Science.gov

Sample records for 2d transducer array

  1. 2D Transducer Array for High-Speed 3D Imaging System

    DTIC Science & Technology

    2007-11-02

    low voltage differential signaling ( LVDS ) interface and a peripheral component interconnect (PCI) bus. The maximum numbers of transmission and...32-channel analog to digital converter (ADC) was attached to the developed transducer array. LVDS 2D Array Front End D a t a A c q u i s i t i o

  2. Preliminary work of real-time ultrasound imaging system for 2-D array transducer.

    PubMed

    Li, Xu; Yang, Jiali; Ding, Mingyue; Yuchi, Ming

    2015-01-01

    Ultrasound (US) has emerged as a non-invasive imaging modality that can provide anatomical structure information in real time. To enable the experimental analysis of new 2-D array ultrasound beamforming methods, a pre-beamformed parallel raw data acquisition system was developed for 3-D data capture of 2D array transducer. The transducer interconnection adopted the row-column addressing (RCA) scheme, where the columns and rows were active in sequential for transmit and receive events, respectively. The DAQ system captured the raw data in parallel and the digitized data were fed through the field programmable gate array (FPGA) to implement the pre-beamforming. Finally, 3-D images were reconstructed through the devised platform in real-time.

  3. Modeling and simulation of ultrasound fields generated by 2D phased array transducers for medical applications.

    PubMed

    Matrone, G; Quaglia, F; Magenes, G

    2010-01-01

    Modern ultrasound imaging instrumentation for clinical applications allows real-time volumetric scanning of the patients' body. 4D imaging has been made possible thanks to the development of new echographic probes which consist in 2D phased arrays of piezoelectric transducers. In these new devices it is the system electronics which properly drives the matrix elements and focuses the beam in order to obtain a sequence of volumetric images. This paper introduces an ultrasound field simulator based on the Spatial Impulse Response method which is being properly developed to analyze the characteristics of the ultrasound field generated by a 2D phased array of transducers. Thanks to its high configurability by the user, it will represent a very useful tool for electronics designers in developing 4D ultrasound imaging systems components.

  4. A preliminary evaluation work on a 3D ultrasound imaging system for 2D array transducer

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoli; Li, Xu; Yang, Jiali; Li, Chunyu; Song, Junjie; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    This paper presents a preliminary evaluation work on a pre-designed 3-D ultrasound imaging system. The system mainly consists of four parts, a 7.5MHz, 24×24 2-D array transducer, the transmit/receive circuit, power supply, data acquisition and real-time imaging module. The row-column addressing scheme is adopted for the transducer fabrication, which greatly reduces the number of active channels . The element area of the transducer is 4.6mm by 4.6mm. Four kinds of tests were carried out to evaluate the imaging performance, including the penetration depth range, axial and lateral resolution, positioning accuracy and 3-D imaging frame rate. Several strong reflection metal objects , fixed in a water tank, were selected for the purpose of imaging due to a low signal-to-noise ratio of the transducer. The distance between the transducer and the tested objects , the thickness of aluminum, and the seam width of the aluminum sheet were measured by a calibrated micrometer to evaluate the penetration depth, the axial and lateral resolution, respectively. The experiment al results showed that the imaging penetration depth range was from 1.0cm to 6.2cm, the axial and lateral resolution were 0.32mm and 1.37mm respectively, the imaging speed was up to 27 frames per second and the positioning accuracy was 9.2%.

  5. Theory and operation of 2-D array piezoelectric micromachined ultrasound transducers.

    PubMed

    Dausch, David E; Castellucci, John B; Chou, Derrick R; von Ramm, Olaf T

    2008-11-01

    Piezoelectric micromachined ultrasound transducers (pMUTs) are a new approach for the construction of 2-D arrays for forward-looking 3-D intravascular (IVUS) and intracardiac (ICE) imaging. Two-dimensional pMUT test arrays containing 25 elements (5 x 5 arrays) were bulk micromachined in silicon substrates. The devices consisted of lead zirconate titanate (PZT) thin film membranes formed by deep reactive ion etching of the silicon substrate. Element widths ranged from 50 to 200 microm with pitch from 100 to 300 mum. Acoustic transmit properties were measured in de-ionized water with a calibrated hydrophone placed at a range of 20 mm. Measured transmit frequencies for the pMUT elements ranged from 4 to 13 MHz, and mode of vibration differed for the various element sizes. Element capacitance varied from 30 to over 400 pF depending on element size and PZT thickness. Smaller element sizes generally produced higher acoustic transmit output as well as higher frequency than larger elements. Thicker PZT layers also produced higher transmit output per unit electric field applied. Due to flexure mode operation above the PZT coercive voltage, transmit output increased nonlinearly with increased drive voltage. The pMUT arrays were attached directly to the Duke University T5 Phased Array Scanner to produce real-time pulse-echo B-mode images with the 2-D pMUT arrays.

  6. Active control of microbubbles stream in multi-bifurcated flow by using 2D phased array ultrasound transducer.

    PubMed

    Koda, Ren; Koido, Jun; Hosaka, Naoto; Ito, Takumi; Onogi, Shinya; Mochizuki, Takashi; Masuda, Kohji; Ikeda, Seiichi; Arai, Fumihito

    2013-01-01

    We have previously reported our attempt to propel microbbles in flow by a primary Bjerknes force, which is a physical phenomenon where an acoustic wave pushes an obstacle along its direction of propagation. However, when ultrasound was emitted from surface of the body, controlling bubbles in against flow was needed. It is unpractical to use multiple transducers to produce the same number of focal points because single element transducer cannot produce more than two focal points. In this study, we introduced a complex artificial blood vessel according to a capillary model and a 2D array transducer to produce multiple focal points for active control of microbubbles in against flow. Furthermore, we investigated bubble control in viscous fluid. As the results, we confirmed clearly path selection of MBs in viscous fluid as well as in water.

  7. The Design and Analysis of Split Row-Column Addressing Array for 2-D Transducer

    PubMed Central

    Li, Xu; Jia, Yanping; Ding, Mingyue; Yuchi, Ming

    2016-01-01

    For 3-D ultrasound imaging, the row-column addressing (RCA) with 2N connections for an N × N 2-D array makes the fabrication and interconnection simpler than the fully addressing with N2 connections. However, RCA degrades the image quality because of defocusing in signal channel direction in the transmit event. To solve this problem, a split row-column addressing scheme (SRCA) is proposed in this paper. Rather than connecting all the elements in the signal channel direction together, this scheme divides the elements in the signal channel direction into several disconnected blocks, thus enables focusing beam access in both signal channel and switch channel directions. Selecting an appropriate split scheme is the key for SRCA to maintaining a reasonable tradeoff between the image quality and the number of connections. Various split schemes for a 32 × 32 array are fully investigated with point spread function (PSF) analysis and imaging simulation. The result shows the split scheme with five blocks (4, 6, 12, 6, and 4 elements of each block) can provide similar image quality to fully addressing. The splitting schemes for different array sizes from 16 × 16 to 96 × 96 are also discussed. PMID:27690029

  8. The Design and Analysis of Split Row-Column Addressing Array for 2-D Transducer.

    PubMed

    Li, Xu; Jia, Yanping; Ding, Mingyue; Yuchi, Ming

    2016-09-27

    For 3-D ultrasound imaging, the row-column addressing (RCA) with 2N connections for an N × N 2-D array makes the fabrication and interconnection simpler than the fully addressing with N² connections. However, RCA degrades the image quality because of defocusing in signal channel direction in the transmit event. To solve this problem, a split row-column addressing scheme (SRCA) is proposed in this paper. Rather than connecting all the elements in the signal channel direction together, this scheme divides the elements in the signal channel direction into several disconnected blocks, thus enables focusing beam access in both signal channel and switch channel directions. Selecting an appropriate split scheme is the key for SRCA to maintaining a reasonable tradeoff between the image quality and the number of connections. Various split schemes for a 32 × 32 array are fully investigated with point spread function (PSF) analysis and imaging simulation. The result shows the split scheme with five blocks (4, 6, 12, 6, and 4 elements of each block) can provide similar image quality to fully addressing. The splitting schemes for different array sizes from 16 × 16 to 96 × 96 are also discussed.

  9. 4D ICE: A 2D Array Transducer with Integrated ASIC in a 10 Fr Catheter for Real-Time 3D Intracardiac Echocardiography.

    PubMed

    Wildes, Douglas; Lee, Warren; Haider, Bruno; Cogan, Scott; Sundaresan, Krishnakumar; Mills, David; Yetter, Christopher; Hart, Patrick; Haun, Christopher; Concepcion, Mikael; Kirkhorn, Johan; Bitoun, Marc

    2016-10-12

    We developed a 2.5 x 6.6 mm 2D array transducer with integrated transmit/receive ASIC for 4D ICE (real-time 3D IntraCardiac Echocardiography) applications. The ASIC and transducer design were optimized so that the high voltage transmit, low-voltage TGC (time-gain control) and preamp, subaperture beamformer, and digital control circuits for each transducer element all fit within the 0.019 mm2 area of the element. The transducer assembly was deployed in a 10 Fr (3.3 mm diameter) catheter, integrated with a GE Vivid1 E9 ultrasound imaging system, and evaluated in three pre-clinical studies. 2D image quality and imaging modes were comparable to commercial 2D ICE catheters. The 4D field of view was at least 90° x 60° x 8 cm and could be imaged at 30 volumes/sec, sufficient to visualize cardiac anatomy and other diagnostic and therapy catheters. 4D ICE should significantly reduce X-ray fluoroscopy use and dose during electrophysiology (EP) ablation procedures. 4D ICE may be able to replace trans-esophageal echocardiography (TEE), and the associated risks and costs of general anesthesia, for guidance of some structural heart procedures.

  10. Feasibility of vibro-acoustography with a quasi-2D ultrasound array transducer for detection and localizing of permanent prostate brachytherapy seeds: A pilot ex vivo study

    SciTech Connect

    Mehrmohammadi, Mohammad; Kinnick, Randall R.; Fatemi, Mostafa; Alizad, Azra; Davis, Brian J.

    2014-09-15

    Purpose: Effective permanent prostate brachytherapy (PPB) requires precise placement of radioactive seeds in and around the prostate. The impetus for this research is to examine a new ultrasound-based imaging modality, vibro-acoustography (VA), which may serve to provide a high rate of PPB seed detection while also effecting enhanced prostate imaging. The authors investigate the ability of VA, implemented on a clinical ultrasound (US) scanner and equipped with a quasi-2D (Q2D) array US transducer, to detect and localize PPB seeds in excised prostate specimens. Methods: Nonradioactive brachytherapy seeds were implanted into four excised cadaver prostates. A clinical US scanner equipped with a Q2D array US transducer was customized to acquire both US and C-scan VA images at various depths. The VA images were then used to detect and localize the implanted seeds in prostate tissue. To validate the VA results, computed tomography (CT) images of the same tissue samples were obtained to serve as the reference by which to evaluate the performance of VA in PPB seed detection. Results: The results indicate that VA is capable of accurately identifying the presence and distribution of PPB seeds with a high imaging contrast. Moreover, a large ratio of the PPB seeds implanted into prostate tissue samples could be detected through acquired VA images. Using CT-based seed identification as the standard, VA was capable of detecting 74%–92% of the implanted seeds. Additionally, the angular independency of VA in detecting PPB seeds was demonstrated through a well-controlled phantom experiment. Conclusions: Q2DVA detected a substantial portion of the seeds by using a 2D array US transducer in excised prostate tissue specimens. While VA has inherent advantages associated with conventional US imaging, it has the additional advantage of permitting detection of PPB seeds independent of their orientation. These results suggest the potential of VA as a method for PPB imaging that

  11. Compact Transducers and Arrays

    DTIC Science & Technology

    2005-05-01

    Soc. Am., 104, pp.64-71 44 25.Decarpigny, J.N., J.C. Debus, B. Tocquet & D. Boucher. 1985. "In-Air Analysis Of Piezoelectric Tonpilz Transducers In A... Transducers and Arrays Final Report May 2005 Contacts: Dr. Robert E. Newnham The Pennsylvania State University, 251 MRL, University Park, PA 16802 phone...814) 865-1612 fax: (814) 865-2326 email: ....c xx.....i.i.....ht.. .u a.p.u..c.e.du. Dr. Richard J. Meyer, Jr. Systems Engineering ( Transducers ), ARL

  12. Modeling of phased array transducers.

    PubMed

    Ahmad, Rais; Kundu, Tribikram; Placko, Dominique

    2005-04-01

    Phased array transducers are multi-element transducers, where different elements are activated with different time delays. The advantage of these transducers is that no mechanical movement of the transducer is needed to scan an object. Focusing and beam steering is obtained simply by adjusting the time delay. In this paper the DPSM (distributed point source method) is used to model the ultrasonic field generated by a phased array transducer and to study the interaction effect when two phased array transducers are placed in a homogeneous fluid. Earlier investigations modeled the acoustic field for conventional transducers where all transducer points are excited simultaneously. In this research, combining the concepts of delayed firing and the DPSM, the phased array transducers are modeled semi-analytically. In addition to the single transducer modeling the ultrasonic fields from two phased array transducers placed face to face in a fluid medium is also modeled to study the interaction effect. The importance of considering the interaction effect in multiple transducer modeling is discussed, pointing out that neighboring transducers not only act as ultrasonic wave generators but also as scatterers.

