Science.gov

Sample records for 2d thermal analysis

  1. 2-D Time-Dependent Fuel Element, Thermal Analysis Code System.

    2001-09-24

    Version 00 WREM-TOODEE2 is a two dimensional, time-dependent, fuel-element thermal analysis program. Its primary purpose is to evaluate fuel-element thermal response during post-LOCA refill and reflood in a pressurized water reactor (PWR). TOODEE2 calculations are carried out in a two-dimensional mesh region defined in slab or cylindrical geometry by orthogonal grid lines. Coordinates which form order pairs are labeled x-y in slab geometry, and those in cylindrical geometry are labeled r-z for the axisymmetric casemore » and r-theta for the polar case. Conduction and radiation are the only heat transfer mechanisms assumed within the boundaries of the mesh region. Convective and boiling heat transfer mechanisms are assumed at the boundaries. The program numerically solves the two-dimensional, time-dependent, heat conduction equation within the mesh region. KEYWORDS: FUEL MANAGEMENT; HEAT TRANSFER; LOCA; PWR« less

  2. 2D Thermal Hydraulic Analysis and Benchmark in Support of HFIR LEU Conversion using COMSOL

    SciTech Connect

    Freels, James D; Bodey, Isaac T; Lowe, Kirk T; Arimilli, Rao V

    2010-09-01

    The research documented herein was funded by a research contract between the Research Reactors Division (RRD) of Oak Ridge National Laboratory (ORNL) and the University of Tennessee, Knoxville (UTK) Mechanical, Aerospace and Biomedical Engineering Department (MABE). The research was governed by a statement of work (SOW) which clearly defines nine specific tasks. This report is outlined to follow and document the results of each of these nine specific tasks. The primary goal of this phase of the research is to demonstrate, through verification and validation methods, that COMSOL is a viable simulation tool for thermal-hydraulic modeling of the High Flux Isotope Reactor (HFIR) core. A secondary goal of this two-dimensional phase of the research is to establish methodology and data base libraries that are also needed in the full three-dimensional COMSOL simulation to follow. COMSOL version 3.5a was used for all of the models presented throughout this report.

  3. Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications

    NASA Astrophysics Data System (ADS)

    Shahil, Khan Mohammad Farhan

    Quasi two-dimensional (2D) materials obtained by the "graphene-like" exfoliation attracted tremendous attention. Such materials revealed unique electronic, thermal and optical properties, which can be potentially used in electronics, thermal management and energy conversion. This dissertation research addresses two separate but synergetic problems: (i) preparation and optical characterization of quasi-2D films of the bismuth-telluride (Bi 2Te3) family of materials, which demonstrate both thermoelectric and topological insulator properties; and (ii) investigation of thermal properties of composite materials prepared with graphene and few-layer graphene (FLG). The first part of dissertation reports properties of the exfoliated few-quintuple layers of Bi2Te3, Bi2Se3 and Sb 2Te3. Both non-resonant and resonant Raman scattering spectra have been investigated. It was found that the crystal symmetry breaking in few-quintuple films results in appearance of A1u-symmetry Raman peaks, which are not active in the bulk crystals. The scattering spectra measured under the 633-nm wavelength excitation reveals a number of resonant features, which could be used for analysis of the electronic and phonon processes in these materials. The obtained results help to understand the physical mechanisms of Raman scattering in the few-quintuple-thick films and can be used for nanometrology of topological insulator films on various substrates. The second part of the dissertation is dedicated to investigation of properties of composite materials prepared with graphene and FLG. It was found that the optimized mixture of graphene and multilayer graphene---produced by the high-yield inexpensive liquid-phase-exfoliation technique---can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300 % in the graphene-based polymer at the filler loading fraction f =10 vol. %. It was

  4. TOPAZ2D heat transfer code users manual and thermal property data base

    NASA Astrophysics Data System (ADS)

    Shapiro, A. B.; Edwards, A. L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available.

  5. TOPAZ2D heat transfer code users manual and thermal property data base

    SciTech Connect

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.

  6. 2D Wavefront Sensor Analysis and Control

    1996-02-19

    This software is designed for data acquisition and analysis of two dimensional wavefront sensors. The software includes data acquisition and control functions for an EPIX frame grabber to acquire data from a computer and all the appropriate analysis functions necessary to produce and display intensity and phase information. This software is written in Visual Basic for windows.

  7. Electrically insulating thermal nano-oils using 2D fillers.

    PubMed

    Taha-Tijerina, Jaime; Narayanan, Tharangattu N; Gao, Guanhui; Rohde, Matthew; Tsentalovich, Dmitri A; Pasquali, Matteo; Ajayan, Pulickel M

    2012-02-28

    Different nanoscale fillers have been used to create composite fluids for applications such as thermal management. The ever increasing thermal loads in applications now require advanced operational fluids, for example, high thermal conductivity dielectric oils in transformers. These oils require excellent filler dispersion, high thermal conduction, but also electrical insulation. Such thermal oils that conform to this thermal/electrical requirement, and yet remain in highly suspended stable state, have not yet been synthesized. We report here the synthesis and characterization of stable high thermal conductivity Newtonian nanofluids using exfoliated layers of hexagonal boron nitride in oil without compromising its electrically insulating property. Two-dimensional nanosheets of hexagonal boron nitride are liquid exfoliated in isopropyl alcohol and redispersed in mineral oil, used as standard transformer oil, forming stable nanosuspensions with high shelf life. A high electrical resistivity, even higher than that of the base oil, is maintained for the nano-oil containing small weight fraction of the filler (0.01 wt %), whereas the thermal conductivity was enhanced. The low dissipation factor and high pour point for this nano-oil suggests several applications in thermal management.

  8. A large 2D PSD for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Knott, R. B.; Smith, G. C.; Watt, G.; Boldeman, J. W.

    1997-02-01

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 × 640 mm 2. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimise parallax, the gas mixture was 190 kPa 3He plus 100 kPa CF 4, and the active volume had a thickness of 30 mm. The design maximum neutron count rate of the detector was 10 5 events per secod. The (calculated) neutron detection efficiency was 60% for 2 Å neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 × 5 mm 2) was thereby defined by the wire geometry. A 16-channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise line width of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp, USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.

  9. A large 2D PSD for thermal neutron detection

    SciTech Connect

    Knott, R.B.; Watt, G.; Boldeman, J.W.; Smith, G.C.

    1996-12-31

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 x 640 mm{sup 2}. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimize parallax, the gas mixture was 190 kPa {sup 3}He plus 100 kPa CF{sub 4} and the active volume had a thickness of 30 mm. The design maximum neutron count-rate of the detector was 10{sup 5} events per second. The (calculated) neutron detection efficiency was 60% for 2{angstrom} neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 x 5 mm{sup 2}) was thereby defined by the wire geometry. A 16 channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise linewidth of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.

  10. 2D Mixed Convection Thermal Incompressible Viscous Flows

    NASA Astrophysics Data System (ADS)

    Bermudez, Blanca; Nicolas, Alfredo

    2005-11-01

    Mixed convection thermal incomprressible viscous fluid flows in rectangular cavities are presented. These kind of flows may be governed by the time-dependent Boussinesq approximation in terms of the stream function-vorticity variables formulation. The results are obtained with a simple numerical scheme based mainly on a fixed point iterative process applied to the non-linear system of elliptic equations that is obtained after a second order time discretization. Numerical experiments are reported for the problem of a cavity with fluid boundary motion on the top. Some results correspond to validation examples and others, to the best of our knowledge, correspond to new results. To show that the new results are correct, a mesh size and time independence studies are carried out, and the acceptable errors are measured point-wise. For the optimal mesh size and time step the final times when the steady state is reached, as solution from the unsteady problem, are reported; it should be seen that they are larger than the ones for natural convection which, physically speaking, show the agreement that mixed convection flows are more active than those of natural convection due to the fluid boundary motion on the top of the cavity. The flow parameters are: the Reynolds number, the Grashof number and the aspect ratio.

  11. Thermal analysis

    SciTech Connect

    Wunderlich, B. )

    1990-01-01

    This book presents the basic theory and techniques of thermal analysis. It discusses a range of applications and instrumentation from all fields of applied and basic research, and concludes with problem sets. Topics covered include: The Basics of Thermal Analysis; Thermometry; Differential Thermal Analysis; Calorimetry; Thermomechanical Analysis and Dilatometry; and Thermogravimetry.

  12. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  13. Exploring the proper experimental conditions in 2D thermal cloaking demonstration

    NASA Astrophysics Data System (ADS)

    Hu, Run; Zhou, Shuling; Yu, Xingjian; Luo, Xiaobing

    2016-10-01

    Although thermal cloak has been studied extensively, the specific discussions on the proper experimental conditions to successfully observe the thermal cloaking effect are lacking. In this study, we focus on exploring the proper experimental conditions for 2D thermal cloaking demonstration. A mathematical model is established and detailed discussions are presented based on the model. The proper experimental conditions are suggested and verified with finite element simulations.

  14. High accuracy determination of the thermal properties of supported 2D materials.

    PubMed

    Judek, Jarosław; Gertych, Arkadiusz P; Świniarski, Michał; Łapińska, Anna; Dużyńska, Anna; Zdrojek, Mariusz

    2015-07-16

    We present a novel approach for the simultaneous determination of the thermal conductivity κ and the total interface conductance g of supported 2D materials by the enhanced opto-thermal method. We harness the property of the Gaussian laser beam that acts as a heat source, whose size can easily and precisely be controlled. The experimental data for multi-layer graphene and MoS2 flakes are supplemented using numerical simulations of the heat distribution in the Si/SiO2/2D material system. The procedure of κ and g extraction is tested in a statistical approach, demonstrating the high accuracy and repeatability of our method.

  15. Two 2D silver(I) coordination polymers derived from mixed ligands: Syntheses, structures, photoluminescent and thermal properties

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Jing; Sun, Di; Li, Yun-Hua; Hao, Hong-Jun; Huang, Rong-Bin; Zheng, Lan-Sun

    2011-07-01

    Two isomers of the aminobenzonitrile were reacted with Ag 2O and phthalic acid under ultrasonic condition, yielding two coordination polymers (CPs) of the formula [Ag 2( o-abn)(pa)] n ( 1) and [Ag 4( m-abn)(pa) 2] n ( 2). They have been characterized by elemental analysis, IR spectrum and single crystal X-ray diffraction. Both complexes 1 and 2 are 2D sheet structures which contain two different Ag(I) aggregates, 1D silver helical chain and 2D silver sheet for 1 and 2, respectively. The o-abn in 1 adopts a rare tridentate μ 3- N, N' N' mode to bridge the neighboring 1D silver chains to form a 2D coordination network, while the m-abn ligand just acts as a monodentate N-donor in 2 and does not contribute to the extension of the 2D silver sheet to the higher dimensionality. As the change of the relative position of amino and cyano groups of the aminobenzonitrile ligand, the dimensionality of the Ag(I) aggregates in 1 and 2 increases from 1D to 2D, which indicates that the relative positions of amino and cyano groups of aminobenzonitrile play an important role in the formation of the diverse Ag(I) aggregates, as a consequence, different 2D coordination networks are produced. Additionally, results about emissive behaviors and thermal stabilities of them are discussed.

  16. Finite Element Analysis of 2-D Elastic Contacts Involving FGMs

    NASA Astrophysics Data System (ADS)

    Abhilash, M. N.; Murthy, H.

    2014-05-01

    The response of elastic indenters in contact with Functionally Graded Material (FGM) coated homogeneous elastic half space has been presented in the current paper. Finite element analysis has been used due to its ability to handle complex geometry, material, and boundary conditions. Indenters of different typical surface profiles have been considered and the problem has been idealized as a two-dimensional (2D) plane strain problem considering only normal loads. Initially, indenters were considered to be rigid and the results were validated with the solutions presented in the literature. The analysis has then been extended to the case of elastic indenters on FGM-coated half spaces and the results are discussed.

  17. MODELING THE TRANSVERSE THERMAL CONDUCTIVITY OF 2D-SICF/SIC COMPOSITES

    SciTech Connect

    Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.

    2002-09-01

    A hierarchical model was developed to describe the effective transverse thermal conductivity, K effective, of a 2D-SiC/SiC composite made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The model includes the expected effects of fiber-matrix interfacial conductance as well as the effects of high fiber packing fractions within individual tows and the non-uniform nature of 2D-fabric layers that include a significant amount of interlayer porosity. Model predictions were obtained for two versions of DuPont 2D-Hi Nicalon(Trademark)/PyC/ICVI-SiC composite, one with a thin (0.110 micron) and the other with a thick (1.040 micron) PyC fiber coating. The model predicts that the matrix porosity content and porosity shape factor have a major influence on K effective(T) for such a composite.

  18. Thermally induced formation of 2D hexagonal BN nanoplates with tunable characteristics

    SciTech Connect

    Nersisyan, Hayk; Lee, Tae-Hyuk; Lee, Kap-Ho; Jeong, Seong-Uk; Kang, Kyung-Soo; Bae, Ki-Kwang; Lee, Jong-Hyeon

    2015-05-15

    We have investigated a thermally induced combustion route for preparing 2D hexagonal BN nanoplates from B{sub 2}O{sub 3}+(3+0.5k)Mg+kNH{sub 4}Cl solid system, for k=1–4 interval. Temperature–time profiles recorded by thermocouples indicated the existence of two sequential exothermic processes in the combustion wave leading to the BN nanoplates formation. The resulting BN nanoplates were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy, PL spectrometry, and Brunauer–Emmett–Teller surface area analysis. It was found that B{sub 2}O{sub 3} was converted into BN completely (by XRD) at 1450–1930 °C within tens of seconds in a single-step synthesis process. The BN prepared at a k=1–4 interval comprised well-shaped nanoplates with an average edge length ranging from 50 nm to several micrometer and thickness from 5 to 100 nm. The specific surface area of BN nanoplates was 13.7 g/m{sup 2} for k=2 and 28.4 m{sup 2}/g for k=4. - Graphical abstract: 2D hexagonal BN nanoplates with an average edge length ranging from 50 nm to several micrometer and thickness from 5 to 100 nm were prepared by combustion of B{sub 2}O{sub 3}+(3+0.5k)Mg+kNH{sub 4}Cl solid mixture in nitrogen atmosphere. - Highlights: • Thermally induced combustion route was developed for synthesizing BN nanoplates from B{sub 2}O{sub 3}. • Mg was used as reductive agent and NH{sub 4}Cl as an effective nitrogen source. • Temperature–time profiles and the combustion parameters were recorded and discussed. • BN with an average edge length from 50 nm to several micrometer and thickness from 5 to 100 nm were prepared. • Our study clarifies the formation mechanism of BN in the combustion wave.

  19. High accuracy determination of the thermal properties of supported 2D materials

    PubMed Central

    Judek, Jarosław; Gertych, Arkadiusz P.; Świniarski, Michał; Łapińska, Anna; Dużyńska, Anna; Zdrojek, Mariusz

    2015-01-01

    We present a novel approach for the simultaneous determination of the thermal conductivity κ and the total interface conductance g of supported 2D materials by the enhanced opto-thermal method. We harness the property of the Gaussian laser beam that acts as a heat source, whose size can easily and precisely be controlled. The experimental data for multi-layer graphene and MoS2 flakes are supplemented using numerical simulations of the heat distribution in the Si/SiO2/2D material system. The procedure of κ and g extraction is tested in a statistical approach, demonstrating the high accuracy and repeatability of our method. PMID:26179785

  20. Simulation of multi-steps thermal transition in 2D spin-crossover nanoparticles

    NASA Astrophysics Data System (ADS)

    Jureschi, Catalin-Maricel; Pottier, Benjamin-Louis; Linares, Jorge; Richard Dahoo, Pierre; Alayli, Yasser; Rotaru, Aurelian

    2016-04-01

    We have used an Ising like model to study the thermal behavior of a 2D spin crossover (SCO) system embedded in a matrix. The interaction parameter between edge SCO molecules and its local environment was included in the standard Ising like model as an additional term. The influence of the system's size and the ratio between the number of edge molecules and the other molecules were also discussed.

  1. Thermally induced formation of 2D hexagonal BN nanoplates with tunable characteristics

    NASA Astrophysics Data System (ADS)

    Nersisyan, Hayk; Lee, Tae-Hyuk; Lee, Kap-Ho; Jeong, Seong-Uk; Kang, Kyung-Soo; Bae, Ki-Kwang; Lee, Jong-Hyeon

    2015-05-01

    We have investigated a thermally induced combustion route for preparing 2D hexagonal BN nanoplates from B2O3+(3+0.5k)Mg+kNH4Cl solid system, for k=1-4 interval. Temperature-time profiles recorded by thermocouples indicated the existence of two sequential exothermic processes in the combustion wave leading to the BN nanoplates formation. The resulting BN nanoplates were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy, PL spectrometry, and Brunauer-Emmett-Teller surface area analysis. It was found that B2O3 was converted into BN completely (by XRD) at 1450-1930 °C within tens of seconds in a single-step synthesis process. The BN prepared at a k=1-4 interval comprised well-shaped nanoplates with an average edge length ranging from 50 nm to several micrometer and thickness from 5 to 100 nm. The specific surface area of BN nanoplates was 13.7 g/m2 for k=2 and 28.4 m2/g for k=4.

  2. Syndrome identification based on 2D analysis software.

    PubMed

    Boehringer, Stefan; Vollmar, Tobias; Tasse, Christiane; Wurtz, Rolf P; Gillessen-Kaesbach, Gabriele; Horsthemke, Bernhard; Wieczorek, Dagmar

    2006-10-01

    Clinical evaluation of children with developmental delay continues to present a challenge to the clinicians. In many cases, the face provides important information to diagnose a condition. However, database support with respect to facial traits is limited at present. Computer-based analyses of 2D and 3D representations of faces have been developed, but it is unclear how well a larger number of conditions can be handled by such systems. We have therefore analysed 2D pictures of patients each being affected with one of 10 syndromes (fragile X syndrome; Cornelia de Lange syndrome; Williams-Beuren syndrome; Prader-Willi syndrome; Mucopolysaccharidosis type III; Cri-du-chat syndrome; Smith-Lemli-Opitz syndrome; Sotos syndrome; Microdeletion 22q11.2; Noonan syndrome). We can show that a classification accuracy of >75% can be achieved for a computer-based diagnosis among the 10 syndromes, which is about the same accuracy achieved for five syndromes in a previous study. Pairwise discrimination of syndromes ranges from 80 to 99%. Furthermore, we can demonstrate that the criteria used by the computer decisions match clinical observations in many cases. These findings indicate that computer-based picture analysis might be a helpful addition to existing database systems, which are meant to assist in syndrome diagnosis, especially as data acquisition is straightforward and involves off-the-shelf digital camera equipment. PMID:16773127

  3. Multifunctional Nanofluids with 2D Nanosheets for thermal management and tribological applications

    NASA Astrophysics Data System (ADS)

    Taha Tijerina, Jose Jaime

    Conventional heat-transfer fluids such as water, ethylene glycol, standard oils and other lubricants are typically low-efficiency heat-transfer fluids. Thermal management plays a critical factor in many applications where these fluids can be used, such as in motors/engines, solar cells, biopharmaceuticals, fuel cells, high voltage power transmission systems, micro/nanoelectronics mechanical systems (MEMS/NEMS), and nuclear cooling among others. These insulating fluids require superb filler dispersion, high thermal conduction, and for certain applications as in electrical/electronic devices also electrical insulation. The miniaturization and high efficiency of electrical/electronic devices in these fields demand successful heat management and energy-efficient fluid-based heat-transfer systems. Recent advances in layered materials enable large scale synthesis of various two-dimensional (2D) structures. Some of these 2D materials are good choices as nanofillers in heat transfer fluids; mainly due to their inherent high thermal conductivity (TC) and high surface area available for thermal energy transport. Among various 2D-nanostructures, hexagonal boron nitride (h-BN) and graphene (G) exhibit versatile properties such as outstanding TC, excellent mechanical stability, and remarkable chemical inertness. The following research, even though investigate various conventional fluids, will focus on dielectric insulating nanofluids (mineral oil -- MO) with significant thermal performance. It is presented the plan for synthesis and characterization of stable high-thermal conductivity nanofluids using 2D-nanostructures of h-BN, which will be further incorporated at diverse filler concentrations to conventional fluids for cooling applications, without compromising its electrical insulating property. For comparison, properties of h-BN based fluids are compared with conductive fillers such as graphene; where graphene has similar crystal structure of h-BN and also has similar bulk

  4. A novel improved method for analysis of 2D diffusion-relaxation data--2D PARAFAC-Laplace decomposition.

    PubMed

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T; Engelsen, Søren B

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T(2)-D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T(2)-D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T(2)-D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D=3 x 10(-12) m(2) s(-1) and T(2)=180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D=10(-9) m(2) s(-1), T(2)=10 ms and D=3 x 10(-13) m(2) s(-1), T(2)=13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  5. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  6. MODELING THE TRANSVERSE THERMAL CONDUCTIVITY OF 2-D SICF/SIC COMPOSITES MADE WITH WOVEN FABRIC

    SciTech Connect

    Youngblood, Gerald E; Senor, David J; Jones, Russell H

    2004-06-01

    The hierarchical two-layer (H2L) model describes the effective transverse thermal conductivity (Keff) of a 2D-SiCf/SiC composite plate made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The H2L model includes the effects of fiber-matrix interfacial conductance, high fiber packing fractions within individual tows and the non-uniform nature of 2D fabric/matrix layers that usually include a significant amount of interlayer porosity. Previously, H2L model Keff-predictions were compared to measured values for two versions of 2D Hi-Nicalon/PyC/ICVI-SiC composite, one with a “thin” (0.11m) and the other with a “thick” (1.04m) pyrocarbon (PyC) fiber coating, and for a 2D Tyranno SA/”thin” PyC/FCVI-SIC composite. In this study, H2L model Keff-predictions were compared to measured values for a 2D-SiCf/SiC composite made using the ICVI-process with Hi-Nicalon type S fabric and a “thin” PyC fiber coating. The values of Keff determined for the latter composite were significantly greater than the Keff-values determined for the composites made with either the Hi-Nicalon or the Tyranno SA fabrics. Differences in Keff-values were expected for the different fiber types, but major differences also were due to observed microstructural and architectural variations between the composite systems, and as predicted by the H2L model.

  7. Thermal Analysis

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The University of Georgia used NASTRAN, a COSMIC program that predicts how a design will stand up under stress, to develop a model for monitoring the transient cooling of vegetables. The winter use of passive solar heating for poultry houses is also under investigation by the Agricultural Engineering Dept. Another study involved thermal analysis of black and green nursery containers. The use of NASTRAN has encouraged student appreciation of sophisticated computer analysis.

  8. Matrix and size effects on the appearance of the thermal hysteresis in 2D spin crossover nanoparticles

    NASA Astrophysics Data System (ADS)

    Linares, Jorge; Jureschi, Catalin-Maricel; Boulmaali, Ayoub; Boukheddaden, Kamel

    2016-04-01

    The Ising-like model is used to simulate the thermal behavior of a 2D spin crossover (SC) nanoparticle embedded in a matrix, which affects the ligand field at its surface. First, we discuss the standard case of the isolated nanoparticle, and in the second part we consider the effect of the interaction between edge molecules and their local environment. We found that in the case of an isolated SC nanoparticle presenting a gradual spin transition, the matrix effect may drive a first-order spin transition accompanied with a hysteresis loop. An in-depth analysis of the physical mechanism underlying this unusual property is performed, leading to build up the system's phase diagram which clarifies the conditions of appearance of the first-order transition in the current 2D SC nanoparticles as function of their size and the strength of their interaction with their immediate environment.

  9. Distributed and coupled 2D electro-thermal model of power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Belkacem, Ghania; Lefebvre, Stéphane; Joubert, Pierre-Yves; Bouarroudj-Berkani, Mounira; Labrousse, Denis; Rostaing, Gilles

    2014-05-01

    The development of power electronics in the field of transportations (automotive, aeronautics) requires the use of power semiconductor devices providing protection and diagnostic functions. In the case of series protections power semiconductor devices which provide protection may operate in shortcircuit and act as a current limiting device. This mode of operations is very constraining due to the large dissipation of power. In these particular conditions of operation, electro-thermal models of power semiconductor devices are of key importance in order to optimize their thermal design and increase their reliability. The development of such an electro-thermal model for power MOSFET transistors based on the coupling between two computation softwares (Matlab and Cast3M) is described in this paper. The 2D electro-thermal model is able to predict (i) the temperature distribution on chip surface well as in the volume under short-circuit operations, (ii) the effect of the temperature on the distribution of the current flowing within the die and (iii) the effects of the ageing of the metallization layer on the current density and the temperature. In this paper, the electrical and thermal models are described as well as the implemented coupling scheme.

  10. Thermal Conductivity and Thermopower near the 2D Metal-Insulator transition, Final Technical Report

    SciTech Connect

    SARACHIK, MYRIAM P

    2015-02-20

    STUDIES OF STRONGLY-INTERACTING 2D ELECTRON SYSTEMS – There is a great deal of current interest in the properties of systems in which the interaction between electrons (their potential energy) is large compared to their kinetic energy. We have investigated an apparent, unexpected metal-insulator transition inferred from the behavior of the temperature-dependence of the resistivity; moreover, detailed analysis of the behavior of the magnetoresistance suggests that the electrons’ effective mass diverges, supporting this scenario. Whether this is a true phase transition or crossover behavior has been strenuously debated over the past 20 years. Our measurements have now shown that the thermoelectric power of these 2D materials diverges at a finite density, providing clear evidence that this is, in fact, a phase transition to a new low-density phase which may be a precursor or a direct transition to the long sought-after electronic crystal predicted by Eugene Wigner in 1934.

  11. Fully coupled nonlinear thermomechanical analysis including general contact in PALM2D

    SciTech Connect

    Engelmann, B.E.; Whirley, R.G.

    1993-10-07

    Fully coupled thermomechanical analysis solves the thermal problem on the deforming geometry and incorporates thermal loads into the mechanical problem. In contrast, traditional thermal stress analysis is based on an uncoupled approach in which the thermal problem is solved on a fixed geometry, and the resulting temperatures are then used to load a mechanical problem. Thermal contact, in which heat flow paths depend on the mechanical deformations of adjacent surfaces, is a major component of many fully coupled thermomechanical analyses. This paper presents the development of a thermomechanical finite element formulation, including contact. The proposed approach accommodates arbitrarily large relative motions of contact surfaces, fully unstructured meshes, pressure-dependent contact resistance, conduction across small gaps, and approximate models for convection and radiation. The theory described herein has been implemented in the Lawrence Livermore National Laboratory public code PALM2D and has been used to solve a diverse set of thermomechanical problems. Examples illustrating the performance of this code on large deformation thermomechanical problems are presented and discussed.

  12. Development of a self-packaged 2D MEMS thermal wind sensor for low power applications

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-qing; Chen, Bei; Qin, Ming; Huang, Jian-qiu; Huang, Qing-an

    2015-08-01

    This article describes the design, fabrication, and testing of a self-packaged 2D thermal wind sensor. The sensor consists of four heaters and nine thermistors. A central thermistor senses the average heater temperature, whereas the other eight, which are distributed symmetrically around the heaters, measure the temperature differences between the upstream and downstream surface of the sensor. The sensor was realized on one side of a silicon-in-glass (SIG) substrate. Vertical silicon vias in the substrate ensure good thermal contact between the sensor and the airflow and the glass effectively isolates the heaters from the thermistors. The substrate was fabricated by using a glass reflow process, after which the sensor was realized by a lift-off process. The sensor’s geometry was investigated with the help of simulations. These show that narrow heaters, moderate heater spacing, and thin substrates all improve the sensor’s sensitivity. Finally, the sensor was tested and calibrated in a wind tunnel by using a linear interpolation algorithm. At a constant heating power of 24.5 mW, measurement results show that the sensor can detect airflow speeds of up to 25 m s-1, with an accuracy of 0.1 m s-1 at low speeds and 0.5 m s-1 at high speeds. Airflow direction can be determined in a range of 360° with an accuracy of ±6°.

  13. PARCEQ2D heat transfer grid sensitivity analysis

    SciTech Connect

    Saladino, A.J.; Praharaj, S.C.; Collins, F.G. Tennessee Univ., Tullahoma )

    1991-01-01

    The material presented in this paper is an extension of two-dimensional Aeroassist Flight Experiment (AFE) results shown previously. This study has focused on the heating rate calculations to the AFE obtained from an equilibrium real gas code, with attention placed on the sensitivity of grid dependence and wall temperature. Heat transfer results calculated by the PARCEQ2D code compare well with those computed by other researchers. Temperature convergence in the case of kinetic transport has been accomplished by increasing the wall temperature gradually from 300 K to the wall temperature of 1700 K. 28 refs.

  14. PARCEQ2D heat transfer grid sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Saladino, Anthony J.; Praharaj, Sarat C.; Collins, Frank G.

    1991-01-01

    The material presented in this paper is an extension of two-dimensional Aeroassist Flight Experiment (AFE) results shown previously. This study has focused on the heating rate calculations to the AFE obtained from an equilibrium real gas code, with attention placed on the sensitivity of grid dependence and wall temperature. Heat transfer results calculated by the PARCEQ2D code compare well with those computed by other researchers. Temperature convergence in the case of kinetic transport has been accomplished by increasing the wall temperature gradually from 300 K to the wall temperature of 1700 K.

  15. Temperature Effects on the Wind Direction Measurement of 2D Solid Thermal Wind Sensors

    PubMed Central

    Chen, Bei; Zhu, Yan-Qing; Yi, Zhenxiang; Qin, Ming; Huang, Qing-An

    2015-01-01

    For a two-dimensional solid silicon thermal wind sensor with symmetrical structure, the wind speed and direction information can be derived from the output voltages in two orthogonal directions, i.e., the north-south and east-west. However, the output voltages in these two directions will vary linearly with the ambient temperature. Therefore, in this paper, a temperature model to study the temperature effect on the wind direction measurement has been developed. A theoretical analysis has been presented first, and then Finite Element Method (FEM) simulations have been performed. It is found that due to symmetrical structure of the thermal wind sensor, the temperature effects on the output signals in the north-south and east-west directions are highly similar. As a result, the wind direction measurement of the thermal wind sensor is approximately independent of the ambient temperature. The experimental results fit the theoretical analysis and simulation results very well. PMID:26633398

  16. Estimating 2-D vector velocities using multidimensional spectrum analysis.

    PubMed

    Oddershede, Niels; Løvstakken, Lasse; Torp, Hans; Jensen, Jørgen Arendt

    2008-08-01

    Wilson (1991) presented an ultrasonic wideband estimator for axial blood flow velocity estimation through the use of the 2-D Fourier transform. It was shown how a single velocity component was concentrated along a line in the 2-D Fourier space, where the slope was given by the axial velocity. Later, it was shown that this approach could also be used for finding the lateral velocity component by also including a lateral sampling. A single velocity component would then be concentrated along a plane in the 3-D Fourier space, tilted according to the 2 velocity components. This paper presents 2 new velocity estimators for finding both the axial and lateral velocity components. The estimators essentially search for the plane in the 3- D Fourier space, where the integrated power spectrum is largest. The first uses the 3-D Fourier transform to find the power spectrum, while the second uses a minimum variance approach. Based on this plane, the axial and lateral velocity components are estimated. Several phantom measurements, for flow-to-depth angles of 60, 75, and 90 degrees, were performed. Multiple parallel lines were beamformed simultaneously, and 2 different receive apodization schemes were tried. The 2 estimators were then applied to the data. The axial velocity component was estimated with an average standard deviation below 2.8% of the peak velocity, while the average standard deviation of the lateral velocity estimates was between 2.0% and 16.4%. The 2 estimators were also tested on in vivo data from a transverse scan of the common carotid artery, showing the potential of the vector velocity estimation method under in vivo conditions. PMID:18986918

  17. A numerical study on the thermal initiation of a confined explosive in 2-D geometry.

    PubMed

    Aydemir, Erdoğan; Ulas, Abdullah

    2011-02-15

    Insensitive munitions design against thermal stimuli like slow or fast cook-off has become a significant requirement for today's munitions. In order to achieve insensitive munitions characteristics, the response of the energetic material needs to be predicted against heating stimuli. In this study, a 2D numerical code was developed to simulate the slow and fast cook-off heating conditions of confined munitions and to obtain the response of the energetic materials. Computations were performed in order to predict the transient temperature distribution, the ignition time, and the location of ignition in the munitions. These predictions enable the designers to have an idea of when and at which location the energetic material ignites under certain adverse surrounding conditions. In the paper, the development of the code is explained and the numerical results are compared with available experimental and numerical data in the literature. Additionally, a parametric study was performed showing the effect of dimensional scaling of munitions and the heating rate on the ignition characteristics.

  18. Optical fiber poling by induction: analysis by 2D numerical modeling.

    PubMed

    De Lucia, F; Huang, D; Corbari, C; Healy, N; Sazio, P J A

    2016-04-15

    Since their first demonstration some 25 years ago, thermally poled silica fibers have been used to realize device functions such as electro-optic modulation, switching, polarization-entangled photons, and optical frequency conversion with a number of advantages over bulk free-space components. We have recently developed an innovative induction poling technique that could allow for the development of complex microstructured fiber geometries for highly efficient χ(2)-based device applications. To systematically implement these more advanced poled fiber designs, we report here the development of comprehensive numerical models of the induction poling mechanism itself via two-dimensional (2D) simulations of ion migration and space-charge region formation using finite element analysis. PMID:27082323

  19. Measurements of Thermal Conductivity of Superfluid Helium Near its Transition Temperature T(sub lambda) in a 2D Confinement

    NASA Technical Reports Server (NTRS)

    Jerebets, Sergei

    2004-01-01

    We report our recent experiments on thermal conductivity measurements of superfluid He-4 near its phase transition in a two-dimensional (2D) confinement under saturated vapor pressure. A 2D confinement is created by 2-mm- and 1-mm-thick glass capillary plates, consisting of densely populated parallel microchannels with cross-sections of 5 x 50 and 1 x 10 microns, correspondingly. A heat current (2 < Q < 400 nW/sq cm) was applied along the channels long direction. High-resolution measurements were provided by DC SQUID-based high-resolution paramagnetic salt thermometers (HRTs) with a nanokelvin resolution. We might find that thermal conductivity of confined helium is finite at the bulk superfluid transition temperature. Our 2D results will be compared with those in a bulk and 1D confinement.

  20. Numerical analysis using 2D modeling of optical fiber poled by induction

    NASA Astrophysics Data System (ADS)

    Huang, D.; De Lucia, F.; Corbari, C.; Healy, N.; Sazio, P. J. A.

    2016-03-01

    Thermal poling, a technique to introduce effective second-order nonlinearities in silica optical fibers, has found widespread applications in frequency conversion, electro-optic modulation, switching and polarization-entangled photon pair generation. Since its first demonstration around 25 years ago, studies into thermal poling were primarily based on anode-cathode electrode configurations. However, more recently, superior electrode configurations have been investigated that allow for robust and reliable thermally poled fibers with excellent second order nonlinear properties [1, 2]. Very recently, we experimentally demonstrated an electrostatic induction poling technique that creates a stable second-order nonlinearity in a twin-hole fiber without any direct physical contact to internal fiber electrodes whatsoever [3]. This innovative technique lifts a number of restrictions on the use of complex microstructured optical fibers (MOF) for poling, as it is no longer necessary to individually contact internal electrodes and presents a general methodology for selective liquid electrode filling of complex MOF geometries. In order to systematically implement these more advanced device embodiments, it is first necessary to develop comprehensive numerical models of the induction poling mechanism itself. To this end, we have developed two-dimensional (2D) simulations of space-charge region formation using COMSOL finite element analysis, by building on current numerical models [4].

  1. Multifractal analysis of 2D gray soil images

    NASA Astrophysics Data System (ADS)

    González-Torres, Ivan; Losada, Juan Carlos; Heck, Richard; Tarquis, Ana M.

    2015-04-01

    Soil structure, understood as the spatial arrangement of soil pores, is one of the key factors in soil modelling processes. Geometric properties of individual and interpretation of the morphological parameters of pores can be estimated from thin sections or 3D Computed Tomography images (Tarquis et al., 2003), but there is no satisfactory method to binarized these images and quantify the complexity of their spatial arrangement (Tarquis et al., 2008, Tarquis et al., 2009; Baveye et al., 2010). The objective of this work was to apply a multifractal technique, their singularities (α) and f(α) spectra, to quantify it without applying any threshold (Gónzalez-Torres, 2014). Intact soil samples were collected from four horizons of an Argisol, formed on the Tertiary Barreiras group of formations in Pernambuco state, Brazil (Itapirema Experimental Station). The natural vegetation of the region is tropical, coastal rainforest. From each horizon, showing different porosities and spatial arrangements, three adjacent samples were taken having a set of twelve samples. The intact soil samples were imaged using an EVS (now GE Medical. London, Canada) MS-8 MicroCT scanner with 45 μm pixel-1 resolution (256x256 pixels). Though some samples required paring to fit the 64 mm diameter imaging tubes, field orientation was maintained. References Baveye, P.C., M. Laba, W. Otten, L. Bouckaert, P. Dello, R.R. Goswami, D. Grinev, A. Houston, Yaoping Hu, Jianli Liu, S. Mooney, R. Pajor, S. Sleutel, A. Tarquis, Wei Wang, Qiao Wei, Mehmet Sezgin. Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data. Geoderma, 157, 51-63, 2010. González-Torres, Iván. Theory and application of multifractal analysis methods in images for the study of soil structure. Master thesis, UPM, 2014. Tarquis, A.M., R.J. Heck, J.B. Grau; J. Fabregat, M.E. Sanchez and J.M. Antón. Influence of Thresholding in Mass and Entropy Dimension of 3-D

  2. Lagrangian analysis of vortex shedding behind a 2D airfoil

    NASA Astrophysics Data System (ADS)

    Cardwell, Blake; Mohseni, Kamran

    2007-11-01

    Identifying the coherent structures and their interactions in the mixing zone is a useful means in designing future flow control strategies. To this end, a Lagrangian analysis of two-dimensional vortex shedding over an Eppler 387 airfoil is presented. Stable and unstable material manifolds in the flow are identified. Unstable manifolds such a the shear layer characterize a barrier to fluid mixing and are easily visualized using dye injection in an experiment. On the other hand, stable manifolds are more difficult to visualize in an experiment. Reattachment lines are examples of such manifolds. As such the existence of these structures in the flow, is presented and how these structures are useful in understanding vortex shedding is explored. The manifold structure is also presented in a time averaged view, allowing a comparison with the traditional separation bubble. Furthermore, lobe dynamic calculation are performed and the fluid entrainment into shedded vortices are investigated. Finally, investigation of correlation between the behavior of the material manifolds and more traditional quantities such as skin friction, flow phase portrait, and pressure is presented.

  3. 2D Array of Far-infrared Thermal Detectors: Noise Measurements and Processing Issues

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Aslam, S.; Stevenson, T.

    2008-01-01

    A magnesium diboride (MgB2) detector 2D array for use in future space-based spectrometers is being developed at GSFC. Expected pixel sensitivities and comparison to current state-of-the-art infrared (IR) detectors will be discussed.

  4. A 2-D Array of Superconducting Magnesium Diboride (MgB2) Far-IR Thermal Detectors for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook

    2009-01-01

    A 2-D array of superconducting Magnesium Diboride(MgB2) far IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.

  5. Wind-tunnel experiments of thermally-stratified turbulent boundary layer flow over a wall-mounted 2-D block

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando

    2014-05-01

    Turbulent boundary-layer flows over complex topography have been extensively studied in the atmospheric sciences and wind engineering communities. The upwind turbulence level, the atmospheric thermal stability and the shape of the topography as well as surface characteristics play important roles in turbulent transport of momentum and scalar fluxes. However, to the best of our knowledge, atmospheric thermal stability has rarely been taken into account in laboratory simulations, particularly in wind-tunnel experiments. Extension of such studies in thermally-stratified wind tunnels will substantially advance our understanding of thermal stability effects on the physics of flow over complex topography. Additionally, high-resolution experimental data can be used for development of new parameterization of surface fluxes and validation of numerical models such as Large-Eddy Simulation (LES). A series of experiments of neutral and thermally-stratified boundary-layer flows over a wall-mounted 2-D block were conducted at the Saint Anthony Falls Laboratory boundary-layer wind tunnel. The 2-D block, with a width to height ratio of 2:1, occupied the lowest 25% of the turbulent boundary layer. Stable and convective boundary layers were simulated by independently controlling the temperature of air flow, the test section floor, and the wall-mounted block surfaces. Measurements using high-resolution Particle Image Velocimetry (PIV), x-wire/cold-wire anemometry, thermal-couples and surface heat flux sensors were made to quantify the turbulent properties and surface fluxes in distinct macroscopic flow regions, including the separation/recirculation zones, evolving shear layer and the asymptotic far wake. Emphasis will be put on addressing thermal stability effects on the spatial distribution of turbulent kinetic energy (TKE) and turbulent fluxes of momentum and scalar from the near to far wake region. Terms of the TKE budget equation are also inferred from measurements and

  6. Analysis of activity space by fragment fingerprints, 2D descriptors, and multitarget dependent transformation of 2D descriptors.

    PubMed

    Givehchi, Alireza; Bender, Andreas; Glen, Robert C

    2006-01-01

    The effect of multitarget dependent descriptor transformation on classification performance is explored in this work. To this end decision trees as well as neural net QSAR in combination with PLS were applied to predict the activity class of 5HT3 ligands, angiotensin converting enzyme inhibitors, 3-hydroxyl-3-methyl glutaryl coenzyme A reductase inhibitors, platelet activating factor antagonists, and thromboxane A2 antagonists. Physicochemical descriptors calculated by MOE and fragment-based descriptors (MOLPRINT 2D) were employed to generate descriptor vectors. In a subsequent step the physicochemical descriptor vectors were transformed to a lower dimensional space using multitarget dependent descriptor transformation. Cross-validation of the original physicochemical descriptors in combination with decision trees and neural net QSAR as well as cross-validation of PLS multitarget transformed descriptors with neural net QSAR were performed. For comparison this was repeated using fragment-based descriptors in combination with decision trees.

  7. Damage evolution due to thermal shock in a 2-D woven fiber-reinforced CVI SiC composite

    SciTech Connect

    Webb, J.E.; Singh, R.N.

    1996-12-31

    A water quench technique was used to study the effects of thermal shock on a 2-D woven Nicalon{trademark} fiber-reinforced CVI SiC matrix composite. Thermal shock damage was characterized by optical microscopy as a function of quench temperature difference ({Delta}T) and number of quench cycles. The observed thermal shock damage consisted of small matrix cracks and fiber-matrix interfacial debonding on the surface and large interior cracks in the matrix that formed between and parallel to the fiber cloths. At low {Delta}T`s only small matrix cracks on the surface were observed and were linked to initial decreases in Young`s modulus. At higher {Delta}T`s larger cracks between the fiber cloths in the specimen interior were observed and linked to decreases in the ultimate flexural strength.

  8. Modeling the Transverse Thermal Conductivity of 2-D SiCf/SiC Composites Made with Woven Fabric

    SciTech Connect

    Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.

    2004-06-30

    The hierarchical two-layer (H2L) model was developed to describe the effective transverse thermal conductivity, Keff, of a 2D-SiCf/SiC composite made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The H2L model includes the expected effects of fiber-matrix interfacial conductance as well as the effects of high fiber packing fractions within individual tows and the non-uniform nature of 2D-fabric layers that usually include a significant amount of interlayer porosity. Previously, H2L model predictions were compared to measured values of Keff for two versions of DuPont 2D-Hi NicalonÔ/PyC/ICVI-SiC composite, one with a “thin” (0.110 μm) and the other with a “thick” (1.040 μm) pyrocarbon (PyC) fiber coating, and for a 2D-TyrannoÔ SA/”thin” PyC/FCVI-SIC composite made by ORNL. In this study, H2L model predictions are compared to measured Keff-values for a 2D-SiCf/SiC composite made by GE Power Systems (formerly DuPont Lanxide) using the ICVI-process with Hi-NicalonÔ type S fabric. The values of Keff determined for the composite made with the Hi-NicalonÔ type S fabric were significantly greater than Keff-values determined for the composites made with either the Hi-NicalonÔor the TyrannoÔ SA fabrics. Differences in Keff-values were expected for using different fiber types, but major differences also were due to observed microstructural variations between the systems, and as predicted by the H2L model.

  9. On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries: Part I. Low-order thermal modelling

    NASA Astrophysics Data System (ADS)

    Richardson, Robert R.; Zhao, Shi; Howey, David A.

    2016-09-01

    Estimating the temperature distribution within Li-ion batteries during operation is critical for safety and control purposes. Although existing control-oriented thermal models - such as thermal equivalent circuits (TEC) - are computationally efficient, they only predict average temperatures, and are unable to predict the spatially resolved temperature distribution throughout the cell. We present a low-order 2D thermal model of a cylindrical battery based on a Chebyshev spectral-Galerkin (SG) method, capable of predicting the full temperature distribution with a similar efficiency to a TEC. The model accounts for transient heat generation, anisotropic heat conduction, and non-homogeneous convection boundary conditions. The accuracy of the model is validated through comparison with finite element simulations, which show that the 2-D temperature field (r, z) of a large format (64 mm diameter) cell can be accurately modelled with as few as 4 states. Furthermore, the performance of the model for a range of Biot numbers is investigated via frequency analysis. For larger cells or highly transient thermal dynamics, the model order can be increased for improved accuracy. The incorporation of this model in a state estimation scheme with experimental validation against thermocouple measurements is presented in the companion contribution (http://www.sciencedirect.com/science/article/pii/S0378775316308163)

  10. PLAN2D - A PROGRAM FOR ELASTO-PLASTIC ANALYSIS OF PLANAR FRAMES

    NASA Technical Reports Server (NTRS)

    Lawrence, C.

    1994-01-01

    PLAN2D is a FORTRAN computer program for the plastic analysis of planar rigid frame structures. Given a structure and loading pattern as input, PLAN2D calculates the ultimate load that the structure can sustain before collapse. Element moments and plastic hinge rotations are calculated for the ultimate load. The location of hinges required for a collapse mechanism to form are also determined. The program proceeds in an iterative series of linear elastic analyses. After each iteration the resulting elastic moments in each member are compared to the reserve plastic moment capacity of that member. The member or members that have moments closest to their reserve capacity will determine the minimum load factor and the site where the next hinge is to be inserted. Next, hinges are inserted and the structural stiffness matrix is reformulated. This cycle is repeated until the structure becomes unstable. At this point the ultimate collapse load is calculated by accumulating the minimum load factor from each previous iteration and multiplying them by the original input loads. PLAN2D is based on the program STAN, originally written by Dr. E.L. Wilson at U.C. Berkeley. PLAN2D has several limitations: 1) Although PLAN2D will detect unloading of hinges it does not contain the capability to remove hinges; 2) PLAN2D does not allow the user to input different positive and negative moment capacities and 3) PLAN2D does not consider the interaction between axial and plastic moment capacity. Axial yielding and buckling is ignored as is the reduction in moment capacity due to axial load. PLAN2D is written in FORTRAN and is machine independent. It has been tested on an IBM PC and a DEC MicroVAX. The program was developed in 1988.

  11. A plastic scintillator-based 2D thermal neutron mapping system for use in BNCT studies.

    PubMed

    Ghal-Eh, N; Green, S

    2016-06-01

    In this study, a scintillator-based measurement instrument is proposed which is capable of measuring a two-dimensional map of thermal neutrons within a phantom based on the detection of 2.22MeV gamma rays generated via nth+H→D+γ reaction. The proposed instrument locates around a small rectangular water phantom (14cm×15cm×20cm) used in Birmingham BNCT facility. The whole system has been simulated using MCNPX 2.6. The results confirm that the thermal flux peaks somewhere between 2cm and 4cm distance from the system entrance which is in agreement with previous studies. PMID:26986813

  12. Investigating the role of a poorly soluble surfactant in a thermally driven 2D microfoam.

    PubMed

    Miralles, Vincent; Rio, Emmanuelle; Cantat, Isabelle; Jullien, Marie-Caroline

    2016-08-17

    Foam drainage dynamics is known to be strongly affected by the nature of the surfactants stabilising the liquid/gas interface. In the present work, we consider a 2D microfoam stabilized by both soluble (sodium dodecylsulfate) and poorly soluble (dodecanol) surfactants. The drainage dynamics is driven by a thermocapillary Marangoni stress at the liquid/gas interface [V. Miralles et al., Phys. Rev. Lett., 2014, 112, 238302] and the presence of dodecanol at the interface induces interface stress acting against the applied thermocapillary stress, which slows down the drainage dynamics. We define a damping parameter that we measure as a function of the geometrical characteristics of the foam. We compare it with predictions based on the interface rheological properties of the solution. PMID:27493005

  13. Dispersion relations of externally and thermally excited dust lattice modes in 2D complex plasma crystals

    SciTech Connect

    Yang Xuefeng; Cui Jian; Zhang Yuan; Liu Yue

    2012-07-15

    The dispersion relations of the externally and thermally (naturally) excited dust lattice modes (both longitudinal and transverse) in two-dimensional Debye-Yukawa complex plasma crystals are investigated. The dispersion relations are calculated numerically by taking the neutral gas damping effects into account and the numerical results are in agreement with the experimental data given by Nunomura et al.[Phys. Rev. E 65, 066402 (2002)]. It is found that for the mode excited by an external disturbance with a real frequency, the dispersion properties are changed at a critical frequency near where the group velocity of the mode goes to zero. Therefore, the high frequency branch with negative dispersion cannot be reached. In contrast, for the thermally excited mode, the dispersion curve can extend all the way to the negative dispersion region, while a 'cut-off' wave number exists at the long wavelength end of the dispersion in the transverse mode.

  14. New technologies of 2-D and 3-D modeling for analysis and management of natural resources

    NASA Astrophysics Data System (ADS)

    Cheremisina, E. N.; Lyubimova, A. V.; Kirpicheva, E. Yu.

    2016-09-01

    For ensuring technological support of research and administrative activity in the sphere of environmental management a specialized modular program complex was developed. The special attention in developing a program complex is focused to creation of convenient and effective tools for creation and visualization 2d and 3D models providing the solution of tasks of the analysis and management of natural resources.

  15. Boundary identification for 2-D parabolic problems arising in thermal testing of materials

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Kojima, Fumio

    1988-01-01

    Problems on the identification of two-dimensional spatial domains arising in the detection and characterization of structural flaws in materials are considered. For a thermal diffusion system with external boundary input, observations of the temperature on the surface are used in an output least square approach. Parameter estimation techniques based on the method of mappings are discussed, and approximation schemes are developed based on a finite-element Galerkin approach. Theoretical convergence results for computational techniques are given, and the results are applied to the identification of two kinds of boundary shapes.

  16. Two-dimensional (2D) Chemiluminescence (CL) correlation spectroscopy for studying thermal oxidation of isotactic polypropylene (iPP)

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Hagihara, Hideaki; Suda, Hiroyuki; Mizukado, Jyunji

    2016-11-01

    Application of the two-dimensional (2D) correlation spectroscopy is extended to Chemiluminescence (CL) spectra of isotactic polypropylene (iPP) under thermally induced oxidation. Upon heating, the polymer chains of the iPP undergoes scissoring and fragmentation to develop several intermediates. While different chemical species provides the emission at different wavelength regions, entire feature of the time-dependent CL spectra of the iPP samples were complicated by the presence of overlapped contributions from singlet oxygen (1O2) and carbonyl species within sample. 2D correlation spectra showed notable enhancement of the spectral resolution to provide penetrating insight into the thermodynamics of the polymer system. For example, the, oxidation induce scissoring and fragmentation of the polymer chains to develop the carbonyl group. Further reaction results in the consumption of the carbonyl species and subsequent production of different 1O2 species each developed in different manner. Consequently, key information on the thermal oxidation can be extracted in a surprisingly simple manner without any analytical expression for the actual response curves of spectral intensity signals during the reaction.

  17. A fast and conformal heating scheme for producing large thermal lesions using a 2D ultrasound phased array.

    PubMed

    Liu, Hao-Li; Lin, Win-Li; Chen, Yung-Yaw

    2007-02-01

    The treatment conformability and the total treatment time of large tumors are both important issues in ultrasound thermal therapy. Previous heating strategies all show their restrictions in achieving these two issues to satisfactory levels simultaneously. This work theoretically presents a new heating strategy which is capable of both increasing the treatment conformability and shortening the treatment time, when using a 2D ultrasound phased array transducer. To perform this, a set of the multiple-foci patterns (considered the basic heating units) were temporally switched to steer the beam at different focal planes with the lesion length being well-controlled. Then, to conformally cover an irregular target volume, the 2D phased array was laterally shifted by a positioning system to deposit a suitable heating unit to cover a subvolume part. Results demonstrated that the totally treatment time can be largely reduced. The heating rate can be increased up to 0.96 cm3/min compared to the previously reported 0.26 cm3/min. Also, the proposed scheme showed that the tumor regions can be completely treated with the normal tissue damage at satisfactory level. The feasibility of the proposed strategy for irregular tumor treatment was also demonstrated. This study offers useful information in large tumor treatment in ultrasound thermal therapy.

  18. On craton thinning/destruction: Insight from 2D thermal-mechanical numerical modeling

    NASA Astrophysics Data System (ADS)

    Liao, J.

    2014-12-01

    Although most cratons maintain stable, some exceptions are present, such as the North China craton, North Atlantic craton, and Wyoming craton, which have experienced dramatic lithospheric deformation/thinning. Mechanisms triggering cratonic thinning remains enigmatic [Lee et al., 2011]. Using a 2D thermo-mechanical coupled numerical model [Gerya and Yuen, 2007], we investigate two possible mechanisms: (1) stratification of cratonic lithospheric mantle, and (2) rheological weakening due to hydration.Lithospheric mantle stratification is a common feature in cratonic areas which has been demonstrated by geophysical and geochemical studies [Thybo and Perchuc, 1997; Griffin et al., 2004; Romanowicz, 2009; Rychert and Shearer, 2009; Yuan and Romanowicz, 2010]. The influence of lithospheric mantle stratification during craton evolution remains poorly understood. A rheologically weak layer representing hydrated and/or metasomatized composition is implemented in the lithospheric mantle. Our results show that the weak mantle layer changes the dynamics of lithospheric extension by enhancing the deformation of the overlying mantle and crust and inhibiting deformation of the underlying mantle [Liao et al., 2013; Liao and Gerya, 2014]. Modeling results are compared with North China and North Atlantic cratons. Our work indicates that although the presence of a weak layer may not be sufficient to initiate craton deformation, it enhances deformation by lowering the required extensional plate boundary force. Rheological weakening due to hydration is a possible mechanism triggering/enhancing craton deformation, especially for cratons jaxtaposing with a subduction, since water can release from a subducting slab. We investigate the influence of wet mantle flow laws [Hirth and Kohlstedt, 2003], in which a water parameter (i.e. constant water content) is involved. Our results show that wet dislocation alone does not accelerate cratonic deformation significantly. However, if wet diffusion

  19. T cell triggering: insights from 2D kinetics analysis of molecular interactions

    NASA Astrophysics Data System (ADS)

    Zarnitsyna, Veronika; Zhu, Cheng

    2012-08-01

    Interaction of the T cell receptor (TCR) with pathogen-derived peptide presented by the major histocompatibility complex (pMHC) molecule is central to adaptive immunity as it initiates intracellular signaling to trigger T cell response to infection. Kinetic parameters of this interaction have been under intensive investigation for more than two decades using soluble pMHCs and/or TCRs with at least one of them in the solution (three-dimensional (3D) methods). Recently, several techniques have been developed to enable kinetic analysis on live T cells with pMHCs presented by surrogate antigen presenting cells (APCs) or supported planar lipid bilayers (two-dimensional (2D) methods). Comparison of 2D versus 3D parameters reveals drastic differences with broader ranges of 2D affinities and on-rates and orders of magnitude faster 2D off-rates for functionally distinct pMHCs. Here we review new 2D data and discuss how it may impact previously developed models of T cell discrimination between pMHCs of different potencies.

  20. CAS2D- NONROTATING BLADE-TO-BLADE, STEADY, POTENTIAL TRANSONIC CASCADE FLOW ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1994-01-01

    An exact, full-potential-equation model for the steady, irrotational, homoentropic, and homoenergetic flow of a compressible, inviscid fluid through a two-dimensional planar cascade together with its appropriate boundary conditions has been derived. The CAS2D computer program numerically solves an artificially time-dependent form of the actual full-potential-equation, providing a nonrotating blade-to-blade, steady, potential transonic cascade flow analysis code. Comparisons of results with test data and theoretical solutions indicate very good agreement. In CAS2D, the governing equation is discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field is discretized by providing a boundary-fitted, nonuniform computational mesh. This mesh is generated by using a sequence of conformal mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the full-potential equation is solved iteratively by using successive line over relaxation. Possible isentropic shocks are captured by the explicit addition of an artificial viscosity in a conservative form. In addition, a four-level, consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two-dimensional cascade flows. The results from CAS2D are not directly applicable to three-dimensional, potential, rotating flows through a cascade of blades because CAS2D does not consider the effects of the Coriolis force that would be present in the three-dimensional case. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 200K of 8 bit bytes. The CAS2D program was developed in 1980.

  1. Allergenicity study of EGFP-transgenic chicken meat by serological and 2D-DIGE analysis.

    PubMed

    Nakamura, Rika; Nakamura, Ryosuke; Nakano, Mikiharu; Arisawa, Kenjiro; Ezaki, Ryo; Horiuchi, Hiroyuki; Teshima, Reiko

    2010-05-01

    Genetically modified (GM) foods must be tested for safety, including by allergenicity tests to ensure that they do not contain new allergens or higher concentrations of known allergens than the same non-GM foods. In this study experimentally developed EGFP-transgenic chickens were used and evaluated the allergenicity of meat from the chicken based on a serological and two-dimensional difference gel electrophoresis (2D-DIGE) analysis. For the serological analysis, a Western blotting with allergen-specific antibodies and a proteomic analysis of chicken meat allergens with patients' sera, a so-called allergenome analysis, were used. The allergenome analysis allowed us to identify five IgE-binding proteins in chicken meat, including a known allergen, chicken serum albumin, and no qualitative difference in their expressions between the GM and non-GM chicken meat was found. Results of the 2D-DIGE analysis showed that none of the IgE-binding proteins in chicken meat were significantly changed in expression levels between non-GM and GM chicken, and only 3 of the 1500 soluble protein spots including green fluorescence protein were markedly different as a result of gene transfer. These above results showed that the combination of serological and 2D-DIGE analysis is a valid method of evaluating quality and quantity of allergens in GM foods.

  2. The MIPAS2D: 2-D analysis of MIPAS observations of ESA target molecules and minor species

    NASA Astrophysics Data System (ADS)

    Arnone, E.; Brizzi, G.; Carlotti, M.; Dinelli, B. M.; Magnani, L.; Papandrea, E.; Ridolfi, M.

    2008-12-01

    Measurements from the MIPAS instrument onboard the ENVISAT satellite were analyzed with the Geofit Multi- Target Retrieval (GMTR) system to obtain 2-dimensional fields of pressure, temperature and volume mixing ratios of H2O, O3, HNO3, CH4, N2O, and NO2. Secondary target species relevant to stratospheric chemistry were also analysed and robust mixing ratios of N2O5, ClONO2, F11, F12, F14 and F22 were obtained. Other minor species with high uncertainties were not included in the database and will be the object of further studies. The analysis covers the original nominal observation mode from July 2002 to March 2004 and it is currently being extended to the ongoing reduced resolution mission. The GMTR algorithm was operated on a fixed 5 degrees latitudinal grid in order to ease the comparison with model calculations and climatological datasets. The generated database of atmospheric fields can be directly used for analyses based on averaging processes with no need of further interpolation. Samples of the obtained products are presented and discussed. The database of the retrieved quantities is made available to the scientific community.

  3. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.

    PubMed

    de Bruin, P W; Kaptein, B L; Stoel, B C; Reiber, J H C; Rozing, P M; Valstar, E R

    2008-01-01

    Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |< 0.083 mm for translations and |mu| < 0.023 degrees for rotations. The precision sigma in x-, y-, and z-direction was 0.090, 0.077, and 0.220 mm for translations and 0.155 degrees , 0.243 degrees , and 0.074 degrees for rotations. Our results show that the accuracy and precision of in vitro IBRSA, performed under ideal laboratory conditions, are lower than in vitro standard RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications.

  4. Terahertz Spectroscopy and Global Analysis of the Bending Vibrations of Acetylene 12C2D2

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, Brian J.; Pearson, John C.; Pickett, Herbert M.; Lattanzi, Valerio; Walters, Adam

    2009-06-01

    Two hundred and fifty-one 12C2D2 transitions have been measured in the 0.2-1.6 THz region of its ν5-ν4 difference band and 202 of them were observed for the first time. The accuracy of these measurements is estimated to be ranging from 50 kHz to 100 kHz. The 12C2D2 molecules were generated under room temperature by passing 120-150 mTorr D2O vapor through calcium carbide (CaC2) powder. A multistate analysis was carried out for the bending vibrational modes ν4 and ν5 of 12C2D2, which includes the lines observed in this work and prior microwave, far-infrared and infrared data on the pure bending levels. Significantly improved molecular parameters were obtained for 12C2D2 by adding the new measurements to the old data set, which had only 10 lines with microwave measurement precision. New frequency and intensity predictions have been made based on the obtained molecular parameters. The more precise measurements and new predictions reported here will support the analyses of astronomical observations by the future high-resolution spectroscopy telescopes such as Herschel, SOFIA, and ALMA, which will work in the terahertz spectral region.

