematic phase is non-polar. While this phase could resemble the classic D∞h nematic in the polarizing microscope, it has many static as well as reversible and irreversible properties unknown to non-polar nematics without octupolar order. In particular, there is a linear gradient term in the free energy that selects parity leading to ambidextrously helical ground states when the molecules are achiral. In addition, there are static and irreversible coupling terms of a type only met otherwise in macroscopically chiral liquid crystals, e.g. the ambidextrous analogues of Lehmann-type effects known from cholesteric liquid crystals. Finally, we discuss certain nonlinear aspects of the dynamics related to the non-commutativity of three-dimensional finite rotations as well as other structural nonlinear hydrodynamic effects.
Effects of Agent's Repulsion in 2d Flocking Models
NASA Astrophysics Data System (ADS)
Moussa, Najem; Tarras, Iliass; Mazroui, M'hammed; Boughaleb, Yahya
In nature many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex behavior of these systems, many models have been proposed and tested so far. This paper deals with an extension of the Vicsek model, by including a second zone of repulsion, where each agent attempts to maintain a minimum distance from the others. The consideration of this zone in our study seems to play an important role during the travel of agents in the two-dimensional (2D) flocking models. Our numerical investigations show that depending on the basic ingredients such as repulsion radius (R1), effect of density of agents (ρ) and noise (η), our nonequilibrium system can undergo a kinetic phase transition from no transport to finite net transport. For different values of ρ, kinetic phase diagrams in the plane (η ,R1) are found. Implications of these findings are discussed.
2D and 3D Chromosome Painting in Malaria Mosquitoes
George, Phillip; Sharma, Atashi; Sharakhov, Igor V
2014-01-01
Fluorescent in situ hybridization (FISH) of whole arm chromosome probes is a robust technique for mapping genomic regions of interest, detecting chromosomal rearrangements, and studying three-dimensional (3D) organization of chromosomes in the cell nucleus. The advent of laser capture microdissection (LCM) and whole genome amplification (WGA) allows obtaining large quantities of DNA from single cells. The increased sensitivity of WGA kits prompted us to develop chromosome paints and to use them for exploring chromosome organization and evolution in non-model organisms. Here, we present a simple method for isolating and amplifying the euchromatic segments of single polytene chromosome arms from ovarian nurse cells of the African malaria mosquito Anopheles gambiae. This procedure provides an efficient platform for obtaining chromosome paints, while reducing the overall risk of introducing foreign DNA to the sample. The use of WGA allows for several rounds of re-amplification, resulting in high quantities of DNA that can be utilized for multiple experiments, including 2D and 3D FISH. We demonstrated that the developed chromosome paints can be successfully used to establish the correspondence between euchromatic portions of polytene and mitotic chromosome arms in An. gambiae. Overall, the union of LCM and single-chromosome WGA provides an efficient tool for creating significant amounts of target DNA for future cytogenetic and genomic studies. PMID:24429496
Synthesis and characterization of 2D molybdenum carbide (MXene)
Halim, Joseph; Kota, Sankalp; Lukatskaya, Maria R.; ...
2016-02-17
Large scale synthesis and delamination of 2D Mo2CT x (where T is a surface termination group) has been achieved by selectively etching gallium from the recently discovered nanolaminated, ternary transition metal carbide Mo2Ga2C. Different synthesis and delamination routes result in different flake morphologies. The resistivity of free-standing Mo2CT x films increases by an order of magnitude as the temperature is reduced from 300 to 10 K, suggesting semiconductor-like behavior of this MXene, in contrast to Ti3C2T x which exhibits metallic behavior. At 10 K, the magnetoresistance is positive. Additionally, changes in electronic transport are observed upon annealing of the films.more » When 2 μm thick films are tested as electrodes in supercapacitors, capacitances as high as 700 F cm–3 in a 1 m sulfuric acid electrolyte and high capacity retention for at least 10,000 cycles at 10 A g–1 are obtained. Free-standing Mo2CT x films, with ≈8 wt% carbon nanotubes, perform well when tested as an electrode material for Li-ions, especially at high rates. In conclusion, at 20 and 131 C cycling rates, stable reversible capacities of 250 and 76 mAh g–1, respectively, are achieved for over 1000 cycles.« less
Computing 2D constrained delaunay triangulation using the GPU.
Qi, Meng; Cao, Thanh-Tung; Tan, Tiow-Seng
2013-05-01
We propose the first graphics processing unit (GPU) solution to compute the 2D constrained Delaunay triangulation (CDT) of a planar straight line graph (PSLG) consisting of points and edges. There are many existing CPU algorithms to solve the CDT problem in computational geometry, yet there has been no prior approach to solve this problem efficiently using the parallel computing power of the GPU. For the special case of the CDT problem where the PSLG consists of just points, which is simply the normal Delaunay triangulation (DT) problem, a hybrid approach using the GPU together with the CPU to partially speed up the computation has already been presented in the literature. Our work, on the other hand, accelerates the entire computation on the GPU. Our implementation using the CUDA programming model on NVIDIA GPUs is numerically robust, and runs up to an order of magnitude faster than the best sequential implementations on the CPU. This result is reflected in our experiment with both randomly generated PSLGs and real-world GIS data having millions of points and edges.
Numerical simulation of rock cutting using 2D AUTODYN
NASA Astrophysics Data System (ADS)
Woldemichael, D. E.; Rani, A. M. Abdul; Lemma, T. A.; Altaf, K.
2015-12-01
In a drilling process for oil and gas exploration, understanding of the interaction between the cutting tool and the rock is important for optimization of the drilling process using polycrystalline diamond compact (PDC) cutters. In this study the finite element method in ANSYS AUTODYN-2D is used to simulate the dynamics of cutter rock interaction, rock failure, and fragmentation. A two-dimensional single PDC cutter and rock model were used to simulate the orthogonal cutting process and to investigate the effect of different parameters such as depth of cut, and back rake angle on two types of rocks (sandstone and limestone). In the simulation, the cutting tool was dragged against stationary rock at predetermined linear velocity and the depth of cut (1,2, and 3 mm) and the back rake angles(-10°, 0°, and +10°) were varied. The simulation result shows that the +10° back rake angle results in higher rate of penetration (ROP). Increasing depth of cut leads to higher ROP at the cost of higher cutting force.
Simultaneous 2D Doppler backscattering from edge turbulence
NASA Astrophysics Data System (ADS)
Thomas, David; Brunner, Kai; Freethy, Simon; Huang, Billy; Shevchenko, Vladimir; Vann, Roddy
2015-11-01
The Synthetic Aperture Microwave Imaging (SAMI) diagnostic (previously at MAST and now at NSTX-U) actively probes the plasma edge using a wide (80 degree beam width) and broadband (10-34.5 GHz) beam. It digitizes the phase and amplitude of the Doppler backscattered signal using a receiving array of eight antennas which can be focused in any direction post shot to an angular range of 6-24 degree FWHM. This allows Doppler BackScattering (DBS) experiments to be conducted in every direction within the field of view simultaneously. This capability is unique to SAMI and is a novel way of conducting DBS experiments. SAMI has measured the magnetic pitch angle in the edge for the first time using a backscattering diagnostic. This is possible with simultaneous 2D DBS because the maximum backscattered power is perpendicular to the turbulence and turbulence is elongated along the magnetic field. SAMI has also studied the effect of NBI and the L-H transition on turbulent velocity, and turbulence suppression in the edge during H-mode. Initial results from all of these studies will be presented. This work is supported by the Engineering and Physical Sciences Research Council Grants EP/K504178 and EP/H016732.
Capturing nonlocal effects in 2D granular flows
NASA Astrophysics Data System (ADS)
Kamrin, Ken; Koval, Georg
2013-03-01
There is an industrial need, and a scientific desire, to produce a continuum model that can predict the flow of dense granular matter in an arbitrary geometry. A viscoplastic continuum approach, developed over recent years, has shown some ability to approximate steady flow and stress profiles in multiple inhomogeneous flow environments. However, the model incorrectly represents phenomena observed in the slow, creeping flow regime. As normalized flow-rate decreases, granular stresses are observed to become largely rate-independent and a dominating length-scale emerges in the mechanics. This talk attempts to account for these effects, in the simplified case of 2D, using the notion of nonlocal fluidity, which has proven successful in treating nonlocal effects in emulsions. The idea is to augment the local granular fluidity law with a diffusive second-order term scaled by the particle size, which spreads flowing zones accordingly. Below the yield stress, the local contribution vanishes and the fluidity becomes rate-independent, as we require. We implement the modified law in multiple geometries and validate its flow and stress predictions in multiple geometries compared against discrete particle simulations. In so doing, we demonstrate that the nonlocal relation proposed is satisfied universally in a seemingly geometry-independent fashion.
Nonlinear standing waves in 2-D acoustic resonators.
Cervenka, Milan; Bednarik, Michal
2006-12-22
This paper deals with 2-D simulation of finite-amplitude standing waves behavior in rectangular acoustic resonators. Set of three partial differential equations in third approximation formulated in conservative form is derived from fundamental equations of gas dynamics. These equations form a closed set for two components of acoustic velocity vector and density, the equations account for external driving force, gas dynamic nonlinearities and thermoviscous dissipation. Pressure is obtained from solution of the set by means of an analytical formula. The equations are formulated in the Cartesian coordinate system. The model equations set is solved numerically in time domain using a central semi-discrete difference scheme developed for integration of sets of convection-diffusion equations with two or more spatial coordinates. Numerical results show various patterns of acoustic field in resonators driven using vibrating piston with spatial distribution of velocity. Excitation of lateral shock-wave mode is observed when resonant conditions are fulfilled for longitudinal as well as for transversal direction along the resonator cavity.
2-D Model for Normal and Sickle Cell Blood Microcirculation
NASA Astrophysics Data System (ADS)
Tekleab, Yonatan; Harris, Wesley
2011-11-01
Sickle cell disease (SCD) is a genetic disorder that alters the red blood cell (RBC) structure and function such that hemoglobin (Hb) cannot effectively bind and release oxygen. Previous computational models have been designed to study the microcirculation for insight into blood disorders such as SCD. Our novel 2-D computational model represents a fast, time efficient method developed to analyze flow dynamics, O2 diffusion, and cell deformation in the microcirculation. The model uses a finite difference, Crank-Nicholson scheme to compute the flow and O2 concentration, and the level set computational method to advect the RBC membrane on a staggered grid. Several sets of initial and boundary conditions were tested. Simulation data indicate a few parameters to be significant in the perturbation of the blood flow and O2 concentration profiles. Specifically, the Hill coefficient, arterial O2 partial pressure, O2 partial pressure at 50% Hb saturation, and cell membrane stiffness are significant factors. Results were found to be consistent with those of Le Floch [2010] and Secomb [2006].
Photocarrier transport in 2D macroporous silicon structures
NASA Astrophysics Data System (ADS)
Karachevtseva, L.; Onyshchenko, V.; Sachenko, A.
2010-12-01
The mechanisms of photocarrier transport through a barrier in the surface space-charge region (SCR) of 2D macroporous silicon structures have been studied at photon energies comparable to that of the silicon indirect band-to-band transition. It was found that the photoconductivity relaxation time was determined by the light modulation of barrier on the macropore surface; as a result, the relaxation itself obeyed the logarithmic law. The temperature dependence of the photoconductivity relaxation time was determined by the thermionic emission mechanism of the current transport in the SCR at temperatures T > 180 K, and by the tunnel current flow at T < 100 K, with temperature-independent tunnelling probability. The photo-emf was found to become saturated or reverse its sign to negative at temperatures below 130 K because of light absorption due to optical transitions via surface electronic states close to the silicon conduction band. In this case, the surface band bending increases due to the growth of a negative charge of the semiconductor surface. The equilibrium electrons in the bulk and photoexcited holes on the macropore surface recombine through the channel of multistage tunnel recombination between the conduction and valence bands.
Steady propagation of Bingham plugs in 2D channels
NASA Astrophysics Data System (ADS)
Zamankhan, Parsa; Takayama, Shuichi; Grotberg, James
2009-11-01
The displacement of the yield-stress liquid plugs in channels and tubes occur in many biological systems and industrial processes. Among them is the propagation of mucus plugs in the respiratory tracts as may occur in asthma, cystic fibrosis, or emphysema. In this work the steady propagation of mucus plugs in a 2D channel is studied numerically, assuming that the mucus is a pure Bingham fluid. The governing equations are solved by a mixed-discontinuous finite element formulation and the free surface is resolved with the method of spines. The constitutive equation for a pure Bingham fluid is modeled by a regularization method. Fluid inertia is neglected, so the controlling parameters in a steady displacement are; the capillary number, Ca, Bingham number ,Bn, and the plug length. According to the numerical results, the yield stress behavior of the plug modifies the plug shape, the pattern of the streamlines and the distribution of stresses in the plug domain and along the walls in a significant way. The distribution along the walls is a major factor in studying cell injuries. This work is supported through the grant NIH HL84370.
Global 2-D intercomparison of sectional and modal aerosol modules
Weisenstein, D K; Penner, J E; Herzog, M; Liu, Xiaohong
2007-05-08
We present an intercomparison of two aerosol modules, one sectional, one modal, in a global 2-D model in order to differentiate their behavior for tropospheric and stratospheric applications. We model only binary sulfuric acid-water aerosols in this study. Two versions of the sec-tional model and three versions of the modal model are used to test the sensitivity of background aerosol mass and size distribution to the number of bins or modes and to the pre-scribed width of the largest mode. We find modest sensitivity to the number of bins (40 vs 150) used in the sectional model. Aerosol mass is found to be reduced in a modal model if care is not taken in selecting the width of the largest lognormal mode, reflecting differences in sedimentation in the middle stratosphere. The size distributions calculated by the sec-tional model can be better matched by a modal model with four modes rather than three modes in most but not all sit-uations. A simulation of aerosol decay following the 1991 eruption of Mt. Pinatubo shows that the representation of the size distribution can have a signflcant impact on model-calculated aerosol decay rates in the stratosphere. Between 1991 and 1995, aerosol mass and surface area density calcu-lated by two versions of the modal model adequately match results from the sectional model. Calculated effective radius for the same time period shows more intermodel variability.
Tracking of deformable target in 2D ultrasound images
NASA Astrophysics Data System (ADS)
Royer, Lucas; Marchal, Maud; Le Bras, Anthony; Dardenne, Guillaume; Krupa, Alexandre
2015-03-01
In this paper, we propose a novel approach for automatically tracking deformable target within 2D ultrasound images. Our approach uses only dense information combined with a physically-based model and has therefore the advantage of not using any fiducial marker nor a priori knowledge on the anatomical environment. The physical model is represented by a mass-spring damper system driven by different types of forces where the external forces are obtained by maximizing image similarity metric between a reference target and a deformed target across the time. This deformation is represented by a parametric warping model where the optimal parameters are estimated from the intensity variation. This warping function is well-suited to represent localized deformations in the ultrasound images because it directly links the forces applied on each mass with the motion of all the pixels in its vicinity. The internal forces constrain the deformation to physically plausible motions, and reduce the sensitivity to the speckle noise. The approach was validated on simulated and real data, both for rigid and free-form motions of soft tissues. The results are very promising since the deformable target could be tracked with a good accuracy for both types of motion. Our approach opens novel possibilities for computer-assisted interventions where deformable organs are involved and could be used as a new tool for interactive tracking of soft tissues in ultrasound images.
2D modeling of electromagnetic waves in cold plasmas
Crombé, K.; Van Eester, D.; Koch, R.; Kyrytsya, V.
2014-02-12
The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.
Generalization Technique for 2D+SCALE Dhe Data Model
NASA Astrophysics Data System (ADS)
Karim, Hairi; Rahman, Alias Abdul; Boguslawski, Pawel
2016-10-01
Different users or applications need different scale model especially in computer application such as game visualization and GIS modelling. Some issues has been raised on fulfilling GIS requirement of retaining the details while minimizing the redundancy of the scale datasets. Previous researchers suggested and attempted to add another dimension such as scale or/and time into a 3D model, but the implementation of scale dimension faces some problems due to the limitations and availability of data structures and data models. Nowadays, various data structures and data models have been proposed to support variety of applications and dimensionality but lack research works has been conducted in terms of supporting scale dimension. Generally, the Dual Half Edge (DHE) data structure was designed to work with any perfect 3D spatial object such as buildings. In this paper, we attempt to expand the capability of the DHE data structure toward integration with scale dimension. The description of the concept and implementation of generating 3D-scale (2D spatial + scale dimension) for the DHE data structure forms the major discussion of this paper. We strongly believed some advantages such as local modification and topological element (navigation, query and semantic information) in scale dimension could be used for the future 3D-scale applications.
Fragile watermarking using the VW2D watermark
NASA Astrophysics Data System (ADS)
Wolfgang, Raymond B.; Delp, Edward J., III
1999-04-01
Two classes of digital watermarks have been developed to protect the copyright ownership of digital images. Robust watermarks are designed to withstand attacks on an image (such as compression or scaling), while fragile watermarks are designed to detect minute changes in an image. Fragile marks can also identify where an image has been altered. This paper compares two fragile watermarks. The first method uses a hash function to obtain a digest of the image. An altered or forged version of the original image is then hashed and the digest is compared to the digest of the original image. If the image has changed the digests will be different. We will describe how images can be hashed so that any changes can be spatially localized. The second method uses the Variable-Watermark Two- Dimensional algorithm (VW2D). The sensitivity to changes is user-specific. Either no changes can be permitted (similar to a hard hash function), or an image can be altered and still be labeled authentic. Latter algorithms are known as semi-fragile watermarks. We will describe the performance of these two techniques and discuss under what circumstances one would use a particular technique.
SALE2D. General Transient Fluid Flow Algorithm
Amsden, A.A.; Ruppel, H.M.; Hirt, C.W.
1981-06-01
SALE2D calculates two-dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program.
Antenna coupled detectors for 2D staring focal plane arrays
NASA Astrophysics Data System (ADS)
Gritz, Michael A.; Kolasa, Borys; Lail, Brian; Burkholder, Robert; Chen, Leonard
2013-06-01
Millimeter-wave (mmW)/sub-mmW/THz region of the electro-magnetic spectrum enables imaging thru clothing and other obscurants such as fog, clouds, smoke, sand, and dust. Therefore considerable interest exists in developing low cost millimeter-wave imaging (MMWI) systems. Previous MMWI systems have evolved from crude mechanically scanned, single element receiver systems into very complex multiple receiver camera systems. Initial systems required many expensive mmW integrated-circuit low-noise amplifiers. In order to reduce the cost and complexity of the existing systems, attempts have been made to develop new mmW imaging sensors employing direct detection arrays. In this paper, we report on Raytheon's recent development of a unique focal plane array technology, which operates broadly from the mmW through the sub-mmW/THz region. Raytheon's innovative nano-antenna based detector enables low cost production of 2D staring mmW focal plane arrays (mmW FPA), which not only have equivalent sensitivity and performance to existing MMWI systems, but require no mechanical scanning.
Femtosecond Dynamics of Electrons in 2-D Dissipative Systems
NASA Astrophysics Data System (ADS)
Harris, Charles
2000-03-01
Transitions between weakly coupled initial and final states can be treated with a lowest order perturbation theory in the electronic coupling which yields the well-known golden rule in this non-adiabatic limit. In strongly interacting systems, one often resorts to semiclassical treatments, such as the Landau-Zener formula for the transition probability in the adiabatic limit. Recent electron transfer theory by Stuchebrukhov and Song treats the two limit on equal footing by summing over all perturbation orders in electronic coupling[1]. Here we present the application of this theory to model the dynamics of electron self-trapping in 2-D at the n-heptane/Ag(111) and anthracene/Ag(111) interface. Our results revealed an intermediate electronic coupling for the self-trapping process at the n-heptane/Ag(111) interface which can mainly be described by a non-adiabatic process. Results for electron self-trapping at the anthracene/Ag(111) interface revealed a stronger electronic coupling which requires the summing of higher perturbation orders. [1] A.A. Stuchebrukhov and X. song, J. Chem. Phys. 101, 9354, 1994. [2] N.-H. Ge,C.M. Wong, R.L. Lingle, Jr., J.D. McNeill, K.J. Gaffney, and C.B. Harris, Science 279, 202, 1998.
Chaotic advection in 2D anisotropic porous media
NASA Astrophysics Data System (ADS)
Varghese, Stephen; Speetjens, Michel; Trieling, Ruben; Toschi, Federico
2015-11-01
Traditional methods for heat recovery from underground geothermal reservoirs employ a static system of injector-producer wells. Recent studies in literature have shown that using a well-devised pumping scheme, through actuation of multiple injector-producer wells, can dramatically enhance production rates due to the increased scalar / heat transport by means of chaotic advection. However the effect of reservoir anisotropy on kinematic mixing and heat transport is unknown and has to be incorporated and studied for practical deployment in the field. As a first step, we numerically investigate the effect of anisotropy (both magnitude and direction) on (chaotic) advection of passive tracers in a time-periodic Darcy flow within a 2D circular domain driven by periodically reoriented diametrically opposite source-sink pairs. Preliminary results indicate that anisotropy has a significant impact on the location, shape and size of coherent structures in the Poincare sections. This implies that the optimal operating parameters (well spacing, time period of well actuation) may vary strongly and must be carefully chosen so as to enhance subsurface transport. This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of Netherlands Organisation for Scientific Research (NWO). This research program is co-financed by Shell Global Solutions International B.V.