  13. Linear-array ultrasonic waveguide transducer for under sodium viewing.

    SciTech Connect

    Sheen, S. H.; Chien, H. T.; Wang, K.; Lawrence, W. P.; Engel, D.; Nuclear Engineering Division

    2010-09-01

    In this report, we first present the basic design of a low-noise waveguide and its performance followed by a review of the array transducer technology. The report then presents the concept and basic designs of arrayed waveguide transducers that can apply to under-sodium viewing for in-service inspection of fast reactors. Depending on applications, the basic waveguide arrays consist of designs for sideway and downward viewing. For each viewing application, two array geometries, linear and circular, are included in design analysis. Methods to scan a 2-D target using a linear array waveguide transducer are discussed. Future plan to develop a laboratory array waveguide prototype is also presented.

  14. Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer

    NASA Astrophysics Data System (ADS)

    Liu, W.; Zagzebski, J. A.; Hall, T. J.; Madsen, E. L.; Varghese, T.; Kliewer, M. A.; Panda, S.; Lowery, C.; Barnes, S.

    2008-08-01

    Compared to conventional piezoelectric transducers, new capacitive microfabricated ultrasonic transducer (CMUT) technology is expected to offer a broader bandwidth, higher resolution and advanced 3D/4D imaging inherent in a 2D array. For ultrasound scatterer size imaging, a broader frequency range provides more information on frequency-dependent backscatter, and therefore, generally more accurate size estimates. Elevational compounding, which can significantly reduce the large statistical fluctuations associated with parametric imaging, becomes readily available with a 2D array. In this work, we show phantom and in vivo breast tumor scatterer size image results using a prototype 2D CMUT transducer (9 MHz center frequency) attached to a clinical scanner. A uniform phantom with two 1 cm diameter spherical inclusions of slightly smaller scatterer size was submerged in oil and scanned by both the 2D CMUT and a conventional piezoelectric linear array transducer. The attenuation and scatterer sizes of the sample were estimated using a reference phantom method. RF correlation analysis was performed using the data acquired by both transducers. The 2D CMUT results indicate that at a 2 cm depth (near the transmit focus for both transducers) the correlation coefficient reduced to less than 1/e for 0.2 mm lateral or 0.25 mm elevational separation between acoustic scanlines. For the conventional array this level of decorrelation requires a 0.3 mm lateral or 0.75 mm elevational translation. Angular and/or elevational compounding is used to reduce the variance of scatterer size estimates. The 2D array transducer acquired RF signals from 140 planes over a 2.8 cm elevational direction. If no elevational compounding is used, the fractional standard deviation of the size estimates is about 12% of the mean size estimate for both the spherical inclusion and the background. Elevational compounding of 11 adjacent planes reduces it to 7% for both media. Using an experimentally estimated

  15. Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer

    PubMed Central

    Liu, W; Zagzebski, J A; Hall, T J; Madsen, E L; Varghese, T; Kliewer, M A; Panda, S; Lowery, C; Barnes, S

    2009-01-01

    Compared to conventional piezoelectric transducers, new capacitive microfabricated ultrasonic transducer (CMUT) technology is expected to offer a broader bandwidth, higher resolution and advanced 3D/4D imaging inherent in a 2D array. For ultrasound scatterer size imaging, a broader frequency range provides more information on frequency-dependent backscatter, and therefore, generally more accurate size estimates. Elevational compounding, which can significantly reduce the large statistical fluctuations associated with parametric imaging, becomes readily available with a 2D array. In this work, we show phantom and in vivo breast tumor scatterer size image results using a prototype 2D CMUT transducer (9 MHz center frequency) attached to a clinical scanner. A uniform phantom with two 1 cm diameter spherical inclusions of slightly smaller scatterer size was submerged in oil and scanned by both the 2D CMUT and a conventional piezoelectric linear array transducer. The attenuation and scatterer sizes of the sample were estimated using a reference phantom method. RF correlation analysis was performed using the data acquired by both transducers. The 2D CMUT results indicate that at a 2 cm depth (near the transmit focus for both transducers) the correlation coefficient reduced to less than 1/e for 0.2 mm lateral or 0.25 mm elevational separation between acoustic scanlines. For the conventional array this level of decorrelation requires a 0.3 mm lateral or 0.75 mm elevational translation. Angular and/or elevational compounding is used to reduce the variance of scatterer size estimates. The 2D array transducer acquired RF signals from 140 planes over a 2.8 cm elevational direction. If no elevational compounding is used, the fractional standard deviation of the size estimates is about 12% of the mean size estimate for both the spherical inclusion and the background. Elevational compounding of 11 adjacent planes reduces it to 7% for both media. Using an experimentally estimated

  16. Analog circuit for controlling acoustic transducer arrays

    DOEpatents

    Drumheller, Douglas S.

    1991-01-01

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  17. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  18. Singulation for imaging ring arrays of capacitive micromachined ultrasonic transducers.

    PubMed

    Chang, Chienliu; Moini, Azadeh; Nikoozadeh, Amin; Sarioglu, Ali Fatih; Apte, Nikhil; Zhuang, Xuefeng; Khuri-Yakub, Butrus T

    2014-10-01

    Singulation of MEMS is a critical step in the transition from wafer-level to die-level devices. As is the case for capacitive micromachined ultrasound transducer (CMUT) ring arrays, an ideal singulation must protect the fragile membranes from the processing environment while maintaining a ring array geometry. The singulation process presented in this paper involves bonding a trench-patterned CMUT wafer onto a support wafer, deep reactive ion etching (DRIE) of the trenches, separating the CMUT wafer from the support wafer and de-tethering the CMUT device from the CMUT wafer. The CMUT arrays fabricated and singulated in this process were ring-shaped arrays, with inner and outer diameters of 5 mm and 10 mm, respectively. The fabricated CMUT ring arrays demonstrate the ability of this method to successfully and safely singulate the ring arrays and is applicable to any arbitrary 2D shaped MEMS device with uspended microstructures, taking advantage of the inherent planar attributes of DRIE.

  19. Characterization of nonlinear ultrasound fields of 2D therapeutic arrays

    PubMed Central

    Yuldashev, Petr V.; Kreider, Wayne; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera

    2015-01-01

    A current trend in high intensity focused ultrasound (HIFU) technologies is to use 2D focused phased arrays that enable electronic steering of the focus, beamforming to avoid overheating of obstacles (such as ribs), and better focusing through inhomogeneities of soft tissue using time reversal methods. In many HIFU applications, the acoustic intensity in situ can reach thousands of W/cm2 leading to nonlinear propagation effects. At high power outputs, shock fronts develop in the focal region and significantly alter the bioeffects induced. Clinical applications of HIFU are relatively new and challenges remain for ensuring their safety and efficacy. A key component of these challenges is the lack of standard procedures for characterizing nonlinear HIFU fields under operating conditions. Methods that combine low-amplitude pressure measurements and nonlinear modeling of the pressure field have been proposed for axially symmetric single element transducers but have not yet been validated for the much more complex 3D fields generated by therapeutic arrays. Here, the method was tested for a clinical HIFU source comprising a 256-element transducer array. A numerical algorithm based on the Westervelt equation was used to enable 3D full-diffraction nonlinear modeling. With the acoustic holography method, the magnitude and phase of the acoustic field were measured at a low power output and used to determine the pattern of vibrations at the surface of the array. This pattern was then scaled to simulate a range of intensity levels near the elements up to 10 W/cm2. The accuracy of modeling was validated by comparison with direct measurements of the focal waveforms using a fiber-optic hydrophone. Simulation results and measurements show that shock fronts with amplitudes up to 100 MPa were present in focal waveforms at clinically relevant outputs, indicating the importance of strong nonlinear effects in ultrasound fields generated by HIFU arrays. PMID:26203345

  20. Characterization of nonlinear ultrasound fields of 2D therapeutic arrays.

    PubMed

    Yuldashev, Petr V; Kreider, Wayne; Sapozhnikov, Oleg A; Farr, Navid; Partanen, Ari; Bailey, Michael R; Khokhlova, Vera

    2012-10-07

    A current trend in high intensity focused ultrasound (HIFU) technologies is to use 2D focused phased arrays that enable electronic steering of the focus, beamforming to avoid overheating of obstacles (such as ribs), and better focusing through inhomogeneities of soft tissue using time reversal methods. In many HIFU applications, the acoustic intensity in situ can reach thousands of W/cm(2) leading to nonlinear propagation effects. At high power outputs, shock fronts develop in the focal region and significantly alter the bioeffects induced. Clinical applications of HIFU are relatively new and challenges remain for ensuring their safety and efficacy. A key component of these challenges is the lack of standard procedures for characterizing nonlinear HIFU fields under operating conditions. Methods that combine low-amplitude pressure measurements and nonlinear modeling of the pressure field have been proposed for axially symmetric single element transducers but have not yet been validated for the much more complex 3D fields generated by therapeutic arrays. Here, the method was tested for a clinical HIFU source comprising a 256-element transducer array. A numerical algorithm based on the Westervelt equation was used to enable 3D full-diffraction nonlinear modeling. With the acoustic holography method, the magnitude and phase of the acoustic field were measured at a low power output and used to determine the pattern of vibrations at the surface of the array. This pattern was then scaled to simulate a range of intensity levels near the elements up to 10 W/cm(2). The accuracy of modeling was validated by comparison with direct measurements of the focal waveforms using a fiber-optic hydrophone. Simulation results and measurements show that shock fronts with amplitudes up to 100 MPa were present in focal waveforms at clinically relevant outputs, indicating the importance of strong nonlinear effects in ultrasound fields generated by HIFU arrays.

  1. Micromachining techniques in developing high-frequency piezoelectric composite ultrasonic array transducers.

    PubMed

    Liu, Changgeng; Djuth, Frank T; Zhou, Qifa; Shung, K Kirk

    2013-12-01

    Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm(2) with a 16-μm kerf between elements. The active piezoelectric material is (1 - x) Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT)/epoxy 1-3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse-echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the -6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about -33 dB. The techniques described herein can be used to build larger arrays containing smaller elements.

  2. Linear Array Ultrasonic Transducers: Sensitivity and Resolution Study

    SciTech Connect

    Kramb, V.A.

    2005-04-09

    The University of Dayton Research Institute (UDRI) under contract by the US Air Force has designed and integrated a fully automated inspection system for the inspection of turbine engines that incorporates linear phased array ultrasonic transducers. Phased array transducers have been successfully implemented into weld and turbine blade root inspections where the defect types are well known and characterized. Embedded defects in aerospace turbine engine components are less well defined, however. In order to determine the applicability of linear arrays to aerospace inspections the sensitivity of array transducers to embedded defects in engine materials must be characterized. In addition, the implementation of array transducers into legacy inspection procedures must take into account any differences in sensitivity between the array transducer and that of the single element transducer currently used. This paper discusses preliminary results in a study that compares the sensitivity of linear array and conventional single element transducers to synthetic hard alpha defects in a titanium alloy.

  3. Linear Array Ultrasonic Transducers: Sensitivity and Resolution Study

    NASA Astrophysics Data System (ADS)

    Kramb, V. A.

    2005-04-01

    The University of Dayton Research Institute (UDRI) under contract by the US Air Force has designed and integrated a fully automated inspection system for the inspection of turbine engines that incorporates linear phased array ultrasonic transducers. Phased array transducers have been successfully implemented into weld and turbine blade root inspections where the defect types are well known and characterized. Embedded defects in aerospace turbine engine components are less well defined, however. In order to determine the applicability of linear arrays to aerospace inspections the sensitivity of array transducers to embedded defects in engine materials must be characterized. In addition, the implementation of array transducers into legacy inspection procedures must take into account any differences in sensitivity between the array transducer and that of the single element transducer currently used. This paper discusses preliminary results in a study that compares the sensitivity of linear array and conventional single element transducers to synthetic hard alpha defects in a titanium alloy.

  4. Signal processing for damage detection using two different array transducers.

    PubMed

    El Youbi, F; Grondel, S; Assaad, J

    2004-04-01

    This work describes an investigation into the development of a new health monitoring system for aeronautical applications. The health monitoring system is based on the emission and reception of Lamb waves by multi-element piezoelectric transducers (i.e., arrays) bonded to the structure. The emitter array consists of three different elementary bar transducers. These transducers have the same thickness and length but different widths. The receiver array has 32 same elements. This system offers the possibility to understand the nature of the generated waves and to determine the sensitivity of each mode to possible damage. It presents two principal advantages: Firstly, by exciting all elements in phase, it is possible to generate several Lamb modes in the same time. Secondly, the two-dimensional fourier transform (2D-FT) of the received signal can be easily computed. Experimental results concerning an aluminum plate with different hole sizes will be shown. The A0-, S0-, A1-, S1- and S2-modes are generated at the same time. This study shows that the A0 mode seems particularly interesting to detect flaws of this geometrical type.

  5. Optoacoustic tomography of breast cancer with arc-array transducer

    NASA Astrophysics Data System (ADS)

    Andreev, Valeri G.; Karabutov, Alexander A.; Solomatin, Sergey V.; Savateeva, Elena V.; Aleinikov, Vadim; Zhulina, Yulia V.; Fleming, R. Declan; Oraevsky, Alexander A.

    2000-05-01

    The second generation of the laser optoacoustic imaging system for breast cancer detection, localization and characterization using a 32-element arc-shaped transducer array was developed and tested. Each acoustic transducer was made of 110-micrometers thick SOLEF PVDF film with dimensions of 1mm X 12.5mm. The frequency band of transducer array provided 0.4-mm axial in-depth resolution. Cylindrical shape of this 10-cm long transducer array provided an improved lateral resolution of 1.0 mm. Original and compact design of low noise preamplifiers and wide band amplifiers was employed. The system sensitivity was optimized by choosing limited bandwidth of ultrasonic detection 20-kHz to 2-MHz. Signal processing was significantly improved and optimized resulting in reduced data collection time of 13 sec. The computer code for digital signal processing employed auto- gain control, high-pass filtering and denoising. An automatic recognition of the opto-acoustic signal detected from the irradiated surface was implemented in order to visualize the breast surface and improve the accuracy of tumor locations. Radial back-projection algorithm was used for image reconstruction. Optimal filtering of image was employed to reduce low and high frequency noise. The advantages and limitations of various contrast-enhancing filters applied to the entire image matrix were studied and discussed. Time necessary for image reconstruction was reduced to 32 sec. The system performance was evaluated initially via acquisition of 2D opto-acoustic images of small absorbing spheres in breast-tissue-like phantoms. Clinical ex-vivo studies of mastectomy specimen were also performed and compared with x-ray radiography and ultrasound.