  5. Quantitative and functional analysis of CD69(+) NKG2D(+) T regulatory cells in healthy subjects.

    PubMed

    Vitales-Noyola, M; Doníz-Padilla, L; Álvarez-Quiroga, C; Monsiváis-Urenda, A; Portillo-Salazar, H; González-Amaro, R

    2015-07-01

    T regulatory (Treg) cells have a key role in immune homeostasis and the pathogenesis of chronic inflammatory and autoimmune diseases. CD69 is an early leukocyte activation molecule that under steady state conditions is detected in a small proportion of lymphocytes in peripheral blood and lymphoid tissues. Although it has been reported that a subset of CD69(+) T cells behaves as Treg lymphocytes, the possible relationship between CD69(+) Treg cells and CD4(+)NKG2D(+) T lymphocytes, which also exert immunosuppressive activity, has not been explored. In this study, we analyzed the expression of CD69 and NKG2D by T lymphocytes from the peripheral blood of twenty-five healthy subjects by multi-parametric flow cytometry analysis, and their suppressive activity by an assay of inhibition of lymphocyte activation (CD40L expression) and proliferation (carboxyfluorescein partition assay). We found a very small percentage of CD4(+)CD69(+)NKG2D(+) T cells (median 0.002%, Q1-Q3, 0.001-0.004%), which also expressed TGF-β (Latency Associated Peptide or LAP) and IL-10, in all samples analyzed. These cells exerted an important in vitro suppressive effect on both activation and proliferation of T effector cells. Our data suggest that at very small numbers, CD4(+)CD69(+)NKG2D(+) lymphocytes seem to exert a relevant functional immune-regulatory role in healthy subjects.

  6. Initial global 2-D shielding analysis for the Advanced Neutron Source core and reflector

    SciTech Connect

    Bucholz, J.A.

    1995-08-01

    This document describes the initial global 2-D shielding analyses for the Advanced Neutron Source (ANS) reactor, the D{sub 2}O reflector, the reflector vessel, and the first 200 mm of light water beyond the reflector vessel. Flux files generated here will later serve as source terms in subsequent shielding analyses. In addition to reporting fluxes and other data at key points of interest, a major objective of this report was to document how these analyses were performed, the phenomena that were included, and checks that were made to verify that these phenomena were properly modeled. In these shielding analyses, the fixed neutron source distribution in the core was based on the `lifetime-averaged` spatial power distribution. Secondary gamma production cross sections in the fuel were modified so as to account intrinsically for delayed fission gammas in the fuel as well as prompt fission gammas. In and near the fuel, this increased the low-energy gamma fluxes by 50 to 250%, but out near the reflector vessel, these same fluxes changed by only a few percent. Sensitivity studies with respect to mesh size were performed, and a new 2-D mesh distribution developed after some problems were discovered with respect to the use of numerous elongated mesh cells in the reflector. All of the shielding analyses were performed sing the ANSL-V 39n/44g coupled library with 25 thermal neutron groups in order to obtain a rigorous representation of the thermal neutron spectrum throughout the reflector. Because of upscatter in the heavy water, convergence was very slow. Ultimately, the fission cross section in the various materials had to be artificially modified in order to solve this fixed source problem as an eigenvalue problem and invoke the Vondy error-mode extrapolation technique which greatly accelerated convergence in the large 2-D RZ DORT analyses. While this was quite effective, 150 outer iterations (over energy) were still required.

  7. Verification Test Suite (VERTS) For Rail Gun Applications using ALE3D: 2-D Hydrodynamics & Thermal Cases

    SciTech Connect

    Najjar, F M; Solberg, J; White, D

    2008-04-17

    A verification test suite has been assessed with primary focus on low reynolds number flow of liquid metals. This is representative of the interface between the armature and rail in gun applications. The computational multiphysics framework, ALE3D, is used. The main objective of the current study is to provide guidance and gain confidence in the results obtained with ALE3D. A verification test suite based on 2-D cases is proposed and includes the lid-driven cavity and the Couette flow are investigated. The hydro and thermal fields are assumed to be steady and laminar in nature. Results are compared with analytical solutions and previously published data. Mesh resolution studies are performed along with various models for the equation of state.

  8. Human factors flight trial analysis for 2D/3D SVS

    NASA Astrophysics Data System (ADS)

    Schiefele, Jens; Howland, Duncan; Maris, John; Wipplinger, Patrick

    2004-08-01

    The paper describes flight trials performed in Reno, NV. Flight trial were conducted with a Cheyenne 1 from Marinvent. Twelve pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely andomized settings. Three different settings (standard displays, 2D moving map, and 2D/3D moving map) were evaluated. They included seamless evaluation for STAR, approach, and taxi operations. The flight trial goal was to evaluate the objective performance of pilots compared among the different settings. As dependent variables, positional and time accuracy were measured. Analysis was conducted by an ANOVA test. In parallel, all pilots answered subjective Cooper-Harper, situation awareness rating technique (SART), situational awareness probe (SAP), and questionnaires.This article describes the human factor analysis from flight trials performed in Reno, NV. Flight trials were conducted with a Cheyenne 1 from Marinvent. Thirteen pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely randomized settings. Three different display configurations: Elec. Flight Information System (EFIS), EFIS and 2D moving map, and 3D SVS Primary Flight Display (PFD) and 2D moving map were evaluated. They included normal/abnormal procedure evaluation for: Steep turns and reversals, Unusual attitude recovery, Radar vector guidance towards terrain, Non-precision approaches, En-route alternate for non-IFR rated pilots encountering IMC, and Taxiing on complex taxi-routes. The flight trial goal was to evaluate the objective performance of pilots for the different display configurations. As dependent variables, positional and time data were measured. Analysis was performed by an ANOVA test. In parallel, all pilots answered subjective NASA Task Load Index, Cooper-Harper, Situation Awareness Rating Technique (SART), and questionnaires. The result shows that pilots flying 2D/3D SVS perform no worse than pilots with conventional

  9. Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods.

    PubMed

    Maximov, Ivan I; Vinding, Mads S; Tse, Desmond H Y; Nielsen, Niels Chr; Shah, N Jon

    2015-05-01

    There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community.

  10. Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods

    NASA Astrophysics Data System (ADS)

    Maximov, Ivan I.; Vinding, Mads S.; Tse, Desmond H. Y.; Nielsen, Niels Chr.; Shah, N. Jon

    2015-05-01

    There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community.

  11. Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods.

    PubMed

    Maximov, Ivan I; Vinding, Mads S; Tse, Desmond H Y; Nielsen, Niels Chr; Shah, N Jon

    2015-05-01

    There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community. PMID:25863895

  12. A 2-D FEM thermal model to simulate water flow in a porous media: Campi Flegrei caldera case study

    NASA Astrophysics Data System (ADS)

    Romano, V.; Tammaro, U.; Capuano, P.

    2012-05-01

    Volcanic and geothermal aspects both exist in many geologically young areas. In these areas the heat transfer process is of fundamental importance, so that the thermal and fluid-dynamic processes characterizing a viscous fluid in a porous medium are very important to understand the complex dynamics of the these areas. The Campi Flegrei caldera, located west of the city of Naples, within the central-southern sector of the large graben of Campanian plain, is a region where both volcanic and geothermal phenomena are present. The upper part of the geothermal system can be considered roughly as a succession of volcanic porous material (tuff) saturated by a mixture formed mainly by water and carbon dioxide. We have implemented a finite elements approach in transient conditions to simulate water flow in a 2-D porous medium to model the changes of temperature in the geothermal system due to magmatic fluid inflow, accounting for a transient phase, not considered in the analytical solutions and fluid compressibility. The thermal model is described by means of conductive/convective equations, in which we propose a thermal source represented by a parabolic shape function to better simulate an increase of temperature in the central part (magma chamber) of a box, simulating the Campi Flegrei caldera and using more recent evaluations, from literature, for the medium's parameters (specific heat capacity, density, thermal conductivity, permeability). A best-fit velocity for the permeant is evaluated by comparing the simulated temperatures with those measured in wells drilled by Agip (Italian Oil Agency) in the 1980s in the framework of geothermal exploration. A few tens of days are enough to reach the thermal steady state, showing the quick response of the system to heat injection. The increase in the pressure due to the heat transport is then used to compute ground deformation, in particular the vertical displacements characteristics of the Campi Flegrei caldera behaviour. The

  13. Combining 2D synchrosqueezed wave packet transform with optimization for crystal image analysis

    NASA Astrophysics Data System (ADS)

    Lu, Jianfeng; Wirth, Benedikt; Yang, Haizhao

    2016-04-01

    We develop a variational optimization method for crystal analysis in atomic resolution images, which uses information from a 2D synchrosqueezed transform (SST) as input. The synchrosqueezed transform is applied to extract initial information from atomic crystal images: crystal defects, rotations and the gradient of elastic deformation. The deformation gradient estimate is then improved outside the identified defect region via a variational approach, to obtain more robust results agreeing better with the physical constraints. The variational model is optimized by a nonlinear projected conjugate gradient method. Both examples of images from computer simulations and imaging experiments are analyzed, with results demonstrating the effectiveness of the proposed method.

  14. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions.

    PubMed

    Renosh, P R; Schmitt, Francois G; Loisel, Hubert

    2015-01-01

    Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics.

  15. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions

    PubMed Central

    Renosh, P. R.; Schmitt, Francois G.; Loisel, Hubert

    2015-01-01

    Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics. PMID:26017551

  16. 2D light scattering static cytometry for label-free single cell analysis with submicron resolution.

    PubMed

    Xie, Linyan; Yang, Yan; Sun, Xuming; Qiao, Xu; Liu, Qiao; Song, Kun; Kong, Beihua; Su, Xuantao

    2015-11-01

    Conventional optical cytometric techniques usually measure fluorescence or scattering signals at fixed angles from flowing cells in a liquid stream. Here we develop a novel cytometer that employs a scanning optical fiber to illuminate single static cells on a glass slide, which requires neither microfluidic fabrication nor flow control. This static cytometric technique measures two dimensional (2D) light scattering patterns via a small numerical aperture (0.25) microscope objective for label-free single cell analysis. Good agreement is obtained between the yeast cell experimental and Mie theory simulated patterns. It is demonstrated that the static cytometer with a microscope objective of a low resolution around 1.30 μm has the potential to perform high resolution analysis on yeast cells with distributed sizes. The capability of the static cytometer for size determination with submicron resolution is validated via measurements on standard microspheres with mean diameters of 3.87 and 4.19 μm. Our 2D light scattering static cytometric technique may provide an easy-to-use, label-free, and flow-free method for single cell diagnostics.

  17. Investigation of the thermal response of a gasdynamic heater with helical impellers. Calspan Report No. 6961-A-1. [MAZE and TACO2D codes

    SciTech Connect

    Rae, W. J.

    1981-12-01

    A gasdynamic heater, capable of producing contamination-free gas streams at temperatures up to 9000/sup 0/K, is being developed by the Vulcan project. The design of a cooling system for the case parts and the associated thermal analysis are a critical part of a successful design. The purpose of the present work was to perform a preliminary cooling passage design and complete thermal analysis for the center body liner, end plate liners and exit nozzle. The approach envisioned for this work was the use of a set of LLNL finite-element codes, called MAZE and TACO2D. These were to be used at LLNL in a series of visits by the Calspan principal investigator. The project was cancelled shortly after the first of these visits; this report contains a summary of the work accomplished during the abbreviated contract period, and a review of the items that will need to be considered when the work is resumed at some future date.

  18. Update on the Fabrication and Performance of 2-D Arrays of Superconducting Magnesium Diboride (MgB2) Thermal Detectors for Outer-Planets Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook; Aslam, S.

    2011-01-01

    Detectors with better performance than the current thermopile detectors that operate at room temperature will be needed at the focal plane of far-infrared instruments on future planetary exploration missions. We will present an update on recent results from the 2-D array of MgB2 thermal detectors being currently developed at NASA Goddard. Noise and sensitivity results will be presented and compared to thermal detectors currently in use on planetary missions.

  19. Interfractional trend analysis of dose differences based on 2D transit portal dosimetry

    NASA Astrophysics Data System (ADS)

    Persoon, L. C. G. G.; Nijsten, S. M. J. J. G.; Wilbrink, F. J.; Podesta, M.; Snaith, J. A. D.; Lustberg, T.; van Elmpt, W. J. C.; van Gils, F.; Verhaegen, F.

    2012-10-01

    Dose delivery of a radiotherapy treatment can be influenced by a number of factors. It has been demonstrated that the electronic portal imaging device (EPID) is valuable for transit portal dosimetry verification. Patient related dose differences can emerge at any time during treatment and can be categorized in two types: (1) systematic—appearing repeatedly, (2) random—appearing sporadically during treatment. The aim of this study is to investigate how systematic and random information appears in 2D transit dose distributions measured in the EPID plane over the entire course of a treatment and how this information can be used to examine interfractional trends, building toward a methodology to support adaptive radiotherapy. To create a trend overview of the interfractional changes in transit dose, the predicted portal dose for the different beams is compared to a measured portal dose using a γ evaluation. For each beam of the delivered fraction, information is extracted from the γ images to differentiate systematic from random dose delivery errors. From the systematic differences of a fraction for a projected anatomical structures, several metrics are extracted like percentage pixels with |γ| > 1. We demonstrate for four example cases the trends and dose difference causes which can be detected with this method. Two sample prostate cases show the occurrence of a random and systematic difference and identify the organ that causes the difference. In a lung cancer case a trend is shown of a rapidly diminishing atelectasis (lung fluid) during the course of treatment, which was detected with this trend analysis method. The final example is a breast cancer case where we show the influence of set-up differences on the 2D transit dose. A method is presented based on 2D portal transit dosimetry to record dose changes throughout the course of treatment, and to allow trend analysis of dose discrepancies. We show in example cases that this method can identify the causes of

  20. Numerical method of crack analysis in 2D finite magnetoelectroelastic media

    NASA Astrophysics Data System (ADS)

    Zhao, Minghao; Xu, Guangtao; Fan, Cuiying

    2010-04-01

    The present paper extends the hybrid extended displacement discontinuity fundamental solution method (HEDD-FSM) (Eng Anal Bound Elem 33:592-600, 2009) to analysis of cracks in 2D finite magnetoelectroelastic media. The solution of the crack is expressed approximately by a linear combination of fundamental solutions of the governing equations, which includes the extended point force fundamental solutions with sources placed at chosen points outside the domain of the problem under consideration, and the extended Crouch fundamental solutions with extended displacement discontinuities placed on the crack. The coefficients of the fundamental solutions are determined by letting the approximated solution satisfy the prescribed boundary conditions on the boundary of the domain and on the crack face. The Crouch fundamental solution for a parabolic element at the crack tip is derived to model the square root variations of near tip fields. The extended stress intensity factors are calculated under different electric and magnetic boundary conditions.

  1. Thermal Analysis of Plastics

    ERIC Educational Resources Information Center

    D'Amico, Teresa; Donahue, Craig J.; Rais, Elizabeth A.

    2008-01-01

    This lab experiment illustrates the use of differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) in the measurement of polymer properties. A total of seven exercises are described. These are dry exercises: students interpret previously recorded scans. They do not perform the experiments. DSC was used to determine the…

  2. Robust mean traveltime curves: a powerful tool for analysis in 2D transmission tomographic surveys

    NASA Astrophysics Data System (ADS)

    Fernandez Martinez, J.; Pedruelo Gonzalez, L.; Rector, J.

    2008-12-01

    Acoustic tomography methods belong to the class of non destructive inspection techniques and are widely used in engineering applications. One of the main issues for these methods is the direct arrivals, which can be noisy or affected by scattering or other propagation effects. Mean traveltime curves (mean and standard deviation) have been introduced by Fernández Martínez et al (2006), and describe the variation of the main statistical parameters of the traveltime distribution for the different gathering subsets as a function of the gather index. These curves constitute a simple methodology (Fernández Martínez et al., 2008) to analyze before inversion the traveltime quality in 2D acoustic transmission tomography experiments conducted in relatively homogeneous blocks. This analysis can help to discriminate the contribution of picking errors from that of geological heterogeneities. In this contribution we present the so-called robust mean traveltime curves, which refer to the variation of the different p-percentiles and related measures of dispersion (inter-quartile range and minimum absolute deviation) for the above mentioned gathering subsets. Together with the mean curve, the median and upper-quartile traveltime curves are very resistant to the presence of outliers, and thus, are preferred to infer a background velocity model, which is valid at experiment scale and honors the experimental traveltime distribution. This methodology is valid for 2D zonal isotropic or elliptical anisotropic media, explored via any arbitrary acquisition geometry. We show the application to a well-known granitic medium (Febex Project, Nagra, Switzerland). Fernández Martínez et al. 2006. Mathematical Geology:38-3.343-374 Fernández Martínez et al.2008. Computer and Geosciences:34-3,213-225, 2008.

  3. 2D proteome analysis initiates new Insights on the Salmonella Typhimurium LuxS protein

    PubMed Central

    2009-01-01

    Background Quorum sensing is a term describing a bacterial communication system mediated by the production and recognition of small signaling molecules. The LuxS enzyme, catalyzing the synthesis of AI-2, is conserved in a wide diversity of bacteria. AI-2 has therefore been suggested as an interspecies quorum sensing signal. To investigate the role of endogenous AI-2 in protein expression of the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), we performed a 2D-DIGE proteomics experiment comparing total protein extract of wildtype S. Typhimurium with that of a luxS mutant, unable to produce AI-2. Results Differential proteome analysis of wildtype S. Typhimurium versus a luxS mutant revealed relatively few changes beyond the known effect on phase 2 flagellin. However, two highly differentially expressed protein spots with similar molecular weight but differing isoelectric point, were identified as LuxS whereas the S. Typhimurium genome contains only one luxS gene. This observation was further explored and we show that the S. Typhimurium LuxS protein can undergo posttranslational modification at a catalytic cysteine residue. Additionally, by constructing LuxS-βla and LuxS-PhoA fusion proteins, we demonstrate that S. Typhimurium LuxS can substitute the cognate signal peptide sequences of β-lactamase and alkaline phosphatase for translocation across the cytoplasmic membrane in S. Typhimurium. This was further confirmed by fractionation of S. Typhimurium protein extracts, followed by Western blot analysis. Conclusion 2D-DIGE analysis of a luxS mutant vs. wildtype Salmonella Typhimurium did not reveal new insights into the role of AI-2/LuxS in Salmonella as only a small amount of proteins were differentially expressed. However, subsequent in depth analysis of the LuxS protein itself revealed two interesting features: posttranslational modification and potential translocation across the cytoplasmic membrane. As the S. Typhimurium Lux

  4. Thermal Analysis Software

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A new version of Space Payload Thermal Analyzer (SSPTA) that can be used on a 386 personal computer was developed by Nicholas Teti. SSPTA/386 software package includes the programs that Goddard has traditionally used in thermal design and analysis. The original programs were modified to run on the 386 system and automatic data transfer between programs was improved. SSPTA/386 includes all the features available in Goddard's VAX version of SSPTA. The software package is highly flexible in that it allows the user to run the programs interactively or in batch mode. It provides a menu system that allows the user to select a program or a combination of programs.

  5. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions, methodology and applications

    NASA Astrophysics Data System (ADS)

    Schmitt, F. G.; Pannimpullath Remanan, R.; Loisel, H.

    2015-12-01

    Satellite remote sensing observations allow the ocean surface to be sampled over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST). The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. We show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics. After this methodological study, some applications are presented: the nonlinear moment function ζ(q) is fitted using the lognormal model with 2 parameters, the Hurst index H and the intermittency μ. The values of H and μ are discussed for 4 different parameters (Chl-a, SST, Rrs-443 and Rrs-555) and for different locations, chosen among different contrasted regions of the ocean, characterized by high spatial heterogeneity in Chl-a and SST.

  6. Sheath insulator test thermal analysis

    NASA Astrophysics Data System (ADS)

    Lee, Celia C. M.

    Thermal models were developed for Instrumented Fast Reactor Component Sheath Insulator (IFAC-SI) test to aid in the design and fabrication of the experiment which is part of the Thermionic Fuel Element Verification Program. The actual experiment with two heat pipes in one test capsule is described by Miskolczy and Lee (1990). Two-dimensional finite element models were used in conjunction with other explicit programs to determine the necessary fin design and argon filling conditions of the vapor controlled heat pipes used to maintain desired operating temperatures. Four two-dimensional finite element models were developed: an axisymmetric capsule model; a radial sheath insulator model; a radial fin model, and an axial fin model. All finite element models were verified by comparing results between models and explicit one-dimensional heat-flow calculations. This thermal analysis package of 2D FEMs and explicit programs predicts the best geometry and placement of fins to compensate for uncertainties from internal gamma heating, emissivity of niobium, and outer sodium temperature.

  7. Volcanic SO2 and SiF4 visualization and their ratio monitored using 2-D thermal emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Stremme, W.; Krueger, A.; Harig, R.; Grutter, M.

    2011-09-01

    The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a save distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006-2009 using a Scanning Infrared Gas Imaging System (SIGIS). The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm-1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume, animation and determination of its propagation speed. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 which was confirmed from the strong ash emission registered around 01:00 a.m. LST (Local Standard Time) and a pronounced SO2 cloud was registered. Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential imagees is used to calculate the emission rates at different distances from the crater.

  8. A comparative analysis of 2D and 3D CAD for calcifications in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Acciavatti, Raymond J.; Ray, Shonket; Keller, Brad M.; Maidment, Andrew D. A.; Conant, Emily F.

    2015-03-01

    Many medical centers offer digital breast tomosynthesis (DBT) and 2D digital mammography acquired under the same compression (i.e., "Combo" examination) for screening. This paper compares a conventional 2D CAD algorithm (Hologic® ImageChecker® CAD v9.4) for calcification detection against a prototype 3D algorithm (Hologic® ImageChecker® 3D Calc CAD v1.0). Due to the newness of DBT, the development of this 3D CAD algorithm is ongoing, and it is currently not FDA-approved in the United States. For this study, DBT screening cases with suspicious calcifications were identified retrospectively at the University of Pennsylvania. An expert radiologist (E.F.C.) reviewed images with both 2D and DBT CAD marks, and compared the marks to biopsy results. Control cases with one-year negative follow-up were also studied; these cases either possess clearly benign calcifications or lacked calcifications. To allow the user to alter the sensitivity for cancer detection, an operating point is assigned to each CAD mark. As expected from conventional 2D CAD, increasing the operating point in 3D CAD increases sensitivity and reduces specificity. Additionally, we showed that some cancers are occult to 2D CAD at all operating points. By contrast, 3D CAD allows for detection of some cancers that are missed on 2D CAD. We also demonstrated that some non-cancerous CAD marks in 3D are not present at analogous locations in the 2D image. Hence, there are additional marks when using both 2D and 3D CAD in combination, leading to lower specificity than with conventional 2D CAD alone.

  9. Analysis of unsectioned specimens: 2D and tomographic PIXE with STIM

    NASA Astrophysics Data System (ADS)

    Schofield, Robert M. S.; Lefevre, Harlan W.

    1993-05-01

    Two techniques for quantitative analysis of heterogeneous thick specimens are reviewed. First, a measurement of the total zinc content in the abdomen of a fly is reported. The calculation used to determine the uncertainty in this measurement is detailed. STIM measurements at two different angles were used to determine the possible range of the X-ray production cross section and the X-ray attenuation factors. The abdomen content of zinc was determined to be 0.022( + 0.009, -0.006) (μg. Second, a PIXE-STIM mutomographic determination of metal concentrations in the sting of a scorpion is reviewed. STIM tomography was used to determine the X-ray production cross sections and the X-ray attenuation factors for points inside of the specimen. Details of how this information was then used for reconstructions of PIXE tomographic data are given. Finally, 2D PIXE measurements on a thick section of this sting are reported. On this section the measured concentration of zinc reached 22(± 3)% of dry mass, in satisfactory agreement with the results from tomography, 25(± 3)%.

  10. Performance analysis of the Microsoft Kinect sensor for 2D Simultaneous Localization and Mapping (SLAM) techniques.

    PubMed

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-12-05

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.

  11. Comparison of a 2D Photochemical Model to Data Using Statistical Trend Analysis

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K. (Technical Monitor); Stolarski, Richard; Jackman, Charles; Fleming, Eric; Frith, Stacey Hollandsworth

    2002-01-01

    We have analyzed our 23-year merged ozone data set for variability and trends with a statistical time-series model. To assist in that analysis, we have analyzed the Goddard 2D photochemical model for the same time period with the same time-series model. Multiple runs of the photochemical model allow us to separate the effects of various terms on ozone, such as solar cycle and volcanic eruptions. We use this to help us separate those signals from each other in the data. We also used a smoothed version of the photochemical model's prediction of global ozone change in place of a simple linear trend. We find a number of interesting results. This particular photochemical model is more sensitive to chlorine perturbations than the atmosphere appears to be. It is less sensitive to solar cycle. It predicts an effect from the Pinatubo eruption that is nearly symmetric in the two hemispheres, but the data appears to have not responded to Pinatubo in the southern mid-latitudes. These results and their uncertainties will be discussed.

  12. Performance analysis of the Microsoft Kinect sensor for 2D Simultaneous Localization and Mapping (SLAM) techniques.

    PubMed

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-01-01

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks. PMID:25490595

  13. Performance Analysis of the Microsoft Kinect Sensor for 2D Simultaneous Localization and Mapping (SLAM) Techniques

    PubMed Central

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-01-01

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks. PMID:25490595

  14. Analysis of capacitive sensing for 2D-MEMS scanner laser projection

    NASA Astrophysics Data System (ADS)

    von Wantoch, Thomas; Mallas, Christian; Hofmann, Ulrich; Janes, Joachim; Wagner, Bernhard; Benecke, Wolfgang

    2014-03-01

    Typical applications for resonantly driven vacuum packaged MEMS scanners including laser projection displays require a feedback signal for closed-loop operation as well as high accuracy angle synchronization for data processing. A well known and widely used method is based on determining the angular velocity of the oscillating micromirror by measuring the time derivative of a capacitance. In this work we analyze a capacitive sensing approach that uses integrated vertical comb structures to synchronize the angular motion of a torsional micromirror oscillating in resonance. The investigated measurement method is implemented in a laser display that generates a video projection by scanning a RBG laser beam. As the 2D-micromirror performs sinusoidal oscillations on both perpendicular axes a continuously moving Lissajous pattern is projected. By measuring the displacement current due to an angular deflection of the movable comb structures an appropriate feedback signal for actuation and data synchronization is computed. In order to estimate the angular deflection and velocity a mathematical model of the capacitive sensing system is presented. In particular, the nonlinear characteristic of the capacitance as a function of the angle that is calculated using FEM analysis is approximated using cubic splines. Combining this nonlinear function with a dynamic model of the micromirror oscillation and the analog electronics a mathematical model of the capacitive measurement system is derived. To evaluate the proposed model numerical simulations are realized using MATLAB/Simulink and are compared to experimental measurements.

  15. Fracture mode analysis and related surface deformation during dyke intrusion: Results from 2D experimental modelling

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M.; Mourgues, R.; Bureau, D.

    2012-04-01

    The analysis of surface deformation in response to approaching intrusion is important for assessing volcanic hazards. In this paper, we present results from 2D scaled models of magma intrusion, in which we discuss the propagation mode and related surface deformation during dyke growth. Our experiments consist in the injection of analogue magma (Golden syrup) into cohesive fine-grained silica powder, simulating the brittle upper crust. Using an optical image correlation technique (Particle Imaging Velocimetry), we were able to follow the surface deformation, the displacements within the country rock and to calculate strains induced by the magma emplacement. We identified two kinds of intrusion morphologies resulting from different interactions between the dyke and plastic deformations occurring in the country rock near the surface. In both morphologies, the dyke is vertical at depth. Our analysis demonstrates that both hydraulic tensile opening and shear-related propagation operate during this first stage of vertical growth. At the same time, the surface lifted up and formed a smooth symmetrical dome. Both types of morphologies differ in the upper part. During a second stage of evolution, the first type of intrusion inclined at a dip between 45 to 65°. This inclination is not caused by shear deformations and is attributed to stress rotation near the tip. Closer to the surface, the growth of the inclined sheet creates shear bands which conduct the fluid toward the surface. The surface uplift becomes asymmetric. The second type of intrusion does not rotate at depth and continues its vertical propagation by catching vertical tensile cracks. The intrusion of magma in these cracks creates horizontal stresses which are responsible for the closure of fractures and the formation of reverse faults. At the surface the dome remains symmetrical. For both intrusions, the surface uplift accelerates during the second stage and it is strongly influenced by the presence or the

  16. Characterization of thermal shock damage in a 2D-woven fiber CVI SiC composite using resonant ultrasound spectroscopy

    SciTech Connect

    Webb, J.E.; Singh, R.N.; Cari, H.; Ferber, M.K.

    1996-12-31

    Thermal shock damage was generated by a water quench technique in 2-D woven-Nicalon{trademark} fiber chemical vapor infiltrated (CVI) SiC composite bars. In this study, resonant ultrasound spectroscopy (RUS) was used as a nondestructive evaluation (NDE) technique to quantify such damage. RUS spectra were measured for each specimen before and after quenching. The results show a clear correlation between the quench temperature difference ({Delta}T) and changes in the RUS spectra. Both the resonant frequencies and the resonance quality factor decreased with increasing magnitude of {Delta}T, thus, providing quantitative measures for the degree of thermal shock damage.

  17. FTOM-2D: a two-dimensional approach to model the detailed thermal behavior of nonplanar surfaces

    NASA Astrophysics Data System (ADS)

    Bartos, B.; Stein, K.

    2015-10-01

    The Fraunhofer thermal object model (FTOM) predicts the temperature of an object as a function of the environmental conditions. The model has an outer layer exchanging radiation and heat with the environment and a stack of layers beyond modifying the thermal behavior. The innermost layer is at a constant or variable temperature called core temperature. The properties of the model (6 parameters) are fitted to minimize the difference between the prediction and a time series of measured temperatures. The model can be used for very different objects like backgrounds (e.g. meadow, forest, stone, or sand) or objects like vehicles. The two dimensional enhancement was developed to model more complex objects with non-planar surfaces and heat conduction between adjacent regions. In this model we call the small thermal homogenous interacting regions thermal pixels. For each thermal pixel the orientation and the identities of the adjacent pixels are stored in an array. In this version 7 parameters have to be fitted. The model is limited to a convex geometry to reduce the complexity of the heat exchange and allow for a higher number of thermal pixels. For the test of the model time series of thermal images of a test object (CUBI) were analyzed. The square sides of the cubes were modeled as 25 thermal pixels (5 × 5). In the time series of thermal images small areas in the size of the thermal pixels were analyzed to generate data files that can easily be read by the model. The program was developed with MATLAB and the final version in C++ using the OpenMP multiprocessor library. The differential equation for the heat transfer is the time consuming part in the computation and was programmed in C. The comparison show a good agreement of the fitted and not fitted thermal pixels with the measured temperatures. This indicates the ability of the model to predict the temperatures of the whole object.

  18. Analysis of 2D hyperbolic metamaterial dispersion by elementary excitation coupling

    NASA Astrophysics Data System (ADS)

    Vaianella, Fabio; Maes, Bjorn

    2016-04-01

    Hyperbolic metamaterials are examined for many applications thanks to the large density of states and extreme confinement of light they provide. For classical hyperbolic metal/dielectric multilayer structures, it was demon- strated that the properties originate from a specific coupling of the surface plasmon polaritons between the metal/dielectric interfaces. We show a similar analysis for 2D hyperbolic arrays of square (or rectangular) silver nanorods in a TiO2 host. In this case the properties derive from a specific coupling of the plasmons carried by the corners of the nanorods. The dispersion can be seen as the coupling of single rods for a through-metal connection of the corners, as the coupling of structures made of four semi-infinite metallic blocks separated by dielectric for a through-dielectric connection, or as the coupling of two semi-infinite rods for a through-metal and through-dielectric situation. For arrays of small square nanorods the elementary structure that explains the dispersion of the array is the single rod, and for arrays of large square nanorods it is four metallic corners. The medium size square nanorod case is more complicated, because the elementary structure can be one of the three basic designs, depending on the frequency and symmetry of the modes. Finally, we show that for arrays of rectangular nanorods the dispersion is explained by coupling of the two coupled rod structure. This work opens the way for a better understanding of a wide class of metamaterials via their elementary excitations.

  19. Evaluation of storage phosphor imaging for quantitative analysis of 2-D gels using the Quest II system.

    PubMed

    Patterson, S D; Latter, G I

    1993-12-01

    The advent of storage phosphor technology has been of considerable benefit to the imaging of gel-separated radiolabeled proteins due to the rapid and quantitative nature of the data acquisition process. Previously, times over one month were required to obtain fluorographs of the same gel to yield data of sufficient dynamic range for quantitative analysis of high-resolution two-dimensional (2-D) gels. As we are in the process of building a human 2-D gel protein database, and therefore have a high throughput of 2-D gels both to image and quantitate using the Quest II software, we undertook an evaluation of a storage phosphor imager, including an evaluation of signal fade. The results of this evaluation demonstrate the feasibility of using such a system, and we describe the procedures that allow us to use this technique for quantitative analysis of many complex 2-D gel patterns. These procedures include a useful batch printing program that allows printing of many images in a non-interactive mode. Examples will be presented of how autoradiography, using storage phosphor plates and the Quest II system, have enabled us to begin building a human 2-D gel protein database including posttranslational modification information, without the previous time constraints associated with such a project.

  20. Thermal Analysis of the MCI Engine Turbopump

    NASA Technical Reports Server (NTRS)

    Roman, Jose

    2002-01-01

    The MCI Engine turbopump supplied the propellants to the main injector. The turbopump consisted of four parts; lox pump, interpropellant seal package (IPS), RP pump and turbine. The thermal analysis was divided into two 2D finite element models; Housing or stationary parts and rotor or rotating parts. Both models were analyzed at the same boundary conditions using SINDA. The housing model consisted of; lox pump housing, ips housing, RP housing, turbine inlet housing, turbine housing, exit guide vane, heat shield and both bearing outer races. The rotor model consisted of the lox impeller; lox end bearing and id race, RP impeller, and RP bearing and id race, shaft and turbine disk. The objectives of the analysis were to (1) verified the original design and recommend modifications to it, (2) submitted a thermal environment to support the structural analysis, (3) support the component and engine test program and (4) to support the X34 vehicle program.

  1. Analysis of Korean Students' International Mobility by 2-D Model: Driving Force Factor and Directional Factor

    ERIC Educational Resources Information Center

    Park, Elisa L.

    2009-01-01

    The purpose of this study is to understand the dynamics of Korean students' international mobility to study abroad by using the 2-D Model. The first D, "the driving force factor," explains how and what components of the dissatisfaction with domestic higher education perceived by Korean students drives students' outward mobility to seek foreign…

  2. The Accuracy of Webcams in 2D Motion Analysis: Sources of Error and Their Control

    ERIC Educational Resources Information Center

    Page, A.; Moreno, R.; Candelas, P.; Belmar, F.

    2008-01-01

    In this paper, we show the potential of webcams as precision measuring instruments in a physics laboratory. Various sources of error appearing in 2D coordinate measurements using low-cost commercial webcams are discussed, quantifying their impact on accuracy and precision, and simple procedures to control these sources of error are presented.…

  3. Analysis of vegetation effect on waves using a vertical 2-D RANS model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A vertical two-dimensional (2-D) model has been applied in the simulation of wave propagation through vegetated water bodies. The model is based on an existing model SOLA-VOF which solves the Reynolds-Averaged Navier-Stokes (RANS) equations with the finite difference method on a staggered rectangula...

  4. Burial and thermal history of the central Appalachian basin, based on three 2-D models of Ohio, Pennsylvania, and West Virginia

    USGS Publications Warehouse

    Rowan, Elisabeth L.

    2006-01-01

    Introduction: Three regional-scale, cross sectional (2-D) burial and thermal history models are presented for the central Appalachian basin based on the detailed geologic cross sections of Ryder and others (2004), Crangle and others (2005), and Ryder, R.T., written communication. The models integrate the available thermal and geologic information to constrain the burial, uplift, and erosion history of the region. The models are restricted to the relatively undeformed part of the basin and extend from the Rome trough in West Virginia and Pennsylvania northwestward to the Findlay arch in Ohio. This study expands the scope of previous work by Rowan and others (2004) which presented a preliminary burial/thermal history model for a cross section (E-E') through West Virginia and Ohio. In the current study, the burial/thermal history model for E-E' is revised, and integrated with results of two additional cross sectional models (D-D' and C-C'). The burial/thermal history models provide calculated thermal maturity (Ro%) values for the entire stratigraphic sequence, including hydrocarbon source rocks, along each of the three cross sections. In contrast, the Ro and conodont CAI data available in the literature are sparse and limited to specific stratigraphic intervals. The burial/thermal history models also provide the regional temperature and pressure framework that is needed to model hydrocarbon migration.

  5. Differential Analysis of 2D NMR Spectra: New Natural Products from a Pilot-Scale Fungal Extract Library

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a newly developed protocol for the differential analysis of arrays of 2D NMR spectra, we were able to rapidly identify two previously unreported indole alkaloids from a library of unfractionated fungal extracts. Differential analyses of NMR spectra thus constitute an effective tool for the non...

  6. Structural and Functional Analysis of JMJD2D Reveals Molecular Basis for Site-Specific Demethylation among JMJD2 Demethylases

    SciTech Connect

    Krishnan, Swathi; Trievel, Raymond C.

    2013-01-08

    We found that JMJD2 lysine demethylases (KDMs) participate in diverse genomic processes. Most JMJD2 homologs display dual selectivity toward H3K9me3 and H3K36me3, with the exception of JMJD2D, which is specific for H3K9me3. Here, we report the crystal structures of the JMJD2D•2-oxoglutarate•H3K9me3 ternary complex and JMJD2D apoenzyme. Utilizing structural alignments with JMJD2A, molecular docking, and kinetic analysis with an array of histone peptide substrates, we elucidate the specific signatures that permit efficient recognition of H3K9me3 by JMJD2A and JMJD2D, and the residues in JMJD2D that occlude H3K36me3 demethylation. Surprisingly, these results reveal that JMJD2A and JMJD2D exhibit subtle yet important differences in H3K9me3 recognition, despite the overall similarity in the substrate-binding conformation. Further, we show that H3T11 phosphorylation abrogates demethylation by JMJD2 KDMs. These studies reveal the molecular basis for JMJD2 site specificity and provide a framework for structure-based design of selective inhibitors of JMJD2 KDMs implicated in disease.

  7. Human 2-D PAGE databases for proteome analysis in health and disease: http://biobase.dk/cgi-bin/celis.

    PubMed

    Celis, J E; Gromov, P; Ostergaard, M; Madsen, P; Honoré, B; Dejgaard, K; Olsen, E; Vorum, H; Kristensen, D B; Gromova, I; Haunsø, A; Van Damme, J; Puype, M; Vandekerckhove, J; Rasmussen, H H

    1996-12-01

    Human 2-D PAGE Databases established at the Danish Centre for Human Genome Research are now available on the World Wide Web (http://biobase.dk/cgi-bin/celis). The databanks, which offer a comprehensive approach to the analysis of the human proteome both in health and disease, contain data on known and unknown proteins recorded in various IEF and NEPHGE 2-D PAGE reference maps (non-cultured keratinocytes, non-cultured transitional cell carcinomas, MRC-5 fibroblasts and urine). One can display names and information on specific protein spots by clicking on the image of the gel representing the 2-D gel map in which one is interested. In addition, the database can be searched by protein name, keywords or organelle or cellular component. The entry files contain links to other databases such as Medline, Swiss-Prot, PIR, PDB, CySPID, OMIM, Methabolic pathways, etc. The on-line information is updated regularly. PMID:8977092

  8. Modeling the Transverse Thermal Conductivity of 2-D SiC{sub f} /SiC Composites Made with Woven Fabric

    SciTech Connect

    Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.

    2004-06-15

    The hierarchical two-layer (H2L) model describes the effective transverse thermal conductivity (k{sub eff}) of a two-dimensional (2-D) SiC{sub f} /SiC composite plate made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The H2L model includes the effects of fiber-matrix interfacial conductance, high-fiber packing fractions within individual tows, and the nonuniform nature of 2-D fabric/matrix layers that usually include a significant amount of interlayer porosity. Previously, H2L model k{sub eff} predictions were compared to measured values for two versions of 2-D Hi-Nicalon{sup TM}/pyrocarbon (PyC)/isothermal chemical vapor infiltration (ICVI)-SiC composite, one with a 'thin' (0.11-{mu}m) and the other with a 'thick' (1.04-{mu}m) PyC fiber coating, and for a 2-D Tyranno{sup TM} SA/thin PyC/forced flow chemical vapor infiltration SiC composite. In this study, H2L model k{sub eff} predictions were compared to measured values for a 2-D SiC{sub f} /SiC composite made using the ICVI process with Hi-Nicalon type S fabric and a thin PyC fiber coating. The values of k{sub eff} determined for the latter composite were significantly greater than the k{sub eff} values determined for the composites made with either the Hi-Nicalon or the Tyranno SA fabrics. Differences in k{sub eff} values were expected for the different fiber types, but major differences also were due to observed microstructural and architectural variations between the composite systems, and as predicted by the H2L model.

  9. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  10. Advances in fast 2D camera data handling and analysis on NSTX

    SciTech Connect

    Davis, W. M.; Patel, R. I.; Boeglin, W. U.; Roquemore, A. L.; Maqueda, R. J.; Zweben, S. J.

    2010-07-01

    The use of fast 2D cameras on NSTX continues to grow. There are 6 cameras with the capability of taking up to 1–2 gigabytes (GBs) of data apiece during each plasma shot on the National Spherical Torus Experiment (NSTX). Efficient storage and retrieval of this data remains a challenge. Performance comparisons are presented for reading data stored in MDSplus, using both compressed data and segmented records, and direct access I/O with different read sizes. Encouragingly, fast 2D camera data provides considerable insight into plasma complexities, such as small-scale turbulence and particle transport. The last part of this paper is an example of more recent uses: dual cameras looking at the same region of the plasma from different angles, which can provide trajectories of incandescent particles in 3D. A laboratory simulation of the 3D trajectories is presented, as well as corresponding data from NSTX plasma where glowing dust particles can be followed.

  11. Stochastic precision analysis of 2D cardiac strain estimation in vivo

    NASA Astrophysics Data System (ADS)

    Bunting, E. A.; Provost, J.; Konofagou, E. E.

    2014-11-01

    Ultrasonic strain imaging has been applied to echocardiography and carries great potential to be used as a tool in the clinical setting. Two-dimensional (2D) strain estimation may be useful when studying the heart due to the complex, 3D deformation of the cardiac tissue. Increasing the framerate used for motion estimation, i.e. motion estimation rate (MER), has been shown to improve the precision of the strain estimation, although maintaining the spatial resolution necessary to view the entire heart structure in a single heartbeat remains challenging at high MERs. Two previously developed methods, the temporally unequispaced acquisition sequence (TUAS) and the diverging beam sequence (DBS), have been used in the past to successfully estimate in vivo axial strain at high MERs without compromising spatial resolution. In this study, a stochastic assessment of 2D strain estimation precision is performed in vivo for both sequences at varying MERs (65, 272, 544, 815 Hz for TUAS; 250, 500, 1000, 2000 Hz for DBS). 2D incremental strains were estimated during left ventricular contraction in five healthy volunteers using a normalized cross-correlation function and a least-squares strain estimator. Both sequences were shown capable of estimating 2D incremental strains in vivo. The conditional expected value of the elastographic signal-to-noise ratio (E(SNRe|ɛ)) was used to compare strain estimation precision of both sequences at multiple MERs over a wide range of clinical strain values. The results here indicate that axial strain estimation precision is much more dependent on MER than lateral strain estimation, while lateral estimation is more affected by strain magnitude. MER should be increased at least above 544 Hz to avoid suboptimal axial strain estimation. Radial and circumferential strain estimations were influenced by the axial and lateral strain in different ways. Furthermore, the TUAS and DBS were found to be of comparable precision at similar MERs.

  12. Analysis of heat conductivity in a 2D hard disk system

    NASA Astrophysics Data System (ADS)

    Del Pozo, J.; Garrido, P. L.

    2009-01-01

    Using numerical simulations, we study the heat conductivity in a 2d Hard Disk system. We find nonlinear temperature profiles for diferent gradients, and use this profiles to obtain the empirical expresion of heat conductivity κ(T,ρ). We compare our results with predictions based on the Enskog theory, finding good agreement even for large gradients. Also we find that Henderson state equation for Hard Disk stands for our system.

  13. Ion microprobe analysis of bone surface elements: Effects of 1,25(OH)2D3

    SciTech Connect

    Bushinsky, D.A.; Chabala, J.M.; Levi-Setti, R. )

    1989-12-01

    When neonatal mouse calvariae are incubated with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) there is net calcium efflux from the bone into the medium. The effect of this enhanced cell-mediated Ca efflux on the relative concentrations of mineral 23Na, 39K, and 40Ca has not previously been studied. We used an imaging scanning ion microprobe, utilizing secondary ion mass spectrometry, to compare the relative ion concentrations of Na, K, and Ca on the surface, subsurface, and cross-section of cultured bone incubated in the presence of 1,25(OH)2D3 with the ion concentrations in similar regions of bone incubated in unaltered control medium. Changes in mineral ion concentration were correlated with net fluxes of Na, K, and Ca relative to bone. Calvariae incubated in control medium (24 h at pH approximately 7.40) have abundant surface Na and K relative to Ca (Na/Ca, 85 and K/Ca, 68), whereas the subsurface has less Na/Ca (21) and K/Ca (23), and on cross section the ratios of both Na/Ca (2.0) and K/Ca (1.9) decrease further. After incubation with 10(-8) M 1,25(OH)2D3, there is a significant increase in bone surface Na/Ca (154) and K/Ca (141) without a change in these ratios on the subsurface and a small fall in both ratios on cross section. The linear relationship between Na/Ca and K/Ca across the three regions of bone observed in control calvariae did not change with 1,25(OH)2D3 treatment. As determined by flux measurements there is a net efflux of Ca but not Na or K from bone.

  14. Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods.

    PubMed

    Duan, Jianxin; Dixon, Steven L; Lowrie, Jeffrey F; Sherman, Woody

    2010-09-01

    Virtual screening is a widely used strategy in modern drug discovery and 2D fingerprint similarity is an important tool that has been successfully applied to retrieve active compounds from large datasets. However, it is not always straightforward to select an appropriate fingerprint method and associated settings for a given problem. Here, we applied eight different fingerprint methods, as implemented in the new cheminformatics package Canvas, on a well-validated dataset covering five targets. The fingerprint methods include Linear, Dendritic, Radial, MACCS, MOLPRINT2D, Pairwise, Triplet, and Torsion. We find that most fingerprints have similar retrieval rates on average; however, each has special characteristics that distinguish its performance on different query molecules and ligand sets. For example, some fingerprints exhibit a significant ligand size dependency whereas others are more robust with respect to variations in the query or active compounds. In cases where little information is known about the active ligands, MOLPRINT2D fingerprints produce the highest average retrieval actives. When multiple queries are available, we find that a fingerprint averaged over all query molecules is generally superior to fingerprints derived from single queries. Finally, a complementarity metric is proposed to determine which fingerprint methods can be combined to improve screening results.

  15. Realization of thermally durable close-packed 2D gold nanoparticle arrays using self-assembly and plasma etching

    NASA Astrophysics Data System (ADS)

    Sivaraman, Sankar K.; Santhanam, Venugopal

    2012-06-01

    Realization of thermally and chemically durable, ordered gold nanostructures using bottom-up self-assembly techniques are essential for applications in a wide range of areas including catalysis, energy generation, and sensing. Herein, we describe a modular process for realizing uniform arrays of gold nanoparticles, with interparticle spacings of 2 nm and above, by using RF plasma etching to remove ligands from self-assembled arrays of ligand-coated gold nanoparticles. Both nanoscale imaging and macroscale spectroscopic characterization techniques were used to determine the optimal conditions for plasma etching, namely RF power, operating pressure, duration of treatment, and type of gas. We then studied the effect of nanoparticle size, interparticle spacing, and type of substrate on the thermal durability of plasma-treated and untreated nanoparticle arrays. Plasma-treated arrays showed enhanced chemical and thermal durability, on account of the removal of ligands. To illustrate the application potential of the developed process, robust SERS (surface-enhanced Raman scattering) substrates were formed using plasma-treated arrays of silver-coated gold nanoparticles that had a silicon wafer or photopaper as the underlying support. The measured value of the average SERS enhancement factor (2 × 105) was quantitatively reproducible on both silicon and paper substrates. The silicon substrates gave quantitatively reproducible results even after thermal annealing. The paper-based SERS substrate was also used to swab and detect probe molecules deposited on a solid surface.

  16. [Limits and possibilities of 2D video analysis in evaluating physiological and pathological foot rolling motion in runners].

    PubMed

    Grau, S; Müller, O; Bäurle, W; Beck, M; Krauss, I; Maiwald, C; Baur, H; Mayer, F

    2000-09-01

    Three-dimensional movements of the lower extremities in support phases are usually evaluated with the help of video analysis. This analysis is mainly done two-dimensionally in a frontal and sagittal plane. Usually, the temporal ankle of the achilles tendon respectively rear foot are analysed in the frontal plane, the knee and upper ankle angle in the sagittal plane, because their values are made responsible for different sport injuries. However, so far a correlation between different injuries and biomechanical parameters could not be proven. Often, small changes in 2D video data are discussed without considering the reliability of this method of measurement. It was the aim of this study to evaluate these parameters in 2D video analyses (2D-VA) which characterize the support phases of the foot. A second goal was to find out whether a connection between these angles and chronic achillodynia can then be sensibly proven. 32 male test persons consisting of a control group (KO, n = 14) without injuries and a group with chronic achillodynia (AD, n = 18), have been examined with the test/retest method in weekly intervals. The biomechanical running analysis was done with the help of 2D-VA in the frontal and sagittal plane on a treadmill at a speed of 80% of the individual anaerobic threshold with different shoes. The test/retest variability was for all measuring points not at all satisfying. Both groups showed big mean variations in both shoes and minimal differences in the measured angles. Because of the poor capability of reproduction of the 2D-VA for angles in the frontal plane this measuring method is only usable with restrictions for the evaluation of the support phase.

  17. 2D dynamic studies combined with the surface curvature analysis to predict Arias Intensity amplification

    NASA Astrophysics Data System (ADS)

    Torgoev, Almaz; Havenith, Hans-Balder

    2016-07-01

    A 2D elasto-dynamic modelling of the pure topographic seismic response is performed for six models with a total length of around 23.0 km. These models are reconstructed from the real topographic settings of the landslide-prone slopes situated in the Mailuu-Suu River Valley, Southern Kyrgyzstan. The main studied parameter is the Arias Intensity (Ia, m/sec), which is applied in the GIS-based Newmark method to regionally map the seismically-induced landslide susceptibility. This method maps the Ia values via empirical attenuation laws and our studies investigate a potential to include topographic input into them. Numerical studies analyse several signals with varying shape and changing central frequency values. All tests demonstrate that the spectral amplification patterns directly affect the amplification of the Ia values. These results let to link the 2D distribution of the topographically amplified Ia values with the parameter called as smoothed curvature. The amplification values for the low-frequency signals are better correlated with the curvature smoothed over larger spatial extent, while those values for the high-frequency signals are more linked to the curvature with smaller smoothing extent. The best predictions are provided by the curvature smoothed over the extent calculated according to Geli's law. The sample equations predicting the Ia amplification based on the smoothed curvature are presented for the sinusoid-shape input signals. These laws cannot be directly implemented in the regional Newmark method, as 3D amplification of the Ia values addresses more problem complexities which are not studied here. Nevertheless, our 2D results prepare the theoretical framework which can potentially be applied to the 3D domain and, therefore, represent a robust basis for these future research targets.

  18. Microphysical Analysis using Airborne 2-D Cloud and Precipitation Imaging Probe Data

    NASA Astrophysics Data System (ADS)

    Guy, N.; Jorgensen, D.; Witte, M.; Chuang, P. Y.; Black, R. A.

    2013-12-01

    The NOAA P-3 instrumented aircraft provided in-situ cloud and precipitation microphysical observations during the DYNAMO (Dynamics of the Madden-Julian Oscillation) field experiment. The Particle Measuring System 2D cloud (2D-C) and precipitation (2D-P) probes collected data for particles between 12.5 μm - 1.55 mm (25 μm resolution) and 100 μm - 6.2 mm (100 μm resolution), respectively. Spectra from each instrument were combined to provide a broad distribution of precipitation particle sizes. The 'method of moments' technique was used to analyze drop size distribution (DSD) spectra, which were modeled by fitting a three-parameter (slope, shape, and intercept) gamma distribution to the spectra. The characteristic shape of the mean spectrum compares to previous maritime measurements. DSD variability will be presented with respect to the temporal evolution of cloud populations during a Madden-Julian Oscillation (MJO) event, as well as in-situ aircraft vertical wind velocity measurements. Using the third and sixth moments, rainfall rate (R) and equivalent radar reflectivity factor (Z), respectively, were computed for each DSD. Linear regression was applied to establish a Z-R relationship for the data for the estimation of precipitation. The study indicated unique characteristics of microphysical processes for this region. These results are important to continue to define the cloud population characteristics in the climatological MJO region. Improved representation of the cloud characteristics on the microphysical scale will serve as a check to model parameterizations, helping to improve numerical simulations.

  19. 2D-CELL: image processing software for extraction and analysis of 2-dimensional cellular structures

    NASA Astrophysics Data System (ADS)

    Righetti, F.; Telley, H.; Leibling, Th. M.; Mocellin, A.

    1992-01-01

    2D-CELL is a software package for the processing and analyzing of photographic images of cellular structures in a largely interactive way. Starting from a binary digitized image, the programs extract the line network (skeleton) of the structure and determine the graph representation that best models it. Provision is made for manually correcting defects such as incorrect node positions or dangling bonds. Then a suitable algorithm retrieves polygonal contours which define individual cells — local boundary curvatures are neglected for simplicity. Using elementary analytical geometry relations, a range of metric and topological parameters describing the population are then computed, organized into statistical distributions and graphically displayed.

  20. Analysis of 2D Phase Contrast MRI in Renal Arteries by Self Organizing Maps

    NASA Astrophysics Data System (ADS)

    Zöllner, Frank G.; Schad, Lothar R.

    We present an approach based on self organizing maps to segment renal arteries from 2D PC Cine MR, images to measure blood velocity and flow. Such information are important in grading renal artery stenosis and support the decision on surgical interventions like percu-tan transluminal angioplasty. Results show that the renal arteries could be extracted automatically. The corresponding velocity profiles show high correlation (r=0.99) compared those from manual delineated vessels. Furthermore, the method could detect possible blood flow patterns within the vessel.

  1. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1994-01-01

    Thermal decomposition activation energies have been determined using two methods of Thermogravimetric Analysis (TGA), with good correlation being obtained between the two techniques. Initial heating curves indicated a two-component system for Coflon (i.e. polymer plus placticizer) but a single component system for Tefzel. Two widely differing activation energies were for Coflon supported this view, 15 kcl/mol being associated with plasticizer, and 40 kcal/mol with polymer degradation. With Tefzel, values were 40-45 kcal/mol, the former perhaps being associated with a low molecular weight fraction. Appropriate acceleration factors have been determined. Thermomechanical Analysis (TMA) has shown considerable dimensional change during temperature cycles. For unaged pipe sections heating to 100 C and then holding the temperature resulted in a stable thickness increase of 2%, whereas the Coflon thickness decreased continuously, reaching -4% in 2.7 weeks. Previously strained tensile bars of Tefzel expanded on cooling during TMA. SEM performed on H2S-aged Coflon samples showed significant changes in both physical and chemical nature. The first may have resulted from explosive decompression after part of the aging process. Chemically extensive dehydrofluorination was indicated, and sulfur was present as a result of the aging. These observations indicate that chemical attack of PVDF can occur in some circumstances.

  2. Development of a Cryogenic Thermal Distortion Measurement Facility for Testing the James Webb Space Telescope Instrument Support Integration Module 2-D Test Assemblies

    NASA Technical Reports Server (NTRS)

    Miller, Franklin; Bagdanove, paul; Blake, Peter; Canavan, Ed; Cofie, Emmanuel; Crane, J. Allen; Dominquez, Kareny; Hagopian, John; Johnston, John; Madison, Tim; Miller, Dave; Oaks, Darrell; Williams, Pat; Young, Dan; Zukowski, Barbara; Zukowski, Tim

    2007-01-01

    The James Webb Space Telescope Instrument Support Integration Module (ISIM) is being designed and developed at the Goddard Space Flight Center. The ISM Thermal Distortion Testing (ITDT) program was started with the primary objective to validate the ISM mechanical design process. The ITDT effort seeks to establish confidence and demonstrate the ability to predict thermal distortion in composite structures at cryogenic temperatures using solid element models. This-program's goal is to better ensure that ISIM meets all the mechanical and structural requirements by using test results to verify or improve structural modeling techniques. The first step to accomplish the ITDT objectives was to design, and then construct solid element models of a series 2-D test assemblies that represent critical building blocks of the ISIM structure. Second, the actual test assemblies consisting of composite tubes and invar end fittings were fabricated and tested for thermal distortion. This paper presents the development of the GSFC Cryo Distortion Measurement Facility (CDMF) to meet the requirements of the ISIM 2-D test. assemblies, and other future ISIM testing needs. The CDMF provides efficient cooling with both a single, and two-stage cryo-cooler. Temperature uniformity of the test assemblies during thermal transients and at steady state is accomplished by using sapphire windows for all of the optical ports on the radiation shields and by using .thermal straps to cool the test assemblies. Numerical thermal models of the test assemblies were used to predict the temperature uniformity of the parts during cooldown and at steady state. Results of these models are compared to actual temperature data from the tests. Temperature sensors with a 0.25K precision were used to insure that test assembly gradients did not exceed 2K lateral, and 4K axially. The thermal distortions of two assemblies were measured during six thermal cycles from 320K to 35K using laser interferometers. The standard

  3. A Numerical Analysis of Sloshing Fluid in 2D Tanks with Baffles

    NASA Astrophysics Data System (ADS)

    Wu, C. H.; Chen, B. F.

    2011-09-01

    A tuned liquid damper (TLD) is one possible damping device of tall buildings under wind and earthquake excitations. A 2D tank with a vertically tank bottom-mounted baffle under horizontal excitation is studied in this work. The combination of time-independent finite difference method [1-3] and one-dimensional ghost cell approach was implemented to solve liquid sloshing in the baffled tank. The correlation between the movement of baffles and flow field due to liquid sloshing might to the clue to investigate the evolution of vortices around the baffle tip. We categorize the interaction process of vortices evolution into three phases: (1) Formation of separated shear layer and generation of vortices; (2) Formation of a vertical jet and shedding of vortices; (3) Interaction between shedding vortices and sloshing flow: the generation of snaky flow.

  4. Quantitative Analysis of Metabolic Mixtures by 2D 13C-Constant-Time TOCSY NMR Spectroscopy

    PubMed Central

    Bingol, Kerem; Zhang, Fengli; Bruschweiler-Li, Lei; Brüschweiler, Rafael

    2013-01-01

    An increasing number of organisms can be fully 13C-labeled, which has the advantage that their metabolomes can be studied by high-resolution 2D NMR 13C–13C constant-time (CT) TOCSY experiments. Individual metabolites can be identified via database searching or, in the case of novel compounds, through the reconstruction of their backbone-carbon topology. Determination of quantitative metabolite concentrations is another key task. Because significant peak overlaps in 1D NMR spectra prevents straightforward quantification through 1D peak integrals, we demonstrate here the direct use of 13C–13C CT-TOCSY spectra for metabolite quantification. This is accomplished through the quantum-mechanical treatment of the TOCSY magnetization transfer at short and long mixing times or by the use of analytical approximations, which are solely based on the knowledge of the carbon-backbone topologies. The methods are demonstrated for carbohydrate and amino-acid mixtures. PMID:23773204

  5. An overview of 2D DIGE analysis of marine (environmental) bacteria.

    PubMed

    Rabus, Ralf

    2012-01-01

    Microbes are the "unseen majority" of living organisms on Earth and main drivers of the biogeochemical cycles in marine and most other environments. Their significance for an intact biosphere is bringing environmental bacteria increasingly into the focus of genome-based science. Proteomics is playing a prominent role for providing a molecular understanding of how these microbes work and for identifying the key biocatalysts involved in the major biogeochemical processes. This overview describes the major insights obtained from two-dimensional difference gel electrophoresis (2D DIGE) analyses of specific degradation pathways, complex metabolic networks, cellular processes, and regulatory patterns in the marine aerobic heterotrophs Rhodopirellula baltica SH1 (Planctomycetes) and Phaeobacter gallaeciensis DSM 17395 (Roseobacter clade) and the anaerobic aromatic compound degrader Aromatoleum aromaticum EbN1 (Betaproteobacteria). PMID:22311773

  6. A 2D correlation Raman spectroscopy analysis of a human cataractous lens

    NASA Astrophysics Data System (ADS)

    Sacharz, Julia; Wesełucha-Birczyńska, Aleksandra; Paluszkiewicz, Czesława; Chaniecki, Piotr; Błażewicz, Marta

    2016-11-01

    This work is a continuation of our study of a cataractous human eye lens removed after phacoemulsification surgery. There are clear differences in the lens colors that allowed for distinguishing two opaque phases in the obtained biological material: the white- and yellow-phase. The Raman spectroscopy and 2D correlation spectroscopy method were used to trace a pathologically altered human cataract lens at a molecular level. Although the Raman spectra of these two phases are relatively similar, taking advantage of 2D correlation, and considering time as an external perturbation, the synchronous and asynchronous spectra were obtained showing completely different patterns. Prominent synchronous auto-peaks appear at 3340, 2920, 1736, 1665 and 1083 cm-1 for the white-, and at 2929 and 1670 cm-1 for the yellow phase. The white phase is characterized by intensive asynchronous peaks at -(2936, 3360), -(1650, 1674) and +(1620,1678). The modifications in the water contained in the white phase structure are ahead of the changes in the protein (CH3-groups), furthermore changes in β-conformation are asynchronous with respect to the α-structure. The yellow phase demonstrates asynchronous peaks: +(2857, 2928), +(1645,1673), +(1663, 1679), and +(1672,1707). These illustrate concomitant modifications in the β- and unordered conformation. Both forms of cataractous human eye lens, white- and yellow-phases, are degenerate forms of the eye lens proteins, both are arranged in a different way. The main differences are observed for the amide I, methyl, methylene and Osbnd H vibrational band region. The effect of Asp, Glu and Tyr amino acids in cataractous lens transformations was observed.