Global small solutions of 2-D incompressible MHD system
NASA Astrophysics Data System (ADS)
Lin, Fanghua; Xu, Li; Zhang, Ping
2015-11-01
In this paper, we consider the global wellposedness of 2-D incompressible magneto-hydrodynamical system with smooth initial data which is close to some non-trivial steady state. It is a coupled system between the Navier-Stokes equations and a free transport equation with a universal nonlinear coupling structure. The main difficulty of the proof lies in exploring the dissipative mechanism of the system. To achieve this and to avoid the difficulty of propagating anisotropic regularity for the free transport equation, we first reformulate our system (1.1) in the Lagrangian coordinates (2.19). Then we employ anisotropic Littlewood-Paley analysis to establish the key a prioriL1 (R+ ; Lip (R2)) estimate for the Lagrangian velocity field Yt. With this estimate, we can prove the global wellposedness of (2.19) with smooth and small initial data by using the energy method. We emphasize that the algebraic structure of (2.19) is crucial for the proofs to work. The global wellposedness of the original system (1.1) then follows by a suitable change of variables.
Depinning transition and 2D superlubricity in incommensurate colloidal monolayers
NASA Astrophysics Data System (ADS)
Mandelli, Davide; Vanossi, Andrea; Manini, Nicola; Tosatti, Erio
2014-03-01
Colloidal monolayers sliding over periodic corrugated potential are highly tunable systems allowing to visualize the dynamics between crystalline surfaces. Based on molecular dynamics, Vanossi and coworkers reproduced the main experimental results and explored the potential impact of colloid sliding in nanotribology. The degree of interface commensurability was found to play a major role in determining the frictional properties, the static friction force Fs becoming vanishingly small in incommensurate geometries for weak corrugation U0.Lead by this result,here we systematically investigate the possibility to observe a 2D Aubry-like transition from a superlubric state to a pinned state for increasing U0. By using a reliable protocol, we generate annealed configurations at different values of U0 for an underdense monolayer. We find Fs to be vanishingly small up to a critical corrugation Uc coinciding with an abrupt structural transition in the ground state configuration. Similarly to what is observed in the Frenkel Kontorova model,this transition is characterized by a significant decrease in the number of particles sampling regions near the maxima of the substrate potential. Research partly sponsored by Sinergia Project CRSII2 136287-1 and ERC 2012ADG320796 MODPHYSFRICT.
Photorealistic image synthesis and camera validation from 2D images
NASA Astrophysics Data System (ADS)
Santos Ferrer, Juan C.; González Chévere, David; Manian, Vidya
2014-06-01
This paper presents a new 3D scene reconstruction technique using the Unity 3D game engine. The method presented here allow us to reconstruct the shape of simple objects and more complex ones from multiple 2D images, including infrared and digital images from indoor scenes and only digital images from outdoor scenes and then add the reconstructed object to the simulated scene created in Unity 3D, these scenes are then validated with real world scenes. The method used different cameras settings and explores different properties in the reconstructions of the scenes including light, color, texture, shapes and different views. To achieve the highest possible resolution, it was necessary the extraction of partial textures from visible surfaces. To recover the 3D shapes and the depth of simple objects that can be represented by the geometric bodies, there geometric characteristics were used. To estimate the depth of more complex objects the triangulation method was used, for this the intrinsic and extrinsic parameters were calculated using geometric camera calibration. To implement the methods mentioned above the Matlab tool was used. The technique presented here also let's us to simulate small simple videos, by reconstructing a sequence of multiple scenes of the video separated by small margins of time. To measure the quality of the reconstructed images and video scenes the Fast Low Band Model (FLBM) metric from the Video Quality Measurement (VQM) software was used. Low bandwidth perception based features include edges and motion.
Topological Toughening of graphene and other 2D materials
NASA Astrophysics Data System (ADS)
Gao, Huajian
It has been claimed that graphene, with the elastic modulus of 1TPa and theoretical strength as high as 130 GPa, is the strongest material. However, from an engineering point of view, it is the fracture toughness that determines the actual strength of materials, as crack-like flaws (i.e., cracks, holes, notches, corners, etc.) are inevitable in the design, fabrication, and operation of practical devices and systems. Recently, it has been demonstrated that graphene has very low fracture toughness, in fact close to that of ideally brittle solids. These findings have raised sharp questions and are calling for efforts to explore effective methods to toughen graphene. Recently, we have been exploring the potential use of topological effects to enhance the fracture toughness of graphene. For example, it has been shown that a sinusoidal graphene containing periodically distributed disclination quadrupoles can achieve a mode I fracture toughness nearly twice that of pristine graphene. Here we report working progresses on further studies of topological toughening of graphene and other 2D materials. A phase field crystal method is adopted to generate the atomic coordinates of material with specific topological patterns. We then perform molecular dynamics simulations of fracture in the designed samples, and observe a variety of toughening mechanisms, including crack tip blunting, crack trapping, ligament bridging, crack deflection and daughter crack initiation and coalescence.
Digit ratio (2D:4D) and hand preference for writing in the BBC Internet Study.
Manning, J T; Peters, M
2009-09-01
The ratio of the length of the second to the fourth digit (2D:4D) may be negatively correlated with prenatal testosterone. Hand preference has been linked with prenatal testosterone and 2D:4D. Here we show that 2D:4D is associated with hand preference for writing in a large internet sample (n>170,000) in which participants self-reported their finger lengths. We replicated a significant association between right 2D:4D and writing hand preference (low right 2D:4D associated with left hand preference) as well as a significant correlation between writing hand preference and the difference between left and right 2D:4D or Dr-l (low Dr-l associated with left hand preference). A new significant correlation between left 2D:4D and writing hand preference was also shown (high left 2D:4D associated with left hand preference). There was a clear interaction between writing hand preference and 2D:4D: The left 2D:4D was significantly larger than the right 2D:4D in male and female left-handed writers, and the right hand 2D:4D was significantly larger than the left hand 2D:4D in male and female right-handed writers.
Koh, Kwi Hye; Pan, Xian; Zhang, Wei; McLachlan, Alan; Urrutia, Raul; Jeong, Hyunyoung
2014-12-01
Cytochrome P450 2D6 (CYP2D6), a major drug-metabolizing enzyme, is responsible for metabolism of approximately 25% of marketed drugs. Clinical evidence indicates that metabolism of CYP2D6 substrates is increased during pregnancy, but the underlying mechanisms remain unclear. To identify transcription factors potentially responsible for CYP2D6 induction during pregnancy, a panel of genes differentially expressed in the livers of pregnant versus nonpregnant CYP2D6-humanized (tg-CYP2D6) mice was compiled via microarray experiments followed by real-time quantitative reverse-transcription polymerase chain reaction(qRT-PCR) verification. As a result, seven transcription factors-activating transcription factor 5 (ATF5), early growth response 1 (EGR1), forkhead box protein A3 (FOXA3), JUNB, Krüppel-like factor 9 (KLF9), KLF10, and REV-ERBα-were found to be up-regulated in liver during pregnancy. Results from transient transfection and promoter reporter gene assays indicate that KLF9 itself is a weak transactivator of CYP2D6 promoter but significantly enhances CYP2D6 promoter transactivation by hepatocyte nuclear factor 4 (HNF4α), a known transcriptional activator of CYP2D6 expression. The results from deletion and mutation analysis of CYP2D6 promoter activity identified a KLF9 putative binding motif at -22/-14 region to be critical in the potentiation of HNF4α-induced transactivation of CYP2D6. Electrophoretic mobility shift assays revealed a direct binding of KLF9 to the putative KLF binding motif. Results from chromatin immunoprecipitation assay showed increased recruitment of KLF9 to CYP2D6 promoter in the livers of tg-CYP2D6 mice during pregnancy. Taken together, our data suggest that increased KLF9 expression is in part responsible for CYP2D6 induction during pregnancy via the potentiation of HNF4α transactivation of CYP2D6.
Serum flecainide S/R ratio reflects the CYP2D6 genotype and changes in CYP2D6 activity.
Doki, Kosuke; Sekiguchi, Yukio; Kuga, Keisuke; Aonuma, Kazutaka; Homma, Masato
2015-08-01
The aims of this study were to clarify whether the ratio of S- to R-flecainide (S/R ratio) in the serum flecainide concentration was associated with the stereoselectivity of flecainide metabolism, and to investigate the effects of the cytochrome P450 (CYP) 2D6 (CYP2D6) genotype and CYP2D6 inhibitor on the serum flecainide S/R ratio. In vitro studies using human liver microsomes and cDNA-expressed CYP isoforms suggested that variability in the serum flecainide S/R ratio was associated with the stereoselectivity of CYP2D6-mediated flecainide metabolism. We examined the serum flecainide S/R ratio in 143 patients with supraventricular tachyarrhythmia. The S/R ratio was significantly lower in intermediate metabolizers and poor metabolizers (IMs/PMs) than in extensive metabolizers (EMs) identified by the CYP2D6 genotype. The cut-off value for the S/R ratio to allow the discrimination between CYP2D6 EMs and IMs/PMs was 0.99. The S/R ratio in patients with co-administration of bepridil, a potent CYP2D6 inhibitor, was lower than 0.99, regardless of the CYP2D6 genotype status. Other factors, including age, sex, body weight, and renal function, did not affect the serum flecainide S/R ratio. This study suggests that the serum flecainide S/R ratio reflects the CYP2D6 genotype and changes in CYP2D6 activity on co-administration of a CYP2D6 inhibitor.
2D ERT imaging of tracer dispersion in laboratory experiments
NASA Astrophysics Data System (ADS)
Lekmine, G.; Pessel, M.; Auradou, H.
2009-12-01
Electrical resistivity tomography applied in cross-borehole is a method often used to follow the invasion process of pollutants. The aim of this work is to test experimentally the electrode arrays and inversion processes used to obtain a spatial representation of tracer propagation in porous media. Experiments were conducted in a plexiglass container with glass beads of 166 microns in diameter. The height of the container is 275 mm, its width 85 mm and its thickness 10 mm. 21 electrodes, equally spaced, are placed along each of the lateral sides of the porous medium : these electrodes are used to perform the electrical measurements. The device is lightened from behind and a video camera records the fluid propagation. The tracer (i.e the pollutant) is a water solution containing a known amount of dye together with NaCl (0.5g/l up to 1.5g/l). The medium is first saturated by a water solution containing a slight concentration of NaCl so that its density is smaller than the tracer’s. An upward flow is first established, the denser fluid is injected at the bottom and over the full width of the medium. In this way, the flow is stabilized by gravity avoiding the development of unstable fingers. Still, the fluids are miscible and a mixing front develops during the flow: in the present study, the interest is to estimate the 2D tracer front dispersion by both optical and electrical imaging. The comparison of the two techniques allows to study the ability of the inversion process to quantify the solute transport. A sensitivity analysis is led in order to determine the best measurement sequence to monitor the tracer’s front evolution through the entire volume of the medium. Hence, each time step is constituted by the same 190 transverse dipole-dipole set of lasting 5 minutes between the first and the last measurement. At the laboratory scale, the experimental design affects the measurements through edges effects: most of these artefacts can be partially suppressed by using
Resistivity inversion in 2-D anisotropic media: numerical experiments
NASA Astrophysics Data System (ADS)
Wiese, Timothy; Greenhalgh, Stewart; Zhou, Bing; Greenhalgh, Mark; Marescot, Laurent
2015-04-01
Many rocks and layered/fractured sequences have a clearly expressed electrical anisotropy although it is rare in practice to incorporate anisotropy into resistivity inversion. In this contribution, we present a series of 2.5-D synthetic inversion experiments for various electrode configurations and 2-D anisotropic models. We examine and compare the image reconstructions obtained using the correct anisotropic inversion code with those obtained using the false but widely used isotropic assumption. Superior reconstruction in terms of reduced data misfit, true anomaly shape and position, and anisotropic background parameters were obtained when the correct anisotropic assumption was employed for medium to high coefficients of anisotropy. However, for low coefficient values the isotropic assumption produced better-quality results. When an erroneous isotropic inversion is performed on medium to high level anisotropic data, the images are dominated by patterns of banded artefacts and high data misfits. Various pole-pole, pole-dipole and dipole-dipole data sets were investigated and evaluated for the accuracy of the inversion result. The eigenvalue spectra of the pseudo-Hessian matrix and the formal resolution matrix were also computed to determine the information content and goodness of the results. We also present a data selection strategy based on high sensitivity measurements which drastically reduces the number of data to be inverted but still produces comparable results to that of the comprehensive data set. Inversion was carried out using transversely isotropic model parameters described in two different co-ordinate frames for the conductivity tensor, namely Cartesian versus natural or eigenframe. The Cartesian frame provided a more stable inversion product. This can be simply explained from inspection of the eigenspectra of the pseudo-Hessian matrix for the two model descriptions.
2D and 3D Numerical Simulations of Flux Cancellation
NASA Technical Reports Server (NTRS)
Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.
2009-01-01
Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta=1 level (i.e., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a low-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.
2D Potential theory using complex functions and conformal mapping
NASA Astrophysics Data System (ADS)
Le Maire, Pauline; Munschy, Marc
2016-04-01
For infinitely horizontally extended bodies, functions that describe potential and field equations (gravity and magnetics) outside bodies are 2D and harmonic. The consequence of this property is that potential and field equations can be written as complex analytic functions. We define these complex functions whose real part is the commonly used real function and imaginary part is its Hilbert transform. Using data or synthetic cases the transformation is easily performed in the Fourier domain by setting to zero all values for negative frequencies. Written as complex functions of the complex variable, equations of potential and field in gravity and magnetics for different kinds of geometries are simple and correspond to powers of the inverse of the distance. For example, it is easily shown that for a tilted dyke, the dip and the apparent inclination have the same effect on the function and consequently that it is not possible, with data, to compute one of both values without knowing the other. Conformal mapping is an original way to display potential field functions. Considering that the complex variable corresponds to the real axis, complex potential field functions resume to a limaçon, a curve formed by the path of the point fixed to a circle when that circle rolls around the outside of another circle. For example, the point corresponding to the maximum distance to the origin of the complex magnetic field due to a cylinder, corresponds to the maximum of the analytic signal as defined by Nabighan in 1972 and its phase corresponds to the apparent inclination. Several applications are shown in different geological contexts using aeromagnetic data.
A large 2D PSD for thermal neutron detection
Knott, R.B.; Watt, G.; Boldeman, J.W.; Smith, G.C.
1996-12-31
A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 x 640 mm{sup 2}. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimize parallax, the gas mixture was 190 kPa {sup 3}He plus 100 kPa CF{sub 4} and the active volume had a thickness of 30 mm. The design maximum neutron count-rate of the detector was 10{sup 5} events per second. The (calculated) neutron detection efficiency was 60% for 2{angstrom} neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 x 5 mm{sup 2}) was thereby defined by the wire geometry. A 16 channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise linewidth of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.
A large 2D PSD for thermal neutron detection
NASA Astrophysics Data System (ADS)
Knott, R. B.; Smith, G. C.; Watt, G.; Boldeman, J. W.
1997-02-01
A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 × 640 mm 2. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimise parallax, the gas mixture was 190 kPa 3He plus 100 kPa CF 4, and the active volume had a thickness of 30 mm. The design maximum neutron count rate of the detector was 10 5 events per secod. The (calculated) neutron detection efficiency was 60% for 2 Å neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 × 5 mm 2) was thereby defined by the wire geometry. A 16-channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise line width of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp, USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.
New optical 2D modulator jacketed in rotational plastic optics
NASA Astrophysics Data System (ADS)
Heinol, Horst G.; Xu, Z.; Schwarte, Rudolf; Loffeld, Otmar
1995-12-01
Optical and therefore nontactile 3D-measurement techniques are of increasing interest in industrial automation, especially in quality control and guidance of automotive vehicles. In connection with these demands, a new type of optical modulator jacketed in rotational plastic optics is introduced in the paper. Furthermore first results obtained by simulation studies will be presented. A simple nevertheless effective way of obtaining 3D information is to illuminate the whole 3D object or scene simultaneously with rf-modulated light. This can be well achieved by using the suggested optical modulator that incorporates the properties of a high aperture and minimum aberration in the 3D-imaging process. The mentioned modulator makes use of the effect of Frustrated Total Reflection (FTR). To exploit this FTR effect in an optical 2D mixer, the gap width between media of higher dense has to be modulated by an rf-voltage applied to a piezo crystal as an rf-controlled tuning medium. Considering the limited modulation bandwidth due to the parasitic capacity of the piezo crystal, the geometrical dimension of the modulator must be made as small as possible. Therefore the spot of the light is collimated at the focal point of the jacketing rotational ellipsoid. The integrated component made of plastic optics and piezo crystal plays a substantial role for the optical modulation and imaging. Some simulation results of this optical device show that the inherent non-linearity of the FTR modulator may be neglected in practical applications, thus yielding a high modulation depth. Furthermore, a 3D-image system adopting this plastic-made optics is also depicted in the paper, which is robust and handy for several industrial applications.
Synthesis and characterization of 2D molybdenum carbide (MXene)
Halim, Joseph; Kota, Sankalp; Lukatskaya, Maria R.; Naguib, Michael; Zhao, Meng -Qiang; Moon, Eun Ju; Pitock, Jeremy; Nanda, Jagjit; May, Steven J.; Gogotsi, Yury; Barsoum, Michel W.
2016-02-17
Large scale synthesis and delamination of 2D Mo_{2}CT _{x} (where T is a surface termination group) has been achieved by selectively etching gallium from the recently discovered nanolaminated, ternary transition metal carbide Mo_{2}Ga_{2}C. Different synthesis and delamination routes result in different flake morphologies. The resistivity of free-standing Mo_{2}CT _{x} films increases by an order of magnitude as the temperature is reduced from 300 to 10 K, suggesting semiconductor-like behavior of this MXene, in contrast to Ti_{3}C_{2}T _{x} which exhibits metallic behavior. At 10 K, the magnetoresistance is positive. Additionally, changes in electronic transport are observed upon annealing of the films. When 2 μm thick films are tested as electrodes in supercapacitors, capacitances as high as 700 F cm^{–3} in a 1 m sulfuric acid electrolyte and high capacity retention for at least 10,000 cycles at 10 A g^{–1} are obtained. Free-standing Mo_{2}CT _{x} films, with ≈8 wt% carbon nanotubes, perform well when tested as an electrode material for Li-ions, especially at high rates. In conclusion, at 20 and 131 C cycling rates, stable reversible capacities of 250 and 76 mAh g^{–1}, respectively, are achieved for over 1000 cycles.
Characterization of nonlinear ultrasound fields of 2D therapeutic arrays
Yuldashev, Petr V.; Kreider, Wayne; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera
2015-01-01
A current trend in high intensity focused ultrasound (HIFU) technologies is to use 2D focused phased arrays that enable electronic steering of the focus, beamforming to avoid overheating of obstacles (such as ribs), and better focusing through inhomogeneities of soft tissue using time reversal methods. In many HIFU applications, the acoustic intensity in situ can reach thousands of W/cm2 leading to nonlinear propagation effects. At high power outputs, shock fronts develop in the focal region and significantly alter the bioeffects induced. Clinical applications of HIFU are relatively new and challenges remain for ensuring their safety and efficacy. A key component of these challenges is the lack of standard procedures for characterizing nonlinear HIFU fields under operating conditions. Methods that combine low-amplitude pressure measurements and nonlinear modeling of the pressure field have been proposed for axially symmetric single element transducers but have not yet been validated for the much more complex 3D fields generated by therapeutic arrays. Here, the method was tested for a clinical HIFU source comprising a 256-element transducer array. A numerical algorithm based on the Westervelt equation was used to enable 3D full-diffraction nonlinear modeling. With the acoustic holography method, the magnitude and phase of the acoustic field were measured at a low power output and used to determine the pattern of vibrations at the surface of the array. This pattern was then scaled to simulate a range of intensity levels near the elements up to 10 W/cm2. The accuracy of modeling was validated by comparison with direct measurements of the focal waveforms using a fiber-optic hydrophone. Simulation results and measurements show that shock fronts with amplitudes up to 100 MPa were present in focal waveforms at clinically relevant outputs, indicating the importance of strong nonlinear effects in ultrasound fields generated by HIFU arrays. PMID:26203345
Characterization of nonlinear ultrasound fields of 2D therapeutic arrays.