  6. Ultrasonic phased array transducers for nondestructive evaluation of steel structures

    NASA Astrophysics Data System (ADS)

    Song, Sung-Jin; Shin, Hyeon Jae; Jang, You Hyun

    2000-05-01

    An ultrasonic phased array transducer has been developed and demonstrated for the nondestructive evaluation of steel structures. The number of array elements is 64 and the center frequency is about 5 MHz. This phased array transducer is designed to use with the phased array system that does steering, transmission focusing and dynamic receive focusing. Each of the array elements is individually excited according to the focal laws and steering angles. Measurements of ultrasonic beam profiles for the array transducer in a reference steel block are presented and compared with theoretical predictions. Some of the phased array transducer design concepts for the application in steel structures are discussed. The two-dimensional ultrasonic images of the sample steel block including flat bottom holes and side drilled holes are presented. Experimental and theoretical results demonstrate excellent feasibility of the utility of the phased array transducer in imaging and detection of defects in steel structures.

  7. 3-D Deep Penetration Photoacoustic Imaging with a 2-D CMUT Array.

    PubMed

    Ma, Te-Jen; Kothapalli, Sri Rajasekhar; Vaithilingam, Srikant; Oralkan, Omer; Kamaya, Aya; Wygant, Ira O; Zhuang, Xuefeng; Gambhir, Sanjiv S; Jeffrey, R Brooke; Khuri-Yakub, Butrus T

    2010-10-11

    In this work, we demonstrate 3-D photoacoustic imaging of optically absorbing targets embedded as deep as 5 cm inside a highly scattering background medium using a 2-D capacitive micromachined ultrasonic transducer (CMUT) array with a center frequency of 5.5 MHz. 3-D volumetric images and 2-D maximum intensity projection images are presented to show the objects imaged at different depths. Due to the close proximity of the CMUT to the integrated frontend circuits, the CMUT array imaging system has a low noise floor. This makes the CMUT a promising technology for deep tissue photoacoustic imaging.

  8. Highly reliable multisensor array (MSA) smart transducers

    NASA Astrophysics Data System (ADS)

    Perotti, José; Lucena, Angel; Mackey, Paul; Mata, Carlos; Immer, Christopher

    2006-05-01

    Many developments in the field of multisensor array (MSA) transducers have taken place in the last few years. Advancements in fabrication technology, such as Micro-Electro-Mechanical Systems (MEMS) and nanotechnology, have made implementation of MSA devices a reality. NASA Kennedy Space Center (KSC) has been developing this type of technology because of the increases in safety, reliability, and performance and the reduction in operational and maintenance costs that can be achieved with these devices. To demonstrate the MSA technology benefits, KSC quantified the relationship between the number of sensors (N) and the associated improvement in sensor life and reliability. A software algorithm was developed to monitor and assess the health of each element and the overall MSA. Furthermore, the software algorithm implemented criteria on how these elements would contribute to the MSA-calculated output to ensure required performance. The hypothesis was that a greater number of statistically independent sensor elements would provide a measurable increase in measurement reliability. A computer simulation was created to answer this question. An array of N sensors underwent random failures in the simulation and a life extension factor (LEF equals the percentage of the life of a single sensor) was calculated by the program. When LEF was plotted as a function of N, a quasiexponential behavior was detected with marginal improvement above N = 30. The hypothesis and follow-on simulation results were then corroborated experimentally. An array composed of eight independent pressure sensors was fabricated. To accelerate sensor life cycle and failure and to simulate degradation over time, the MSA was exposed to an environmental tem-perature of 125°C. Every 24 hours, the experiment's environmental temperature was returned to ambient temperature (27°C), and the outputs of all the MSA sensor elements were measured. Once per week, the MSA calibration was verified at five different

  9. Application of conformal map theory for design of 2-D ultrasonic array structure for NDT imaging application: a feasibility study.

    PubMed

    Ramadas, Sivaram N; Jackson, Joseph C; Dziewierz, Jerzy; O'Leary, Richard; Gachagan, Anthony

    2014-03-01

    Two-dimensional ultrasonic phased arrays are becoming increasingly popular in nondestructive evaluation (NDE). Sparse array element configurations are required to fully exploit the potential benefits of 2-D phased arrays. This paper applies the conformal mapping technique as a means of designing sparse 2-D array layouts for NDE applications. Modeling using both Huygens' field prediction theory and 2-D fast Fourier transformation is employed to study the resulting new structure. A conformal power map was used that, for fixed beam width, was shown in simulations to have a greater contrast than rectangular or random arrays. A prototype aperiodic 2-D array configuration for direct contact operation in steel, with operational frequency ~3 MHz, was designed using the array design principle described in this paper. Experimental results demonstrate a working sparse-array transducer capable of performing volumetric imaging.

  10. New Design of the Kerfs of an Ultrasonic Two-Dimensional Array Transducer to Minimize Cross-Talk

    NASA Astrophysics Data System (ADS)

    Lee, Wonseok; Roh, Yongrae

    2010-07-01

    The transducer under consideration is a planar two-dimensional (2D) array transducer working at 3.5 MHz. The transducer is composed of 17×17 piezoelectric elements separated by major and minor kerfs. Through finite element analyses (FEA), the performance of the 2D array transducer was investigated in relation to the acoustic impedance and structure of the kerfs. Based on the analysis results, three new types of kerfs were proposed to reduce the cross-talk. Detailed material properties and structures of the new kerfs were determined to provide the lowest cross-talk level and highest pulse-echo sensitivity while preserving a desired acceptance angle at the center frequency of 3.5 MHz. The results in this work can contribute to developing a 2D array transducer which would result in having a higher signal-to-noise level, which in turn will lead to better ultrasonic imaging.

  11. New Design of the Kerfs of an Ultrasonic Two-Dimensional Array Transducer to Minimize Cross-Talk

    NASA Astrophysics Data System (ADS)

    Wonseok Lee,; Yongrae Roh,

    2010-07-01

    The transducer under consideration is a planar two-dimensional (2D) array transducer working at 3.5 MHz. The transducer is composed of 17× 17 piezoelectric elements separated by major and minor kerfs. Through finite element analyses (FEA), the performance of the 2D array transducer was investigated in relation to the acoustic impedance and structure of the kerfs. Based on the analysis results, three new types of kerfs were proposed to reduce the cross-talk. Detailed material properties and structures of the new kerfs were determined to provide the lowest cross-talk level and highest pulse-echo sensitivity while preserving a desired acceptance angle at the center frequency of 3.5 MHz. The results in this work can contribute to developing a 2D array transducer which would result in having a higher signal-to-noise level, which in turn will lead to better ultrasonic imaging.

  12. Electret Acoustic Transducer Array For Computerized Ultrasound Risk Evaluation System

    DOEpatents

    Moore, Thomas L.; Fisher, Karl A.

    2005-08-09

    An electret-based acoustic transducer array is provided and may be used in a system for examining tissue. The acoustic transducer array is formed with a substrate that has a multiple distinct cells formed therein. Within each of the distinct cells is positioned an acoustic transducing element formed of an electret material. A conductive membrane is formed over the distinct cells and may be flexible.

  13. HEXAGONAL ARRAY STRUCTURE FOR 2D NDE APPLICATIONS

    SciTech Connect

    Dziewierz, J.; Ramadas, S. N.; Gachagan, A.; O'Leary, R. L.

    2010-02-22

    This paper describes a combination of simulation and experimentation to evaluate the advantages offered by utilizing a hexagonal shaped array element in a 2D NDE array structure. The active material is a 1-3 connectivity piezoelectric composite structure incorporating triangular shaped pillars--each hexagonal array element comprising six triangular pillars. A combination of PZFlex, COMSOL and Matlab has been used to simulate the behavior of this device microstructure, for operation around 2.25 MHz, with unimodal behavior and low levels of mechanical cross-coupling predicted. Furthermore, the application of hexagonal array elements enables the array aperture to increase by approximately 30%, compared to a conventional orthogonal array matrix and hence will provide enhanced volumetric coverage and SNR. Prototype array configurations demonstrate good corroboration of the theoretically predicted mechanical cross-coupling between adjacent array elements (approx23 dB).

  14. Micromachining Techniques in Developing High-Frequency Piezoelectric Composite Ultrasonic Array Transducers

    PubMed Central

    Liu, Changgeng; Djuth, Frank T.; Zhou, Qifa; Shung, K. Kirk

    2014-01-01

    Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm2 with a 16-μm kerf between elements. The active piezoelectric material is (1 − x) Pb(Mg1/3Nb2/3)O3−xPbTiO3 (PMN-PT)/epoxy 1–3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse–echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the −6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about −33 dB. The techniques described herein can be used to build larger arrays containing smaller elements. PMID:24297027

  15. Designing of Phased Array Transducers for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Dumas, Ph.; Poguet, J.; Fleury, G.

    2004-02-01

    By increasing inspection speed, and deflection capabilities of the transducers, Phased-array technology has proved its interest to face new ∂ NDT challenges, and is becoming more and more popular in the main industrial fields of activities. This paper describes the main effects of specifications on transducer performances, and explains how to defined them. The second part speaks about the manufacturing step, showing the influence of component choice on performances. Several Phased-array applications examples illustrating these considerations will be presented.

  16. TRANSDUCER GENERATED ARRAYS OF ROBOTIC NANO-ARMS.

    PubMed

    Dolzhenko, Egor; Jonoska, Nataša; Seeman, Nadrian C

    2010-06-01

    We consider sets of two-dimensional arrays, called here transducer generated languages, obtained by iterative applications of transducers (finite state automata with output). Each transducer generates a set of blocks of symbols such that the bottom row of a block is an input string accepted by the transducer and, by iterative application of the transducer, each row of the block is an output of the transducer on the preceding row. We show how these arrays can be implemented through molecular assembly of triple crossover DNA molecules. Such assembly could serve as a scaffold for arranging molecular robotic arms capable for simultaneous movements. We observe that transducer generated languages define a class of languages which is a proper subclass of recognizable picture languages, but it containing the class of all factorial local two-dimensional languages. By taking the average growth rate of the number of blocks in the language as a measure of its complexity, we further observe that arrays with high complexity patterns can be generated in this way.

  17. Prediction of surface temperature rise of ultrasonic diagnostic array transducers.

    PubMed

    Ohm, Won-Suk; Kim, Jeong Hwan; Kim, Eun Chul

    2008-01-01

    Temperature rise at the surface of an ultrasound transducer used for diagnostic imaging is an important factor in patient safety and regulatory compliance. This paper presents a semianalytical model that is derived from first principles of heat transfer and is simple enough to be implemented in a commercial ultrasound scanner for real-time forecasting of transducer surface temperature. For modeling purposes, one-dimensional array transducers radiating into still air are considered. Promising experimental verification data are shown and practical implementation benefits of the model for thermal design and management of ultrasonic array transducers are discussed. In particular, the reduction in the amount of thermal characterization data required, compared to empirical models, shows promise.

  18. Volumetric elasticity imaging with a 2-D CMUT array.

    PubMed

    Fisher, Ted G; Hall, Timothy J; Panda, Satchi; Richards, Michael S; Barbone, Paul E; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve

    2010-06-01

    This article reports the use of a two-dimensional (2-D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio-frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare three-dimensional (3-D) elasticity imaging methods. Typical 2-D motion tracking for elasticity image formation was compared with three different methods of 3-D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2-D search), planar search, combination of multiple planes and plane independent guided search. The cross-correlation between the predeformation and motion-compensated postdeformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3-D modulus reconstruction, high quality 3-D displacement estimates yielded accurate and low noise modulus reconstruction.

  19. Volumetric Elasticity Imaging with a 2D CMUT Array

    PubMed Central

    Fisher, Ted G.; Hall, Timothy J.; Panda, Satchi; Richards, Michael S.; Barbone, Paul E.; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve

    2010-01-01

    This paper reports the use of a two-dimensional (2D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare 3D elasticity imaging methods. Typical 2D motion tracking for elasticity image formation was compared to three different methods of 3D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2D search), planar search, combination of multiple planes, and plane independent guided search. The cross correlation between the pre-deformation and motion-compensated post-deformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3D modulus reconstruction, high quality 3D displacement estimates yielded accurate and low noise modulus reconstruction. PMID:20510188

  20. A 1-MHz 2-D CMUT array for HIFU thermal ablation

    NASA Astrophysics Data System (ADS)

    Yoon, Hyo-Seon; Vaithilingam, Srikant; Park, Kwan Kyu; Nikoozadeh, Amin; Firouzi, Kamyar; Choe, Jung Woo; Watkins, Ronald D.; Oguz, Huseyin Kagan; Kupnik, Mario; Pauly, Kim Butts; Khuri-Yakub, Pierre

    2017-03-01

    We developed a fully-populated 2-D capacitive micromachined ultrasonic transducer (CMUT) array for high intensity focused ultrasound (HIFU) treatment. The 2-D CMUT array, which consists of 20 × 20 square CMUT elements with an element-to-element pitch of 1 mm, was designed and fabricated using the thick-buried-oxide (BOX) fabrication process. It was then assembled on a custom interface board that can provide various array configurations depending on the desired applications. In this study, the interface board groups the CMUT array elements into eight channels, based on the phase delay from the element to the targeted focal point at a 20-mm distance from the array surface, which corresponds to an F-number of 1. An 8-channel phase generating system supplies continuous waves with eight different phases to the eight channels of the CMUT array through bias-tees and amplifiers. This array aperture, grouped into eight channels, gives a focusing gain of 6.09 according to field simulation using Field II. Assuming a peak-to-peak pressure of 1 MPa at the surface of the array, our custom temperature simulator predicts successful tissue ablation at the focus. During the measurements, each channel was tuned with a series inductor for an operational frequency of 1 MHz. With a CMUT DC bias of 100 V and a 1-MHz AC input voltage of 55 V, we achieved peak-to-peak output pressures of 173.9 kPa and 568.7 kPa at the array surface and at the focus, respectively. The focusing gain calculated from this measurement is 3.27, which is lower than the simulated gain of 6.09 because of the mutual radiation impedance among the CMUT cells. Further optimization of the operating condition of this array and design improvements for reducing the effect of mutual radiation impedance are currently on-going.