  7. Wind-tunnel experiments of turbulent flow over a surface-mounted 2-D block in a thermally-stratified boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando

    2014-11-01

    Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).

  8. 2D perovskite nanosheets with thermally-stable high-κ response: a new platform for high-temperature capacitors.

    PubMed

    Kim, Yoon-Hyun; Kim, Hyung-Jun; Osada, Minoru; Li, Bao-Wen; Ebina, Yasuo; Sasaki, Takayoshi

    2014-11-26

    We investigated high-temperature dielectric responses of high-κ perovskite nanosheet (Ca2Nb3O10), an important material platform for postgraphene technology and ultrascale electronic devices. Through in situ characterizations using conducting atomic force microscopy, we found a robust high-temperature property of Ca2Nb3O10 nanosheet even in a monolayer form (∼2 nm). Furthermore, layer-by-layer assembled nanocapacitors retained both size-free high-εr characteristic (∼200) and high insulation resistance (∼1×10(-7) A/cm2) at high temperatures up to 250 °C. The simultaneous improvement of εr and thermal stability in high-κ nanodielectrics is of critical technological importance, and perovskite nanosheet has great potential for a rational design and construction of high-temperature capacitors.

  9. Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals

    SciTech Connect

    Maskaly, Karlene Rosera

    2005-06-01

    Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic bandgaps. However, the unique optical behavior of photonic crystals is based on theoretical models of perfect analogues. Little is known about the practical effects of dielectric imperfections on their technologically useful optical properties. In order to address this issue, a finite-difference time-domain (FDTD) code is employed to study the effect of three specific dielectric imperfections in 1D and 2D photonic crystals. The first imperfection investigated is dielectric interfacial roughness in quarter-wave tuned 1D photonic crystals at normal incidence. This study reveals that the reflectivity of some roughened photonic crystal configurations can change up to 50% at the center of the bandgap for RMS roughness values around 20% of the characteristic periodicity of the crystal. However, this reflectivity change can be mitigated by increasing the index contrast and/or the number of bilayers in the crystal. In order to explain these results, the homogenization approximation, which is usually applied to single rough surfaces, is applied to the quarter-wave stacks. The results of the homogenization approximation match the FDTD results extremely well, suggesting that the main role of the roughness features is to grade the refractive index profile of the interfaces in the photonic crystal rather than diffusely scatter the incoming light. This result also implies that the amount of incoherent reflection from the roughened quarterwave stacks is extremely small. This is confirmed through direct extraction of the amount of incoherent power from the FDTD calculations. Further FDTD studies are done on the entire normal incidence bandgap of roughened 1D photonic crystals. These results reveal a narrowing and red-shifting of the normal incidence bandgap with

  10. Analysis of noise properties of a class of exact methods of inverting the 2-D exponential radon transform

    SciTech Connect

    Pan, X.; Metz, C.E.

    1995-12-01

    A general approach that the authors proposed elsewhere reveals the intrinsic relationship among methods for inversion of the 2-D exponential Radon transform described by Bellini et al., by Tretiak and Metz, by Hawkins et al., and by Inouye et al. Moreover, the approach provides an infinite class of linear methods for inverting the 2-D exponential Radon transform. In the work reported here, they systematically investigated the noise characteristics of the methods in this class, obtaining analytical forms for the autocovariance and the variance of the images reconstructed by use of various methods. The noise properties of a new quasi-optimal method were then compared theoretically to those of other methods of the class. The analysis demonstrates that the quasi-optimal method achieves smaller global variance in the reconstructed images than do the other methods of the class. Extensive numerical simulation studies confirm this prediction.

  11. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery

    PubMed Central

    Stock, Kristin; Estrada, Marta F.; Vidic, Suzana; Gjerde, Kjersti; Rudisch, Albin; Santo, Vítor E.; Barbier, Michaël; Blom, Sami; Arundkar, Sharath C.; Selvam, Irwin; Osswald, Annika; Stein, Yan; Gruenewald, Sylvia; Brito, Catarina; van Weerden, Wytske; Rotter, Varda; Boghaert, Erwin; Oren, Moshe; Sommergruber, Wolfgang; Chong, Yolanda; de Hoogt, Ronald; Graeser, Ralph

    2016-01-01

    Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono- and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models. PMID:27364600

  12. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery.

    PubMed

    Stock, Kristin; Estrada, Marta F; Vidic, Suzana; Gjerde, Kjersti; Rudisch, Albin; Santo, Vítor E; Barbier, Michaël; Blom, Sami; Arundkar, Sharath C; Selvam, Irwin; Osswald, Annika; Stein, Yan; Gruenewald, Sylvia; Brito, Catarina; van Weerden, Wytske; Rotter, Varda; Boghaert, Erwin; Oren, Moshe; Sommergruber, Wolfgang; Chong, Yolanda; de Hoogt, Ronald; Graeser, Ralph

    2016-01-01

    Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono- and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models. PMID:27364600

  13. Analysis of proteins by direct-scanning infrared-MALDI mass spectrometry after 2D-PAGE separation and electroblotting.

    PubMed

    Eckerskorn, C; Strupat, K; Schleuder, D; Hochstrasser, D; Sanchez, J C; Lottspeich, F; Hillenkamp, F

    1997-08-01

    A novel approach is reported for the analysis and identification of proteins separated by 2D-PAGE with scanning infrared matrix-assisted laser desorption/ionization mass spectrometry (scanning IR-MALDI-MS). The proteins of human blood plasma were separated by 2D-PAGE, electroblotted onto PVDF membranes, incubated in matrix solution, and then scanned by IR-MALDI-MS. Mass contour plots of selected spots were obtained. Protein separation is shown to be conserved by comparison with silver-stained gels. The sensitivity for the protein detection is comparable if not better than that of silver-stained gels. Posttranslational modifications were identified by comparing the measured mass to the one calculated from the known DNA sequence. Adduct formation to unprotected cysteine residues during gel separation is demonstrated for selected proteins. PMID:9253242

  14. 2D CFD Analysis of an Airfoil with Active Continuous Trailing Edge Flap

    NASA Astrophysics Data System (ADS)

    Jaksich, Dylan; Shen, Jinwei

    2014-11-01

    Efficient and quieter helicopter rotors can be achieved through on-blade control devices, such as active Continuous Trailing-Edge Flaps driven by embedded piezoelectric material. This project aims to develop a CFD simulation tool to predict the aerodynamic characteristics of an airfoil with CTEF using open source code: OpenFOAM. Airfoil meshes used by OpenFOAM are obtained with MATLAB scripts. Once created it is possible to rotate the airfoil to various angles of attack. When the airfoil is properly set up various OpenFOAM properties, such as kinematic viscosity and flow velocity, are altered to achieve the desired testing conditions. Upon completion of a simulation, the program gives the lift, drag, and moment coefficients as well as the pressure and velocity around the airfoil. The simulation is then repeated across multiple angles of attack to give full lift and drag curves. The results are then compared to previous test data and other CFD predictions. This research will lead to further work involving quasi-steady 2D simulations incorporating NASTRAN to model aeroelastic deformation and eventually to 3D aeroelastic simulations. NSF ECE Grant #1358991 supported the first author as an REU student.

  15. Visual Analysis of time-dependent 2D Uncertainties in Decadal Climate Predictions

    NASA Astrophysics Data System (ADS)

    Böttinger, Michael; Röber, Niklas; Meier-Fleischer, Karin; Pohlmann, Holger

    2016-04-01

    Climate prediction systems used today for investigating the climate predictability on a decadal time scale are based on coupled global climate models. First, ensembles of hindcast experiments are carried out in order to derive the predictive skill of the prediction system. Then, in a second step, the prediction system is initialized with observations and actual future predictions are computed. The ensemble simulation techniques applied enable issuing of probabilistic information along with the quantities predicted. Different aspects of the uncertainty can be derived: The ensemble standard deviation (or ensemble spread) is a measure for the internal variability of the simulation, while the predictive skill is an inverse measure for the uncertainty in the prediction. In this work, we focus on the concurrent visualization of three related time-dependent 2D fields: the forecast variable itself, here the 2m temperature anomaly, along with the corresponding predictive skill and the ensemble spread which is given through the ensemble standard deviation. On the basis of temporally filtered data, animations are used to visualize the mean spatio-temporal development of the three quantities. Furthermore, seasonal analyses are similarly visualized in order to identify seasonal patterns. We show exemplary solutions produced with three different visualization systems: NCL, Avizo Green and ParaView. As example data set, we have used a decadal climate prediction carried out within the German research project "MiKlip - Decadal Predictions" using the MPI-M Earth System Model (MPI-ESM) from the Max Planck Institute for Meteorology in Hamburg.

  16. Bootstrap resampling as a tool for uncertainty analysis in 2-D magnetotelluric inversion modelling

    NASA Astrophysics Data System (ADS)

    Schnaidt, Sebastian; Heinson, Graham

    2015-10-01

    Uncertainty estimation is a vital part of geophysical numerical modelling. There exist a variety of methods aimed at uncertainty estimation, which are often complicated and difficult to implement. We present an inversion technique that produces multiple solutions, based on bootstrap resampling, to create a qualitative uncertainty measure for 2-D magnetotelluric inversion models. The approach is easy to implement, can be used with almost any inversion code, and does not require access to the inversion software's source code. It is capable of detecting the effect of data uncertainties on the model result rather than just analysing the effect of model variations on the model response. To obtain uncertainty estimates for an inversion model, the original data set is resampled repeatedly and alternate data set realizations are created and inverted. This ensemble of solutions is then statistically analysed to determine the variability between the different solutions. The process yields interpretable uncertainty maps for the inversion model and we demonstrate its effectiveness to qualitatively quantify uncertainty in synthetic model tests and a case study.

  17. Carbonate platform-margins and reefs distribution using 2-D seismic analysis, Central Tunisia

    NASA Astrophysics Data System (ADS)

    Harzali, Makrem; Troudi, Habib; Ben Boubaker, Kamel; Ouali, Jamel

    2014-12-01

    The seismic characterization of sedimentary facies in a carbonate platform, comprising different types of reefs constructions, is based using two-dimensional (2-D) seismic and borehole data. Reefs of the Aptian Serdj carbonates are shown as mounds of strong chaotic amplitudes that have a high-amplitude continuous reflection at the top. They are sealed by Albian marl and claystone deposits characterized by mid- to low-amplitude, parallel and discontinuous to weak reflections. These buildups were restricted to the outer platform margin of Central Tunisia. Sea level oscillations associated with master fault rejuvenation governed the growth, the distribution and development of these reefs. Their distribution is largely controlled by deep-seated fault-related folds and the topography of underlying structures, representing local domal uplifts. Falls of sea level led to subaerial exposure and the development of a karstified denudation of the carbonate platform. Subsequently, reefs were partially or totally destroyed and then overlain, during the Albian, by marls and claystones of the Fahdene Formation. Their study indicates that reef buildups have important oil and gas exploration potential, not only onshore, but also in offshore, Central Tunisia.

  18. Numerical simulation on the thermal radiative properties of a 2D SiO2/W/SiO2/W layered grating for thermophotovoltaic applications

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Fu, Ceji

    2016-10-01

    Tailoring the spectrum of thermal emission from the emitter is important for improving the performance of a thermophotovoltaic (TPV) system. In this work, a two-dimensional (2D) layered grating structure made of SiO2 and tungsten (W), which can realize wavelength-selective control of thermal emission, was proposed for a potential emitter in TPV applications. Numerical simulations of the spectral emissivity of the structure from the ultraviolet (UV) to the mid-infrared region reveals that the spectral-normal emissivity of the structure is enhanced to above 0.95 in the wavelength region from 0.55 μm to 1.9 μm for both TE and TM waves, but drops sharply at wavelength larger than 2 μm. Physical mechanisms responsible for the wavelength-selective emissivity were elucidated as due to resonance of magnetic polaritons (MPs) in the SiO2 spacer and in the grooves of the tungsten grating, Wood's anomaly (WA), excitation of surface plasmon polaritons (SPPs) and wave interference. Furthermore, the structure was found to exhibit quasi-diffuse and polarization-insensitive features of thermal emission, suggesting that the proposed structure can serve as the emitter in the design of high performance TPV systems.

  19. Simulation and analysis of solute transport in 2D fracture/pipe networks: the SOLFRAC program.

    PubMed

    Bodin, Jacques; Porel, Gilles; Delay, Fred; Ubertosi, Fabrice; Bernard, Stéphane; de Dreuzy, Jean-Raynald

    2007-01-01

    The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL (labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm). It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments performed

  20. Analysis of the dose calculation accuracy for IMRT in lung: a 2D approach.

    PubMed

    Dvorak, Pavel; Stock, Markus; Kroupa, Bernhard; Bogner, Joachim; Georg, Dietmar

    2007-01-01

    The purpose of this study was to compare the dosimetric accuracy of IMRT plans for targets in lung with the accuracy of standard uniform-intensity conformal radiotherapy for different dose calculation algorithms. Tests were performed utilizing a special phantom manufactured from cork and polystyrene in order to quantify the uncertainty of two commercial TPS for IMRT in the lung. Ionization and film measurements were performed at various measuring points/planes. Additionally, single-beam and uniform-intensity multiple-beam tests were performed, in order to investigate deviations due to other characteristics of IMRT. Helax-TMS V6.1(A) was tested for 6, 10 and 25 MV and BrainSCAN 5.2 for 6 MV photon beams, respectively. Pencil beam (PB) with simple inhomogeneity correction and 'collapsed cone' (CC) algorithms were applied for dose calculations. However, the latter was not incorporated during optimization hence only post-optimization recalculation was tested. Two-dimensional dose distributions were evaluated applying the gamma index concept. Conformal plans showed the same accuracy as IMRT plans. Ionization chamber measurements detected deviations of up to 5% when a PB algorithm was used for IMRT dose calculations. Significant improvement (deviations approximately 2%) was observed when IMRT plans were recalculated with the CC algorithm, especially for the highest nominal energy. All gamma evaluations confirmed substantial improvement with the CC algorithm in 2D. While PB dose distributions showed most discrepancies in lower (<50%) and high (>90%) dose regions, the CC dose distributions deviated mainly in the high dose gradient (20-80%) region. The advantages of IMRT (conformity, intra-target dose control) should be counterbalanced with possible calculation inaccuracies for targets in the lung. Until no superior dose calculation algorithms are involved in the iterative optimization process it should be used with great care. When only PB algorithm with simple

  1. Analysis of high Reynolds numbers effects on a wind turbine airfoil using 2D wind tunnel test data

    NASA Astrophysics Data System (ADS)

    Pires, O.; Munduate, X.; Ceyhan, O.; Jacobs, M.; Snel, H.

    2016-09-01

    The aerodynamic behaviour of a wind turbine airfoil has been measured in a dedicated 2D wind tunnel test at the DNW High Pressure Wind Tunnel in Gottingen (HDG), Germany. The tests have been performed on the DU00W212 airfoil at different Reynolds numbers: 3, 6, 9, 12 and 15 million, and at low Mach numbers (below 0.1). Both clean and tripped conditions of the airfoil have been measured. An analysis of the impact of a wide Reynolds number variation over the aerodynamic characteristics of this airfoil has been performed.

  2. Thermal Analysis System

    NASA Technical Reports Server (NTRS)

    DiStefano, III, Frank James (Inventor); Wobick, Craig A. (Inventor); Chapman, Kirt Auldwin (Inventor); McCloud, Peter L. (Inventor)

    2014-01-01

    A thermal fluid system modeler including a plurality of individual components. A solution vector is configured and ordered as a function of one or more inlet dependencies of the plurality of individual components. A fluid flow simulator simulates thermal energy being communicated with the flowing fluid and between first and second components of the plurality of individual components. The simulation extends from an initial time to a later time step and bounds heat transfer to be substantially between the flowing fluid, walls of tubes formed in each of the individual components of the plurality, and between adjacent tubes. Component parameters of the solution vector are updated with simulation results for each of the plurality of individual components of the simulation.

  3. Application of 2D-HPLC/taste dilution analysis on taste compounds in aniseed (Pimpinella anisum L.).

    PubMed

    Pickrahn, Stephen; Sebald, Karin; Hofmann, Thomas

    2014-09-24

    This is the first application of fully automated, preparative, two-dimensional HPLC combined with sensory analysis for taste compound discovery using a sweet and licorice-like bitter-tasting aniseed extract as an example. Compared to the traditional iterative fractionation of food extracts by sensory-guided sequential application of separation techniques, the fully automated 2D-HPLC allowed the comprehensive separation of the aniseed extract into 256 subfractions and reduced the fractionation time from about 1 week to <1day. Using a smart sensory strategy to locate high-impact fractions, e.g., by evaluating first-dimension fractions by reconstituting them from second-dimension subfractions, followed by straightforward application of the taste dilution analysis on the individual second-dimension subfractions revealed the sweet-tasting trans-anethole and the bitter-tasting trans-pseudoisoeugenol 2-methylbutyrate, showing recognition thresholds of 70 and 68 μmol/L, respectively, as the primary orosensory active compounds in aniseed. 2D-HPLC combined with smart sensory analysis seems to be a promising strategy to speed the discovery of the key players imparting the attractive taste of foods. PMID:25186288

  4. Global 2D stability analysis of the cross lid-driven cavity flow with a streamfunction-vorticity approach

    NASA Astrophysics Data System (ADS)

    Gogoi, Bidyut B.

    2016-07-01

    We have recently analyzed the global two-dimensional (2D) stability of the staggered lid-driven cavity (LDC) flow with a higher order compact (HOC) approach. In the analysis, critical parameters are determined for both the parallel and anti-parallel motion of the lids and a detailed analysis has been carried out on either side of the critical values. In this article, we carry out an investigation of flow stabilities inside a two-sided cross lid-driven cavity with a pair of opposite lids moving in both parallel and anti-parallel directions. On discretization, the governing 2D Navier-Stokes (N-S) equations describing the steady flow and flow perturbations results in a generalized eigenvalue problem which is solved for determining the critical parameters on four different grids. Elaborate computation is performed for a wide range of Reynolds numbers (Re) on either side of the critical values in the range 200 ⩽ Re ⩽ 10000. For flows below the critical Reynolds number Rec, our numerical results are compared with established steady-state results and excellent agreement is obtained in all the cases. For Reynolds numbers above Rec, phase plane and spectral density analysis confirmed the existence of periodic, quasi-periodic, and stable flow patterns.

  5. Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis

    PubMed Central

    Wei, Jun; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Lu, Yao; Zhou, Chuan; Samala, Ravi

    2014-01-01

    Purpose: To investigate the feasibility of a new two-dimensional (2D) multichannel response (MCR) analysis approach for the detection of clustered microcalcifications (MCs) in digital breast tomosynthesis (DBT). Methods: With IRB approval and informed consent, a data set of two-view DBTs from 42 breasts containing biopsy-proven MC clusters was collected in this study. The authors developed a 2D approach for MC detection using projection view (PV) images rather than the reconstructed three-dimensional (3D) DBT volume. Signal-to-noise ratio (SNR) enhancement processing was first applied to each PV to enhance the potential MCs. The locations of MC candidates were then identified with iterative thresholding. The individual MCs were decomposed with Hermite–Gaussian (HG) and Laguerre–Gaussian (LG) basis functions and the channelized Hotelling model was trained to produce the MCRs for each MC on the 2D images. The MCRs from the PVs were fused in 3D by a coincidence counting method that backprojects the MC candidates on the PVs and traces the coincidence of their ray paths in 3D. The 3D MCR was used to differentiate the true MCs from false positives (FPs). Finally a dynamic clustering method was used to identify the potential MC clusters in the DBT volume based on the fact that true MCs of clinical significance appear in clusters. Using two-fold cross validation, the performance of the 3D MCR for classification of true and false MCs was estimated by the area under the receiver operating characteristic (ROC) curve and the overall performance of the MCR approach for detection of clustered MCs was assessed by free response receiver operating characteristic (FROC) analysis. Results: When the HG basis function was used for MCR analysis, the detection of MC cluster achieved case-based test sensitivities of 80% and 90% at the average FP rates of 0.65 and 1.55 FPs per DBT volume, respectively. With LG basis function, the average FP rates were 0.62 and 1.57 per DBT volume at

  6. Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis

    SciTech Connect

    Wei, Jun Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Lu, Yao; Zhou, Chuan; Samala, Ravi

    2014-04-15

    Purpose: To investigate the feasibility of a new two-dimensional (2D) multichannel response (MCR) analysis approach for the detection of clustered microcalcifications (MCs) in digital breast tomosynthesis (DBT). Methods: With IRB approval and informed consent, a data set of two-view DBTs from 42 breasts containing biopsy-proven MC clusters was collected in this study. The authors developed a 2D approach for MC detection using projection view (PV) images rather than the reconstructed three-dimensional (3D) DBT volume. Signal-to-noise ratio (SNR) enhancement processing was first applied to each PV to enhance the potential MCs. The locations of MC candidates were then identified with iterative thresholding. The individual MCs were decomposed with Hermite–Gaussian (HG) and Laguerre–Gaussian (LG) basis functions and the channelized Hotelling model was trained to produce the MCRs for each MC on the 2D images. The MCRs from the PVs were fused in 3D by a coincidence counting method that backprojects the MC candidates on the PVs and traces the coincidence of their ray paths in 3D. The 3D MCR was used to differentiate the true MCs from false positives (FPs). Finally a dynamic clustering method was used to identify the potential MC clusters in the DBT volume based on the fact that true MCs of clinical significance appear in clusters. Using two-fold cross validation, the performance of the 3D MCR for classification of true and false MCs was estimated by the area under the receiver operating characteristic (ROC) curve and the overall performance of the MCR approach for detection of clustered MCs was assessed by free response receiver operating characteristic (FROC) analysis. Results: When the HG basis function was used for MCR analysis, the detection of MC cluster achieved case-based test sensitivities of 80% and 90% at the average FP rates of 0.65 and 1.55 FPs per DBT volume, respectively. With LG basis function, the average FP rates were 0.62 and 1.57 per DBT volume at

  7. A 2-D oscillating flow analysis in Stirling engine heat exchangers

    NASA Technical Reports Server (NTRS)

    Ahn, Kyung H.; Ibrahim, Mounir B.

    1991-01-01

    A two-dimensional oscillating flow analysis was conducted, simulating the gas flow inside Stirling heat exchangers. Both laminar and turbulent oscillating pipe flow were investigated numerically for Re(max) = 1920 (Va = 80), 10800 (Va = 272), 19300 (Va = 272), and 60800 (Va = 126). The results are compared with experimental results of previous investigators. Also, predictions of the flow regime on present oscillating flow conditions were checked by comparing velocity amplitudes and phase differences with those from laminar theory and quasi-steady profile. A high Reynolds number k-epsilon turbulence model was used for turbulent oscillating pipe flow. Finally, performance evaluation of the K-epsilon model was made to explore the applicability of quasi-steady turbulent models to unsteady oscillating flow analysis.

  8. TSUNAMI analysis of National Ignition Facility 2-D gas dynamics phenomenon

    SciTech Connect

    Chen, X.M.; Peterson, P.F.; Tobin, M.T.

    1994-11-01

    The tests in the chamber of National Ignition Facility will involve complex multi-dimensional dynamics phenomena. Many safety concerns relate to the ablation of the chamber material and the re-condensation of it. The x-ray induced ablation can vaporize surfaces of internal structures. The deposition of the ablated mass to the laser optics can cause significant damage to the laser optics. This study presents a typical analysis of the ablation from the target positioner in the NIF chamber with the TSUNAMI two-dimensional gas dynamics code. Results reveal that the geometry of target positioner has strong influence to the vapor mass amount and distribution over the chamber wall. The analysis done here shows that it is possible to perform parametric study for different NIF chamber design configurations.

  9. A 2-D oscillating flow analysis in Stirling engine heat exchangers

    NASA Technical Reports Server (NTRS)

    Ahn, Kyung H.; Ibrahim, Mounir B.

    1991-01-01

    A two dimensional oscillating flow analysis was conducted, simulating the gas flow inside Stirling heat exchangers. Both laminar and turbulent oscillating pipe flow were investigated numerically for Re(max) = 1920 (Va = 80), 10800 (Va = 272), 19300 (Va = 272), and 60800 (Va = 126). The results are compared with experimental results of previous investigators. Also, predictions of the flow regime on present oscillating flow conditions were checked by comparing velocity amplitudes and phase differences with those from laminar theory and quasi-steady profile. A high Reynolds number k-epsilon turbulence model was used for turbulent oscillating pipe flow. Finally, performance evaluation of the K-epsilon model was made to explore the applicability of quasi-steady turbulent models to unsteady oscillating flow analysis.

  10. Analysis of simple 2-D and 3-D metal structures subjected to fragment impact

    NASA Technical Reports Server (NTRS)

    Witmer, E. A.; Stagliano, T. R.; Spilker, R. L.; Rodal, J. J. A.

    1977-01-01

    Theoretical methods were developed for predicting the large-deflection elastic-plastic transient structural responses of metal containment or deflector (C/D) structures to cope with rotor burst fragment impact attack. For two-dimensional C/D structures both, finite element and finite difference analysis methods were employed to analyze structural response produced by either prescribed transient loads or fragment impact. For the latter category, two time-wise step-by-step analysis procedures were devised to predict the structural responses resulting from a succession of fragment impacts: the collision force method (CFM) which utilizes an approximate prediction of the force applied to the attacked structure during fragment impact, and the collision imparted velocity method (CIVM) in which the impact-induced velocity increment acquired by a region of the impacted structure near the impact point is computed. The merits and limitations of these approaches are discussed. For the analysis of 3-d responses of C/D structures, only the CIVM approach was investigated.

  11. Coupled 2D-3D finite element method for analysis of a skin panel with a discontinuous stiffener

    NASA Technical Reports Server (NTRS)

    Wang, J. T.; Lotts, C. G.; Davis, D. D., Jr.; Krishnamurthy, T.

    1992-01-01

    This paper describes a computationally efficient analysis method which was used to predict detailed stress states in a typical composite compression panel with a discontinuous hat stiffener. A global-local approach was used. The global model incorporated both 2D shell and 3D brick elements connected by newly developed transition elements. Most of the panel was modeled with 2D elements, while 3D elements were employed to model the stiffener flange and the adjacent skin. Both linear and geometrically nonlinear analyses were performed on the global model. The effect of geometric nonlinearity induced by the eccentric load path due to the discontinuous hat stiffener was significant. The local model used a fine mesh of 3D brick elements to model the region at the end of the stiffener. Boundary conditions of the local 3D model were obtained by spline interpolation of the nodal displacements from the global analysis. Detailed in-plane and through-the-thickness stresses were calculated in the flange-skin interface near the end of the stiffener.

  12. An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion

    NASA Astrophysics Data System (ADS)

    Gou, J.; Ward, M. J.

    2016-08-01

    A class of coupled cell-bulk ODE-PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius ɛ ≪ 1 are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell-bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE-PDE cell-bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell

  13. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy - Part 2: Wind propagation and emission rates

    NASA Astrophysics Data System (ADS)

    Krueger, A.; Stremme, W.; Harig, R.; Grutter, M.

    2013-01-01

    A technique for measuring two-dimensional (2-D) plumes of volcanic gases with thermal emission spectroscopy was described in Part 1 by Stremme et al. (2012a). In that paper the instrumental aspects as well as retrieval strategies for obtaining the slant column images of SO2 and SiF4, as well as animations of particular events observed at the Popocatépetl volcano, were presented. This work focuses on the procedures for determining the propagation speed of the gases and estimating an emission rate from the given image sequences. A 2-D column density distribution of a volcanic gas, available as time-consecutive frames, provides information of a projected wind field and the average velocity at which the volcanic plume is propagating. This information is valuable since the largest uncertainties when calculating emission rates of the gases using remote sensing techniques arise from propagation velocities which are often inadequately assumed. The presented reconstruction method solves the equation of continuity as an ill-posed problem using mainly a Tikhonov-like regularisation. It is observed from the available data sets that if the main direction of propagation is perpendicular to the line-of-sight, the algorithm works well for SO2, which has the strongest signals, and also for SiF4 in some favourable cases. Due to the similarity of the algorithm used here with the reconstruction methods used for profile retrievals based on optimal estimation theory, diagnostic tools like the averaging kernels can be calculated in an analogous manner and the information can be quantified as degrees of freedom. Thus, it is shown that the combination of wind field and column distribution of the gas plume can provide the emission rate of the volcano both during day and night.

  14. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy - Part 2: Wind propagation and emission fluxes

    NASA Astrophysics Data System (ADS)

    Krueger, A.; Stremme, W.; Harig, R.; Grutter, M.

    2012-07-01

    The technique for measuring two-dimensional (2-D) plumes of volcanic gases with thermal emission spectroscopy was described in Part 1 by Stremme et al. (2012). In that paper the instrumental aspects as well as retrieval strategies for obtaining the slant column images of SO2 and SiF4, as well as animations of particular events observed at the Popocatépetl volcano, were presented. This work focuses on the procedures for determining the propagation speed of the gases and estimating an emission flux from the given image sequences. A 2-D column density distribution of a volcanic gas, available as time-consecutive frames, provides information of a wind-field and the average velocity at which the volcanic plume is propagating. The presented reconstruction method solves the equation of continuity as an ill-posed problem using mainly a Tikhonov-like regularization. It is observed from the available data sets that if the main direction of propagation is perpendicular to the line-of-sight, the algorithm works well for SO2 which has the strongest signals, and also for SiF4 in some favourable cases. Due to the similarity of the algorithm used here with the reconstruction methods used for profile retrievals based on optimal estimation theory, diagnostic tools like the averaging kernels can be calculated analogously and the information can be quantified as degrees of freedom. Thus, it is shown that the combination of wind-field and column distribution of the gas plume can provide the emission flux of the volcano both during day and night.

  15. Low-level motion analysis of color and luminance for perception of 2D and 3D motion.

    PubMed

    Shioiri, Satoshi; Yoshizawa, Masanori; Ogiya, Mistuharu; Matsumiya, Kazumichi; Yaguchi, Hirohisa

    2012-01-01

    We investigated the low-level motion mechanisms for color and luminance and their integration process using 2D and 3D motion aftereffects (MAEs). The 2D and 3D MAEs obtained in equiluminant color gratings showed that the visual system has the low-level motion mechanism for color motion as well as for luminance motion. The 3D MAE is an MAE for motion in depth after monocular motion adaptation. Apparent 3D motion can be perceived after prolonged exposure of one eye to lateral motion because the difference in motion signal between the adapted and unadapted eyes generates interocular velocity differences (IOVDs). Since IOVDs cannot be analyzed by the high-level motion mechanism of feature tracking, we conclude that a low-level motion mechanism is responsible for the 3D MAE. Since we found different temporal frequency characteristics between the color and luminance stimuli, MAEs in the equiluminant color stimuli cannot be attributed to a residual luminance component in the color stimulus. Although a similar MAE was found with a luminance and a color test both for 2D and 3D motion judgments after adapting to either color or luminance motion, temporal frequency characteristics were different between the color and luminance adaptation. The visual system must have a low-level motion mechanism for color signals as for luminance ones. We also found that color and luminance motion signals are integrated monocularly before IOVD analysis, showing a cross adaptation effect between color and luminance stimuli. This was supported by an experiment with dichoptic presentations of color and luminance tests. In the experiment, color and luminance tests were presented in the different eyes dichoptically with four different combinations of test and adaptation: color or luminance test in the adapted eye after color or luminance adaptation. Findings of little or no influence of the adaptation/test combinations indicate the integration of color and luminance motion signals prior to the

  16. Multi-level model for 2D human motion analysis and description

    NASA Astrophysics Data System (ADS)

    Foures, Thomas; Joly, Philippe

    2003-01-01

    This paper deals with the proposition of a model for human motion analysis in a video. Its main caracteristic is to adapt itself automatically to the current resolution, the actual quality of the picture, or the level of precision required by a given application, due to its possible decomposition into several hierarchical levels. The model is region-based to address some analysis processing needs. The top level of the model is only defined with 5 ribbons, which can be cut into sub-ribbons regarding to a given (or an expected) level of details. Matching process between model and current picture consists in the comparison of extracted subject shape with a graphical rendering of the model built on the base of some computed parameters. The comparison is processed by using a chamfer matching algorithm. In our developments, we intend to realize a platform of interaction between a dancer and tools synthetizing abstract motion pictures and music in the conditions of a real-time dialogue between a human and a computer. In consequence, we use this model in a perspective of motion description instead of motion recognition: no a priori gestures are supposed to be recognized as far as no a priori application is specially targeted. The resulting description will be made following a Description Scheme compliant with the movement notation called "Labanotation".

  17. Multiscale quantification of morphodynamics: MorphoLeaf software for 2D shape analysis.

    PubMed

    Biot, Eric; Cortizo, Millán; Burguet, Jasmine; Kiss, Annamaria; Oughou, Mohamed; Maugarny-Calès, Aude; Gonçalves, Beatriz; Adroher, Bernard; Andrey, Philippe; Boudaoud, Arezki; Laufs, Patrick

    2016-09-15

    A major challenge in morphometrics is to analyse complex biological shapes formed by structures at different scales. Leaves exemplify this challenge as they combine differences in their overall shape with smaller shape variations at their margin, leading to lobes or teeth. Current methods based on contour or on landmark analysis are successful in quantifying either overall leaf shape or leaf margin dissection, but fail in combining the two. Here, we present a comprehensive strategy and its associated freely available platform for the quantitative, multiscale analysis of the morphology of leaves with different architectures. For this, biologically relevant landmarks are automatically extracted and hierarchised, and used to guide the reconstruction of accurate average contours that properly represent both global and local features. Using this method, we establish a quantitative framework of the developmental trajectory of Arabidopsis leaves of different ranks and retrace the origin of leaf heteroblasty. When applied to different mutant forms, our method can contribute to a better understanding of gene function, as we show here for the role of CUC2 during Arabidopsis leaf serration. Finally, we illustrate the wider applicability of our tool by analysing hand morphometrics. PMID:27387872

  18. Multiscale quantification of morphodynamics: MorphoLeaf software for 2D shape analysis.

    PubMed

    Biot, Eric; Cortizo, Millán; Burguet, Jasmine; Kiss, Annamaria; Oughou, Mohamed; Maugarny-Calès, Aude; Gonçalves, Beatriz; Adroher, Bernard; Andrey, Philippe; Boudaoud, Arezki; Laufs, Patrick

    2016-09-15

    A major challenge in morphometrics is to analyse complex biological shapes formed by structures at different scales. Leaves exemplify this challenge as they combine differences in their overall shape with smaller shape variations at their margin, leading to lobes or teeth. Current methods based on contour or on landmark analysis are successful in quantifying either overall leaf shape or leaf margin dissection, but fail in combining the two. Here, we present a comprehensive strategy and its associated freely available platform for the quantitative, multiscale analysis of the morphology of leaves with different architectures. For this, biologically relevant landmarks are automatically extracted and hierarchised, and used to guide the reconstruction of accurate average contours that properly represent both global and local features. Using this method, we establish a quantitative framework of the developmental trajectory of Arabidopsis leaves of different ranks and retrace the origin of leaf heteroblasty. When applied to different mutant forms, our method can contribute to a better understanding of gene function, as we show here for the role of CUC2 during Arabidopsis leaf serration. Finally, we illustrate the wider applicability of our tool by analysing hand morphometrics.

  19. High pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis

    SciTech Connect

    Yang, Feng; Shen, Yufeng; Camp, David G.; Smith, Richard D.

    2012-04-01

    Orthogonal high-resolution separations are critical for attaining improved analytical dynamic ranges of proteome measurements. Concatenated high pH reversed phase liquid chromatography affords better separations than the strong cation exchange conventionally applied for two-dimensional shotgun proteomic analysis. For example, concatenated high pH reversed phase liquid chromatography increased identification coverage for peptides (e.g., by 1.8-fold) and proteins (e.g., by 1.6-fold) in shotgun proteomics analyses of a digested human protein sample. Additional advantages of concatenated high pH RPLC include improved protein sequence coverage, simplified sample processing, and reduced sample losses, making this an attractive first dimension separation strategy for two-dimensional proteomics analyses.

  20. UCF WASTE PACKAGE SHIELDING ANALYSIS/2-D DORT (SCPB: N/A)

    SciTech Connect

    D.J. Skulina

    1996-01-18

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to determine the dose rates from the UCF waste packages to be used by the EBS and other repository systems to incorporate ALARA practices in the overall repository design in compliance with the goals of the Waste Package Implementation Plan for conceptual design. These design calculations are performed in sufficient detail to provide a comprehensive comparison base with other design alternatives. The objectives of this evaluation are (1) to show the dose rate as a function of distance from the waste package surface and (2) to provide the shielding thicknesses required for the waste package transporter to meet a 10 mr/hr target dose rate at 2 meters from the transporter surface.

  1. Polarization analysis for the 2D position-sensitive detector of the HADAS reflectometer in Jülich

    NASA Astrophysics Data System (ADS)

    Rücker, U.; Bergs, W.; Alefeld, B.; Kentzinger, E.; Brückel, Th.

    2001-03-01

    A neutron reflectometer with polarization analysis is being built on the basis of the HADAS spectrometer in the neutron guide hall at the research reactor FRJ-2 (DIDO) in Jülich. The new instrument is optimized for reflectivity and diffuse scattering measurements under grazing incidence on layered magnetic structures with thicknesses in the nm range. In order to measure diffuse scattering with polarization analysis, the 2D position-sensitive detector has been equipped with a polarization analyser that consists of a stack of supermirrors parallel to the scattering plane. First tests have revealed that the resolution of the instrument is not reduced by the polarization analyser. A flipping ratio of 20 has been achieved already during the first experiment.

  2. 2D-PAGE protein analysis of dinoflagellate Alexandrium minutum based on three different temperatures

    NASA Astrophysics Data System (ADS)

    Latib, Norhidayu Abdul; Norshaha, Safida Anira; Usup, Gires; Yusof, Nurul Yuziana Mohd

    2015-09-01

    Harmful algae bloom or red tide seems to be considered as threat to ecosystem, especially to human consumption because of the production of neurotoxin by dinoflagellates species such as Alexandrium minutum which can lead to paralytic shellfish poisoning. The aim of this study is to determine the most suitable method for protein extraction of A. minutum followed by determination of differential protein expression of A. minutum on three different temperatures (15°C, 26°C and 31.5°C). After the optimization, the protein extract was subjected to two-dimensional polyacrylamide gel electrophoresis (2-DE) to compare the intensity and distribution of the protein spots. Based on quantitative and qualitative protein assessment, use of Trizol reagent is the most suitable method to extract protein from A. minutum. 2-DE analysis of the samples results in different distribution and intensity of the protein spots were compared between 15°C, 26°C and 31.5°C.

  3. A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.

  4. Using 2D Correlation Analysis to Enhance Spectral Information Available from Highly Spatially Resolved AFM-IR Spectra.

    PubMed

    Marcott, Curtis; Lo, Michael; Hu, Qichi; Kjoller, Kevin; Boskey, Adele; Noda, Isao

    2014-07-01

    The recent combination of atomic force microscopy and infrared spectroscopy (AFM-IR) has led to the ability to obtain IR spectra with nanoscale spatial resolution, nearly two orders-of-magnitude better than conventional Fourier transform infrared (FT-IR) microspectroscopy. This advanced methodology can lead to significantly sharper spectral features than are typically seen in conventional IR spectra of inhomogeneous materials, where a wider range of molecular environments are coaveraged by the larger sample cross section being probed. In this work, two-dimensional (2D) correlation analysis is used to examine position sensitive spectral variations in datasets of closely spaced AFM-IR spectra. This analysis can reveal new key insights, providing a better understanding of the new spectral information that was previously hidden under broader overlapped spectral features. Two examples of the utility of this new approach are presented. Two-dimensional correlation analysis of a set of AFM-IR spectra were collected at 200-nm increments along a line through a nucleation site generated by remelting a small spot on a thin film of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). There are two different crystalline carbonyl band components near 1720 cm(-1) that sequentially disappear before a band at 1740 cm(-1) due to more disordered material appears. In the second example, 2D correlation analysis of a series of AFM-IR spectra spaced every 1 micrometer of a thin cross section of a bone sample measured outward from an osteon center of bone growth. There are many changes in the amide I and phosphate band contours, suggesting changes in the bone structure are occurring as the bone matures.

  5. MIA-QSAR: a simple 2D image-based approach for quantitative structure activity relationship analysis

    NASA Astrophysics Data System (ADS)

    Freitas, Matheus P.; Brown, Steven D.; Martins, José A.

    2005-03-01

    An accessible and quite simple QSAR method, based on 2D image analysis, is reported. A case study is carried out in order to compare this model with a previously reported sophisticated methodology. A well known set of ( S)- N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-methoxybenzamides, compounds with affinity to the dopamine D 2 receptor subtype, was divided in 40 calibration compounds and 18 test compounds and the descriptors were generated from pixels of 2D structures of each compound, which can be drawn with aid of any appropriate program. Bilinear (conventional) PLS was utilized as the regression method and leave-one-out cross-validation was performed using the NIPALS algorithm. The good predicted Q2 value obtained for the series of test compounds (0.58), together with the similar prediction quality obtained to other data sets (nAChR ligands, HIV protease inhibitors, COX-2 inhibitors and anxiolytic agents), suggests that the model is robust and seems to be as applicable as more complex methods.

  6. 2D Global Attenuation Model of the Upper Mantle from Combined Analysis of Surface Wave Phase and Amplitude Data

    NASA Astrophysics Data System (ADS)

    Ma, Z.; Masters, G.

    2014-12-01

    We have developed a technique that uses a cluster analysis method to measure Rayleigh wave phase and amplitude anomalies. The measurements are made on the vertical components of all permanent stations recording LHZ data from IRIS. We currently consider earthquakes with Ms>5.5 between 1990 and 2007. Joint inversions for 2D phase velocity and attenuation maps are performed, allowing the coupling through physical dispersion (e.g. Zhou 2009). As demonstrated in Dalton and Ekstrom (2006), correcting the effect of focusing-defocusing is crucial in order to obtain reliable attenuation structures. Ray theory, which has been used to date, may not give reliable predictions of such effects, because it depends strongly on short wavelength velocity structures and so is very sensitive to how the phase velocity maps are smoothed. Instead, we use the 2D finite frequency amplitude kernel (Zhou et al, 2004) to model the focusing-defocusing effect. Attenuation models and evaluations of model error and resolution will be presented.

  7. Combined analysis of 2-D electrical resistivity, seismic refraction and geotechnical investigations for Bukit Bunuh complex crater

    NASA Astrophysics Data System (ADS)

    Azwin, I. N.; Saad, Rosli; Saidin, Mokhtar; Nordiana, M. M.; Anderson Bery, Andy; Hidayah, I. N. E.

    2015-01-01

    Interest in studying impact crater on earth has increased tremendously due to its importance in geologic events, earth inhabitant history as well as economic value. The existences of few shock metamorphism and crater morphology evidences are discovered in Bukit Bunuh, Malaysia thus detailed studies are performed using geophysical and geotechnical methods to verify the type of the crater and characteristics accordingly. This paper presents the combined analysis of 2-D electrical resistivity, seismic refraction, geotechnical SPT N value, moisture content and RQD within the study area. Three stages of data acquisition are made starting with regional study followed by detailed study on West side and East side. Bulk resistivity and p-wave seismic velocity were digitized from 2-D resistivity and seismic sections at specific distance and depth for corresponding boreholes and samples taken. Generally, Bukit Bunuh shows the complex crater characteristics. Standard table of bulk resistivity and p-wave seismic velocity against SPT N value, moisture content and RQD are produce according to geological classifications of impact crater; inside crater, rim/slumped terrace and outside crater.

  8. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  9. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.; Thornton, C. P.

    1996-01-01

    Work has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-Ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted changes in the molecular weight distribution of the Coflon material using a dual detector Gel Permeation Analysis. Again these changes may result in variation in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-Ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Thermogravimetric Analysis, and Differential Scanning Calorimetry. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. Pressurized tests were performed in a modified Fluid G, which we will call G2. In this case the ethylene diamine concentration was increased to 3 percent in methanol. Coflon pipe sections and powdered Coflon were exposed in pressure cells at 1700 psi at three separate test temperatures, 70 C, 110 C, and 130 C. The primary purpose of the pressure tests in Fluid G2 was to further elucidate the aging mechanism of PVDF degradation.

  10. High resolution analysis of C2D4 in the region of 600-1150 cm-1

    NASA Astrophysics Data System (ADS)

    Ulenikov, O. N.; Gromova, O. V.; Bekhtereva, E. S.; Fomchenko, A. L.; Zhang, Fangce; Sydow, C.; Maul, C.; Bauerecker, S.

    2016-10-01

    High-accurate Fourier-transform infrared spectra of C2D4 were recorded and analyzed in the region of 600-1150 cm-1 where the bands ν7(B1u), ν10(B2u), ν12(B3u) are located as well as the ν4(Au) band which is forbidden by the symmetry of the molecule. The ground state rotational structure was re-analyzed by the use of ground state combination differences obtained on the basis of infrared transitions of the ν12 and ν7 absorption bands. This gave us the possibility to considerably improve the rotational and centrifugal parameters of the ground vibrational state. The analysis of the experimental data and the subsequent weighted-fit procedure of the Hamiltonian parameters allowed us to reproduce the initial 4405 "experimental" ro-vibrational energy values with the drms = 2.1 ×10-4cm-1.

  11. 2D-DIGE analysis of mango (Mangifera indica L.) fruit reveals major proteomic changes associated with ripening.

    PubMed

    Andrade, Jonathan de Magalhães; Toledo, Tatiana Torres; Nogueira, Silvia Beserra; Cordenunsi, Beatriz Rosana; Lajolo, Franco Maria; do Nascimento, João Roberto Oliveira

    2012-06-18

    A comparative proteomic investigation between the pre-climacteric and climacteric mango fruits (cv. Keitt) was performed to identify protein species with variable abundance during ripening. Proteins were phenol-extracted from fruits, cyanine-dye-labeled, and separated on 2D gels at pH 4-7. Total spot count of about 373 proteins spots was detected in each gel and forty-seven were consistently different between pre-climacteric and climacteric fruits and were subjected to LC-MS/MS analysis. Functional classification revealed that protein species involved in carbon fixation and hormone biosynthesis decreased during ripening, whereas those related to catabolism and the stress-response, including oxidative stress and abiotic and pathogen defense factors, accumulated. In relation to fruit quality, protein species putatively involved in color development and pulp softening were also identified. This study on mango proteomics provides an overview of the biological processes that occur during ripening.

  12. Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture

    SciTech Connect

    Apostol, Lian; Boudousq, Vincent; Basset, Oliver; Odet, Christophe; Yot, Sophie; Tabary, Joachim; Dinten, Jean-Marc; Boller, Elodie; Kotzki, Pierre-Olivier; Peyrin, Francoise

    2006-09-15

    Although the diagnosis of osteoporosis is mainly based on dual x-ray absorptiometry, it has been shown that trabecular bone micro-architecture is also an important factor in regard to fracture risk. In vivo, techniques based on high-resolution x-ray radiography associated to texture analysis have been proposed to investigate bone micro-architecture, but their relevance for giving pertinent 3D information is unclear. Thirty-three calcaneus and femoral neck bone samples including the cortical shells (diameter: 14 mm, height: 30-40 mm) were imaged using 3D-synchrotron x-ray micro-CT at the ESRF. The 3D reconstructed images with a cubic voxel size of 15 {mu}m were further used for two purposes: (1) quantification of three-dimensional trabecular bone micro-architecture (2) simulation of realistic x-ray radiographs under different acquisition conditions. The simulated x-ray radiographs were then analyzed using a large variety of texture analysis methods (co-occurrence, spectral density, fractal, morphology, etc.). The range of micro-architecture parameters was in agreement with previous studies and rather large, suggesting that the population was representative. More than 350 texture parameters were tested. A small number of them were selected based on their correlation to micro-architectural morphometric parameters. Using this subset of texture parameters, multiple regression allowed one to predict up to 93% of the variance of micro-architecture parameters using three texture features. 2D texture features predicting 3D micro-architecture parameters other than BV/TV were identified. The methodology proposed for evaluating the relationships between 3D micro-architecture and 2D texture parameters may also be used for optimizing the conditions for radiographic imaging. Further work will include the application of the method to physical radiographs. In the future, this approach could be used in combination with DXA to refine osteoporosis diagnosis.

  13. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1997-01-01

    Work during the past three years has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-Ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted changes in the molecular weight distribution and the increased crosslinking of the Coflon material using Gel Permeation Chromatographic Analysis. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, and Differential Scanning Calorimetry. We investigated a plethora of aged samples of both Tefzel and Coflon that were forwarded from MERL. Pressurized tests were performed on powdered PVDF in a modified Fluid A, which we will call A-2. In this case the ethylene diamine concentration was increased to 3 percent in methanol. Coflon pipe sections and powdered Coflon were exposed in pressure cells at 1700 psi at three separate test temperatures.

  14. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1995-01-01

    During the past six months we have conducted significant research in several domains in order to clarify and understanding the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. We organized numerous analytical studies with methods including Fourier Transform Infrared Spectroscopy, Dynamic Mechanical Analysis, Differential Scanning Calorimetry, and Stress Relaxation experiments. In addition we have reanalyzed previous thermogravimetric data concerning the rate of deplasticization of Coflon pipe. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We conducted stress relaxation experiments of Coflon pipe at several temperatures and determined an activation energy. We also examined the dynamic mechanical response PVDF during deplasticization and during methanol plasticization. We performed numerous DSC analyses to research the changing crystalline morphology. We have noted significant changes in crystallinity upon aging for both PVDF and Tefzel. Little variation in elemental composition was noted for many of the aged Coflon and Tefzel samples tested.

  15. Mixed time integration methods for transient thermal analysis of structures, appendix 5

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1982-01-01

    Mixed time integration methods for transient thermal analysis of structures are studied. An efficient solution procedure for predicting the thermal behavior of aerospace vehicle structures was developed. A 2D finite element computer program incorporating these methodologies is being implemented. The performance of these mixed time finite element algorithms can then be evaluated employing the proposed example problem.

  16. Statistical Analysis of Thermal Analysis Margin

    NASA Technical Reports Server (NTRS)

    Garrison, Matthew B.

    2011-01-01

    NASA Goddard Space Flight Center requires that each project demonstrate a minimum of 5 C margin between temperature predictions and hot and cold flight operational limits. The bounding temperature predictions include worst-case environment and thermal optical properties. The purpose of this work is to: assess how current missions are performing against their pre-launch bounding temperature predictions and suggest any possible changes to the thermal analysis margin rules

  17. Thermal stability of Ag, Al, Sn, Pb, and Hg films reinforced by 2D (C, Si) crystals and the formation of interfacial fluid states in them upon heating. MD experiment

    NASA Astrophysics Data System (ADS)

    Polukhin, V. A.; Kurbanova, E. D.

    2016-02-01

    Molecular dynamics simulation is used to study the thermal stability of the interfacial states of metallic Al, Ag, Sn, Pb, and Hg films (i.e., the structural elements of superconductor composites and conducting electrodes) reinforced by 2D graphene and silicene crystals upon heating up to disordering and to analyze the formation of nonautonomous fluid pseudophases in interfaces. The effect of perforation defects in reinforcing 2D-C and 2D-Si planes with passivated edge covalent bonds on the atomic dynamics is investigated. As compared to Al and Ag, the diffusion coefficients in Pd and Hg films increase monotonically with temperature during thermally activated disordering processes, the interatomic distances decrease, the sizes decrease, drops form, and their density profile grows along the normal. The coagulation of Pb and Hg drops is accompanied by a decrease in the contact angle, the reduction of the interface contact with graphene, and the enhancement of its corrugation (waviness).

  18. Thermal Analysis of Closed Systems

    1987-10-01

    TAP-LOOP is a finite-difference program designed for steady-state and transient thermal analysis of recirculating fluid loops and associated heat transfer equipment; however, it is not limited to loop analysis. TAP-LOOP was developed to perform scoping and conceptual design analyses for closed test loops in the Fast Flux Test Facility (FFTF), but it can handle a variety of problems which can be described in terms of potentials, sources, sinks, and storage including, in addition to heatmore » transfer problems, studies of potential fluid flow, electrical networks, and stress analysis.« less

  19. Phosphoproteomic analysis of wild-type and antimony-resistant Leishmania braziliensis lines by 2D-DIGE technology.

    PubMed

    Moreira, Douglas de Souza; Pescher, Pascale; Laurent, Christine; Lenormand, Pascal; Späth, Gerald F; Murta, Silvane M F

    2015-09-01

    Protein phosphorylation is one of the most studied post-translational modifications that is involved in different cellular events in Leishmania. In this study, we performed a comparative phosphoproteomics analysis of potassium antimonyl tartrate (SbIII)-resistant and -susceptible lines of Leishmania braziliensis using a 2D-DIGE approach followed by MS. In order to investigate the differential phosphoprotein abundance associated with the drug-induced stress response and SbIII-resistance mechanisms, we compared nontreated and SbIII-treated samples of each line. Pair wise comparisons revealed a total of 116 spots that showed a statistically significant difference in phosphoprotein abundance, including 11 and 34 spots specifically correlated with drug treatment and resistance, respectively. We identified 48 different proteins distributed into seven biological process categories. The category "protein folding/chaperones and stress response" is mainly implicated in response to SbIII treatment, while the categories "antioxidant/detoxification," "metabolic process," "RNA/DNA processing," and "protein biosynthesis" are modulated in the case of antimony resistance. Multiple sequence alignments were performed to validate the conservation of phosphorylated residues in nine proteins identified here. Western blot assays were carried out to validate the quantitative phosphoproteome analysis. The results revealed differential expression level of three phosphoproteins in the lines analyzed. This novel study allowed us to profile the L. braziliensis phosphoproteome, identifying several potential candidates for biochemical or signaling networks associated with antimony resistance phenotype in this parasite.

  20. A hybrid wave-mode formulation for the vibro-acoustic analysis of 2D periodic structures

    NASA Astrophysics Data System (ADS)

    Droz, C.; Zhou, C.; Ichchou, M. N.; Lainé, J.-P.

    2016-02-01

    In the framework of vibrational analysis of 2D periodic waveguides, Floquet-Bloch theorem is widely applied for the determination of wave dispersion characteristics. In this context, the Wave Finite Element Method (WFEM) combines Periodic Structure Theory (PST) with standard FE packages, enabling wave dispersion analysis of waveguides involving structurally realistic unit-cells. For such applications, the computational efficiency of the WFEM depends on the choice of the formulation and can lead to numerical issues, worsen by extensive computational cost. This paper presents a coupled wave-mode approach for the determination of wave dispersion characteristics in structurally advanced periodic structures. It combines two scales of model order reduction. At the unit-cell's scale, Component Mode Synthesis (CMS) provides the displacement field associated with local resonances of the periodic structure, while the free wave propagation is considered using a spectral problem projection on a reduced set of shape functions associated with propagating waves, thus providing considerable reduction of the computational cost. An application is provided for a bi-directionally stiffened panel and the influence of reduction parameters is discussed, as well as the robustness of the numerical results.

  1. AMTCLAB: A MATLAB ®-based program for traveltime analysis and velocity tuning in 2D elliptical anisotropic media

    NASA Astrophysics Data System (ADS)

    Fernández Martínez, J. L.; Pedruelo González, L. M.; García Gonzalo, E.

    2009-10-01

    In this paper we present the program AMTCLAB, a MATLAB ®-based computer code that analyzes the traveltime distribution and performs quality analysis at the pre-inversion stage for elliptically anisotropic media explored via 2D transmission experiments. This software generalizes the program MTCLAB presented in the past for the case of layered isotropic media, and makes use of traditional and robust traveltime distribution descriptors (mean, standard deviation, median, lower and upper quartiles, inter-quartile range and minimum absolute deviation), which are valid for all kinds of recording geometries. A guided user interface leads the modeller through the algorithm steps using the same data MTCLAB-structures. This methodology offers better understanding of the data variability prior to inversion, and provides the geophysicist with a macroscopic elliptical anisotropic velocity model, which is valid at the experiment scale, and matches the experimental mean traveltime distribution. To solve the inverse problems involved, program AMTCLAB uses the particle swarm optimisation algorithm, which allows the use of different norms and sampling the region of equivalent anisotropic velocity models in order to perform posterior sample statistics in each individual model parameter. The approximated velocity model issued from this analysis can serve in the traveltime inverse problem as an initial guess, or as a reference model in the subsequent inversion.

  2. New aQTL SNPs for the CYP2D6 Identified by a Novel Mediation Analysis of Genome-Wide SNP Arrays, Gene Expression Arrays, and CYP2D6 Activity

    PubMed Central

    Wang, Zhiping; Boustani, Malaz; Liu, Yunlong; Skaar, Todd; Li, Lang

    2013-01-01

    Background. The genome-wide association studies (GWAS) have been successful during the last few years. A key challenge is that the interpretation of the results is not straightforward, especially for transacting SNPs. Integration of transcriptome data into GWAS may provide clues elucidating the mechanisms by which a genetic variant leads to a disease. Methods. Here, we developed a novel mediation analysis approach to identify new expression quantitative trait loci (eQTL) driving CYP2D6 activity by combining genotype, gene expression, and enzyme activity data. Results. 389,573 and 1,214,416 SNP-transcript-CYP2D6 activity trios are found strongly associated (P < 10−5, FDR = 16.6% and 11.7%) for two different genotype platforms, namely, Affymetrix and Illumina, respectively. The majority of eQTLs are trans-SNPs. A single polymorphism leads to widespread downstream changes in the expression of distant genes by affecting major regulators or transcription factors (TFs), which would be visible as an eQTL hotspot and can lead to large and consistent biological effects. Overlapped eQTL hotspots with the mediators lead to the discovery of 64 TFs. Conclusions. Our mediation analysis is a powerful approach in identifying the trans-QTL-phenotype associations. It improves our understanding of the functional genetic variations for the liver metabolism mechanisms. PMID:24232670

  3. 2D Cross Sectional Analysis and Associated Electrochemistry of Composite Electrodes Containing Dispersed Agglomerates of Nanocrystalline Magnetite, Fe₃O₄.

    PubMed

    Bock, David C; Kirshenbaum, Kevin C; Wang, Jiajun; Zhang, Wei; Wang, Feng; Wang, Jun; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2015-06-24

    When electroactive nanomaterials are fully incorporated into an electrode structure, characterization of the crystallite sizes, agglomerate sizes, and dispersion of the electroactive materials can lend insight into the complex electrochemistry associated with composite electrodes. In this study, composite magnetite electrodes were sectioned using ultramicrotome techniques, which facilitated the direct observation of crystallites and agglomerates of magnetite (Fe3O4) as well as their dispersal patterns in large representative sections of electrode, via 2D cross sectional analysis by Transmission Electron Microscopy (TEM). Further, the electrochemistry of these electrodes were recorded, and Transmission X-ray Microscopy (TXM) was used to determine the distribution of oxidation states of the reduced magnetite. Unexpectedly, while two crystallite sizes of magnetite were employed in the production of the composite electrodes, the magnetite agglomerate sizes and degrees of dispersion in the two composite electrodes were similar to each other. This observation illustrates the necessity for careful characterization of composite electrodes, in order to understand the effects of crystallite size, agglomerate size, and level of dispersion on electrochemistry. PMID:26024206

  4. 2D fluid model analysis for the effect of 3D gas flow on a capacitively coupled plasma deposition reactor

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Lee, Hae June

    2016-06-01

    The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.

  5. Interaction Between Tropical Convection and its Embedding Environment: An Energetics Analysis of a 2-D Cloud Resolving Simulation

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Sui, C.-H.; Lau, K.-M.