Yuldashev, Petr V; Kreider, Wayne; Sapozhnikov, Oleg A; Farr, Navid; Partanen, Ari; Bailey, Michael R; Khokhlova, Vera
2012-10-07
A current trend in high intensity focused ultrasound (HIFU) technologies is to use 2D focused phased arrays that enable electronic steering of the focus, beamforming to avoid overheating of obstacles (such as ribs), and better focusing through inhomogeneities of soft tissue using time reversal methods. In many HIFU applications, the acoustic intensity in situ can reach thousands of W/cm(2) leading to nonlinear propagation effects. At high power outputs, shock fronts develop in the focal region and significantly alter the bioeffects induced. Clinical applications of HIFU are relatively new and challenges remain for ensuring their safety and efficacy. A key component of these challenges is the lack of standard procedures for characterizing nonlinear HIFU fields under operating conditions. Methods that combine low-amplitude pressure measurements and nonlinear modeling of the pressure field have been proposed for axially symmetric single element transducers but have not yet been validated for the much more complex 3D fields generated by therapeutic arrays. Here, the method was tested for a clinical HIFU source comprising a 256-element transducer array. A numerical algorithm based on the Westervelt equation was used to enable 3D full-diffraction nonlinear modeling. With the acoustic holography method, the magnitude and phase of the acoustic field were measured at a low power output and used to determine the pattern of vibrations at the surface of the array. This pattern was then scaled to simulate a range of intensity levels near the elements up to 10 W/cm(2). The accuracy of modeling was validated by comparison with direct measurements of the focal waveforms using a fiber-optic hydrophone. Simulation results and measurements show that shock fronts with amplitudes up to 100 MPa were present in focal waveforms at clinically relevant outputs, indicating the importance of strong nonlinear effects in ultrasound fields generated by HIFU arrays.
Self-leveling 2D DPN probe arrays
NASA Astrophysics Data System (ADS)
Haaheim, Jason R.; Val, Vadim; Solheim, Ed; Bussan, John; Fragala, J.; Nelson, Mike
2010-02-01
Dip Pen Nanolithography® (DPN®) is a direct write scanning probe-based technique which operates under ambient conditions, making it suitable to deposit a wide range of biological and inorganic materials. Precision nanoscale deposition is a fundamental requirement to advance nanoscale technology in commercial applications, and tailoring chemical composition and surface structure on the sub-100 nm scale benefits researchers in areas ranging from cell adhesion to cell-signaling and biomimetic membranes. These capabilities naturally suggest a "Desktop Nanofab" concept - a turnkey system that allows a non-expert user to rapidly create high resolution, scalable nanostructures drawing upon well-characterized ink and substrate pairings. In turn, this system is fundamentally supported by a portfolio of MEMS devices tailored for microfluidic ink delivery, directed placement of nanoscale materials, and cm2 tip arrays for high-throughput nanofabrication. Massively parallel two-dimensional nanopatterning is now commercially available via NanoInk's 2D nano PrintArray™, making DPN a high-throughput (>3×107 μm2 per hour), flexible and versatile method for precision nanoscale pattern formation. However, cm2 arrays of nanoscopic tips introduce the nontrivial problem of getting them all evenly touching the surface to ensure homogeneous deposition; this requires extremely precise leveling of the array. Herein, we describe how we have made the process simple by way of a selfleveling gimbal attachment, coupled with semi-automated software leveling routines which bring the cm^2 chip to within 0.002 degrees of co-planarity. This excellent co-planarity yields highly homogeneous features across a square centimeter, with <6% feature size standard deviation. We have engineered the devices to be easy to use, wire-free, and fully integrated with both of our patterning tools: the DPN 5000, and the NLP 2000.
Force Fluctuations in a 2D Granular Drag Experiment
NASA Astrophysics Data System (ADS)
Geng, Junfei; Behringer, R. P.
2002-11-01
We study fluctuations in the drag force experienced by an object slowly moving through a 2D granular material consisting of bidisperse disks. Slow drag experiments provide a useful way to understand the nature of stress propagation, fluctuations, and slow dynamics in granular materials. Unlike in a liquid, the drag force in a granular material is largely due to the resistance of inhomogeneous and anisotropic ``force chains'', and thus exhibits strong fluctuations. Experiments were carried out in an apparatus similar in spirit to the one by Albert et al.(R. Albert, M.A. Pfeifer, A.L. Barabasi and P. Schiffer, Phys. Rev. Lett. 82), 205 (1999). and we varied the rotation rate (ω=6.3× 10-6 ˜ 8.7× 10-4Hz), the object size (0.744, 0.876, 1.250,1.610,1.930 cm), and the packing fraction of the system. We observed a weak dependence of the mean force on the medium velocity, a rate-invariant power spectrum decaying as ω-2 for large ω (a remarkable resemblance to results by Miller et al.(B. Miller, C. O'Hern and R.P. Behringer, Phys. Rev. Lett. 77), 3110 (1996).), an exponential distribution of avalanche sizes, and a well defined ``Stress Chain Force Constant''. We also show that a simple model adapted after Kahng. et al.(B. Kahng, I. Albert, P. Schiffer and A.L. Barabasi, Phys. Rev. E. 64), 051303 (2001). reproduces many of experimental observations.
2D DEM model of sand transport with wind interaction
NASA Astrophysics Data System (ADS)
Oger, L.; Valance, A.
2013-06-01
The advance of the dunes in the desert is a threat to the life of the local people. The dunes invade houses, agricultural land and perturb the circulation on the roads. It is therefore very important to understand the mechanism of sand transport in order to fight against desertification. Saltation in which sand grains are propelled by the wind along the surface in short hops, is the primary mode of blown sand movement [1]. The saltating grains are very energetic and when impact a sand surface, they rebound and consequently eject other particles from the sand bed. The ejected grains, called reptating grains, contribute to the augmentation of the sand flux. Some of them can be promoted to the saltation motion. We use a mechanical model based on the Discrete Element Method to study successive collisions of incident energetic beads with granular packing in the context of Aeolian saltation transport. We investigate the collision process for the case where the incident bead and those from the packing have identical mechanical properties. We analyze the features of the consecutive collision processes made by the transport of the saltating disks by a wind in which its profile is obtained from the counter-interaction between air flow and grain flows. We used a molecular dynamics method known as DEM (soft Discrete Element Method) with a initial static packing of 20000 2D particles. The dilation of the upper surface due to the consecutive collisions is responsible for maintaining the flow at a given energy input due to the wind.
Bottom-Up Preparation of Ultrathin 2D Aluminum Oxide Nanosheets by Duplicating Graphene Oxide.
Huang, Zhifeng; Zhou, Anan; Wu, Jifeng; Chen, Yunqiang; Lan, Xiaoli; Bai, Hua; Li, Lei
2016-02-24
2D ultrathin aluminum oxide (2D-Al2O3) nanosheets are prepared by duplicating graphene oxide. An amorphous precursor of the hydroxide of aluminum is first deposited onto graphene oxide sheets, which are then converted into 2D-Al2 O3 nanosheets by calcination, while the graphene oxide is removed. The 2D-Al2O3 nanosheets have a large specific surface area and a superior adsorption capacity to fluoride ions.
Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan
2014-01-01
The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4+ NKG2D+ T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset. PMID:24708417
Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan
2014-03-01
The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4(+) NKG2D(+) T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset.
Livezey, Mara R; Briggs, Erran D; Bolles, Amanda K; Nagy, Leslie D; Fujiwara, Rina; Furge, Laura Lowe
2014-04-01
1. Metoclopramide is a widely used clinical drug in a variety of medical settings with rare acute dystonic events reported. The aim of this study was to assess a previous report of inactivation of CYP2D6 by metoclopramide, to determine the contribution of various CYPs to metoclopramide metabolism, and to identify the mono-oxygenated products of metoclopramide metabolism. 2. Metoclopramide interacted with CYP2D6 with Type I binding and a Ks value of 9.56 ± 1.09 µM. CYP2D6 was the major metabolizer of metoclopramide and the two major products were N-deethylation of the diethyl amine and N-hydroxylation on the phenyl ring amine. CYPs 1A2, 2C9, 2C19, and 3A4 also metabolized metoclopramide. 3. While reversible inhibition of CYP2D6 was noted, CYP2D6 inactivation by metoclopramide was not observed under conditions of varying concentration or varying time using Supersomes(TM) or pooled human liver microsomes. 4. The major metabolites of metoclopramide were N-hydroxylation and N-deethylation formed most efficiently by CYP2D6 but also formed by all CYPs examined. Also, while metoclopramide is metabolized primarily by CYP2D6, it is not a mechanism-based inactivator of CYP2D6 in vitro.
Ahern, Thomas P; Hertz, Daniel L; Damkier, Per; Ejlertsen, Bent; Hamilton-Dutoit, Stephen J; Rae, James M; Regan, Meredith M; Thompson, Alastair M; Lash, Timothy L; Cronin-Fenton, Deirdre P
2017-01-15
Tamoxifen therapy for estrogen receptor-positive breast cancer reduces the risk of recurrence by approximately one-half. Cytochrome P-450 2D6, encoded by the polymorphic cytochrome P-450 2D6 gene (CYP2D6), oxidizes tamoxifen to its most active metabolites. Steady-state concentrations of endoxifen (4-hydroxy-N-desmethyltamoxifen), the most potent antiestrogenic metabolite, are reduced in women whose CYP2D6 genotypes confer poor enzyme function. Thirty-one studies of the association of CYP2D6 genotype with breast cancer survival have yielded heterogeneous results. Some influential studies genotyped DNA from tumor-infiltrated tissues, and their results may have been susceptible to germline genotype misclassification from loss of heterozygosity at the CYP2D6 locus. We systematically reviewed 6 studies of concordance between genotypes obtained from paired nonneoplastic and breast tumor-infiltrated tissues, all of which showed excellent CYP2D6 genotype agreement. We applied these concordance data to a quantitative bias analysis of the subset of the 31 studies that were based on genotypes from tumor-infiltrated tissue to examine whether genotyping errors substantially biased estimates of association. The bias analysis showed negligible bias by discordant genotypes. Summary estimates of association, with or without bias adjustment, indicated no clinically important association between CYP2D6 genotype and breast cancer survival in tamoxifen-treated women.
Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D Heterostructures
Boulesbaa, Abdelaziz; Wang, Kai; Mahjouri-Samani, Masoud; Tian, Mengkun; Puretzky, Alexander A.; Ivanov, Ilia; Rouleau, Christopher M.; Xiao, Kai; Sumpter, Bobby G.; Geohegan, David B.
2016-10-18
We report that photoinduced interfacial charge transfer is at the heart of many applications, including photovoltaics, photocatalysis, and photodetection. With the emergence of a new class of semiconductors such as monolayer two-dimensional transition metal dichalcogenides (2D-TMDs), charge transfer at the 2D/2D heterojunctions attracted several efforts due to the remarkable optical and electrical properties of 2D-TMDs. Unfortunately, in 2D/2D heterojunctions, for a given combination of two materials, the relative energy band alignment and the charge transfer efficiency are locked. Due to their large variety and broad size tunability, semiconductor quantum dots (0D-QDs) interfaced with 2D-TMDs may become an attractive heterostructure for optoelectronic applications. Here, we incorporate femtosecond pump-probe spectroscopy to reveal the sub-45 fs charge transfer at a 2D/0D heterostructure composed of tungsten disulfide monolayers (2D-WS_{2}) and a single layer of cadmium selenide (CdSe)/zinc sulfide (ZnS) core/shell 0D-QDs. Furthermore, ultrafast dynamics and steady-state measurements suggested that following electron transfer from the 2D to the 0D, hybrid excitons (HXs), wherein the electron resides in the 0D and hole resides in the 2D-TMD monolayer, are formed with a binding energy on the order of ~140 meV, which is several times lower than that of tightly bound excitons in 2D-TMDs.
Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D Heterostructures
Boulesbaa, Abdelaziz; Wang, Kai; Mahjouri-Samani, Masoud; ...
2016-10-18
We report that photoinduced interfacial charge transfer is at the heart of many applications, including photovoltaics, photocatalysis, and photodetection. With the emergence of a new class of semiconductors such as monolayer two-dimensional transition metal dichalcogenides (2D-TMDs), charge transfer at the 2D/2D heterojunctions attracted several efforts due to the remarkable optical and electrical properties of 2D-TMDs. Unfortunately, in 2D/2D heterojunctions, for a given combination of two materials, the relative energy band alignment and the charge transfer efficiency are locked. Due to their large variety and broad size tunability, semiconductor quantum dots (0D-QDs) interfaced with 2D-TMDs may become an attractive heterostructure formore » optoelectronic applications. Here, we incorporate femtosecond pump-probe spectroscopy to reveal the sub-45 fs charge transfer at a 2D/0D heterostructure composed of tungsten disulfide monolayers (2D-WS2) and a single layer of cadmium selenide (CdSe)/zinc sulfide (ZnS) core/shell 0D-QDs. Furthermore, ultrafast dynamics and steady-state measurements suggested that following electron transfer from the 2D to the 0D, hybrid excitons (HXs), wherein the electron resides in the 0D and hole resides in the 2D-TMD monolayer, are formed with a binding energy on the order of ~140 meV, which is several times lower than that of tightly bound excitons in 2D-TMDs.« less
Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D Heterostructures.
Boulesbaa, Abdelaziz; Wang, Kai; Mahjouri-Samani, Masoud; Tian, Mengkun; Puretzky, Alexander A; Ivanov, Ilia; Rouleau, Christopher M; Xiao, Kai; Sumpter, Bobby G; Geohegan, David B
2016-11-09
Photoinduced interfacial charge transfer is at the heart of many applications, including photovoltaics, photocatalysis, and photodetection. With the emergence of a new class of semiconductors, i.e., monolayer two-dimensional transition metal dichalcogenides (2D-TMDs), charge transfer at the 2D/2D heterojunctions has attracted several efforts due to the remarkable optical and electrical properties of 2D-TMDs. Unfortunately, in 2D/2D heterojunctions, for a given combination of two materials, the relative energy band alignment and the charge-transfer efficiency are locked. Due to their large variety and broad size tunability, semiconductor quantum dots (0D-QDs) interfaced with 2D-TMDs may become an attractive heterostructure for optoelectronic applications. Here, we incorporate femtosecond pump-probe spectroscopy to reveal the sub-45 fs charge transfer at a 2D/0D heterostructure composed of tungsten disulfide monolayers (2D-WS2) and a single layer of cadmium selenide/zinc sulfide core/shell 0D-QDs. Furthermore, ultrafast dynamics and steady-state measurements suggested that, following electron transfer from the 2D to the 0D, hybrid excitons, wherein the electron resides in the 0D and the hole resides in the 2D-TMD monolayer, are formed with a binding energy on the order of ∼140 meV, which is several times lower than that of tightly bound excitons in 2D-TMDs.
In situ hybridization study of CYP2D mRNA in the common marmoset brain
Shimamoto, Yoshinori; Niimi, Kimie; Kitamura, Hiroshi; Tsubakishita, Sae; Takahashi, Eiki
2016-01-01
The common marmoset is a non-human primate that has increasingly employed in the biomedical research including the fields of neuroscience and behavioral studies. Cytochrome P450 (CYP) 2D has been speculated to be involved in psycho-neurologic actions in the human brain. In the present study, to clarify the role of CYP2D in the marmoset brain, we investigated the expression patterns of CYP2D mRNA in the brain using in situ hybridization (ISH). In addition, to identify the gene location of CYP2D19, a well-studied CYP2D isoform in the common marmoset, a fluorescence in situ hybridization (FISH) study was performed. Consistent with findings for the human brain, CYP2D mRNA was localized in the neuronal cells of different brain regions; e.g., the cerebral cortex, hippocampus, substantia nigra, and cerebellum. FISH analysis showed that the CYP2D19 gene was located on chromosome 1q, which is homologous to human chromosome 22 on which the CYP2D6 gene exists. These results suggest that CYP2D in the marmoset brain may play the same role as human CYP2D6 in terms of brain actions, and that the CYP2D19 gene is conserved in a syntenic manner. Taken together, these findings suggest that the common marmoset is a useful model for studying psychiatric disorders related to CYP2D dysfunction in the brain. PMID:27356856
NASA Astrophysics Data System (ADS)
Ju, Z.; Wang, Y.; Li, P.; Zhu, Z.; Zhang, K.; Huang, W.; Yuan, Q.; Wu, Z.; Zhu, P.
2016-03-01
X-ray imaging method based on 2D grating interferometer was proposed and studied recently, to overcome the limitations in signal extraction and phase retrieval when using 1D grating interferometer. In this paper, the concept of angle-signal response function is proposed, and different surfaces of different 2D setups under the condition of parallel coherent light are calculated and depicted with Matlab. Based on this concept, performance of 2D grating interferometer is systematically analyzed and an analytic 2D signal extraction approach is theoretically proposed. Besides, signal extraction, phase retrieval and feasibility of using conventional source are also briefly discussed and compared between 2D grating interferometer and 1D case.
Sensitivity of 2-D complex resistivity measurements to subsurface anisotropy
NASA Astrophysics Data System (ADS)
Kenkel, J.; Kemna, A.
2016-11-01
In general, the complex electrical resistivity in the subsurface is anisotropic. Despite this, algorithms for the tomographic inversion of complex resistivity data commonly assume isotropy, mainly due to the lack of anisotropic modelling and inversion schemes, potentially leading to artifacts in the inversion results in the presence of anisotropy. The development of an effective anisotropic complex resistivity inversion algorithm which utilizes the gradient information of some cost function benefits from understanding the characteristics of the problem's sensitivities, i.e., the partial derivative of impedance data with respect to the complex conductivities in the different spatial directions, as well as with respect to the different ratios of complex conductivities, i.e., the different anisotropy ratios. We here derive expressions for these sensitivities and, based on a 2.5-D finite-element modelling algorithm, we compute and discuss sensitivity distributions as well as measurement response curves of typical surface and cross-borehole measurement configurations for 2-D subsurface anisotropic complex resistivity distributions. Depending on the electrode layout and measurement configuration, the sensitivity with respect to the conductivity in a particular direction shows a unique pattern, while for other directions sensitivity patterns are qualitatively similar. These sensitivity characteristics translate into important equivalences between impedance responses of local anisotropic and isotropic anomalies, for both magnitude and phase. Accordingly, with collinear surface arrays only the complex conductivity in the direction of the electrode layout can be unambiguously resolved, and with cross-borehole arrays only the conductivity in the vertical direction, provided an in-hole current injection is used. Nevertheless, anisotropy ratios involving these resolvable conductivity components are likewise detectable. The distinct shape of the measurement response curves
Sensitivity of 2-D complex resistivity measurements to subsurface anisotropy
NASA Astrophysics Data System (ADS)
Kenkel, J.; Kemna, A.
2017-02-01
In general, the complex electrical resistivity in the subsurface is anisotropic. Despite this, algorithms for the tomographic inversion of complex resistivity data commonly assume isotropy, mainly due to the lack of anisotropic modelling and inversion schemes, potentially leading to artefacts in the inversion results in the presence of anisotropy. The development of an effective anisotropic complex resistivity inversion algorithm which utilizes the gradient information of some cost function benefits from understanding the characteristics of the problem's sensitivities, that is, the partial derivative of the impedance forward response with respect to the complex conductivities in the different spatial directions, as well as with respect to the different ratios of complex conductivities, that is, the different anisotropy ratios. We here derive expressions for these sensitivities and, based on a 2.5-D finite-element modelling algorithm, we compute and discuss sensitivity distributions as well as measurement response curves of typical surface and cross-borehole measurement configurations for 2-D subsurface anisotropic complex resistivity distributions. Depending on the electrode layout and measurement configuration, the sensitivity with respect to the conductivity in a particular direction shows a unique pattern, while for other directions sensitivity patterns are qualitatively similar. These sensitivity characteristics translate into important equivalences between impedance responses of local anisotropic and isotropic anomalies, for both magnitude and phase. Accordingly, with collinear surface arrays only the complex conductivity in the direction of the electrode layout can be unambiguously resolved, and with cross-borehole arrays only the conductivity in the vertical direction, provided an in-hole current injection is used. Nevertheless, anisotropy ratios involving these resolvable conductivity components are likewise detectable. The distinct shape of the measurement
A nonmagnetic impurity in a 2D quantum critical antiferromagnet
NASA Astrophysics Data System (ADS)
Troyer, Matthias
2003-03-01
We compute the properties of a mobile hole and a static impurity injected into a two-dimensional antiferromagnet or superconductor in the vicinity of a magnetic quantum critical point. A static S=1/2 impurity doped into a quantum-disordered spin gap system induces a local moment with spin S=1/2 and a corresponding Curie-like impurity susceptibility, while the same impurity in a Néel ordered state only gives a finite impurity susceptibility. For the quantum critical system however an interesting field-theoretical prediction has been made that there the impurity spin susceptibility still has a Curie-like divergence, but with a universal effective spin that is neither an integer nor a half-odd integer [1]. In large-scale quantum Monte Carlo (QMC) simulations using the loop algorithm we calculate the impurity susceptibility and find that, unfortunately, this effect is not observable since the renormalization of the effective spin away from S=1/2 is minimal. Other predictions of the field theory, such as a new critical exponent η' describing the time-dependent impurity spin correlations can however be confirmed [2]. Next we compute the spectral function of a hole injected into a 2D antiferromagnet or superconductor in the vicinity of a magnetic quantum critical point [3]. We show that, near van Hove singularities, the problem maps onto that of a static vacancy. This allows the calculation of the spectral function in a QMC simulation without encountering the negative sign problem. We find a vanishing quasiparticle residue at the critical point, a new exponent η_h0.080.04 describing the frequency dependence of the spectral function G_h(ω)(ɛ_0-ω)-1+ηh and discuss possible relevance to photoemission spectra of cuprate superconductors near the antinodal points. ^1 S. Sachdev, C. Buragohain and M. Vojta, Science 286, 2479 (1999). ^2 M. Troyer, in Prog. Theor. Phys. Suppl. 145 (2002); M. Körner and M. Troyer, ibid. ^3 S. Sachdev, M. Troyer, and M. Vojta, Phys. Rev
Miga Aero Actuator and 2D Machined Mechanical Binary Latch
NASA Technical Reports Server (NTRS)
Gummin, Mark A.