  1. A novel serrated columnar phased array ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Song, Hongwei; Chen, Qiang

    2016-02-01

    Traditionally, wedges are required to generate transverse waves in a solid specimen and mechanical rotation device is needed for interrogation of a specimen with a hollow bore, such as high speed railway locomotive axles, turbine rotors, etc. In order to eliminate the mechanical rotation process, a novel array pattern of phased array ultrasonic transducers named as serrated columnar phased array ultrasonic transducer (SCPAUT) is designed. The elementary transducers are planar rectangular, located on the outside surface of a cylinder. This layout is aimed to generate electrically rotating transverse waveforms so as to inspect the longitudinal cracks on the outside surface of a specimen which has a hollow bore at the center, such as the high speed railway locomotive axles. The general geometry of the SCPAUT and the inspection system are illustrated. A FEM model and mockup experiment has been carried out. The experiment results are in good agreement with the FEM simulation results.

  2. Thermal dispersion method for an ultrasonic phased-array transducer

    NASA Astrophysics Data System (ADS)

    Choi, Euna; Lee, Wonseok; Roh, Yongrae

    2016-07-01

    When the driving voltage of an ultrasonic transducer is increased to improve the quality of ultrasound images, heat is generated inside the transducer, which can burn the patient’s skin and degrade transducer performance. In this study, the method to disperse the heat inside an ultrasonic phased-array transducer has been examined. The mechanism of temperature rise due to heat generation inside the transducer was investigated by numerical analysis and the effects of the thermal properties of the components of the transducer such as specific heat and thermal conductivity on the temperature rise were analyzed. On the basis of the results, a heat-dispersive structure was devised to reduce the temperature at the surface of the acoustic lens of the transducer. Prototype transducers were fabricated to check the efficacy of the heat-dispersive structure. By experiments, we have confirmed that the new heat-dispersive structure can reduce the internal temperature by as much as 50% in comparison with the conventional structure, which confirms the validity of the thermal dispersion mechanism developed in this work.

  3. A Dual-Layer Transducer Array for 3-D Rectilinear Imaging

    PubMed Central

    Yen, Jesse T.; Seo, Chi Hyung; Awad, Samer I.; Jeong, Jong S.

    2010-01-01

    2-D arrays for 3-D rectilinear imaging require very large element counts (16,000–65,000). The difficulties in fabricating and interconnecting 2-D arrays with a large number of elements (>5,000) have limited the development of suitable transducers for 3-D rectilinear imaging. In this paper, we propose an alternative solution to this problem by using a dual-layer transducer array design. This design consists of two perpendicular 1-D arrays for clinical 3-D imaging of targets near the transducer. These targets include the breast, carotid artery, and musculoskeletal system. This transducer design reduces the fabrication complexity and the channel count making 3-D rectilinear imaging more realizable. With this design, an effective N × N 2-D array can be developed using only N transmitters and N receivers. This benefit becomes very significant when N becomes greater than 128, for example. To demonstrate feasibility, we constructed a 4 × 4 cm prototype dual-layer array. The transmit array uses diced PZT-5H elements, and the receive array is a single sheet of undiced P[VDF-TrFE] copolymer. The receive elements are defined by the copper traces on the flexible interconnect circuit. The measured −6 dB fractional bandwidth was 80% with a center frequency of 4.8 MHz. At 5 MHz, the nearest neighbor crosstalk of the PZT array and PVDF array was −30.4 ± 3.1 dB and −28.8 ± 3.7 dB respectively. This dual-layer transducer was interfaced with an Ultrasonix Sonix RP system, and a synthetic aperture 3-D data set was acquired. We then performed off-line 3-D beamforming to obtain volumes of nylon wire targets. The theoretical lateral beamwidth was 0.52 mm compared to measured beamwidths of 0.65 mm and 0.67 mm in azimuth and elevation respectively. 3-D images of an 8 mm diameter anechoic cyst phantom were also acquired. PMID:19213647

  4. An ultrasonic transducer array for velocity measurement in underwater vehicles.

    PubMed

    Boltryk, P; Hill, M; Keary, A; Phillips, B; Robinson, H; White, P

    2004-04-01

    A correlation velocity log (CVL) is an ultrasonic navigation aid for marine applications, in which velocity is estimated using an acoustic transmitter and a receiver array. CVLs offer advantages over Doppler velocity logs (DVLs) in many autonomous underwater vehicle (AUV) applications, since they can achieve high accuracy at low velocities even during hover manoeuvres. DVLs require narrow beam widths, whilst ideal CVL transmitters have wide beam widths. This gives CVLs the potential to use lower frequencies thus permitting operation in deeper water, reducing power requirements for the same depth, or allowing the use of smaller transducers. Moving patterns in the wavefronts across a 2D receiver array are detected by calculating correlation coefficients between bottom reflections from consecutive transmitted pulses, across all combinations of receiver pairings. The position of the peak correlation value, on a surface representing receiver-pairing separations, is proportional to the vessel's displacement between pulses. A CVL aimed primarily for AUVs has been developed. Its acoustical and signal processing design has been optimised through sea trials and computer modelling of the sound field. This computer model is also used to predict how the distribution of the correlation coefficients varies with distance from the peak position. Current work seeks to increase the resolution of the peak estimate using surface fitting methods. Numerical simulations suggest that peak estimation methods significantly improve system precision when compared with simply identifying the position of the maximum correlation coefficient in the dataset. The peak position may be estimated by fitting a quadratic model to the measured data using least squares or maximum likelihood estimation. Alternatively, radial basis functions and Gaussian processes successfully predict the peak position despite variation between individual correlation datasets. This paper summarises the CVL's main acoustical

  5. Wafer-bonded 2-D CMUT arrays incorporating through-wafer trench-isolated interconnects with a supporting frame.

    PubMed

    Zhuang, Xuefeng; Wygant, Ira O; Lin, Der-Song; Kupnik, Mario; Oralkan, Omer; Khuri-Yakub, Butrus T

    2009-01-01

    This paper reports on wafer-bonded, fully populated 2-D capacitive micromachined ultrasonic transducer (CMUT) arrays. To date, no successful through-wafer via fabrication technique has been demonstrated that is compatible with the wafer-bonding method of making CMUT arrays. As an alternative to through-wafer vias, trench isolation with a supporting frame is incorporated into the 2-D arrays to provide through-wafer electrical connections. The CMUT arrays are built on a silicon-on-insulator (SOI) wafer, and all electrical connections to the array elements are brought to the back side of the wafer through the highly conductive silicon substrate. Neighboring array elements are separated by trenches on both the device layer and the bulk silicon. A mesh frame structure, providing mechanical support, is embedded between silicon pillars, which electrically connect to individual elements. We successfully fabricated a 16 x 16-element 2-D CMUT array using wafer bonding with a yield of 100%. Across the array, the pulse-echo amplitude distribution is uniform (rho = 6.6% of the mean amplitude). In one design, we measured a center frequency of 7.6 MHz, a peak-to-peak output pressure of 2.9 MPa at the transducer surface, and a 3-dB fractional bandwidth of 95%. Volumetric ultrasound imaging was demonstrated by chip-to-chip bonding one of the fabricated 2-D arrays to a custom-designed integrated circuit (IC). This study shows that through-wafer trench-isolation with a supporting frame is a viable solution for providing electrical interconnects to CMUT elements and that 2-D arrays fabricated using waferbonding deliver good performance.

  6. Design and fabrication of a 40-MHz annular array transducer

    PubMed Central

    Ketterling, Jeffrey A.; Lizzi, Frederic L.; Aristizábal, Orlando; Turnbull, Daniel H.

    2006-01-01

    This paper investigates the feasibility of fabricating a 5-ring, focused annular array transducer operating at 40 MHz. The active piezoelectric material of the transducer was a 9-μm thick polyvinylidene fluoride (PVDF) film. One side of the PVDF was metallized with gold and forms the ground plane of the transducer. The array pattern of the transducer and electrical traces to each annulus were formed on a copper-clad polyimide film. The PVDF and polyimide were bonded with a thin layer of epoxy, pressed into a spherically curved shape, and then back filled with epoxy. A 5-ring transducer with equal area elements and 100 μm kerfs between annuli was fabricated and tested. The transducer had a total aperture of 6 mm and a geometric focus of 12 mm. The pulse/echo response from a quartz plate located at the geometric focus, two-way insertion loss (IL), complex impedance, electrical cross-talk, and lateral beamwidth were all measured for each annulus. The complex impedance data from each element were used to perform electrical matching and the measurements were repeated. After impedance matching, fc ≈ 36 MHz and BWs ranged from 31 to 39%. The ILs for the matched annuli ranged from −28 to −38 dB. PMID:16060516

  7. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials.

    PubMed

    Lani, Shane W; Wasequr Rashid, M; Hasler, Jennifer; Sabra, Karim G; Levent Degertekin, F

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  8. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    SciTech Connect

    Lani, Shane W. E-mail: karim.sabra@me.gatech.edu Sabra, Karim G.; Wasequr Rashid, M.; Hasler, Jennifer; Levent Degertekin, F.

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  9. Design and characterization of dual-curvature 1.5-dimensional high-intensity focused ultrasound phased-array transducer.

    PubMed

    Chen, Gin-Shin; Lin, Che-Yu; Jeong, Jong Seob; Cannata, Jonathan M; Lin, Win-Li; Chang, Hsu; Shung, K Kirk

    2012-01-01

    A dual-curvature focused ultrasound phased-array transducer with a symmetric control has been developed for noninvasive ablative treatment of tumors. The 1.5-D array was constructed in-house and the electro-acoustic conversion efficiency was measured to be approximately 65%. In vitro experiments demonstrated that the array uses 256 independent elements to achieve 2-D wide-range high-intensity electronic focusing.

  10. Ultrasonic fingerprinting by phased array transducer

    NASA Astrophysics Data System (ADS)

    Sednev, D.; Kataeva, O.; Abramets, V.; Pushenko, P.; Tverdokhlebova, T.

    2016-06-01

    Increasing quantity of spent nuclear fuel that must be under national and international control requires a novel approach to safeguard techniques and equipment. One of the proposed approaches is utilize intrinsic features of casks with spent fuel. In this article an application of a phased array ultrasonic method is considered. This study describes an experimental results on ultrasonic fingerprinting of austenitic steel seam weld.

  11. Optical diffraction by ordered 2D arrays of silica microspheres

    NASA Astrophysics Data System (ADS)

    Shcherbakov, A. A.; Shavdina, O.; Tishchenko, A. V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-03-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality.

  12. Studies of the Characteristics of a Densely-Coupled Array of Underwater Acoustic Transmitting Transducers

    NASA Astrophysics Data System (ADS)

    He, Zhengyao; Ma, Yuanliang

    2010-09-01

    The characteristics of a densely-coupled array of underwater acoustic transmitting transducers are studied. At first, the electro-acoustic characteristics such as the admittance, the resonant frequency and the transmitting voltage response, of a low frequency barrel-stave flextensional transducer and a densely-coupled compact array composed of three identical transducers uniformly distributed on a circle with spacing much less than half wavelength, are measured by experiments. Then, the radiation impedances of a single transducer and of transducers in the compact array are calculated by the boundary element model together with the finite element model. Based on the above results, the transducer's equivalent circuit model parameters are calculated in different cases, which include a single transducer in air and in water, and a densely-coupled array of three transducers parallel connected in water. The characteristics of the transducers and array are analyzed by the equivalent circuit model that was obtained. The research results show that when the transducers make up a densely-coupled compact array, the resonant frequency decreases and the transmitting bandwidth broadens. It is also shown that the mutual interactions among elements are significant for the compact array. The mutual radiation resistance between two transducers is close to the self-radiation resistance of the transducers. The vibration velocities of the transducers in the compact array are nearly 1/3 as those of a single transducer, and the radiation acoustic power and transmitting voltage response of the array are nearly the same as those of a single transducer, when the driving voltages of the array and single transducer are unchanged. Furthermore, the transmitting source level of the 3-element compact array is 8.9dB higher than that of the single transducer if the vibration velocities of the transducers in the array are the same as those of the single transducer. The proposed technique can be used

  13. A 7.5 MHz Dual-Layer Transducer Array for 3-D Rectilinear Imaging

    PubMed Central

    Chen, Yuling; Nguyen, Man; Yen, Jesse T.