    1999-01-01

    The phase relation between the perturbation kinetic energy (K') associated with the tropical convection and the horizontal-mean moist available potential energy (bar-P) associated with environmental conditions is investigated by an energetics analysis of a numerical experiment. This experiment is performed using a 2-D cloud resolving model forced by the TOGA-COARE derived vertical velocity. The imposed upward motion leads to a decrease of bar-P directly through the associated vertical advective cooling, and to an increase of K' directly through cloud related processes, feeding the convection. The maximum K' and its maximum growth rate lags and leads, respectively, the maximum imposed large-scale upward motion by about 1-2 hours, indicating that convection is phase locked with large-scale forcing. The dominant life cycle of the simulated convection is about 9 hours, whereas the time scales of the imposed large-scale forcing are longer than the diurnal cycle. In the convective events, maximum growth of K' leads maximum decay of the perturbation moist available potential energy (P') by about 3 hours through vertical heat transport by perturbation circulation, and perturbation cloud heating. Maximum decay of P' leads maximum decay of bar-P by about one hour through the perturbation radiative, processes, the horizontal-mean cloud heating, and the large-scale vertical advective cooling. Therefore, maximum gain of K' occurs about 4-5 hours before maximum decay of bar-P.

  6. 2D-DIGE proteomic analysis of mesenchymal stem cell cultured on the elasticity-tunable hydrogels.

    PubMed

    Kuboki, Thasaneeya; Kantawong, Fahsai; Burchmore, Richard; Dalby, Matthew J; Kidoaki, Satoru

    2012-01-01

    The present study focuses on mechanotransduction in mesenchymal stem cells (MSCs) in response to matrix elasticity. By using photocurable gelatinous gels with tunable stiffness, proteomic profiles of MSCs cultured on tissue culture plastic, soft (3 kPa) and stiff (52 kPa) matrices were deciphered using 2-dimensional differential in-gel analysis (2D-DIGE). The DIGE data, tied to immunofluorescence, indicated abundance and organization changes in the cytoskeletonal proteins as well as differential regulation of important signaling-related proteins, stress-responsing proteins and also proteins involved in collagen synthesis. The major CSK proteins including actin, tubulin and vimentin of the cells cultured on the gels were remarkably changed their expressions. Significant down-regulation of α-tubulin and β-actin can be observed on gel samples in comparison to the rigid tissue culture plates. The expression abundance of vimentin appeared to be highest in the MSCs cultured on hard gels. These results suggested that the substrate stiffness significantly affects expression balances in cytoskeletal proteins of MSCs with some implications to cellular tensegrity. PMID:22971925

  7. Proteomic analysis of a decellularized human vocal fold mucosa scaffold using 2D electrophoresis and high-resolution mass spectrometry

    PubMed Central

    Welham, Nathan V.; Chang, Zhen; Smith, Lloyd M.; Frey, Brian L.

    2012-01-01

    Natural biologic scaffolds for tissue engineering are commonly generated by decellularization of tissues and organs. Despite some preclinical and clinical success, in vivo scaffold remodeling and functional outcomes remain variable, presumably due to the influence of unidentified bioactive molecules on the scaffold-host interaction. Here, we used 2D electrophoresis and high-resolution mass spectrometry-based proteomic analyses to evaluate decellularization effectiveness and identify potentially bioactive protein remnants in a human vocal fold mucosa model. We noted proteome, phosphoproteome and O-glycoproteome depletion post-decellularization, and identified >200 unique protein species within the decellularized scaffold. Gene ontology-based enrichment analysis revealed a dominant set of functionally-related ontology terms associated with extracellular matrix assembly, organization, morphology and patterning, consistent with preservation of a tissue-specific niche for later cell seeding and infiltration. We further identified a subset of ontology terms associated with bioactive (some of which are antigenic) cellular proteins, despite histological and immunohistochemical data indicating complete decellularization. These findings demonstrate the value of mass spectrometry-based proteomics in identifying agents potentially responsible for variation in host response to engineered tissues derived from decellularized scaffolds. This work has implications for the manufacturing of biologic scaffolds from any tissue or organ, as well as for prediction and monitoring of the scaffold-host interaction in vivo. PMID:23102991

  8. Thermal analysis of the TMT telescope structure

    NASA Astrophysics Data System (ADS)

    Cho, Myung; Corredor, Andrew; Vogiatzis, Konstantinos; Angeli, George

    2010-07-01

    Thermal performances of the Thirty Meter Telescope (TMT) structure were evaluated by finite element thermal models. The thermal models consist of the telescope optical assembly systems, instruments, laser facility, control and electronic equipments, and structural members. Temporal and spatial temperature distributions of the optical assembly systems and the telescope structure were calculated under various thermal conditions including air convections, conductions, heat flux loadings, and radiations. In order to capture thermal responses faithfully, a three-consecutive-day thermal environment data was implemented. This thermal boundary condition was created by CFD based on the environment conditions of the corresponding TMT site. The thermo-elastic analysis was made to predict thermal deformations of the telescope structure at every hour for three days. The line of sight calculation was made using the thermally induced structural deformations. Merit function was utilized to calculate the OPD maps after repositioning the optics based on a best fit of M1 segment deformations. The goal of this thermal analysis is to establish creditable thermal models by finite element analysis to simulate the thermal effects with the TMT site environment data. These thermal models can be utilized for estimating the thermal responses of the TMT structure. Thermal performance prediction of the TMT structure will guide us to assess the thermal impacts, and enables us to establish a thermal control strategy and requirements in order to minimize the thermal effects on the telescope structure due to heat dissipation from the telescope mounted equipment and systems.

  9. Static & Dynamic Response of 2D Solids

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  10. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  11. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  12. DNS of hydrodynamically interacting droplets in turbulent clouds: Parallel implementation and scalability analysis using 2D domain decomposition

    NASA Astrophysics Data System (ADS)

    Ayala, Orlando; Parishani, Hossein; Chen, Liu; Rosa, Bogdan; Wang, Lian-Ping

    2014-12-01

    The study of turbulent collision of cloud droplets requires simultaneous considerations of the transport by background air turbulence (i.e., geometric collision rate) and influence of droplet disturbance flows (i.e., collision efficiency). In recent years, this multiscale problem has been addressed through a hybrid direct numerical simulation (HDNS) approach (Ayala et al., 2007). This approach, while currently is the only viable tool to quantify the effects of air turbulence on collision statistics, is computationally expensive. In order to extend the HDNS approach to higher flow Reynolds numbers, here we developed a highly scalable implementation of the approach using 2D domain decomposition. The scalability of the parallel implementation was studied using several parallel computers, at 5123 and 10243 grid resolutions with O(106)-O(107) droplets. It was found that the execution time scaled with number of processors almost linearly until it saturates and deteriorates due to communication latency issues. To better understand the scalability, we developed a complexity analysis by partitioning the execution tasks into computation, communication, and data copy. Using this complexity analysis, we were able to predict the scalability performance of our parallel code. Furthermore, the theory was used to estimate the maximum number of processors below which the approximately linear scalability is sustained. We theoretically showed that we could efficiently solved problems of up to 81923 with O(100,000) processors. The complexity analysis revealed that the pseudo-spectral simulation of background turbulent flow for a dilute droplet suspension typical of cloud conditions typically takes about 80% of the total execution time, except when the droplets are small (less than 5 μm in a flow with energy dissipation rate of 400 cm2/s3 and liquid water content of 1 g/m3), for which case the particle-particle hydrodynamic interactions become the bottleneck. The complexity analysis

  13. Transient thermal analysis of a titanium multiwall thermal protection system

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.

    1982-01-01

    The application of the SPAR thermal analyzer to the thermal analysis of a thermal protection system concept is discussed. The titanium multiwall thermal protection system concept consists of alternate flat and dimpled sheets which are joined together at the crests of the dimples and formed into 30 cm by 30 cm (12 in. by 12 in.) tiles. The tiles are mechanically attached to the structure. The complex tile geometry complicates thermal analysis. Three modes of heat transfer were considered: conduction through the gas inside the tile, conduction through the metal, and radiation between the various layers. The voids between the dimpled and flat sheets were designed to be small enough so that natural convection is insignificant (e.g., Grashof number 1000). A two step approach was used in the thermal analysis of the multiwall thermal protection system. First, an effective normal (through-the-thickness) thermal conductivity was obtained from a steady state analysis using a detailed SPAR finite element model of a small symmetric section of the multiwall tile. This effective conductivity was then used in simple one dimensional finite element models for preliminary analysis of several transient heat transfer problems.

  14. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy - Part 1: Slant-columns and their ratios

    NASA Astrophysics Data System (ADS)

    Stremme, W.; Krueger, A.; Harig, R.; Grutter, M.

    2012-02-01

    The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a safe distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006-2009 using a Scanning Infrared Gas Imaging System (SIGIS). The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm-1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume and its animation. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 and strong ash emission together with a pronounced SO2 cloud was registered around 01:00 a.m. LST (Local Standard Time). Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential images is used in a subsequent paper (Part 2) to calculate the emission rates at different distances from the crater.

  15. Sheath insulator test thermal analysis

    NASA Astrophysics Data System (ADS)

    Lee, Celia C. M.

    1991-01-01

    Thermal models were developed for Instrumented Fast Reactor Component Sheath Insulator (IFAC-SI) test to aid in the design and fabrication of the experiment which is part of the Thermionic Fuel Element (TFE) Verification Program. The actual experiment with two heat pipes in one test capsule is described by Miskolczy and Lee (1990). Two-dimensional finite element models were used in conjunction with other explicit programs to determine the necessary fin design and argon filling conditions of the vapor controlled heat pipes used to maintain desired operating temperatures. Four two-dimensional finite element models were developed: an axisymmetric capsule model; a radial sheath insulator model; a radial fin model, and an axial fin model. All finite element models were verified by comparing results between models and explicity one-dimensional heat-flow calculations. Additional programs were written to calculate the thermal expansion of the capsule components and argon volumes for operating temperatures. This thermal analysis package of two-dimensional finite element models and explicit programs predicts the best geometry and placement of fins to compensate for uncertainties from internal gamma heating, emissivity of niobium, and outer sodium temperature.

  16. Comparison and Characterization of Proteomes in the ThreeDomains of Life Using 2D Correlation Analysis

    NASA Astrophysics Data System (ADS)

    Fujishima, K.; Komasa, M.; Kitamura, S.; Tomita, M.; Kanai, A.

    Proteins are a major regulatory component in complex biological systems.Among them, DNA/RNA-binding proteins, the key components of the central dogma of molecular biology, and membrane proteins, which are necessary for both signal transduction and metabolite transport, are suggested to be the most important protein families that arose in the early stage of life. In this study, we computationally analyzed the whole proteome data of six model species to overview the protein diversity in the three domains of life (Bacteria, Archaea and Eukaryota), especially focusing on the above two protein families. To compare the protein distribution among the six model species, we calculated various protein profiles: hydropathy, molecular weight, amino acid composition and periodicity for each protein. We found a domain-specific distribution of the proteome based on 2D correlation analysis of hydropathy and molecular weight. Further, the merged protein distribution of Archaea and other do mains revealed many membrane proteins localized in Bacteria-specific regions with a high ratio of hydropathy and many DNA/RNA-binding proteins localized in Eukaryota-specific regions with a low ratio of hydropathy. Since about half of the proteins encoded in the genome are still functionally unknown, we further conducted Support Vector Machine (SVM)-based functional prediction using amino acid composition (CO score) and periodicity (PD score) as feature vectors to predict the overall number of DNA/RNA-binding proteins and membrane proteins in the proteome. Our estimation indicated that two functional categories occupy approximately 60% to 80% of the proteome, and further, the proportion of the two categories varied among the three domains of life, suggesting that the proteome has gone through different selective pressure during evolution.

  17. Rainfall/runoff simulation with 2D full shallow water equations: Sensitivity analysis and calibration of infiltration parameters

    NASA Astrophysics Data System (ADS)

    Fernández-Pato, Javier; Caviedes-Voullième, Daniel; García-Navarro, Pilar

    2016-05-01

    One of the most difficult issues in the development of hydrologic models is to find a rigorous source of data and specific parameters to a given problem, on a given location that enable reliable calibration. In this paper, a distributed and physically based model (2D Shallow Water Equations) is used for surface flow and runoff calculations in combination with two infiltration laws (Horton and Green-Ampt) for estimating infiltration in a watershed. This technique offers the capability of assigning a local and time-dependent infiltration rate to each computational cell depending on the available surface water, soil type or vegetation. We investigate how the calibration of parameters is affected by transient distributed Shallow Water model and the complexity of the problem. In the first part of this work, we calibrate the infiltration parameters for both Horton and Green-Ampt models under flat ponded soil conditions. Then, by means of synthetic test cases, we perform a space-distributed sensitivity analysis in order to show that this calibration can be significantly affected by the introduction of topography or rainfall. In the second part, parameter calibration for a real catchment is addressed by comparing the numerical simulations with two different sets of experimental data, corresponding to very different events in terms of the rainfall volume. We show that the initial conditions of the catchment and the rainfall pattern have a special relevance in the quality of the adjustment. Hence, it is shown that the topography of the catchment and the storm characteristics affect the calibration of infiltration parameters.

  18. THERMAL CONDUCTIVITY ANALYSIS OF GASES

    DOEpatents

    Clark, W.J.

    1949-06-01

    This patent describes apparatus for the quantitative analysis of a gaseous mixture at subatmospheric pressure by measurement of its thermal conductivity. A heated wire forms one leg of a bridge circuit, while the gas under test is passed about the wire at a constant rate. The bridge unbalance will be a measure of the change in composition of the gas, if compensation is made for the effect due to gas pressure change. The apparatus provides a voltage varying with fluctuations of pressure in series with the indicating device placed across the bridge, to counterbalance the voltage change caused by fluctuations in the pressure of the gaseous mixture.

  19. Allosteric pathway identification through network analysis: from molecular dynamics simulations to interactive 2D and 3D graphs.

    PubMed

    Allain, Ariane; Chauvot de Beauchêne, Isaure; Langenfeld, Florent; Guarracino, Yann; Laine, Elodie; Tchertanov, Luba

    2014-01-01

    Allostery is a universal phenomenon that couples the information induced by a local perturbation (effector) in a protein to spatially distant regulated sites. Such an event can be described in terms of a large scale transmission of information (communication) through a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. To elaborate a rational description of allosteric coupling, we propose an original approach - MOdular NETwork Analysis (MONETA) - based on the analysis of inter-residue dynamical correlations to localize the propagation of both structural and dynamical effects of a perturbation throughout a protein structure. MONETA uses inter-residue cross-correlations and commute times computed from molecular dynamics simulations and a topological description of a protein to build a modular network representation composed of clusters of residues (dynamic segments) linked together by chains of residues (communication pathways). MONETA provides a brand new direct and simple visualization of protein allosteric communication. A GEPHI module implemented in the MONETA package allows the generation of 2D graphs of the communication network. An interactive PyMOL plugin permits drawing of the communication pathways between chosen protein fragments or residues on a 3D representation. MONETA is a powerful tool for on-the-fly display of communication networks in proteins. We applied MONETA for the analysis of communication pathways (i) between the main regulatory fragments of receptors tyrosine kinases (RTKs), KIT and CSF-1R, in the native and mutated states and (ii) in proteins STAT5 (STAT5a and STAT5b) in the phosphorylated and the unphosphorylated forms. The description of the physical support for allosteric coupling by MONETA allowed a comparison of the mechanisms of (a) constitutive activation induced by equivalent mutations in two RTKs and (b) allosteric regulation in the activated and non

  20. Combining random forest and 2D correlation analysis to identify serum spectral signatures for neuro-oncology.

    PubMed

    Smith, Benjamin R; Ashton, Katherine M; Brodbelt, Andrew; Dawson, Timothy; Jenkinson, Michael D; Hunt, Neil T; Palmer, David S; Baker, Matthew J

    2016-06-01

    Fourier transform infrared (FTIR) spectroscopy has long been established as an analytical technique for the measurement of vibrational modes of molecular systems. More recently, FTIR has been used for the analysis of biofluids with the aim of becoming a tool to aid diagnosis. For the clinician, this represents a convenient, fast, non-subjective option for the study of biofluids and the diagnosis of disease states. The patient also benefits from this method, as the procedure for the collection of serum is much less invasive and stressful than traditional biopsy. This is especially true of patients in whom brain cancer is suspected. A brain biopsy is very unpleasant for the patient, potentially dangerous and can occasionally be inconclusive. We therefore present a method for the diagnosis of brain cancer from serum samples using FTIR and machine learning techniques. The scope of the study involved 433 patients from whom were collected 9 spectra each in the range 600-4000 cm(-1). To begin the development of the novel method, various pre-processing steps were investigated and ranked in terms of final accuracy of the diagnosis. Random forest machine learning was utilised as a classifier to separate patients into cancer or non-cancer categories based upon the intensities of wavenumbers present in their spectra. Generalised 2D correlational analysis was then employed to further augment the machine learning, and also to establish spectral features important for the distinction between cancer and non-cancer serum samples. Using these methods, sensitivities of up to 92.8% and specificities of up to 91.5% were possible. Furthermore, ratiometrics were also investigated in order to establish any correlations present in the dataset. We show a rapid, computationally light, accurate, statistically robust methodology for the identification of spectral features present in differing disease states. With current advances in IR technology, such as the development of rapid discrete

  1. Transient thermal analysis of fluid systems

    NASA Technical Reports Server (NTRS)

    Chandler, G. D.; Trust, R. D.

    1977-01-01

    Computer program performs transient thermal analysis of any 2-node to 200-node-thermal network, which transports heat by fluid flow convection. Program can be modified to add conduction along tubes and radiation.

  2. 2D Hydrodynamic Based Logic Modeling Tool for River Restoration Decision Analysis: A Quantitative Approach to Project Prioritization

    NASA Astrophysics Data System (ADS)

    Bandrowski, D.; Lai, Y.; Bradley, N.; Gaeuman, D. A.; Murauskas, J.; Som, N. A.; Martin, A.; Goodman, D.; Alvarez, J.

    2014-12-01

    In the field of river restoration sciences there is a growing need for analytical modeling tools and quantitative processes to help identify and prioritize project sites. 2D hydraulic models have become more common in recent years and with the availability of robust data sets and computing technology, it is now possible to evaluate large river systems at the reach scale. The Trinity River Restoration Program is now analyzing a 40 mile segment of the Trinity River to determine priority and implementation sequencing for its Phase II rehabilitation projects. A comprehensive approach and quantitative tool has recently been developed to analyze this complex river system referred to as: 2D-Hydrodynamic Based Logic Modeling (2D-HBLM). This tool utilizes various hydraulic output parameters combined with biological, ecological, and physical metrics at user-defined spatial scales. These metrics and their associated algorithms are the underpinnings of the 2D-HBLM habitat module used to evaluate geomorphic characteristics, riverine processes, and habitat complexity. The habitat metrics are further integrated into a comprehensive Logic Model framework to perform statistical analyses to assess project prioritization. The Logic Model will analyze various potential project sites by evaluating connectivity using principal component methods. The 2D-HBLM tool will help inform management and decision makers by using a quantitative process to optimize desired response variables with balancing important limiting factors in determining the highest priority locations within the river corridor to implement restoration projects. Effective river restoration prioritization starts with well-crafted goals that identify the biological objectives, address underlying causes of habitat change, and recognizes that social, economic, and land use limiting factors may constrain restoration options (Bechie et. al. 2008). Applying natural resources management actions, like restoration prioritization, is

  3. Generalized two-dimensional (2D) linear system analysis metrics (GMTF, GDQE) for digital radiography systems including the effect of focal spot, magnification, scatter, and detector characteristics

    PubMed Central

    Kuhls-Gilcrist, Andrew T.; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen

    2010-01-01

    The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks. PMID:21243038

  4. A BENCHMARKING ANALYSIS FOR FIVE RADIONUCLIDE VADOSE ZONE MODELS (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, AND CHAIN 2D) IN SOIL SCREENING LEVEL CALCULATIONS

    EPA Science Inventory

    Five radionuclide vadose zone models with different degrees of complexity (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide (99Tc) rele...

  5. User's Guide for ECAP2D: an Euler Unsteady Aerodynamic and Aeroelastic Analysis Program for Two Dimensional Oscillating Cascades, Version 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1995-01-01

    This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.

  6. Source rock potential analysis using rock physics approach and 2D seismic data inversion: case study of Great Australian Bight

    NASA Astrophysics Data System (ADS)

    Shulakova, V.

    2015-12-01

    The quantity of total organic carbon (TOC) and its type determine the ability of source rocks to generate hydrocarbons. Thus, the quantification of TOC content is an essential part of any reservoir characterisation project. Traditionally TOC is estimated from geochemical analysis of core samples. In this case the results are limited spatially by a well location as well as vertically by a number of tested samples. At the same time TOC vertical variability might be very high, changing every 1-3 m. The several methods have been deployed to estimate TOC from well-log data which provides continuous vertical profile estimations. The basin wide information might be provided by the utilization of seismic surveys. The methodology of mapping source rocks based on seismic data has been lately reported to be successful for the thick source rocks (>20 m) with relatively high TOC values up to 3-4% (Løseth et al., 2011). We employ the described approach and demonstrate our findings for a case study from Ceduna Basin (Great Australian Bight, Australia). The reported TOC values estimated from the cores go up to only 1.3%. The organic matter is contained in thin layers of claystones interlayered with sandstones. The workflow included TOC estimation from the well-log data and then seismic data inversion performed in JasonTM software. The inverted acoustic impedance decreases nonlinearly with increasing TOC content. The obtained results comprises 2D section of TOC distribution. The calculated TOC values are in a good agreement with the results of laboratory measurements. The results of this study show that TOC can be successfully estimated from seismic data inversion even in the case of low organic matter values. Further work has to be done to understand whether this approach works for different types of organic matter and stages of its maturation. Løseth H., Wensaas L., Gading M., Duffaut K., Springer M. 2001. Can hydrocarbon source rocks be identified on seismic data? Geology 39/12.

  7. Modeling and Analysis of Granite Matrix Pore Structure and Hydraulic Characteristics in 2D and 3D Networks

    NASA Astrophysics Data System (ADS)

    Gvozdik, L.; Polak, M.; Zaruba, J.; Vanecek, M.

    2010-12-01

    A geological environment labeled as a Granite massif represents in terms of groundwater flow and transport a distinct hydrogeological environment from that of sedimentary basins, the characterisation of which is generally more complex and uncertain. Massifs are composed of hard crystalline rocks with the very low effective porosity. Due to their rheological properties such rocks are predisposed to brittle deformation resulting from changes in stress conditions. Our specific research project (Research on the influence of intergrangular porosity on deep geological disposal: geological formations, methodology and the development of measurement apparatus) is focussed on the problem of permeable zones within apparently undisturbed granitic rock matrix. The project including the both laboratory and in-situ tracer tests study migration along and through mineral grains in fresh and altered granite. The objective of the project is to assess whether intergranular porosity is a general characteristic of the granitic rock matrix or subject to significant evolution resulting from geochemical and/or hydrogeochemical processes, geotechnical and/or mechanical processes. Moreover, the research is focussed on evaluating methods quantifying intergranular porosity by both physical testing and mathematical modelling using verified standard hydrological software tools. Groundwater flow in microfractures and intergranular pores in granite rock matrix were simulated in three standard hydrogeological modeling programs with completely different conceptual approaches: MODFLOW (Equivalent Continuum concept), FEFLOW (Discrete Fracture and Equivalent Continuum concepts) and NAPSAC (Discrete Fracture Network concept). Specialized random fracture generators were used for creation of several 2D and 3D models in each of the chosen program. Percolation characteristics of these models were tested and analyzed. Several scenarios of laboratory tests of the rock samples permeability made in triaxial

  8. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  9. Digit Ratios (2D:4D) Determined by Computer-Assisted Analysis are More Reliable than Those Using Physical Measurements, Photocopies, and Printed Scans

    PubMed Central

    ALLAWAY, HEATHER C.; BLOSKI, TERRI G.; PIERSON, ROGER A.; LUJAN, MARLA E.

    2010-01-01

    Prenatal androgens influence the second to fourth digit ratio (2D:4D) of hands with men having lower ratios than women. Numerous methods are used to assess 2D:4D including, physical measurements with calipers, and measurements made from photocopies, scanned images, digital photographs, radiographs, and scaled tubes. Although each method appears relatively reliable, agreement upon a gold standard is necessary to better explore the putative effects of prenatal androgens. Our objective was to assess the level of intra and interobserver reliability when evaluating 2D:4D using four techniques: (1) physical measurements, (2) photocopies, (3) printed scanned images, and (4) computer-assisted image analysis. Physical measurements, photocopies, and printed scanned images were measured with Vernier calipers. Scanned images were also measured with computer-based calipers. Measurements were made in 30 men and 30 women at two different time points, by three experienced observers. Intraclass correlation coefficients were used to assess the level of reliability. Intraobserver reliability was best for computer-assisted (0.957), followed by photocopies (0.939), physical measurements (0.925), and printed scans (0.842; P = 0.015). Interobserver reliability was also greatest for computer-assisted (0.892), followed by photocopies (0.858), physical measurements (0.795), and printed scans (0.761; P = 0.001). Mean 2D:4D from physical measurements were higher than all other techniques (P < 0.0001). Digit ratios determined from computer-assisted, physical measurements, and printed scans were more reliable in men than women (P = 0.009, P = 0.017, and P = 0.012, respectively). In summary, 2D:4D determined from computer-assisted analysis yielded the most accurate and consistent measurements among observers. Investigations of 2D:4D should use computer-assisted measurements over alternate methods whenever possible. PMID:19263413

  10. VARSAT2D: Finite-element analysis of variably saturated two-dimensional flow. Information circular/1994

    SciTech Connect

    Nieber, J.L.; Friedel, M.J.; Munir, H.M.

    1994-01-01

    This information circular describes a computer program called VARSAT2D, a comprehensive unsaturated fluid flow simulator developed by the U.S. Bureau of Mines. VARSAT2D solves for either a vertical or horizontal, transient or steady-state solution in variably saturated, heterogeneous, anisotropic porous media using the Galerkin finite-element approach. Simplex triangular elements are used. Moisture retention characteristics are described by specifying either the Brooks and Corey, Brutsaert, or Van Genuchten power functions, with hysteresis described using the Maulem independent domain model. Boundary conditions may include any combination of time-varying seepage, pressure along solution domain boundaries and/or at internal node points, unit hydraulic gradient at the lower boundary, and a uniform source and/or sink. The program should be a welcome addition for mining and environmental hydrologists, researchers, and engineers interested in modeling unsaturated fluid flow.

  11. Analysis of EEG signals regularity in adults during video game play in 2D and 3D.

    PubMed

    Khairuddin, Hamizah R; Malik, Aamir S; Mumtaz, Wajid; Kamel, Nidal; Xia, Likun

    2013-01-01

    Video games have long been part of the entertainment industry. Nonetheless, it is not well known how video games can affect us with the advancement of 3D technology. The purpose of this study is to investigate the EEG signals regularity when playing video games in 2D and 3D modes. A total of 29 healthy subjects (24 male, 5 female) with mean age of 21.79 (1.63) years participated. Subjects were asked to play a car racing video game in three different modes (2D, 3D passive and 3D active). In 3D passive mode, subjects needed to wear a passive polarized glasses (cinema type) while for 3D active, an active shutter glasses was used. Scalp EEG data was recorded during game play using 19-channel EEG machine and linked ear was used as reference. After data were pre-processed, the signal irregularity for all conditions was computed. Two parameters were used to measure signal complexity for time series data: i) Hjorth-Complexity and ii) Composite Permutation Entropy Index (CPEI). Based on these two parameters, our results showed that the complexity level increased from eyes closed to eyes open condition; and further increased in the case of 3D as compared to 2D game play. PMID:24110125

  12. Analysis of EEG signals regularity in adults during video game play in 2D and 3D.

    PubMed

    Khairuddin, Hamizah R; Malik, Aamir S; Mumtaz, Wajid; Kamel, Nidal; Xia, Likun

    2013-01-01

    Video games have long been part of the entertainment industry. Nonetheless, it is not well known how video games can affect us with the advancement of 3D technology. The purpose of this study is to investigate the EEG signals regularity when playing video games in 2D and 3D modes. A total of 29 healthy subjects (24 male, 5 female) with mean age of 21.79 (1.63) years participated. Subjects were asked to play a car racing video game in three different modes (2D, 3D passive and 3D active). In 3D passive mode, subjects needed to wear a passive polarized glasses (cinema type) while for 3D active, an active shutter glasses was used. Scalp EEG data was recorded during game play using 19-channel EEG machine and linked ear was used as reference. After data were pre-processed, the signal irregularity for all conditions was computed. Two parameters were used to measure signal complexity for time series data: i) Hjorth-Complexity and ii) Composite Permutation Entropy Index (CPEI). Based on these two parameters, our results showed that the complexity level increased from eyes closed to eyes open condition; and further increased in the case of 3D as compared to 2D game play.

  13. SU-E-T-77: Comparison of 2D and 3D Gamma Analysis in Patient-Specific QA for Prostate VMAT Plans

    SciTech Connect

    Clemente, F; Perez, C

    2014-06-01

    Purpose: Patient-specific QA procedures for IMRT and VMAT are traditionally performed by comparing TPS calculations with measured single point values and plane dose distributions by means of gamma analysis. New QA devices permit us to calculate 3D dose distributions on patient anatomy as redundant secondary check and reconstruct it from measurements taken with 2D and 3D detector arrays. 3D dose calculations allow us to perform DVH-based comparisons with clinical relevance, as well as 3D gamma analysis. One of these systems (Compass, IBA Dosimetry) combines traditional 2D with new anatomical-based 3D gamma analysis. This work shows the ability of this system by comparing 2D and 3D gamma analysis in pre-treatment QA for several VMAT prostate plans. Methods: Compass is capable of calculating dose as secondary check from DICOM TPS data and reconstructing it from measurements taken by a 2D ion chamber array (MatriXX Evolution, IBA Dosimetry). Both 2D and 3D gamma tests are available to compare calculated and reconstructed dose in Compass with TPS RT Dose. Results: 15 VMAT prostate plans have been measured with Compass. Dose is reconstructed with Compass for these plans. 2D gamma comparisons can be done for any plane from dose matrix. Mean gamma passing rates for isocenter planes (axial, coronal, sagittal) are (99.7±0.2)%, (99.9±0.1)%, (99.9±0.1)% for reconstructed dose planes. 3D mean gamma passing rates are (98.5±1.7)% for PTVs, (99.1±1.5)% for rectum, (100.0±0.0)% for bladder, (99.6±0.7)% for femoral heads and (98.1±4.1)% for penile bulb. Conclusion: Compass is a powerful tool to perform a complete pre-treatment QA analysis, from 2D techniques to 3D DVH-based techniques with clinical relevance. All reported values for VMAT prostate plans are in good agreement with TPS values. This system permits us to ensure the accuracy in the delivery of VMAT treatments completing a full patient-specific QA program.

  14. Sensitivity and specificity of 3-D texture analysis of lung parenchyma is better than 2-D for discrimination of lung pathology in stage 0 COPD

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Sonka, Milan; McLennan, Geoffrey; Guo, Junfeng; Hoffman, Eric

    2005-04-01

    Lung parenchyma evaluation via multidetector-row CT (MDCT), has significantly altered clinical practice in the early detection of lung disease. Our goal is to enhance our texture-based tissue classification ability to differentiate early pathologic processes by extending our 2-D Adaptive Multiple Feature Method (AMFM) to 3-D AMFM. We performed MDCT on 34 human volunteers in five categories: emphysema in severe Chronic Obstructive Pulmonary Disease (COPD) as EC, emphysema in mild COPD (MC), normal appearing lung in COPD (NC), non-smokers with normal lung function (NN), smokers with normal function (NS). We volumetrically excluded the airway and vessel regions, calculated 24 volumetric texture features for each Volume of Interest (VOI); and used Bayesian rules for discrimination. Leave-one-out and half-half methods were used for testing. Sensitivity, specificity and accuracy were calculated. The accuracy of the leave-one-out method for the four-class classification in the form of 3-D/2-D is: EC: 84.9%/70.7%, MC: 89.8%/82.7%; NC: 87.5.0%/49.6%; NN: 100.0%/60.0%. The accuracy of the leave-one-out method for the two-class classification in the form of 3-D/2-D is: NN: 99.3%/71.6%; NS: 99.7%/74.5%. We conclude that 3-D AMFM analysis of the lung parenchyma improves discrimination compared to 2-D analysis of the same images.

  15. User's Guide for MSAP2D: A Program for Unsteady Aerodynamic and Aeroelastic (Flutter and Forced Response) Analysis of Multistage Compressors and Turbines. 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.

    1996-01-01

    This guide describes the input data required for using MSAP2D (Multi Stage Aeroelastic analysis Program - Two Dimensional) computer code. MSAP2D can be used for steady, unsteady aerodynamic, and aeroelastic (flutter and forced response) analysis of bladed disks arranged in multiple blade rows such as those found in compressors, turbines, counter rotating propellers or propfans. The code can also be run for single blade row. MSAP2D code is an extension of the original NPHASE code for multiblade row aerodynamic and aeroelastic analysis. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The aeroelastic equations are solved in time domain. For single blade row analysis, frequency domain analysis is also provided to obtain unsteady aerodynamic coefficients required in an eigen analysis for flutter. In this manual, sample input and output are provided for a single blade row example, two blade row example with equal and unequal number of blades in the blade rows.

  16. Importance of the Correlation between Width and Length in the Shape Analysis of Nanorods: Use of a 2D Size Plot To Probe Such a Correlation.

    PubMed

    Zhao, Zhihua; Zheng, Zhiqin; Roux, Clément; Delmas, Céline; Marty, Jean-Daniel; Kahn, Myrtil L; Mingotaud, Christophe

    2016-08-22

    Analysis of nanoparticle size through a simple 2D plot is proposed in order to extract the correlation between length and width in a collection or a mixture of anisotropic particles. Compared to the usual statistics on the length associated with a second and independent statistical analysis of the width, this simple plot easily points out the various types of nanoparticles and their (an)isotropy. For each class of nano-objects, the relationship between width and length (i.e., the strong or weak correlations between these two parameters) may suggest information concerning the nucleation/growth processes. It allows one to follow the effect on the shape and size distribution of physical or chemical processes such as simple ripening. Various electron microscopy pictures from the literature or from the authors' own syntheses are used as examples to demonstrate the efficiency and simplicity of the proposed 2D plot combined with a multivariate analysis.

  17. A Comparative Analysis for Verification of IMRT and VMAT Treatment Plans using a 2-D and 3-D Diode Array

    NASA Astrophysics Data System (ADS)

    Dance, Michael J.

    With the added complexity of current radiation treatment dose delivery modalities such as IMRT (Intensity Modulated Radiation Therapy) and VMAT (Volumetric Modulated Arc Therapy), quality assurance (QA) of these plans become multifaceted and labor intensive. To simplify the patient specific quality assurance process, 2D or 3D diode arrays are used to measure the radiation fluence for IMRT and VMAT treatments which can then be quickly and easily compared against the planned dose distribution. Because the arrays that can be used for IMRT and VMAT patient-specific quality assurance are of different geometry (planar vs. cylindrical), the same IMRT or VMAT treatment plan measured by two different arrays could lead to different measured radiation fluences, regardless of the output and performance of linear accelerator. Thus, the purpose of this study is to compare patient specific QA results as measured by the MapCHECK 2 and ArcCHECK diode arrays for the same IMRT and VMAT treatment plans to see if one diode array consistently provides a closer comparison to reference data. Six prostate and three thoracic spine IMRT treatment plans as well as three prostate and three thoracic spine VMAT treatment plans were produced. Radiotherapy plans for this study were generated using the Pinnacle TPS v9.6 (Philips Radiation Oncology Systems, Fitchburg, WI) using 6 MV, 6 MV FFF, and 10 MV x-ray beams from a Varian TrueBeam linear accelerator (Varian Medical Systems, Palo Alto, CA) with a 120-millenium multi-leaf collimator (MLC). Each IMRT and VMAT therapy plan was measured on Sun Nuclear's MapCHECK 2 and ArcCHECK diode arrays. IMRT measured data was compared with planned dose distribution using Sun Nuclear's 3DVH quality assurance software program using gamma analysis and dose-volume histograms for target volumes and critical structures comparison. VMAT arc plans measured on the MapCHECK 2 and ArcCHECK were compared using beam-by-beam analysis with the gamma evaluation method with

  18. A meshfree local RBF collocation method for anti-plane transverse elastic wave propagation analysis in 2D phononic crystals

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Zhang, Chuanzeng; Wang, Yuesheng; Sladek, Jan; Sladek, Vladimir

    2016-01-01

    In this paper, a meshfree or meshless local radial basis function (RBF) collocation method is proposed to calculate the band structures of two-dimensional (2D) anti-plane transverse elastic waves in phononic crystals. Three new techniques are developed for calculating the normal derivative of the field quantity required by the treatment of the boundary conditions, which improve the stability of the local RBF collocation method significantly. The general form of the local RBF collocation method for a unit-cell with periodic boundary conditions is proposed, where the continuity conditions on the interface between the matrix and the scatterer are taken into account. The band structures or dispersion relations can be obtained by solving the eigenvalue problem and sweeping the boundary of the irreducible first Brillouin zone. The proposed local RBF collocation method is verified by using the corresponding results obtained with the finite element method. For different acoustic impedance ratios, various scatterer shapes, scatterer arrangements (lattice forms) and material properties, numerical examples are presented and discussed to show the performance and the efficiency of the developed local RBF collocation method compared to the FEM for computing the band structures of 2D phononic crystals.

  19. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  20. Structural-Thermal-Optical-Performance (STOP) Analysis

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeffrey; Irish, Sandra

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). A STOP analysis is a multidiscipline analysis, consisting of Structural, Thermal and Optical Performance Analyses, that is performed for all space flight instruments and satellites. This course will explain the different parts of performing this analysis. The student will learn how to effectively interact with each discipline in order to accurately obtain the system analysis results.

  1. Thermal-Hydraulic-Analysis Program

    NASA Technical Reports Server (NTRS)

    Walton, J. T.

    1993-01-01

    ELM computer program is simple computational tool for modeling steady-state thermal hydraulics of flows of propellants through fuel-element-coolant channels in nuclear thermal rockets. Evaluates various heat-transfer-coefficient and friction-factor correlations available for turbulent pipe flow with addition of heat. Comparisons possible within one program. Machine-independent program written in FORTRAN 77.

  2. Users manual for AUTOMESH-2D: A program of automatic mesh generation for two-dimensional scattering analysis by the finite element method

    NASA Technical Reports Server (NTRS)

    Hua, Chongyu; Volakis, John L.

    1990-01-01

    AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.

  3. Analysis of Highly-Resolved Simulations of 2-D Humps Toward Improvement of Second-Moment Closures

    NASA Technical Reports Server (NTRS)

    Jeyapaul, Elbert; Rumsey Christopher

    2013-01-01

    Fully resolved simulation data of flow separation over 2-D humps has been used to analyze the modeling terms in second-moment closures of the Reynolds-averaged Navier- Stokes equations. Existing models for the pressure-strain and dissipation terms have been analyzed using a priori calculations. All pressure-strain models are incorrect in the high-strain region near separation, although a better match is observed downstream, well into the separated-flow region. Near-wall inhomogeneity causes pressure-strain models to predict incorrect signs for the normal components close to the wall. In a posteriori computations, full Reynolds stress and explicit algebraic Reynolds stress models predict the separation point with varying degrees of success. However, as with one- and two-equation models, the separation bubble size is invariably over-predicted.

  4. Analysis of the high Reynolds number 2D tests on a wind turbine airfoil performed at two different wind tunnels

    NASA Astrophysics Data System (ADS)

    Pires, O.; Munduate, X.; Ceyhan, O.; Jacobs, M.; Madsen, J.; Schepers, J. G.

    2016-09-01

    2D wind tunnel tests at high Reynolds numbers have been done within the EU FP7 AVATAR project (Advanced Aerodynamic Tools of lArge Rotors) on the DU00-W-212 airfoil and at two different test facilities: the DNW High Pressure Wind Tunnel in Gottingen (HDG) and the LM Wind Power in-house wind tunnel. Two conditions of Reynolds numbers have been performed in both tests: 3 and 6 million. The Mach number and turbulence intensity values are similar in both wind tunnels at the 3 million Reynolds number test, while they are significantly different at 6 million Reynolds number. The paper presents a comparison of the data obtained from the two wind tunnels, showing good repeatability at 3 million Reynolds number and differences at 6 million Reynolds number that are consistent with the different Mach number and turbulence intensity values.

  5. CYP2D6*4 Allele Polymorphism Increases the Risk of Parkinson’s Disease: Evidence from Meta-Analysis

    PubMed Central

    Chen, Siyuan; Xie, Yantong; Peng, Qiliu; He, Yu; Deng, Yan; Wang, Jian; Xie, Li; Zeng, Jie; Li, Shan; Qin, Xue

    2013-01-01

    Background Many epidemiological studies have been conducted to explore the association between a single CYP2D6 gene polymorphism and Parkinson’s disease (PD) susceptibility. However, the results remain controversial. Objectives To clarify the effects of a single CYP2D6 gene polymorphism on the risk of PD, a meta-analysis of all available studies relating to CYP2D6*4 polymorphism and the risk of PD was conducted. Methods A comprehensive literature search of PubMed, EMBASE, and the China National Knowledge Infrastructure (CNKI) up to September 1, 2013 was conducted. Data were extracted by two independent authors and pooled odds ratio (OR) with 95% confidence interval (CI) were calculated. Meta-regression, Galbraith plots, subgroup analysis, sensitivity analysis, and publication bias analysis were also performed. Results Twenty-two separate comparisons consisting of 2,629 patients and 3,601 controls were included in our meta-analysis. The pooled analyses showed a significant association between CYP2D6*4G/A polymorphism and PD risk in all of the comparisons (A vs. G allele: OR = 1.28, 95% CI = 1.14–1.43, P = 0.001; AA vs. GG: OR = 1.43, 95% CI = 1.06–1.93, P = 0.018; AG vs. GG: OR = 1.22, 95% CI = 1.06–1.40, P = 0.006; AG+AA vs. GG: OR = 1.26, 95% CI = 1.10–1.44, P = 0.001; AA vs. AG+GG: OR = 1.37, 95% CI = 1.02–1.83, P = 0.036). In subgroup analysis stratified by ethnicity, significant associations were also demonstrated in Caucasians but not in Asians. No significant association was found in subgroup analysis stratified by age of onset or disease form. Conclusions We concluded that the CYP2D6*4G/A polymorphism denotes an increased genetic susceptibility to PD in the overall population, especially in Caucasians. Further large and well-designed studies are needed to confirm this association. PMID:24376807

  6. Single-Step Syngas-to-Distillates (S2D) Process Based on Biomass-Derived Syngas – A Techno-Economic Analysis

    SciTech Connect

    Zhu, Yunhua; Jones, Susanne B.; Biddy, Mary J.; Dagle, Robert A.; Palo, Daniel R.

    2012-08-01

    This study reports the comparison of biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT) case, goal case, and conventional case, were compared in terms of performance and cost. The SOT case and goal case represent technology being developed at Pacific Northwest National Laboratory for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation (S2D process). The conventional case mirrors the two-step S2D process previously utilized and reported by Mobil using natural gas feedstock and consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. Analysis of the three cases revealed that the goal case could indeed reduce fuel production cost over the conventional case, but that the SOT was still more expensive than the conventional. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield, single pass conversion efficiency, and reactor space velocity are the key factors driving the high cost for the SOT case.

  7. On Experimental Thermal Analysis of Solid Materials

    NASA Astrophysics Data System (ADS)

    Koštial, Pavel; Špička, Ivo; Jančikova, Zora; Valiček, Jan; Harničarova, Marta; Hlinka, Josef

    2014-12-01

    The paper is devoted to the presentation of a method for measurement of thermal conductivity k, specific heat capacity cp, and thermal diffusivity applying the lumped capacitance model (LCM) as a special case of Newton's model of cooling. At the specific experimental conditions resulting from the theoretical analysis of the used model, we present a method for experimental determination of all three above mentioned thermal parameters for materials with different thermal transport properties. The input experimental data provide a cooling curve of the tested material. The evaluation of experimental data is realized by software, the fundamental features of which are presented here. The statistical analysis of experimental data was performed.

  8. Comparative Variable Temperature Studies of Polyamide II with a Benchtop Fourier Transform and a Miniature Handheld Near-Infrared Spectrometer Using 2D-COS and PCMW-2D Analysis.

    PubMed

    Unger, Miriam; Pfeifer, Frank; Siesler, Heinz W

    2016-07-01

    The main objective of this communication is to compare the performance of a miniaturized handheld near-infrared (NIR) spectrometer with a benchtop Fourier transform near-infrared (FT-NIR) spectrometer. Generally, NIR spectroscopy is an extremely powerful analytical tool to study hydrogen-bonding changes of amide functionalities in solid and liquid materials and therefore variable temperature NIR measurements of polyamide II (PAII) have been selected as a case study. The information content of the measurement data has been further enhanced by exploiting the potential of two-dimensional correlation spectroscopy (2D-COS) and the perturbation correlation moving window two-dimensional (PCMW2D) evaluation technique. The data provide valuable insights not only into the changes of the hydrogen-bonding structure and the recrystallization of the hydrocarbon segments of the investigated PAII but also in their sequential order. Furthermore, it has been demonstrated that the 2D-COS and PCMW2D results derived from the spectra measured with the miniaturized NIR instrument are equivalent to the information extracted from the data obtained with the high-performance FT-NIR instrument.

  9. A unified analysis of exact methods of inverting the 2-D exponential radon transform, with implications for noise control in SPECT

    SciTech Connect

    Metz, C.E.; Pan, X.

    1995-12-01

    Exact methods of inverting the two-dimensional (2-D) exponential Radon transform have been proposed by Bellini et al. and by Inouye et al., both of whom worked in the spatial-frequency domain to estimate the 2-D Fourier transform of the unattenuated sinogram; by Hawkins et al., who worked with circularly harmonic Bessel transforms; and by Tretiak and Metz, who followed filtering of appropriately-modified projections by exponentially-weighted backprojection. With perfect sampling, all four of these methods are exact in the absence of projection-data noise, but empirical studies have shown that they propagate noise differently, and no underlying theoretical relationship among the methods has been evident. In this paper, an analysis of the 2-D Fourier transform of the modified sinogram reveals that all previously-proposed linear methods can be interpreted as special cases of a broad class of methods, and that each method in the class can be implemented, in principle, by any one of four distinct techniques. Moreover, the analysis suggests a new member of the class that is predicted to have noise properties better than those of previously proposed members.

  10. Single-Step Syngas-to-Distillates (S2D) Process Based on Biomass-Derived Syngas - A Techno-Economic Analysis

    SciTech Connect

    Zhu, Y.; Jones, S. B.; Biddy, M. J.; Dagle, R. A.; Palo, D. R.

    2012-08-01

    This study compared biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT), goal, and conventional, were compared in terms of performance and cost. The SOT case represented the best available experimental results for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation. The conventional case mirrored a conventional two-step S2D process consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. The goal case assumed the same performance as the conventional, but with a single-step S2D technology. TEA results revealed that the SOT was more expensive than the conventional and goal cases. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield and single pass conversion efficiency were the key factors driving the high cost for the SOT case.

  11. An evaluation of superminicomputers for thermal analysis

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Vidal, J. B.; Jones, G. K.

    1982-01-01

    The use of superminicomputers for solving a series of increasingly complex thermal analysis problems is investigated. The approach involved (1) installation and verification of the SPAR thermal analyzer software on superminicomputers at Langley Research Center and Goddard Space Flight Center, (2) solution of six increasingly complex thermal problems on this equipment, and (3) comparison of solution (accuracy, CPU time, turnaround time, and cost) with solutions on large mainframe computers.

  12. 2-D zymographic analysis of Broccoli (Brassica oleracea L. var. Italica) florets proteases: follow up of cysteine protease isotypes in the course of post-harvest senescence.

    PubMed

    Rossano, Rocco; Larocca, Marilena; Riccio, Paolo

    2011-09-01

    Zymographic analysis of Broccoli florets (Brassica oleracea L. var. Italica) revealed the presence of acidic metallo-proteases, serine proteases and cysteine proteases. Under conditions which were denaturing for the other proteases, the study was restricted to cysteine proteases. 2-D zymography, a technique that combines IEF and zymography was used to show the presence of 11 different cysteine protease spots with molecular mass of 44 and 47-48kDa and pIs ranging between 4.1 and 4.7. pI differences could be ascribed to different degrees of phosphorylation that partly disappeared in the presence of alkaline phosphatase. Post-harvest senescence of Broccoli florets was characterized by decrease in protein and chlorophyll contents and increase of protease activity. In particular, as determined by 2-D zymography, the presence of cysteine protease clearly increased during senescence, a finding that may represent a useful tool for the control of the aging process.

  13. A Rapid and Efficient 2D/3D Nuclear Segmentation Method for Analysis of Early Mouse Embryo and Stem Cell Image Data

    PubMed Central

    Lou, Xinghua; Kang, Minjung; Xenopoulos, Panagiotis; Muñoz-Descalzo, Silvia; Hadjantonakis, Anna-Katerina

    2014-01-01

    Summary Segmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection software development, there is still no single piece of commercial software that works well in practice when applied to early mouse embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation) as a MATLAB/C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and 3D image data. Our aim was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major cascaded modules: detection, segmentation, and cell position classification. An extensive evaluation of MINS on both 2D and 3D images, and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will allow MINS to be implemented for routine single-cell-level image analyses. PMID:24672759

  14. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  15. Towards 2D nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve

    2015-03-01

    Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.

  16. Analysis of 2D Torus and Hub Topologies of 100Mb/s Ethernet for the Whitney Commodity Computing Testbed

    NASA Technical Reports Server (NTRS)

    Pedretti, Kevin T.; Fineberg, Samuel A.; Kutler, Paul (Technical Monitor)

    1997-01-01

    A variety of different network technologies and topologies are currently being evaluated as part of the Whitney Project. This paper reports on the implementation and performance of a Fast Ethernet network configured in a 4x4 2D torus topology in a testbed cluster of 'commodity' Pentium Pro PCs. Several benchmarks were used for performance evaluation: an MPI point to point message passing benchmark, an MPI collective communication benchmark, and the NAS Parallel Benchmarks version 2.2 (NPB2). Our results show that for point to point communication on an unloaded network, the hub and 1 hop routes on the torus have about the same bandwidth and latency. However, the bandwidth decreases and the latency increases on the torus for each additional route hop. Collective communication benchmarks show that the torus provides roughly four times more aggregate bandwidth and eight times faster MPI barrier synchronizations than a hub based network for 16 processor systems. Finally, the SOAPBOX benchmarks, which simulate real-world CFD applications, generally demonstrated substantially better performance on the torus than on the hub. In the few cases the hub was faster, the difference was negligible. In total, our experimental results lead to the conclusion that for Fast Ethernet networks, the torus topology has better performance and scales better than a hub based network.

  17. Monitoring post mortem changes in porcine muscle through 2-D DIGE proteome analysis of Longissimus muscle exudate

    PubMed Central

    2013-01-01

    Background Meat quality is a complex trait influenced by a range of factors with post mortem biochemical processes highly influential in defining ultimate quality. High resolution two-dimensional DIfference Gel Electrophoresis (2-D DIGE) and Western blot were applied to study the influence of post mortem meat ageing on the proteome of pork muscle. Exudate collected from the muscle following centrifugation was analysed at three timepoints representing a seven day meat ageing period. Results The intensity of 136 spots varied significantly (p < 0.05) across this post mortem period and 40 spots were identified using mass spectrometry. The main functional categories represented were metabolic proteins, stress-related proteins, transport and structural proteins. Metabolic and structural proteins were generally observed to increase in abundance post mortem and many likely represent the accumulation of the degradation products of proteolytic enzyme activity. In contrast, stress-related proteins broadly decreased in abundance across the ageing period. Stress response proteins have protective roles in maintaining cellular integrity and a decline in their abundance over time may correlate with a reduction in cellular integrity and the onset of meat ageing. Since cellular conditions alter with muscle ageing, changes in solubility may also contribute to observed abundance profiles. Conclusions Muscle exudate provided valuable information about the pathways and processes underlying the post mortem ageing period, highlighting the importance of post mortem modification of proteins and their interaction for the development of meat quality traits. PMID:23514628

  18. Proteomic analysis of ovomucoid hypersensitivity in mice by two-dimensional difference gel electrophoresis (2D-DIGE).

    PubMed

    Hobson, D J; Rupa, P; Diaz, G J; Zhang, H; Yang, M; Mine, Y; Turner, P V; Kirby, G M

    2007-12-01

    There is a need to develop reliable methods to assess the safety of genetically modified and other novel foods. The aim of this study was to identify protein biomarkers of food allergy in mice exposed to ovomucoid (OVM), a major food allergen found in chicken egg white. BALB/c mice were repeatedly sensitized by gavage with OVM and cholera toxin (CT) and control mice were exposed to a mixture of amino acids with CT. At the endpoint, all mice were challenged intraperitoneally with OVM and alum. Type-1 hypersensitivity was confirmed in OVM-sensitized mice by observation of clinical signs of anaphylaxis and elevated levels of plasma histamine, OVM-specific IgE and OVM-specific IgG by ELISA. Differential protein expression was assessed in albumin-depleted plasma as well as in mesenteric lymph node, liver, spleen, and ileum by two-dimensional difference gel electrophoresis (2D-DIGE). Differentially expressed proteins were identified by liquid chromatography with tandem mass spectrometry. Plasma proteins overexpressed in OVM-sensitized mice included haptoglobin (41-fold), serum amyloid A (19-fold) and peroxiredoxin-2 (1.9-fold). Further validation of these plasma proteins in other animal models of food allergy with different food allergens is required to assess their potential as candidate biomarkers for use in evaluating the allergenicity of novel foods.

  19. Real-time texture analysis for identifying optimum microbubble concentration in 2-D ultrasonic particle image velocimetry.

    PubMed

    Niu, Lili; Qian, Ming; Yan, Liang; Yu, Wentao; Jiang, Bo; Jin, Qiaofeng; Wang, Yanping; Shandas, Robin; Liu, Xin; Zheng, Hairong

    2011-08-01

    Many recent studies on ultrasonic particle image velocimetry (Echo PIV) showed that the accuracy of two-dimensional (2-D) flow velocity measured depends largely on the concentration of ultrasound contrast agents (UCAs) during imaging. This article presents a texture-based method for identifying the optimum microbubble concentration for Echo PIV measurements in real-time. The texture features, standard deviation of gray level, and contrast, energy and homogeneity of gray level co-occurrence matrix were extracted from ultrasound contrast images of rotational and pulsatile flow (10 MHz) in vitro and in vivo mouse common carotid arterial flow (40 MHz) with UCAs at various concentrations. The results showed that, at concentration of 0.8∼2 × 10³ bubbles/mL in vitro and 1∼5 × 10⁵ bubbles/mL in vivo, image texture features had a peak value or trough value, and velocity vectors with high accuracy can be obtained. Otherwise, poor quality velocity vectors were obtained. When the texture features were used as a feature set, the accuracy of K-nearest neighbor classifier can reach 86.4% in vitro and 87.5% in vivo, respectively. The texture-based method is shown to be able to quickly identify the optimum microbubble concentration and improve the accuracy for Echo PIV imaging.

  20. Hetero Diels-Alder Reaction with Aqueous Glyoxylic Acid: An Experiment in Organic Synthesis and 2-D NMR Analysis for Advanced Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Augé, Jacques; Lubin-Germain, Nadège

    1998-10-01

    As an application of the use of water as solvent in organic synthesis, a convenient synthesis of a-hydroxy-g-lactones from an aqueous solution of glyoxylic acid is described. The mechanism of the reaction leading to the lactones goes through cycloadducts which rearrange in situ. The NMR analysis of the diastereomeric lactones is particularly interesting; such an analysis illustrates the importance of modern techniques including 2-D NMR spectroscopy. Complete assignments of the signals are mentioned and NOESY spectra are enclosed. The full experiment is addressed to advanced undergraduate students who are trained in organic synthesis and NMR spectroscopy.

  1. Thermal Soak Analysis of Earth Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Sepka, Steven A.; Aliaga, Jose F.; Venkatapathy, Ethiraj; Samareh, Jamshid A.

    2012-01-01

    The Multi-Mission Earth Entry Vehicle project is developing an integrated tool called Multi Mission System Analysis for Planetary Entry Descent and Landing that will provide key technology solutions including mass sizing, aerodynamics, aerothermodynamics, and thermal and structural analysis for any given sample return mission. Thermal soak analysis and temperature predictions of various components including the payload container of the entry vehicle are part of the solution that this tool will offer to mission designers. The present paper focuses on the thermal soak analysis of an entry vehicle design based on the Mars Sample Return entry vehicle geometry and discusses a technical approach to develop parametric models for thermal soak analysis that will be integrated into the tool.

  2. Terahertz Spectroscopy and Global Analysis of the Bending Vibrations of ^{12}C_2H_2 and ^{12}C_2D_2

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, Brian J.; Pearson, John C.; Pickett, Herbert M.; Lattanzi, Valerio; Walters, Adam

    2009-06-01

    Symmetric molecules have no permanent dipole moment and are undetectable by rotational spectroscopy. Their interstellar observations have previously been limited to mid-infrared vibration-rotation spectroscopy. Although relatively weak, vibrational difference bands provide a means for detection of non polar molecules by terahertz techniques with microwave precision. Herschel, SOFIA, and ALMA have the potential to identify a number of difference bands of light symmetric species, e.g., C_2H_2, CH_4 and C_3. This paper reports the results of the laboratory study on ^{12}C_2H_2 and ^{12}C_2D_2. The symmetric isotopomers of acetylene have two bending modes, the trans bending ν_4 (^1{π}_g), and the cis bending ν_5 (^1{π}_u). For ^{12}C_2H_2, the two bending modes occur at 612 and 729 cm^{-1}, respectively. For ^{12}C_2D_2, the two bending modes occur at 511 and 538 cm^{-1}. The ν_5-ν_4 difference bands are allowed and occur in the microwave, terahertz, and far-infrared wavelengths, with band origins at 117 cm^{-1} (3500 GHz) for ^{12}C_2H_2 and 27 cm^{-1} (900 GHz) for ^{12}C_2D_2. Two hundred and fifty-one ^{12}C_2D_2 transitions, which are from ν_5-ν_4, (ν_5+ν_4)-2ν_4 and 2ν_5-(ν_5+ν_4) bands, have been measured in the 0.2-1.6 THz region, and 202 of them were observed for the first time. The precision of these measurements is estimated to be from 50 kHz to 100 kHz. A multistate analysis was carried out for the bending vibrational modes ν_4 and ν_5 of ^{12}C_2D_2, which includes the lines observed in this work and prior microwave, far-infrared and infrared data on the pure bending levels. Significantly improved molecular parameters were obtained for ^{12}C_2D_2 by adding the new measurements to the old data set which had only 10 lines with microwave measurement precision. The experiments on ^{12}C_2H_2 are in progress and ten P branch lines have been observed. We will present the ^{12}C_2H_2 results to date.

  3. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-01

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  4. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    SciTech Connect

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-21

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  5. Proteome analysis of the large and the small rubber particles of Hevea brasiliensis using 2D-DIGE.

    PubMed

    Xiang, Qiulan; Xia, Kecan; Dai, Longjun; Kang, Guijuan; Li, Yu; Nie, Zhiyi; Duan, Cuifang; Zeng, Rizhong

    2012-11-01

    The rubber particle is a specialized organelle in which natural rubber is synthesised and stored in the laticifers of Hevea brasiliensis (para rubber tree). It has been demonstrated that the small rubber particles (SRPs) has higher rubber biosynthesis ratio than the large rubber particles (LRPs), but the underlying molecular mechanism still remains unknown. In this study, LRPs and SRPs were firstly separated from the fresh latex using differential centrifugation, and two-dimensional difference in-gel electrophoresis (2D-DIGE) combined with MALDI-TOF/TOF was then applied to investigate the proteomic alterations associated with the changed rubber biosynthesis capacity between LRPs and SRPs. A total of 53 spots corresponding to 22 gene products, were significantly altered with the |ratio|≥2.0 and T value ≤0.05, among which 15 proteins were up-regulated and 7 were down-regulated in the SRPs compared with the LRPs. The 15 up-regulated proteins in the SRPs included small rubber particle protein (SRPP), 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS), phospholipase D alpha (PLD α), ethylene response factor 2, eukaryotic translation initiation factor 5A isoform IV (eIF 5A-4), 70-kDa heat shock cognate protein (HSC 70), several unknown proteins, etc., whereas the 7 up-regulated proteins in the LRPs were rubber elongation factor (REF, 19.6kDa), ASR-like protein 1, REF-like stress-related protein 1, a putative phosphoglyceride transfer family protein, β-1,3-glucanase, a putative retroelement, and a hypothetical protein. Since several proteins related to rubber biosynthesis were differentially expressed between LRPs and SRPs, the comparative proteome data may provide useful insights into understanding the mechanism involved in rubber biosynthesis and latex coagulation in H. brasiliensis.

  6. Volatility-dependent 2D IR correlation analysis of traditional Chinese medicine ‘Red Flower Oil’ preparation from different manufacturers

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Wen; Sun, Su-Qin; Zhou, Qun; Tao, Jia-Xun; Noda, Isao

    2008-06-01

    As a traditional Chinese medicine (TCM), 'Red Flower Oil' preparation is widely used as a household remedy in China and Southeast Asia. Usually, the preparation is a mixture of several plant essential oils with different volatile features, such as wintergreen oil, turpentine oil and clove oil. The proportions of these plant essential oils in 'Red Flower Oil' vary from different manufacturers. Thus, it is important to develop a simple and rapid evaluation method for quality assurance of the preparations. Fourier transform infrared (FT-IR) was applied and two-dimensional correlation infrared spectroscopy (2D IR) based on the volatile characteristic of samples was used to enhance the resolution of FT-IR spectra. 2D IR technique could, not only easily provide the composition and their volatile sequences in 'Red flower Oil' preparations, but also rapidly discriminate the subtle differences in products from different manufacturers. Therefore, FT-IR combined with volatility-dependent 2D IR correlation analysis provides a very fast and effective method for the quality control of essential oil mixtures in TCM.