2013-01-01
Shape memory alloy (SMA) actuators provide the highest force-to-weight ratio of any known actuator. They can be designed for a wide variety of form factors from flat, thin packages, to form-matching packages for existing actuators. SMA actuators can be operated many thousands of times, so that ground testing is possible. Actuation speed can be accurately controlled from milliseconds to position and hold, and even electronic velocity-profile control is possible. SMA actuators provide a high degree of operational flexibility, and are truly smart actuators capable of being accurately controlled by onboard microprocessors across a wide range of voltages. The Miga Aero actuator is a SMA actuator designed specifically for spaceflight applications. Providing 13 mm of stroke with either 20- or 40-N output force in two different models, the Aero actuator is made from low-outgassing PEEK (polyether ether ketone) plastic, stainless steel, and nickel-titanium SMA wires. The modular actuator weighs less than 28 grams. The dorsal output attachment allows the Aero to be used in either PUSH or PULL modes by inverting the mounting orientation. The SPA1 actuator utilizes commercially available SMA actuator wire to provide 3/8-in. (approx. =.1 cm) of stroke at a force of over 28 lb (approx. = .125 N). The force is provided by a unique packaging of the single SMA wire that provides the output force of four SMA wires mechanically in parallel. The output load is shared by allowing the SMA wire to slip around the output attachment end to adjust or balance the load, preventing any individual wire segment from experiencing high loads during actuation. A built-in end limit switch prevents overheating of the SMA element following actuation when used in conjunction with the Miga Analog Driver [a simple MOSFET (metal oxide semiconductor field-effect transistor) switching circuit]. A simple 2D machined mechanical binary latch has been developed to complement the capabilities of SMA wire
3-D object recognition using 2-D views.
Li, Wenjing; Bebis, George; Bourbakis, Nikolaos G
2008-11-01
We consider the problem of recognizing 3-D objects from 2-D images using geometric models and assuming different viewing angles and positions. Our goal is to recognize and localize instances of specific objects (i.e., model-based) in a scene. This is in contrast to category-based object recognition methods where the goal is to search for instances of objects that belong to a certain visual category (e.g., faces or cars). The key contribution of our work is improving 3-D object recognition by integrating Algebraic Functions of Views (AFoVs), a powerful framework for predicting the geometric appearance of an object due to viewpoint changes, with indexing and learning. During training, we compute the space of views that groups of object features can produce under the assumption of 3-D linear transformations, by combining a small number of reference views that contain the object features using AFoVs. Unrealistic views (e.g., due to the assumption of 3-D linear transformations) are eliminated by imposing a pair of rigidity constraints based on knowledge of the transformation between the reference views of the object. To represent the space of views that an object can produce compactly while allowing efficient hypothesis generation during recognition, we propose combining indexing with learning in two stages. In the first stage, we sample the space of views of an object sparsely and represent information about the samples using indexing. In the second stage, we build probabilistic models of shape appearance by sampling the space of views of the object densely and learning the manifold formed by the samples. Learning employs the Expectation-Maximization (EM) algorithm and takes place in a "universal," lower-dimensional, space computed through Random Projection (RP). During recognition, we extract groups of point features from the scene and we use indexing to retrieve the most feasible model groups that might have produced them (i.e., hypothesis generation). The likelihood
Chin, Fee Wai; Chan, Soon Choy; Abdul Rahman, Sabariah; Noor Akmal, Sharifah; Rosli, Rozita
2016-01-01
The cytochrome P450, family 2, subfamily D, polypeptide 6 (CYP2D6) is an enzyme that is predominantly involved in the metabolism of tamoxifen. Genetic polymorphisms of the CYP2D6 gene may contribute to inter-individual variability in tamoxifen metabolism, which leads to the differences in clinical response to tamoxifen among breast cancer patients. In Malaysia, the knowledge on CYP2D6 genetic polymorphisms as well as metabolizer status in Malaysian breast cancer patients remains unknown. Hence, this study aimed to comprehensively identify CYP2D6 genetic polymorphisms among 80 Malaysian breast cancer patients. The genetic polymorphisms of all the 9 exons of CYP2D6 gene were identified using high-resolution melting analysis and confirmed by DNA sequencing. Seven CYP2D6 alleles consisting of CYP2D6*1, CYP2D6*2, CYP2D6*4, CYP2D6*10, CYP2D6*39, CYP2D6*49, and CYP2D6*75 were identified in this study. Among these alleles, CYP2D6*10 is the most common allele in both Malaysian Malay (54.8%) and Chinese (71.4%) breast cancer patients, whereas CYP2D6*4 in Malaysian Indian (28.6%) breast cancer patients. In relation to CYP2D6 genotype, CYP2D6*10/*10 is more frequently observed in both Malaysian Malay (28.9%) and Chinese (57.1%) breast cancer patients, whereas CYP2D6*4/*10 is more frequently observed in Malaysian Indian (42.8%) breast cancer patients. In terms of CYP2D6 phenotype, 61.5% of Malaysian Malay breast cancer patients are predicted as extensive metabolizers in which they are most likely to respond well to tamoxifen therapy. However, 57.1% of Chinese as well as Indian breast cancer patients are predicted as intermediate metabolizers and they are less likely to gain optimal benefit from the tamoxifen therapy. This is the first report of CYP2D6 genetic polymorphisms and phenotypes in Malaysian breast cancer patients for different ethnicities. These data may aid clinicians in selecting an optimal drug therapy for Malaysian breast cancer patients, hence improve the
Is 2-D turbulence relevant in the atmosphere?
NASA Astrophysics Data System (ADS)
Lovejoy, Shaun; Schertzer, Daniel
2010-05-01
Starting with (Taylor, 1935), the paradigm of isotropic (and scaling!) turbulence was developed initially for laboratory applications, but following (Kolmogorov, 1941), three dimensional isotropic turbulence was progressively applied to the atmosphere. Since the atmosphere is strongly stratified, a single wide scale range model which is both isotropic and scaling is not possible so that theorists had to immediately choose between the two symmetries: isotropy or scale invariance. Following the development of models of two dimensional isotropic turbulence ((Fjortoft, 1953), but especially (Kraichnan, 1967) and (Charney, 1971)), the mainstream choice was to first make the convenient assumption of isotropy and to drop wide range scale invariance. Starting at the end of the 1970's this "isotropy primary" (IP) paradigm has lead to a series of increasingly complex isotropic 2D/isotropic 3D models of atmospheric dynamics which continue to dominate the theoretical landscape. Justifications for IP approaches have focused almost exclusively on the horizontal statistics of the horizontal wind in both numerical models and analyses and from aircraft campaigns, especially the highly cited GASP (Nastrom and Gage, 1983), (Gage and Nastrom, 1986; Nastrom and Gage, 1985) and MOZAIC (Cho and Lindborg, 2001) experiments. Since understanding the anisotropy clearly requires comparisons between horizontal and vertical statistics/structures this focus has been unfortunate. Over the same thirty year period that 2D/3D isotropic models were being elaborated, evidence slowly accumulated in favour of the opposite theoretical choice: to drop the isotropy assumption but to retain wide range scaling. The models in the alternative paradigm are scaling but strongly anisotropic with vertical sections of structures becoming increasingly stratified at larger and larger scales albeit in a power law manner; we collectively refer to these as "SP" for "scaling primary" approaches. Early authors explicitly
Hintermann, Edith; Holdener, Martin; Bayer, Monika; Loges, Stephanie; Pfeilschifter, Josef M; Granier, Claude; Manns, Michael P; Christen, Urs
2011-11-01
Autoimmune hepatitis (AIH) is a serious chronic inflammatory disease of the liver with yet unknown etiology and largely uncertain immunopathology. The hallmark of type 2 AIH is the generation of liver kidney microsomal-1 (LKM-1) autoantibodies, which predominantly react to cytochrome P450 2D6 (CYP2D6). The identification of disease initiating factors has been hampered in the past, since antibody epitope mapping was mostly performed using serum samples collected late during disease resulting in the identification of immunodominant epitopes not necessarily representing those involved in disease initiation. In order to identify possible environmental triggers for AIH, we analyzed for the first time the spreading of the anti-CYP2D6 antibody response over a prolonged period of time in AIH patients and in the CYP2D6 mouse model, in which mice infected with Adenovirus-human CYP2D6 (Ad-h2D6) develop antibodies with a similar specificity than AIH patients. Epitope spreading was analyzed in six AIH-2-patients and in the CYP2D6 mouse model using SPOTs membranes containing peptides covering the entire CYP2D6 protein. Despite of a considerable variation, both mice and AIH patients largely focus their humoral immune response on an immunodominant epitope early after infection (mice) or diagnosis (patients). The CYP2D6 mouse model revealed that epitope spreading is initiated at the immunodominant epitope and later expands to neighboring and remote regions. Sequence homologies to human pathogens have been detected for all identified epitopes. Our study demonstrates that epitope spreading does indeed occur during the pathogenesis of AIH and supports the concept of molecular mimicry as a possible initiating mechanism for AIH.
Full-waveform inversion in 2D VTI media
NASA Astrophysics Data System (ADS)
Kamath, Nishant
Full-waveform inversion (FWI) is a technique designed to produce a high-resolution model of the subsurface by using information contained in entire seismic waveforms. This thesis presents a methodology for FWI in elastic VTI (transversely isotropic with a vertical axis of symmetry) media and discusses synthetic results for heterogeneous VTI models. First, I develop FWI for multicomponent data from a horizontally layered VTI model. The reflectivity method, which permits computation of only PP reflections or a combination of PP and PSV events, is employed to model the data. The Gauss-Newton technique is used to invert for the interval Thomsen parameters, while keeping the densities fixed at the correct values. Eigenvalue/eigenvector decompostion of the Hessian matrix helps analyze the sensitivity of the objective function to the model parameters. Whereas PP data alone are generally sufficient to constrain all four Thomsen parameters even for conventional spreads, including PS reflections provides better constraints, especially for the deeper part of the model. Next, I derive the gradients of the FWI objective function with respect to the stiffness coefficients of arbitrarily anisotropic media by employing the adjoint-state method. From these expressions, it is straightforward to compute the gradients for parameters of 2D heterogeneous VTI media. FWI is implemented in the time domain with the steepest-descent method used to iteratively update the model. The algorithm is tested on transmitted multicomponent data generated for Gaussian anomalies in Thomsen parameters embedded in homogeneous VTI media. To test the sensitivity of the objective function to different model parameters, I derive an an- alytic expression for the Frechet kernel of FWI for arbitrary anisotropic symmetry by using the Born approximation and asymptotic Green's functions. The amplitude of the kernel, which represents the radiation pattern of a secondary source (that source describes a perturbation
ATM-dependent phosphorylation of MEF2D promotes neuronal survival after DNA damage.
Chan, Shing Fai; Sances, Sam; Brill, Laurence M; Okamoto, Shu-Ichi; Zaidi, Rameez; McKercher, Scott R; Akhtar, Mohd W; Nakanishi, Nobuki; Lipton, Stuart A
2014-03-26
Mutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells. ATM associates with MEF2D after DNA damage and phosphorylates the transcription factor at four ATM consensus sites. Knockdown of endogenous MEF2D with a short-hairpin RNA (shRNA) increases sensitivity to etoposide-induced DNA damage and neuronal cell death. Interestingly, substitution of endogenous MEF2D with an shRNA-resistant phosphomimetic MEF2D mutant protects cerebellar granule cells from cell death after DNA damage, whereas an shRNA-resistant nonphosphorylatable MEF2D mutant does not. In vivo, cerebella in Mef2d knock-out mice manifest increased susceptibility to DNA damage. Together, our results show that MEF2D is a substrate for phosphorylation by ATM, thus promoting survival in response to DNA damage. Moreover, dysregulation of the ATM-MEF2D pathway may contribute to neurodegeneration in AT.
Oxidation of Survival Factor MEF2D in Neuronal Death and Parkinson's Disease
Gao, Li; She, Hua; Li, Wenming; Zeng, Jin; Zhu, Jinqiu; Jones, Dean P.
2014-01-01
Abstract Aims: Dysfunction of myocyte enhancer factor 2D (MEF2D), a key survival protein and transcription factor, underlies the pathogenic loss of dopaminergic (DA) neurons in Parkinson's disease (PD). Both genetic factors and neurotoxins associated with PD impair MEF2D function in vitro and in animal models of PD. We investigated whether distinct stress conditions target MEF2D via converging mechanisms. Results: We showed that exposure of a DA neuronal cell line to 6-hyroxydopamine (6-OHDA), which causes PD in animals models, led to direct oxidative modifications of MEF2D. Oxidized MEF2D bound to heat-shock cognate protein 70 kDa, the key regulator for chaperone-mediated autophagy (CMA), at a higher affinity. Oxidative stress also increased the level of lysosomal-associated membrane protein 2A (LAMP2A), the rate-limiting receptor for CMA substrate flux, and stimulated CMA activity. These changes resulted in accelerated degradation of MEF2D. Importantly, 6-OHDA induced MEF2D oxidation and increased LAMP2A in the substantia nigra pars compacta region of the mouse brain. Consistently, the levels of oxidized MEF2D were much higher in postmortem PD brains compared with the controls. Functionally, reducing the levels of either MEF2D or LAMP2A exacerbated 6-OHDA-induced death of the DA neuronal cell line. Expression of an MEF2D mutant that is resistant to oxidative modification protected cells from 6-OHDA-induced death. Innovation: This study showed that oxidization of survival protein MEF2D is one of the pathogenic mechanisms involved in oxidative stress-induced DA neuronal death. Conclusion: Oxidation of survival factor MEF2D inhibits its function, underlies oxidative stress-induced neurotoxicity, and may be a part of the PD pathogenic process. Antioxid. Redox Signal. 20, 2936–2948. PMID:24219011
A 2D simulation model for urban flood management
NASA Astrophysics Data System (ADS)
Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo
2014-05-01
The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and
2012-01-01
Background Cervical cancer represents the third most commonly diagnosed cancer and the fourth leading cause of cancer-related deaths in women worldwide. Natural killer (NK) cells play an important role in the defense against viruses, intracellular bacteria and tumors. NKG2D, an activating receptor on NK cells, recognizes MHC class I chain-related molecules, such as MICA/B and members of the ULBP/RAET1 family. Tumor-derived soluble NKG2D-ligands have been shown to down-modulate the expression of NKG2D on NK cells. In addition to the down-modulation induced by soluble NKG2D-ligands, it has recently been described that persistent cell-cell contact can also down-modulate NKG2D expression. The goal of this study was to determine whether the NKG2D receptor is down-modulated by cell-cell contact with cervical cancer cells and whether this down-modulation might be associated with changes in NK cell activity. Results We demonstrate that NKG2D expressed on NKL cells is down-modulated by direct cell contact with cervical cancer cell lines HeLa, SiHa, and C33A, but not with non-tumorigenic keratinocytes (HaCaT). Moreover, this down-modulation had functional implications. We found expression of NKG2D-ligands in all cervical cancer cell lines, but the patterns of ligand distribution were different in each cell line. Cervical cancer cell lines co-cultured with NKL cells or fresh NK cells induced a marked diminution of NKG2D expression on NKL cells. Additionally, the cytotoxic activity of NKL cells against K562 targets was compromised after co-culture with HeLa and SiHa cells, while co-culture with C33A increased the cytotoxic activity of the NKL cells. Conclusions Our results suggest that differential expression of NKG2D-ligands in cervical cancer cell lines might be associated with the down-modulation of NKG2D, as well as with changes in the cytotoxic activity of NKL cells after cell-cell contact with the tumor cells. PMID:22316211
Molecular Bases for the Regulation of NKG2D Ligands in Cancer
Huergo-Zapico, Leticia; Acebes-Huerta, Andrea; López-Soto, Alejandro; Villa-Álvarez, Mónica; Gonzalez-Rodriguez, Ana Pilar; Gonzalez, Segundo
2014-01-01
NKG2D is an activating receptor expressed by NK and T cells primarily involved in the elimination of transformed and infected cells. NKG2D ligands are self-proteins restrictedly expressed in healthy tissues, but induced in response to signaling pathways commonly associated with transformation. Proliferative, tumor suppressor, and stress signaling pathways linked to the tumorigenic process induce the expression of NKG2D ligands, initiating an immune response against the incipient tumor. Nevertheless, the activity of NKG2D ligands is counter-regulated in vivo by the immunoediting of cancer cells, resulting in the expression of multiple mechanisms of immune evasion in advanced tumors. The redundancy of NKG2D ligands, besides increasing the complexity of their regulation, may impair the generation of these immune evasion mechanisms. In this review, we attempt to integrate the mechanisms and pathways involved in the regulation of NKG2D ligand expression in cancer. PMID:24711808
Booming Development of Group IV-VI Semiconductors: Fresh Blood of 2D Family.
Zhou, Xing; Zhang, Qi; Gan, Lin; Li, Huiqiao; Xiong, Jie; Zhai, Tianyou
2016-12-01
As an important component of 2D layered materials (2DLMs), the 2D group IV metal chalcogenides (GIVMCs) have drawn much attention recently due to their earth-abundant, low-cost, and environmentally friendly characteristics, thus catering well to the sustainable electronics and optoelectronics applications. In this instructive review, the booming research advancements of 2D GIVMCs in the last few years have been presented. First, the unique crystal and electronic structures are introduced, suggesting novel physical properties. Then the various methods adopted for synthesis of 2D GIVMCs are summarized such as mechanical exfoliation, solvothermal method, and vapor deposition. Furthermore, the review focuses on the applications in field effect transistors and photodetectors based on 2D GIVMCs, and extends to flexible devices. Additionally, the 2D GIVMCs based ternary alloys and heterostructures have also been presented, as well as the applications in electronics and optoelectronics. Finally, the conclusion and outlook have also been presented in the end of the review.
Regulation of Neuronal Survival Factor MEF2D by Chaperone-Mediated Autophagy
Yang, Qian; She, Hua; Gearing, Marla; Colla, Emanuela; Lee, Michael; Shacka, John J.; Mao, Zixu
2009-01-01
Chaperone-mediated autophagy controls the degradation of selective cytosolic proteins and may protect neurons against degeneration. In a neuronal cell line, we found that chaperone-mediated autophagy regulated the activity of myocyte enhancer factor 2D (MEF2D), a transcription factor required for neuronal survival. MEF2D was observed to continuously shuttle to the cytoplasm, interact with the chaperone Hsc70, and undergo degradation. Inhibition of chaperone-mediated autophagy caused accumulation of inactive MEF2D in the cytoplasm. MEF2D levels were increased in the brains of α-synuclein transgenic mice and patients with Parkinson’s disease. Wild-type α-synuclein and a Parkinson’s disease–associated mutant disrupted the MEF2D-Hsc70 binding and led to neuronal death. Thus, chaperone-mediated autophagy modulates the neuronal survival machinery, and dysregulation of this pathway is associated with Parkinson’s disease. PMID:19119233
Manipulation of NKG2D Ligands by Cytomegaloviruses: Impact on Innate and Adaptive Immune Response
Slavuljica, Irena; Krmpotić, Astrid; Jonjić, Stipan
2011-01-01
NKG2D is a potent activating receptor expressed on NK cells, NKT cells, γδ T cells, and CD8 T cells. NKG2D recognizes cell surface molecules structurally related to MHC class I proteins induced by infection or other type of cellular stress. The engagement of NKG2D leads to NK cell cytotoxicity and cytokine secretion or to a co-stimulation of CD8 T cells. Both human and mouse cytomegalovirus (CMV) have evolved numerous mechanisms to evade NKG2D-mediated immune response. This review describes the mechanisms used by CMV to inhibit NKG2D ligand expression and the recent advances in exploiting the NKG2D recognition pathway for mounting efficient and long-lasting immune response. PMID:22566874
2D resistivity method in delineating subsurface problems in urban area
NASA Astrophysics Data System (ADS)
Nordiana, M. M.; Saad, Rosli; Teh Saufia, A. H. A.; Azwin, I. N.; Ali, Nisa'; Hidayah, Noer El
2013-05-01
2D resistivity is carried out to detect spread saturated zone and subsurface problems cause by the presence of underground river, which resulted from selected urban area at Selangor, Malaysia. Six 2D resistivity survey lines with minimum 5 m electrode spacing were executed using Pole-dipole array. Borehole was carried out at multiple locations in the study area. Subsequently, the borehole was used to verify the 2D resistivity results. Interpretation of 2D resistivity data showed a low resistivity value (< 40 ohm-m), which appears to be a zone that is fully saturated with sandy silt and this could be an influence factor the increasing water level because sandy silt is highly permeable in nature. The borehole, support the results of 2D resistivity method relating a saturated zone in the survey area. There is a good correlation between the 2D resistivity investigations and the results of borehole records.