    2011-01-01

    The difficulties associated with fabrication and interconnection have limited the development of 2-D ultrasound transducer arrays with a large number of elements (>5000). In previous work, we described a 5 MHz center frequency PZT-P[VDF-TrFE] dual-layer transducer, which used 2 perpendicular 1-D arrays for 3-D rectilinear imaging. This design substantially reduces the channel count as well as fabrication complexity, which makes 3-D imaging more realizable. Higher frequencies (>5MHz) are more commonly used in clinical for imaging targets near transducers such as the breast, carotid, and musculoskeletal. In this paper, we present a 7.5 MHz dual-layer transducer array for 3-D rectilinear imaging. A modified acoustic stack model was designed and fabricated. PZT elements were sub-diced to eliminate lateral coupling. This sub-dicing process made the PZT into a 2–2 composite material, which could help improve transducer sensitivity and bandwidth. Full synthetic aperture 3-D data sets were acquired by interfacing the transducer with a Verasonics data acquisition system (VDAS). Offline 3-D beamforming was then performed to obtain volumes of a multi-wire phantom and a cyst phantom. The generalized coherence factor (GCF) was applied to improve the contrast of cyst images. The measured −6 dB fractional bandwidth of the transducer was 71% with a center frequency of 7.5 MHz. The measured lateral beamwidths were 0.521 mm and 0.482 mm in azimuth and elevation respectively, compared with a simulated beamwidth of 0.43 mm. PMID:21842584

  14. 7.5 MHz dual-layer transducer array for 3-D rectilinear imaging.

    PubMed

    Chen, Yuling; Nguyen, Man; Yen, Jesse T

    2011-07-01

    The difficulties associated with fabrication and interconnection have limited the development of 2-D ultrasound transducer arrays with a large number ofelements (>5000). In previous work, we described a 5 MHz center frequency PZT-P[VDF-TrFE] dual-layer transducer that used two perpendicular 1-D arrays for 3-D rectilinear imaging. This design substantially reduces the channel count as well as fabrication complexity, which makes 3-D imaging more realizable. Higher frequencies (>5 MHz) are more commonly used in clinical applications or imaging targets near transducers, such as the breast, carotid and musculoskeletal tissue. In this paper, we present a 7.5 MHz dual-layer transducer array for 3-D rectilinear imaging. A modified acoustic stack model was designed and fabricated. PZT elements were sub-diced to eliminate lateral coupling. This sub-dicing process made the PZT into a 2-2 composite material, which could help improve transducer sensitivity and bandwidth. Full synthetic-aperture 3-D data sets were acquired by interfacing the transducer with a Verasonics data-acquisition system (VDAS). Offline 3-D beamforming was then performed to obtain volumes of a multiwire phantom and a cyst phantom. The generalized coherence factor (GCF) was applied to improve the contrast of cyst images. The measured -6 dB fractional bandwidth of the transducer was 71% with a center frequency of 7.5 MHz. The measured lateral beamwidths were 0.521 mm and 0.482 mm in azimuth and elevation, respectively, compared with a simulated beamwidth of 0.43 mm.

  15. Double-channel, frequency-steered acoustic transducer with 2-D imaging capabilities.

    PubMed

    Baravelli, Emanuele; Senesi, Matteo; Ruzzene, Massimo; De Marchi, Luca; Speciale, Nicolò

    2011-07-01

    A frequency-steerable acoustic transducer (FSAT) is employed for imaging of damage in plates through guided wave inspection. The FSAT is a shaped array with a spatial distribution that defines a spiral in wavenumber space. Its resulting frequency-dependent directional properties allow beam steering to be performed by a single two-channel device, which can be used for the imaging of a two-dimensional half-plane. Ad hoc signal processing algorithms are developed and applied to the localization of acoustic sources and scatterers when FSAT arrays are used as part of pitch-catch and pulse-echo configurations. Localization schemes rely on the spectrogram analysis of received signals upon dispersion compensation through frequency warping and the application of the frequency-angle map characteristic of FSAT. The effectiveness of FSAT designs and associated imaging schemes are demonstrated through numerical simulations and experiments. Preliminary experimental validation is performed by forming a discrete array through the points of the measurement grid of a scanning laser Doppler vibrometer. The presented results demonstrate the frequency-dependent directionality of the spiral FSAT and suggest its application for frequency-selective acoustic sensors, for the localization of broadband acoustic events, or for the directional generation of Lamb waves for active interrogation of structural health.

  16. A post-beamforming 2-D pseudoinverse filter for coarsely sampled ultrasound arrays.

    PubMed

    Wan, Yayun; Ebbini, Emad S

    2009-09-01

    Beamforming artifacts due to coarse discretization of imaging apertures represent a significant barrier against the use of array probes in high-frequency applications. Nyquist sampling of array apertures dictates center-to-center spacing of lambda/2 for elimination of grating lobes in the array pattern. However, this requirement is hard to achieve using current transducer technologies, even at the lower end of high-frequency ultrasonic imaging (in the range 25-35 MHz). In this paper, we present a new design approach for 2-D regularized pseudoinverse (PIO) filters suitable for restoring imaging contrast in systems employing coarsely sampled arrays. The approach is based on a discretized 2-D imaging model for linear arrays assuming scattering from a Cartesian grid in the imaging field of view (FOV). We show that the discretized imaging operator can be represented with a block Toeplitz matrix with the blocks themselves being Toeplitz. With sufficiently large grid size in the axial and lateral directions, it is possible to replace this Toeplitz-block block Toeplitz (TBBT) operator with its circulant-block block circulant (CBBC) equivalent. This leads to a computationally efficient implementation of the regularized pseudoinverse filtering approach using the 2-D fast Fourier transform (FFT). The derivation of the filtering equation is shown in detail and the regularization procedure is fully described. Using FIELD, we present simulation data to show the 2-D point-spread functions (PSFs) for imaging systems employing linear arrays with fine and coarse sampling of the imaging aperture. PSFs are also computed for a coarsely sampled array with different levels of regularization to demonstrate the tradeoff between contrast and spatial resolution. These results demonstrate the well-behaved nature of the PSF with the variation in a single regularization parameter. Specifically, the 6 dB axial and lateral dimensions of the PSF increase gradually with increasing value of the

  17. Antenna coupled detectors for 2D staring focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gritz, Michael A.; Kolasa, Borys; Lail, Brian; Burkholder, Robert; Chen, Leonard

    2013-06-01

    Millimeter-wave (mmW)/sub-mmW/THz region of the electro-magnetic spectrum enables imaging thru clothing and other obscurants such as fog, clouds, smoke, sand, and dust. Therefore considerable interest exists in developing low cost millimeter-wave imaging (MMWI) systems. Previous MMWI systems have evolved from crude mechanically scanned, single element receiver systems into very complex multiple receiver camera systems. Initial systems required many expensive mmW integrated-circuit low-noise amplifiers. In order to reduce the cost and complexity of the existing systems, attempts have been made to develop new mmW imaging sensors employing direct detection arrays. In this paper, we report on Raytheon's recent development of a unique focal plane array technology, which operates broadly from the mmW through the sub-mmW/THz region. Raytheon's innovative nano-antenna based detector enables low cost production of 2D staring mmW focal plane arrays (mmW FPA), which not only have equivalent sensitivity and performance to existing MMWI systems, but require no mechanical scanning.

  18. Modeling the radiation of ultrasonic phased-array transducers with Gaussian beams.

    PubMed

    Huang, Ruiju; Schmerr, Lester W; Sedov, Alexander

    2008-12-01

    A new transducer beam model, called a multi-Gaussian array beam model, is developed to simulate the wave fields radiated by ultrasonic phased-array transducers. This new model overcomes the restrictions on using ordinary multi-Gaussian beam models developed for large single-element transducers in phased-array applications. It is demonstrated that this new beam model can effectively model the steered and focused beams of a linear phased-array transducer.

  19. Self-leveling 2D DPN probe arrays

    NASA Astrophysics Data System (ADS)

    Haaheim, Jason R.; Val, Vadim; Solheim, Ed; Bussan, John; Fragala, J.; Nelson, Mike

    2010-02-01

    Dip Pen Nanolithography® (DPN®) is a direct write scanning probe-based technique which operates under ambient conditions, making it suitable to deposit a wide range of biological and inorganic materials. Precision nanoscale deposition is a fundamental requirement to advance nanoscale technology in commercial applications, and tailoring chemical composition and surface structure on the sub-100 nm scale benefits researchers in areas ranging from cell adhesion to cell-signaling and biomimetic membranes. These capabilities naturally suggest a "Desktop Nanofab" concept - a turnkey system that allows a non-expert user to rapidly create high resolution, scalable nanostructures drawing upon well-characterized ink and substrate pairings. In turn, this system is fundamentally supported by a portfolio of MEMS devices tailored for microfluidic ink delivery, directed placement of nanoscale materials, and cm2 tip arrays for high-throughput nanofabrication. Massively parallel two-dimensional nanopatterning is now commercially available via NanoInk's 2D nano PrintArray™, making DPN a high-throughput (>3×107 μm2 per hour), flexible and versatile method for precision nanoscale pattern formation. However, cm2 arrays of nanoscopic tips introduce the nontrivial problem of getting them all evenly touching the surface to ensure homogeneous deposition; this requires extremely precise leveling of the array. Herein, we describe how we have made the process simple by way of a selfleveling gimbal attachment, coupled with semi-automated software leveling routines which bring the cm^2 chip to within 0.002 degrees of co-planarity. This excellent co-planarity yields highly homogeneous features across a square centimeter, with <6% feature size standard deviation. We have engineered the devices to be easy to use, wire-free, and fully integrated with both of our patterning tools: the DPN 5000, and the NLP 2000.

  20. Laser-scanning photoacoustic microscopy with ultrasonic phased array transducer.

    PubMed

    Zheng, Fan; Zhang, Xiangyang; Chiu, Chi Tat; Zhou, Bill L; Shung, K Kirk; Zhang, Hao F; Jiao, Shuliang

    2012-11-01

    In this paper, we report our latest progress on proving the concept that ultrasonic phased array can improve the detection sensitivity and field of view (FOV) in laser-scanning photoacoustic microscopy (LS-PAM). A LS-PAM system with a one-dimensional (1D) ultrasonic phased array was built for the experiments. The 1D phased array transducer consists of 64 active elements with an overall active dimension of 3.2 mm × 2 mm. The system was tested on imaging phantom and mouse ear in vivo. Experiments showed a 15 dB increase of the signal-to-noise ratio (SNR) when beamforming was employed compared to the images acquired with each single element. The experimental results demonstrated that ultrasonic phased array can be a better candidate for LS-PAM in high sensitivity applications like ophthalmic imaging.

  1. Laser-scanning photoacoustic microscopy with ultrasonic phased array transducer

    PubMed Central

    Zheng, Fan; Zhang, Xiangyang; Chiu, Chi Tat; Zhou, Bill L.; Shung, K. Kirk; Zhang, Hao F.; Jiao, Shuliang

    2012-01-01

    In this paper, we report our latest progress on proving the concept that ultrasonic phased array can improve the detection sensitivity and field of view (FOV) in laser-scanning photoacoustic microscopy (LS-PAM). A LS-PAM system with a one-dimensional (1D) ultrasonic phased array was built for the experiments. The 1D phased array transducer consists of 64 active elements with an overall active dimension of 3.2 mm × 2 mm. The system was tested on imaging phantom and mouse ear in vivo. Experiments showed a 15 dB increase of the signal-to-noise ratio (SNR) when beamforming was employed compared to the images acquired with each single element. The experimental results demonstrated that ultrasonic phased array can be a better candidate for LS-PAM in high sensitivity applications like ophthalmic imaging. PMID:23162708

  2. A 5-MHz cylindrical dual-layer transducer array for 3-D transrectal ultrasound imaging.

    PubMed

    Chen, Yuling; Nguyen, Man; Yen, Jesse T

    2012-07-01

    Two-dimensional transrectal ultrasound (TRUS) is being used in guiding prostate biopsies and treatments. In many cases, the TRUS probes are moved manually or mechanically to acquire volumetric information, making the imaging slow, user dependent, and unreliable. A real-time three-dimensional (3-D) TRUS system could improve reliability and volume rates of imaging during these procedures. In this article, the authors present a 5-MHz cylindrical dual-layer transducer array capable of real-time 3-D transrectal ultrasound without any mechanically moving parts. Compared with fully sampled 2-D arrays, this design substantially reduces the channel count and fabrication complexity. This dual-layer transducer uses PZT elements for transmit and P[VDF-TrFE] copolymer elements for receive, respectively. The mechanical flexibility of both diced PZT and copolymer makes it practical for transrectal applications. Full synthetic aperture 3-D data sets were acquired by interfacing the transducer with a Verasonics Data Acquisition System. Offline 3-D beamforming was then performed to obtain volumes of two wire phantoms and a cyst phantom. Generalized coherence factor was applied to improve the contrast of images. The measured -6-dB fractional bandwidth of the transducer was 62% with a center frequency of 5.66 MHz. The measured lateral beamwidths were 1.28 mm and 0.91 mm in transverse and longitudinal directions, respectively, compared with a simulated beamwidth of 0.92 mm and 0.74 mm.

  3. A Low Frequency Broadband Flextensional Ultrasonic Transducer Array.

    PubMed

    Savoia, Alessandro Stuart; Mauti, Barbara; Caliano, Giosuè

    2016-01-01

    In this paper, we propose the design and the fabrication of a multicell, piezoelectrically actuated, flextensional transducer array structure, characterized by a low mechanical impedance, thus allowing wideband and high-sensitivity immersion operation in the low ultrasonic frequency range. The transducer structure, consisting of a plurality of circular elementary cells orderly arranged according to a periodic hexagonal tiling, features a high flexibility in the definition of the active area shape and size. We investigate, by finite element modeling (FEM), the influence of different piezoelectric and elastic materials for the flexural plate, for the plate support and for the backing, on the transducer electroacoustic behavior. We carry out the dimensioning of the transducer components and cell layout, in terms of materials and geometry, respectively, by aiming at a circular active area of 80-mm diameter and broadband operation in the 30-100-kHz frequency range in immersion. PZT-5H ceramic disks and a calibrated thickness stainless steel plate are chosen for the vibrating structure, and FR-4 laminates and a brass plate, respectively, for the plate support and the backing. The diameter of the individual cells is set to 6 mm resulting in 121 cells describing a quasi-circular area, and the total thickness of the transducer is less than 10 mm. We report on the fabrication process flow for the accurate assembly of the transducer, based, respectively, on epoxy resin and wire bonding for the mechanical and electrical interconnection of the individual parts. The results of the electrical impedance and transmit pressure field characterization are finally reported and discussed.