  7. Fast and high-resolution stereochemical analysis by nonuniform sampling and covariance processing of anisotropic natural abundance 2D 2H NMR datasets.

    PubMed

    Lafon, Olivier; Hu, Bingwen; Amoureux, Jean-Paul; Lesot, Philippe

    2011-06-01

    Natural abundance deuterium (NAD) 2D NMR spectroscopy using chiral or achiral liquid crystals is an efficient analytical tool for the stereochemical analysis of enantio- or diastereomers by the virtue of proton-to-deuterium substitution. In particular, it allows the measurement of enantiopurity of organic synthetic molecules or the determination of the natural isotopic (1)H/(2)H fractionation in biological molecules, such as fatty acid methyl esters (FAME). So far, the NAD 2D spectra of solutes were acquired by using uniform sampling (US) and processed by conventional 2D Fourier transform (FT), which could result in long measurement times for medium-sized analytes or low solute concentrations. Herein, we demonstrate that this conventional approach can be advantageously replaced by nonuniform sampling (NUS) processed by covariance (Cov) transform. This original spectral reconstruction provides a significant enhancement of spectral resolution, as well as a reduction of measurement times. The application of Cov to NUS data has required the introduction of a regularization procedure in the time domain for the indirect dimension. The analytical potential of combining Cov and NUS is demonstrated by measuring the enantiomeric excess of a scalemic mixture of 2-ethyloxirane and by determining the diastereomeric excess of methyl vernoleate, a natural FAME. These two organic compounds were aligned in a polypeptide (poly(γ-benzyl-L-glutamate)) mesophase. In the case of NAD 2D NMR spectroscopy, we show that Cov and NUS methods allow a decrease in measurement time by a factor of two compared with Cov applied to US data and a factor of four compared with FT applied to US data.

  8. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  9. Infrared image processing devoted to thermal non-contact characterization-Applications to Non-Destructive Evaluation, Microfluidics and 2D source term distribution for multispectral tomography

    NASA Astrophysics Data System (ADS)

    Batsale, Jean-Christophe; Pradere, Christophe

    2015-11-01

    The cost of IR cameras is more and more decreasing. Beyond the preliminary calibration step and the global instrumentation, the infrared image processing is then one of the key step for achieving in very broad domains. Generally the IR images are coming from the transient temperature field related to the emission of a black surface in response to an external or internal heating (active IR thermography). The first applications were devoted to the so called thermal Non-Destructive Evaluation methods by considering a thin sample and 1D transient heat diffusion through the sample (transverse diffusion). With simplified assumptions related to the transverse diffusion, the in-plane diffusion and transport phenomena can be also considered. A general equation can be applied in order to balance the heat transfer at the pixel scale or between groups of pixels in order to estimate several fields of thermophysical properties (heterogeneous field of in-plane diffusivity, flow distributions, source terms). There is a lot of possible strategies to process the space and time distributed big amount of data (previous integral transformation of the images, compression, elimination of the non useful areas...), generally based on the necessity to analyse the derivative versus space and time of the temperature field. Several illustrative examples related to the Non-Destructive Evaluation of heterogeneous solids, the thermal characterization of chemical reactions in microfluidic channels and the design of systems for multispectral tomography, will be presented.

  10. Thermal Analysis of the Fair SIS300 Model Dipole

    NASA Astrophysics Data System (ADS)

    Sorbi, M.; Alessandria, F.; Bellomo, G.; Fabbricatore, P.; Farinon, S.; Gambardella, U.; Musenich, R.; Volpini, G.

    2010-04-01

    Design activities, conductor R&D and model coil construction are under way for the development of a curved superconducting dipole for the fast cycled SIS300 synchrotron at FAIR at GSI. The main target is the construction within 2009 of a half-length model magnet (cold mass fully integrated in a horizontal cryostat). This magnet is designed for a maximum central field of 4.5 T in a bore of 100 mm, with a ramp rate of 1 T/s. The magnetic length of the model is 3.9 m with a curvature radius of 66.67 m (27 mm of sagitta). This paper describes the thermal analysis of the magnet, based on the estimated values of the losses in the cold mass. The study has been performed with 2-D finite element codes, both in steady state and transient analysis. The study has been completed with measurements of overall thermal exchange coefficient between the kapton-insulated cables and the supercritical helium, in order to validate the adopted assumptions about the material thermal properties.

  11. THERMAL ANALYSIS OF THE FAIR SIS300 MODEL DIPOLE

    SciTech Connect

    Sorbi, M.; Bellomo, G.; Alessandria, F.; Volpini, G.; Fabbricatore, P.; Farinon, S.; Musenich, R.; Gambardella, U.

    2010-04-09

    Design activities, conductor R and D and model coil construction are under way for the development of a curved superconducting dipole for the fast cycled SIS300 synchrotron at FAIR at GSI. The main target is the construction within 2009 of a half-length model magnet (cold mass fully integrated in a horizontal cryostat). This magnet is designed for a maximum central field of 4.5 T in a bore of 100 mm, with a ramp rate of 1 T/s. The magnetic length of the model is 3.9 m with a curvature radius of 66.67 m (27 mm of sagitta). This paper describes the thermal analysis of the magnet, based on the estimated values of the losses in the cold mass. The study has been performed with 2-D finite element codes, both in steady state and transient analysis. The study has been completed with measurements of overall thermal exchange coefficient between the kapton-insulated cables and the supercritical helium, in order to validate the adopted assumptions about the material thermal properties.

  12. Thermal analysis considerations for large space structures

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Shore, C. P.

    1983-01-01

    A number of issues and needs relative to thermal analysis of large space structures and space stations are discussed. Some indications of trends in the Langley thermal-structural analysis research program consistent with the issues and needs are also presented. The main heat transfer mechanism in space is radiation; consequently, there is a need for a strong thrust on improved radiation analysis capability. Also the important interactions among temperatures, deformations, and controls need to be accounted for. Finite element analysis capability seems to be lagging behind lumped-parameter capability or heat pipe analysis. The Langley plan will include improving radiation analysis capability, evaluating the errors involved in certain approximate analysis and modeling techniques for large space trusses, and continuing the development of integrated thermal-structural finite elements with an emphasis on radiation heat transfer. Work will be initiated to develop finite element analysis techniques for heat pipes. Finally, optimization research activities will be oriented toward methods to design flexible orbiting structures to account for thermal and thermal deformation requirements.

  13. Proteomic analysis of doxorubicin-induced changes in the proteome of HepG2cells combining 2-D DIGE and LC-MS/MS approaches.

    PubMed

    Hammer, Elke; Bien, Sandra; Salazar, Manuela Gesell; Steil, Leif; Scharf, Christian; Hildebrandt, Petra; Schroeder, Henry W S; Kroemer, Heyo K; Völker, Uwe; Ritter, Christoph A

    2010-01-01

    HepG-2 cells are widely used as a cell model to investigate hepatocellular carcinomas and the effect of anticancer drugs such as doxorubicin, an effective antineoplastic agent, which has broad antitumoral activity against many solid and hematological malignancies. To investigate the effect of doxorubicin on the protein pattern, we used complementary proteomic workflows including 2-D gel-based and gel-free methods. The analysis of crude HepG2 cell extracts by 2-D DIGE provided data on 1835 protein spots which was then complemented by MS-centered analysis of stable isotope labeling by amino acids in cell culture-labeled cells. The monitoring of more than 1300 distinct proteins, including proteins of the membrane fraction provides the most comprehensive overview on the proteome of the widely used model cell line HepG2. Of the proteins monitored in total, 155 displayed doxorubicin-induced changes in abundance. Functional analysis revealed major influences of doxorubicin on proteins involved in protein synthesis, DNA damage control, electron transport/mitochondrial function, and tumor growth. The strongest decrease in level was found for proteins involved in DNA replication and protein synthesis, whereas proteins with a function in DNA damage control and oxidative stress management displayed increased levels following treatment with doxorubicin compared with control cells. Furthermore, the doxorubicin-associated increase in levels of multiple forms of keratins 8, 18, and 19 and other structural proteins revealed an influence on the cytoskeleton network.

  14. Two-Dimensional Thermal Resistance Analysis of a Waste Heat Recovery System with Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Huang, Gia-Yeh; Yao, Da-Jeng

    2013-07-01

    In this study, it is shown that two-dimensional (2D) thermal resistance analysis is a rapid and simple method to predict the power generated from a waste heat recovery system with thermoelectric generators (TEGs). Performance prediction is an important part of system design, generally being simulated by numerical methods with high accuracy but long computational duration. Use of the presented analysis saves much time relative to such numerical methods. The simple 2D model of the waste heat recovery system comprises three parts: a recovery chamber, the TEGs, and a cooling system. A fin-structured duct serves as a heat recovery chamber, to which were attached the hot sides of two TEGs; the cold sides were attached to a cooling system. The TEG module and duct had the same width. In the 2D analysis, unknown temperatures are located at the centroid of each cell into which the system is divided. The relations among the unknown temperatures of the cells are based on the principle of energy conservation and the definition of thermal resistance. The temperatures of the waste hot gas at the inlet and of the ambient fluid are known. With these boundary conditions, the unknown temperatures in the system become solvable, and the power generated by the TEGs can be predicted. Meanwhile, a three-dimensional (3D) model of the system was simulated in FloTHERM 9.2. The 3D numerical solution matched the solution of the 2D analysis within 10%.

  15. High-throughput morphometric analysis of pulmonary airways in MSCT via a mixed 3D/2D approach

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2011-03-01

    Asthma and COPD are complex airway diseases with an increased incidence estimated for the next decade. Today, the mechanisms and relationships between airway structure/physiology and the clinical phenotype and genotype are not completely understood. We thus lack the tools to predict disease progression or therapeutic responses. One of the main causes is our limited ability to assess the complexity of airway diseases in large populations of patients with appropriate controls. Multi-slice computed tomography (MSCT) imaging opened the way to the non-invasive assessment of airway physiology and structure, but the use of such technology in large cohorts requires a high degree of automation of the measurements. This paper develops an investigation framework and the associated image quantification tools for high-throughput analysis of airways in MSCT. A mixed approach is proposed, combining 3D and cross-section measurements of the airway tree where the user-interaction is limited to the choice of the desired analysis patterns. Such approach relies on the fully-automated segmentation of the 3D airway tree, caliber estimation and visualization based on morphologic granulometry, central axis computation and tree segment selection, cross-section morphometry of airway lumen and wall, and bronchus longitudinal shape analysis for stenosis/bronciectasis detection and measure validation. The developed methodology has been successfully applied to a cohort of 96 patients from a multi-center clinical study of asthma control in moderate and persistent asthma.

  16. Thermal strain analysis of optic fiber sensors.

    PubMed

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2013-01-31

    An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating.

  17. Thermal Analysis of a TREAT Fuel Assembly

    SciTech Connect

    Papadias, Dionissios; Wright, Arthur E.

    2014-07-09

    The objective of this study was to explore options as to reduce peak cladding temperatures despite an increase in peak fuel temperatures. A 3D thermal-hydraulic model for a single TREAT fuel assembly was benchmarked to reproduce results obtained with previous thermal models developed for a TREAT HEU fuel assembly. In exercising this model, and variants thereof depending on the scope of analysis, various options were explored to reduce the peak cladding temperatures.

  18. Characterization of the isomeric configuration and impurities of (Z)-endoxifen by 2D NMR, high resolution LC–MS, and quantitative HPLC analysis

    PubMed Central

    Elkins, Phyllis; Coleman, Donna; Burgess, Jason; Gardner, Michael; Hines, John; Scott, Brendan; Kroenke, Michelle; Larson, Jami; Lightner, Melissa; Turner, Gregory; White, Jonathan; Liu, Paul

    2014-01-01

    (Z)-Endoxifen (4-hydroxy-N-desmethyltamoxifen), an active metabolite generated via actions of CYP3A4/5 and CYP2D6, is a more potent selective estrogen receptor modulator (SERM) than tamoxifen. In the MCF-7 human mammary tumor xenograft model with female athymic mice, (Z)-endoxifen, at an oral dose of 4– 8 mg/kg, significantly inhibits tumor growth. (Z)-Endoxifen's potential as an alternative therapeutic agent independent of CYP2D6 activities, which can vary widely in ER+ breast cancer patients, is being actively evaluated. This paper describes confirmation of the configuration of the active (Z)-isomer through 2D NMR experiments, including NOE (ROESY) to establish spatial proton–proton correlations, and identification of the major impurity as the (E)-isomer in endoxifen drug substance by HPLC/HRMS (HPLC/MS-TOF). Stability of NMR solutions was confirmed by HPLC/UV analysis. For pre-clinical studies, a reverse-phase HPLC–UV method, with methanol/water mobile phases containing 10 mM ammonium formate at pH 4.3, was developed and validated for the accurate quantitation and impurity profiling of drug substance and drug product. Validation included demonstration of linearity, method precision, accuracy, and specificity in the presence of impurities, excipients (for the drug product), and degradation products. Ruggedness and reproducibility of the method were confirmed by collaborative studies between two independent laboratories. The method is being applied for quality control of the API and oral drug product. Kinetic parameters of Z- to E-isomerization were also delineated in drug substance and in aqueous formulation, showing conversion at temperatures above 25 °C. PMID:24055701

  19. Comparison of 2D Finite Element Modeling Assumptions with Results From 3D Analysis for Composite Skin-Stiffener Debonding

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isbelle L.; OBrien, T. Kevin; Minguet, Pierre J.

    2004-01-01

    The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane-strain elements as well as three different generalized plane strain type approaches were performed. The computed skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with delamination length. For more accurate predictions, however, a three-dimensional analysis is required.

  20. Thermally-induced single-crystal-to-single-crystal transformations from a 2D two-fold interpenetrating square lattice layer to a 3D four-fold interpenetrating diamond framework and its application in dye-sensitized solar cells.

    PubMed

    Gao, Song; Fan, Rui Qing; Wang, Xin Ming; Wei, Li Guo; Song, Yang; Du, Xi; Xing, Kai; Wang, Ping; Yang, Yu Lin

    2016-07-28

    In this work, a rare 2D → 3D single-crystal-to-single-crystal transformation (SCSC) is observed in metal-organic coordination complexes, which is triggered by thermal treatment. The 2D two-fold interpenetrating square lattice layer [Cd(IBA)2]n (1) is irreversibly converted into a 3D four-fold interpenetrating diamond framework {[Cd(IBA)2(H2O)]·2.5H2O}n (2) (HIBA = 4-(1H-imidazol-1-yl)benzoic acid). Consideration is given to these two complexes with different interpenetrating structures and dimensionality, and their influence on photovoltaic properties are studied. Encouraged by the UV-visible absorption and HOMO-LUMO energy states matched for sensitizing TiO2, the two complexes are employed in combination with N719 in dye-sensitized solar cells (DSSCs) to compensate absorption in the ultraviolet and blue-violet region, offset competitive visible light absorption of I3(-) and reducing charge the recombination of injected electrons. After co-sensitization with 1 and 2, the device co-sensitized by 1/N719 and 2/N719 to yield overall efficiencies of 7.82% and 8.39%, which are 19.94% and 28.68% higher than that of the device sensitized only by N719 (6.52%). Consequently, high dimensional interpenetrating complexes could serve as excellent co-sensitizers and have application in DSSCs. PMID:27356177

  1. Thermally-induced single-crystal-to-single-crystal transformations from a 2D two-fold interpenetrating square lattice layer to a 3D four-fold interpenetrating diamond framework and its application in dye-sensitized solar cells.

    PubMed

    Gao, Song; Fan, Rui Qing; Wang, Xin Ming; Wei, Li Guo; Song, Yang; Du, Xi; Xing, Kai; Wang, Ping; Yang, Yu Lin

    2016-07-28

    In this work, a rare 2D → 3D single-crystal-to-single-crystal transformation (SCSC) is observed in metal-organic coordination complexes, which is triggered by thermal treatment. The 2D two-fold interpenetrating square lattice layer [Cd(IBA)2]n (1) is irreversibly converted into a 3D four-fold interpenetrating diamond framework {[Cd(IBA)2(H2O)]·2.5H2O}n (2) (HIBA = 4-(1H-imidazol-1-yl)benzoic acid). Consideration is given to these two complexes with different interpenetrating structures and dimensionality, and their influence on photovoltaic properties are studied. Encouraged by the UV-visible absorption and HOMO-LUMO energy states matched for sensitizing TiO2, the two complexes are employed in combination with N719 in dye-sensitized solar cells (DSSCs) to compensate absorption in the ultraviolet and blue-violet region, offset competitive visible light absorption of I3(-) and reducing charge the recombination of injected electrons. After co-sensitization with 1 and 2, the device co-sensitized by 1/N719 and 2/N719 to yield overall efficiencies of 7.82% and 8.39%, which are 19.94% and 28.68% higher than that of the device sensitized only by N719 (6.52%). Consequently, high dimensional interpenetrating complexes could serve as excellent co-sensitizers and have application in DSSCs.

  2. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  3. The Fluctuation-Dissipation Theorem of Colloidal Particle's energy on 2D Periodic Substrates: A Monte Carlo Study of thermal noise-like fluctuation and diffusion like Brownian motion

    NASA Astrophysics Data System (ADS)

    Najafi, Amin

    2014-05-01

    Using the Monte Carlo simulations, we have calculated mean-square fluctuations in statistical mechanics, such as those for colloids energy configuration are set on square 2D periodic substrates interacting via a long range screened Coulomb potential on any specific and fixed substrate. Random fluctuations with small deviations from the state of thermodynamic equilibrium arise from the granular structure of them and appear as thermal diffusion with Gaussian distribution structure as well. The variations are showing linear form of the Fluctuation-Dissipation Theorem on the energy of particles constitutive a canonical ensemble with continuous diffusion process of colloidal particle systems. The noise-like variation of the energy per particle and the order parameter versus the Brownian displacement of sum of large number of random steps of particles at low temperatures phase are presenting a markovian process on colloidal particles configuration, too.

  4. Self-diffusion of polycrystalline ice Ih under confining pressure: Hydrogen isotope analysis using 2-D Raman imaging

    NASA Astrophysics Data System (ADS)

    Noguchi, Naoki; Kubo, Tomoaki; Durham, William B.; Kagi, Hiroyuki; Shimizu, Ichiko

    2016-08-01

    We have developed a high-resolution technique based on micro Raman spectroscopy to measure hydrogen isotope diffusion profiles in ice Ih. The calibration curve for quantitative analysis of deuterium in ice Ih was constructed using micro Raman spectroscopy. Diffusion experiments using diffusion couples composed of dense polycrystalline H2O and D2O ice were carried out under a gas confining pressure of 100 MPa (to suppress micro-fracturing and pore formation) at temperatures from 235 K to 245 K and diffusion times from 0.2 to 94 hours. Two-dimensional deuterium profiles across the diffusion couples were determined by Raman imaging. The location of small spots of frost from room air could be detected from the shapes of the Raman bands of OH and OD stretching modes, which change because of the effect of the molar ratio of deuterium on the molecular coupling interaction. We emphasize the validity for screening the impurities utilizing the coupling interaction. Some recrystallization and grain boundary migration occurred in recovered diffusion couples, but analysis of two-dimensional diffusion profiles of regions not affected by grain boundary migration allowed us to measure a volume diffusivity for ice at 100 MPa of (2.8 ± 0.4) ×10-3exp[ -57.0±15.4kJ/mol/RT ] m2 /s (R is the gas constant, T is temperature). Based on ambient pressure diffusivity measurements by others, this value indicates a high (negative) activation volume for volume diffusivity of -29.5 cm3/mol or more. We can also constrain the value of grain boundary diffusivity in ice at 100 MPa to be <104 that of volume diffusivity.

  5. NOTE: A software tool for 2D/3D visualization and analysis of phase-space data generated by Monte Carlo modelling of medical linear accelerators

    NASA Astrophysics Data System (ADS)

    Neicu, Toni; Aljarrah, Khaled M.; Jiang, Steve B.

    2005-10-01

    A computer program has been developed for novel 2D/3D visualization and analysis of the phase-space parameters of Monte Carlo simulations of medical accelerator radiation beams. The software is written in the IDL language and reads the phase-space data generated in the BEAMnrc/BEAM Monte Carlo code format. Contour and colour-wash plots of the fluence, mean energy, energy fluence, mean angle, spectra distribution, energy fluence distribution, angular distribution, and slices and projections of the 3D ZLAST distribution can be calculated and displayed. Based on our experience of using it at Massachusetts General Hospital, the software has proven to be a useful tool for analysis and verification of the Monte Carlo generated phase-space files. The software is in the public domain.

  6. Hyporheic Exchange: Analysis of Aquifer Heterogeneity, Channel Morphology and Bedforms- 2D and 3D Simulations Using MODFLOW and MODPATH

    NASA Astrophysics Data System (ADS)

    Matos, J. R.; Welty, C.; Packman, A.

    2005-12-01

    The main purpose of the simulations in this research is the analysis of three-dimensional surface-groundwater interchange in heterogeneous systems. The effects of channel pattern, bed forms and aquifer heterogeneity on flow interactions between stream and groundwater systems are examined in order to contribute for a better understanding of the hyporheic process. A two-dimensional approach was also adopted to allow comparisons with the three-dimensional results. The grid was designed using the correlation scales of the heterogeneous fields and the scale of the stream meanders. MODFLOW and MODPATH were used to evaluate magnitude, direction and spatial distribution of the exchange flow. PMWIN and PMPATH were used as pre and post-processors during the construction of the models and analysis of results. Gaining and losing streams as well as parallel flow and flow across streams were simulated as idealized cases intended to describe how properties of the streambed and aquifer in low-gradient lowland streams contribute to hyporheic exchange. At first a straight river was analyzed then meandering streams were created with a sine curve and variations on wavelength and amplitude. Bed forms were simulated assuming a sinusoidal distribution of pressure head in the bed surface. Aspects of the influence of bedforms on mechanisms such as "pumping" and "turnover" are expected to be addressed with simulations. Flow velocities between 20 and 40 cm/s in the channel were tested with the objective of showing the influence of river morphology and natural bed forms on the flow exchange in the hyporheic zone. Several meander cycles and four levels of hydraulic conductivity variance were analyzed. Results of flow variances along the cross-sections and wetted perimeter show the increasing on hyporheic exchange as the degree of heterogeneity increases. Particle tracking was performed to define hyporheic residence time distributions. When comparing the homogeneous fields with all degrees of

  7. Diagnostic Accuracy of 2D-Shear Wave Elastography for Liver Fibrosis Severity: A Meta-Analysis

    PubMed Central

    Jiang, Tian’an; Tian, Guo; Zhao, Qiyu; Kong, Dexing; Cheng, Chao; Zhong, Liyun; Li, Lanjuan

    2016-01-01

    Purpose To evaluate the accuracy of shear wave elastography (SWE) in the quantitative diagnosis of liver fibrosis severity. Methods The published literatures were systematically retrieved from PubMed, Embase, Web of science and Scopus up to May 13th, 2016. Included studies reported the pooled sensitivity, specificity, positive and negative predictive values, as well as the diagnostic odds ratio of SWE in populations with liver fibrosis. A bivariate mixed-effects regression model was used, which was estimated by the I2 statistics. The quality of articles was evaluated by quality assessment of diagnostic accuracy studies (QUADAS). Results Thirteen articles including 2303 patients were qualified for the study. The pooled sensitivity and specificity of SWE for the diagnosis of liver fibrosis are as follows: ≥F1 0.76 (p<0.001, 95% CI, 0.71–0.81, I2 = 75.33%), 0.92 (p<0.001, 95% CI, 0.80–0.97, I2 = 79.36%); ≥F2 0.84 (p = 0.35, 95% CI, 0.81–0.86, I2 = 9.55%), 0.83 (p<0.001, 95% CI, 0.77–0.88, I2 = 86.56%); ≥F3 0.89 (p = 0.56, 95% CI, 0.86–0.92, I2 = 0%), 0.86 (p<0.001, 95% CI, 0.82–0.90, I2 = 75.73%); F4 0.89 (p = 0.24, 95% CI, 0.84–0.92, I2 = 20.56%), 0.88 (p<0.001, 95% CI, 0.84–0.92, I2 = 82.75%), respectively. Sensitivity analysis showed no significant changes if any one of the studies was excluded. Publication bias was not detected in this meta-analysis. Conclusions Our study suggests that SWE is a helpful method to appraise liver fibrosis severity. Future studies that validate these findings would be appropriate. PMID:27300569

  8. A model of adsorption of albumin on the implant surface titanium and titanium modified carbon coatings (MWCNT-EPD). 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Wesełucha-Birczyńska, Aleksandra; Stodolak-Zych, Ewa; Piś, Wojciech; Długoń, Elżbieta; Benko, Aleksandra; Błażewicz, Marta

    2016-11-01

    Common materials used as orthopedic implants are titanium and its alloys. To improve its compatibility with the environment of a living organism titanium implant surfaces are covered with bioactive layers of MWCNT. During the insertion into a living organism such material is exposed to direct contact with the patient's blood, which includes proteins - eg. albumin. The adsorption of albumin may constitute one of the early stages of implant surface modification serving cell adhesion. An analysis of this phenomenon in terms of the kinetics of deposition of protein on the surface of the implant confirms its biocompatibility in vivo. The proposed working model of the adsorption of albumin allows for choosing the best of time for the protein to form a stable connection with the surface of the titanium implant. Traditional methods of materials engineering and chemistry allow for the obtaining of information about the presence of a protein on the surface (UV-Vis, the wettability). The application of 2D correlation analysis, in turn, gains insight into the dynamics of the changes associated with the deposition of protein (the formation of a uniform layer, the change in conformation). This analysis has allowed for the selection of an optimal time of protein adsorption to the surface of the implant. Better compatibility with the body of the implant provides its modification by introducing layers that accelerate the material-tissue interactions. Such a composition is a layer of carbon nanotubes (MWCNTs) deposited on titanium by the electrophoretic (EPD) method. Using Raman spectroscopy and analyzing the spectra with the 2D correlation method it is possible to gain insight into the molecular structure of this layer. Our studies indicate that albumin in contact with the surface of titanium has obtained stable conformation after 30 min (confirmed by: UV-Vis, Raman). Shifts of the CH2, CH3 stretching bands position as well as an analysis of the amide I band confirms this

  9. Thermal and structural analysis of Hermes

    NASA Astrophysics Data System (ADS)

    Petiau, C.

    1989-01-01

    The organization of the thermal and structural analysis of the Hermes project is described. A way to resolve the problem of connections between calculations performed by the different Hermes partners is outlined. The interactions between the general model of TPS (thermal protection system) used for global dimensioning of insulation, and refined thermal models giving accurate temperature map details of hot and cold structures, are described. The organization of the structural analysis is based on a finite element general model which supports preliminary design, loads and vibration analyses. Boundary conditions for refined subpart analyses, are cut to size, into the general model by super element techniques. This process involves the use by all partners of efficient computer codes. The Catia-Elfini software system is proposed as a possible code system for structural analysis and optimization purposes.

  10. An evaluation of superminicomputers for thermal analysis

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Vidal, J. B.; Jones, G. K.

    1962-01-01

    The feasibility and cost effectiveness of solving thermal analysis problems on superminicomputers is demonstrated. Conventional thermal analysis and the changing computer environment, computer hardware and software used, six thermal analysis test problems, performance of superminicomputers (CPU time, accuracy, turnaround, and cost) and comparison with large computers are considered. Although the CPU times for superminicomputers were 15 to 30 times greater than the fastest mainframe computer, the minimum cost to obtain the solutions on superminicomputers was from 11 percent to 59 percent of the cost of mainframe solutions. The turnaround (elapsed) time is highly dependent on the computer load, but for large problems, superminicomputers produced results in less elapsed time than a typically loaded mainframe computer.

  11. An analysis of electrochemical energy storage using electrodes fabricated from atomically thin 2D structures of MoS2, graphene and MoS2/graphene composites

    NASA Astrophysics Data System (ADS)

    Huffstutler, Jacob D.

    The behavior of 2D materials has become of great interest in the wake of development of electrochemical double-layer capacitors (EDLCs) and the discovery of monolayer graphene by Geim and Novoselov. This study aims to analyze the response variance of 2D electrode materials for EDLCs prepared through the liquid-phase exfoliation method when subjected to differing conditions. Once exfoliated, samples are tested with a series of structural characterization methods, including tunneling electron microscopy, atomic force microscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy. A new ionic liquid for EDLC use, 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate is compared in performance to 6M potassium hydroxide aqueous electrolyte. Devices composed of liquid-phase exfoliated graphene / MoS2 composites are analyzed by concentration for ideal performance. Device performance under cold extreme temperatures for the ionic fluid is presented as well. A brief overview of by-layer analysis of graphene electrode materials is presented as-is. All samples were tested with cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy, with good capacitive results. The evolution of electrochemical behavior through the altered parameters is tracked as well.

  12. Near-infrared (NIR) imaging analysis of polylactic acid (PLA) nanocomposite by multiple-perturbation two-dimensional (2D) correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Murakami, Takurou N.; Nishida, Masakazu; Kanematsu, Wataru; Noda, Isao

    2014-07-01

    Multiple-perturbation two-dimensional (2D) correlation spectroscopy was applied to sets of near-infrared (NIR) imaging data of polylactic acid (PLA) nanocomposite samples undergoing UV degradation. Incorporation of clay nanoparticles substantially lowers the surface free energy barrier for the nucleation of PLA and eventually increases the frequency of the spontaneous nucleation of PLA crystals. Thus, when exposed to external stimuli such as UV light, PLA nanocomposite may show different structure alternation depending on the clay dispersion. Multiple-perturbation 2D correlation analysis of the PLA nanocomposite samples revealed different spatial variation between crystalline and amorphous structure of PLA, and the phenomenon especially becomes acute in the region where the clay particles are coagulated. The incorporation of the clay leads to the cleavage-induced crystallization of PLA when the sample is subjected to the UV light. The additional development of the ordered crystalline structure then works favorably to restrict the initial degradation of the polymer, providing the delay in the weight loss of the PLA.

  13. [Analysis and identification of Poria cocos peels harvested from different producing areas by FTIR and 2D-IR correlation spectroscopy].

    PubMed

    Ma, Fang; Zhang, Fang; Tang, Jin; Chen, Ping; Chen, Jian-Bo; Zhou, Qun; Sun, Su-Qin

    2014-02-01

    Different geographical regions of traditional Chinese medicine (TCM), its chemical composition is different, the accumulation of drug and medicinal properties is different. The accurate identification and analysis of different production area of medicinal herbs is critical for the quality control and pharmacological research of TCM. In this paper, a tri-step infrared spectroscopy (Fourier transform infrared spectroscopy (FTIR) combined with second derivative spectra and two-dimensional correlation infrared spectroscopy (2D-COS) were employed to identify and analyze the main components of Hubei (HB), Anhui (AH), Yun-nan (YN) genuine Poria Cocos peels. The emergence of several characteristic absorption peaks of carbohydrates including 1149, 1079 1036 cm(-1), peaks around 1619, 1315, 780 cm(-1) belonged to calcium oxalate suggested that HB and AH Poria Cocos peels contained calcium oxalate, but peaks around 797, 779, 537, 470 cm(-1) belonged to kaoline suggested that YN Poria Cocos peels contained kaoline. Their carbohydrates were different by comparing the second derivative infrared spectra in the range of 1640-450 cm(-1) and Yongping come from YN contains both calcium oxalate and kaoline. Furthermore, the above differences were visually validated by two-dimensional correlation spectroscopy (2D-COS). It was demonstrated that the Tri-step infrared spectroscopy were successfully applied to fast analyze and identify Poria Cocos peels from different geographical regions and subsequently would be applicable to explain the relevance of geographical regions and medicinal properties for the TCM.

  14. Application of rank-ordered multifractal analysis (ROMA) to intermittent fluctuations in 3D turbulent flows, 2D MHD simulation and solar wind data

    NASA Astrophysics Data System (ADS)

    Wu, C.; Chang, T.

    2010-12-01

    A new method in describing the multifractal characteristics of intermittent events was introduced by Cheng and Wu [Chang T. and Wu C.C., Physical Rev, E77, 045401(R), 2008]. The procedure provides a natural connection between the rank-ordered spectrum and the idea of one-parameter scaling for monofractals. This technique has been demonstrated using results obtained from a 2D MHD simulation. It has also been successfully applied to in-situ solar wind observations [Chang T., Wu, C.C. and Podesta, J., AIP Conf Proc. 1039, 75, 2008], and the broadband electric field oscillations from the auroral zone [Tam, S.W.Y. et al., Physical Rev, E81, 036414, 2010]. We take the next step in this procedure. By using the ROMA spectra and the scaled probability distribution functions (PDFs), raw PDFs can be calculated, which can be compared directly with PDFs from observations or simulation results. In addition to 2D MHD simulation results and in-situ solar wind observation, we show clearly using the ROMA analysis the multifractal character of the 3D fluid simulation data obtained from the JHU turbulence database cluster at http://turbulence.pha.jhu.edu. In particular, we show the scaling of the non-symmetrical PDF for the parallel-velocity fluctuations of this 3D fluid data.

  15. Hip2Norm: an object-oriented cross-platform program for 3D analysis of hip joint morphology using 2D pelvic radiographs.

    PubMed

    Zheng, G; Tannast, M; Anderegg, C; Siebenrock, K A; Langlotz, F

    2007-07-01

    We developed an object-oriented cross-platform program to perform three-dimensional (3D) analysis of hip joint morphology using two-dimensional (2D) anteroposterior (AP) pelvic radiographs. Landmarks extracted from 2D AP pelvic radiographs and optionally an additional lateral pelvic X-ray were combined with a cone beam projection model to reconstruct 3D hip joints. Since individual pelvic orientation can vary considerably, a method for standardizing pelvic orientation was implemented to determine the absolute tilt/rotation. The evaluation of anatomically morphologic differences was achieved by reconstructing the projected acetabular rim and the measured hip parameters as if obtained in a standardized neutral orientation. The program had been successfully used to interactively objectify acetabular version in hips with femoro-acetabular impingement or developmental dysplasia. Hip(2)Norm is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway) for graphical user interface (GUI) and is transportable to any platform. PMID:17499878

  16. Variable-temperature Fourier-transform infrared studies of poly(L-lactic acid) in different states of order: A 2DCOS and PCMW2D analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Pudun; Unger, Miriam; Pfeifer, Frank; Siesler, Heinz W.

    2016-11-01

    Variable-temperature Fourier-transform infrared (FT-IR) spectra of a predominantly amorphous and a semi-crystalline poly(L-lactic acid) (PLLA) film were measured between 30 °C and 170 °C in order to investigate their temperature-dependent structural changes as a function of the initial state of order. For an in-depth analysis of the spectral variations in the carbonyl stretching band region (1803-1722 cm-1) two-dimensional correlation spectroscopy (2DCOS) and perturbation-correlation moving-window two-dimensional (PCMW2D) analyses were applied. Significant spectral changes were observed during heating of the amorphous PLLA sample whereas the semi-crystalline specimen showed only slight band shifts as a function of the external perturbation. The PCMW2D results suggested that for efficient 2DCOS analyses the heating process should be split up in two temperature intervals. These analyses then provided information on the recrystallization of the amorphous regions, the presence of an intermediate state of order and a sequence scenario for the observed spectral changes.

  17. Hip2Norm: an object-oriented cross-platform program for 3D analysis of hip joint morphology using 2D pelvic radiographs.

    PubMed

    Zheng, G; Tannast, M; Anderegg, C; Siebenrock, K A; Langlotz, F

    2007-07-01

    We developed an object-oriented cross-platform program to perform three-dimensional (3D) analysis of hip joint morphology using two-dimensional (2D) anteroposterior (AP) pelvic radiographs. Landmarks extracted from 2D AP pelvic radiographs and optionally an additional lateral pelvic X-ray were combined with a cone beam projection model to reconstruct 3D hip joints. Since individual pelvic orientation can vary considerably, a method for standardizing pelvic orientation was implemented to determine the absolute tilt/rotation. The evaluation of anatomically morphologic differences was achieved by reconstructing the projected acetabular rim and the measured hip parameters as if obtained in a standardized neutral orientation. The program had been successfully used to interactively objectify acetabular version in hips with femoro-acetabular impingement or developmental dysplasia. Hip(2)Norm is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway) for graphical user interface (GUI) and is transportable to any platform.

  18. Semi-automated 2D Bruch's membrane shape analysis in papilledema using spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wang, Jui-Kai; Sibony, Patrick A.; Kardon, Randy H.; Kupersmith, Mark J.; Garvin, Mona K.

    2015-03-01

    Recent studies have shown that the Bruch's membrane (BM) and retinal pigment epithelium (RPE), visualized on spectral-domain optical coherence tomography (SD-OCT), is deformed anteriorly towards the vitreous in patients with intracranial hypertension and papilledema. The BM/RPE shape has been quantified using a statistical-shape-model approach; however, to date, the approach has involved the tedious and time-consuming manual placement of landmarks and correspondingly, only the shape (and shape changes) of a limited number of patients has been studied. In this work, we first present a semi-automated approach for the extraction of 20 landmarks along the BM from an optic-nerve-head (ONH) centered OCT slice from each patient. In the approach, after the manual placement of the two Bruch's membrane opening (BMO) points, the remaining 18 landmarks are automatically determined using a graph-based segmentation approach. We apply the approach to the OCT scans of 116 patients (at baseline) enrolled in the Idiopathic Intracranial Hypertension Treatment Trial and generate a statistical shape model using principal components analysis. Using the resulting shape model, the coefficient (shape measure) corresponding to the second principal component (eigenvector) for each set of landmarks indicates the degree of the BM/RPE is oriented away from the vitreous. Using a subset of 20 patients, we compare the shape measure computed using this semi-automated approach with the resulting shape measure when (1) all landmarks are specified manually (Experiment I); and (2) a different expert specifies the two BMO points (Experiment II). In each case, a correlation coefficient >= 0.99 is obtained.

  19. The Tenth Thermal and Fluids Analysis Workshop

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok (Compiler); McConnaughey, Paul (Technical Monitor)

    2001-01-01

    The Tenth Thermal arid Fluids Analysis Workshop (TFAWS 99) was held at the Bevill Center, University of Alabama in Huntsville, Huntsville, Alabama, September 13-17, 1999. The theme for the hands-on training workshop and conference was "Tools and Techniques Contributing to Engineering Excellence". Forty-seven technical papers were presented in four sessions. The sessions were: (1) Thermal Spacecraft/Payloads, (2) Thermal Propulsion/Vehicles, (3) Interdisciplinary Paper, and (4) Fluids Paper. Forty papers were published in these proceedings. The remaining seven papers were not available in electronic format at the time of publication. In addition to the technical papers, there were (a) nine hands-on classes on thermal and flow analyses software, (b) twelve short courses, (c) thirteen product overview lectures, and (d) three keynote lectures. The workshop resulted in participation of 171 persons representing NASA Centers, Government agencies, aerospace industries, academia, software providers, and private corporations.

  20. Image based performance analysis of thermal imagers

    NASA Astrophysics Data System (ADS)

    Wegner, D.; Repasi, E.

    2016-05-01

    Due to advances in technology, modern thermal imagers resemble sophisticated image processing systems in functionality. Advanced signal and image processing tools enclosed into the camera body extend the basic image capturing capability of thermal cameras. This happens in order to enhance the display presentation of the captured scene or specific scene details. Usually, the implemented methods are proprietary company expertise, distributed without extensive documentation. This makes the comparison of thermal imagers especially from different companies a difficult task (or at least a very time consuming/expensive task - e.g. requiring the execution of a field trial and/or an observer trial). For example, a thermal camera equipped with turbulence mitigation capability stands for such a closed system. The Fraunhofer IOSB has started to build up a system for testing thermal imagers by image based methods in the lab environment. This will extend our capability of measuring the classical IR-system parameters (e.g. MTF, MTDP, etc.) in the lab. The system is set up around the IR- scene projector, which is necessary for the thermal display (projection) of an image sequence for the IR-camera under test. The same set of thermal test sequences might be presented to every unit under test. For turbulence mitigation tests, this could be e.g. the same turbulence sequence. During system tests, gradual variation of input parameters (e. g. thermal contrast) can be applied. First ideas of test scenes selection and how to assembly an imaging suite (a set of image sequences) for the analysis of imaging thermal systems containing such black boxes in the image forming path is discussed.

  1. NUBOW-2D Inelastic

    2002-01-31

    This program solves the two-dimensional mechanical equilbrium configuration of a core restraint system, which is subjected to radial temperature and flux gradients, on a time increment basis. At each time increment, the code calculates the irradiation creep and swelling strains for each duct from user-specified creep and swelling correlations. Using the calculated thermal bowing, inelastic bowing and the duct dilation, the corresponding equilibrium forces, beam deflections, total beam displacements, and structural reactivity changes are calculated.

  2. A quantitative analysis of 2-D gels identifies proteins in which labeling is increased following long-term sensitization in Aplysia

    SciTech Connect

    Castellucci, V.F.; Kennedy, T.E.; Kandel, E.R.; Goelet, P. )

    1988-06-01

    Long-term memory for sensitization of the gill- and siphon-withdrawal reflex in Aplysia, produced by 4 days of training, is associated with increased synaptic efficacy of the connection between the sensory and motor neurons. This training is also accompanied by neuronal growth; there is an increase in the number of synaptic varicosities per sensory neuron and in the number of active zones. Such structural changes may be due to changes in the rates of synthesis of certain proteins. We have searched for proteins in which the rates of ({sup 35}S)methionine labeling are altered during the maintenance phase of long-term memory for sensitization by using computer-assisted quantitative 2-D gel analysis. This method has allowed us to detect 4 proteins in which labeling is altered after 4 days of sensitization training.

  3. Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.

  4. Differential thermal analysis of lunar soil simulant

    NASA Technical Reports Server (NTRS)

    Tucker, D.; Setzer, A.

    1991-01-01

    Differential thermal analysis of a lunar soil simulant, 'Minnesota Lunar Simulant-1' (MLS-1) was performed. The MLS-1 was tested in as-received form (in glass form) and with another silica. The silica addition was seen to depress nucleation events which lead to a better glass former.

  5. Probabilistic structural analysis for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin

    1993-01-01

    Viewgraphs of probabilistic structural analysis for nuclear thermal propulsion are presented. The objective of the study was to develop a methodology to certify Space Nuclear Propulsion System (SNPS) Nozzle with assured reliability. Topics covered include: advantage of probabilistic structural analysis; space nuclear propulsion system nozzle uncertainties in the random variables; SNPS nozzle natural frequency; and sensitivity of primitive variable uncertainties SNPS nozzle natural frequency and shell stress.

  6. Thermal analysis of a linear infrared lamp

    SciTech Connect

    Nakos, J.T.

    1982-01-01

    A theoretical and experimental analysis of an infrared lamp is presented based on radiant heat transfer theory. The analysis is performed on a specific type of linear lamp which has a coiled tungsten filament surrounded by a fused quartz envelope. The purpose of the study was to model the lamp thermally, not electrically, to arrive at a better understanding of the operation of the lamp.

  7. Analysis and Visualization of 2D and 3D Grain and Pore Size ofFontainebleau Sandstone Using Digital Rock Physics

    NASA Astrophysics Data System (ADS)

    Latief, FDE

    2016-08-01

    Fontainebleau sandstone is sandstone found in one of the cities in France. This sandstone has unique characteristics, which is a clean-fme sandstone, composed of 99% quartz, virtually devoid of clay, with the grain size of about 200 μm. Fontainebleau sandstone is widely used as a reference in the study of rock microstructure analysis and modelling. In this work analysis regarding the grain and pore size of Fontainebleau is presented. Calculation of 2D pore size and grain size distribution were done on the 299 slice of digital image of the Fontainebleau sandstone using Feret's diameters, equivalent diameters (d = 4A/P), and by means of local thickness/separation using plate model. For the 3D grain and pore size distribution, calculation of local thickness and local separation of the structure were used. Two dimensional analysis by means of Feret's diameter and equivalent diameter reveal that both grain and pore size distributions are in the form of reverse-J shaped (right skewed) while the local thickness/separation approach produces almost similar to symmetric Gaussian distribution. Three dimensional analysis produces fairly symmetric Gaussian distribution for both the grain and pore size. Further image processing were conducted and were succeed in producing three dimensional visual of the colour coded structure thickness (grain related) and structure separation (pore related).

  8. A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients.

    PubMed

    Lledó, Luis D; Díez, Jorge A; Bertomeu-Motos, Arturo; Ezquerro, Santiago; Badesa, Francisco J; Sabater-Navarro, José M; García-Aracil, Nicolás

    2016-01-01

    Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates

  9. A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients.

    PubMed

    Lledó, Luis D; Díez, Jorge A; Bertomeu-Motos, Arturo; Ezquerro, Santiago; Badesa, Francisco J; Sabater-Navarro, José M; García-Aracil, Nicolás

    2016-01-01

    Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates

  10. A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients

    PubMed Central

    Lledó, Luis D.; Díez, Jorge A.; Bertomeu-Motos, Arturo; Ezquerro, Santiago; Badesa, Francisco J.; Sabater-Navarro, José M.; García-Aracil, Nicolás

    2016-01-01

    Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates

  11. A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients

    PubMed Central

    Lledó, Luis D.; Díez, Jorge A.; Bertomeu-Motos, Arturo; Ezquerro, Santiago; Badesa, Francisco J.; Sabater-Navarro, José M.; García-Aracil, Nicolás

    2016-01-01

    Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates

  12. Thermal lens spectrometry in biochemical analysis.

    PubMed

    Martín-Biosca, Y; García-Alvarez-Coque, M C; Ramis-Ramos, G

    1994-07-01

    The photothermal spectroscopic techniques, with special emphasis on the thermal lens spectrometry (TLS), are introduced to the non-specialist in laser spectroscopy. The following topics are treated on an elementary basis: fundamentals and analytical characteristics, instrumentation, selectivity and multi-wavelength capability, the models describing the signal-concentration relationship, the sensitivity, background noise and limits of detection, the influence of light scattering and flow. Applications related to the fields of clinical and biochemical analysis and organic pollution are given. The thermal lens circular dichroism and the infrared TLS are also briefly outlined.

  13. Transition state theory thermal rate constants and RRKM-based branching ratios for the N((2)D) + CH(4) reaction based on multi-state and multi-reference ab initio calculations of interest for the Titan's chemistry.

    PubMed

    Ouk, Chanda-Malis; Zvereva-Loëte, Natalia; Scribano, Yohann; Bussery-Honvault, Béatrice

    2012-10-30

    Multireference single and double configuration interaction (MRCI) calculations including Davidson (+Q) or Pople (+P) corrections have been conducted in this work for the reactants, products, and extrema of the doublet ground state potential energy surface involved in the N((2)D) + CH(4) reaction. Such highly correlated ab initio calculations are then compared with previous PMP4, CCSD(T), W1, and DFT/B3LYP studies. Large relative differences are observed in particular for the transition state in the entrance channel resolving the disagreement between previous ab initio calculations. We confirm the existence of a small but positive potential barrier (3.86 ± 0.84 kJ mol(-1) (MR-AQCC) and 3.89 kJ mol(-1) (MRCI+P)) in the entrance channel of the title reaction. The correlation is seen to change significantly the energetic position of the two minima and five saddle points of this system together with the dissociation channels but not their relative order. The influence of the electronic correlation into the energetic of the system is clearly demonstrated by the thermal rate constant evaluation and it temperature dependance by means of the transition state theory. Indeed, only MRCI values are able to reproduce the experimental rate constant of the title reaction and its behavior with temperature. Similarly, product branching ratios, evaluated by means of unimolecular RRKM theory, confirm the NH production of Umemoto et al., whereas previous works based on less accurate ab initio calculations failed. We confirm the previous findings that the N((2)D) + CH(4) reaction proceeds via an insertion-dissociation mechanism and that the dominant product channels are CH(2)NH + H and CH(3) + NH.

  14. Bimodal Nuclear Thermal Rocket Analysis Developments

    NASA Technical Reports Server (NTRS)

    Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark

    2014-01-01

    Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.

  15. Thermal and structural analysis of Hermes

    NASA Astrophysics Data System (ADS)

    Petiau, C.

    1989-08-01

    After a brief recap of Hermes TPS and structure principles, we present the organization of thermal and structural analysis of the Hermes project, and we describe the way to resolve the problems of connections between calculations performed by the different Hermes partners. We describe in detail the interactions between the general model of TPS, used for global dimensioning of insulation, and refined thermal models giving an accurate temperature map inside details of "hot" and "cold" structures. The organization for structural analysis is based on a finite element general model which supports preliminary design, loads and vibration analyses. Boundary conditions for refined subpart analyses are cut to size, into the general model by a super element technique. This process involves the use by all partners of efficient computer codes, in the field of structural analysis and optimization integrated with CAD; for this Dassault proposes as a reference: the CATIA-ELFINI system.

  16. Urban thermal landscape characterization and analysis

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Fung, T.; Tsou, J.

    2014-03-01

    Urban warming is sensitive to the nature (thermal properties, including albedo, water content, heat capacity and thermal conductivity) and the placement (surface geometry or urban topography) of urban surface. In this research, the pattern and variation of urban surface temperature is regarded as one kind of landscape, urban thermal landscape, which is assumed as the presentation of local surface heating process upon urban landscape. The goal of this research is to develop a research framework incorporating geospatial statistics, thermal infrared remote sensing and landscape ecology to study the urban effect on local surface thermal landscape regarding both the pattern and process. This research chose Hong Kong as the case study. Within the study area, urban and rural area coexists upon a hilly topography. In order to probe the possibility of local surface warming mechanism discrepancy between urban and rural area, the sample points are grouped into urban and rural categories in according with the land use map taken into a linear regression model separately to examine the possible difference in local warming mechanism. Global regression analysis confirmed the relationship between environmental factors and surface temperature and the urban-rural distinctive mechanism of dominating diurnal surface warming is uncovered.

  17. Chemical analysis of solid materials by a LIMS instrument designed for space research: 2D elemental imaging, sub-nm depth profiling and molecular surface analysis

    NASA Astrophysics Data System (ADS)

    Moreno-García, Pavel; Grimaudo, Valentine; Riedo, Andreas; Neuland, Maike B.; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-04-01

    Direct quantitative chemical analysis with high lateral and vertical resolution of solid materials is of prime importance for the development of a wide variety of research fields, including e.g., astrobiology, archeology, mineralogy, electronics, among many others. Nowadays, studies carried out by complementary state-of-the-art analytical techniques such as Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), Secondary Ion Mass Spectrometry (SIMS), Glow Discharge Time-of-Flight Mass Spectrometry (GD-TOF-MS) or Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) provide extensive insight into the chemical composition and allow for a deep understanding of processes that might have fashioned the outmost layers of an analyte due to its interaction with the surrounding environment. Nonetheless, these investigations typically employ equipment that is not suitable for implementation on spacecraft, where requirements concerning weight, size and power consumption are very strict. In recent years Laser Ablation/Ionization Mass Spectrometry (LIMS) has re-emerged as a powerful analytical technique suitable not only for laboratory but also for space applications.[1-3] Its improved performance and measurement capabilities result from the use of cutting edge ultra-short femtosecond laser sources, improved vacuum technology and fast electronics. Because of its ultimate compactness, simplicity and robustness it has already proven to be a very suitable analytical tool for elemental and isotope investigations in space research.[4] In this contribution we demonstrate extended capabilities of our LMS instrument by means of three case studies: i) 2D chemical imaging performed on an Allende meteorite sample,[5] ii) depth profiling with unprecedented sub-nm vertical resolution on Cu electrodeposited interconnects[6,7] and iii) preliminary molecular desorption of polymers without assistance of matrix or functionalized substrates.[8] On the whole

  18. 2D FEM Heat Transfer & E&M Field Code

    SciTech Connect

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  19. 2D FEM Heat Transfer & E&M Field Code

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more » By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  20. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  1. PCaAnalyser: a 2D-image analysis based module for effective determination of prostate cancer progression in 3D culture.

    PubMed

    Hoque, Md Tamjidul; Windus, Louisa C E; Lovitt, Carrie J; Avery, Vicky M

    2013-01-01

    Three-dimensional (3D) in vitro cell based assays for Prostate Cancer (PCa) research are rapidly becoming the preferred alternative to that of conventional 2D monolayer cultures. 3D assays more precisely mimic the microenvironment found in vivo, and thus are ideally suited to evaluate compounds and their suitability for progression in the drug discovery pipeline. To achieve the desired high throughput needed for most screening programs, automated quantification of 3D cultures is required. Towards this end, this paper reports on the development of a prototype analysis module for an automated high-content-analysis (HCA) system, which allows for accurate and fast investigation of in vitro 3D cell culture models for PCa. The Java based program, which we have named PCaAnalyser, uses novel algorithms that allow accurate and rapid quantitation of protein expression in 3D cell culture. As currently configured, the PCaAnalyser can quantify a range of biological parameters including: nuclei-count, nuclei-spheroid membership prediction, various function based classification of peripheral and non-peripheral areas to measure expression of biomarkers and protein constituents known to be associated with PCa progression, as well as defining segregate cellular-objects effectively for a range of signal-to-noise ratios. In addition, PCaAnalyser architecture is highly flexible, operating as a single independent analysis, as well as in batch mode; essential for High-Throughput-Screening (HTS). Utilising the PCaAnalyser, accurate and rapid analysis in an automated high throughput manner is provided, and reproducible analysis of the distribution and intensity of well-established markers associated with PCa progression in a range of metastatic PCa cell-lines (DU145 and PC3) in a 3D model demonstrated.

  2. Thermal Analysis Methods for Aerobraking Heating

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.; Gasbarre, Joseph F.; Dec, John A.

    2005-01-01

    As NASA begins exploration of other planets, a method of non-propulsively slowing vehicles at the planet, aerobraking, may become a valuable technique for managing vehicle design mass and propellant. An example of this is Mars Reconnaissance Orbiter (MRO), which will launch in late 2005 and reach Mars in March of 2006. In order to save propellant, MRO will use aerobraking to modify the initial orbit at Mars. The spacecraft will dip into the atmosphere briefly on each orbit, and during the drag pass, the atmospheric drag on the spacecraft will slow it, thus lowering the orbit apoapsis. The largest area on the spacecraft, and that most affected by the heat generated during the aerobraking process, is the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley, to simulate their performance throughout the entire roughly 6-month period of aerobraking. Several interesting methods were used to make this analysis more rapid and robust. Two separate models were built for this analysis, one in Thermal Desktop for radiation and orbital heating analysis, and one in MSC.Patran for thermal analysis. The results from the radiation model were mapped in an automated fashion to the Patran thermal model that was used to analyze the thermal behavior during the drag pass. A high degree of automation in file manipulation as well as other methods for reducing run time were employed, since toward the end of the aerobraking period the orbit period is short, and in order to support flight operations the runs must be computed rapidly. All heating within the Patran Thermal model was combined in one section of logic, such that data mapped from the radiation model and aeroheating model, as well as skin temperature effects on the aeroheating and surface radiation, could be incorporated easily. This approach calculates the aeroheating at any given node, based on its position and temperature as well as the density and velocity at that trajectory point. Run times on

  3. Ontology analysis of global gene expression differences of human bone marrow stromal cells cultured on 3D scaffolds or 2D films.

    PubMed

    Baker, Bryan A; Pine, P Scott; Chatterjee, Kaushik; Kumar, Girish; Lin, Nancy J; McDaniel, Jennifer H; Salit, Marc L; Simon, Carl G

    2014-08-01

    Differences in gene expression of human bone marrow stromal cells (hBMSCs) during culture in three-dimensional (3D) nanofiber scaffolds or on two-dimensional (2D) films were investigated via pathway analysis of microarray mRNA expression profiles. Previous work has shown that hBMSC culture in nanofiber scaffolds can induce osteogenic differentiation in the absence of osteogenic supplements (OS). Analysis using ontology databases revealed that nanofibers and OS regulated similar pathways and that both were enriched for TGF-β and cell-adhesion/ECM-receptor pathways. The most notable difference between the two was that nanofibers had stronger enrichment for cell-adhesion/ECM-receptor pathways. Comparison of nanofibers scaffolds with flat films yielded stronger differences in gene expression than comparison of nanofibers made from different polymers, suggesting that substrate structure had stronger effects on cell function than substrate polymer composition. These results demonstrate that physical (nanofibers) and biochemical (OS) signals regulate similar ontological pathways, suggesting that these cues use similar molecular mechanisms to control hBMSC differentiation. PMID:24840613

  4. 2D FTLE in 3D Flows: The accuracy of using two-dimensional data for Lagrangian analysis in a three-dimensional turbulent channel simulation

    NASA Astrophysics Data System (ADS)

    Rockwood, Matthew; Green, Melissa

    2012-11-01

    In experimental, three-dimensional vortex-dominated flows, common particle image velocimetry (PIV) data is often collected in only the plane of interest due to equipment constraints. For flows with significant out of plane velocities or velocity gradients, this can create large discrepancies in Lagrangian analyses that require accurate particle trajectories. A Finite Time Lyapunov Exponent (FTLE) analysis is one such example, and has been shown to be very powerful at examining vortex dynamics and interactions in a variety of aperiodic flows. In this work, FTLE analysis of a turbulent channel simulation was conducted using both full three-dimensional velocity data and modified planar data extracted from the same computational domain. When the out of plane velocity component is neglected the difference in FTLE fields is non-trivial. A quantitative comparison and computation of error is presented for several planes across the width of the channel to determine the efficacy of using 2D analyses on the inherently 3D flows.

  5. Distinct metabolic changes between wheat embryo and endosperm during grain development revealed by 2D-DIGE-based integrative proteome analysis.

    PubMed

    Cao, Hui; He, Miao; Zhu, Chong; Yuan, Linlin; Dong, Liwei; Bian, Yanwei; Zhang, Wenying; Yan, Yueming

    2016-05-01

    Two Chinese bread wheat cultivars, Jinghua 9 and Zhongmai 175, distinct in grain weight and dough quality, were used to study proteome changes in the embryo and endosperm during grain development using a two-dimensional difference gel electrophoresis (2D-DIGE)-based proteomics approach. In total, 138 and 127 differentially expressed protein (DEP) spots representing 116 and 113 unique DEPs were identified in the embryo and endosperm, respectively. Among them, 54 (31%) DEPs were commonly present in both organs while 62 (35%) and 59 (34%) DEPs occurred only in the embryo and endosperm, respectively. Embryonic DEPs are primarily stress-related proteins and involved in carbohydrate and lipid metabolism, while those from the endosperm are related primarily to carbohydrate metabolism and storage. Principal component analysis (PCA) indicated that the proteome differences in the endosperm caused by different cultivars were greater than those by development stages, while the differences in the embryo showed the opposite pattern. Protein-protein interaction (PPI) analysis revealed a complex network centered primarily on enzymes involved in carbohydrate and protein metabolism. The transcriptional levels of fourteen important DEPs encoding genes showed high similarity between organs and cultivars. In particular, some key DEPs of the endosperm, such as phosphoglucomutase, ADP-glucose pyrophosphorylase (AGPase), and sucrose synthase (SUS), showed significantly upregulated expression, indicating their key roles in starch biosynthesis and grain yield. Moreover, upregulated expression of some storage proteins in the endosperm could improve wheat bread-making quality.

  6. Structural requirements of 3-carboxyl-4(1H)-quinolones as potential antimalarials from 2D and 3D QSAR analysis.

    PubMed

    Li, Jiazhong; Li, Shuyan; Bai, Chongliang; Liu, Huanxiang; Gramatica, Paola

    2013-07-01

    Malaria is a fatal tropical and subtropical disease caused by the protozoal species Plasmodium. Many commonly available antimalarial drugs and therapies are becoming ineffective because of the emergence of multidrug resistant Plasmodium falciparum, which drives the need for the development of new antimalarial drugs. Recently, a series of 3-carboxyl-4(1H)-quinolone analogs, derived from the famous compound endochin, were reported as promising candidates for orally efficacious antimalarials. In this study, to analyze the structure-activity relationships (SAR) of these quinolones and investigate the structural requirements for antimalarial activity, the 2D multiple linear regressions (MLR) method and 3D comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods are employed to evolve different QSAR models. All these models give satisfactory results with highly accurate fitting and strong external predictive abilities for chemicals not used in model development. Furthermore, the contour maps from 3D models can provide an intuitive understanding of the key structure features responsible for the antimalarial activities. In conclusion, we summarize the detailed position-specific structural requirements of these derivatives accordingly. All these results are helpful for the rational design of new compounds with higher antimalarial bioactivities.