Dephosphorylation of MAP2D enhances its binding to vimentin in preovulatory ovarian granulosa cells.
Flynn, Maxfield P; Fiedler, Sarah E; Karlsson, Amelia B; Carr, Daniel W; Maizels, Evelyn T; Hunzicker-Dunn, Mary
2016-08-01
Preovulatory granulosa cells express the low-molecular-mass MAP2D variant of microtubule-associated protein 2 (MAP2). Activation of the luteinizing hormone choriogonadotropin receptor by human choriogonadotropin (hCG) promotes dephosphorylation of MAP2D on Thr256 and Thr259. We sought to evaluate the association of MAP2D with the cytoskeleton, and the effect of hCG on this association. MAP2D partially colocalized, as assessed by confocal immunofluorescence microscopy, with the vimentin intermediate filament and microtubule cytoskeletons in naive cells. In vitro binding studies showed that MAP2D bound directly to vimentin and β-tubulin. Phosphorylation of recombinant MAP2D on Thr256 and Thr259, which mimics the phosphorylation status of MAP2D in naive cells, reduces binding of MAP2D to vimentin and tubulin by two- and three-fold, respectively. PKA-dependent phosphorylation of vimentin (Ser32 and Ser38) promoted binding of vimentin to MAP2D and increased contraction of granulosa cells with reorganization of vimentin filaments and MAP2D from the periphery into a thickened layer surrounding the nucleus and into prominent cellular extensions. Chemical disruption of vimentin filament organization increased progesterone production. Taken together, these results suggest that hCG-stimulated dephosphorylation of MAP2D at Thr256 and Thr259, phosphorylation of vimentin at Ser38 and Ser72, and the resulting enhanced binding of MAP2D to vimentin might contribute to the progesterone synthetic response required for ovulation.
The Implementation of C-ID, R2D2 Model on Learning Reading Comprehension
ERIC Educational Resources Information Center
Rayanto, Yudi Hari; Rusmawan, Putu Ngurah
2016-01-01
The purposes of this research are to find out, (1) whether C-ID, R2D2 model is effective to be implemented on learning Reading comprehension, (2) college students' activity during the implementation of C-ID, R2D2 model on learning Reading comprehension, and 3) college students' learning achievement during the implementation of C-ID, R2D2 model on…
Flexible and Scalable Full‐Length CYP2D6 Long Amplicon PacBio Sequencing
Vossen, Rolf H.A.M.; Anvar, Seyed Yahya; Allard, William G.; Guchelaar, Henk‐Jan; White, Stefan J.; den Dunnen, Johan T.; Swen, Jesse J.; van der Straaten, Tahar
2017-01-01
ABSTRACT Cytochrome P450 2D6 (CYP2D6) is among the most important genes involved in drug metabolism. Specific variants are associated with changes in the enzyme's amount and activity. Multiple technologies exist to determine these variants, like the AmpliChip CYP450 test, Taqman qPCR, or Second‐Generation Sequencing, however, sequence homology between cytochrome P450 genes and pseudogene CYP2D7 impairs reliable CYP2D6 genotyping, and variant phasing cannot accurately be determined using these assays. To circumvent this, we sequenced CYP2D6 using the Pacific Biosciences RSII and obtained high‐quality, full‐length, phased CYP2D6 sequences, enabling accurate variant calling and haplotyping of the entire gene‐locus including exonic, intronic, and upstream and downstream regions. Unphased diplotypes (Roche AmpliChip CYP450 test) were confirmed for 24 of the 25 samples, including gene duplications. Cases with gene deletions required additional specific assays to resolve. In total, 61 unique variants were detected, including variants that had not previously been associated with specific haplotypes. To further aid genomic analysis using standard reference sequences, we have established an LOVD‐powered CYP2D6 gene‐variant database, and added all reference haplotypes and data reported here. We conclude that our CYP2D6 genotyping approach produces reliable CYP2D6 diplotypes and reveals information about additional variants, including phasing and copy‐number variation. PMID:28044414
Differential patterns of 2D location versus depth decoding along the visual hierarchy.
Finlayson, Nonie J; Zhang, Xiaoli; Golomb, Julie D
2017-02-15
Visual information is initially represented as 2D images on the retina, but our brains are able to transform this input to perceive our rich 3D environment. While many studies have explored 2D spatial representations or depth perception in isolation, it remains unknown if or how these processes interact in human visual cortex. Here we used functional MRI and multi-voxel pattern analysis to investigate the relationship between 2D location and position-in-depth information. We stimulated different 3D locations in a blocked design: each location was defined by horizontal, vertical, and depth position. Participants remained fixated at the center of the screen while passively viewing the peripheral stimuli with red/green anaglyph glasses. Our results revealed a widespread, systematic transition throughout visual cortex. As expected, 2D location information (horizontal and vertical) could be strongly decoded in early visual areas, with reduced decoding higher along the visual hierarchy, consistent with known changes in receptive field sizes. Critically, we found that the decoding of position-in-depth information tracked inversely with the 2D location pattern, with the magnitude of depth decoding gradually increasing from intermediate to higher visual and category regions. Representations of 2D location information became increasingly location-tolerant in later areas, where depth information was also tolerant to changes in 2D location. We propose that spatial representations gradually transition from 2D-dominant to balanced 3D (2D and depth) along the visual hierarchy.
Screening and transport in 2D semiconductor systems at low temperatures.
Das Sarma, S; Hwang, E H
2015-11-17
Low temperature carrier transport properties in 2D semiconductor systems can be theoretically well-understood within RPA-Boltzmann theory as being limited by scattering from screened Coulomb disorder arising from random quenched charged impurities in the environment. In this work, we derive a number of analytical formula, supported by realistic numerical calculations, for the relevant density, mobility, and temperature range where 2D transport should manifest strong intrinsic (i.e., arising purely from electronic effects) metallic temperature dependence in different semiconductor materials arising entirely from the 2D screening properties, thus providing an explanation for why the strong temperature dependence of the 2D resistivity can only be observed in high-quality and low-disorder 2D samples and also why some high-quality 2D materials manifest much weaker metallicity than other materials. We also discuss effects of interaction and disorder on the 2D screening properties in this context as well as compare 2D and 3D screening functions to comment why such a strong intrinsic temperature dependence arising from screening cannot occur in 3D metallic carrier transport. Experimentally verifiable predictions are made about the quantitative magnitude of the maximum possible low-temperature metallicity in 2D systems and the scaling behavior of the temperature scale controlling the quantum to classical crossover.
The Organic Flatland-Recent Advances in Synthetic 2D Organic Layers.
Cai, Song-Liang; Zhang, Wei-Guang; Zuckermann, Ronald N; Li, Zhan-Ting; Zhao, Xin; Liu, Yi
2015-10-14
Ultrathin, 2D organic layers of sub-ten nanometer thicknesses and high aspect ratios have received a great deal of attention for their graphene-like topological features and emerging properties. Rational synthetic strategies have led to the realization of periodic 2D layers with unprecedented structural precision. Herein, recent progress on the synthesis of 2D organic layers, including methods based on both non-covalent and covalent interactions, is summarized, and potential applications are highlighted. Such 2D organic nanostructures have a brilliant future as prospective multifunctional materials, showing great promise as platforms for engineering novel optoelectronic, interfacial, and bioactive properties.
The Relationship Between Digit Ratio (2D:4D) and Sexual Orientation in Men from China.
Xu, Yin; Zheng, Yong
2016-04-01
We examined the relationship between 2D:4D digit ratio and sexual orientation in men from China and analyzed the influences of the components used to assess sexual orientation and the criteria used to classify individuals as homosexual on this relationship. A total of 309 male and 110 female participants took part in a web-based survey. Our results showed that heterosexual men had a significantly lower 2D:4D than heterosexual women and exclusively homosexual men had a significantly higher left 2D:4D than heterosexual men whereas only exclusively homosexual men had a significantly higher right 2D:4D than heterosexual men when sexual orientation was assessed via sexual attraction. The left 2D:4D showed a significant positive correlation with sexual identity, sexual attraction, and sexual behavior, and the right 2D:4D showed a significant positive correlation with sexual attraction. The effect sizes for differences in 2D:4D between homosexual and heterosexual men varied according to criteria used to classify individuals as homosexual and sexual orientation components; the more stringent the criteria (scores closer to the homosexual category), the larger the effect sizes; further, sexual attraction yielded the largest effect size. There were no significant effects of age and latitude on Chinese 2D:4D. This study contributes to the current understanding of the relationship between 2D:4D and male sexual orientation.
Active exterior cloaking for the 2D Laplace and Helmholtz equations.
Vasquez, Fernando Guevara; Milton, Graeme W; Onofrei, Daniel
2009-08-14
A new cloaking method is presented for 2D quasistatics and the 2D Helmholtz equation that we speculate extends to other linear wave equations. For 2D quasistatics it is proven how a single active exterior cloaking device can be used to shield an object from surrounding fields, yet produce very small scattered fields. The problem is reduced to finding a polynomial which is close to 1 in a disk and close to 0 in another disk, and such a polynomial is constructed. For the 2D Helmholtz equation it is numerically shown that three exterior cloaking devices placed around the object suffice to hide it.
A selective role of NKG2D in inflammatory and autoimmune diseases.
Guerra, Nadia; Pestal, Kathleen; Juarez, Tiffany; Beck, Jennifer; Tkach, Karen; Wang, Lin; Raulet, David H
2013-12-01
The NKG2D activating receptor has been implicated in numerous autoimmune diseases. We tested the role of NKG2D in models of autoimmunity and inflammation using NKG2D knockout mice and antibody blockade experiments. The severity of experimental autoimmune encephalitis (EAE) was decreased in NKG2D-deficient mice when the disease was induced with a limiting antigen dose, but unchanged with an optimal antigen dose. Surprisingly, however, NKG2D deficiency had no detectable effect in several other models, including two models of type 1 diabetes, and a model of intestinal inflammation induced by poly(I:C). NKG2D antibody blockade in normal mice also failed to inhibit disease in the NOD diabetes model or the intestinal inflammation model. Published evidence using NKG2D knockout mice demonstrated a role for NKG2D in mouse models of atherosclerosis and liver inflammation, as well as in chronic obstructive pulmonary disease. Therefore, our results suggest that NKG2D plays selective roles in inflammatory diseases.
Targeting multiple types of tumors using NKG2D-coated iron oxide nanoparticles
NASA Astrophysics Data System (ADS)
Wu, Ming-Ru; Cook, W. James; Zhang, Tong; Sentman, Charles L.
2014-11-01
Iron oxide nanoparticles (IONPs) hold great potential for cancer therapy. Actively targeting IONPs to tumor cells can further increase therapeutic efficacy and decrease off-target side effects. To target tumor cells, a natural killer (NK) cell activating receptor, NKG2D, was utilized to develop pan-tumor targeting IONPs. NKG2D ligands are expressed on many tumor types and its ligands are not found on most normal tissues under steady state conditions. The data showed that mouse and human fragment crystallizable (Fc)-fusion NKG2D (Fc-NKG2D) coated IONPs (NKG2D/NPs) can target multiple NKG2D ligand positive tumor types in vitro in a dose dependent manner by magnetic cell sorting. Tumor targeting effect was robust even under a very low tumor cell to normal cell ratio and targeting efficiency correlated with NKG2D ligand expression level on tumor cells. Furthermore, the magnetic separation platform utilized to test NKG2D/NP specificity has the potential to be developed into high throughput screening strategies to identify ideal fusion proteins or antibodies for targeting IONPs. In conclusion, NKG2D/NPs can be used to target multiple tumor types and magnetic separation platform can facilitate the proof-of-concept phase of tumor targeting IONP development.
Screening and transport in 2D semiconductor systems at low temperatures
Das Sarma, S.; Hwang, E. H.
2015-01-01
Low temperature carrier transport properties in 2D semiconductor systems can be theoretically well-understood within RPA-Boltzmann theory as being limited by scattering from screened Coulomb disorder arising from random quenched charged impurities in the environment. In this work, we derive a number of analytical formula, supported by realistic numerical calculations, for the relevant density, mobility, and temperature range where 2D transport should manifest strong intrinsic (i.e., arising purely from electronic effects) metallic temperature dependence in different semiconductor materials arising entirely from the 2D screening properties, thus providing an explanation for why the strong temperature dependence of the 2D resistivity can only be observed in high-quality and low-disorder 2D samples and also why some high-quality 2D materials manifest much weaker metallicity than other materials. We also discuss effects of interaction and disorder on the 2D screening properties in this context as well as compare 2D and 3D screening functions to comment why such a strong intrinsic temperature dependence arising from screening cannot occur in 3D metallic carrier transport. Experimentally verifiable predictions are made about the quantitative magnitude of the maximum possible low-temperature metallicity in 2D systems and the scaling behavior of the temperature scale controlling the quantum to classical crossover. PMID:26572738
3D-2D ultrasound feature-based registration for navigated prostate biopsy: a feasibility study.
Selmi, Sonia Y; Promayon, Emmanuel; Troccaz, Jocelyne
2016-08-01
The aim of this paper is to describe a 3D-2D ultrasound feature-based registration method for navigated prostate biopsy and its first results obtained on patient data. A system combining a low-cost tracking system and a 3D-2D registration algorithm was designed. The proposed 3D-2D registration method combines geometric and image-based distances. After extracting features from ultrasound images, 3D and 2D features within a defined distance are matched using an intensity-based function. The results are encouraging and show acceptable errors with simulated transforms applied on ultrasound volumes from real patients.
The role of the cytoskeleton in cellular force generation in 2D and 3D environments
NASA Astrophysics Data System (ADS)
Kraning-Rush, Casey M.; Carey, Shawn P.; Califano, Joseph P.; Smith, Brooke N.; Reinhart-King, Cynthia A.
2011-02-01
To adhere and migrate, cells generate forces through the cytoskeleton that are transmitted to the surrounding matrix. While cellular force generation has been studied on 2D substrates, less is known about cytoskeletal-mediated traction forces of cells embedded in more in vivo-like 3D matrices. Recent studies have revealed important differences between the cytoskeletal structure, adhesion, and migration of cells in 2D and 3D. Because the cytoskeleton mediates force, we sought to directly compare the role of the cytoskeleton in modulating cell force in 2D and 3D. MDA-MB-231 cells were treated with agents that perturbed actin, microtubules, or myosin, and analyzed for changes in cytoskeletal organization and force generation in both 2D and 3D. To quantify traction stresses in 2D, traction force microscopy was used; in 3D, force was assessed based on single cell-mediated collagen fibril reorganization imaged using confocal reflectance microscopy. Interestingly, even though previous studies have observed differences in cell behaviors like migration in 2D and 3D, our data indicate that forces generated on 2D substrates correlate with forces within 3D matrices. Disruption of actin, myosin or microtubules in either 2D or 3D microenvironments disrupts cell-generated force. These data suggest that despite differences in cytoskeletal organization in 2D and 3D, actin, microtubules and myosin contribute to contractility and matrix reorganization similarly in both microenvironments.
Yamada, Michio; Tanabe, Yukiko; Dang, Jing-Shuang; Sato, Satoru; Mizorogi, Naomi; Hachiya, Makoto; Suzuki, Mitsuaki; Abe, Tsuneyuki; Kurihara, Hiroki; Maeda, Yutaka; Zhao, Xiang; Lian, Yongfu; Nagase, Shigeru; Akasaka, Takeshi
2016-12-21
We compared the chemical reactivity of D2d(23)-C84 and that of Sc2C2@D2d(23)-C84, both having the same carbon cage geometry, in the photolysis of 2-adamantane-2,3'-[3H]-diazirine, to clarify metal-atom doping effects on the chemical reactivity of the carbon cage. Experimental and computational studies have revealed that the chemical reactivity of the D2d(23)-C84 carbon cage is altered drastically by endohedral Sc2C2 doping. The reaction of empty D2d(23)-C84 with the diazirine under photoirradiation yields two adamantylidene (Ad) adducts. NMR spectroscopic studies revealed that the major Ad monoadduct (C84(Ad)-A) has a fulleroid structure and that the minor Ad monoadduct (C84(Ad)-B) has a methanofullerene structure. The latter was also characterized using X-ray crystallography. C84(Ad)-A is stable under photoirradiation, but it interconverted to C84(Ad)-B by heating at 80 °C. In contrast, the reaction of endohedral Sc2C2@D2d(23)-C84 with diazirine under photoirradiation affords four Ad monoadducts (Sc2C2@C84(Ad)-A, Sc2C2@C84(Ad)-B, Sc2C2@C84(Ad)-C, and Sc2C2@C84(Ad)-D). The structure of Sc2C2@C84(Ad)-C was characterized using X-ray crystallography. Thermal interconversion of Sc2C2@C84(Ad)-A and Sc2C2@C84(Ad)-B to Sc2C2@C84(Ad)-C was also observed. The reaction mechanisms of the Ad addition and thermal interconversion were elucidated from theoretical calculations. Calculation results suggest that C84(Ad)-B and Sc2C2@C84(Ad)-C are thermodynamically favorable products. Their different chemical reactivities derive from Sc2C2 doping, which raises the HOMO and LUMO levels of the D2d(23)-C84 carbon cage.
Zocchi, Maria Raffaella; Camodeca, Caterina; Nuti, Elisa; Rossello, Armando; Venè, Roberta; Tosetti, Francesca; Dapino, Irene; Costa, Delfina; Musso, Alessandra; Poggi, Alessandro
2016-01-01
ABSTRACT Hodgkin lymphoma (HL) resistant to conventional therapies is increasing, making of interest the search for new schemes of treatment. Members of the “A Disintegrin And Metalloproteases” (ADAMs) family, mainly ADAM10 or ADAM17, have been proposed as therapeutic targets in solid tumors and some ADAMs inhibitors have been shown to exert antitumor effects. We have previously described an overexpression of ADAM10 in HL, together with increased release of NKG2D ligands (NKG2D-L) and reduced activation of effector T lymphocytes with anti-lymphoma capacity. Aim of the present work was to verify whether inhibition of ADAM10 in HL cells could restore the triggering of NKG2D-dependent anti-lymphoma T cell response. As no selective ADAM10 blockers have been reported so far, we synthesized the two hydroxamate compounds LT4 and MN8 with selectivity for ADAM10 over metalloproteases (MMPs), LT4 showing higher specificity for ADAM10 over ADAM17. We show that (i) HL lymph nodes (LN) and cultured HL cells express high levels of the mature active membrane form of ADAM10; (ii) ADAM10 is the major sheddase for the NKG2D-L in HL cells; (iii) the new LT4 and MN8 compounds strongly reduce the shedding of NKG2D-L by HL cell lines and enhance the binding of NKG2D receptor; (iv) of note, these new ADAM10 inhibitors increase the sensitivity of HL cell lines to NKG2D-dependent cell killing exerted by natural killer and γδ T cells. Overall, the biologic activity of LT4 and MN8 appears to be more potent than that of the commercial inhibitor GI254023X. PMID:27467923
Czoty, Paul W.; Gage, H. Donald; Garg, Pradeep K.; Garg, Sudha; Nader, Michael A.