  4. Numerical Simulation of Scattered Waves from Flaws for Ultrasonic Array Transducer

    NASA Astrophysics Data System (ADS)

    Hirose, S.; Kono, N.; Nakahata, K.

    2007-03-01

    To enhance the detectability in the phased array UT, it is essential to have well knowledge on the characteristics of ultrasonic waves from array transducers. This paper proposes a mathematical model of the array transducer and a simulation tool to predict the flaw echoes. The modeling of an array transducer is based on the Rayleigh-Sommerfeld integral and the scattered waves from flaws are calculated with the fast multipole BEM (FMBEM). By using the FMBEM, we can solve large scale scattering problems with relatively low computational cost. Here we focus on the transient wave analysis, in which a pulse-shaped wave is used for exciting elements of the array transducer.

  5. DNA-programmed protein-nanoelectronic transducer array

    NASA Astrophysics Data System (ADS)

    Withey, Gary; Kim, Jin Ho; Xu, Jimmy

    2008-08-01

    By incorporating DNA as addressable linkers, we can direct and coordinate the simultaneous, parallel self-assembling and binding of multiple different redox proteins to designated nanoelectrodes. As a result, we have formed a nanoelectronic-protein transducer array which is capable of real-time, multiplexed detection of several analytes in parallel. The sequence-specificity of DNA hybridization provides the means of encoding spatial address instruction to the otherwise random self-assembling process and enables the desired programmability, scalability, and renewability. Results of this study, under an AFOSR MURI program, demonstrate the feasibility of a new paradigm of biosensing: detection of not only the presence of target substances but also the real-time activities of multiple biomolecules. In this system, the conjugated biomolecules and nanoelectronic components provide the active monitoring and mediating functions in real time, and can be integrated en masse into large arrays in a silicon-based integrated circuit.

  6. Breathing-Mode Ceramic Element for Therapeutic Array Transducer

    NASA Astrophysics Data System (ADS)

    Otsu, Kenji; Yoshizawa, Shin; Umemura, Shin-ichiro

    2011-07-01

    A new concept of piezoceramic array transducer element using breathing mode has been proposed for therapeutic application. Finite element numerical simulation showed that a concave hemispherical piezoceramic shell with a diameter slightly larger than the wavelength in water is effective for obtaining good acoustic matching with water. A hemispherical piezoceramic element with an inner diameter of 4.0 mm and a thickness of 0.2-0.4 mm produced more than several times higher acoustic power output than a conventional thickness-mode element at the same drive voltage in the simulation. Its good acoustic matching with water is considered to be accomplished by the combined resonance with the spherical bulk of water half covered by the shell, because the resonance was very sensitive to the change in sound speed of the virtual material replacing water with the same acoustic impedance in simulation.

  7. Fast 2D DOA Estimation Algorithm by an Array Manifold Matching Method with Parallel Linear Arrays

    PubMed Central

    Yang, Lisheng; Liu, Sheng; Li, Dong; Jiang, Qingping; Cao, Hailin

    2016-01-01

    In this paper, the problem of two-dimensional (2D) direction-of-arrival (DOA) estimation with parallel linear arrays is addressed. Two array manifold matching (AMM) approaches, in this work, are developed for the incoherent and coherent signals, respectively. The proposed AMM methods estimate the azimuth angle only with the assumption that the elevation angles are known or estimated. The proposed methods are time efficient since they do not require eigenvalue decomposition (EVD) or peak searching. In addition, the complexity analysis shows the proposed AMM approaches have lower computational complexity than many current state-of-the-art algorithms. The estimated azimuth angles produced by the AMM approaches are automatically paired with the elevation angles. More importantly, for estimating the azimuth angles of coherent signals, the aperture loss issue is avoided since a decorrelation procedure is not required for the proposed AMM method. Numerical studies demonstrate the effectiveness of the proposed approaches. PMID:26907301

  8. Controlling avalanche criticality in 2D nano arrays

    PubMed Central

    Zohar, Y. C.; Yochelis, S.; Dahmen, K. A.; Jung, G.; Paltiel, Y.

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments. PMID:23677142

  9. Controlling avalanche criticality in 2D nano arrays.

    PubMed

    Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  10. Dynamic Response of an Insonified Sonar Window Interacting with a Tonpilz Transducer Array

    DTIC Science & Technology

    2007-01-03

    NUWC-NPT Technical Report 11,781 3 January 2007 Dynamic Response of an Insonified Sonar Window Interacting with a Tonpilz Transducer Array Andrew J...Code 1516) for their discussions on Tonpilz transducer behavior Reviewed and Approved: 3 January 2007 s S. Griffin Head, Autonomous Systems and...FUNDING NUMBERS Dynamic Response of an Insonified Sonar Window Interacting with a Tonpilz Transducer Array 6. AUTHOR(S) Andrew J. Hull 7. PERFORMING

  11. Synchronization of semiconductor laser arrays with 2D Bragg structures

    NASA Astrophysics Data System (ADS)

    Baryshev, V. R.; Ginzburg, N. S.

    2016-08-01

    A model of a planar semiconductor multi-channel laser is developed. In this model two-dimensional (2D) Bragg mirror structures are used for synchronizing radiation of multiple laser channels. Coupling of longitudinal and transverse waves can be mentioned as the distinguishing feature of these structures. Synchronization of 20 laser channels is demonstrated with a semi-classical approach based on Maxwell-Bloch equations.

  12. Circumferential phased array of shear-horizontal wave magnetostrictive patch transducers for pipe inspection.

    PubMed

    Kim, Hoe Woong; Lee, Joo Kyung; Kim, Yoon Young

    2013-02-01

    Several investigations report effective uses of magnetostrictive patch transducers to generate and measure longitudinal and torsional guided waves in a pipe. They can be used to form a phased array for the circumferential inspection of pipes. Although there are circumferential phased arrays employing piezoelectric transducers or EMAT's, no magnetostrictive patch transducer based array system has been attempted. In this investigation, we aim to develop a circumferential phased magnetostrictive patch transducer (PMPT) array that can focus shear-horizontal waves at any target point on a cylindrical surface of a pipe. For the development, a specific configuration of a PMPT array employing six magnetostrictive patch transducers is proposed. A wave simulation model is also developed to determine time delays and amplitudes of signals generated by the transducers of the array. This model should be able to predict accurately the angular profiles of shear-horizontal waves generated by the transducers. For wave focusing, the time reversal idea will be utilized. The wave focusing ability of the developed PMPT array is tested with multiple-crack detection experiments. Imaging of localized surface inspection regions is also attempted by using wave signals measured by the developed PMPT array system.

  13. Application of X-Y Separable 2-D Array Beamforming for Increased Frame Rate and Energy Efficiency in Handheld Devices

    PubMed Central

    Owen, Kevin; Fuller, Michael I.; Hossack, John A.

    2015-01-01

    Two-dimensional arrays present significant beamforming computational challenges because of their high channel count and data rate. These challenges are even more stringent when incorporating a 2-D transducer array into a battery-powered hand-held device, placing significant demands on power efficiency. Previous work in sonar and ultrasound indicates that 2-D array beamforming can be decomposed into two separable line-array beamforming operations. This has been used in conjunction with frequency-domain phase-based focusing to achieve fast volume imaging. In this paper, we analyze the imaging and computational performance of approximate near-field separable beamforming for high-quality delay-and-sum (DAS) beamforming and for a low-cost, phaserotation-only beamforming method known as direct-sampled in-phase quadrature (DSIQ) beamforming. We show that when high-quality time-delay interpolation is used, separable DAS focusing introduces no noticeable imaging degradation under practical conditions. Similar results for DSIQ focusing are observed. In addition, a slight modification to the DSIQ focusing method greatly increases imaging contrast, making it comparable to that of DAS, despite having a wider main lobe and higher side lobes resulting from the limitations of phase-only time-delay interpolation. Compared with non-separable 2-D imaging, up to a 20-fold increase in frame rate is possible with the separable method. When implemented on a smart-phone-oriented processor to focus data from a 60 × 60 channel array using a 40 × 40 aperture, the frame rate per C-mode volume slice increases from 16 to 255 Hz for DAS, and from 11 to 193 Hz for DSIQ. Energy usage per frame is similarly reduced from 75 to 4.8 mJ/ frame for DAS, and from 107 to 6.3 mJ/frame for DSIQ. We also show that the separable method outperforms 2-D FFT-based focusing by a factor of 1.64 at these data sizes. This data indicates that with the optimal design choices, separable 2-D beamforming can

  14. Application of X-Y separable 2-D array beamforming for increased frame rate and energy efficiency in handheld devices.

    PubMed

    Owen, Kevin; Fuller, Michael; Hossack, John

    2012-07-01

    Two-dimensional arrays present significant beamforming computational challenges because of their high channel count and data rate. These challenges are even more stringent when incorporating a 2-D transducer array into a battery-powered hand-held device, placing significant demands on power efficiency. Previous work in sonar and ultrasound indicates that 2-D array beamforming can be decomposed into two separable line-array beamforming operations. This has been used in conjunction with frequency-domain phase-based focusing to achieve fast volume imaging. In this paper, we analyze the imaging and computational performance of approximate near-field separable beamforming for high-quality delay-and-sum (DAS) beamforming and for a low-cost, phase-rotation-only beamforming method known as direct-sampled in-phase quadrature (DSIQ) beamforming. We show that when high-quality time-delay interpolation is used, separable DAS focusing introduces no noticeable imaging degradation under practical conditions. Similar results for DSIQ focusing are observed. In addition, a slight modification to the DSIQ focusing method greatly increases imaging contrast, making it comparable to that of DAS, despite having a wider main lobe and higher side lobes resulting from the limitations of phase-only time-delay interpolation. Compared with non-separable 2-D imaging, up to a 20-fold increase in frame rate is possible with the separable method. When implemented on a smart-phone-oriented processor to focus data from a 60 x 60 channel array using a 40 x 40 aperture, the frame rate per C-mode volume slice increases from 16 to 255 Hz for DAS, and from 11 to 193 Hz for DSIQ. Energy usage per frame is similarly reduced from 75 to 4.8 mJ/ frame for DAS, and from 107 to 6.3 mJ/frame for DSIQ. We also show that the separable method outperforms 2-D FFT-based focusing by a factor of 1.64 at these data sizes. This data indicates that with the optimal design choices, separable 2-D beamforming can

  15. An Algorithm for Selecting Transducer Element Array Positions

    DTIC Science & Technology

    1988-06-01

    response. A lumped-parameter equivalent circuit of a tonpilz transducer is used to predict element amplitude and phase tolerances for different radiation...lumped-parameter equivalent circuit of a tonpilz transducer is used to predict element amplitude and phase tolerances for different radiation loadings...FIGURES p Figure Page : 2.1 A Tonpilz Type Transducer . . .............. . 6 % 2.2 The Equivalent Circuit .......... .................... 7 2.3 The

  16. Experimental Investigation of Inter-Element Isolation in a Medical Array Transducer at Various Manufacturing Stages.

    PubMed

    Marinozzi, Franco; Bini, Fabiano; Grandoni, Andrea

    2015-07-09

    This work presents the experimental investigation of vibration maps of a linear array transducer with 192 piezoelements by means of a laser Doppler vibrometer at various manufacturing finishing steps in air and in water. Over the years, many researchers have investigated cross-coupling in fabricated prototypes but not in arrays at various manufacturing stages. Only the central element of the array was driven at its working frequency of 5 MHz. The experimental results showed that the contributions of cross-coupling depend on the elements of the acoustic stack: Lead Zirconate Titanate (PZT), kerf, filler, matching layer, and lens. The oscillation amplitudes spanned from (6 ± 38%) nm to (110 ± 40%) nm when the energized element was tested in air and from (6 ± 57%) nm to (80 ± 67%) nm when measurements were obtained under water. The best inter-element isolation of -22 dB was measured in air after cutting the kerfs, whereas the poorest isolation was -2 dB under water with an acoustic lens (complete acoustic stack). The vibration pattern in water showed a higher standard deviation on the displacement measurements than the one obtained in air, due to the influence of acousto-optic interactions. The amount increased to 30% in water, as estimated by a comparison with the measurements in air. This work describes a valuable method for manufacturers to investigate the correspondence between the manufacturing process and the quantitative evaluations of the resulting effects.

  17. Ultrafast dynamics of metal plasmons induced by 2D semiconductor excitons in hybrid nanostructure arrays

    DOE PAGES

    Boulesbaa, Abdelaziz; Babicheva, Viktoriia E.; Wang, Kai; ...