  7. VIBA-Lab 3.0: Computer program for simulation and semi-quantitative analysis of PIXE and RBS spectra and 2D elemental maps

    NASA Astrophysics Data System (ADS)

    Orlić, Ivica; Mekterović, Darko; Mekterović, Igor; Ivošević, Tatjana

    2015-11-01

    VIBA-Lab is a computer program originally developed by the author and co-workers at the National University of Singapore (NUS) as an interactive software package for simulation of Particle Induced X-ray Emission and Rutherford Backscattering Spectra. The original program is redeveloped to a VIBA-Lab 3.0 in which the user can perform semi-quantitative analysis by comparing simulated and measured spectra as well as simulate 2D elemental maps for a given 3D sample composition. The latest version has a new and more versatile user interface. It also has the latest data set of fundamental parameters such as Coster-Kronig transition rates, fluorescence yields, mass absorption coefficients and ionization cross sections for K and L lines in a wider energy range than the original program. Our short-term plan is to introduce routine for quantitative analysis for multiple PIXE and XRF excitations. VIBA-Lab is an excellent teaching tool for students and researchers in using PIXE and RBS techniques. At the same time the program helps when planning an experiment and when optimizing experimental parameters such as incident ions, their energy, detector specifications, filters, geometry, etc. By "running" a virtual experiment the user can test various scenarios until the optimal PIXE and BS spectra are obtained and in this way save a lot of expensive machine time.

  8. A 2D-DIGE-based proteomic analysis reveals differences in the platelet releasate composition when comparing thrombin and collagen stimulations

    PubMed Central

    Vélez, Paula; Izquierdo, Irene; Rosa, Isaac; García, Ángel

    2015-01-01

    Upon stimulation, platelets release a high number of proteins (the releasate). There are clear indications that these proteins are involved in the pathogenesis of several diseases, such as atherosclerosis. In the present study we compared the platelet releasate following platelet activation with two major endogenous agonists: thrombin and collagen. Proteome analysis was based on 2D-DIGE and LC-MS/MS. Firstly, we showed the primary role of thrombin and collagen receptors in platelet secretion by these agonists; moreover, we demonstrated that GPVI is the primary responsible for collagen-induced platelet activation/aggregation. Proteomic analysis allowed the detection of 122 protein spots differentially regulated between both conditions. After excluding fibrinogen spots, down-regulated in the releasate of thrombin-activated platelets, 84 differences remained. From those, we successfully identified 42, corresponding to 37 open-reading frames. Many of the differences identified correspond to post-translational modifications, primarily, proteolysis induced by thrombin. Among others, we show vitamin K-dependent protein S, an anticoagulant plasma protein, is up-regulated in thrombin samples. Our results could have pathological implications given that platelets might be playing a differential role in various diseases and biological processes through the secretion of different subsets of granule proteins and microvesicles following a predominant activation of certain receptors. PMID:25645904

  9. Thermal analysis applied to irradiated propolis

    NASA Astrophysics Data System (ADS)

    Matsuda, Andrea Harumi; Machado, Luci Brocardo; del Mastro, Nélida Lucia

    2002-03-01

    Propolis is a resinous hive product, collected by bees. Raw propolis requires a decontamination procedure and irradiation appears as a promising technique for this purpose. The valuable properties of propolis for food and pharmaceutical industries have led to increasing interest in its technological behavior. Thermal analysis is a chemical analysis that gives information about changes on heating of great importance for technological applications. Ground propolis samples were 60Co gamma irradiated with 0 and 10 kGy. Thermogravimetry curves shown a similar multi-stage decomposition pattern for both irradiated and unirradiated samples up to 600°C. Similarly, through differential scanning calorimetry , a coincidence of melting point of irradiated and unirradiated samples was found. The results suggest that the irradiation process do not interfere on the thermal properties of propolis when irradiated up to 10 kGy.

  10. Analysis of lunar regolith thermal energy storage

    SciTech Connect

    Colozza, A.J.

    1991-11-01

    The concept of using lunar regolith as a thermal energy storage medium was evaluated. The concept was examined by mathematically modeling the absorption and transfer of heat by the lunar regolith. Regolith thermal and physical properties were established through various sources as functions of temperature. Two cases were considered: a semi-infinite, constant temperature, cylindrical heat source embedded in a continuum of lunar regolith and a spherically shaped molten zone of lunar regolith set with an initial temperature profile. The cylindrical analysis was performed in order to examine the amount of energy which can be stored in the regolith during the day. At night, the cylinder acted as a perfect insulator. This cycling was performed until a steady state situation was reached in the surrounding regolith. It was determined that a cycling steady state occurs after approximately 15 day/night cycles. Results were obtained for cylinders of various diameters. The spherical molten zone analysis was performed to establish the amount of thermal energy, within the regolith, necessary to maintain some molten material throughout a nighttime period. This surrounding temperature profile was modeled after the cycling steady state temperature profile established by the cylindrical analysis. It was determined that a molten sphere diameter of 4.76 m is needed to maintain a core temperature near the low end of the melting temperature range throughout one nighttime period.

  11. Analysis of lunar regolith thermal energy storage

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1991-01-01

    The concept of using lunar regolith as a thermal energy storage medium was evaluated. The concept was examined by mathematically modeling the absorption and transfer of heat by the lunar regolith. Regolith thermal and physical properties were established through various sources as functions of temperature. Two cases were considered: a semi-infinite, constant temperature, cylindrical heat source embedded in a continuum of lunar regolith and a spherically shaped molten zone of lunar regolith set with an initial temperature profile. The cylindrical analysis was performed in order to examine the amount of energy which can be stored in the regolith during the day. At night, the cylinder acted as a perfect insulator. This cycling was performed until a steady state situation was reached in the surrounding regolith. It was determined that a cycling steady state occurs after approximately 15 day/night cycles. Results were obtained for cylinders of various diameters. The spherical molten zone analysis was performed to establish the amount of thermal energy, within the regolith, necessary to maintain some molten material throughout a nighttime period. This surrounding temperature profile was modeled after the cycling steady state temperature profile established by the cylindrical analysis. It was determined that a molten sphere diameter of 4.76 m is needed to maintain a core temperature near the low end of the melting temperature range throughout one nighttime period.

  12. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  13. Two new Cu(ii) and La(iii) 2D coordination polymers, synthesis and in situ structural analysis by X-ray diffraction.

    PubMed

    Lundvall, F; Wragg, D S; Dietzel, P D C; Fjellvåg, H

    2016-08-01

    Two new coordination polymers were synthesized solvothermally using 4,4'-dimethoxy-3,3'-biphenyldicarboxylic acid (H2dmbpdc), and di- and trivalent metal salts (Cu(NO3)2·2.5H2O and La(NO3)3·6H2O). Their structures were determined by single-crystal X-ray diffraction analysis, and their thermal stability was evaluated by thermogravimetric analysis. The copper compound Cu(dmbpdc)(DMF; N,N-dimethylformamide), CPO-71-Cu, is based on the well known copper acetate paddlewheel secondary building unit. The asymmetric unit comprises one copper cation with one DMF molecule and one linker molecule coordinated. The lanthanum compound La2(dmbpdc)3(DMF)(H2O)3, CPO-72-La, is formed from a dimer of nine-coordinate, edge sharing lanthanum cations. To this dimer, three water molecules and one DMF molecule are coordinated in an ordered fashion. In addition, the asymmetric unit contains three crystallographically unique linker molecules. Both CPO-71-Cu and CPO-72-La form two-dimensional layered structures, and topological analyses reveal sql topologies with point symbol 4(4)·6(2) and vertex symbol 4·4·4·4·6(2)·6(2). The thermal behavior of CPO-71-Cu was investigated in an in situ structural analysis by variable temperature powder- and single-crystal X-ray diffraction. PMID:27469613

  14. A novel phosphoprotein analysis scheme for assessing changes in premalignant and malignant breast cell lines using 2D liquid separations, protein microarrays and tandem mass spectrometry

    PubMed Central

    Patwa, Tasneem H.; Wang, Yanfei; Miller, Fred R.; Goodison, Steve; Pennathur, Subramaniam; Barder, Timothy J.; Lubman, David M.

    2008-01-01

    An analysis of phosphorylation changes that occur during cancer progression would provide insights into the molecular pathways responsible for a malignant phenotype. In this study we employed a novel coupling of 2D-liquid separations and protein microarray technology to reveal changes in phosphoprotein status between premalignant (AT1) and malignant (CA1a) cell lines derived from the human MCF10A breast cell lines. Intact proteins were first separated according to their isoelectric point and hydrophobicities, then arrayed on SuperAmine glass slides. Phosphoproteins were detected using the universal, inorganic phospho-sensor dye, ProQ Diamond. Using this dye, out of 140 spots that were positive for phosphorylation, a total of 85 differentially expressed spots were detected over a pH range of 7.2 to 4.0. Proteins were identified and their peptides sequenced by mass spectrometry. The strategy enabled the identification of 75 differentially expressed phosphoproteins, from which 51 phosphorylation sites in 27 unique proteins were confirmed. Interestingly, the majority of differentially expressed phosphorylated proteins observed were nuclear proteins. Three regulators of apoptosis, Bad, Bax and Acinus, were also differentially phosphorylated in the two cell lines. Further development of this strategy will facilitate an understanding of the mechanisms involved in malignancy progression and other disease-related phenotypes. PMID:19194518

  15. Analysis of NAD 2D-NMR spectra of saturated fatty acids in polypeptide aligning media by experimental and modeling approaches.

    PubMed

    Serhan, Zeinab; Borgogno, Andrea; Billault, Isabelle; Ferrarini, Alberta; Lesot, Philippe

    2012-01-01

    The overall and detailed elucidation (including the stereochemical aspects) of enzymatic mechanisms requires the access to all reliable information related to the natural isotopic fractionation of both precursors and products. Natural abundance deuterium (NAD) 2D-NMR experiments in polypeptide liquid-crystalline solutions are a new, suitable tool for analyzing site-specific deuterium isotopic distribution profiles. Here this method is utilized for analyzing saturated C14 to C18 fatty acid methyl esters (FAMEs), which are challenging because of the crowding of signals in a narrow spectral region. Experiments in achiral and chiral oriented solutions were performed. The spectral analysis is supplemented by the theoretical prediction of quadrupolar splittings as a function of the geometry and flexibility of FAMEs, based on a novel computational methodology. This allows us to confirm the spectral assignments, while providing insights into the mechanism of solute ordering in liquid-crystalline polypeptide solutions. This is found to be dominated by steric repulsions between FAMEs and polypeptides.

  16. Large-scale flooding analysis in the suburbs of Tokyo Metropolis caused by levee breach of the Tone River using a 2D hydrodynamic model.

    PubMed

    Hai, Pham T; Magome, J; Yorozuya, A; Inomata, H; Fukami, K; Takeuchi, K

    2010-01-01

    In order to assess the effects of climate change on flood disasters in urban areas, we applied a two dimensional finite element hydrodynamic model (2D-FEM) to simulate flood processes for the case analysis of levee breach caused by Kathleen Typhoon on 16 September 1947 in Kurihashi reach of Tone River, upstream of Tokyo area. The purpose is to use the model to simulate flood inundation processes under the present topography and land-use conditions with impending extreme flood scenarios due to climate change for mega-urban areas like Tokyo. Simulation used 100 m resolution topographic data (in PWRI), which was derived from original LiDAR (Light Detection and Ranging) data, and levee breach hydrographic data in 1947. In this paper, we will describe the application of the model with calibration approach and techniques when applying for such fine spatial resolution in urban environments. The fine unstructured triangular FEM mesh of the model appeared to be the most capable of introducing of constructions like roads/levees in simulations. Model results can be used to generate flood mapping, subsequently uploaded to Google Earth interface, making the modeling and presentation process much comprehensible to the general public.

  17. Comparative 2D-DIGE Proteomic Analysis of Bovine Mammary Epithelial Cells during Lactation Reveals Protein Signatures for Lactation Persistency and Milk Yield

    PubMed Central

    Janjanam, Jagadeesh; Singh, Surender; Jena, Manoj K.; Varshney, Nishant; Kola, Srujana; Kumar, Sudarshan; Kaushik, Jai K.; Grover, Sunita; Dang, Ajay K.; Mukesh, Manishi; Prakash, B. S.; Mohanty, Ashok K.

    2014-01-01

    Mammary gland is made up of a branching network of ducts that end with alveoli which surrounds the lumen. These alveolar mammary epithelial cells (MEC) reflect the milk producing ability of farm animals. In this study, we have used 2D-DIGE and mass spectrometry to identify the protein changes in MEC during immediate early, peak and late stages of lactation and also compared differentially expressed proteins in MEC isolated from milk of high and low milk producing cows. We have identified 41 differentially expressed proteins during lactation stages and 22 proteins in high and low milk yielding cows. Bioinformatics analysis showed that a majority of the differentially expressed proteins are associated in metabolic process, catalytic and binding activity. The differentially expressed proteins were mapped to the available biological pathways and networks involved in lactation. The proteins up-regulated during late stage of lactation are associated with NF-κB stress induced signaling pathways and whereas Akt, PI3K and p38/MAPK signaling pathways are associated with high milk production mediated through insulin hormone signaling. PMID:25111801

  18. Physiologically Based Pharmacokinetic Predictions of Tramadol Exposure Throughout Pediatric Life: an Analysis of the Different Clearance Contributors with Emphasis on CYP2D6 Maturation.

    PubMed

    T'jollyn, Huybrecht; Snoeys, Jan; Vermeulen, An; Michelet, Robin; Cuyckens, Filip; Mannens, Geert; Van Peer, Achiel; Annaert, Pieter; Allegaert, Karel; Van Bocxlaer, Jan; Boussery, Koen

    2015-11-01

    This paper focuses on the retrospective evaluation of physiologically based pharmacokinetic (PBPK) techniques used to mechanistically predict clearance throughout pediatric life. An intravenous tramadol retrograde PBPK model was set up in Simcyp® using adult clearance values, qualified for CYP2D6, CYP3A4, CYP2B6, and renal contributions. Subsequently, the model was evaluated for mechanistic prediction of total, CYP2D6-related, and renal clearance predictions in very early life. In two in vitro pediatric human liver microsomal (HLM) batches (1 and 3 months), O-desmethyltramadol and N-desmethyltramadol formation rates were compared with CYP2D6 and CYP3A4 activity, respectively. O-desmethyltramadol formation was mediated only by CYP2D6, while N-desmethyltramadol was mediated in part by CYP3A4. Additionally, the clearance maturation of the PBPK model predictions was compared to two in vivo maturation models (Hill and exponential) based on plasma concentration data, and to clearance estimations from a WinNonlin® fit of plasma concentration and urinary excretion data. Maturation of renal and CYP2D6 clearance is captured well in the PBPK model predictions, but total tramadol clearance is underpredicted. The most pronounced underprediction of total and CYP2D6-mediated clearance was observed in the age range of 2-13 years. In conclusion, the PBPK technique showed to be a powerful mechanistic tool capable of predicting maturation of CYP2D6 and renal tramadol clearance in early infancy, although some underprediction occurs between 2 and 13 years for total and CYP2D6-mediated tramadol clearance. PMID:26209290

  19. Space processing float zone thermal analysis

    NASA Technical Reports Server (NTRS)

    Pogson, J. T.; Anderson, D. M.

    1976-01-01

    Thermal analysis (BETA) computer program adaptations were prepared to analyze phase change histories in crystal specimens. The first program (BETA-CYL) treats right circular cylinder configurations and the second, more general, program (BETA-BOR) treats a generalized body-of-revolution configuration. A series of computer runs were made for silicon material to determine boundary conditions which produce flat solidification interfaces while, at the same time, minimizing peak temperatures in the molten zone. Flat solidification interfaces are a goal believed by some investigators to be required to produce high quality semiconductor materials. The thermal effects of convection in a molten zone were examined and found to be negligible in comparison to the conduction heat transfer of the melt.

  20. Saturn Ring Data Analysis and Thermal Modeling

    NASA Technical Reports Server (NTRS)

    Dobson, Coleman

    2011-01-01

    CIRS, VIMS, UVIS, and ISS (Cassini's Composite Infrared Specrtometer, Visual and Infrared Mapping Spectrometer, Ultra Violet Imaging Spectrometer and Imaging Science Subsystem, respectively), have each operated in a multidimensional observation space and have acquired scans of the lit and unlit rings at multiple phase angles. To better understand physical and dynamical ring particle parametric dependence, we co-registered profiles from these three instruments, taken at a wide range of wavelengths, from ultraviolet through the thermal infrared, to associate changes in ring particle temperature with changes in observed brightness, specifically with albedos inferred by ISS, UVIS and VIMS. We work in a parameter space where the solar elevation range is constrained to 12 deg - 14 deg and the chosen radial region is the B3 region of the B ring; this region is the most optically thick region in Saturn's rings. From this compilation of multiple wavelength data, we construct and fit phase curves and color ratios using independent dynamical thermal models for ring structure and overplot Saturn, Saturn ring, and Solar spectra. Analysis of phase curve construction and color ratios reveals thermal emission to fall within the extrema of the ISS bandwidth and a geometrical dependence of reddening on phase angle, respectively. Analysis of spectra reveals Cassini CIRS Saturn spectra dominate Cassini CIRS B3 Ring Spectra from 19 to 1000 microns, while Earth-based B Ring Spectrum dominates Earth-based Saturn Spectrum from 0.4 to 4 microns. From our fits we test out dynamical thermal models; from the phase curves we derive ring albedos and non-lambertian properties of the ring particle surfaces; and from the color ratios we examine multiple scattering within the regolith of ring particles.

  1. Coupled Aerodynamic-Thermal-Structural (CATS) Analysis

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Coupled Aerodynamic-Thermal-Structural (CATS) Analysis is a focused effort within the Numerical Propulsion System Simulation (NPSS) program to streamline multidisciplinary analysis of aeropropulsion components and assemblies. Multidisciplinary analysis of axial-flow compressor performance has been selected for the initial focus of this project. CATS will permit more accurate compressor system analysis by enabling users to include thermal and mechanical effects as an integral part of the aerodynamic analysis of the compressor primary flowpath. Thus, critical details, such as the variation of blade tip clearances and the deformation of the flowpath geometry, can be more accurately modeled and included in the aerodynamic analyses. The benefits of this coupled analysis capability are (1) performance and stall line predictions are improved by the inclusion of tip clearances and hot geometries, (2) design alternatives can be readily analyzed, and (3) higher fidelity analysis by researchers in various disciplines is possible. The goals for this project are a 10-percent improvement in stall margin predictions and a 2:1 speed-up in multidisciplinary analysis times. Working cooperatively with Pratt & Whitney, the Lewis CATS team defined the engineering processes and identified the software products necessary for streamlining these processes. The basic approach is to integrate the aerodynamic, thermal, and structural computational analyses by using data management and Non-Uniform Rational B-Splines (NURBS) based data mapping. Five software products have been defined for this task: (1) a primary flowpath data mapper, (2) a two-dimensional data mapper, (3) a database interface, (4) a blade structural pre- and post-processor, and (5) a computational fluid dynamics code for aerothermal analysis of the drum rotor. Thus far (1) a cooperative agreement has been established with Pratt & Whitney, (2) a Primary Flowpath Data Mapper has been prototyped and delivered to General Electric

  2. Optical design of wavelength selective CPVT system with 3D/2D hybrid concentration

    NASA Astrophysics Data System (ADS)

    Ahmad, N.; Ijiro, T.; Yamada, N.; Kawaguchi, T.; Maemura, T.; Ohashi, H.

    2012-10-01

    Optical design of a concentrating photovoltaic/thermal (CPVT) system is carried out. Using wavelength-selective optics, the system demonstrates 3-D concentration onto a solar cell and 2-D concentration onto a thermal receiver. Characteristics of the two types of concentrator systems are examined with ray-tracing analysis. The first system is a glazed mirror-based concentrator system mounted on a 2-axis pedestal tracker. The size of the secondary optical element is minimized to decrease the cost of the system, and it has a wavelength-selective function for performing 3-D concentration onto a solar cell and 2-D concentration onto a thermal receiver. The second system is a non-glazed beamdown concentrator system containing parabolic mirrors in the lower part. The beam-down selective mirror performs 3-D concentration onto a solar cell placed above the beam-down selective mirror, and 2-D concentration down to a thermal receiver placed at the bottom level. The system is mounted on a two-axis carousel tracker. A parametric study is performed for those systems with different geometrical 2-D/3-D concentration ratios. Wavelength-selective optics such as hot/cold mirrors and spectrum-splitting technologies are taken into account in the analysis. Results show reduced heat load on the solar cell and increased total system efficiency compared to a non-selective CPV system. Requirements for the wavelength-selective properties are elucidated. It is also shown that the hybrid concept with 2-D concentration onto a thermal receiver and 3-D concentration onto a solar cell has an advantageous geometry because of the high total system efficiency and compatibility with the piping arrangement of the thermal receiver.

  3. Remote Thermal Analysis Through the Internet

    NASA Astrophysics Data System (ADS)

    Malroy, Eric T.

    2002-07-01

    The Heater of the Hypersonic Tunnel Facility (HTF) was modeled using SINDA/FLUINT thermal software. A description of the model is given. The project presented the opportunity of interfacing the thermal model with the Internet and was a demonstration that complex analysis is possible through the Internet. Some of the issues that need to be addressed related to interfacing software with the Internet are the following: justification for using the Internet, selection of the web server, choice of the CGI language, security of the system, communication among the parties, maintenance of state between web pages, and simultaneous users on the Internet system. The opportunities available for using the Internet for analysis are many and can present a significant jump in technology. This paper presents a vision how interfacing with the Internet could develop in the future. Using a separate Optical Internet (OI) for analysis, coupled with virtual reality analysis rooms (VRAR), could provide a synergistic environment to couple together engineering analysis within industry, academia, and government. The process of analysis could be broken down into sub-components so that specialization could occur resulting in superior quality, minimized cost and reduced time for engineering analysis and manufacturing. Some possible subcomponents of the system are solver routines, databases, Graphical User Interfaces, engineering design software, VRARs, computer processing, CAD systems, manufacturing, and a plethora of other options only limited by ones imagination. On a larger scope, the specialization of companies on the optical network would allow companies to rapidly construct and reconstruct their infrastructure based on changing economic conditions. This could transform business.

  4. Thermal Analysis Methods for an Earth Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.; Dec, John A.; Lindell, Michael C.

    2000-01-01

    Thermal analysis of a vehicle designed to return samples from another planet, such as the Earth Entry vehicle for the Mars Sample Return mission, presents several unique challenges. The Earth Entry Vehicle (EEV) must contain Martian material samples after they have been collected and protect them from the high heating rates of entry into the Earth's atmosphere. This requirement necessitates inclusion of detailed thermal analysis early in the design of the vehicle. This paper will describe the challenges and solutions for a preliminary thermal analysis of an Earth Entry Vehicle. The aeroheatina on the vehicle during entry would be the main driver for the thermal behavior. and is a complex function of time, spatial position on the vehicle, vehicle temperature, and trajectory parameters. Thus. the thermal analysis must be closely tied to the aeroheating analysis in order to make accurate predictions. Also, the thermal analysis must account for the material response of the ablative thermal protection system TPS. For the exo-atmospheric portion of the mission, the thermal analysis must include the orbital radiation fluxes on the surfaces. The thermal behavior must also be used to predict the structural response of the vehicle (the thermal stress and strains) and whether they remain within the capability of the materials. Thus, the thermal analysis requires ties to the three-dimensional geometry, the aeroheating analysis, the material response analysis, the orbital analysis. and the structural analysis. The goal of this paper is to describe to what degree that has been achieved.

  5. The Sixth Annual Thermal and Fluids Analysis Workshop

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Sixth Annual Thermal and Fluids Analysis Workshop consisted of classes, vendor demonstrations, and paper sessions. The classes and vendor demonstrations provided participants with the information on widely used tools for thermal and fluids analysis. The paper sessions provided a forum for the exchange of information and ideas among thermal and fluids analysis. Paper topics included advances an uses of established thermal and fluids computer codes (such as SINDA and TRASYS) as well as unique modeling techniques and applications.

  6. Thermal radiation analysis system (TRASYS 2), programmer's manual

    NASA Technical Reports Server (NTRS)

    Connor, R. J.; Paulson, R. E.; Goble, R. G.; Jensen, C. L.

    1977-01-01

    TRASYS, the Thermal Radiation Analysis System, is a digital computer software system with a generalized capability to solve the radiation-related aspects of thermal analysis problems. When used in conjunction with a generalized thermal analysis program such as the Systems Improved Numerical Differencing Analyzer (SINDA) program, any thermal problem that can be expressed in terms of a lumped parameter, radiation conductor thermal network can be solved. The function of TRASYS is twofold. It provides: 1) Internode radiation interchange data; 2) Incident and absorbed heat rate data from environmental radiant heat sources. Data of both types are provided in a format directly usable by the thermal analyzer programs.

  7. DMA thermal analysis of yacon tuberous roots

    NASA Astrophysics Data System (ADS)

    Blahovec, J.; Lahodová, M.; Kindl, M.; Fernández, E. C.

    2013-12-01

    Specimens prepared from yacon roots in first two weeks after harvest were tested by dynamic mechanical analysis thermal analysis at temperatures between 30 and 90°C. No differences between different parts of roots were proved. There were indicated some differences in the test parameters that were caused by short time storage of the roots. One source of the differences was loss of water during the roots storage. The measured modulus increased during short time storage. Detailed study of changes of the modulus during the specimen dynamic mechanical analysis test provided information about different development of the storage and loss moduli during the specimen heating. The observed results can be caused by changes in cellular membranes observed earlier during vegetable heating, and by composition changes due to less stable components of yacon like inulin.

  8. Thermal image analysis for detecting facemask leakage

    NASA Astrophysics Data System (ADS)

    Dowdall, Jonathan B.; Pavlidis, Ioannis T.; Levine, James

    2005-03-01

    Due to the modern advent of near ubiquitous accessibility to rapid international transportation the epidemiologic trends of highly communicable diseases can be devastating. With the recent emergence of diseases matching this pattern, such as Severe Acute Respiratory Syndrome (SARS), an area of overt concern has been the transmission of infection through respiratory droplets. Approved facemasks are typically effective physical barriers for preventing the spread of viruses through droplets, but breaches in a mask"s integrity can lead to an elevated risk of exposure and subsequent infection. Quality control mechanisms in place during the manufacturing process insure that masks are defect free when leaving the factory, but there remains little to detect damage caused by transportation or during usage. A system that could monitor masks in real-time while they were in use would facilitate a more secure environment for treatment and screening. To fulfill this necessity, we have devised a touchless method to detect mask breaches in real-time by utilizing the emissive properties of the mask in the thermal infrared spectrum. Specifically, we use a specialized thermal imaging system to detect minute air leakage in masks based on the principles of heat transfer and thermodynamics. The advantage of this passive modality is that thermal imaging does not require contact with the subject and can provide instant visualization and analysis. These capabilities can prove invaluable for protecting personnel in scenarios with elevated levels of transmission risk such as hospital clinics, border check points, and airports.

  9. Preliminary thermal analysis for Saturn entry

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Moss, J. N.

    1980-01-01

    A preliminary thermal analysis based on recently defined Saturn entry conditions has been conducted. The study, using viscous-shock-layer and engineering codes employed for Project Galileo, investigated nonequilibrium chemistry effects on the Saturn thermal environment, defined the primary heat-transfer mode for heatshield design, delineated some problem areas for future thermal studies, and validated BIRCHES (Blunt Body Inviscid Radiative and Convective Heating Engineering Solutions) for parametric or design studies. The effect of nonequilibrium chemistry appears to significantly influence only the radiative fluxes with effects localized to the stagnation region. However, the heat-transfer mode pertinent to the overall heat-shield design is convection. The convective results of BIRCHES and a detailed code are in good agreement. The resulting mass-loss rates for the currently prescribed nominal Saturn entry conditions are small when compared with the values for nominal Jupiter entry conditions. With coupled carbon-phenolic ablation injection, the convective heating rates are reduced substantially while the radiative heating rates are increased when compared with the corresponding no-injection results.

  10. Silicon dendritic web growth thermal analysis task

    NASA Technical Reports Server (NTRS)

    Richter, R.; Bhandari, P.

    1985-01-01

    A thermal analysis model is presented which describes the dendritic ribbon process. The model uses a melt-dendrite interface which projects out of the bulk melt as the basic interpretation of the ribbon production process. This is a marked departure from the interpretations of the interface phenomena which were used previously. The model was extensively illustrated with diagrams and pictures of ribbon samples. This model should have great impact on the analyses of experimental data as well as on future design modifications of ribbon-pulling equipment.

  11. Basement and Basin Structures of the Northwest Paraná Basin, Brazil: Illuminated by Matched-Filter Analysis and 2D Modeling of Gravity and Magnetic Data

    NASA Astrophysics Data System (ADS)

    Curto, J. B.; Blakely, R. J.; Vidotti, R. M.; Fuck, R. A.

    2015-12-01

    The South American Platform includes two major geological components with common structural roots: the Transbrasiliano Lineament (LTB) and the Paraná Basin. Important relationships between the two components occur within the northwest Paraná Basin and concealed beneath sedimentary cover. We integrated all available airborne magnetic and gravity surveys and ground-based gravity data to produce consistent, digital magnetic and Bouguer anomaly maps. Data-processing and modeling techniques then were used in order to reveal principal crustal compartments and basin-basement structures at various depths. Three large magnetic discontinuities delineate crustal compartments in the area with N30°E, N60°E, and N70°E strike, from east to west, respectively. These magnetic lineaments bound regions with distinct gravity anomaly character. Robust matched-filter analysis applied to magnetic and gravity data yielded important depth estimates: (i) 2.5 km to the top of the Paraná Basin Neoproterozoic basement; (ii) 4-6 km to the top of a second group of basement units; (iii) 20 km, possibly associated with the upper-lower crust interface; and (iv) 33-39 and 43 km related to crustal thicknesses west and southeast of a major N30°E trending lineament, respectively. The 2D joint modeling of gravity and magnetic data sheds light on the asymmetric geometry of the basement beneath the Paraná basin, with at least three half-grabens formed by LTB reactivated structures. The central region of the study area is characterized by thinner crust and higher crustal weakness, where important structures have developed in the Mesozoic, including NW trending reactivations, linked to crustal uplift and evolution of small NE-aligned Cretaceous basins. Important depocenters occur to the north and east of the study area, with N70ºE and N30°E - NS strike, respectively.

  12. Autonomous Aerobraking: Thermal Analysis and Response Surface Development

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Thornblom, Mark N.

    2011-01-01

    A high-fidelity thermal model of the Mars Reconnaissance Orbiter was developed for use in an autonomous aerobraking simulation study. Response surface equations were derived from the high-fidelity thermal model and integrated into the autonomous aerobraking simulation software. The high-fidelity thermal model was developed using the Thermal Desktop software and used in all phases of the analysis. The use of Thermal Desktop exclusively, represented a change from previously developed aerobraking thermal analysis methodologies. Comparisons were made between the Thermal Desktop solutions and those developed for the previous aerobraking thermal analyses performed on the Mars Reconnaissance Orbiter during aerobraking operations. A variable sensitivity screening study was performed to reduce the number of variables carried in the response surface equations. Thermal analysis and response surface equation development were performed for autonomous aerobraking missions at Mars and Venus.

  13. Integrated transient thermal-structural finite element analysis

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Wieting, A. R.; Tamma, K. K.

    1981-01-01

    An integrated thermal structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. Integrated thermal structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction elasticity solutions and conventional finite element thermal finite element structural analyses.

  14. Ultrafast 2D IR microscopy

    PubMed Central

    Baiz, Carlos R.; Schach, Denise; Tokmakoff, Andrei

    2014-01-01

    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490

  15. Analysis of genetic variations in CYP2C9, CYP2C19, CYP2D6 and CYP3A5 genes using oligonucleotide microarray

    PubMed Central

    Dong, Yuanyuan; Xiao, Huasheng; Wang, Qi; Zhang, Chunxiu; Liu, Xiuming; Yao, Na; Sheng, Haihui; Li, Haiyan

    2015-01-01

    The cytochrome P450 enzymes play a critical role in the metabolism of many commonly prescribed drugs. Among them, the most important enzymes are highly polymorphic CYP2C9, CYP2C19, CYP2D6 and CYP3A5, which are responsible for about 40% of the metabolism of clinical used drugs. Here we developed a novel CYP450 oligonucleotide microarray that allow for detection of 32 known variations of CYP genes from a single multiplex reaction, including 19 polymorphisms of CYP2D6 gene, 8 polymorphisms of CYP2C9 gene, 4 polymorphisms of CYP2C19 gene and 1 polymorphism of CYP3A5 gene. 229 genomic DNA samples from unrelated Han subjects were analyzed. The microarray results showed to have high call rate and accuracy according to concordance with genotypes identified by independent bidirectional sequencing. Furthermore, we found that the major CYP2C9, CYP2C19, CYP2D6 and CYP3A5 alleles in Chinese Han population were CYP2C9*3 (allelic frequency of 10.7%), CYP2C9*2 (20.31%), CYP2C19*2 (5.68%), CYP2D6*10 (58.52%), CYP2D6*2 (13.76) and CYP3A5*3 (70.69%). With flexible DNA preparation, the microarray can significantly facilitates the process of detecting genetics variations in CYP2C9, CYP2C19, CYP2D6 and CYP3A5 gene and provide safe and effective therapy for individual patients. PMID:26770516

  16. 2D design rule and layout analysis using novel large-area first-principles-based simulation flow incorporating lithographic and stress effects

    NASA Astrophysics Data System (ADS)

    Prins, Steven L.; Blatchford, James; Olubuyide, Oluwamuyiwa; Riley, Deborah; Chang, Simon; Hong, Qi-Zhong; Kim, T. S.; Borges, Ricardo; Lin, Li

    2009-03-01

    As design rules and corresponding logic standard cell layouts continue to shrink node-on-node in accordance with Moore's law, complex 2D interactions, both intra-cell and between cells, become much more prominent. For example, in lithography, lack of scaling of λ/NA implies aggressive use of resolution enhancement techniques to meet logic scaling requirements-resulting in adverse effects such as 'forbidden pitches'-and also implies an increasing range of optical influence relative to cell size. These adverse effects are therefore expected to extend well beyond the cell boundary, leading to lithographic marginalities that occur only when a given cell is placed "in context" with other neighboring cells in a variable design environment [1]. This context dependence is greatly exacerbated by increased use of strain engineering techniques such as SiGe and dual-stress liners (DSL) to enhance transistor performance, both of which also have interaction lengths on the order of microns. The use of these techniques also breaks the formerly straightforward connection between lithographic 'shapes' and end-of-line electrical performance, thus making the formulation of design rules that are robust to process variations and complex 2D interactions more difficult. To address these issues, we have developed a first-principles-based simulation flow to study contextdependent electrical effects in layout, arising not only from lithography, but also from stress and interconnect parasitic effects. This flow is novel in that it can be applied to relatively large layout clips- required for context-dependent analysis-without relying on semi-empirical or 'black-box' models for the fundamental electrical effects. The first-principles-based approach is ideal for understanding contextdependent effects early in the design phase, so that they can be mitigated through restrictive design rules. The lithographic simulations have been discussed elsewhere [1] and will not be presented in detail. The

  17. Thermal Analysis of Cryogenic Hydrogen Liquid Separator

    NASA Technical Reports Server (NTRS)

    Congiardo, Jared F.; Fortier, Craig R. (Editor)

    2014-01-01

    During launch for the new Space Launch System (SLS) liquid hydrogen is bleed through the engines during replenish, pre-press, and extended pre-press to condition the engines prior to launch. The predicted bleed flow rates are larger than for the shuttle program. A consequence of the increased flow rates is having liquif hydrogen in the vent system, which the facilities was never designed to handle. To remedy the problem a liquid separator is being designed in the system to accumulated the liquid propellant and protect the facility flare stack (which can only handle gas). The attached document is a presentation of the current thermalfluid analysis performed for the separator and will be presented at the Thermal and Fluid Analysis Workshop (NASA workshop) next week in Cleveland, Ohio.

  18. Thermal analysis of superconducting undulator cryomodules

    NASA Astrophysics Data System (ADS)

    Shiroyanagi, Y.; Doose, C.; Fuerst, J.; Harkay, K.; Hasse, Q.; Ivanyushenkov, Y.; Kasa, M.

    2015-12-01

    A cryocooler-cooled superconducting undulator (SCU0) has been operating in the Advanced Photon Source (APS) storage ring since January of 2013. Based on lessons learned from the construction and operation of SCU0, a second superconducting undulator (SCU1) has been built and cold tested stand-alone. An excess cooling capacity measurement and static heat load analysis show a large improvement of cryogenic performance of SCU1 compared with SCU0. ANSYS-based thermal analysis of these cryomodules incorporating all the cooling circuits was completed. Comparisons between measured and calculated temperatures at the three operating conditions of the cryomodule (static, beam heat only, beam heat and magnet current) will be presented.

  19. The effect of excitation and preparation pulses on nonslice selective 2D UTE bicomponent analysis of bound and free water in cortical bone at 3T

    SciTech Connect

    Li, Shihong; Chang, Eric Y.; Chung, Christine B.; Bae, Won C.; Du, Jiang; Hua, Yanqing; Zhou, Yi

    2014-02-15

    Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal models were utilized to calculate the T2{sup *}s and/or relative fractions of short and long T2{sup *}s. Results: For all bone samples UTE T2{sup *} signal decay showed bicomponent behavior. A higher short T2{sup *} fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2{sup *} fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2{sup *} fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2{sup *} components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2{sup *}s and relative fractions can

  20. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  1. NEW SCX PEPTIDE ELUTION SCORE FOR PH/SALT-GRADIENT SCX CHROMATOGRAPHY IN 2D-NANO-LC/MSMS ANALYSIS OF PROTEIN DIGESTS

    EPA Science Inventory

    A new automated 2D-(SCX/RP)-nano-LC/MSMS method was developed. Separation of the peptides in the first LC dimension was the main focus of this work, and it was optimized using human serum albumin (HSA) and human lung cell lysate tryptic digests. Samples were reduced and alkylated...

  2. Thermal Hydraulic Analysis of Spent Fuel Casks

    1997-10-08

    COBRA-SFS (Spent Fuel Storage) is a code for thermal-hydraulic analysis of multi-assembly spent fuel storage and transportation systems. It uses a lumped parameter finite difference approach to predict flow and temperature distributions in spent fuel storage systems and fuel assemblies, under forced and natural convection heat transfer conditions. Derived from the COBRA family of codes, which have been extensively evaluated against in-pile and out-of-pile data, COBRA-SFS retains all the important features of the COBRA codesmore » for single phase fluid analysis, and extends the range application to include problems with two-dimensional radiative and three-dimensional conductive heat transfer. COBRA-SFS has been used to analyze various single- and multi-assembly spent fuel storage systems containing unconsolidated and consolidated fuel rods, with a variety of fill media, including air, helium and vacuum. Cycle 0 of COBRA-SFS was released in 1986. Subsequent applications of the code led to development of additional capabilities, which resulted in the release of Cycle 1 in February 1989. Since then, the code has undergone an independent technical review as part of a submittal to the Nuclear Regulatory Commission for a generic license to apply the code to spent fuel storage system analysis. Modifications and improvements to the code have been combined to form Cycle 2. Cycle 3., the newest version of COBRA-SFS, has been validated and verified for transient applications, such as a storage cask thermal response to a pool fire.« less

  3. Thermal analysis of thermoelectric power generator; Including thermal stresses

    NASA Astrophysics Data System (ADS)

    Al-Merbati, Abdulrahman Salman

    In recent years, the energy demand is increasing leads to use and utilization of clean energy becomes target of countries all over the world. Thermoelectric generator is one type of clean energy generators which is a solid-state device that converts heat energy into electrical energy through the Seebeck effect. With availability of, heat from different sources such as solar energy and waste energy from systems, thermoelectric research becomes important research topic and researchers investigates efficient means of generating electricity from thermoelectric generators. One of the important problems with a thermoelectric is development of high thermal stresses due to formation of temperature gradient across the thermoelectric generator. High thermal stress causes device failure through cracks or fractures and these short comings may reduce the efficiency or totally fail the device. In this thesis work, thermodynamic efficiency and thermal stresses developed in thermoelectric generator are analyzed numerically. The bismuth telluride (Bi2Te3) properties are used in simulation. Stress levels in thermoelectric device pins are computed for various pin geometric configurations. MASTER.

  4. A 2D hydro-morphodynamic modelling approach for predicting suspended sediment propagation and related heavy metal contamination in floodplains: a sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Hostache, Renaud; Hissler, Christophe; Matgen, Patrick; Guignard, Cédric; Bates, Paul

    2014-05-01

    Recent years have seen a growing awareness for the central role that fine sediment loads play in transport and diffusion of pollutants by rivers and streams. Suspended sediment can potentially carry important amounts of nutrients and contaminants, such as trace metals among which some are recognized as Potential Harmful Elements (PHE). These threaten water quality in rivers and wetlands and soil quality in floodplains. Currently, many studies focusing on sediment transport modelling deal with marine and estuarine areas. Some studies evaluate sediment transport at basin scales and often evaluate yearly sediment fluxes using hydrologic and simplified hydraulic models. Some more theoretical studies develop and improve numerical models on the basis of physical model experiments. As a matter of fact, sediment transport modelling in small rivers at reach/floodplain scale is a rather new research field. In this study, we aim at simulating sediment transport at the floodplain scale and the single flood event scale in order to predict sediment spreading on alluvial soils. This simulation will help for the estimation of the potential pollution of soils due to the transport of PHEs by suspended sediments. The model is based upon the Telemac hydro-informatic system (i.e. dynamical coupling of Telemac-2D and Sysiphe). As empirical and semi-empirical parameters need to be calibrated for such a modelling exercise, a sensitivity analysis is proposed. In parallel to the modelling exercise, an extensive hydrological/geochemical database has been set up for two flood events. The most sensitive parameters were found to be the hydraulic friction coefficient and the sediment particle settling velocity in water. Using the two monitored hydrological events for calibration and validation, it was found that the model is able to satisfyingly predict suspended sediment and dissolved pollutant transport in the river channel. In addition, a qualitative comparison between simulated sediment

  5. Autonomous Aerobraking Using Thermal Response Surface Analysis

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Dec, John A.; Tolson, Robert H.

    2007-01-01

    Aerobraking is a proven method of significantly increasing the science payload that can be placed into low Mars orbits when compared to an all propulsive capture. However, the aerobraking phase is long and has mission cost and risk implications. The main cost benefit is that aerobraking permits the use of a smaller and cheaper launch vehicle, but additional operational costs are incurred during the long aerobraking phase. Risk is increased due to the repeated thermal loading of spacecraft components and the multiple attitude and propulsive maneuvers required for successful aerobraking. Both the cost and risk burdens can be significantly reduced by automating the aerobraking operations phase. All of the previous Mars orbiter missions that have utilized aerobraking have increasingly relied on onboard calculations during aerobraking. Even though the temperature of spacecraft components has been the limiting factor, operational methods have relied on using a surrogate variable for mission control. This paper describes several methods, based directly on spacecraft component maximum temperature, for autonomously predicting the subsequent aerobraking orbits and prescribing apoapsis propulsive maneuvers to maintain the spacecraft within specified temperature limits. Specifically, this paper describes the use of thermal response surface analysis in predicting the temperature of the spacecraft components and the corresponding uncertainty in this temperature prediction.

  6. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  7. Low Gravity Rapid Thermal Analysis of Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.

    2004-01-01

    It has been observed by two research groups that ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) glass crystallization is suppressed in microgravity. The mechanism for this phenomenon is unknown at the present time. In order to better understand the mechanism, an experiment was performed on NASA's KC135 reduced gravity aircraft to obtain quantitative crystallization data. An apparatus was designed and constructed for performing rapid thermal analysis of milligram quantities of ZBLAN glass. The apparatus employs an ellipsoidal furnace allowing for rapid heating and cooling. Using this apparatus nucleation and crystallization kinetic data was obtained leading to the construction of time-temperature-transformation curves for ZBLAN in microgravity and unit gravity.

  8. The Curvelet Transform in the analysis of 2-D GPR data: Signal enhancement and extraction of orientation-and-scale-dependent information

    NASA Astrophysics Data System (ADS)

    Tzanis, Andreas

    2013-04-01

    processing GPR data is its capability to describe wavefronts. The roots of the CT are traced to the field of Harmonic Analysis, where curvelets were introduced as expansions for asymptotic solutions of wave equations (Smith, 1998; Candès, 1999). In consequence, curvelets can be viewed as primitive and prototype waveforms - they are local in both space and spatial frequency and correspond to a partitioning of the 2D Fourier plane by highly anisotropic elements (for the high frequencies) that obey the parabolic scaling principle, that their width is proportional to the square of their length (Smith, 1998). The GPR data essentially comprise recordings of the amplitudes of transient waves generated and recorded by source and receiver antennae, with each source/receiver pair generating a data trace that is a function of time. An ensemble of traces collected sequentially along a scan line, i.e. a GPR section or B-scan, provides a spatio-temporal sampling of the wavefield which contains different arrivals that correspond to different interactions with wave scatterers (inhomogeneities) in the subsurface. All these arrivals represent wavefronts that are relatively smooth in their longitudinal direction and oscillatory in their transverse direction. The connection between Harmonic Analysis and curvelets has resulted in important nonlinear approximations of functions with intermittent regularity (Candès and Donoho, 2004). Such functions are assumed to be piecewise smooth with singularities, i.e. regions where the derivative diverges. In the subsurface, these singularities correspond to geological inhomogeneities, at the boundaries of which waves reflect. In GPR data, these singularities correspond to wavefronts. Owing to their anisotropic shape, curvelets are well adapted to detect wavefronts at different angles and scales because aligned curvelets of a given scale, locally correlate with wavefronts of the same scale. The CT can also be viewed as a higher dimensional extension of the

  9. High-resolution FTIR spectroscopic analysis of the ν11 and ν2 + ν7 bands of 13C2D4

    NASA Astrophysics Data System (ADS)

    Gabona, M. G.; Tan, T. L.

    2016-06-01

    The FTIR spectrum of the ν11 band of 13C2D4 was recorded at a resolution of 0.0063 cm-1 in the 2130-2250 cm-1 region. This band was perturbed by the unobserved ν2 + ν7 band. By fitting 862 infrared transitions for the ν11 band with a rms deviation of 0.0024 cm-1 using a Watson's A-reduced Hamiltonian in the Ir representation including a Coriolis coupling constant, the rovibrational constants for the ν11 = 1 state and three rotational constants for the ν2 = ν7 = 1 state of 13C2D4 were derived for the first time. The band centers of ν11 and ν2 + ν7 were determined to be 2193.75982(25) cm-1 and 2184.613(11) cm-1 respectively.

  10. Atmospheric cloud physics thermal systems analysis

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Engineering analyses performed on the Atmospheric Cloud Physics (ACPL) Science Simulator expansion chamber and associated thermal control/conditioning system are reported. Analyses were made to develop a verified thermal model and to perform parametric thermal investigations to evaluate systems performance characteristics. Thermal network representations of solid components and the complete fluid conditioning system were solved simultaneously using the Systems Improved Numerical Differencing Analyzer (SINDA) computer program.

  11. Theoretical analysis on the measurement errors of local 2D DIC: Part I temporal and spatial uncertainty quantification of displacement measurements

    SciTech Connect

    Wang, Yueqi; Lava, Pascal; Reu, Phillip; Debruyne, Dimitri; Van Houtte, Paul

    2015-12-23

    This study presents a theoretical uncertainty quantification of displacement measurements by subset-based 2D-digital image correlation. A generalized solution to estimate the random error of displacement measurement is presented. The obtained solution suggests that the random error of displacement measurements is determined by the image noise, the summation of the intensity gradient in a subset, the subpixel part of displacement, and the interpolation scheme. The proposed method is validated with virtual digital image correlation tests.

  12. Thermal stress analysis for a wood composite blade. [wind turbines

    NASA Technical Reports Server (NTRS)

    Fu, K. C.; Harb, A.

    1984-01-01

    Heat conduction throughout the blade and the distribution of thermal stresses caused by the temperature distribution were determined for a laminated wood wind turbine blade in both the horizontal and vertical positions. Results show that blade cracking is not due to thermal stresses induced by insulation. A method and practical example of thermal stress analysis for an engineering body of orthotropic materials is presented.

  13. Analysis of thermal stresses and metal movement during welding

    NASA Technical Reports Server (NTRS)

    Muraki, T.; Masubuchi, K.

    1973-01-01

    The research is reported concerning the development of a system of mathematical solutions and computer programs for one- and two-dimensional analyses for thermal stresses. Reports presented include: the investigation of thermal stress and buckling of tantalum and columbium sheet; and analysis of two dimensional thermal strains and metal movement during welding.

  14. Numerical analysis on thermal drilling of aluminum metal matrix composite

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Maheshwaran, M. V.

    2016-05-01

    The work-material deformation is very large and both the tool and workpiece temperatures are high in thermal drilling. Modeling is a necessary tool to understand the material flow, temperatures, stress, and strains, which are difficult to measure experimentally during thermal drilling. The numerical analysis of thermal drilling process of aluminum metal matrix composite has been done in the present work. In this analysis the heat flux of different stages is calculated. The calculated heat flux is applied on the surface of work piece and thermal distribution is predicted in different stages during the thermal drilling process.

  15. Morphologic Analysis of the Temporomandibular Joint Between Patients With Facial Asymmetry and Asymptomatic Subjects by 2D and 3D Evaluation

    PubMed Central

    Zhang, Yuan-Li; Song, Jin-Lin; Xu, Xian-Chao; Zheng, Lei-Lei; Wang, Qing-Yuan; Fan, Yu-Bo; Liu, Zhan

    2016-01-01

    Abstract Signs and symptoms of temporomandibular joint (TMJ) dysfunction are commonly found in patients with facial asymmetry. Previous studies on the TMJ position have been limited to 2-dimensional (2D) radiographs, computed tomography (CT), or cone-beam computed tomography (CBCT). The purpose of this study was to compare the differences of TMJ position by using 2D CBCT and 3D model measurement methods. In addition, the differences of TMJ positions between patients with facial asymmetry and asymptomatic subjects were investigated. We prospectively recruited 5 patients (cases, mean age, 24.8 ± 2.9 years) diagnosed with facial asymmetry and 5 asymptomatic subjects (controls, mean age, 26 ± 1.2 years). The TMJ spaces, condylar and ramus angles were assessed by using 2D and 3D methods. The 3D models of mandible, maxilla, and teeth were reconstructed with the 3D image software. The variables in each group were assessed by t-test and the level of significance was 0.05. There was a significant difference in the horizontal condylar angle (HCA), coronal condylar angle (CCA), sagittal ramus angle (SRA), medial joint space (MJS), lateral joint space (LJS), superior joint space (SJS), and anterior joint space (AJS) measured in the 2D CBCT and in the 3D models (P < 0.05). The case group had significantly smaller SJS compared to the controls on both nondeviation side (P = 0.009) and deviation side (P = 0.004). In the case group, the nondeviation SRA was significantly larger than the deviation side (P = 0.009). There was no significant difference in the coronal condylar width (CCW) in either group. In addition, the anterior disc displacement (ADD) was more likely to occur on the deviated side in the case group. In conclusion, the 3D measurement method is more accurate and effective for clinicians to investigate the morphology of TMJ than the 2D method. PMID:27043669

  16. Morphologic Analysis of the Temporomandibular Joint Between Patients With Facial Asymmetry and Asymptomatic Subjects by 2D and 3D Evaluation: A Preliminary Study.

    PubMed

    Zhang, Yuan-Li; Song, Jin-Lin; Xu, Xian-Chao; Zheng, Lei-Lei; Wang, Qing-Yuan; Fan, Yu-Bo; Liu, Zhan

    2016-03-01

    Signs and symptoms of temporomandibular joint (TMJ) dysfunction are commonly found in patients with facial asymmetry. Previous studies on the TMJ position have been limited to 2-dimensional (2D) radiographs, computed tomography (CT), or cone-beam computed tomography (CBCT). The purpose of this study was to compare the differences of TMJ position by using 2D CBCT and 3D model measurement methods. In addition, the differences of TMJ positions between patients with facial asymmetry and asymptomatic subjects were investigated. We prospectively recruited 5 patients (cases, mean age, 24.8 ± 2.9 years) diagnosed with facial asymmetry and 5 asymptomatic subjects (controls, mean age, 26 ± 1.2 years). The TMJ spaces, condylar and ramus angles were assessed by using 2D and 3D methods. The 3D models of mandible, maxilla, and teeth were reconstructed with the 3D image software. The variables in each group were assessed by t-test and the level of significance was 0.05. There was a significant difference in the horizontal condylar angle (HCA), coronal condylar angle (CCA), sagittal ramus angle (SRA), medial joint space (MJS), lateral joint space (LJS), superior joint space (SJS), and anterior joint space (AJS) measured in the 2D CBCT and in the 3D models (P < 0.05). The case group had significantly smaller SJS compared to the controls on both nondeviation side (P = 0.009) and deviation side (P = 0.004). In the case group, the nondeviation SRA was significantly larger than the deviation side (P = 0.009). There was no significant difference in the coronal condylar width (CCW) in either group. In addition, the anterior disc displacement (ADD) was more likely to occur on the deviated side in the case group. In conclusion, the 3D measurement method is more accurate and effective for clinicians to investigate the morphology of TMJ than the 2D method. PMID:27043669

  17. Ninth Thermal and Fluids Analysis Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara (Compiler)

    1999-01-01

    The Ninth Thermal and Fluids Analysis Workshop (TFAWS 98) was held at the Ohio Aerospace Institute in Cleveland, Ohio from August 31 to September 4, 1998. The theme for the hands-on training workshop and conference was "Integrating Computational Fluid Dynamics and Heat Transfer into the Design Process." Highlights of the workshop (in addition to the papers published herein) included an address by the NASA Chief Engineer, Dr. Daniel Mulville; a CFD short course by Dr. John D. Anderson of the University of Maryland; and a short course by Dr. Robert Cochran of Sandia National Laboratories. In addition, lectures and hands-on training were offered in the use of several cutting-edge engineering design and analysis-oriented CFD and Heat Transfer tools. The workshop resulted in international participation of over 125 persons representing aerospace and automotive industries, academia, software providers, government agencies, and private corporations. The papers published herein address issues and solutions related to the integration of computational fluid dynamics and heat transfer into the engineering design process. Although the primary focus is aerospace, the topics and ideas presented are applicable to many other areas where these and other disciplines are interdependent.

  18. Design and Thermal Analysis for Space Deployable Antenna

    NASA Astrophysics Data System (ADS)

    Guan, Fu-Ling; Huang, Jiang; Zhang, Shu-Jie

    2002-01-01

    sensibility and thermal stability. But deployable antenna always enters into and leaves the earth shadow periodically when it orbits the earth, and it is affected by the shadows of itself Thus a key design for the antenna structure is to control its deformation in a limited range. Obviously, thermal analysis is very important for such structure to maintain its high thermal stability. of a supported backbone (deployable truss) and a reflector surface (flexible mesh). All analysis in this dissertation is based on this model, such as temperature field analysis, thermal deformation analysis, thermal stress analysis, thermal vibration analysis, and so on. tetrahedral element, is discussed. And the mechanism of spider nodes, middle nodes and torsion springs in these nodes are also illustrated. 6-node triangular membrane element are deduced. A temperature analysis procedure has been programmed. The obvious change in temperature happens when the antenna enter into the earth shadow, so this case should be studied to decide whether the temperature of the structure and its components are in the limited range or not. membrane element are put forward. According to the stiffness matrix of these elements and the structural equilibrium equations, thermal deformation and thermal stress of the structure can be computed. The results show that either the thermal deformation or the thermal stress is in the desired range, they have little effect on the shape and stiffness of the entire structure. vibration. The thermally vibration responses of the antenna are studied when it enters into the earth shadow from sunshine and when it enters into sunshine from the earth shadow. The results show that in both cases, there is no vibration in Y direction. The velocity and acceleration in X direction and Z direction are both small, but the displacement in X direction is large, the maximum is 6.5mm. Keyword: Deployable antenna; self-shadow; thermal deformation; thermal stress

  19. Modal analysis of delaminated composite plates using the finite element method and damage detection via combined Ritz/2D-wavelet analysis

    NASA Astrophysics Data System (ADS)

    Gallego, A.; Moreno-García, P.; Casanova, Cesar F.

    2013-06-01

    Structural studies to find defects (in particular delaminations) in composite plates have been very prevalent in the Structural Health Monitoring field. The present work develops a new method to detect delaminations in CFRP (Carbon Fiber Reinforced Polymer) plates. In this paper the method is validated with numerical simulations, which come to support its adequacy for use with real acquisition data. This is done firstly through the implementation of a delaminated plate finite element. Using the classical lamination plate theory, delamination is considered in the kinematic equations through jump functions and additional degrees of freedom. The element allows the introduction of nd delaminations through its thickness. Classical QMITC (Quadrilateral Mixed Interpolation Tensorial Components) and DKQ (Discrete Kirchhoff Quadrilateral) elements are used for the membrane and bending FEM (Finite Element Method) formulation. Second, using the vibration modes obtained with the FEM, a damage location technique based on the variational Ritz method and Wavelet Analysis is proposed. The approach has the advantage of requiring only damaged modes and not the healthy ones. Both FEM simulations and Ritz/Wavelet damage detection schemes are applied in an orthotropic CFRP plate with the stacking sequence [0/90]3S. In addition, the influence of delamination thickness position, boundary conditions and added noise (in order to simulate experimental measures) was studied.

  20. Comparison of Analysis Results Between 2D/1D Synthesis and RAPTOR-M3G in the Korea Standard Nuclear Plant (KSNP)

    NASA Astrophysics Data System (ADS)

    Joung Lim, Mi; Maeng, Young Jae; Fero, Arnold H.; Anderson, Stanwood L.

    2016-02-01

    The 2D/1D synthesis methodology has been used to calculate the fast neutron (E > 1.0 MeV) exposure to the beltline region of the reactor pressure vessel. This method uses the DORT 3.1 discrete ordinates code and the BUGLE-96 cross-section library based on ENDF/B-VI. RAPTOR-M3G (RApid Parallel Transport Of Radiation-Multiple 3D Geometries) which performs full 3D calculations was developed and is based on domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architecture. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor. Both methods are applied to surveillance test results for the Korea Standard Nuclear Plant (KSNP)-OPR (Optimized Power Reactor) 1000 MW. The objective of this paper is to compare the results of the KSNP surveillance program between 2D/1D synthesis and RAPTOR-M3G. Each operating KSNP has a reactor vessel surveillance program consisting of six surveillance capsules located between the core and the reactor vessel in the downcomer region near the reactor vessel wall. In addition to the In-Vessel surveillance program, an Ex-Vessel Neutron Dosimetry (EVND) program has been implemented. In order to estimate surveillance test results, cycle-specific forward transport calculations were performed by 2D/1D synthesis and by RAPTOR-M3G. The ratio between measured and calculated (M/C) reaction rates will be discussed. The current plan is to install an EVND system in all of the Korea PWRs including the new reactor type, APR (Advanced Power Reactor) 1400 MW. This work will play an important role in establishing a KSNP-specific database of surveillance test results and will employ RAPTOR-M3G for surveillance dosimetry location as well as positions in the KSNP reactor vessel.

  1. DYNA2D96. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.

    1992-04-01

    DYNA2D is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  2. Thermal conductivity analysis of lanthanum doped manganites

    SciTech Connect

    Mansuri, Irfan; Shaikh, M. W.; Khan, E.; Varshney, Dinesh

    2014-04-24

    The temperature-dependent thermal conductivity of the doped manganites La{sub 0.7}Ca{sub 0.3}MnO{sub 3} is theoretically analyzed within the framework of Kubo formulae. The Hamiltonian consists of phonon, electron and magnon thermal conductivity contribution term. In this process we took defects, carrier, grain boundary, scattering process term and then calculate phonon, electron and magnon thermal conductivity.

  3. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  4. An Integrated Approach to Thermal Analysis of Pharmaceutical Solids

    ERIC Educational Resources Information Center

    Riley, Shelley R. Rabel

    2015-01-01

    A three-tiered experiment for undergraduate Instrumental Analysis students is presented in which students characterize the solid-state thermal behavior of an active pharmaceutical ingredient (acetaminophen) and excipient (a-lactose hydrate) using differential scanning calorimetry, thermogravimetric analysis, and thermal microscopy. Students are…

  5. Energy analysis of thermal, chemical, and metallurgical processes

    SciTech Connect

    Szargut, J.; Morris, D.R.; Steward, F.R.

    1988-01-01

    This book consists of the following chapters: The exergy concept and exergy losses; Calculation of exergy; Physical and chemical exergy of typical substances; Exergy analysis of typical thermal and chemical processes; Cumulative exergy consumption and cumulative degree of perfection; Reduction of external exergy losses; Exergy analysis of major thermal and chemical processes; Thermoeconomic applications of exergy; and Ecological applications of exergy.

  6. Analysis of bell-shape negative giant-magnetoresistance in high mobility GaAs/AlGaAs 2D electron systems using multi-conduction model

    NASA Astrophysics Data System (ADS)

    Samaraweera, Rasanga; Liu, Han-Chun; Wegscheider, Werner; Mani, Ramesh

    Recent advancements in the growth techniques of the GaAs/AlGaAs two dimensional electron system (2DES) routinely yield high quality heterostructures with enhanced physical and electrical properties, including devices with 2D electron mobilities well above 107 cm2/Vs. These improvements have opened new pathways to study interesting physical phenomena associated with the 2D electron system. Negative giant-magnetoresistance (GMR) is one such phenomenon which can observed in the high mobility 2DES. However, the negative GMR in the GaAs/AlGaAs 2DES is still not fully understood. In this contribution, we present an experimental study of the bell-shape negative GMR in high mobility GaAs/AlGaAs devices and quantitatively analyze the results utilizing the multi-conduction model. The multi-conduction model includes interesting physical characteristics such as negative diagonal conductivity, non-vanishing off-diagonal conductivity, etc. The aim of the study is to examine GMR over a wider experimental parameter space and determine whether the multi-conduction model serves to describe the experimental results.