2013-01-01
Rationale Chronic treatment with dopamine (DA) receptor agonists and antagonists can differentially affect measures of DA D2/D3 receptor number and function, but the effects of chronic treatment with a partial D2/D3 receptor agonist are not clear. Objective We used a within-subjects design in male cynomolgus monkeys to determine the effects of repeated (17-day) treatment with the D2/D3 receptor partial agonist aripiprazole (ARI; 0.03 mg/kg and 0.1 mg/kg i.m.) on food-reinforced behavior (n=5) and on D2/D3 receptor availability as measured with positron emission tomography (PET; n=9). Methods Five monkeys responded under a fixed-ratio 50 schedule of food reinforcement and D2/D3 receptor availability was measured before and four days after ARI treatment using PET and the D2/D3 receptor-selective radioligand [18F]fluoroclebopride (FCP). Four additional monkeys were studied using [11C]raclopride and treated sequentially with each dose of ARI for 17 days. Results ARI decreased food-maintained responding with minimal evidence of tolerance. Repeated ARI administration increased FCP and raclopride distribution volume ratios (DVRs) in the caudate nucleus and putamen in most monkeys, but decreases were observed in monkeys with the highest baseline DVRs. Conclusions The results indicate that repeated treatment with a low efficacy DA receptor partial agonist produces effects on brain D2/D3 receptor availability that are qualitatively different from those of both high-efficacy receptor agonists and antagonists, and suggest that the observed individual differences in response to ARI treatment may reflect its partial agonist activity. PMID:24077804
Zocchi, Maria Raffaella; Camodeca, Caterina; Nuti, Elisa; Rossello, Armando; Venè, Roberta; Tosetti, Francesca; Dapino, Irene; Costa, Delfina; Musso, Alessandra; Poggi, Alessandro
2016-05-01
Hodgkin lymphoma (HL) resistant to conventional therapies is increasing, making of interest the search for new schemes of treatment. Members of the "A Disintegrin And Metalloproteases" (ADAMs) family, mainly ADAM10 or ADAM17, have been proposed as therapeutic targets in solid tumors and some ADAMs inhibitors have been shown to exert antitumor effects. We have previously described an overexpression of ADAM10 in HL, together with increased release of NKG2D ligands (NKG2D-L) and reduced activation of effector T lymphocytes with anti-lymphoma capacity. Aim of the present work was to verify whether inhibition of ADAM10 in HL cells could restore the triggering of NKG2D-dependent anti-lymphoma T cell response. As no selective ADAM10 blockers have been reported so far, we synthesized the two hydroxamate compounds LT4 and MN8 with selectivity for ADAM10 over metalloproteases (MMPs), LT4 showing higher specificity for ADAM10 over ADAM17. We show that (i) HL lymph nodes (LN) and cultured HL cells express high levels of the mature active membrane form of ADAM10; (ii) ADAM10 is the major sheddase for the NKG2D-L in HL cells; (iii) the new LT4 and MN8 compounds strongly reduce the shedding of NKG2D-L by HL cell lines and enhance the binding of NKG2D receptor; (iv) of note, these new ADAM10 inhibitors increase the sensitivity of HL cell lines to NKG2D-dependent cell killing exerted by natural killer and γδ T cells. Overall, the biologic activity of LT4 and MN8 appears to be more potent than that of the commercial inhibitor GI254023X.
Reduced sleep duration mediates decreases in striatal D2/D3 receptor availability in cocaine abusers
Wiers, C E; Shumay, E; Cabrera, E; Shokri-Kojori, E; Gladwin, T E; Skarda, E; Cunningham, S I; Kim, S W; Wong, T C; Tomasi, D; Wang, G-J; Volkow, N D
2016-01-01
Neuroimaging studies have documented reduced striatal dopamine D2/D3 receptor (D2/D3R) availability in cocaine abusers, which has been associated with impaired prefrontal activity and vulnerability for relapse. However, the mechanism(s) underlying the decreases in D2/D3R remain poorly understood. Recent studies have shown that sleep deprivation is associated with a downregulation of striatal D2/D3R in healthy volunteers. As cocaine abusers have disrupted sleep patterns, here we investigated whether reduced sleep duration mediates the relationship between cocaine abuse and low striatal D2/D3R availability. We used positron emission tomography with [11C]raclopride to measure striatal D2/D3R availability in 24 active cocaine abusers and 21 matched healthy controls, and interviewed them about their daily sleep patterns. Compared with controls, cocaine abusers had shorter sleep duration, went to bed later and reported longer periods of sleep disturbances. In addition, cocaine abusers had reduced striatal D2/D3R availability. Sleep duration predicted striatal D2/D3R availability and statistically mediated the relationship between cocaine abuse and striatal D2/D3R availability. These findings suggest that impaired sleep patterns contribute to the low striatal D2/D3R availability in cocaine abusers. As sleep impairments are similarly observed in other types of substance abusers (for example, alcohol and methamphetamine), this mechanism may also underlie reductions in D2/D3R availability in these groups. The current findings have clinical implications suggesting that interventions to improve sleep patterns in cocaine abusers undergoing detoxification might be beneficial in improving their clinical outcomes. PMID:26954979
Fast, accurate 2D-MR relaxation exchange spectroscopy (REXSY): Beyond compressed sensing
NASA Astrophysics Data System (ADS)
Bai, Ruiliang; Benjamini, Dan; Cheng, Jian; Basser, Peter J.
2016-10-01
Previously, we showed that compressive or compressed sensing (CS) can be used to reduce significantly the data required to obtain 2D-NMR relaxation and diffusion spectra when they are sparse or well localized. In some cases, an order of magnitude fewer uniformly sampled data were required to reconstruct 2D-MR spectra of comparable quality. Nonetheless, this acceleration may still not be sufficient to make 2D-MR spectroscopy practicable for many important applications, such as studying time-varying exchange processes in swelling gels or drying paints, in living tissue in response to various biological or biochemical challenges, and particularly for in vivo MRI applications. A recently introduced framework, marginal distributions constrained optimization (MADCO), tremendously accelerates such 2D acquisitions by using a priori obtained 1D marginal distribution as powerful constraints when 2D spectra are reconstructed. Here we exploit one important intrinsic property of the 2D-MR relaxation exchange spectra: the fact that the 1D marginal distributions of each 2D-MR relaxation exchange spectrum in both dimensions are equal and can be rapidly estimated from a single Carr-Purcell-Meiboom-Gill (CPMG) or inversion recovery prepared CPMG measurement. We extend the MADCO framework by further proposing to use the 1D marginal distributions to inform the subsequent 2D data-sampling scheme, concentrating measurements where spectral peaks are present and reducing them where they are not. In this way we achieve compression or acceleration that is an order of magnitude greater than that in our previous CS method while providing data in reconstructed 2D-MR spectral maps of comparable quality, demonstrated using several simulated and real 2D T2 - T2 experimental data. This method, which can be called "informed compressed sensing," is extendable to other 2D- and even ND-MR exchange spectroscopy.
NASA Astrophysics Data System (ADS)
Lacava, C.; Carrol, L.; Bozzola, A.; Marchetti, R.; Minzioni, P.; Cristiani, I.; Fournier, M.; Bernabe, S.; Gerace, D.; Andreani, L. C.
2016-03-01
We present the characterization of Silicon-on-insulator (SOI) photonic-crystal based 2D grating-couplers (2D-GCs) fabricated by CEA-Leti in the frame of the FP7 Fabulous project, which is dedicated to the realization of devices and systems for low-cost and high-performance passives-optical-networks. On the analyzed samples different test structures are present, including 2D-GC connected to another 2D-GC by different waveguides (in a Mach-Zehnder like configuration), and 2D-GC connected to two separate 2D-GCs, so as to allow a complete assessment of different parameters. Measurements were carried out using a tunable laser source operating in the extended telecom bandwidth and a fiber-based polarization controlling system at the input of device-under-test. The measured data yielded an overall fiber-to-fiber loss of 7.5 dB for the structure composed by an input 2D-GC connected to two identical 2D-GCs. This value was obtained at the peak wavelength of the grating, and the 3-dB bandwidth of the 2D-GC was assessed to be 43 nm. Assuming that the waveguide losses are negligible, so as to make a worst-case analysis, the coupling efficiency of the single 2D-GC results to be equal to -3.75 dB, constituting, to the best of our knowledge, the lowest value ever reported for a fully CMOS compatible 2D-GC. It is worth noting that both the obtained values are in good agreement with those expected by the numerical simulations performed using full 3D analysis by Lumerical FDTD-solutions.
Gil, Bomi; Hwang, Eo-Jin; Lee, Song; Jang, Jinhee; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-soo
2016-01-01
Introduction To compare the diagnostic accuracy of contrast-enhanced 3D(dimensional) T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions (T1-SPACE), 2D fluid attenuated inversion recovery (FLAIR) images and 2D contrast-enhanced T1-weighted image in detection of leptomeningeal metastasis except for invasive procedures such as a CSF tapping. Materials and Methods Three groups of patients were included retrospectively for 9 months (from 2013-04-01 to 2013-12-31). Group 1 patients with positive malignant cells in CSF cytology (n = 22); group 2, stroke patients with steno-occlusion in ICA or MCA (n = 16); and group 3, patients with negative results on MRI, whose symptom were dizziness or headache (n = 25). A total of 63 sets of MR images are separately collected and randomly arranged: (1) CE 3D T1-SPACE; (2) 2D FLAIR; and (3) CE T1-GRE using a 3-Tesla MR system. A faculty neuroradiologist with 8-year-experience and another 2nd grade trainee in radiology reviewed each MR image- blinded by the results of CSF cytology and coded their observations as positives or negatives of leptomeningeal metastasis. The CSF cytology result was considered as a gold standard. Sensitivity and specificity of each MR images were calculated. Diagnostic accuracy was compared using a McNemar’s test. A Cohen's kappa analysis was performed to assess inter-observer agreements. Results Diagnostic accuracy was not different between 3D T1-SPACE and CSF cytology by both raters. However, the accuracy test of 2D FLAIR and 2D contrast-enhanced T1-weighted GRE was inconsistent by the two raters. The Kappa statistic results were 0.657 (3D T1-SPACE), 0.420 (2D FLAIR), and 0.160 (2D contrast-enhanced T1-weighted GRE). The 3D T1-SPACE images showed the highest inter-observer agreements between the raters. Conclusions Compared to 2D FLAIR and 2D contrast-enhanced T1-weighted GRE, contrast-enhanced 3D T1 SPACE showed a better detection rate of
Wang, Yuxian; Xie, Yongbing; Sun, Hongqi; Xiao, Jiadong; Cao, Hongbin; Wang, Shaobin
2016-01-15
Two-dimensional reduced graphene oxide (2D rGO) was employed as both a shape-directing medium and support to fabricate 2D γ-MnO2/2D rGO nano-hybrids (MnO2/rGO) via a facile hydrothermal route. For the first time, the 2D/2D hybrid materials were used for catalytic ozonation of 4-nitrophenol. The catalytic efficiency of MnO2/rGO was much higher than either MnO2 or rGO only, and rGO was suggested to play the role for promoting electron transfers. Quenching tests using tert-butanol, p-benzoquinone, and sodium azide suggested that the major radicals responsible for 4-nitrophenol degradation and mineralization are O2(-) and (1)O2, but not ·OH. Reusability tests demonstrated a high stability of the materials in catalytic ozonation with minor Mn leaching below 0.5 ppm. Degradation mechanism, reaction kinetics, reusability and a synergistic effect between catalytic ozonation and coupling peroxymonosulfate (PMS) activation were also discussed.
López-Álvarez, M R; Campillo, J A; Legaz, I; Blanco-García, R M; Salgado-Cecilia, G; Bolarín, J M; Gimeno, L; Gil, J; García-Alonso, A M; Muro, M; Alvarez-López, M R; Miras, M; Minguela, A
2011-03-01
Natural killer (NK) and CD8(+) T cells may be active elements in the allograft response, but little is known about their role in liver transplantation. Some of these cells express killer immunoglobulin-like receptors (KIRs), which after binding specific ligands may transmit inhibitory/activating signals. In this study, circulating NK and CD8(+) T cells expressing CD158a/h (KIR2DL1/S1) or CD158b/j (KIR2DL2/3/S(2)) receptors were analyzed in 142 liver recipients by flow cytometry. They were underrepresented in patients before transplantation, but following transplantation, whereas the KIR2D(+) NK subsets experienced a late recuperation (day 365) mainly in C2-homozygous patients developing early acute rejection, recovery of the 2 CD8(+)KIR2D(+) T cells started earlier, showing significant differences on day 365 between patients without acute rejection and those suffering from it (p = 0.004 and p < 0.0001, respectively). These differences were also evident when the human leukocute antigen-C genotypes of the recipient were considered. In conclusion, whereas the late recovery of KIR2D(+) NK cells in C2/C2 patients appears to be linked to acute rejection, the increase in early CD8(+)KIR2D(+) T cells in overall liver recipients correlates with a most successful early graft outcome. Therefore, monitoring of KIR2D(+) cells appears to be a useful tool for liver transplant follow-up.
Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia
Gu, Zhaohui; Churchman, Michelle; Roberts, Kathryn; Li, Yongjin; Liu, Yu; Harvey, Richard C.; McCastlain, Kelly; Reshmi, Shalini C.; Payne-Turner, Debbie; Iacobucci, Ilaria; Shao, Ying; Chen, I-Ming; Valentine, Marcus; Pei, Deqing; Mungall, Karen L.; Mungall, Andrew J.; Ma, Yussanne; Moore, Richard; Marra, Marco; Stonerock, Eileen; Gastier-Foster, Julie M.; Devidas, Meenakshi; Dai, Yunfeng; Wood, Brent; Borowitz, Michael; Larsen, Eric E.; Maloney, Kelly; Mattano Jr, Leonard A.; Angiolillo, Anne; Salzer, Wanda L.; Burke, Michael J.; Gianni, Francesca; Spinelli, Orietta; Radich, Jerald P.; Minden, Mark D.; Moorman, Anthony V.; Patel, Bella; Fielding, Adele K.; Rowe, Jacob M.; Luger, Selina M.; Bhatia, Ravi; Aldoss, Ibrahim; Forman, Stephen J.; Kohlschmidt, Jessica; Mrózek, Krzysztof; Marcucci, Guido; Bloomfield, Clara D.; Stock, Wendy; Kornblau, Steven; Kantarjian, Hagop M.; Konopleva, Marina; Paietta, Elisabeth; Willman, Cheryl L.; L. Loh, Mignon; P. Hunger, Stephen; Mullighan, Charles G.
2016-01-01
Chromosomal rearrangements are initiating events in acute lymphoblastic leukaemia (ALL). Here using RNA sequencing of 560 ALL cases, we identify rearrangements between MEF2D (myocyte enhancer factor 2D) and five genes (BCL9, CSF1R, DAZAP1, HNRNPUL1 and SS18) in 22 B progenitor ALL (B-ALL) cases with a distinct gene expression profile, the most common of which is MEF2D-BCL9. Examination of an extended cohort of 1,164 B-ALL cases identified 30 cases with MEF2D rearrangements, which include an additional fusion partner, FOXJ2; thus, MEF2D-rearranged cases comprise 5.3% of cases lacking recurring alterations. MEF2D-rearranged ALL is characterized by a distinct immunophenotype, DNA copy number alterations at the rearrangement sites, older diagnosis age and poor outcome. The rearrangements result in enhanced MEF2D transcriptional activity, lymphoid transformation, activation of HDAC9 expression and sensitive to histone deacetylase inhibitor treatment. Thus, MEF2D-rearranged ALL represents a distinct form of high-risk leukaemia, for which new therapeutic approaches should be considered. PMID:27824051
Wang, Zenghui; Feng, Philip X.-L.
2016-01-01
Atomic layer crystals are emerging building blocks for enabling new two-dimensional (2D) nanomechanical systems, whose motions can be coupled to other attractive physical properties in such 2D systems. Optical interferometry has been very effective in reading out the infinitesimal motions of these 2D structures and spatially resolving different modes. To quantitatively understand the detection efficiency and its dependence on the device parameters and interferometric conditions, here we present a systematic study of the intrinsic motion responsivity in 2D nanomechanical systems using a Fresnel-law-based model. We find that in monolayer to 14-layer structures, MoS2 offers the highest responsivity among graphene, h-BN, and MoS2 devices and for the three commonly used visible laser wavelengths (633, 532, and 405 nm). We also find that the vacuum gap resulting from the widely used 300 nm-oxide substrate in making 2D devices, fortunately, leads to close-to-optimal responsivity for a wide range of 2D flakes. Our results elucidate and graphically visualize the dependence of motion transduction responsivity upon 2D material type and number of layers, vacuum gap, oxide thickness, and detecting wavelength, thus providing design guidelines for constructing 2D nanomechanical systems with optimal optical motion readout. PMID:27464908
The immunoreceptor NKG2D promotes tumour growth in a model of hepatocellular carcinoma
Sheppard, Sam; Guedes, Joana; Mroz, Anna; Zavitsanou, Anastasia-Maria; Kudo, Hiromi; Rothery, Stephen M.; Angelopoulos, Panagiotis; Goldin, Robert; Guerra, Nadia
2017-01-01
Inflammation is recognized as one of the drivers of cancer. Yet, the individual immune components that possess pro- and anti-tumorigenic functions in individual cancers remain largely unknown. NKG2D is a potent activating immunoreceptor that has emerged as an important player in inflammatory disorders besides its well-established function as tumour suppressor. Here, we provide genetic evidence of an unexpected tumour-promoting effect of NKG2D in a model of inflammation-driven liver cancer. Compared to NKG2D-deficient mice, NKG2D-sufficient mice display accelerated tumour growth associated with, an increased recruitment of memory CD8+T cells to the liver and exacerbated pro-inflammatory milieu. In addition, we show that NKG2D contributes to liver damage and consequent hepatocyte proliferation known to favour tumorigenesis. Thus, the NKG2D/NKG2D-ligand pathway provides an additional mechanism linking chronic inflammation to tumour development in hepatocellular carcinoma. Our findings expose the need to selectively target the types of cancer that could benefit from NKG2D-based immunotherapy. PMID:28128200
NASA Astrophysics Data System (ADS)
Wang, Zenghui; Feng, Philip X.-L.
2016-07-01
Atomic layer crystals are emerging building blocks for enabling new two-dimensional (2D) nanomechanical systems, whose motions can be coupled to other attractive physical properties in such 2D systems. Optical interferometry has been very effective in reading out the infinitesimal motions of these 2D structures and spatially resolving different modes. To quantitatively understand the detection efficiency and its dependence on the device parameters and interferometric conditions, here we present a systematic study of the intrinsic motion responsivity in 2D nanomechanical systems using a Fresnel-law-based model. We find that in monolayer to 14-layer structures, MoS2 offers the highest responsivity among graphene, h-BN, and MoS2 devices and for the three commonly used visible laser wavelengths (633, 532, and 405 nm). We also find that the vacuum gap resulting from the widely used 300 nm-oxide substrate in making 2D devices, fortunately, leads to close-to-optimal responsivity for a wide range of 2D flakes. Our results elucidate and graphically visualize the dependence of motion transduction responsivity upon 2D material type and number of layers, vacuum gap, oxide thickness, and detecting wavelength, thus providing design guidelines for constructing 2D nanomechanical systems with optimal optical motion readout.
Wang, Zenghui; Feng, Philip X-L
2016-07-28
Atomic layer crystals are emerging building blocks for enabling new two-dimensional (2D) nanomechanical systems, whose motions can be coupled to other attractive physical properties in such 2D systems. Optical interferometry has been very effective in reading out the infinitesimal motions of these 2D structures and spatially resolving different modes. To quantitatively understand the detection efficiency and its dependence on the device parameters and interferometric conditions, here we present a systematic study of the intrinsic motion responsivity in 2D nanomechanical systems using a Fresnel-law-based model. We find that in monolayer to 14-layer structures, MoS2 offers the highest responsivity among graphene, h-BN, and MoS2 devices and for the three commonly used visible laser wavelengths (633, 532, and 405 nm). We also find that the vacuum gap resulting from the widely used 300 nm-oxide substrate in making 2D devices, fortunately, leads to close-to-optimal responsivity for a wide range of 2D flakes. Our results elucidate and graphically visualize the dependence of motion transduction responsivity upon 2D material type and number of layers, vacuum gap, oxide thickness, and detecting wavelength, thus providing design guidelines for constructing 2D nanomechanical systems with optimal optical motion readout.
Salt-Templated Synthesis of 2D Metallic MoN and Other Nitrides.
Xiao, Xu; Yu, Huimin; Jin, Huanyu; Wu, Menghao; Fang, Yunsheng; Sun, Jiyu; Hu, Zhimi; Li, Tianqi; Wu, Jiabin; Huang, Liang; Gogotsi, Yury; Zhou, Jun
2017-02-28
Two-dimensional (2D) transition-metal nitrides just recently entered the research arena, but already offer a potential for high-rate energy storage, which is needed for portable/wearable electronics and many other applications. However, a lack of efficient and high-yield synthesis methods for 2D metal nitrides has been a major bottleneck for the manufacturing of those potentially very important materials, and only MoN, Ti4N3, and GaN have been reported so far. Here we report a scalable method that uses reduction of 2D hexagonal oxides in ammonia to produce 2D nitrides, such as MoN. MoN nanosheets with subnanometer thickness have been studied in depth. Both theoretical calculation and experiments demonstrate the metallic nature of 2D MoN. The hydrophilic restacked 2D MoN film exhibits a very high volumetric capacitance of 928 F cm(-3) in sulfuric acid electrolyte with an excellent rate performance. We expect that the synthesis of metallic 2D MoN and two other nitrides (W2N and V2N) demonstrated here will provide an efficient way to expand the family of 2D materials and add many members with attractive properties.