    2016-11-17

    With the advanced progress achieved in the field of nanotechnology, localized surface plasmons resonances (LSPRs) are actively considered to improve the efficiency of metal-based photocatalysis, photodetection, and photovoltaics. Here, we report on the exchange of energy and electric charges in a hybrid composed of a two-dimensional tungsten disulfide (2D-WS2) monolayer and an array of aluminum (Al) nanodisks. Femtosecond pump-probe spectroscopy results indicate that within ~830 fs after photoexcitation of the 2D-WS2 semiconductor, energy transfer from the 2D-WS2 excitons excites the plasmons of the Al array. Then, upon the radiative and/or nonradiative damping of these excited plasmons, energy and/or electron transfermore » back to the 2D-WS2 semiconductor takes place as indicated by an increase in the reflected probe at the 2D exciton transition energies at later time-delays. This simultaneous exchange of energy and charges between the metal and the 2D-WS2 semiconductor resulted in an extension of the average lifetime of the 2D-excitons from ~15 to ~58 ps in absence and presence of the Al array, respectively. Furthermore, the indirectly excited plasmons were found to live as long as the 2D-WS2 excitons exist. Furthermore, the demonstrated ability to generate exciton-plasmons coupling in a hybrid nanostructure may open new opportunities for optoelectronic applications such as plasmonic-based photodetection and photocatalysis.« less

  18. Fabrication and magnetic behaviour of 2D ordered Fe/SiO2 nanodots array

    NASA Astrophysics Data System (ADS)

    Liu, W.; Zhong, W.; Qiu, L. J.; Lü, L. Y.; Du, Y. W.

    2006-06-01

    We have demonstrated a simple and universal morphology-controlled growth of 2D ordered Fe/SiO2 magnetic nanodots array, which was based on 2D colloidal monolayer template composed of polystyrene (PS) spheres and one-step sol-gel spin-coating technique. The Fe/SiO2 nanodots have a well-ordered structure arranged in a hexagonal pattern. The dots have the shape of quasi-pyramidal tetrahedron, which reside in the interstitial region between three PS spheres and the substrate. Magnetic measurements reveal that the nanodots array exhibits the in-plane easy magnetization direction. Compared with the unpatterned Fe/SiO2 thin film, the dots array has lower saturated field, higher remanence and coercivity. The present method is applicable to 2D ordered nanodots array of other magnetic materials.

  19. Breast ultrasound tomography with two parallel transducer arrays: preliminary clinical results

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Intrator, Miranda; Hanson, Kenneth; Epstein, Katherine; Sandoval, Daniel; Williamson, Michael

    2015-03-01

    Ultrasound tomography has great potential to provide quantitative estimations of physical properties of breast tumors for accurate characterization of breast cancer. We design and manufacture a new synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays. The distance of these two transducer arrays is adjustable for scanning breasts with different sizes. The ultrasound transducer arrays are translated vertically to scan the entire breast slice by slice and acquires ultrasound transmission and reflection data for whole-breast ultrasound imaging and tomographic reconstructions. We use the system to acquire patient data at the University of New Mexico Hospital for clinical studies. We present some preliminary imaging results of in vivo patient ultrasound data. Our preliminary clinical imaging results show promising of our breast ultrasound tomography system with two parallel transducer arrays for breast cancer imaging and characterization.

  20. Inspection design using 2D phased array, TFM and cueMAP software

    SciTech Connect

    McGilp, Ailidh; Dziewierz, Jerzy; Lardner, Tim; Mackersie, John; Gachagan, Anthony

    2014-02-18

    A simulation suite, cueMAP, has been developed to facilitate the design of inspection processes and sparse 2D array configurations. At the core of cueMAP is a Total Focusing Method (TFM) imaging algorithm that enables computer assisted design of ultrasonic inspection scenarios, including the design of bespoke array configurations to match the inspection criteria. This in-house developed TFM code allows for interactive evaluation of image quality indicators of ultrasonic imaging performance when utilizing a 2D phased array working in FMC/TFM mode. The cueMAP software uses a series of TFM images to build a map of resolution, contrast and sensitivity of imaging performance of a simulated reflector, swept across the inspection volume. The software takes into account probe properties, wedge or water standoff, and effects of specimen curvature. In the validation process of this new software package, two 2D arrays have been evaluated on 304n stainless steel samples, typical of the primary circuit in nuclear plants. Thick section samples have been inspected using a 1MHz 2D matrix array. Due to the processing efficiency of the software, the data collected from these array configurations has been used to investigate the influence sub-aperture operation on inspection performance.

  1. Inspection design using 2D phased array, TFM and cueMAP software

    NASA Astrophysics Data System (ADS)

    McGilp, Ailidh; Dziewierz, Jerzy; Lardner, Tim; Mackersie, John; Gachagan, Anthony

    2014-02-01

    A simulation suite, cueMAP, has been developed to facilitate the design of inspection processes and sparse 2D array configurations. At the core of cueMAP is a Total Focusing Method (TFM) imaging algorithm that enables computer assisted design of ultrasonic inspection scenarios, including the design of bespoke array configurations to match the inspection criteria. This in-house developed TFM code allows for interactive evaluation of image quality indicators of ultrasonic imaging performance when utilizing a 2D phased array working in FMC/TFM mode. The cueMAP software uses a series of TFM images to build a map of resolution, contrast and sensitivity of imaging performance of a simulated reflector, swept across the inspection volume. The software takes into account probe properties, wedge or water standoff, and effects of specimen curvature. In the validation process of this new software package, two 2D arrays have been evaluated on 304n stainless steel samples, typical of the primary circuit in nuclear plants. Thick section samples have been inspected using a 1MHz 2D matrix array. Due to the processing efficiency of the software, the data collected from these array configurations has been used to investigate the influence sub-aperture operation on inspection performance.

  2. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    NASA Astrophysics Data System (ADS)

    Ambroziński, Łukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2015-03-01

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays' elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  3. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays.

    PubMed

    Kuznetsov, A I; Kiyan, R; Chichkov, B N

    2010-09-27

    A novel method for fabrication of 2D and 3D metal nanoparticle structures and arrays is proposed. This technique is based on laser-induced transfer of molten metal nanodroplets from thin metal films. Metal nanoparticles are produced by solidification of these nanodroplets. The size of the transferred nanoparticles can be controllably changed in the range from 180 nm to 1500 nm. Several examples of complex 2D and 3D microstructures generated form gold nanoparticles are demonstrated.

  4. Wideband 2-D Array Design Optimization With Fabrication Constraints for 3-D US Imaging.

    PubMed

    Roux, Emmanuel; Ramalli, Alessandro; Liebgott, Herve; Cachard, Christian; Robini, Marc C; Tortoli, Piero

    2017-01-01

    Ultrasound (US) 2-D arrays are of increasing interest due to their electronic steering capability to investigate 3-D regions without requiring any probe movement. These arrays are typically populated by thousands of elements that, ideally, should be individually driven by the companion scanner. Since this is not convenient, the so-called microbeamforming methods, yielding a prebeamforming stage performed in the probe handle by suitable custom integrated circuits, have so far been implemented in a few commercial high-end scanners. A possible approach to implement relatively cheap and efficient 3-D US imaging systems is using 2-D sparse arrays in which a limited number of elements can be coupled to an equal number of independent transmit/receive channels. In order to obtain US beams with adequate characteristics all over the investigated volume, the layout of such arrays must be carefully designed. This paper provides guidelines to design, by using simulated annealing optimization, 2-D sparse arrays capable of fitting specific applications or fabrication/implementation constraints. In particular, an original energy function based on multidepth 3-D analysis of the beam pattern is also exploited. A tutorial example is given, addressed to find the N e elements that should be activated in a 2-D fully populated array to yield efficient acoustic radiating performance over the entire volume. The proposed method is applied to a 32 ×32 array centered at 3 MHz to select the 128, 192, and 256 elements that provide the best acoustic performance. It is shown that the 256-element optimized array yields sidelobe levels even lower (by 5.7 dB) than that of the reference 716-element circular and (by 10.3 dB) than that of the reference 1024-element array.

  5. Adhesive defect detection in composite adhesive joints using phased array transducers

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang; Lissenden, Cliff J.

    2015-03-01

    Composite materials are widely used in aircraft structures due to their high specific stiffness and strength. The laminated nature of composite structures makes them subject to disbond and delamination. These types of defects will compromise the integrity of the structure and therefore need to be monitored. To monitor aircraft structures, light weight transducers capable of large area coverage are beneficial. Ultrasonic guided waves are able to travel long distance and are sensitive to localized defects. The multi-modal characteristic of propagating guided waves requires optimal mode selection and excitation. Phased array transducers provide good versatility for optimal mode excitation since they can excite different guided wave modes preferentially. Phased array transducers designed for structural health monitoring (SHM) applications are employed in this work to study the interaction between adhesive defects and guided wave modes. Amplitude ratios and wave packet composition are utilized as defect indicators that are uniquely available due to the phased array transducers.

  6. The Ultrasonic Measurement of Crystallographic Orientation for Imaging Anisotropic Components with 2d Arrays

    NASA Astrophysics Data System (ADS)

    Lane, C. J. L.; Dunhill, A. K.; Drinkwater, B. W.; Wilcox, P. D.

    2011-06-01

    Single crystal components are used widely in the gas-turbine industry. However, these components are elastically anisotropic which causes difficulties when performing NDE inspections with ultrasound. Recently an ultrasonic algorithm for a 2D array has been corrected to perform the reliable volumetric inspection of single crystals. For the algorithm to be implemented the crystallographic orientation of the components must be known. This paper, therefore, develops and reviews crystallographic orientation methods using 2D ultrasonic arrays. The methods under examination are based on the anisotropic propagation of surface and bulk waves and an image-based orientation method is also considered.

  7. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    SciTech Connect

    Ambroziński, Łukasz Stepinski, Tadeusz Uhl, Tadeusz

    2015-03-31

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array’s aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays’ elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  8. 2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.

    2014-01-01

    This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).

  9. Dynamic photorefractive self-amplified angular-multiplex 2-D optical beam-array generation

    NASA Astrophysics Data System (ADS)

    Zhou, Shaomin; Yeh, Pochi; Liu, Hua-Kuang

    1993-01-01

    A real-time 2-D angular-multiplex beam-array holographic storage and reconstruction technique using electrically-addressed spatial light modulators(E-SLM's) and photorefractive crystals is described. Using a liquid crystal television (LCTV) spatial light modulator (SLM) for beam steering and lithium niobate photorefractive crystal for holographic recording, experimental results of generating large and complicated arrays of laser beams with high diffraction efficiency and good uniformity are presented.

  10. Equivalent Circuit Models for Large Arrays of Curved and Flat Piezoelectric Micromachined Ultrasonic Transducers.

    PubMed

    Akhbari, Sina; Sammoura, Firas; Lin, Liwei

    2016-03-01

    Equivalent circuit models of large arrays of curved (spherical shape) and flat piezoelectric micromachined ultrasonic transducers (pMUTs) have been developed for complex pMUT arrays design and analysis. The exact solutions for circuit parameters in the electromechanical domain, such as mechanical admittance, input electrical impedance, and electromechanical transformer ratio, were analytically derived. By utilizing the array solution methods previously established for the thickness-mode piezoelectric devices and capacitive micromachined ultrasonic transducers (cMUTs), the single pMUT circuit model can be extended to models for array structures. The array model includes both the self- and mutual-acoustic radiation impedances of individual transducers in the acoustic medium. Volumetric displacement, induced piezoelectric current, and pressure field can be derived with respect to the input voltage matrix, material, and geometrical properties of each individual transducer and the array structure. As such, the analytical models presented here can be used as a guideline for analyses and design evaluations of large arrays of curved and flat pMUTs efficiently and can be further generalized to evaluate other pMUT architectures in the form of single devices or arrays.

  11. Ultrafast dynamics of metal plasmons induced by 2D semiconductor excitons in hybrid nanostructure arrays

    SciTech Connect

    Boulesbaa, Abdelaziz; Babicheva, Viktoriia E.; Wang, Kai; Kravchenko, Ivan I.; Lin, Ming -Wei; Mahjouri-Samani, Masoud; Jacobs, Christopher B.; Puretzky, Alexander A.; Xiao, Kai; Ivanov, Ilia N.; Rouleau, Christopher M.; Geohegan, David B.

    2016-11-17

    With the advanced progress achieved in the field of nanotechnology, localized surface plasmons resonances (LSPRs) are actively considered to improve the efficiency of metal-based photocatalysis, photodetection, and photovoltaics. Here, we report on the exchange of energy and electric charges in a hybrid composed of a two-dimensional tungsten disulfide (2D-WS2) monolayer and an array of aluminum (Al) nanodisks. Femtosecond pump-probe spectroscopy results indicate that within ~830 fs after photoexcitation of the 2D-WS2 semiconductor, energy transfer from the 2D-WS2 excitons excites the plasmons of the Al array. Then, upon the radiative and/or nonradiative damping of these excited plasmons, energy and/or electron transfer back to the 2D-WS2 semiconductor takes place as indicated by an increase in the reflected probe at the 2D exciton transition energies at later time-delays. This simultaneous exchange of energy and charges between the metal and the 2D-WS2 semiconductor resulted in an extension of the average lifetime of the 2D-excitons from ~15 to ~58 ps in absence and presence of the Al array, respectively. Furthermore, the indirectly excited plasmons were found to live as long as the 2D-WS2 excitons exist. Furthermore, the demonstrated ability to generate exciton-plasmons coupling in a hybrid nanostructure may open new opportunities for optoelectronic applications such as plasmonic-based photodetection and photocatalysis.

  12. A parametric study of ultrasonic beam profiles for a linear phased array transducer.

    PubMed

    Lee, J H; Choi, S W

    2000-01-01

    A numerical simulation model is presented to investigate the influences of design parameters of linear phased array transducers on beam focusing and steering performance. The characteristic of ultrasonic beam profiles has been simulated on the basis of the Huygen's superposition principle. For the simulation, a linear phased array is considered as the composition of finite number of elements separated by equidistance. Individual elements are considered as two-dimensional point sources. The waves generated from piezoelectric elements are considered as simplified transient ultrasonic waves that are constructed with the cosine function enveloped with a Hanning window. The characteristic of ultrasonic wave propagation into a medium from the phased array transducer is described. The effects of the number, the interelement spacing, steering angle, the focal length, and frequency bandwidth of the piezoelectric elements on beam directivity and ultrasonic pressure field in a linear phased array transducer are systematically discussed.