  7. On a thermal analysis of a second stripper for rare isotope accelerator.

    SciTech Connect

    Momozaki, Y.; Nolen, J.; Nuclear Engineering Division

    2008-08-04

    This memo summarizes simple calculations and results of the thermal analysis on the second stripper to be used in the driver linac of Rare Isotope Accelerator (RIA). Both liquid (Sodium) and solid (Titanium and Vanadium) stripper concepts were considered. These calculations were intended to provide basic information to evaluate the feasibility of liquid (thick film) and solid (rotating wheel) second strippers. Nuclear physics calculations to estimate the volumetric heat generation in the stripper material were performed by 'LISE for Excel'. In the thermal calculations, the strippers were modeled as a thin 2D plate with uniform heat generation within the beam spot. Then, temperature distributions were computed by assuming that the heat spreads conductively in the plate in radial direction without radiative heat losses to surroundings.

  8. Thermal mechanical analysis of sprag clutches

    NASA Technical Reports Server (NTRS)

    Mullen, Robert L.; Zab, Ronald Joseph; Kurniawan, Antonius S.

    1992-01-01

    Work done at Case Western Reserve University on the Thermal Mechanical analysis of sprag helicopter clutches is reported. The report is presented in two parts. The first part is a description of a test rig for the measurement of the heat generated by high speed sprag clutch assemblies during cyclic torsional loading. The second part describes a finite element modeling procedure for sliding contact. The test rig provides a cyclic torsional load of 756 inch-pounds at 5000 rpm using a four-square arrangement. The sprag clutch test unit was placed between the high speed pinions of the circulating power loop. The test unit was designed to have replaceable inner ad outer races, which contain the instrumentation to monitor the sprag clutch. The torque loading device was chosen to be a water cooled magnetic clutch, which is controlled either manually or through a computer. In the second part, a Generalized Eulerian-Lagrangian formulation for non-linear dynamic problems is developed for solid materials. This formulation is derived from the basic laws and axioms of continuum mechanics. The novel aspect of this method is that we are able to investigate the physics in the spatial region of interest as material flows through it without having to follow material points. A finite element approximation to the governing equations is developed. Iterative Methods for the solution of the discrete finite element equations are explored. A FORTRAN program to implement this formulation is developed and a number of solutions to problems of sliding contact are presented.

  9. Analysis of thermally-degrading, confined HMX

    SciTech Connect

    Hobbs, M.L.; Schmitt, R.G.; Renlund, A.M.

    1996-12-01

    The response of a thermally-degrading, confined HMX pellet is analyzed using a Reactive Elastic-Plastic (REP) constitutive model which is founded on the collapse and growth of internal inclusions resulting from physical and chemical processes such as forced displacement, thermal expansion, and/or decomposition. Axial stress predictions compare adequately to data. Deficiencies in the model and future directions are discussed.

  10. Integrated transient thermal-structural finite element analysis

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Decahaumphai, P.; Tamma, K. K.; Wieting, A. R.

    1981-01-01

    An integrated thermal-structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. New integrated thermal-structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal-structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction-elasticity solutions and conventional finite element thermal-finite element structural analyses. Results indicate that the approach offers significant potential for further development with other elements.

  11. ANALYSIS OF CARBONACEOUS AEROSOLS USING THE THERMAL OPTICAL TRANSMITTANCE AND THERMAL OPTICAL REFLECTANCE METHODS

    EPA Science Inventory

    Carbonaceous particulate typically represents a large fraction of PM2.5 (20 - 40%). Two primary techniques presently used for the analysis of particulate carbon are Thermal Optical Transmission (TOT - NIOSH Method 5040) and Thermal Optical Reflectance (TOR). These two methods b...

  12. Thermal and Alignment Analysis of the Instrument-Level ATLAS Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Bradshaw, Heather

    2012-01-01

    This paper describes the thermal analysis and test design performed in preparation for the ATLAS thermal vacuum test. NASA's Advanced Topographic Laser Altimeter System (ATLAS) will be flown as the sole instrument aboard the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2). It will be used to take measurements of topography and ice thickness for Arctic and Antarctic regions, providing crucial data used to predict future changes in worldwide sea levels. Due to the precise measurements ATLAS is taking, the laser altimeter has very tight pointing requirements. Therefore, the instrument is very sensitive to temperature-induced thermal distortions. For this reason, it is necessary to perform a Structural, Thermal, Optical Performance (STOP) analysis not only for flight, but also to ensure performance requirements can be operationally met during instrument-level thermal vacuum testing. This paper describes the thermal model created for the chamber setup, which was used to generate inputs for the environmental STOP analysis. This paper also presents the results of the STOP analysis, which indicate that the test predictions adequately replicate the thermal distortions predicted for flight. This is a new application of an existing process, as STOP analyses are generally performed to predict flight behavior only. Another novel aspect of this test is that it presents the opportunity to verify pointing results of a STOP model, which is not generally done. It is possible in this case, however, because the actual pointing will be measured using flight hardware during thermal vacuum testing and can be compared to STOP predictions.

  13. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  14. Multi-Region Boundary Element Analysis for Coupled Thermal-Fracturing Processes in Geomaterials

    NASA Astrophysics Data System (ADS)

    Shen, Baotang; Kim, Hyung-Mok; Park, Eui-Seob; Kim, Taek-Kon; Wuttke, Manfred W.; Rinne, Mikael; Backers, Tobias; Stephansson, Ove

    2013-01-01

    This paper describes a boundary element code development on coupled thermal-mechanical processes of rock fracture propagation. The code development was based on the fracture mechanics code FRACOD that has previously been developed by Shen and Stephansson (Int J Eng Fracture Mech 47:177-189, 1993) and FRACOM (A fracture propagation code—FRACOD, User's manual. FRACOM Ltd. 2002) and simulates complex fracture propagation in rocks governed by both tensile and shear mechanisms. For the coupled thermal-fracturing analysis, an indirect boundary element method, namely the fictitious heat source method, was implemented in FRACOD to simulate the temperature change and thermal stresses in rocks. This indirect method is particularly suitable for the thermal-fracturing coupling in FRACOD where the displacement discontinuity method is used for mechanical simulation. The coupled code was also extended to simulate multiple region problems in which rock mass, concrete linings and insulation layers with different thermal and mechanical properties were present. Both verification and application cases were presented where a point heat source in a 2D infinite medium and a pilot LNG underground cavern were solved and studied using the coupled code. Good agreement was observed between the simulation results, analytical solutions and in situ measurements which validates an applicability of the developed coupled code.

  15. Quantum chemical analysis of thermodynamics of 2D cluster formation of alkanes at the water/vapor interface in the presence of aliphatic alcohols.

    PubMed

    Vysotsky, Yu B; Kartashynska, E S; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Miller, R

    2015-11-21

    Using the quantum chemical semi-empirical PM3 method it is shown that aliphatic alcohols favor the spontaneous clusterization of vaporous alkanes at the water surface due to the change of adsorption from the barrier to non-barrier mechanism. A theoretical model of the non-barrier mechanism for monolayer formation is developed. In the framework of this model alcohols (or any other surfactants) act as 'floats', which interact with alkane molecules of the vapor phase using their hydrophobic part, whereas the hydrophilic part is immersed into the water phase. This results in a significant increase of contact effectiveness of alkanes with the interface during the adsorption and film formation. The obtained results are in good agreement with the existing experimental data. To test the model the thermodynamic and structural parameters of formation and clusterization are calculated for vaporous alkanes C(n)H(2n+2) (n(CH3) = 6-16) at the water surface in the presence of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K. It is shown that the values of clusterization enthalpy, entropy and Gibbs' energy per one monomer of the cluster depend on the chain lengths of corresponding alcohols and alkanes, the alcohol molar fraction in the monolayers formed, and the shift of the alkane molecules with respect to the alcohol molecules Δn. Two possible competitive structures of mixed 2D film alkane-alcohol are considered: 2D films 1 with single alcohol molecules enclosed by alkane molecules (the alcohols do not form domains) and 2D films 2 that contain alcohol domains enclosed by alkane molecules. The formation of the alkane films of the first type is nearly independent of the surfactant type present at the interface, but depends on their molar fraction in the monolayer formed and the chain length of the compounds participating in the clusterization, whereas for the formation of the films of the second type the interaction between the hydrophilic parts of the surfactant is

  16. TOPAZ2D validation status report, August 1990

    SciTech Connect

    Davis, B.

    1990-08-01

    Analytic solutions to two heat transfer problems were used to partially evaluate the performance TOPAZ, and LLNL finite element heat transfer code. The two benchmark analytic solutions were for: 2D steady state slab, with constant properties, constant uniform temperature boundary conditions on three sides, and constant temperature distribution according to a sine function on the fourth side; 1D transient non-linear, with temperature dependent conductivity and specific heat (varying such that the thermal diffusivity remained constant), constant heat flux on the front face and adiabatic conditions on the other face. The TOPAZ solution converged to the analytic solution in both the transient and the steady state problem. Consistent mass matrix type of analysis yielded best performance for the transient problem, in the late-time response; but notable unnatural anomalies were observed in the early-time temperature response at nodal locations near the front face. 5 refs., 22 figs.

  17. The Fifth Annual Thermal and Fluids Analysis Workshop

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Fifth Annual Thermal and Fluids Analysis Workshop was held at the Ohio Aerospace Institute, Brook Park, Ohio, cosponsored by NASA Lewis Research Center and the Ohio Aerospace Institute, 16-20 Aug. 1993. The workshop consisted of classes, vendor demonstrations, and paper sessions. The classes and vendor demonstrations provided participants with the information on widely used tools for thermal and fluid analysis. The paper sessions provided a forum for the exchange of information and ideas among thermal and fluids analysts. Paper topics included advances and uses of established thermal and fluids computer codes (such as SINDA and TRASYS) as well as unique modeling techniques and applications.

  18. The Fourth Annual Thermal and Fluids Analysis Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Fourth Annual Thermal and Fluids Analysis Workshop was held from August 17-21, 1992, at NASA Lewis Research Center. The workshop consisted of classes, vendor demonstrations, and paper sessions. The classes and vendor demonstrations provided participants with the information on widely used tools for thermal and fluids analysis. The paper sessions provided a forum for the exchange of information and ideas among thermal and fluids analysts. Paper topics included advances and uses of established thermal and fluids computer codes (such as SINDA and TRASYS) as well as unique modeling techniques and applications.

  19. 2D X-ray and FTIR micro-analysis of the degradation of cadmium yellow pigment in paintings of Henri Matisse

    NASA Astrophysics Data System (ADS)

    Pouyet, E.; Cotte, M.; Fayard, B.; Salomé, M.; Meirer, F.; Mehta, A.; Uffelman, E. S.; Hull, A.; Vanmeert, F.; Kieffer, J.; Burghammer, M.; Janssens, K.; Sette, F.; Mass, J.

    2015-11-01

    The chemical and physical alterations of cadmium yellow (CdS) paints in Henri Matisse's The Joy of Life (1905-1906, The Barnes Foundation) have been recognized since 2006, when a survey by portable X-ray fluorescence identified this pigment in all altered regions of the monumental painting. This alteration is visible as fading, discoloration, chalking, flaking, and spalling of several regions of light to medium yellow paint. Since that time, synchrotron radiation-based techniques including elemental and spectroscopic imaging, as well as X-ray scattering have been employed to locate and identify the alteration products observed in this and related works by Henri Matisse. This information is necessary to formulate one or multiple mechanisms for degradation of Matisse's paints from this period, and thus ensure proper environmental conditions for the storage and the display of his works. This paper focuses on 2D full-field X-ray Near Edge Structure imaging, 2D micro-X-ray Diffraction, X-ray Fluorescence, and Fourier Transform Infra-red imaging of the altered paint layers to address one of the long-standing questions about cadmium yellow alteration—the roles of cadmium carbonates and cadmium sulphates found in the altered paint layers. These compounds have often been assumed to be photo-oxidation products, but could also be residual starting reagents from an indirect wet process synthesis of CdS. The data presented here allow identifying and mapping the location of cadmium carbonates, cadmium chlorides, cadmium oxalates, cadmium sulphates, and cadmium sulphides in thin sections of altered cadmium yellow paints from The Joy of Life and Matisse's Flower Piece (1906, The Barnes Foundation). Distribution of various cadmium compounds confirms that cadmium carbonates and sulphates are photo-degradation products in The Joy of Life, whereas in Flower Piece, cadmium carbonates appear to have been a [(partially) unreacted] starting reagent for the yellow paint, a role

  20. Thermal stability analysis of the fine structure of solar prominences

    NASA Technical Reports Server (NTRS)

    Demoulin, Pascal; Malherbe, Jean-Marie; Schmieder, Brigitte; Raadu, Mickael A.

    1986-01-01

    The linear thermal stability of a 2D periodic structure (alternatively hot and cold) in a uniform magnetic field is analyzed. The energy equation includes wave heating (assumed proportional to density), radiative cooling and both conduction parallel and orthogonal to magnetic lines. The equilibrium is perturbed at constant gas pressure. With parallel conduction only, it is found to be unstable when the length scale 1// is greater than 45 Mn. In that case, orthogonal conduction becomes important and stabilizes the structure when the length scale is smaller than 5 km. On the other hand, when the length scale is greater than 5 km, the thermal equilibrium is unstable, and the corresponding time scale is about 10,000 s: this result may be compared to observations showing that the lifetime of the fine structure of solar prominences is about one hour; consequently, our computations suggest that the size of the unresolved threads could be of the order of 10 km only.

  1. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analyses is presented. New thermal finite elements which yield exact nodal and element temperature for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal-structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  2. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  3. User's Manual: Thermal Radiation Analysis System TRASYS 2

    NASA Technical Reports Server (NTRS)

    Jensen, C. L.

    1981-01-01

    A digital computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems is presented. When used in conjunction with a generalized thermal analysis program such as the systems improved numerical differencing analyzer program, any thermal problem that can be expressed in terms of a lumped parameter R-C thermal network can be solved. The function of TRASYS is twofold. It provides: (a) Internode radiation interchange data; and (b) Incident and absorbed heat rate data from environmental radiant heat sources. Data of both types is provided in a format directly usable by the thermal analyzer programs. The system allows the user to write his own executive or driver program which organizes and directs the program library routines toward solution of each specific problem in the most expeditious manner. The user also may write his own output routines, thus the system data output can directly interface with any thermal analyzer using the R-C network concept.

  4. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  5. Topographic slope correction for analysis of thermal infrared images

    NASA Technical Reports Server (NTRS)

    Watson, K. (Principal Investigator)

    1982-01-01

    A simple topographic slope correction using a linearized thermal model and assuming slopes less than about 20 degrees is presented. The correction can be used to analyzed individual thermal images or composite products such as temperature difference or thermal inertia. Simple curves are provided for latitudes of 30 and 50 degrees. The form is easily adapted for analysis of HCMM images using the DMA digital terrain data.

  6. Thermal distortion analysis of a deployable parabolic reflector

    NASA Technical Reports Server (NTRS)

    Bruck, L. R.; Honeycutt, G. H.

    1973-01-01

    A thermal distortion analysis of the ATS-6 Satellite parabolic reflector was performed using NASTRAN level 15.1. The same NASTRAN finite element method was used to conduct a one g static load analysis and a dynamic analysis of the reflector. In addition, a parametric study was made to determine which parameters had the greatest effect on the thermal distortions. The method used to model the construction of the reflector is described and the results of the analyses are presented.

  7. Form finding and analysis of extensible membranes attached to 2-D and 3-D frames intended for micro air vehicles via experimentally validated finite element methods

    NASA Astrophysics Data System (ADS)

    Abudaram, Yaakov Jack

    This work is concerned with a new method to apply consistent and known pretension to silicone rubber membranes intended for micro air vehicles as well as an understanding in the science of developed pre-tension in membranes constrained by 2- D and 3-D frames and structures. Pre-tension has a marked effect on the static and dynamic response of membrane wings and controls the overall deflections, as such control and measurement of the membrane pre-tension is important. Two different 2-D frame geometries were fabricated to evaluate the technique. For open-cell frames, the pretension was not uniform, whereas it was for closed-cell frames. Results show developed full-field stress and strain fields as a function of membrane attachment temperature and frame geometry along with experimental iterations to prove repeatability. The membranes can be stretched to a specific pretension according to the temperature at which it adheres to frames. Strain fields in membranes attached to 3-D frames at various temperatures are modeled through FEA utilizing Abaqus to be able to predict the developed membrane deformations, stresses, and strains. Rigid frames with various curvatures are built via appropriate molds and then adhered to silicone rubber membranes and elevated to various temperatures to achieve different pre-strains for experimental validation. Additional experiments are conducted for more complex frame geometries involving both convex and concave topologies embedded within frames. Results are then compared with the Abaqus outputs to validate the accuracy of the FEA model. Highly compliant wings have been used for MAV platforms, where the wing structure is determined by some combination of carbon fiber composites and a membrane skin, adhered in between the layers of composite material. Another new technique of attaching membranes firmly on wing structures is introduced, which involves the application of a technology known as corona treatment coupled with another method of

  8. Probabilistic hazard analysis of dense Pyroclastic Density Currents at Vesuvius (Italy) via parametric uncertainty characterization of TITAN2D numerical simulator

    NASA Astrophysics Data System (ADS)

    Tierz, Pablo; Ramona Stefanescu, Elena; Sandri, Laura; Patra, Abani; Marzocchi, Warner; Sulpizio, Roberto

    2014-05-01

    Probabilistic hazard assessments of Pyroclastic Density Currents (PDCs) are of great interest for decision-making purposes. However, there is a limited number of published works available on this topic. Recent advances in computation and statistical methods are offering new opportunities beyond the classical Monte Carlo (MC) sampling which is known as a simple and robust method but it usually turns out to be slow and computationally intractable. In this work, Titan2D numerical simulator has been coupled to Polynomial Chaos Quadrature (PCQ) to propagate the simulator parametric uncertainty and compute VEI-based probabilistic hazard maps of dense PDCs formed as a result of column collapse at Vesuvius volcano, Italy. Due to the lack of knowledge about the exact conditions under which these PDCs will form, Probability Distribution Functions (PDFs) are assigned to the simulator input parameters (Bed Friction Angle and Volume) according to three VEI sizes. Uniform distributions were used for both parameters since there is insufficient information to assume that any value in the range is more likely that any other value. Reasonable (and compatible) ranges for both variables were constrained according to past eruptions at Vesuvius volcanic system. On the basis of reasoning above a number of quadrature points were taken within those ranges, which resulted in one execution of the TITAN2D code at each quadrature point. With a computational cost several orders of magnitude smaller than MC, exceedance probabilities for a given threshold of flow depth (and conditional to the occurrence of VEI3, VEI4 and VEI5 eruptions) were calculated using PCQ. Moreover, PCQ can be run at different threshold values of the same output variable (flow depth, speed, kinetic energy, …) and, therefore, it can serve to compute Exceedance Probability curves (aka hazard curves) at singular points inside the hazard domain, representing the most important and useful scientific input to quantitative risk

  9. Mixed time integration methods for transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1982-01-01

    The computational methods used to predict and optimize the thermal structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a different yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.

  10. Thermal analysis of cold vacuum drying of spent nuclear fuel

    SciTech Connect

    Piepho, M.G.

    1998-07-20

    The thermal analysis examined transient thermal and chemical behavior of the Multi canister Overpack (MCO) container for a broad range of cases that represent the Cold Vacuum Drying (CVD) processes. The cases were defined to consider both normal and off-normal operations at the CVD Facility for an MCO with Mark IV N, Reactor spent fuel in four fuel baskets and one scrap basket. This analysis provides the basis for the MCO thermal behavior at the CVD Facility for its Phase 2 Safety Analysis Report (revision 4).

  11. Some selected quantitative methods of thermal image analysis in Matlab.

    PubMed

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. PMID:26556680

  12. Some selected quantitative methods of thermal image analysis in Matlab.

    PubMed

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image.

  13. Rotational Analysis of Bands in the High-Resolution Infrared Spectra of cis,cis- and trans,trans-1,4-difluorobutadiene-2-d1

    SciTech Connect

    Craig, Norman C.; Easterday, Clay C.; Nemchick, Deacon J.; Williamson, Drew; Sams, Robert L.

    2012-02-01

    Pure samples of cis,cis- and trans,trans-1,4-difluorobutadiene-2-d1 have been synthesized, and high-resolution (0.0015 cm-1) infrared spectra have been recorded for these nonpolar molecules in the gas phase. For the cis,cis isomer, the rotational structure in two C-type bands at 775 and 666 cm-1 and one A-type band at 866 cm-1 has been analyzed to yield a combined set of 2020 ground state combination differences (GSCDs). Ground state rotational constants fit to these GSCDs are A0 = 0.4195790(4), B0 = 0.0536508(8), and C0 = 0.0475802(9) cm-1. For the trans,trans isomer, three Ctype bands at 856, 839, and 709 cm-1 have been investigated to give a combined set of 1624 GSCDs. Resulting ground state rotational constants for this isomer are A0 = 0.9390117(8), B0 = 0.0389225(4), and C0 = 0.0373778(3) cm-1. Small inertial defects confirm the planarity of both isomers in the ground state. Upper state rotational constants have been determined for most of the transitions. The ground state rotational constants for the two isotopologues will contribute to the data set needed for determining semiexperimental equilibrium structures for the nonpolar isomers of 1,4- difluorobutadiene.

  14. Kinematic Analysis of Healthy Hips during Weight-Bearing Activities by 3D-to-2D Model-to-Image Registration Technique

    PubMed Central

    Hara, Daisuke; Nakashima, Yasuharu; Hamai, Satoshi; Higaki, Hidehiko; Ikebe, Satoru; Shimoto, Takeshi; Hirata, Masanobu; Kanazawa, Masayuki; Kohno, Yusuke; Iwamoto, Yukihide

    2014-01-01

    Dynamic hip kinematics during weight-bearing activities were analyzed for six healthy subjects. Continuous X-ray images of gait, chair-rising, squatting, and twisting were taken using a flat panel X-ray detector. Digitally reconstructed radiographic images were used for 3D-to-2D model-to-image registration technique. The root-mean-square errors associated with tracking the pelvis and femur were less than 0.3 mm and 0.3° for translations and rotations. For gait, chair-rising, and squatting, the maximum hip flexion angles averaged 29.6°, 81.3°, and 102.4°, respectively. The pelvis was tilted anteriorly around 4.4° on average during full gait cycle. For chair-rising and squatting, the maximum absolute value of anterior/posterior pelvic tilt averaged 12.4°/11.7° and 10.7°/10.8°, respectively. Hip flexion peaked on the way of movement due to further anterior pelvic tilt during both chair-rising and squatting. For twisting, the maximum absolute value of hip internal/external rotation averaged 29.2°/30.7°. This study revealed activity dependent kinematics of healthy hip joints with coordinated pelvic and femoral dynamic movements. Kinematics' data during activities of daily living may provide important insight as to the evaluating kinematics of pathological and reconstructed hips. PMID:25506056

  15. High resolution infrared synchrotron study of CH2D81Br: ground state constants and analysis of the ν5, ν6 and ν9 fundamentals

    NASA Astrophysics Data System (ADS)

    Baldacci, A.; Stoppa, P.; Visinoni, R.; Wugt Larsen, R.

    2012-09-01

    The high resolution infrared absorption spectrum of CH2D81Br has been recorded by Fourier transform spectroscopy in the range 550-1075 cm-1, with an unapodized resolution of 0.0025 cm-1, employing a synchrotron radiation source. This spectral region is characterized by the ν6 (593.872 cm-1), ν5 (768.710 cm-1) and ν9 (930.295 cm-1) fundamental bands. The ground state constants up to sextic centrifugal distortion terms have been obtained for the first time by ground-state combination differences from the three bands and subsequently employed for the evaluation of the excited state parameters. Watson's A-reduced Hamiltonian in the Ir representation has been used in the calculations. The ν 6 = 1 level is essentially free from perturbation whereas the ν 5 = 1 and ν 9 = 1 states are mutually interacting through a-type Coriolis coupling. Accurate spectroscopic parameters of the three excited vibrational states and a high-order coupling constant which takes into account the interaction between ν5 and ν9 have been determined.

  16. SCD1 thermal design and test result analysis

    NASA Technical Reports Server (NTRS)

    Cardoso, Humberto Pontes; Muraoka, Issamu; Mantelli, Marcia Barbosa Henriques; Leite, Rosangela M. G.

    1990-01-01

    The SCD 01 (Satelite de Coleta de Dados 01) is a spin stabilized low Earth orbit satellite dedicated to the collection and distribution of environmental data. It was completely developed at the Brazilian Institute for Space Research (INPE) and is scheduled to be launched in 1992. The SCD 01 passive thermal control design configuration is presented and the thermal analysis results are compared with the temperatures obtained from a Thermal Balance Test. The correlation between the analytical and experimental results is considered very good. Numerical flight simulations show that the thermal control design can keep all the subsystem temperatures within their specified temperature range.

  17. Micro-thermal stress analysis of cement based pavement composite

    SciTech Connect

    Li, G.; Zhao, Y.; Pang, S.S.; Huang, W.

    1998-12-31

    A four-layer sphere model for microscopic thermal analysis was proposed based upon the structural form of cement based pavement composites. Using temperature induced stresses of pavement structure as the external field, the micro-thermal stresses of two types of cement based pavement composite were calculated. The results showed that, by introducing the low stiffness rubberized asphalt in the interphase of coarse aggregate phase and cement mortar phase of Portland cement concrete, the interfacial thermal stresses could be reduced significantly, thus improving crack resistance of the pavement material under low temperature environment. Factors affecting micro-thermal stress of cement based pavement composite were discussed.

  18. LANDSAT-D thermal analysis and design support

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Detailed thermal models of the LANDSAT-D Earth Sensor Assembly Module (ESAM), the Dummy Thematic Mapper (DTM), and a small thermal model of the LANDSAT-D spacecraft for a heater analysis were developed. These models were used to develop and verify the thermal design of the ESAM and DTM, to evaluate the aeroheating effects on ESAM during launch and to evaluate the thermal response of the LANDSAT-D assuming the hard-line heaters failed on with the spacecraft in the Space Transportation System (STS) orbiter bay. Results of model applications are summarized.

  19. Adjustable thermal resistor by reversibly folding a graphene sheet.

    PubMed

    Song, Qichen; An, Meng; Chen, Xiandong; Peng, Zhan; Zang, Jianfeng; Yang, Nuo

    2016-08-11

    Phononic (thermal) devices such as thermal diodes, thermal transistors, thermal logic gates, and thermal memories have been studied intensively. However, tunable thermal resistors have not been demonstrated yet. Here, we propose an instantaneously adjustable thermal resistor based on folded graphene. Through theoretical analysis and molecular dynamics simulations, we study the phonon-folding scattering effect and the dependence of thermal resistivity on the length between two folds and the overall length. Furthermore, we discuss the possibility of realizing instantaneously adjustable thermal resistors in experiment. Our studies bring new insights into designing thermal resistors and understanding the thermal modulation of 2D materials by adjusting basic structure parameters. PMID:27376455

  20. Adjustable thermal resistor by reversibly folding a graphene sheet.

    PubMed

    Song, Qichen; An, Meng; Chen, Xiandong; Peng, Zhan; Zang, Jianfeng; Yang, Nuo

    2016-08-11

    Phononic (thermal) devices such as thermal diodes, thermal transistors, thermal logic gates, and thermal memories have been studied intensively. However, tunable thermal resistors have not been demonstrated yet. Here, we propose an instantaneously adjustable thermal resistor based on folded graphene. Through theoretical analysis and molecular dynamics simulations, we study the phonon-folding scattering effect and the dependence of thermal resistivity on the length between two folds and the overall length. Furthermore, we discuss the possibility of realizing instantaneously adjustable thermal resistors in experiment. Our studies bring new insights into designing thermal resistors and understanding the thermal modulation of 2D materials by adjusting basic structure parameters.

  1. Integrated Thermal Analysis of the FRIB Cryomodule Design

    SciTech Connect

    Y. Xu, M. Barrios, F. Casagrande, M.J. Johnson, M. Leitner, D. Arenius, V. Ganni, W.J. Schneider, M. Wiseman

    2012-07-01

    Thermal analysis of the FRIB cryomodule design is performed to determine the heat load to the cryogenic plant, to minimize the cryogenic plant load, to simulate thermal shield cool down as well as to determine the pressure relief sizes for failure conditions. Static and dynamic heat loads of the cryomodules are calculated and the optimal shield temperature is determined to minimize the cryogenic plant load. Integrated structural and thermal simulations of the 1100-O aluminium thermal shield are performed to determine the desired cool down rate to control the temperature profile on the thermal shield and to minimize thermal expansion displacements during the cool down. Pressure relief sizing calculations for the SRF helium containers, solenoids, helium distribution piping, and vacuum vessels are also described.

  2. Uncooled thermal imaging and image analysis

    NASA Astrophysics Data System (ADS)

    Wang, Shiyun; Chang, Benkang; Yu, Chunyu; Zhang, Junju; Sun, Lianjun

    2006-09-01

    Thermal imager can transfer difference of temperature to difference of electric signal level, so can be application to medical treatment such as estimation of blood flow speed and vessel 1ocation [1], assess pain [2] and so on. With the technology of un-cooled focal plane array (UFPA) is grown up more and more, some simple medical function can be completed with un-cooled thermal imager, for example, quick warning for fever heat with SARS. It is required that performance of imaging is stabilization and spatial and temperature resolution is high enough. In all performance parameters, noise equivalent temperature difference (NETD) is often used as the criterion of universal performance. 320 x 240 α-Si micro-bolometer UFPA has been applied widely presently for its steady performance and sensitive responsibility. In this paper, NETD of UFPA and the relation between NETD and temperature are researched. several vital parameters that can affect NETD are listed and an universal formula is presented. Last, the images from the kind of thermal imager are analyzed based on the purpose of detection persons with fever heat. An applied thermal image intensification method is introduced.

  3. Thermal Analysis of Acicular Shaped Magnetite

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Ming, D. W.; Golden, D. C.

    2003-01-01

    We are in the process of developing a database on the thermal properties of well-characterized Martian analog materials in support of future Mars surface missions. The database contains the thermal behaviors of these analog materials under reduced and Earth ambient pressures. Magnetite in planetary materials has received considerable attention in recent years since the identification of fine grain single-domain magnetite in Martian meteorite ALH84001 and their possible link to past life on Mars (i.e., possible biominerals of magnetotactic bacteria). Because of its possible importance to Mars science, we report here the thermal properties of magnetite particles with acicular morphology, i.e., needle-shaped magnetite. Acicular shaped magnetite can be commercially produced from goethite (FeOOH) as the starting material via a H2 reduction process. However, instead of using this process or procedure, we report here on the thermal characterization of acicular magnetite formed under reducing conditions from well-characterized needle-shaped goethite at low temperature in controlled CO-CO2 1-bar atmosphere gas mixing furnaces.

  4. Spatial and temporal thermal analysis of acousto-optic deflectors using finite element analysis model.

    PubMed

    Jiang, Runhua; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun; Huang, Zhifeng; Zhou, Huaichun

    2012-07-01

    Thermal effects greatly influence the optical properties of the acousto-optic deflectors (AODs). Thermal analysis plays an important role in modern AOD design. However, the lack of an effective method of analysis limits the prediction in the thermal performance. In this paper, we propose a finite element analysis model to analyze the thermal effects of a TeO(2)-based AOD. Both transducer heating and acoustic absorption are considered as thermal sources. The anisotropy of sound propagation is taken into account for determining the acoustic absorption. Based on this model, a transient thermal analysis is employed using ANSYS software. The spatial temperature distributions in the crystal and the temperature changes over time are acquired. The simulation results are validated by experimental results. The effect of heat source and heat convection on temperature distribution is discussed. This numerical model and analytical method of thermal analysis would be helpful in the thermal design and practical applications of AODs.

  5. An Approach of Uncertainty Evaluation for Thermal-Hydraulic Analysis

    SciTech Connect

    Katsunori Ogura; Hisashi Ninokata

    2002-07-01

    An approach to evaluate uncertainty systematically for thermal-hydraulic analysis programs is demonstrated. The approach is applied to the Peach Bottom Unit 2 Turbine Trip 2 Benchmark and is validated. (authors)

  6. Analysis of asphalt-based roof systems using thermal analysis

    SciTech Connect

    Paroli, R.M.; Delgado, A.H.

    1996-10-01

    Asphalt is used extensively in roofing applications. Traditionally, it is used in a built-up roof system, where four or five plies are applied in conjunction with asphalt. This is labour intensive and requires good quality assurance on the roof top. Alternatively, asphalt can be used in a polymer-modified sheet where styrene-butadiene-styrene (SBS) or atactic polypropylene (APP) are added to the asphalt shipped in a roll where reinforcement (e.g., glass fibre mat) has been added. Regardless of the system used, the roof must be able to withstand the environmental loads such UV, heat, etc. Thermoanalytical techniques such as DSC, DMA, TMA and TG/DTA are ideally suited to monitor the weathering of asphalt. This paper presents data obtained using these techniques and shows how the performance of asphalt-based roof systems can be followed by thermal analysis.

  7. Switching system for image enhancement and analysis of fused thermal and RGBD data

    NASA Astrophysics Data System (ADS)

    Agaian, Sos S.; Sridharan, Vijay; Blanton, Michael, Jr.

    2012-06-01

    A number of methods have been developed in the past for color image enhancement, including retinex and color constancy algorithms. Retinex theory is based on psychophysical experiments using mondrian patterns. Recently, multi-scale retinex algorithms have been developed. They combine several "Retinex" outputs to produce a single output image which has both good dynamic range compression and color constancy, as well as good tonal rendition. Unfortunately, multi-scale retinex processing time is consuming. In this paper we present a new algorithm for color and thermal image enhancement. Additionally, an experimental prototype system for fusing the two data types with depth data to create a three-dimensional map of the datasets is presented. The image processing algorithm utilizes a combination of fourier domain and retinex algorithms. Different types of thermal and natural scene NASA images have been tested, along with other imagery. The primary advantages of the image processing algorithm are the reduced computational complexity and the contrast enhancement performance. Experimental results demonstrate that the algorithm works well with underexposed images. The algorithm also gives better contrast enhancement in most cases, thus bringing out the true colors in the image. It thus helps in achieving both color constancy and local contrast enhancement. We compare the presented method with enhancement based on NASA's Multi-scale Retinex. Statistically and quantitatively, we have shown that our technique indeed results in enhanced images, with our argument validated by conducting experiments on human observers. Additionally, the fusion of 2-dimensional (2D) thermal, 2D RGB, and 3-dimensional (3D) depth data (TRGBD) can be analyzed and researched for the purpose of extrapolating thermal conductance and other thermal properties within a scanned environment. This will allow for the determination of energy assessments regarding structural boundaries, the effectiveness of

  8. Thermal and Evolved Gas Analysis of Hydromagnesite and Nesquehonite: Implications for Remote Thermal Analysis on Mars

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Ming, D. W.; Golden, D. C.; Lin, I.-C.; Boynton, W. V.

    2000-01-01

    Volatile-bearing minerals (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) may be important phases on the surface of Mars. In order to characterize these potential phases the Thermal Evolved-Gas Analyzer (TEGA), which was onboard the Mars Polar Lander, was to have performed differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. The sample chamber in TEGA operates at about 100 mbar (approximately 76 torr) with a N2, carrier gas flow of 0.4 seem. Essentially, no information exists on the effects of reduced pressure on the thermal properties of volatile-bearing minerals. In support of TEGA, we have constructed a laboratory analog for TEGA from commercial instrumentation. We connected together a commercial differential scanning calorimeter, a quadruple mass spectrometer, a vacuum pump, digital pressure gauge, electronic mass flow meter, gas "K" bottles, gas dryers, and high and low pressure regulators using a collection of shut off and needle valves. Our arrangement allows us to vary and control the pressure and carrier gas flow rate inside the calorimeter oven chamber.

  9. An Extension of Analysis of Solar-Heated Thermal Wadis to Support Extended-Duration Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Gokoglu, S. A.; Sacksteder, K. R.; Wegeng, R. S.; Suzuki, N. H.

    2010-01-01

    The realization of the renewed exploration of the Moon presents many technical challenges; among them is the survival of lunar surface assets during periods of darkness when the lunar environment is very cold. Thermal wadis are engineered sources of stored solar energy using modified lunar regolith as a thermal storage mass that can supply energy to protect lightweight robotic rovers or other assets during the lunar night. This paper describes an extension of an earlier analysis of performance of thermal wadis based on the known solar illumination of the Moon and estimates of producible thermal properties of modified lunar regolith. The current analysis has been performed for the lunar equatorial region and validates the formerly used 1-D model by comparison of predictions to those obtained from 2-D and 3-D computations. It includes the effects of a thin dust layer covering the surface of the wadi, and incorporating either water as a phase-change material or aluminum stakes as a high thermal conductivity material into the regolith. The calculations indicate that thermal wadis can provide the desired thermal energy and temperature control for the survival of rovers or other equipment during periods of darkness.

  10. Integration of Design, Thermal, Structural, and Optical Analysis, Including Thermal Animation

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.

    1993-01-01

    In many industries there has recently been a concerted movement toward 'quality management' and the issue of how to accomplish work more efficiently. Part of this effort is focused on concurrent engineering; the idea of integrating the design and analysis processes so that they are not separate, sequential processes (often involving design rework due to analytical findings) but instead form an integrated system with smooth transfers of information. Presented herein are several specific examples of concurrent engineering methods being carried out at Langley Research Center (LaRC): integration of thermal, structural and optical analyses to predict changes in optical performance based on thermal and structural effects; integration of the CAD design process with thermal and structural analyses; and integration of analysis and presentation by animating the thermal response of a system as an active color map -- a highly effective visual indication of heat flow.

  11. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  12. A Multi-scale Approach to Urban Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Gluch, Renne; Quattrochi, Dale A.

    2005-01-01

    An environmental consequence of urbanization is the urban heat island effect, a situation where urban areas are warmer than surrounding rural areas. The urban heat island phenomenon results from the replacement of natural landscapes with impervious surfaces such as concrete and asphalt and is linked to adverse economic and environmental impacts. In order to better understand the urban microclimate, a greater understanding of the urban thermal pattern (UTP), including an analysis of the thermal properties of individual land covers, is needed. This study examines the UTP by means of thermal land cover response for the Salt Lake City, Utah, study area at two scales: 1) the community level, and 2) the regional or valleywide level. Airborne ATLAS (Advanced Thermal Land Applications Sensor) data, a high spatial resolution (10-meter) dataset appropriate for an environment containing a concentration of diverse land covers, are used for both land cover and thermal analysis at the community level. The ATLAS data consist of 15 channels covering the visible, near-IR, mid-IR and thermal-IR wavelengths. At the regional level Landsat TM data are used for land cover analysis while the ATLAS channel 13 data are used for the thermal analysis. Results show that a heat island is evident at both the community and the valleywide level where there is an abundance of impervious surfaces. ATLAS data perform well in community level studies in terms of land cover and thermal exchanges, but other, more coarse-resolution data sets are more appropriate for large-area thermal studies. Thermal response per land cover is consistent at both levels, which suggests potential for urban climate modeling at multiple scales.

  13. Transient Thermal Testing and Analysis of a Thermally Insulating Structural Sandwich Panel

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.; Daryabeigi, Kamran; Bird, Richard K.; Knutson, Jeffrey R.

    2015-01-01

    A core configuration was devised for a thermally insulating structural sandwich panel. Two titanium prototype panels were constructed to illustrate the proposed sandwich panel geometry. The core of one of the titanium panels was filled with Saffil(trademark) alumina fibrous insulation and the panel was tested in a series of transient thermal tests. Finite element analysis was used to predict the thermal response of the panel using one- and two-dimensional models. Excellent agreement was obtained between predicted and measured temperature histories.

  14. Thermal-Acoustic Analysis of a Metallic Integrated Thermal Protection System Structure

    NASA Technical Reports Server (NTRS)

    Behnke, Marlana N.; Sharma, Anurag; Przekop, Adam; Rizzi, Stephen A.

    2010-01-01

    A study is undertaken to investigate the response of a representative integrated thermal protection system structure under combined thermal, aerodynamic pressure, and acoustic loadings. A two-step procedure is offered and consists of a heat transfer analysis followed by a nonlinear dynamic analysis under a combined loading environment. Both analyses are carried out in physical degrees-of-freedom using implicit and explicit solution techniques available in the Abaqus commercial finite-element code. The initial study is conducted on a reduced-size structure to keep the computational effort contained while validating the procedure and exploring the effects of individual loadings. An analysis of a full size integrated thermal protection system structure, which is of ultimate interest, is subsequently presented. The procedure is demonstrated to be a viable approach for analysis of spacecraft and hypersonic vehicle structures under a typical mission cycle with combined loadings characterized by largely different time-scales.

  15. Thermal radiation analysis system TRASYS 2: User's manual

    NASA Technical Reports Server (NTRS)

    Goble, R. G.; Jensen, C. L.

    1980-01-01

    The Thermal Radiation Analyzer System (TRASYS) program put thermal radiation analysis on the same basis as thermal analysis using program systems such as MITAS and SINDA. The user is provided the powerful options of writing his own executive, or driver logic and choosing, among several available options, the most desirable solution technique(s) for the problem at hand. This User's Manual serves the twofold purpose of instructing the user in all applications and providing a convenient reference book that presents the features and capabilities in a concise, easy-to-find manner.

  16. Shuttle TPS thermal performance and analysis methodology

    NASA Technical Reports Server (NTRS)

    Neuenschwander, W. E.; Mcbride, D. U.; Armour, G. A.

    1983-01-01

    Thermal performance of the thermal protection system was approximately as predicted. The only extensive anomalies were filler bar scorching and over-predictions in the high Delta p gap heating regions of the orbiter. A technique to predict filler bar scorching has been developed that can aid in defining a solution. Improvement in high Delta p gap heating methodology is still under study. Minor anomalies were also examined for improvements in modeling techniques and prediction capabilities. These include improved definition of low Delta p gap heating, an analytical model for inner mode line convection heat transfer, better modeling of structure, and inclusion of sneak heating. The limited number of problems related to penetration items that presented themselves during orbital flight tests were resolved expeditiously, and designs were changed and proved successful within the time frame of that program.

  17. Controllability analysis of thermally coupled distillation systems

    SciTech Connect

    Hernandez, S.; Jimenez, A.

    1999-10-01

    A comparison of the controllability properties of three thermally coupled distillation sequences (Petlyuk, sequence with side rectifier, and sequence with side stripper) using singular value decomposition is developed. Those properties are also compared to the energy consumption required for separating ternary mixtures. The parameters obtained via singular value decomposition show that sequences with a side rectifier or a side stripper have better control properties than the Petlyuk system, although the Petlyuk scheme has lower energy requirements than the systems with side columns.

  18. Uncertainty Analysis of Thermal Comfort Parameters

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. Silva; Alves e Sousa, J.; Cox, Maurice G.; Forbes, Alistair B.; Matias, L. Cordeiro; Martins, L. Lages

    2015-08-01

    International Standard ISO 7730:2005 defines thermal comfort as that condition of mind that expresses the degree of satisfaction with the thermal environment. Although this definition is inevitably subjective, the Standard gives formulae for two thermal comfort indices, predicted mean vote ( PMV) and predicted percentage dissatisfied ( PPD). The PMV formula is based on principles of heat balance and experimental data collected in a controlled climate chamber under steady-state conditions. The PPD formula depends only on PMV. Although these formulae are widely recognized and adopted, little has been done to establish measurement uncertainties associated with their use, bearing in mind that the formulae depend on measured values and tabulated values given to limited numerical accuracy. Knowledge of these uncertainties are invaluable when values provided by the formulae are used in making decisions in various health and civil engineering situations. This paper examines these formulae, giving a general mechanism for evaluating the uncertainties associated with values of the quantities on which the formulae depend. Further, consideration is given to the propagation of these uncertainties through the formulae to provide uncertainties associated with the values obtained for the indices. Current international guidance on uncertainty evaluation is utilized.

  19. A Thermal and Electrical Analysis of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Vafai, Kambiz

    1997-01-01

    The state-of-art power semiconductor devices require a thorough understanding of the thermal behavior for these devices. Traditional thermal analysis have (1) failed to account for the thermo-electrical interaction which is significant for power semiconductor devices operating at high temperature, and (2) failed to account for the thermal interactions among all the levels involved in, from the entire device to the gate micro-structure. Furthermore there is a lack of quantitative studies of the thermal breakdown phenomenon which is one of the major failure mechanisms for power electronics. This research work is directed towards addressing. Using a coupled thermal and electrical simulation, in which the drift-diffusion equations for the semiconductor and the energy equation for temperature are solved simultaneously, the thermo-electrical interactions at the micron scale of various junction structures are thoroughly investigated. The optimization of gate structure designs and doping designs is then addressed. An iterative numerical procedure which incorporates the thermal analysis at the device, chip and junction levels of the power device is proposed for the first time and utilized in a BJT power semiconductor device. In this procedure, interactions of different levels are fully considered. The thermal stability issue is studied both analytically and numerically in this research work in order to understand the mechanism for thermal breakdown.

  20. Synthesis, structural elucidation and spectroscopic analysis of 3a,8b-dihydroxy-4-oxo-1H,2H,3H,3aH,4H,8bH-indeno[1,2-d]imidazolidin-2-iminium chloride

    NASA Astrophysics Data System (ADS)

    Uma Devi, T.; Priya, S.; Selvanayagam, S.; Ravikumar, K.; Anitha, K.

    2012-11-01

    Ninhydrin guanidinium chloride (3a,8b-dihydroxy-4-oxo-1H,2H,3H,3aH,4H,8bH-indeno [1,2-d]imidazolidin-2-iminium chloride) a semiorganic crystal was synthesized. The structure was determined using X-ray single crystal technique. Comparisons between the FT-IR spectrum of ninhydrin guanidinium chloride with ninhydrin were made. Melting point was found using thermal measurements. The molecular geometry, vibrational frequencies and Mulliken charges of the compound in the ground state have been calculated by the density functional theory (DFT) method with 3-21G(d,p) basis set and theoretical frequencies were compared with the experimental FT-IR spectrum. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis, natural bond orbitals (NBO) and thermodynamic properties at various temperatures of the compound were investigated by theoretical calculations.

  1. Thermal-structural analysis of electron gun with control grid.

    PubMed

    Yao, Lieming; Zhang, Kai; Yu, Hailong; Huang, Tao; Li, Bin

    2012-02-01

    Steady state thermal-structural analysis of electron guns is essential due to the requirement of high reliability in beam performance. Temperatures and displacements for all the components of an electron gun with a control grid are computed. Steady-state thermal analysis has been carried out for various cathode temperatures and various intercepted powers on the control grid to determine the temperature of the control grid. These results are verified experimentally based on measured results from an assembled electron gun. Structural analysis of the electron gun is used to evaluate the deformation of the inner electrodes under the hot condition. The results show that the thermal stress slightly changes the characteristics of the gun. The obtained thermal deformation data can be helpful to modify the design dimensions and assembly of an electron gun.

  2. The Curvelet Transform in the analysis of 2-D GPR data: Signal enhancement and extraction of orientation-and-scale-dependent information

    NASA Astrophysics Data System (ADS)

    Tzanis, Andreas

    2015-04-01

    The Ground Probing Radar (GPR) is a valuable tool for near surface geological, geotechnical, engineering, environmental, archaeological and other work. GPR images of the subsurface frequently contain geometric information (constant or variable-dip reflections) from various structures such as bedding, cracks, fractures etc. Such features are frequently the target of the survey; however, they are usually not good reflectors and they are highly localized in time and in space. Their scale is therefore a factor significantly affecting their detectability. At the same time, the GPR method is very sensitive to broadband noise from buried small objects, electromagnetic anthropogenic activity and systemic factors, which frequently blurs the reflections from such targets. The purpose of this paper is to investigate the Curvelet Transform (CT) as a means of S/N enhancement and information retrieval from 2-D GPR sections, with particular emphasis on the recovery of features associated with specific temporal or spatial scales and geometry (orientation/dip). The CT is a multiscale and multidirectional expansion that formulates an optimally sparse representation of bivariate functions with singularities on twice-differentiable (C2-continuous) curves (e.g. edges) and allows for the optimal, whole or partial reconstruction of such objects. The CT can be viewed as a higher dimensional extension of the wavelet transform: whereas discrete wavelets are isotropic and provide sparse representations of functions with point singularities, curvelets are highly anisotropic and provide sparse representations of functions with singularities on curves. A GPR section essentially comprises a spatio-temporal sampling of the transient wavefield which contains different arrivals that correspond to different interactions with wave scatterers in the subsurface (wavefronts). These are generally longitudinally piecewise smooth and transversely oscillatory, i.e. they comprise edges. Curvelets can detect

  3. Thermal Analysis Of Reluctant Glass Formers

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Curreri, Peter A.

    1989-01-01

    Thermocouple holds sample and monitors temperature during cooling. Ellipsoidal furnace provides controlled cooling rates for studies of thermal properties of reluctant glass formers. Glass tube inserted into furnace and used to blow helium on specimen to cool rapidly. Cooling curve analyzed to determine rate of cooling and such properties of sample as nucleation and recalescence temperatures at cooling rate. Continuous-cooling-crystallization boundaries determined empirically from plots of nucleation time vs. nucleation temperature from runs at large number of different rates of cooling. Apparatus used to examine glass-formation ability of material and critical cooling rate to form glass.

  4. Thermal stress analysis of space shuttle orbiter wing skin panel and thermal protection system

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jenkins, Jerald M.

    1987-01-01

    Preflight thermal stress analysis of the space shuttle orbiter wing skin panel and the thermal protection system (TPS) was performed. The heated skin panel analyzed was rectangular in shape and contained a small square cool region at its center. The wing skin immediately outside the cool region was found to be close to the state of elastic instability in the chordwise direction based on the conservative temperature distribution. The wing skin was found to be quite stable in the spanwise direction. The potential wing skin thermal instability was not severe enough to tear apart the strain isolation pad (SIP) layer. Also, the preflight thermal stress analysis was performed on the TPS tile under the most severe temperature gradient during the simulated reentry heating. The tensile thermal stress induced in the TPS tile was found to be much lower than the tensile strength of the TPS material. The thermal bending of the TPS tile was not severe enough to cause tearing of the SIP layer.

  5. THERMAL ANALYSIS OF 3013/9975 CONFIGURATION

    SciTech Connect

    Gupta, N.

    2009-11-10

    The 3013 containers are designed in accordance with the DOE-STD-3013-2004 and are qualified to store plutonium (Pu) bearing materials for 50 years. The U.S. Department of Energy (DOE) certified Model 9975 shipping package is used to transport the 3013 containers to the K-Area Material Storage (KAMS) facility at the Savannah River Site (SRS) and to store the containers until the plutonium can be properly dispositioned. Detailed thermal analyses to support the storage in the KAMS facility are given in References 2, 3, and 4. The analyses in this paper serve to provide non-accident condition, non-bounding, specific 3013 container temperatures for use in the surveillance activities. This paper presents a methodology where critical component temperatures are estimated using numerical methods over a range of package and storage parameters. The analyses include factors such as ambient storage temperature and the content weight, density, heat generation rate, and fill height, that may impact the thermal response of the packages. Statistical methods are used to develop algebraic equations for ease of computations to cover the factor space. All computations were performed in BTU-FT-Hr-{sup o}F units.

  6. Integrated Modeling Tools for Thermal Analysis and Applications

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.; Needels, Laura; Papalexandris, Miltiadis

    1999-01-01

    Integrated modeling of spacecraft systems is a rapidly evolving area in which multidisciplinary models are developed to design and analyze spacecraft configurations. These models are especially important in the early design stages where rapid trades between subsystems can substantially impact design decisions. Integrated modeling is one of the cornerstones of two of NASA's planned missions in the Origins Program -- the Next Generation Space Telescope (NGST) and the Space Interferometry Mission (SIM). Common modeling tools for control design and opto-mechanical analysis have recently emerged and are becoming increasingly widely used. A discipline that has been somewhat less integrated, but is nevertheless of critical concern for high precision optical instruments, is thermal analysis and design. A major factor contributing to this mild estrangement is that the modeling philosophies and objectives for structural and thermal systems typically do not coincide. Consequently the tools that are used in these discplines suffer a degree of incompatibility, each having developed along their own evolutionary path. Although standard thermal tools have worked relatively well in the past. integration with other disciplines requires revisiting modeling assumptions and solution methods. Over the past several years we have been developing a MATLAB based integrated modeling tool called IMOS (Integrated Modeling of Optical Systems) which integrates many aspects of structural, optical, control and dynamical analysis disciplines. Recent efforts have included developing a thermal modeling and analysis capability, which is the subject of this article. Currently, the IMOS thermal suite contains steady state and transient heat equation solvers, and the ability to set up the linear conduction network from an IMOS finite element model. The IMOS code generates linear conduction elements associated with plates and beams/rods of the thermal network directly from the finite element structural

  7. CYP2D6: novel genomic structures and alleles

    PubMed Central

    Kramer, Whitney E.; Walker, Denise L.; O’Kane, Dennis J.; Mrazek, David A.; Fisher, Pamela K.; Dukek, Brian A.; Bruflat, Jamie K.; Black, John L.

    2010-01-01

    Objective CYP2D6 is a polymorphic gene. It has been observed to be deleted, to be duplicated and to undergo recombination events involving the CYP2D7 pseudogene and surrounding sequences. The objective of this study was to discover the genomic structure of CYP2D6 recombinants that interfere with clinical genotyping platforms that are available today. Methods Clinical samples containing rare homozygous CYP2D6 alleles, ambiguous readouts, and those with duplication signals and two different alleles were analyzed by long-range PCR amplification of individual genes, PCR fragment analysis, allele-specific primer extension assay, and DNA sequencing to characterize alleles and genomic structure. Results Novel alleles, genomic structures, and the DNA sequence of these structures are described. Interestingly, in 49 of 50 DNA samples that had CYP2D6 gene duplications or multiplications where two alleles were detected, the chromosome containing the duplication or multiplication had identical tandem alleles. Conclusion Several new CYP2D6 alleles and genomic structures are described which will be useful for CYP2D6 genotyping. The findings suggest that the recombination events responsible for CYP2D6 duplications and multiplications are because of mechanisms other than interchromosomal crossover during meiosis. PMID:19741566

  8. ISS-CREAM Thermal and Fluid System Design and Analysis

    NASA Technical Reports Server (NTRS)

    Thorpe, Rosemary S.

    2015-01-01

    Thermal and Fluids Analysis Workshop (TFAWS), Silver Spring MD NCTS 21070-15. The ISS-CREAM (Cosmic Ray Energetics And Mass for the International Space Station) payload is being developed by an international team and will provide significant cosmic ray characterization over a long time frame. Cold fluid provided by the ISS Exposed Facility (EF) is the primary means of cooling for 5 science instruments and over 7 electronics boxes. Thermal fluid integrated design and analysis was performed for CREAM using a Thermal Desktop model. This presentation will provide some specific design and modeling examples from the fluid cooling system, complex SCD (Silicon Charge Detector) and calorimeter hardware, and integrated payload and ISS level modeling. Features of Thermal Desktop such as CAD simplification, meshing of complex hardware, External References (Xrefs), and FloCAD modeling will be discussed.

  9. Transient thermal analysis of a space reactor power system

    SciTech Connect

    Gaeta, M.J.; Best, F.R. . Dept. of Nuclear Engineering)

    1993-07-01

    Space nuclear power systems utilize materials and processes that are completely different from terrestrial reactor systems. Therefore, the tools used to analyze ground-based systems are inappropriate for space reactor design and analysis. The purpose of this study was to develop a space reactor transient analysis tool and to apply this tool to scenarios of interest. The scope of the simulation includes the thermal and neutronic behavior of a liquid-metal-cooled fast reactor, the electrical and thermal performance of the thermoelectric generators, the thermal dynamics of heat pipe radiators, and the thermal behavior of the coolant piping between major components. The thermal model of the system is explicitly coupled to a momentum model of the primary and secondary coolant loops. A one-dimensional conduction model is employed in all solid component models. The reactor model includes an expression for energy generation due to fission and decay heat. The thermoelectric heat exchanger model accounts for thermal energy conversion to useful electrical output. The two-node radiator heat pipe model includes normal operation as well as limited heat pipe operation under sonic limit conditions. The reactor, thermoelectric heat exchanger, and heat pipe models are coupled explicitly by the coolant piping thermal model. The computer program is used to simulate a variety of transients including reactor power changer, degradation of the radiator, and a temporary open circuit condition on the thermoelectrics.

  10. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  11. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  12. Integrated thermal disturbance analysis of optical system of astronomical telescope

    NASA Astrophysics Data System (ADS)

    Yang, Dehua; Jiang, Zibo; Li, Xinnan

    2008-07-01

    During operation, astronomical telescope will undergo thermal disturbance, especially more serious in solar telescope, which may cause degradation of image quality. As drives careful thermal load investigation and measure applied to assess its effect on final image quality during design phase. Integrated modeling analysis is boosting the process to find comprehensive optimum design scheme by software simulation. In this paper, we focus on the Finite Element Analysis (FEA) software-ANSYS-for thermal disturbance analysis and the optical design software-ZEMAX-for optical system design. The integrated model based on ANSYS and ZEMAX is briefed in the first from an overview of point. Afterwards, we discuss the establishment of thermal model. Complete power series polynomial with spatial coordinates is introduced to present temperature field analytically. We also borrow linear interpolation technique derived from shape function in finite element theory to interface the thermal model and structural model and further to apply the temperatures onto structural model nodes. Thereby, the thermal loads are transferred with as high fidelity as possible. Data interface and communication between the two softwares are discussed mainly on mirror surfaces and hence on the optical figure representation and transformation. We compare and comment the two different methods, Zernike polynomials and power series expansion, for representing and transforming deformed optical surface to ZEMAX. Additionally, these methods applied to surface with non-circular aperture are discussed. At the end, an optical telescope with parabolic primary mirror of 900 mm in diameter is analyzed to illustrate the above discussion. Finite Element Model with most interested parts of the telescope is generated in ANSYS with necessary structural simplification and equivalence. Thermal analysis is performed and the resulted positions and figures of the optics are to be retrieved and transferred to ZEMAX, and thus

  13. Thermal analysis of combinatorial solid geometry models using SINDA

    NASA Technical Reports Server (NTRS)

    Gerencser, Diane; Radke, George; Introne, Rob; Klosterman, John; Miklosovic, Dave

    1993-01-01

    Algorithms have been developed using Monte Carlo techniques to determine the thermal network parameters necessary to perform a finite difference analysis on Combinatorial Solid Geometry (CSG) models. Orbital and laser fluxes as well as internal heat generation are modeled to facilitate satellite modeling. The results of the thermal calculations are used to model the infrared (IR) images of targets and assess target vulnerability. Sample analyses and validation are presented which demonstrate code products.

  14. Development of thermal-hydraulic analysis capabilities for Oyster creek

    SciTech Connect

    Lee, R.B.

    1987-01-01

    GPU Nuclear (GPUN) has been involved in developing analytical methodologies for Oyster Creek plant thermal-hydraulic response simulation for approx. 15 yr. Plant-system-related transient analysis is being accomplished via RETRAN02 MOD4 and loss-of-coolant accident (LOCA) analysis by SAFER-CORECOOL. This paper reviews the developmental process and lessons learned through this process.

  15. THERMAL PERFORMANCE ANALYSIS FOR WSB DRUM

    SciTech Connect

    Lee, S

    2008-06-26

    The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum.

  16. Nonlinear Transient Thermal Analysis by the Force-Derivative Method

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Narayani V.; Hou, Gene

    1997-01-01

    High-speed vehicles such as the Space Shuttle Orbiter must withstand severe aerodynamic heating during reentry through the atmosphere. The Shuttle skin and substructure are constructed primarily of aluminum, which must be protected during reentry with a thermal protection system (TPS) from being overheated beyond the allowable temperature limit, so that the structural integrity is maintained for subsequent flights. High-temperature reusable surface insulation (HRSI), a popular choice of passive insulation system, typically absorbs the incoming radiative or convective heat at its surface and then re-radiates most of it to the atmosphere while conducting the smallest amount possible to the structure by virtue of its low diffusivity. In order to ensure a successful thermal performance of the Shuttle under a prescribed reentry flight profile, a preflight reentry heating thermal analysis of the Shuttle must be done. The surface temperature profile, the transient response of the HRSI interior, and the structural temperatures are all required to evaluate the functioning of the HRSI. Transient temperature distributions which identify the regions of high temperature gradients, are also required to compute the thermal loads for a structural thermal stress analysis. Furthermore, a nonlinear analysis is necessary to account for the temperature-dependent thermal properties of the HRSI as well as to model radiation losses.

  17. Thermal Analysis of ISS Service Module Active TCS

    NASA Technical Reports Server (NTRS)

    Altov, Vladimir V.; Zaletaev, Sergey V.; Belyavskiy, Evgeniy P.