Boulesbaa, Abdelaziz; Babicheva, Viktoriia E.; Wang, Kai; ...
2016-11-17
With the advanced progress achieved in the field of nanotechnology, localized surface plasmons resonances (LSPRs) are actively considered to improve the efficiency of metal-based photocatalysis, photodetection, and photovoltaics. Here, we report on the exchange of energy and electric charges in a hybrid composed of a two-dimensional tungsten disulfide (2D-WS2) monolayer and an array of aluminum (Al) nanodisks. Femtosecond pump-probe spectroscopy results indicate that within ~830 fs after photoexcitation of the 2D-WS2 semiconductor, energy transfer from the 2D-WS2 excitons excites the plasmons of the Al array. Then, upon the radiative and/or nonradiative damping of these excited plasmons, energy and/or electron transfermore » back to the 2D-WS2 semiconductor takes place as indicated by an increase in the reflected probe at the 2D exciton transition energies at later time-delays. This simultaneous exchange of energy and charges between the metal and the 2D-WS2 semiconductor resulted in an extension of the average lifetime of the 2D-excitons from ~15 to ~58 ps in absence and presence of the Al array, respectively. Furthermore, the indirectly excited plasmons were found to live as long as the 2D-WS2 excitons exist. Furthermore, the demonstrated ability to generate exciton-plasmons coupling in a hybrid nanostructure may open new opportunities for optoelectronic applications such as plasmonic-based photodetection and photocatalysis.« less
76 FR 30819 - Special Conditions: Turbomeca Arriel 2D Turboshaft Engine
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-27
... Administration 14 CFR Part 33 Special Conditions: Turbomeca Arriel 2D Turboshaft Engine AGENCY: Federal Aviation... Turbomeca SA model Arriel 2D engines. The engine model will have a novel or unusual design feature which is... contact Marc Bouthillier, ANE-111, Engine and Propeller Directorate, Aircraft Certification Service,...
An Implicit 2-D Shallow Water Flow Model on Unstructured Quadtree Rectangular Mesh
2011-01-01
Hanson, H.; Wamsley, T., and Zundel, A. K., 2006. Two-dimensional depth-averaged circulation model CMS- M2D : Version 3.0, Report 2: Sediment...Militello, A.; Reed, C.W.; Zundel, A.K. and Kraus, N.C., 2004. Two-dimensional depth-averaged circulation model M2D : Version 2.0, Report 1, Technical
3D-2D registration of cerebral angiograms: a method and evaluation on clinical images.
Mitrovic, Uroš; Špiclin, Žiga; Likar, Boštjan; Pernuš, Franjo
2013-08-01
Endovascular image-guided interventions (EIGI) involve navigation of a catheter through the vasculature followed by application of treatment at the site of anomaly using live 2D projection images for guidance. 3D images acquired prior to EIGI are used to quantify the vascular anomaly and plan the intervention. If fused with the information of live 2D images they can also facilitate navigation and treatment. For this purpose 3D-2D image registration is required. Although several 3D-2D registration methods for EIGI achieve registration accuracy below 1 mm, their clinical application is still limited by insufficient robustness or reliability. In this paper, we propose a 3D-2D registration method based on matching a 3D vasculature model to intensity gradients of live 2D images. To objectively validate 3D-2D registration methods, we acquired a clinical image database of 10 patients undergoing cerebral EIGI and established "gold standard" registrations by aligning fiducial markers in 3D and 2D images. The proposed method had mean registration accuracy below 0.65 mm, which was comparable to tested state-of-the-art methods, and execution time below 1 s. With the highest rate of successful registrations and the highest capture range the proposed method was the most robust and thus a good candidate for application in EIGI.
Thermopower enhancement by fractional layer control in 2D oxide superlattices.
Choi, Woo Seok; Ohta, Hiromichi; Lee, Ho Nyung
2014-10-22
Precise tuning of the 2D carrier density by using fractional δ-doping of d electrons improves the thermoelectric properties of oxide heterostructures. This promising result can be attributed to the anisotropic band structure in the 2D system, indicating that δ-doped oxide superlattices are good candidates for advanced thermoelectrics.
2D FT-IR Study of Compositional and Structural Change in Developing Cotton Fibers
Technology Transfer Automated Retrieval System (TEKTRAN)
Two-dimensional (2D) correlation analysis was applied to characterize the ATR spectral intensity fluctuations of immature and mature cotton fibers. Prior to 2D analysis, the spectra were leveled to zero at the peak intensity of 1800 cm-1 and then were normalized at the peak intensity of 660 cm-1 to ...
Impact of CYP2D6 polymorphisms on clinical efficacy and tolerability of metoprolol tartrate.
Hamadeh, I S; Langaee, T Y; Dwivedi, R; Garcia, S; Burkley, B M; Skaar, T C; Chapman, A B; Gums, J G; Turner, S T; Gong, Y; Cooper-DeHoff, R M; Johnson, J A
2014-08-01
Metoprolol is a selective β-1 adrenergic receptor blocker that undergoes extensive metabolism by the polymorphic enzyme cytochrome P450 2D6 (CYP2D6). Our objective was to investigate the influence of CYP2D6 polymorphisms on the efficacy and tolerability of metoprolol tartrate. Two hundred and eighty-one participants with uncomplicated hypertension received 50 mg of metoprolol twice daily followed by response-guided titration to 100 mg twice daily. Phenotypes were assigned based on results of CYP2D6 genotyping and copy number variation assays. Clinical response to metoprolol and adverse effect rates were analyzed in relation to CYP2D6 phenotypes using appropriate statistical tests. Heart rate response differed significantly by CYP2D6 phenotype (P < 0.0001), with poor and intermediate metabolizers showing greater reduction. However, blood pressure response and adverse effect rates were not significantly different by CYP2D6 phenotype. Other than a significant difference in heart rate response, CYP2D6 polymorphisms were not determinants of variability in metoprolol response or tolerability.
CYP2D60 and Clinical Response to Atomoxetine in Children and Adolescents with ADHD
ERIC Educational Resources Information Center
Michelson, David; Read, Holly A.; Ruff, Dustin D.; Witcher, Jennifer; Zhang, Shuyu; McCracken, James
2007-01-01
Background: Atomoxetine, a selective norepinephrine reuptake inhibitor effective in the treatment of attention-deficit/hyperactivity disorder (ADHD), is metabolized through the cytochrome P-450 2D6 (CYP2D6) enzyme pathway, which is genetically polymorphic in humans. Variations in plasma atomoxetine exposures can occur because of genetic variation…
Shen, Jianfeng; Wu, Jingjie; Wang, Man; Dong, Pei; Xu, Jingxuan; Li, Xiaoguang; Zhang, Xiang; Yuan, Junhua; Wang, Xifan; Ye, Mingxin; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M
2016-05-01
A proper design of direct liquid phase exfoliation (LPE) for 2D materials as graphene, MoS2 , WS2 , h-BN, Bi2 Se3 , MoSe2 , SnS2 , and TaS2 with common cosolvents is carried out based on considering the polar and dispersive components of surface tensions of various cosolvents and 2D materials. It has been found that the exfoliation efficiency is enhanced by matching the ratio of surface tension components of cosolvents to that of the targeted 2D materials, based on which common cosolvents composed of IPA/water, THF/water, and acetone/water can be designed for sufficient LPE process. In this context, the library of low-toxic and low-cost solvents with low boiling points for LPE is infinitely enlarged when extending to common cosolvents. Polymer-based composites reinforced with a series of different 2D materials are compared with each other. It is demonstrated that the incorporation of cosolvents-exfoliated 2D materials can substantially improve the mechanical and thermal properties of polymer matrices. Typically, with the addition of 0.5 wt% of such 2D material as MoS2 nanosheets, the tensile strength and Young's modulus increased up to 74.85% and 136.97%, respectively. The different enhancement effect of 2D materials is corresponded to the intrinsic properties and LPE capacity of 2D materials.
2D-dynamic representation of DNA sequences as a graphical tool in bioinformatics
NASA Astrophysics Data System (ADS)
Bielińska-WaÌ§Ż, D.; WaÌ§Ż, P.
2016-10-01
2D-dynamic representation of DNA sequences is briefly reviewed. Some new examples of 2D-dynamic graphs which are the graphical tool of the method are shown. Using the examples of the complete genome sequences of the Zika virus it is shown that the present method can be applied for the study of the evolution of viral genomes.
VIEWNET: a neural architecture for learning to recognize 3D objects from multiple 2D views
NASA Astrophysics Data System (ADS)
Grossberg, Stephen; Bradski, Gary
1994-10-01
A self-organizing neural network is developed for recognition of 3-D objects from sequences of their 2-D views. Called VIEWNET because it uses view information encoded with networks, the model processes 2-D views of 3-D objects using the CORT-X 2 filter, which discounts the illuminant, regularizes and completes figural boundaries, and removes noise from the images. A log-polar transform is taken with respect to the centroid of the resulting figure and then re-centered to achieve 2-D scale and rotation invariance. The invariant images are coarse coded to further reduce noise, reduce foreshortening effects, and increase generalization. These compressed codes are input into a supervised learning system based on the Fuzzy ARTMAP algorithm which learns 2-D view categories. Evidence from sequences of 2-D view categories is stored in a working memory. Voting based on the unordered set of stored categories determines object recognition. Recognition is studied with noisy and clean images using slow and fast learning. VIEWNET is demonstrated on an MIT Lincoln Laboratory database of 2-D views of aircraft with and without additive noise. A recognition rate of up to 90% is achieved with one 2-D view category and of up to 98.5% correct with three 2-D view categories.
NKG2D Ligands in Tumor Immunity: Two Sides of a Coin
Zhang, Jinyu; Basher, Fahmin; Wu, Jennifer D.
2015-01-01
The activating/co-stimulatory receptor NKG2D (natural-killer group 2, member D) is expressed on the surface of all human NK, NKT, CD8+ T, and subsets of γδ+ T cells. The significance of NKG2D function in tumor immunity has been well demonstrated in experimental animal models. However, the role of human NKG2D ligands in regulating tumor immunity and cancer prognosis had been controversial in the literature. In this review, we summarize the latest advancement, discuss the controversies, and present evidence that membrane-bound and soluble NKG2D ligands oppositely regulate tumor immunity. We also discuss new perspectives of targeting NKG2D ligands for cancer immunotherapy. PMID:25788898
Campuzano, S; Pedrero, M; Nikoleli, G-P; Pingarrón, J M; Nikolelis, D P
2017-03-15
Owing to the outstanding conductivity and biocompatibility as well as numerous other fascinating properties of two-dimensional (2D)-nanomaterials, 2D-based nanohybrids have shown unparalleled superiorities in the field of electrochemical biosensors. This review highlights latest advances in electrochemical immunosensors for clinical biomarkers based on different hybrid 2D-nanomaterials. Particular attention will be given to hybrid nanostructures involving graphene and other graphene-like 2D-layered nanomaterials (GLNs). Several recent strategies for using such 2D-nanomaterial heterostructures in the development of modern immunosensors, both for tagging or modifying electrode transducers, are summarized and discussed. These hybrid nanocomposites, quite superior than their rival materials, will undoubtedly have an important impact within the near future and not only in clinical areas. Current challenges and future perspectives in this rapidly growing field are also outlined.
Bi-sided integral imaging with 2D/3D convertibility using scattering polarizer.
Yeom, Jiwoon; Hong, Keehoon; Park, Soon-gi; Hong, Jisoo; Min, Sung-Wook; Lee, Byoungho
2013-12-16
We propose a two-dimensional (2D) and three-dimensional (3D) convertible bi-sided integral imaging. The proposed system uses the polarization state of projected light for switching its operation mode between 2D and 3D modes. By using an optical module composed of two scattering polarizers and one linear polarizer, the proposed integral imaging system simultaneously provides 3D images with 2D background images for observers who are located in the front and the rear sides of the system. The occlusion effect between 2D images and 3D images is realized by using a compensation mask for 2D images and the elemental images. The principle of proposed system is experimentally verified.
Metallic and Magnetic 2D Materials Containing Planar Tetracoordinated C and N.
Jimenez-Izal, Elisa; Saeys, Mark; Alexandrova, Anastassia N
2016-08-26
The top monolayers of surface carbides and nitrides of Co and Ni are predicted to yield new stable 2D materials upon exfoliation. These 2D phases are p4g clock reconstructed, and contain planar tetracoordinated C or N. The stability of these flat carbides and nitrides is high, and ab-initio molecular dynamics at a simulation temperature of 1800 K suggest that the materials are thermally stable at elevated temperatures. The materials owe their stability to local triple aromaticity (π-, σ-radial, and σ-peripheral) associated with binding of the main group element to the metal. All predicted 2D phases are conductors, and the two alloys of Co are also ferromagnetic - a property especially rare among 2D materials. The preparation of 2D carbides and nitrides is envisioned to be done through surface deposition and peeling, possibly on a metal with a larger lattice constant for reduced affinity.
Bottom-up design of 2D organic photocatalysts for visible-light driven hydrogen evolution.
Wang, Peng; Jiang, Xue; Zhao, Jijun
2016-01-27
To design two-dimensional (2D) organocatalysts, three series of covalent organic frameworks (COFs) are constructed using bottom-up strategies, i.e. molecular selection, tunable linkage, and functionalization. First-principles calculations are performed to confirm their photocatalytic activity under visible light. Two of our constructed 2D COF models (B1 and C3) are identified as a sufficiently efficient organocatalyst for visible light water splitting. The controllable construction of such COFs from suitable organic subunit, linkage, and functional groups paves the way for correlating band edge alignments and geometry parameters of 2D organic materials. Our theoretical prediction not only provides essential insights into designing 2D-COF photocatalysts for water splitting, but also sparks other technological applications for 2D organic materials.
The Influence of Facial Characteristics on the Relation between Male 2D:4D and Dominance
Ryckmans, Jan; Millet, Kobe; Warlop, Luk
2015-01-01
Although relations between 2D:4D and dominance rank in both baboons and rhesus macaques have been observed, evidence in humans is mixed. Whereas behavioral patterns in humans have been discovered that are consistent with these animal findings, the evidence for a relation between dominance and 2D:4D is weak or inconsistent. The present study provides experimental evidence that male 2D:4D is related to dominance after (fictitious) male-male interaction when the other man has a dominant, but not a submissive or neutral face. This finding provides evidence that the relationship between 2D:4D and dominance emerges in particular, predictable situations and that merely dominant facial characteristics of another person are enough to activate supposed relationships between 2D:4D and dominance. PMID:26600255
2D map projections for visualization and quantitative analysis of 3D fluorescence micrographs
Sendra, G. Hernán; Hoerth, Christian H.; Wunder, Christian; Lorenz, Holger
2015-01-01
We introduce Map3-2D, a freely available software to accurately project up to five-dimensional (5D) fluorescence microscopy image data onto full-content 2D maps. Similar to the Earth’s projection onto cartographic maps, Map3-2D unfolds surface information from a stack of images onto a single, structurally connected map. We demonstrate its applicability for visualization and quantitative analyses of spherical and uneven surfaces in fixed and dynamic live samples by using mammalian and yeast cells, and giant unilamellar vesicles. Map3-2D software is available at http://www.zmbh.uni-heidelberg.de//Central_Services/Imaging_Facility/Map3-2D.html. PMID:26208256
Completeness of the classical 2D Ising model and universal quantum computation.
Van den Nest, M; Dür, W; Briegel, H J
2008-03-21
We prove that the 2D Ising model is complete in the sense that the partition function of any classical q-state spin model (on an arbitrary graph) can be expressed as a special instance of the partition function of a 2D Ising model with complex inhomogeneous couplings and external fields. In the case where the original model is an Ising or Potts-type model, we find that the corresponding 2D square lattice requires only polynomially more spins with respect to the original one, and we give a constructive method to map such models to the 2D Ising model. For more general models the overhead in system size may be exponential. The results are established by connecting classical spin models with measurement-based quantum computation and invoking the universality of the 2D cluster states.
A novel hybrid motion detection algorithm based on 2D histogram
NASA Astrophysics Data System (ADS)
Su, Xiaomeng; Wang, Haiying
2015-03-01
This article proposes a novel hybrid motion detection algorithm based on 2-D (2-Dimensional) spatio-temporal states histogram. The new algorithm combines the idea of image change detection based on 2-D histogram and spatio-temporal entropy image segmentation. It quantifies the continuity of pixel state in time and space domain which are called TDF (Time Domain Filter) and SDF (Space Domain Filter) respectively. After this, put both channels of output data from TDF and SDF into a 2-D histogram. In the 2-D histogram, a curve division method helps to separate the foreground state points and the background ones more accurately. Innovatively, the new algorithm converts the video sequence to its histogram sequence, and transforms the difference of pixel's value in the video sequence into the difference of pixel's position in the 2-D histogram. Experimental results on different types of scenes added Gaussian noise shows that the proposed technique has strong ability of detecting moving objects.
One-atom-thick 2D copper oxide clusters on graphene.
Kano, Emi; Kvashnin, Dmitry G; Sakai, Seiji; Chernozatonskii, Leonid A; Sorokin, Pavel B; Hashimoto, Ayako; Takeguchi, Masaki
2017-03-17
The successful isolation and remarkable properties of graphene have recently triggered investigation of two-dimensional (2D) materials from layered compounds; however, one-atom-thick 2D materials without bulk layered counterparts are scarcely reported. Here we report the structure and properties of novel 2D copper oxide studied by experimental and theoretical methods. Electron microscopy observations reveal that copper oxide can form monoatomic layers with an unusual square lattice on graphene. Density functional theory calculations suggest that oxygen atoms at the centre of the square lattice stabilizes the 2D Cu structure, and that the 2D copper oxide sheets have unusual electronic and magnetic properties different from 3D bulk copper oxide.
Bottom-up design of 2D organic photocatalysts for visible-light driven hydrogen evolution
NASA Astrophysics Data System (ADS)
Wang, Peng; Jiang, Xue; Zhao, Jijun
2016-01-01
To design two-dimensional (2D) organocatalysts, three series of covalent organic frameworks (COFs) are constructed using bottom-up strategies, i.e. molecular selection, tunable linkage, and functionalization. First-principles calculations are performed to confirm their photocatalytic activity under visible light. Two of our constructed 2D COF models (B1 and C3) are identified as a sufficiently efficient organocatalyst for visible light water splitting. The controllable construction of such COFs from suitable organic subunit, linkage, and functional groups paves the way for correlating band edge alignments and geometry parameters of 2D organic materials. Our theoretical prediction not only provides essential insights into designing 2D-COF photocatalysts for water splitting, but also sparks other technological applications for 2D organic materials.
Simulation of subgrid orographic precipitation with an embedded 2-D cloud-resolving model
NASA Astrophysics Data System (ADS)
Jung, Joon-Hee; Arakawa, Akio
2016-03-01
By explicitly resolving cloud-scale processes with embedded two-dimensional (2-D) cloud-resolving models (CRMs), superparameterized global atmospheric models have successfully simulated various atmospheric events over a wide range of time scales. Up to now, however, such models have not included the effects of topography on the CRM grid scale. We have used both 3-D and 2-D CRMs to simulate the effects of topography with prescribed "large-scale" winds. The 3-D CRM is used as a benchmark. The results show that the mean precipitation can be simulated reasonably well by using a 2-D representation of topography as long as the statistics of the topography such as the mean and standard deviation are closely represented. It is also shown that the use of a set of two perpendicular 2-D grids can significantly reduce the error due to a 2-D representation of topography.
Tay-Sontheimer, Jessica; Shireman, Laura M; Beyer, Richard P; Senn, Taurence; Witten, Daniela; Pearce, Robin E; Gaedigk, Andrea; Fomban, Cletus L Gana; Lutz, Justin D; Isoherranen, Nina; Thummel, Kenneth E; Fiehn, Oliver; Leeder, J Steven; Lin, Yvonne S
2015-01-01
Aim We sought to discover endogenous urinary biomarkers of human CYP2D6 activity. Patients & methods Healthy pediatric subjects (n = 189) were phenotyped using dextromethorphan and randomized for candidate biomarker selection and validation. Global urinary metabolomics was performed using liquid chromatography quadrupole time-of-flight mass spectrometry. Candidate biomarkers were tested in adults receiving fluoxetine, a CYP2D6 inhibitor. Results A biomarker, M1 (m/z 444.3102) was correlated with CYP2D6 activity in both the pediatric training and validation sets. Poor metabolizers had undetectable levels of M1, whereas it was present in subjects with other phenotypes. In adult subjects, a 9.56-fold decrease in M1 abundance was observed during CYP2D6 inhibition. Conclusion Identification and validation of M1 may provide a noninvasive means of CYP2D6 phenotyping. PMID:25521354
NASA Astrophysics Data System (ADS)
Xin, Shihe; Le Quéré, Patrick
2012-06-01
Following our previous two-dimensional (2D) studies of flows in differentially heated cavities filled with air, we studied the stability of 2D natural convection flows in these cavities with respect to 3D periodic perturbations. The basis of the numerical methods is a time-stepping code using the Chebyshev spectral collocation method and the direct Uzawa method for velocity-pressure coupling. Newton's iteration, Arnoldi's method and the continuation method have been used in order to, respectively, compute the 2D steady-state base solution, estimate the leading eigenmodes of the Jacobian and perform linear stability analysis. Differentially heated air-filled cavities of aspect ratios from 1 to 7 were investigated. Neutral curves (Rayleigh number versus wave number) have been obtained. It turned out that only for aspect ratio 7, 3D stationary instability occurs at slightly higher Rayleigh numbers than the onset of 2D time-dependent flow and that for other aspect ratios 3D instability always takes place before 2D time-dependent flows. 3D unstable modes are stationary and anti-centro-symmetric. 3D nonlinear simulations revealed that the corresponding pitchfork bifurcations are supercritical and that 3D instability leads only to weak flow in the third direction. Further 3D computations are also performed at higher Rayleigh number in order to understand the effects of the weak 3D fluid motion on the onset of time-dependent flow. 3D flow structures are responsible for the onset of time-dependent flow for aspect ratios 1, 2 and 3, while for larger aspect ratios they do not alter the transition scenario, which was observed in the 2D cases and that vertical boundary layers become unstable to traveling waves.
CBP/p300 acetyltransferases regulate the expression of NKG2D ligands on tumor cells
Sauer, M; Schuldner, M; Hoffmann, N; Cetintas, A; Reiners, K S; Shatnyeva, O; Hallek, M; Hansen, H P; Gasser, S; von Strandmann, E P
2017-01-01
Tumor surveillance of natural killer (NK) cells is mediated by the cytotoxicity receptor natural-killer group 2 member D (NKG2D). Ligands for NKG2D are generally not expressed on healthy cells, but induced on the surface of malignant cells. To date, NKG2D ligand (NKG2D-L) induction was mainly described to depend on the activation of the DNA damage response, although the molecular mechanisms that regulate NKG2D-L expression remain largely unknown. Here, we show that the acetyltransferases CBP (CREB-binding protein) and p300 play a crucial role in the regulation of NKG2D-L on tumor cells. Loss of CBP/p300 decreased the basal cell surface expression of human ligands and reduced the upregulation of MICA/B and ULBP2 in response to histone deacetylase inhibitors or DNA damage. Furthermore, CBP/P300 deficiency abrogated the sensitivity of stressed cells to NK cell-mediated killing. CBP/p300 were also identified as major regulators of mouse NKG2D ligand RAE-1 in vitro and in vivo using the Eμ-Myc lymphoma model. Mechanistically, we observed an enhanced activation of the CBP/p300 binding transcription factor CREB (cAMP response element-binding protein) correlating to the NKG2D-L upregulation. Moreover, increased binding of CREB and CBP/p300 to NKG2D-L promoters and elevated histone acetylation were detectable. This study provides strong evidence for a major role of CBP and p300 in orchestrating NKG2D-L induction and consequently immunosurveillance of tumors in mice and humans. These findings might help to develop novel immunotherapeutic approaches against cancer. PMID:27477692
CYP2D6 Is Inducible by Endogenous and Exogenous Corticosteroids.
Farooq, Muhammad; Kelly, Edward J; Unadkat, Jashvant D
2016-05-01
Although cytochrome P450 (CYP) 2D6 has been widely considered to be noninducible on the basis of human hepatocyte studies, in vivo data suggests that it is inducible by endo- and xenobiotics. Therefore, we investigated if the experimental conditions routinely used in human hepatocyte studies may be a confounding factor in the lack of in vitro induction of CYP2D6. Sandwich cultured human hepatocytes (SCHH) were preincubated with or without dexamethasone (100 nM) for 72 hours before incubation with 1μM endogenous (cortisol or corticosterone) or exogenous (dexamethasone or prednisolone) corticosteroids. At 72 hours, CYP2D6 mRNA, protein, and activity were quantified by real-time quantitative polymerase chain reaction, quantitative proteomics, and formation of dextrorphan from dextromethorphan, respectively. In the absence of supplemental dexamethasone, CYP2D6 activity, mRNA, and protein were significantly and robustly (>10-fold) induced by all four corticosteroids. However, this CYP2D6 induction was abolished in cells preincubated with supplemental dexamethasone. These data show, for the first time, that CYP2D6 is inducible in vitro but the routine presence of 100 nM dexamethasone in the culture medium masks this induction. Our cortisol data are in agreement with the clinical observation that CYP2D6 is inducible during the third trimester of pregnancy when the plasma concentrations of cortisol increase to ∼1μM. These findings, if confirmed in vivo, have implications for predicting CYP2D6-mediated drug-drug interactions and call for re-evaluation of regulatory guidelines on screening for CYP2D6 induction by xenobiotics. Our findings also suggest that cortisol may be a causative factor in the in vivo induction of CYP2D6 during pregnancy.
TOPAZ2D heat transfer code users manual and thermal property data base
Shapiro, A.B.; Edwards, A.L.
1990-05-01
TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.
GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..
Scientometric analysis and bibliography of digit ratio (2D:4D) research, 1998-2008.
Voracek, Martin; Loibl, Lisa Mariella
2009-06-01
A scientometric analysis of modern research on the second-to-fourth digit ratio (2D:4D), a widely studied putative marker for prenatal androgen action, is presented. In early 2009, this literature totalled more than 300 publications and, since its initiation in 1998, has grown at a rate slightly faster than linear. Key findings included evidence of publication bias and citation bias, incomplete coverage and outdatedness of existing reviews, and a dearth of meta-analyses in this field. 2D:4D research clusters noticeably in terms of researchers, institutions, countries, and journals involved. Although 2D:4D is an anthropometric trait, most of the research has been conducted at psychology departments, not anthropology departments. However, 2D:4D research has not been predominantly published in core and specialized journals of psychology, but rather in more broadly scoped journals of the behavioral sciences, biomedical social sciences, and neurosciences. Total citation numbers of 2D:4D papers for the most part were not larger than their citation counts within 2D:4D research, indicating that until now, only a few 2D:4D studies have attained broader interest outside this specific field. Comparative citation analyses show that 2D:4D research presently is commensurate in size and importance to evolutionary psychological jealousy research, but has grown faster than the latter field. In contrast, it is much smaller and has spread more slowly than research about the Implicit Association Test Fifteen conjectures about anticipated trends in 2D:4D research are outlined, appendixed by a first-time bibliography of the entirety of the published 2D:4D literature.
Guan, Huaiqun; Hammoud, Rabih; Yin, Fang-Fang
2009-10-06
A positioning QA procedure for Varian's 2D/2D (kV/MV) and 3D/3D (planCT/CBCT) matching was developed. The procedure was to check: (1) the coincidence of on-board imager (OBI), portal imager (PI), and cone beam CT (CBCT)'s isocenters (digital graticules) to a linac's isocenter (to a pre-specified accuracy); (2) that the positioning difference detected by 2D/2D (kV/MV) and 3D/3D(planCT/CBCT) matching can be reliably transferred to couch motion. A cube phantom with a 2 mm metal ball (bb) at the center was used. The bb was used to define the isocenter. Two additional bbs were placed on two phantom surfaces in order to define a spatial location of 1.5 cm anterior, 1.5 cm inferior, and 1.5 cm right from the isocenter. An axial scan of the phantom was acquired from a multislice CT simulator. The phantom was set at the linac's isocenter (lasers); either AP MV/R Lat kV images or CBCT images were taken for 2D/2D or 3D/3D matching, respectively. For 2D/2D, the accuracy of each device's isocenter was obtained by checking the distance between the central bb and the digital graticule. Then the central bb in orthogonal DRRs was manually moved to overlay to the off-axis bbs in kV/MV images. For 3D/3D, CBCT was first matched to planCT to check the isocenter difference between the two CTs. Manual shifts were then made by moving CBCT such that the point defined by the two off-axis bbs overlay to the central bb in planCT. (PlanCT can not be moved in the current version of OBI1.4.) The manual shifts were then applied to remotely move the couch. The room laser was used to check the accuracy of the couch movement. For Trilogy (or Ix-21) linacs, the coincidence of imager and linac's isocenter was better than 1 mm (or 1.5 mm). The couch shift accuracy was better than 2 mm.
The Effect of CYP2D6 Drug-Drug Interactions on Hydrocodone Effectiveness
Monte, Andrew A.; Heard, Kennon J.; Campbell, Jenny; Hamamura, D.; Weinshilboum, Richard M.; Vasiliou, Vasilis
2014-01-01
Objectives The hepatic cytochrome 2D6 (CYP2D6) is a saturable enzyme responsible for metabolism of approximately 25% of known pharmaceuticals. CYP interactions can alter the efficacy of prescribed medications. Hydrocodone is largely dependent on CYP2D6 metabolism for analgesia, ondansetron is inactivated by CYP2D6, and oxycodone analgesia is largely independent of CYP2D6. The objective was to determine if CYP2D6 medication co-ingestion decreases the effectiveness of hydrocodone. Methods This was a prospective observational study conducted in an academic U.S. emergency department (ED). Subjects were included if they had self-reported pain or nausea; and were excluded if they were unable to speak English, were less than 18 years of age, had liver or renal failure, or carried diagnoses of chronic pain or cyclic vomiting. Detailed drug ingestion histories for the preceding 48 hours prior to the ED visit were obtained. The patient's pain and nausea were quantified using a 100-millimeter visual analogue scale (VAS) at baseline prior to drug administration and following doses of hydrocodone, oxycodone, or ondansetron. We used a mixed model with random subject effect to determine the interaction between CYP2D6 drug ingestion and study drug effectiveness. Odds ratios (OR) were calculated to compare clinically significant VAS changes between CYP2D6 users and non-users. Results Two hundred fifty (49.8%) of the 502 subjects enrolled had taken at least one CYP2D6 substrate, inhibitor, or inducing pharmaceutical, supplement, or illicit drug in the 48 hours prior to ED presentation. CYP2D6-drug users were one third as likely to respond to hydrocodone (OR 0.33, 95% CI = 0.1 to 0.8), and more than three times as likely as non-users to respond to ondansetron (OR 3.4, 95% CI = 1.3 to 9.1). There was no significant difference in oxycodone effectiveness between CYP2D6 users and non-users (OR 0.53, 95% CI = 0.3 to 1.1). Conclusions CYP2D6 drug-drug interactions appear to change
The IDOL–UBE2D complex mediates sterol-dependent degradation of the LDL receptor
Zhang, Li; Fairall, Louise; Goult, Benjamin T.; Calkin, Anna C.; Hong, Cynthia; Millard, Christopher J.; Tontonoz, Peter; Schwabe, John W.R.
2011-01-01
We previously identified the E3 ubiquitin ligase IDOL as a sterol-dependent regulator of the LDL receptor (LDLR). The molecular pathway underlying IDOL action, however, remains to be determined. Here we report the identification and biochemical and structural characterization of an E2–E3 ubiquitin ligase complex for LDLR degradation. We identified the UBE2D family (UBE2D1–4) as E2 partners for IDOL that support both autoubiquitination and IDOL-dependent ubiquitination of the LDLR in a cell-free system. NMR chemical shift mapping and a 2.1 Å crystal structure of the IDOL RING domain–UBE2D1 complex revealed key interactions between the dimeric IDOL protein and the E2 enzyme. Analysis of the IDOL–UBE2D1 interface also defined the stereochemical basis for the selectivity of IDOL for UBE2Ds over other E2 ligases. Structure-based mutations that inhibit IDOL dimerization or IDOL–UBE2D interaction block IDOL-dependent LDLR ubiquitination and degradation. Furthermore, expression of a dominant-negative UBE2D enzyme inhibits the ability of IDOL to degrade the LDLR in cells. These results identify the IDOL–UBE2D complex as an important determinant of LDLR activity, and provide insight into molecular mechanisms underlying the regulation of cholesterol uptake. PMID:21685362
CAST2D: A finite element computer code for casting process modeling
Shapiro, A.B.; Hallquist, J.O.
1991-10-01
CAST2D is a coupled thermal-stress finite element computer code for casting process modeling. This code can be used to predict the final shape and stress state of cast parts. CAST2D couples the heat transfer code TOPAZ2D and solid mechanics code NIKE2D. CAST2D has the following features in addition to all the features contained in the TOPAZ2D and NIKE2D codes: (1) a general purpose thermal-mechanical interface algorithm (i.e., slide line) that calculates the thermal contact resistance across the part-mold interface as a function of interface pressure and gap opening; (2) a new phase change algorithm, the delta function method, that is a robust method for materials undergoing isothermal phase change; (3) a constitutive model that transitions between fluid behavior and solid behavior, and accounts for material volume change on phase change; and (4) a modified plot file data base that allows plotting of thermal variables (e.g., temperature, heat flux) on the deformed geometry. Although the code is specialized for casting modeling, it can be used for other thermal stress problems (e.g., metal forming).
Large-area high-quality 2D ultrathin Mo2C superconducting crystals.
Xu, Chuan; Wang, Libin; Liu, Zhibo; Chen, Long; Guo, Jingkun; Kang, Ning; Ma, Xiu-Liang; Cheng, Hui-Ming; Ren, Wencai
2015-11-01
Transition metal carbides (TMCs) are a large family of materials with many intriguing properties and applications, and high-quality 2D TMCs are essential for investigating new physics and properties in the 2D limit. However, the 2D TMCs obtained so far are chemically functionalized, defective nanosheets having maximum lateral dimensions of ∼10 μm. Here we report the fabrication of large-area high-quality 2D ultrathin α-Mo2C crystals by chemical vapour deposition (CVD). The crystals are a few nanometres thick, over 100 μm in size, and very stable under ambient conditions. They show 2D characteristics of superconducting transitions that are consistent with Berezinskii-Kosterlitz-Thouless behaviour and show strong anisotropy with magnetic field orientation; moreover, the superconductivity is also strongly dependent on the crystal thickness. Our versatile CVD process allows the fabrication of other high-quality 2D TMC crystals, such as ultrathin WC and TaC crystals, which further expand the large family of 2D materials.
Graphene and Other 2D Colloids: Liquid Crystals and Macroscopic Fibers.
Liu, Yingjun; Xu, Zhen; Gao, Weiwei; Cheng, Zhengdong; Gao, Chao
2017-02-24
Two-dimensional colloidal nanomaterials are running into renaissance after the enlightening researches of graphene. Macroscopic one-dimensional fiber is an optimal ordered structural form to express the in-plane merits of 2D nanomaterials, and the formation of liquid crystals (LCs) allows the creation of continuous fibers. In the correlated system from LCs to fibers, understanding their macroscopic organizing behavior and transforming them into new solid fibers is greatly significant for applications. Herein, we retrospect the history of 2D colloids and discuss about the concept of 2D nanomaterial fibers in the context of LCs, elaborating the motivation, principle and possible strategies of fabrication. Then we highlight the creation, development and typical applications of graphene fibers. Additionally, the latest advances of other 2D nanomaterial fibers are also summarized. Finally, conclusions, challenges and perspectives are provided to show great expectations of better and more fibrous materials of 2D nanomaterials. This review gives a comprehensive retrospect of the past century-long effort about the whole development of 2D colloids, and plots a clear roadmap - "lamellar solid - LCs - macroscopic fibers - flexible devices", which will certainly open a new era of structural-multifunctional application for the conventional 2D colloids.
NKG2D receptor regulates human effector T-cell cytokine production
Barber, Amorette
2011-01-01
Although innate immune signals shape the activation of naive T cells, it is unclear how innate signals influence effector T-cell function. This study determined the effects of stimulating the NKG2D receptor in conjunction with the TCR on human effector CD8+ T cells. Stimulation of CD8+ T cells through CD3 and NKG2D simultaneously or through a chimeric NKG2D receptor, which consists of NKG2D fused to the intracellular region of CD3ζ, activated β-catenin and increased expression of β-catenin–induced genes, whereas T cells stimulated through the TCR or a combination of the TCR and CD28 did not. Activation by TCR and NKG2D prevented expression and production of anti-inflammatory cytokines IL-10, IL-9, IL-13, and VEGF-α in a β-catenin– and PPARγ- dependent manner. NKG2D stimulation also modulated the cytokine secretion of T cells activated simultaneously through CD3 and CD28. These data indicate that activating CD8+ T cells through the NKG2D receptor along with the TCR modulates signal transduction and the production of anti-inflammatory cytokines. Thus, human effector T cells alter their function depending on which innate receptors are engaged in conjunction with the TCR complex. PMID:21518928
Immune Activation Resulting from NKG2D/Ligand Interaction Promotes Atherosclerosis
Xia, Mingcan; Guerra, Nadia; Sukhova, Galina K.; Yang, Kangkang; Miller, Carla K.; Shi, Guo-Ping; Raulet, David H.; Xiong, Na
2012-01-01
Background The interplay between the immune system and abnormal metabolic conditions sustains and propagates a vicious feedback cycle of chronic inflammation and metabolic dysfunction that is critical for atherosclerotic progression. It is well established that abnormal metabolic conditions, such as dyslipidemia and hyperglycemia, cause various cellular stress responses that induce tissue inflammation and immune cell activation, which in turn exacerbate the metabolic dysfunction. However, molecular events linking these processes are not well understood. Methods and Results Tissues and organs of humans and mice with hyperglycemia and hyperlipidemia were examined for expression of ligands for NKG2D, a potent immune activating receptor expressed by several types of immune cells, and the role of NKG2D in atherosclerosis and metabolic diseases was probed using mice lacking NKG2D or by blocking NKG2D with monoclonal antibodies. NKG2D ligands were upregulated in multiple organs, particularly atherosclerotic aortae and inflamed livers. Ligand upregulation was induced in vitro by abnormal metabolites associated with metabolic dysfunctions. Using ApoE-/- mouse models we demonstrated that preventing NKG2D functions resulted in a dramatic reduction in plaque formation, suppressed systemic and organ inflammation mediated by multiple immune cell types, and alleviated abnormal metabolic conditions. Conclusions The NKG2D/ligand interaction is a critical molecular link in the vicious cycle of chronic inflammation and metabolic dysfunction that promotes atherosclerosis and might be a useful target for therapeutic intervention in the disease. PMID:22104546
Dorado, Pedro; Peñas-Lledó, Eva M; Llerena, Adrián
2007-11-01
The CYP2D6 gene is highly polymorphic, causing absent (poor metabolizers), decreased, normal or increased enzyme activity (extensive and ultrarapid metabolizers). The genetic polymorphism of the CYP2D6 influences plasma concentration of a wide variety of drugs metabolized in the liver by the cytochrome P450 (CYP) 2D6 enzyme, including antipsychotic drugs used for schizophrenia treatment. Additionally, CYP2D6 is involved in the metabolism of endogenous substrates in the brain, and reported to be located in regions such as the cortex, hippocampus and cerebellum, which are impaired in schizophrenia. Moreover, recently we have found that CYP2D6 poor metabolizers are under-represented in a case-control association study of schizophrenia. Furthermore, null CYP2D6 activity in healthy volunteers is associated with personality characteristics of social cognitive anxiety, which may bear some resemblance to milder forms of psychotic-like symptoms. In keeping with this, CYP2D6 may influence, not only variability to drug response, but also vulnerability to disease in schizophrenia patients.
Large-area high-quality 2D ultrathin Mo2C superconducting crystals
NASA Astrophysics Data System (ADS)
Xu, Chuan; Wang, Libin; Liu, Zhibo; Chen, Long; Guo, Jingkun; Kang, Ning; Ma, Xiu-Liang; Cheng, Hui-Ming; Ren, Wencai
2015-11-01
Transition metal carbides (TMCs) are a large family of materials with many intriguing properties and applications, and high-quality 2D TMCs are essential for investigating new physics and properties in the 2D limit. However, the 2D TMCs obtained so far are chemically functionalized, defective nanosheets having maximum lateral dimensions of ~10 μm. Here we report the fabrication of large-area high-quality 2D ultrathin α-Mo2C crystals by chemical vapour deposition (CVD). The crystals are a few nanometres thick, over 100 μm in size, and very stable under ambient conditions. They show 2D characteristics of superconducting transitions that are consistent with Berezinskii-Kosterlitz-Thouless behaviour and show strong anisotropy with magnetic field orientation; moreover, the superconductivity is also strongly dependent on the crystal thickness. Our versatile CVD process allows the fabrication of other high-quality 2D TMC crystals, such as ultrathin WC and TaC crystals, which further expand the large family of 2D materials.
CYP2D6 polymorphisms and their influence on risperidone treatment
Puangpetch, Apichaya; Vanwong, Natchaya; Nu