    2000-01-01

    ISS Service Module mission must begin in July 2000. The verification of design thermal requirements is mostly due to thermal analysis. The thermal analysis is enough difficult problem because of large number of ISS configurations that had to be investigated and various orbital environments. Besides the ISS structure has articulating parts such as solar arrays and radiators. The presence of articulating parts greatly increases computation times and requires accurate approach to organization of calculations. The varying geometry needs us to calculate the view factors several times during the orbit, while in static geometry case we need do it only once. In this paper we consider the thermal mathematical model of SM that includes the TCS and construction thermal models and discuss the results of calculations for ISS configurations 1R and 9Al. The analysis is based on solving the nodal heat balance equations for ISS structure by Kutta-Merson method and analytical solutions of heat transfer equations for TCS units. The computations were performed using thermal software TERM [1,2] that will be briefly described.

  18. Projection-Based Reduced Order Modeling for Spacecraft Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Qian, Jing; Wang, Yi; Song, Hongjun; Pant, Kapil; Peabody, Hume; Ku, Jentung; Butler, Charles D.

    2015-01-01

    This paper presents a mathematically rigorous, subspace projection-based reduced order modeling (ROM) methodology and an integrated framework to automatically generate reduced order models for spacecraft thermal analysis. Two key steps in the reduced order modeling procedure are described: (1) the acquisition of a full-scale spacecraft model in the ordinary differential equation (ODE) and differential algebraic equation (DAE) form to resolve its dynamic thermal behavior; and (2) the ROM to markedly reduce the dimension of the full-scale model. Specifically, proper orthogonal decomposition (POD) in conjunction with discrete empirical interpolation method (DEIM) and trajectory piece-wise linear (TPWL) methods are developed to address the strong nonlinear thermal effects due to coupled conductive and radiative heat transfer in the spacecraft environment. Case studies using NASA-relevant satellite models are undertaken to verify the capability and to assess the computational performance of the ROM technique in terms of speed-up and error relative to the full-scale model. ROM exhibits excellent agreement in spatiotemporal thermal profiles (<0.5% relative error in pertinent time scales) along with salient computational acceleration (up to two orders of magnitude speed-up) over the full-scale analysis. These findings establish the feasibility of ROM to perform rational and computationally affordable thermal analysis, develop reliable thermal control strategies for spacecraft, and greatly reduce the development cycle times and costs.

  19. Megaflood analysis through channel networks of the Athabasca Valles, Mars based on multi-resolution stereo DTMs and 2D hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Rack; Schumann, Guy; Neal, Jeffrey C.; Lin, Shih-Yuan

    2014-09-01

    Stereo analysis of in-orbital imagery provides valuable topographic data for scientific research over planetary surfaces especially for the interpretation of potential fluvial activity. The focus of research into planetary fluvial activity has been shifting toward quantitative modeling with various spatial resolution DTMs from visual interpretation with ortho images. Thus in this study, we tested the application of hydraulic analysis with multi resolution Martian DTMs, which were constructed following the approaches of Kim and Muller (2009). Planet. Space Sci. 57 (14), 2095. Subsequently, a two-dimensional hydraulic model was introduced to conduct flow simulation using the extracted 1.2-150 m resolution DTMs. As a result, it was found that the simulated water flows coincided with what might be water eroded geomorphic features over target areas. Moreover, the information acquired from the modeling, such as water depth along the time line, flow direction and travel time, is proving of great value for the interpretation of surface characteristics. Results highlighted the importance of DTM quality for simulating fluvial channel hydraulics across planetary surfaces.

  20. Effect of 3G cell phone exposure with computer controlled 2-D stepper motor on non-thermal activation of the hsp27/p38MAPK stress pathway in rat brain.

    PubMed

    Kesari, Kavindra Kumar; Meena, Ramovatar; Nirala, Jayprakash; Kumar, Jitender; Verma, H N

    2014-03-01

    Cell phone radiation exposure and its biological interaction is the present concern of debate. Present study aimed to investigate the effect of 3G cell phone exposure with computer controlled 2-D stepper motor on 45-day-old male Wistar rat brain. Animals were exposed for 2 h a day for 60 days by using mobile phone with angular movement up to zero to 30°. The variation of the motor is restricted to 90° with respect to the horizontal plane, moving at a pre-determined rate of 2° per minute. Immediately after 60 days of exposure, animals were scarified and numbers of parameters (DNA double-strand break, micronuclei, caspase 3, apoptosis, DNA fragmentation, expression of stress-responsive genes) were performed. Result shows that microwave radiation emitted from 3G mobile phone significantly induced DNA strand breaks in brain. Meanwhile a significant increase in micronuclei, caspase 3 and apoptosis were also observed in exposed group (P < 0.05). Western blotting result shows that 3G mobile phone exposure causes a transient increase in phosphorylation of hsp27, hsp70, and p38 mitogen-activated protein kinase (p38MAPK), which leads to mitochondrial dysfunction-mediated cytochrome c release and subsequent activation of caspases, involved in the process of radiation-induced apoptotic cell death. Study shows that the oxidative stress is the main factor which activates a variety of cellular signal transduction pathways, among them the hsp27/p38MAPK is the pathway of principle stress response. Results conclude that 3G mobile phone radiations affect the brain function and cause several neurological disorders.

  1. Thermal analysis of RFETS SS and C

    SciTech Connect

    Korinko, P.S.

    2000-02-04

    In support of the gas generation test program (GGTP) for the 9975 shipping container, thermogravimetric analysis (TGA) was conducted. The objective of this activity was to determine the moisture content as an input to the gas generation model.

  2. A contact-area model for rail-pads connections in 2-D simulations: sensitivity analysis of train-induced vibrations

    NASA Astrophysics Data System (ADS)

    Ferrara, R.; Leonardi, G.; Jourdan, F.

    2013-09-01

    A numerical model to predict train-induced vibrations is presented. The dynamic computation considers mutual interactions in vehicle/track coupled systems by means of a finite and discrete elements method. The rail defects and the case of out-of-round wheels are considered. The dynamic interaction between the wheel-sets and the rail is accomplished by using the non-linear Hertzian model with hysteresis damping. A sensitivity analysis is done to evaluate the variables affecting more the maintenance costs. The rail-sleeper contact is assumed extended to an area-defined contact zone, rather than a single-point assumption which fits better real case studies. Experimental validations show how prediction fits well experimental data.

  3. Label free cell-tracking and division detection based on 2D time-lapse images for lineage analysis of early embryo development.

    PubMed

    Cicconet, Marcelo; Gutwein, Michelle; Gunsalus, Kristin C; Geiger, Davi

    2014-08-01

    In this paper we report a database and a series of techniques related to the problem of tracking cells, and detecting their divisions, in time-lapse movies of mammalian embryos. Our contributions are (1) a method for counting embryos in a well, and cropping each individual embryo across frames, to create individual movies for cell tracking; (2) a semi-automated method for cell tracking that works up to the 8-cell stage, along with a software implementation available to the public (this software was used to build the reported database); (3) an algorithm for automatic tracking up to the 4-cell stage, based on histograms of mirror symmetry coefficients captured using wavelets; (4) a cell-tracking database containing 100 annotated examples of mammalian embryos up to the 8-cell stage; and (5) statistical analysis of various timing distributions obtained from those examples. PMID:24873887

  4. Label Free Cell-Tracking and Division Detection Based on 2D Time-Lapse Images For Lineage Analysis of Early Embryo Development

    PubMed Central

    Cicconet, Marcelo; Gutwein, Michelle; Gunsalus, Kristin C; Geiger, Davi

    2014-01-01

    In this paper we report a database and a series of techniques related to the problem of tracking cells, and detecting their divisions, in time-lapse movies of mammalian embryos. Our contributions are: (1) a method for counting embryos in a well, and cropping each individual embryo across frames, to create individual movies for cell tracking; (2) a semi-automated method for cell tracking that works up to the 8-cell stage, along with a software implementation available to the public (this software was used to build the reported database); (3) an algorithm for automatic tracking up to the 4-cell stage, based on histograms of mirror symmetry coefficients captured using wavelets; (4) a cell-tracking database containing 100 annotated examples of mammalian embryos up to the 8-cell stage; (5) statistical analysis of various timing distributions obtained from those examples. PMID:24873887

  5. The Langley Stability and Transition Analysis Code (LASTRAC) : LST, Linear and Nonlinear PSE for 2-D, Axisymmetric, and Infinite Swept Wing Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2003-01-01

    During the past two decades, our understanding of laminar-turbulent transition flow physics has advanced significantly owing to, in a large part, the NASA program support such as the National Aerospace Plane (NASP), High-speed Civil Transport (HSCT), and Advanced Subsonic Technology (AST). Experimental, theoretical, as well as computational efforts on various issues such as receptivity and linear and nonlinear evolution of instability waves take part in broadening our knowledge base for this intricate flow phenomenon. Despite all these advances, transition prediction remains a nontrivial task for engineers due to the lack of a widely available, robust, and efficient prediction tool. The design and development of the LASTRAC code is aimed at providing one such engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. LASTRAC was written from scratch based on the state-of-the-art numerical methods for stability analysis and modem software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory (LST) or linear parabolized stability equations (LPSE) method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. Coupled with the built-in receptivity model that is currently under development, the nonlinear PSE method offers a synergistic approach to predict transition onset for a given disturbance environment based on first principles. This paper describes the governing equations, numerical methods, code development, and case studies for the current release of LASTRAC. Practical applications of LASTRAC are demonstrated for linear stability calculations, N-factor transition correlation, non-linear breakdown simulations, and controls of stationary crossflow instability in supersonic swept wing boundary

  6. Reactor safety issues resolved by the 2D/3D Program. International Agreement Report

    SciTech Connect

    Damerell, P.S.; Simons, J.W.

    1993-07-01

    The 2D/3D Program studied multidimensional thermal-hydraulics in a PWR core and primary system during the end-of-blowdown and post-blowdown phases of a large-break LOCA (LBLOCA), and during selected small-break LOCA (SBLOCA) transients. The program included tests at the Cylindrical Core Test Facility (CCTF), the Slab Core Test Facility (SCTF), and the Upper Plenum Test Facility (UPTF), and computer analyses using TRAC. Tests at CCTF investigated core thermal-hydraulics and overall system behavior while tests at SCTF concentrated on multidimensional core thermal-hydraulics. The UPTF tests investigated two-phase flow behavior in the downcomer, upper plenum, tie plate region, and primary loops. TRAC analyses evaluated thermal-hydraulic behavior throughout the primary system in tests as well as in PWRs. This report summarizes the test and analysis results in each of the main areas where improved information was obtained in the 2D/3D Program. The discussion is organized in terms of the reactor safety issues investigated.

  7. Thermal analysis of DTL in the SSC-LINAC

    NASA Astrophysics Data System (ADS)

    Wu, Xi; Yuan, Ping; He, Yuan; Ma, Li-Zhen; Zhang, Xiao-Qi; Wu, Wei; Yang, Ya-Qing

    2011-10-01

    A linear accelerator as a new injector for the Separated Sector Cyclotron at the Heavy Ion Research Facility of LAN Zhou is being designed. The Drift-Tube-Linac (DTL) has been designed to accelerate 238U34+ from 0.140 MeV/u to 0.97 MeV/u [1]. The 3D finite element analysis of thermal behavior is presented in this paper. During operation, the cavity will produce Joule heat. The cavity will not work normally due to the high temperature and thermal deformation will lead to frequency drift. So it is necessary to perform thermal analysis to ensure the correct working temperature is used. The result of the analysis shows that after the water cooling system is put into the cavity the temperature rise is about 20 degrees and the frequency drift is about 0.15%.

  8. Study of the mechanical behavior of a 2-D carbon-carbon composite

    NASA Technical Reports Server (NTRS)

    Avery, W. B.; Herakovich, C. T.

    1987-01-01

    The out-of-plane fracture of a 2-D carbon-carbon composite was observed and characterized to gain an understanding of the factors influencing the stress distribution in such a laminate. Finite element analyses of a two-ply carbon-carbon composite under in-plane, out-of-plane, and thermal loading were performed. Under in-plane loading all components of stress were strong functions of geometry. Additionally, large thermal stresses were predicted. Out-of-plane tensile tests revealed that failure was interlaminar, and that cracks propagated along the fiber-matrix interface. An elasticity solution was utilized to analyze an orthotropic fiber in an isotropic matrix under uniform thermal load. The analysis reveals that the stress distributions in a transversely orthotropic fiber are radically different than those predicted assuming the fiber to be transversely isotropic.

  9. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser-Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations.

    PubMed

    Najbauer, Eszter E; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2015-08-20

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, six conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-life of (3.7 ± 0.5) × 10(3) s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser-induced conversions revealed that the excitation of the stretching overtone of both the side chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations. PMID:26201050

  10. Thermal Analysis of the ILC Superconductin Quadrupole

    SciTech Connect

    Ross, Ian; /Rose-Hulman Inst., Terre Haute /SLAC

    2006-09-13

    Critical to a particle accelerator's functioning, superconducting magnets serve to focus and aim the particle beam. The Stanford Linear Accelerator Center (SLAC) has received a prototype superconducting quadrupole designed and built by the Centro de Investigaciones Energ{acute e}ticas, Medioambientales y Tecnol{acute o}gicas (CIEMAT) to be evaluated for the International Linear Collider (ILC) project. To ensure proper functioning of the magnet, the device must be maintained at cryogenic temperatures by use of a cooling system containing liquid nitrogen and liquid helium. The cool down period of a low temperature cryostat is critical to the success of an experiment, especially a prototype setup such as this one. The magnet and the dewar each contain unique heat leaks and material properties. These differences can lead to tremendous thermal stresses. The system was analyzed mathematically, leading to ideal liquid helium and liquid nitrogen flow rates during the magnet's cool-down to 4.2 K, along with a reasonable estimate of how long this cool-down will take. With a flow rate of ten gaseous liters of liquid nitrogen per minute, the nitrogen shield will take approximately five hours to cool down to 77 K. With a gaseous helium flow rate of sixty liters per minute, the magnet will take at least nineteen hours to cool down to a temperature of 4.2 K.

  11. Ascent Heating Thermal Analysis on Spacecraft Adaptor Fairings

    NASA Technical Reports Server (NTRS)

    Wang, Xiao Yen; Yuko, James; Motil, Brian

    2011-01-01

    When the Crew Exploration Vehicle (CEV) is launched, the spacecraft adaptor (SA) fairings that cover the CEV service module (SM) are exposed to aero heating. Thermal analysis is performed to compute the fairing temperatures and to investigate whether the temperatures are within the material limits for nominal ascent aeroheating case. The ascent heating is analyzed by using computational fluid dynamics (CFD) and engineering codes at Marshall Space Flight Center. The aeroheating environment data used for this work is known as Thermal Environment 3 (TE3) heating data. One of the major concerns is with the SA fairings covering the CEV SM and the SM/crew launch vehicle (CLV) flange interface. The TE3 heating rate is a function of time, wall temperature, and the spatial locations. The implementation of the TE3 heating rate as boundary conditions in the thermal analysis becomes challenging. The ascent heating thermal analysis on SA fairings and SM/CLV flange interface are performed using two commercial software packages: Cullimore & Ring (C&R) Thermal Desktop (TD) 5.1 and MSC Patran 2007r1 b. TD is the pre-and post-processor for SINDA, which is a finite-difference-based solver. In TD, the geometry is built and meshed, the boundary conditions are defined, and then SINDA is used to compute temperatures. MSC Pthermal is a finite-element- based thermal solver. MSC Patran is the pre- and post-processor for Pthermal. Regarding the boundary conditions, the convection, contact resistance, and heat load can be imposed in different ways in both programs. These two software packages are used to build the thermal model for the same analysis to validate each other and show the differences in the modeling details.

  12. Comparative Proteomics Profile of Lipid-Cumulating Oleaginous Yeast: An iTRAQ-Coupled 2-D LC-MS/MS Analysis

    PubMed Central

    Shi, Jiahua; Feng, Huixing; Lee, Jaslyn; Ning Chen, Wei

    2013-01-01

    Accumulation of intracellular lipid in oleaginous yeast cells has been studied for providing an alternative supply for energy, biofuel. Numerous studies have been conducted on increasing lipid content in oleaginous yeasts. However, few explore the mechanism of the high lipid accumulation ability of oleaginous yeast strains at the proteomics level. In this study, a time-course comparative proteomics analysis was introduced to compare the non-oleaginous yeast Saccharomyces cerevisiae, with two oleaginous yeast strains, Cryptococcus albidus and Rhodosporidium toruloides at different lipid accumulation stages. Two dimensional LC-MS/MS approach has been applied for protein profiling together with isobaric tag for relative and absolute quantitation (iTRAQ) labelling method. 132 proteins were identified when three yeast strains were all at early lipid accumulation stage; 122 and 116 proteins were found respectively within cells of three strains collected at middle and late lipid accumulation stages. Significantly up-regulation or down-regulation of proteins were experienced among comparison. Essential proteins correlated to lipid synthesis and regulation were detected. Our approach provides valuable indication and better understanding for lipid accumulation mechanism from proteomics level and would further contribute to genetic engineering of oleaginous yeasts. PMID:24386479

  13. Comparative proteomics profile of lipid-cumulating oleaginous yeast: an iTRAQ-coupled 2-D LC-MS/MS analysis.

    PubMed

    Shi, Jiahua; Feng, Huixing; Lee, Jaslyn; Ning Chen, Wei

    2013-01-01

    Accumulation of intracellular lipid in oleaginous yeast cells has been studied for providing an alternative supply for energy, biofuel. Numerous studies have been conducted on increasing lipid content in oleaginous yeasts. However, few explore the mechanism of the high lipid accumulation ability of oleaginous yeast strains at the proteomics level. In this study, a time-course comparative proteomics analysis was introduced to compare the non-oleaginous yeast Saccharomyces cerevisiae, with two oleaginous yeast strains, Cryptococcus albidus and Rhodosporidium toruloides at different lipid accumulation stages. Two dimensional LC-MS/MS approach has been applied for protein profiling together with isobaric tag for relative and absolute quantitation (iTRAQ) labelling method. 132 proteins were identified when three yeast strains were all at early lipid accumulation stage; 122 and 116 proteins were found respectively within cells of three strains collected at middle and late lipid accumulation stages. Significantly up-regulation or down-regulation of proteins were experienced among comparison. Essential proteins correlated to lipid synthesis and regulation were detected. Our approach provides valuable indication and better understanding for lipid accumulation mechanism from proteomics level and would further contribute to genetic engineering of oleaginous yeasts.

  14. Structural studies of an arabinan from the stems of Ephedra sinica by methylation analysis and 1D and 2D NMR spectroscopy.

    PubMed

    Xia, Yong-Gang; Liang, Jun; Yang, Bing-You; Wang, Qiu-Hong; Kuang, Hai-Xue

    2015-05-01

    Plant arabinan has important biological activity. In this study, a water-soluble arabinan (Mw∼6.15kDa) isolated from the stems of Ephedra sinica was found to consist of (1→5)-Araƒ, (1→3,5)-Araƒ, T-Araƒ, (1→3)-Araƒ and (1→2,5)-Araƒ residues at proportions of 10:2:3:2:1. A tentative structure was proposed by methylation analysis, nuclear magnetic resonance (NMR) spectroscopy ((1)H NMR, (13)C NMR, DEPT-135, (1)H-(1)H COSY, HSQC, HMBC and ROESY) and literature. The structure proposed includes a branched (1→5)-α-Araf backbone where branching occurs at the O-2 and O-3 positions of the residues with 7.7% and 15.4% of the 1,5-linked α-Araf substituted at the O-2 and O-3 positions. The presence of a branched structure was further observed by atomic force microscopy. This polymer was characterized as having a much longer linear (1→5)-α-Araf backbone as a repeating unit. In particular, the presence of α-Araf→3)-α-Araf-(1→3)-α-Araf-(1→ attached at the O-2 is a new finding. This study may facilitate a deeper understanding of structure-activity relationships of biological polysaccharides from the stems of E. sinica.

  15. Can anti-migratory drugs be screened in vitro? A review of 2D and 3D assays for the quantitative analysis of cell migration.

    PubMed

    Decaestecker, Christine; Debeir, Olivier; Van Ham, Philippe; Kiss, Robert

    2007-03-01

    The aim of the present review is to detail and analyze the pros and cons of in vitro tests available to quantify the anti-migratory effects of anti-cancer drugs for their eventual use in combating the dispersal of tumor cells, a clinical need which currently remains unsatisfied. We therefore briefly sum up why anti-migratory drugs constitute a promising approach in oncology while at the same time emphasizing that migrating cancer cells are resistant to apoptosis. To analyze the pros and cons of the various in vitro tests under review we also briefly sum up the molecular and cellular stages of cancer cell migration, an approach that enables us to argue both that no single in vitro test is sufficient to characterize the anti-migratory potential of a drug and that standardization is needed for the efficient quantitative analysis of cell locomotion in a 3D environment. Before concluding our review we devote the final two parts (i) to the description of new prototypes which, in the near future, could enter the screening process with a view to identifying novel anti-migratory compounds, and (ii) to the anti-migratory compounds currently developed against cancer, with particular emphasis on how these compounds were selected before entering the clinical trial phase.

  16. Thermal stress analysis of a silicon carbide/aluminum composite

    NASA Technical Reports Server (NTRS)

    Gdoutos, E. E.; Karalekas, D.; Daniel, I. M.

    1991-01-01

    Thermal deformations and stresses were studied in a silicon-carbide/aluminum filamentary composite at temperatures up to 370 C (700 F). Longitudinal and transverse thermal strains were measured with strain gages and a dilatometer. An elastoplastic micromechanical analysis based on a one-dimensional rule-of-mixtures model and an axisymmetric two-material composite cylinder model was performed. It was established that beyond a critical temperature thermal strains become nonlinear with decreasing longitudinal and increasing transverse thermal-expansion coefficients. This behavior was attributed to the plastic stresses in the aluminum matrix above the critical temperature. An elastoplastic analysis of both micromechanical models was performed to determine the stress distributions and thermal deformation in the fiber and matrix of the composite. While only axial stresses can be determined by the rule-of-mixtures model, the complete triaxial state of stress is established by the composite cylinder model. Theoretical predictions for the two thermal-expansion coefficients were in satisfactory agreement with experimental results.

  17. Thermal sensors utilizing thin layer technology applied to the analysis of aeronautical thermal exchanges

    NASA Astrophysics Data System (ADS)

    Godefroy, J. C.; Gageant, C.; Francois, D.

    Thin film surface thermometers and thermal gradient fluxmeters developed by ONERA to monitor thermal exchanges in aircraft engines to predict the remaining service life of the components are described. The sensors, less than 80 microns thick, with flexible Kapton dielectric layers and metal substrates, are integrated into the shape of the surface being monitored. Features of Cu-n, Ni-, Au-, and Cr-based films, including mounting and circuitry methods that permit calibration and accurate signal analysis, are summarized. Results are discussed from sample applications of the devices on a symmetric NACA 65(1)-012 airfoil and on a turbine blade.

  18. Portable Life Support Subsystem Thermal Hydraulic Performance Analysis

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce; Pinckney, John; Conger, Bruce

    2010-01-01

    This paper presents the current state of the thermal hydraulic modeling efforts being conducted for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS). The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. The PLSS thermal hydraulic model simulates the thermal, pressure, flow characteristics, and human thermal comfort related to the PLSS performance. This paper presents modeling approaches and assumptions as well as component model descriptions. Results from the models are presented that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.

  19. Prediction of p38 map kinase inhibitory activity of 3, 4-dihydropyrido [3, 2-d] pyrimidone derivatives using an expert system based on principal component analysis and least square support vector machine.

    PubMed

    Shahlaei, M; Saghaie, L

    2014-01-01

    A quantitative structure-activity relationship (QSAR) study is suggested for the prediction of biological activity (pIC50) of 3, 4-dihydropyrido [3,2-d] pyrimidone derivatives as p38 inhibitors. Modeling of the biological activities of compounds of interest as a function of molecular structures was established by means of principal component analysis (PCA) and least square support vector machine (LS-SVM) methods. The results showed that the pIC50 values calculated by LS-SVM are in good agreement with the experimental data, and the performance of the LS-SVM regression model is superior to the PCA-based model. The developed LS-SVM model was applied for the prediction of the biological activities of pyrimidone derivatives, which were not in the modeling procedure. The resulted model showed high prediction ability with root mean square error of prediction of 0.460 for LS-SVM. The study provided a novel and effective approach for predicting biological activities of 3, 4-dihydropyrido [3,2-d] pyrimidone derivatives as p38 inhibitors and disclosed that LS-SVM can be used as a powerful chemometrics tool for QSAR studies.

  20. Prediction of p38 map kinase inhibitory activity of 3, 4-dihydropyrido [3, 2-d] pyrimidone derivatives using an expert system based on principal component analysis and least square support vector machine

    PubMed Central

    Shahlaei, M.; Saghaie, L.

    2014-01-01

    A quantitative structure–activity relationship (QSAR) study is suggested for the prediction of biological activity (pIC50) of 3, 4-dihydropyrido [3,2-d] pyrimidone derivatives as p38 inhibitors. Modeling of the biological activities of compounds of interest as a function of molecular structures was established by means of principal component analysis (PCA) and least square support vector machine (LS-SVM) methods. The results showed that the pIC50 values calculated by LS-SVM are in good agreement with the experimental data, and the performance of the LS-SVM regression model is superior to the PCA-based model. The developed LS-SVM model was applied for the prediction of the biological activities of pyrimidone derivatives, which were not in the modeling procedure. The resulted model showed high prediction ability with root mean square error of prediction of 0.460 for LS-SVM. The study provided a novel and effective approach for predicting biological activities of 3, 4-dihydropyrido [3,2-d] pyrimidone derivatives as p38 inhibitors and disclosed that LS-SVM can be used as a powerful chemometrics tool for QSAR studies. PMID:26339262

  1. Origin of the Ion Foreshock in a Quasi-perpendicular Curved Collisionless Shock: Particles Trajectory Analysis in 2D PIC Simulations

    NASA Astrophysics Data System (ADS)

    Savoini, P.; Lembege, B.

    2015-12-01

    The ion foreshock located upstream of the Earth's shock wave is populated with ions having interacted with the shock, and then, reflected back with an high energy gain. Spacecrafts have clearly established the existence of two distinct populations in the quasi-perpendicular shock region (i.e. for 45° ≤ ΘBn ≤ 90°, where ΘBn is the angle between the shock normal and the upstream magnetic field) : (i) field-aligned ion beams or « FAB » characterized by a gyrotropic distribution, and (ii) gyro-phase bunched ions or « GPB » characterized by a NON gyrotropic distribution. One of the important unresolved problem is the exact origin of the particles contributing to these two populations. To our knowledge, it was the first time that full-particle simulations have been performed including self-consistently the shock front curvature and nonstationarity, and the time-of-flight effects. Our analysis evidences that these two backstreaming populations may be reflected by the front itself and can be differentiated both in terms of interaction time and trajectory within the shock front. In particular, simulations evidence that "GPB" population is characterized by a short interaction time (ΔTinter = 1 to 2 τci) while the "FAB" population corresponds to a much larger time range (from 1 τci to 10 τci), where tci is the upstream ion gyroperiod. Present individual ion trajectories evidence that "FAB" population shows a strong perpendicular drift at the shock front (i.e. strong dependence of the pitch angle to the perpendicular velocity) whereas the "GPB" population shows no perpendicular drift (i.e. its pitch angle is mainly driven by the parallel velocity). Such differences explain why the "FAB" population loses their gyro-phase coherency and become gyrotropic which is not the case for the "GPB". This important result was not expected and greatly simplifies the question of their origin.

  2. 2D spatiotemporal visualization system of expired gaseous ethanol after oral administration for real-time illustrated analysis of alcohol metabolism.

    PubMed

    Wang, Xin; Ando, Eri; Takahashi, Daishi; Arakawa, Takahiro; Kudo, Hiroyuki; Saito, Hirokazu; Mitsubayashi, Kohji

    2010-08-15

    A novel 2-dimensional spatiotemporal visualization system of expired gaseous ethanol after oral administration for real-time illustrated analysis of alcohol metabolism has been developed, which employed a low level light CCD camera to detect chemiluminescence (CL) generated by catalytic reactions of standard gaseous ethanol and expired gaseous ethanol after oral administration. First, the optimization of the substrates for visualization and the concentration of luminol solution for CL were investigated. The cotton mesh and 5.0 mmol L(-1) luminol solution were selected for further investigations and this system is useful for 0.1-20.0 mmol L(-1) of H(2)O(2) solution. Then, the effect of pH condition of Tris-HCl buffer solution was also evaluated with CL intensity and under the Tris-HCl buffer solution pH 10.1, a wide calibration range of standard gaseous ethanol (30-400 ppm) was obtained. Finally, expired air of 5 healthy volunteers after oral administration was measured at 15, 30, 45, 60, 75, 90, 105 and 120 min after oral administration, and this system showed a good sensitivity on expired gaseous ethanol for alcohol metabolism. The peaks of expired gaseous ethanol concentration appeared within 30 min after oral administration. During the 30 min after oral administration, the time variation profile based on mean values showed the absorption and distribution function, and the values onward showed the elimination function. The absorption and distribution of expired gaseous ethanol in 5 healthy volunteers following first-order absorption process were faster than the elimination process, which proves efficacious of this system for described alcohol metabolism in healthy volunteers. This system is expected to be used as a non-invasive method to detect VOCs as well as several other drugs in expired air for clinical purpose.

  3. Practical Algorithm For Computing The 2-D Arithmetic Fourier Transform

    NASA Astrophysics Data System (ADS)

    Reed, Irving S.; Choi, Y. Y.; Yu, Xiaoli

    1989-05-01

    Recently, Tufts and Sadasiv [10] exposed a method for computing the coefficients of a Fourier series of a periodic function using the Mobius inversion of series. They called this method of analysis the Arithmetic Fourier Transform(AFT). The advantage of the AFT over the FN 1' is that this method of Fourier analysis needs only addition operations except for multiplications by scale factors at one stage of the computation. The disadvantage of the AFT as they expressed it originally is that it could be used effectively only to compute finite Fourier coefficients of a real even function. To remedy this the AFT developed in [10] is extended in [11] to compute the Fourier coefficients of both the even and odd components of a periodic function. In this paper, the improved AFT [11] is extended to a two-dimensional(2-D) Arithmetic Fourier Transform for calculating the Fourier Transform of two-dimensional discrete signals. This new algorithm is based on both the number-theoretic method of Mobius inversion of double series and the complex conjugate property of Fourier coefficients. The advantage of this algorithm over the conventional 2-D FFT is that the corner-turning problem needed in a conventional 2-D Discrete Fourier Transform(DFT) can be avoided. Therefore, this new 2-D algorithm is readily suitable for VLSI implementation as a parallel architecture. Comparing the operations of 2-D AFT of a MxM 2-D data array with the conventional 2-D FFT, the number of multiplications is significantly reduced from (2log2M)M2 to (9/4)M2. Hence, this new algorithm is faster than the FFT algorithm. Finally, two simulation results of this new 2-D AFT algorithm for 2-D artificial and real images are given in this paper.

  4. Simple technique for structural thermal-screening analysis. [LMFBR

    SciTech Connect

    Yang, C.C.; Dalcher, A.W.

    1982-01-01

    A closed form solution to one dimensional transient heat conduction problem is suggested for the thermal screening analysis of arbitrary input transients. This formulation has been derived from a classical solution and been applied to thermal screening analyses of nuclear structural components. Direct output in the form of computer plots is particularly useful not only for visualization of transient responses but also the selection of umbrella transients used in the detailed analyses of nuclear components especially for high temperature applications. An example is given to demonstrate the usefulness of this technique in the design analysis of heat transport system equipments.

  5. Thermal stress analysis of a new turbine shroud seal concept

    NASA Technical Reports Server (NTRS)

    Handschuh, R. F.

    1985-01-01

    The thermal stress field of a two piece turbine shroud seal concept was analyzed and results compared to one piece designs by finite element analysis. The two piece seal has independently formed structure (substrate) and ceramic components that are assembled at ambient conditions. The boundary conditions used for analysis were hot gas surface temperatures of 1370 and 1650 C (2500 and 3000 F) and cooled surface temperature of 700 C (1285 F). The resulting thermal stress field, of the two piece seal when compared to the one piece seals in the region of all ceramic material, was reduced substantially.

  6. Automated thermal mapping techniques using chromatic image analysis

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    1989-01-01

    Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.

  7. Thermal Analysis of Thin Plates Using the Finite Element Method

    NASA Astrophysics Data System (ADS)

    Er, G. K.; Iu, V. P.; Liu, X. L.

    2010-05-01

    The isotropic thermal plate is analyzed with finite element method. The solution procedure is presented. The elementary stiffness matrix and loading vector are derived rigorously with variation principle and the principle of minimum potential energy. Numerical results are obtained based on the derived equations and tested with available exact solutions. The problems in the finite element analysis are figured out. It is found that the finite element solutions can not converge as the number of elements increases around the corners of the plate. The derived equations presented in this paper are fundamental for our further study on more complicated thermal plate analysis.

  8. Analysis of the thermal environment and thermal response associated with thermal-acoustic testing

    NASA Technical Reports Server (NTRS)

    Turner, T. L.; Ash, R. L.

    1990-01-01

    A method is developed for predicting the radiant heat flux distribution produced by a bank of quartz radiant heaters which accounts for the specular and diffuse effects of a flat reflector or the diffuse effects of individual parabolic reflectors. This analysis is experimentally verified for a single unreflected lamp and a single lamp with a flat reflector. Observations on the further development of this analysis and experimental validation are discussed.

  9. On-line 1D and 2D porous layer open tubular/LC-ESI-MS using 10-microm-i.d. poly(styrene-divinylbenzene) columns for ultrasensitive proteomic analysis.

    PubMed

    Luo, Quanzhou; Yue, Guihua; Valaskovic, Gary A; Gu, Ye; Wu, Shiaw-Lin; Karger, Barry L

    2007-08-15

    Following on our recent work, on-line one-dimensional (1D) and two-dimensional (2D) porous layer open tubular/liquid chromatography-electrospray ionization-mass spectrometry (PLOT/LC-ESI-MS) platforms using 3.2 mx10 microm i.d. poly(styrene-divinylbenzene) (PS-DVB) PLOT columns have been developed to provide robust, high-performance, and ultrasensitive proteomic analysis. With the use of a PicoClear tee, the dead volume connection between a 50 microm i.d. PS-DVB monolithic micro-SPE column and the PLOT column was minimized. The micro-SPE/PLOT column assembly provided a separation performance similar to that obtained with direct injection onto the PLOT column at a mobile phase flow rate of 20 nL/min. The trace analysis potential of the platform was evaluated using an in-gel tryptic digest sample of a gel fraction (15-40 kDa) of a cervical cancer (SiHa) cell line. As an example of the sensitivity of the system, approximately 2.5 ng of protein in 2 microL of solution, an amount corresponding to 20 SiHa cells, was subjected to on-line micro-SPE-PLOT/LC-ESI-MS/MS analysis using a linear ion trap MS. A total of 237 peptides associated with 163 unique proteins were identified from a single analysis when using stringent criteria associated with a false positive rate of less than 1%. The number of identified peptides and proteins increased to 638 and 343, respectively, as the injection amount was raised to approximately 45 ng of protein, an amount corresponding to 350 SiHa cells. In comparison, only 338 peptides and 231 unique proteins were identified (false positive rate again less than 1%) from 750 ng of protein from the identical gel fraction, an amount corresponding to 6000 SiHa cells, using a typical 15 cmx75 microm i.d. packed capillary column. The greater sensitivity, higher recovery, and higher resolving power of the PLOT column resulted in the increased number of identifications from only approximately 5% of the injected sample amount. The resolving power of the

  10. Mixed time integration methods for transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1983-01-01

    The computational methods used to predict and optimize the thermal-structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a difficult yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally-useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.

  11. Zero Boil-Off System Design and Thermal Analysis of the Bimodal Thermal Nuclear Rocket

    SciTech Connect

    Christie, Robert J.; Plachta, David W.

    2006-01-20

    Mars exploration studies at NASA are evaluating vehicles that incorporate Bimodal Nuclear Thermal Rocket (BNTR) propulsion which use a high temperature nuclear fission reactor and hydrogen to produce thermal propulsion. The hydrogen propellant is to be stored in liquid state for periods up to 18 months. To prevent boil-off of the liquid hydrogen, a system of passive and active components are needed to prevent heat from entering the tanks and to remove any heat that does. This report describes the design of the system components used for the BNTR Crew Transfer Vehicle and the thermal analysis performed. The results show that Zero Boil-Off (ZBO) can be achieved with the electrical power allocated for the ZBO system.

  12. Analysis of membrane-protein complexes of the marine sulfate reducer Desulfobacula toluolica Tol2 by 1D blue native-PAGE complexome profiling and 2D blue native-/SDS-PAGE.

    PubMed

    Wöhlbrand, Lars; Ruppersberg, Hanna S; Feenders, Christoph; Blasius, Bernd; Braun, Hans-Peter; Rabus, Ralf

    2016-03-01

    Sulfate-reducing bacteria (SRB) obtain energy from cytoplasmic reduction of sulfate to sulfide involving APS-reductase (AprAB) and dissimilatory sulfite reductase (DsrAB). These enzymes are predicted to obtain electrons from membrane redox complexes, i.e. the quinone-interacting membrane-bound oxidoreductase (QmoABC) and DsrMKJOP complexes. In addition to these conserved complexes, the genomes of SRB encode a large number of other (predicted) membrane redox complexes, the function and actual formation of which is unknown. This study reports the establishment of 1D Blue Native-PAGE complexome profiling and 2D BN-/SDS-PAGE for analysis of the membrane protein complexome of the marine sulfate reducer Desulfobacula toluolica Tol2. Analysis of normalized score profiles of >800 proteins in combination with hierarchical clustering and identification of 2D BN-/SDS-PAGE separated spots demonstrated separation of membrane complexes in their native form, e.g. ATP synthase. In addition to the QmoABC and DsrMKJOP complexes, other complexes were detected that constitute the basic membrane complexome of D. toluolica Tol2, e.g. transport proteins (e.g. sodium/sulfate symporters) or redox complexes involved in Na(+) -based bioenergetics (RnfABCDEG). Notably, size estimation indicates dimer and quadruple formation of the DsrMKJOP complex in vivo. Furthermore, cluster analysis suggests interaction of this complex with a rhodanese-like protein (Tol2_C05230) possibly representing a periplasmic electron transfer partner for DsrMKJOP. PMID:26792001

  13. Thermal Sensor Arrays for The Combinatorial Analysis of Thin Films

    NASA Astrophysics Data System (ADS)

    McCluskey, Patrick James

    2011-12-01

    Membrane-based thermal sensor arrays were developed for the high-throughput analysis of the thermophysical properties of thin films. The continuous growth of integrated circuits and microelectromechanical systems, as well as the development of functional materials and the optimization of materials properties, have produced the need for instruments capable of fast materials screening and analysis at reduced length scales. Two instruments were developed based on a similar architecture, one to measure thermal transport properties and the other to perform calorimetry measurements. Both have the capability to accelerate the pace of materials development and understanding using combinatorial measurement methods. The shared architecture of the instruments consists of a silicon-based micromachined array of thermal sensors. Each sensor consists of a SiN X membrane and a W heating element that also serves as a temperature gauge. The array design allows the simultaneous creation of a library of thin film samples by various deposition techniques while systematically varying a parameter of interest across the device. The membrane-based sensors have little thermal mass making them extremely sensitive to changes in thermal energy. The nano-thermal transport array has an array of sensors optimized for sensitivity to heat loss. The heat loss is determined from the temperature response of the sensor to an applied current. An analytical model is used with a linear regression analysis to fit the thermal properties of the samples to the temperature response. The assumptions of the analytical model are validated with a finite element model. Measured thermal properties include specific heat, thermal effusivity, thermal conductivity, and emissivity. The technique is demonstrated by measuring the thermal transport properties of sputter deposited Cu multilayers with a total film thickness from 15 to 470 nm. The experimental results compare well to a theory based on electronic thermal

  14. CFD Analysis of Thermal Control System Using NX Thermal and Flow

    NASA Technical Reports Server (NTRS)

    Fortier, C. R.; Harris, M. F. (Editor); McConnell, S. (Editor)

    2014-01-01

    The Thermal Control Subsystem (TCS) is a key part of the Advanced Plant Habitat (APH) for the International Space Station (ISS). The purpose of this subsystem is to provide thermal control, mainly cooling, to the other APH subsystems. One of these subsystems, the Environmental Control Subsystem (ECS), controls the temperature and humidity of the growth chamber (GC) air to optimize the growth of plants in the habitat. The TCS provides thermal control to the ECS with three cold plates, which use Thermoelectric Coolers (TECs) to heat or cool water as needed to control the air temperature in the ECS system. In order to optimize the TCS design, pressure drop and heat transfer analyses were needed. The analysis for this system was performed in Siemens NX Thermal/Flow software (Version 8.5). NX Thermal/Flow has the ability to perform 1D or 3D flow solutions. The 1D flow solver can be used to represent simple geometries, such as pipes and tubes. The 1D flow method also has the ability to simulate either fluid only or fluid and wall regions. The 3D flow solver is similar to other Computational Fluid Dynamic (CFD) software. TCS performance was analyzed using both the 1D and 3D solvers. Each method produced different results, which will be evaluated and discussed.

  15. Analysis of measurements of the thermal conductivity of liquid urania

    SciTech Connect

    Fink, J.K.; Leibowitz, L.

    1984-09-17

    An analysis was performed of the three existing measurements of the thermal conductivity and thermal diffusivity of molten uranium dioxide. A transient heat transfer code (THTB) was used for this analysis. A much smaller range of values for thermal conductivity than originally reported was found: the original values ranged from 2.4 to 11 W . m/sup -1/ . K/sup -1/, with a mean of 7.3 W . m/sup -1/ . K/sup -1/, whereas the recalculated values ranged from 4.5 to 6.75 W . m/sup -1/ . K/sup -1/, with a mean of 5.6 W . m/sup -1/ . K/sup -1/.

  16. Thermal analysis of nanofluids in microfluidics using an infrared camera.

    PubMed

    Yi, Pyshar; Kayani, Aminuddin A; Chrimes, Adam F; Ghorbani, Kamran; Nahavandi, Saeid; Kalantar-zadeh, Kourosh; Khoshmanesh, Khashayar

    2012-07-21

    We present the thermal analysis of liquid containing Al(2)O(3) nanoparticles in a microfluidic platform using an infrared camera. The small dimensions of the microchannel along with the low flow rates (less than 120 μl min(-1)) provide very low Reynolds numbers of less than 17.5, reflecting practical parameters for a microfluidic cooling platform. The heat analysis of nanofluids has never been investigated in such a regime, due to the deficiencies of conventional thermal measurement systems. The infrared camera allows non-contact, three dimensional and high resolution capability for temperature profiling. The system was studied at different w/w concentrations of thermally conductive Al(2)O(3) nanoparticles and the experiments were in excellent agreement with the computational fluid dynamics (CFD) simulations.

  17. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  18. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  19. General stability analysis of composite sandwich plates under thermal load

    NASA Astrophysics Data System (ADS)

    Abdallah, Shaher A.

    In structures subjected to high temperature change such as high-speed aircraft the panels are stressed more significantly under thermal loading than mechanical loading. This can produce instability within the structure; therefore, the thermal loading may become the primary factor in the design of the structure. For example, buckling and facesheet wrinkling are two major failure modes of the composite sandwich plates subjected to various loadings. The goal of this dissertation is to study the stability analysis of composite sandwich plates due to buckling and wrinkling subjected to thermal loading. The primary objective is to find out the critical failure mode and the associated critical temperature change causing it. For thermal buckling and wrinkling analysis, the critical temperature change Delta Tcr, is of more interest than the critical thermal load. In this study, two different approaches of the stability problem of the composite sandwich plate subjected to thermally induced load are developed. In the first approach, the wrinkling analysis and buckling analysis are performed separately to evaluate their associated critical wrinkling and buckling temperature changes. For the face-wrinkling problem, two different models, the linear decaying Hoff model and exponential decaying Chen model are employed. The global buckling analysis is based on the energy method. The second approach is based on the unified theory of Benson and Mayers. In such an approach, the critical temperature change for both the global buckling and face wrinkling can be evaluated simultaneously. A potential energy based variation principle has been applied to formulate the problem. The Lagrange multipliers are used to satisfy the face-core continuity conditions. The buckling and wrinkling can be analyzed and calculated simultaneously. Therefore, the critical wrinkling temperature and the critical buckling temperature are found in a single analysis. The critical buckling and wrinkling stresses

  20. Thermal stress analysis of symmetric shells subjected to asymmetric thermal loads

    NASA Technical Reports Server (NTRS)

    Negaard, G. R.

    1980-01-01

    The performance of the NASTRAN level 16.0 axisymmetric solid elements when subjected to both symmetric and asymmetric thermal loading was investigated. A ceramic radome was modeled using both the CTRAPRG and the CTRAPAX elements. The thermal loading applied contained severe gradients through the thickness of the shell. Both elements were found to be more sensitive to the effect of the thermal gradient than to the aspect ratio of the elements. Analysis using the CTRAPAX element predicted much higher thermal stresses than the analysis using the CTRAPRG element, prompting studies of models for which theoretical solutions could be calculated. It was found that the CTRAPRG element solutions were satisfactory, but that the CTRAPAX element was very geometry dependent. This element produced erroneous results if the geometry was allowed to vary from a rectangular cross-section. The most satisfactory solution found for this type of problem was to model a small segment of a symmetric structure with isoparametric solid elements and apply the cyclic symmetry option in NASTRAN.

  1. Thermal Management Tools for Propulsion System Trade Studies and Analysis

    NASA Technical Reports Server (NTRS)

    McCarthy, Kevin; Hodge, Ernie

    2011-01-01

    Energy-related subsystems in modern aircraft are more tightly coupled with less design margin. These subsystems include thermal management subsystems, vehicle electric power generation and distribution, aircraft engines, and flight control. Tighter coupling, lower design margins, and higher system complexity all make preliminary trade studies difficult. A suite of thermal management analysis tools has been developed to facilitate trade studies during preliminary design of air-vehicle propulsion systems. Simulink blocksets (from MathWorks) for developing quasi-steady-state and transient system models of aircraft thermal management systems and related energy systems have been developed. These blocksets extend the Simulink modeling environment in the thermal sciences and aircraft systems disciplines. The blocksets include blocks for modeling aircraft system heat loads, heat exchangers, pumps, reservoirs, fuel tanks, and other components at varying levels of model fidelity. The blocksets have been applied in a first-principles, physics-based modeling and simulation architecture for rapid prototyping of aircraft thermal management and related systems. They have been applied in representative modern aircraft thermal management system studies. The modeling and simulation architecture has also been used to conduct trade studies in a vehicle level model that incorporates coupling effects among the aircraft mission, engine cycle, fuel, and multi-phase heat-transfer materials.

  2. THERMAL ANALYSIS OF GEOLOGIC HIGH-LEVEL RADIOACTIVE WASTE PACKAGES

    SciTech Connect

    Hensel, S.; Lee, S.

    2010-04-20

    The engineering design of disposal of the high level waste (HLW) packages in a geologic repository requires a thermal analysis to provide the temperature history of the packages. Calculated temperatures are used to demonstrate compliance with criteria for waste acceptance into the geologic disposal gallery system and as input to assess the transient thermal characteristics of the vitrified HLW Package. The objective of the work was to evaluate the thermal performance of the supercontainer containing the vitrified HLW in a non-backfilled and unventilated underground disposal gallery. In order to achieve the objective, transient computational models for a geologic vitrified HLW package were developed by using a computational fluid dynamics method, and calculations for the HLW disposal gallery of the current Belgian geological repository reference design were performed. An initial two-dimensional model was used to conduct some parametric sensitivity studies to better understand the geologic system's thermal response. The effect of heat decay, number of co-disposed supercontainers, domain size, humidity, thermal conductivity and thermal emissivity were studied. Later, a more accurate three-dimensional model was developed by considering the conduction-convection cooling mechanism coupled with radiation, and the effect of the number of supercontainers (3, 4 and 8) was studied in more detail, as well as a bounding case with zero heat flux at both ends. The modeling methodology and results of the sensitivity studies will be presented.

  3. 'Brukin2D': a 2D visualization and comparison tool for LC-MS data

    PubMed Central

    Tsagkrasoulis, Dimosthenis; Zerefos, Panagiotis; Loudos, George; Vlahou, Antonia; Baumann, Marc; Kossida, Sophia

    2009-01-01

    Background Liquid Chromatography-Mass Spectrometry (LC-MS) is a commonly used technique to resolve complex protein mixtures. Visualization of large data sets produced from LC-MS, namely the chromatogram and the mass spectra that correspond to its compounds is the focus of this work. Results The in-house developed 'Brukin2D' software, built in Matlab 7.4, which is presented here, uses the compound data that are exported from the Bruker 'DataAnalysis' program, and depicts the mean mass spectra of all the chromatogram compounds from one LC-MS run, in one 2D contour/density plot. Two contour plots from different chromatograph runs can then be viewed in the same window and automatically compared, in order to find their similarities and differences. The results of the comparison can be examined through detailed mass quantification tables, while chromatogram compound statistics are also calculated during the procedure. Conclusion 'Brukin2D' provides a user-friendly platform for quick, easy and integrated view of complex LC-MS data. The software is available at . PMID:19534737

  4. Combination Analysis in Genetic Polymorphisms of Drug-Metabolizing Enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A5 in the Japanese Population

    PubMed Central

    Ota, Tomoko; Kamada, Yuka; Hayashida, Mariko; Iwao-Koizumi, Kyoko; Murata, Shigenori; Kinoshita, Kenji

    2015-01-01

    The Cytochrome P450 is the major enzyme involved in drug metabolism. CYP enzymes are responsible for the metabolism of most clinically used drugs. Individual variability in CYP activity is one important factor that contributes to drug therapy failure. We have developed a new straightforward TaqMan PCR genotyping assay to investigate the prevalence of the most common allelic variants of polymorphic CYP enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A5 in the Japanese population. Moreover, we focused on the combination of each genotype for clinical treatment. The genotype analysis identified a total of 139 out of 483 genotype combinations of five genes in the 1,003 Japanese subjects. According to our results, most of subjects seemed to require dose modification during clinical treatment. In the near future, modifications should be considered based on the individual patient genotype of each treatment. PMID:25552922

  5. Scientific Ballooning Technologies Workshop STO-2 Thermal Design and Analysis

    NASA Technical Reports Server (NTRS)

    Ferguson, Doug

    2016-01-01

    The heritage thermal model for the full STO-2 (Stratospheric Terahertz Observatory II), vehicle has been updated to model the CSBF (Columbia Scientific Balloon Facility) SIP-14 (Scientific Instrument Package) in detail. Analysis of this model has been performed for the Antarctica FY2017 launch season. Model temperature predictions are compared to previous results from STO-2 review documents.

  6. The detection of conformational disorder by thermal analysis

    SciTech Connect

    Wunderlich, B.

    1988-01-01

    Conformational disorder in crystals is found in many molecules that possess a plurality of conformational isomers. Typical examples are linear macromolecules such as polyethylene, polytetrafluoroethylene and trans-1,4-polybutadiene; and small molecules such as paraffins, cycloparaffins, soaps, lipids and many liquid-crystal forming molecules. Conformational motion is often coupled with the cooperative creation of disorder. In this case a heat and entropy of transition is observed by thermal analysis. Levels of transition entropies can be estimated, assuming most of the disorder can be traced to conformational isomerism. In case there is conformational disorder frozen-in at low temperature, thermal analysis can be used to find the glass transition of a condis crystal. An Advanced Thermal Analysis System has been developed, and will be described that permits a detailed interpretation of the thermal analysis traces. It rests with the establishment of high quality heat capacity for the rigid solid state (vibration only) and the mobile liquid state (vibrations and large amplitude cooperative motion). 36 refs., 3 figs.

  7. Statistical analysis of unsolicited thermal sensation complaints in commercial buildings

    SciTech Connect

    Federspiel, C.C.

    1998-10-01

    Unsolicited complaints from 23,500 occupants in 690 commercial buildings were examined with regard to absolute and relative frequency of complaints, temperatures at which thermal sensation complaints (too hot or too cold) occurred, and response times and actions. The analysis shows that thermal sensation complaints are the single most common complaint of any type and that they are the overwhelming majority of environmental complaints. The analysis indicates that thermal sensation complaints are mostly the result of poor control performance and HVAC system faults rather than inter-individual differences in preferred temperatures. The analysis also shows that the neutral temperature in summer is greater than in winter, and the difference between summer and winter neutral temperatures is smaller than the difference between the midpoints of the summer and winter ASHRAE comfort zones. On average, women complain that it is cold at a higher temperature than men, and the temperature at which men complain that it is hot is more variable than for women. Analysis of response times and actions provides information that may be useful for designing a dispatching policy, and it also demonstrates that there is potential to reduce the labor cost of HVAC maintenance by 20% by reducing the frequency of thermal sensation complaints.

  8. Thermal analysis of the FSP-1RR irradiation test

    SciTech Connect

    Webb, R.H.; Lyon, W.F. III

    1992-10-14

    The thermal analysis of four unirradiated fuel pins to be tested in the FSP-1RR fuels irradiation experiment was completed. This test is a follow-on experiment in the series of fuel pin irradiation tests conducted by the SP-100 Program in the Fast Flux Test Facility. One of the pins contains several meltwire temperature monitors within the fuel and the Li annulus. A post-irradiation examination will verify the accuracy of the pre-irradiation thermal analysis. The purpose of the pre-irradiation analysis was to determine the appropriate insulating gap gas compositions required to provide the design goal cladding operating temperatures and to ensure that the meltwire temperature ranges in the temperature monitored pin bracket peak irradiation temperatures. This paper discusses the methodology and summarizes the results of the analysis.

  9. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  10. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  11. Diagnosis of cutaneous thermal burn injuries by multispectral imaging analysis

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Zawacki, B. E.

    1978-01-01

    Special photographic or television image analysis is shown to be a potentially useful technique to assist the physician in the early diagnosis of thermal burn injury. A background on the medical and physiological problems of burns is presented. The proposed methodology for burns diagnosis from both the theoretical and clinical points of view is discussed. The television/computer system constructed to accomplish this analysis is described, and the clinical results are discussed.

  12. THERMAL ANALYSIS OF WASTE GLASS MELTER FEEDS

    SciTech Connect

    KRUGER AA; HRMA PR; POKORNY R; PIERCE DA

    2011-10-21

    Melter feeds for high-level nuclear waste (HLW) typically contain a large number of constituents that evolve gas on heating, Multiple gas-evolving reactions are both successive and simultaneous, and include the release of chemically bonded water, reactions of nitrates with organics, and reactions of molten salts with solid silica. Consequently, when a sample of a HLW feed is subjected to thermogravimetric analysis (TGA), the rate of change of the sample mass reveals multiple overlapping peaks. In this study, a melter feed, formulated for a simulated high-alumina HLW to be vitrified in the Waste Treatment and Immobilization Plant, currently under construction at the Hanford Site in Washington State, USA, was subjected to TGA. In addition, a modified melter feed was prepared as an all-nitrate version of the baseline feed to test the effect of sucrose addition on the gas-evolving reactions. Activation energies for major reactions were determined using the Kissinger method. The ultimate aim of TGA studies is to obtain a kinetic model of the gas-evolving reactions for use in mathematical modeling of the cold cap as an element of the overall model of the waste-glass melter. In this study, we focused on computing the kinetic parameters of individual reactions without identifying their actual chemistry, The rough provisional model presented is based on the first-order kinetics.

  13. Thermal-stress analysis for a wood composite blade

    NASA Technical Reports Server (NTRS)

    Fu, K. C.; Harb, A.

    1984-01-01

    A thermal-stress analysis of a wind turbine blade made of wood composite material is reported. First, the governing partial differential equation on heat conduction is derived, then, a finite element procedure using variational approach is developed for the solution of the governing equation. Thus, the temperature distribution throughout the blade is determined. Next, based on the temperature distribution, a finite element procedure using potential energy approach is applied to determine the thermal-stress distribution. A set of results is obtained through the use of a computer, which is considered to be satisfactory. All computer programs are contained in the report.

  14. Three dimensional thermal analysis of rocket thrust chambers

    SciTech Connect

    Naraghi, M.H.N.; Armstrong, E.S.

    1988-06-01

    A numerical model for the three dimensional thermal analysis of rocket thrust chambers and nozzles has been developed. The input to the model consists of the composition of the fuel/oxidant mixture and flow rates, chamber pressure, coolant entrance temperature and pressure, dimensions of the engine, materials and the number of nodes in different parts of the engine. The model allows for temperature variation in three dimensions: axial, radial and circumferential directions and by implementing an iterative scheme, it provides nodal temperature distribution, rates of heat transfer, hot gas and coolant thermal and transport properties.

  15. Thermal analysis of the DES camera focal plate.

    SciTech Connect

    Guarino, V.; High Energy Physics

    2008-02-13

    A design specification for the DES Camera focal plate is to keep the deformation of the plate to less than 30 microns under operating conditions. Figure 1 shows the assembly of the focal plate, the support bipods and support ring, and the copper braid assemblies. Several studies were done to examine the deformation of the focal plate under different thermal and structural constraints. Simple hand calculations were also performed as a check of the finite element model and results. The main goal of this analysis was to determine the deformation of the plate and to understand what thermal and structural conditions are causing the deformation.

  16. Three dimensional thermal analysis of rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Naraghi, M. H. N.; Armstrong, E. S.

    1988-01-01

    A numerical model for the three dimensional thermal analysis of rocket thrust chambers and nozzles has been developed. The input to the model consists of the composition of the fuel/oxidant mixture and flow rates, chamber pressure, coolant entrance temperature and pressure, dimensions of the engine, materials and the number of nodes in different parts of the engine. The model allows for temperature variation in three dimensions: axial, radial and circumferential directions and by implementing an iterative scheme, it provides nodal temperature distribution, rates of heat transfer, hot gas and coolant thermal and transport properties.

  17. THERMAL TEST ALCOVE HEATED DRIFT GROUND SUPPORT ANALYSIS

    SciTech Connect

    S. Bonabian

    1996-10-03

    The main purpose and objective of this analysis is to analyze the stability of the Thermal Test Facility Heated Drift and to design a ground support system. The stability of the Heated Drift is analyzed considering in situ, seismic, and thermal loading conditions. A ground support system is recommended to provide a stable opening for the Heated Drift. This report summarizes the results of the analyses and provides the details of the recommended ground support system for the Heated Drift. The details of the ground support system are then incorporated into the design output documents for implementation in the field.

  18. Coefficient of thermal expansion dependent thermal stress analysis of thermal barrier coatings (TBCs) using finite element model

    NASA Astrophysics Data System (ADS)

    Coker, Omotola

    Thermal barrier coatings (TBCs) are highly sophisticated micro scale ceramic insulation applied on high temperature components such as gas turbine blades. TBCs create a large temperature drop between the gas turbine environment and the underlying metal blades. TBC lifetime is finite and influenced by several factors such as: Bond Coat (BC) oxidation, BC roughness, Coefficient of thermal expansion (CTE) mismatch between the layers, and creep properties of the TBC system. However, there is a lack of reliable methods of TBC life prediction which result in under utilization of these coatings. This research study focuses on modeling the steady state thermal stresses in TBC systems of various oxide thicknesses, and BC roughness, using Finite Element Analysis (FEA). The model factors into it the temperature dependent thermo mechanical properties of each layer, as well as the creep properties. The steady state model results show similar results to the existing transient models: an increase in tensile stresses as the oxide thickness increases, an increase in tensile stresses with BC roughness and stress relaxation in the ceramic BC interface due to creep. It also shows in each model, initially compressive stresses in the BC - Top Coat (TC) interface, and its evolution into higher tensile stresses which lead to crack formation and ultimately failure of the TBC by spallation.

  19. A computational model for thermal fluid design analysis of nuclear thermal rockets

    SciTech Connect

    Given, J.A.; Anghaie, S.

    1997-01-01

    A computational model for simulation and design analysis of nuclear thermal propulsion systems has been developed. The model simulates a full-topping expander cycle engine system and the thermofluid dynamics of the core coolant flow, accounting for the real gas properties of the hydrogen propellant/coolant throughout the system. Core thermofluid studies reveal that near-wall heat transfer models currently available may not be applicable to conditions encountered within some nuclear rocket cores. Additionally, the possibility of a core thermal fluid instability at low mass fluxes and the effects of the core power distribution are investigated. Results indicate that for tubular core coolant channels, thermal fluid instability is not an issue within the possible range of operating conditions in these systems. Findings also show the advantages of having a nonflat centrally peaking axial core power profile from a fluid dynamic standpoint. The effects of rocket operating conditions on system performance are also investigated. Results show that high temperature and low pressure operation is limited by core structural considerations, while low temperature and high pressure operation is limited by system performance constraints. The utility of these programs for finding these operational limits, optimum operating conditions, and thermal fluid effects is demonstrated.

  20. Thermal control surfaces experiment: Initial flight data analysis

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.

    1991-01-01

    The behavior of materials in the space environment continues to be a limiting technology for spacecraft and experiments. The thermal control surfaces experiment (TCSE) aboard the Long Duration Exposure Facility (LDEF) is the most comprehensive experiment flown to study the effects of the space environment on thermal control surfaces. Selected thermal control surfaces were exposed to the LDEF orbital environment and the effects of this exposure were measured. The TCSE combined in-space orbital measurements with pre and post-flight analyses of flight materials to determine the effects of long term space exposure. The TCSE experiment objective, method, and measurements are described along with the results of the initial materials analysis. The TCSE flight system and its excellent performance on the LDEF mission is described. A few operational anomalies were encountered and are discussed.