  13. High power, high efficiency, 2D laser diode arrays for pumping solid state lasers

    SciTech Connect

    Rosenberg, A.; McShea, J.C.; Bogdan, A.R.; Petheram, J.C.; Rosen, A.

    1987-11-01

    This document reports the current performance of 2D laser diode arrays operating at 770 nm and 808 nm for pumping promethium and neodymium solid state lasers, respectively. Typical power densities are in excess of 2kw/cm/sup 2/ with overall efficiencies greater than 30%.

  14. A 256×2562-D array transducer with Row-column addressing for 3-D Rectilinear Imaging

    PubMed Central

    Seo, Chi Hyung; Yen, Jesse T.

    2010-01-01

    We present simulation and experimental results from a 5 MHz, 256 × 256 2-D (65,536 elements, 38.4 mm × 38.4 mm) 2-D array transducer with row-column addressing. The main benefits of this design are a reduced number of interconnects, a modified transmit/receive switching scheme with a simple diode circuit, and an ability to perform volumetric imaging of targets near the transducer with transmit beamforming in azimuth and receive beamforming in elevation. The final dimensions of a transducer were 38.4 mm × 38.4 mm × 300 μm. After prototyping a row-column transducer, the series resonance impedance was 104 Ω at 5.4 MHz. The measured -6 dB fractional bandwidth was 53% with a center frequency of 5.3 MHz. The SNR at the transmit focus was measured to be 30 dB. At 5 MHz, the average nearest neighbor crosstalk was -25 dB. In this paper, we present 3-D images of 5 pairs of nylon wires embedded in a clear gelatin phantom and of an 8 mm diameter cylindrical anechoic cyst phantom acquired from a 256 × 256 2-D array transducer made from a 1–3 composite. We display the azimuth and elevation B-scans as well as the C-scan. The cross-section of the wires is visible in the azimuth B-scan while the long axes can be seen in the elevation B-scan and C-scans. The pair of wires with 1 mm axial separation is discernible in the elevational B-scan while all the pairs of wires were distinguishable in the short-axis B-scan. Using a single wire from the wire target phantom, the measured lateral beamwidth was 0.68 mm and 0.70 mm at 30 mm depth in transmit beamforming and receive beamforming respectively compared to the simulated beamwidth of 0.55 mm. The cross-section of the cyst is visible in the azimuth B-scan while the long axes can be seen in the elevation B-scan and C-scans as a rectangle. PMID:19406713

  15. Mirror effects and optical meta-surfaces in 2d atomic arrays

    NASA Astrophysics Data System (ADS)

    Shahmoon, Ephraim; Wild, Dominik; Lukin, Mikhail; Yelin, Susanne

    2016-05-01

    Strong optical response of natural and artificial (meta-) materials typically relies on the fact that the lattice constant that separates their constituent particles (atoms or electromagnetic resonators, respectively) is much smaller than the optical wavelength. Here we consider a single layer of a 2d atom array with a lattice constant on the order of an optical wavelength, which can be thought of as a highly dilute 2d metamaterial (meta-surface). Our theoretical analysis shows how strong scattering of resonant incoming light off the array can be controlled by choosing its lattice constant, e.g. allowing the array to operate as a perfect mirror or a retro-reflector for most incident angles of the incoming light. We discuss the prospects for quantum metasurfaces, i.e. the ability to shape the output quantum state of light by controlling the atomic states, and the possible generality of our results as a universal wave phenomena.

  16. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display.

    PubMed

    Chang, Yu-Cheng; Jen, Tai-Hsiang; Ting, Chih-Hung; Huang, Yi-Pai

    2014-02-10

    A 2D/3D switchable and rotatable autostereoscopic display using a high-resistance liquid-crystal (Hi-R LC) lens array is investigated in this paper. Using high-resistance layers in an LC cell, a gradient electric-field distribution can be formed, which can provide a better lens-like shape of the refractive-index distribution. The advantages of the Hi-R LC lens array are its 2D/3D switchability, rotatability (in the horizontal and vertical directions), low driving voltage (~2 volts) and fast response (~0.6 second). In addition, the Hi-R LC lens array requires only a very simple fabrication process.

  17. A new method for anisotropic materials characterization based on phased-array ultrasonic transducers technology

    SciTech Connect

    Frenet, D.; Calmon, P.; Paradis, L.

    1999-12-02

    A method for materials characterization based on the utilization of a ultrasonic array transducer of conical shape has been developed at the CEA. The specific design of this transducer allows the generation and the detection of leaky surface acoustic waves (LSAW) in an efficient way. Additionally, anisotropic materials can be investigated in several azimuthal directions without any mechanical movement. The characterization process relies on the velocity measurement of the LSAW. Experimental results on both isotropic an anisotropic material are reported.

  18. Investigating an alternative ring design of transducer arrays for tumor treating fields (TTFields).

    PubMed

    Macedo, Mario; Wenger, Cornelia; Salvador, Ricardo; Fernandes, Sofia R; Miranda, Pedro C

    2016-08-01

    Tumor treating fields (TTFields) is a therapy that inhibits cell proliferation and has been approved by the U.S Food and Drug Administration (FDA) for the treatment of Glioblastoma Multiforme. This anti-mitotic technique works non-invasively and regionally, and is associated with less toxicity and a better quality of life. Currently a device called Optune™ is clinically used which works with two perpendicular and alternating array pairs each consisting of 3×3 transducers. The aim of this study is to investigate a theoretical alternative array design which consists of two rings of 16 transducers and thus permits various field directions. A realistic human head model with isotropic tissues was used to simulate the electric field distribution induced by the two types of array layouts. One virtual tumour was modelled as a sphere in the white matter close to one lateral ventricle. Four alternative ring design directions were evaluated by activating arrays of 2×2 transducers on opposite sides of the head. The same amount of current was passed through active transducer arrays of the Optune system and the ring design. The electric field distribution in the brain differs for the various array configurations, with higher fields between activated transducer pairs and lower values in distant areas. Nonetheless, the average electric field strength values in the tumour are comparable for the various configurations. Values between 1.00 and 1.91 V/cm were recorded, which are above the threshold for effective treatment. Increasing the amount of field directions could possibly also increase treatment efficacy, because TTFields' effect on cancer cells is highest when the randomly distributed cell division axis is aligned with the field. The results further predict that slightly changing transducer positions only has a minor effect on the electric field. Thus patients might have some freedom to adjust array positions without major concern for treatment efficacy.

  19. Integrated circuits for volumetric ultrasound imaging with 2-D CMUT arrays.

    PubMed

    Bhuyan, Anshuman; Choe, Jung Woo; Lee, Byung Chul; Wygant, Ira O; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T

    2013-12-01

    Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the back-end system and image processing of a large dataset could affect the imaging volume rate. In this work, we present a 3-D imaging system using capacitive micromachined ultrasonic transducer (CMUT) technology that addresses many of the challenges in building such a system. We demonstrate two approaches in integrating the transducer and the front-end electronics. The transducer is a 5-MHz CMUT array with an 8 mm × 8 mm aperture size. The aperture consists of 1024 elements (32 × 32) with an element pitch of 250 μm. An integrated circuit (IC) consists of a transmit beamformer and receive circuitry to improve the noise performance of the overall system. The assembly was interfaced with an FPGA and a back-end system (comprising of a data acquisition system and PC). The FPGA provided the digital I/O signals for the IC and the back-end system was used to process the received RF echo data (from the IC) and reconstruct the volume image using a phased array imaging approach. Imaging experiments were performed using wire and spring targets, a ventricle model and a human prostrate. Real-time volumetric images were captured at 5 volumes per second and are presented in this paper.

  20. Two-dimensional refractive index modulation by phased array transducers in acousto-optic deflectors.

    PubMed

    Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam; Kar, Aravinda

    2017-01-20

    Acousto-optic deflectors are photonic devices that are used for scanning high-power laser beams in advanced microprocessing applications such as marking and direct writing. The operation of conventional deflectors mostly relies on one-dimensional sinusoidal variation of the refractive index in an acousto-optic medium. Sometimes static phased array transducers, such as step configuration or planar configuration transducer architecture, are used to tilt the index modulation planes for achieving higher performance and higher resolution than a single transducer AO device. However, the index can be modulated in two dimensions, and the modulation plane can be tilted arbitrarily by creating dynamic phase gratings in the medium using phased array transducers. This type of dynamic two-dimensional acousto-optic deflector can provide better performance using, for example, a large deflection angle and high diffraction efficiency. This paper utilizes an ultrasonic beam steering approach to study the two-dimensional strain-induced index modulation due to the photoelastic effect. The modulation is numerically simulated, and the effects of various parameters, such as the operating radiofrequency of the transducers, the ultrasonic beam steering angle, and different combinations of pressure on each element of the transducer array, are demonstrated.

  1. First IDA Submittal for Transducer Element Design for Loosely Packed Planar Array Common Problem 1.1

    DTIC Science & Technology

    1966-05-11

    FIRST IDA SUBMITTAL FOR TRANSDUCER ELEMENT DESIGN FOR LOOSELY PACKED PLANAR ARRAY CID COMMON PROBLEM 1. 1 Submitted to Conformal/Planar Array Project...R4JEN2’ TRACOR, INC. MID BAND 6..I ~JUUliL-UnLU i C.P. 1 5 INCH CIRCULRR HERD MIO BRINO LPz.3777 QP=E +iD L1oooo -i00 F -WFC 4q(TI’ ERT R-EC c-AE O ALPPE...8217 LcO [a x I. Cr l Z2) D zS x) q." L)I I Iu T~ xj Co4 C3= 1-L Z (nw x V O vV 5% C3 CD .* * -3x U l 1C .) uw wU -A CID .4 i I--I- U- 49 (1’)W uri J m LAJ 0

  2. Optimization of acoustic emitted field of transducer array for ultrasound imaging.

    PubMed

    He, Zhengyao

    2014-01-01

    A method is proposed to calculate the weight vector of a transducer array for ultrasound imaging to obtain a low-sidelobe transmitting beam pattern based on the near-field response vector. An optimization problem is established, and the second-order cone (SOC) algorithm is used to solve the problem to obtain the weight vector. The optimized acoustic emitted field of the transducer array is then calculated using the Field II program by applying the obtained weight vector to the array. The simulation results with a 64-element 26 MHz linear phased array show that the proposed method can be used to control the sidelobe of the near-field transmitting beam pattern of the transducer array and achieve a low-sidelobe level. The near-field sound pressure distribution of the transducer array using the proposed method focuses much better than that using the standard delay and sum (DAS) beamforming method. The sound energy is more concentrated using the proposed method.

  3. Nonparaxial multi-Gaussian beam models and measurement models for phased array transducers.

    PubMed

    Zhao, Xinyu; Gang, Tie

    2009-01-01

    A nonparaxial multi-Gaussian beam model is proposed in order to overcome the limitation that paraxial Gaussian beam models lose accuracy in simulating the beam steering behavior of phased array transducers. Using this nonparaxial multi-Gaussian beam model, the focusing and steering sound fields generated by an ultrasonic linear phased array transducer are calculated and compared with the corresponding results obtained by paraxial multi-Gaussian beam model and more exact Rayleigh-Sommerfeld integral model. In addition, with help of this novel nonparaxial method, an ultrasonic measurement model is provided to investigate the sensitivity of linear phased array transducers versus steering angles. Also the comparisons of model predictions with experimental results are presented to certify the accuracy of this provided measurement model.

  4. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Tang, H.; Fung, S.; Wang, Q.; Tsai, J. M.; Daneman, M.; Boser, B. E.; Horsley, D. A.

    2015-06-01

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ˜14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  5. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    SciTech Connect

    Lu, Y.; Fung, S.; Wang, Q.; Horsley, D. A.; Tang, H.; Boser, B. E.; Tsai, J. M.; Daneman, M.

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  6. Two-dimensional capacitive micromachined ultrasonic transducer (CMUT) arrays for a miniature integrated volumetric ultrasonic imaging system

    NASA Astrophysics Data System (ADS)

    Zhuang, Xuefeng; Wygant, Ira O.; Yeh, David T.; Nikoozadeh, Amin; Oralkan, Omer; Ergun, Arif S.; Cheng, Ching-Hsiang; Huang, Yongli; Yaralioglu, Goksen G.; Khuri-Yakub, Butrus T.

    2005-04-01

    We have designed, fabricated, and characterized two-dimensional 16x16-element capacitive micromachined ultrasonic transducer (CMUT) arrays. The CMUT array elements have a 250-μm pitch, and when tested in immersion, have a 5 MHz center frequency and 99% fractional bandwidth. The fabrication process is based on standard silicon micromachining techniques and therefore has the advantages of high yield, low cost, and ease of integration. The transducers have a Si3N4 membrane and are fabricated on a 400-μm thick silicon substrate. A low parasitic capacitance through-wafer via connects each CMUT element to a flip-chip bond pad on the back side of the wafer. Each through wafer via is 20 μm in diameter and 400 μm deep. The interconnects form metal-insulator-semiconductor (MIS) junctions with the surrounding high-resistivity silicon substrate to establish isolation and to reduce parasitic capacitance. Each through-wafer via has less than 0.06 pF of parasitic capacitance. We have investigated a Au-In flip-chip bonding process to connect the 2D CMUT array to a custom integrated circuit (IC) with transmit and receive electronics. To develop this process, we fabricated fanout structures on silicon, and flip-chip bonded these test dies to a flat surface coated with gold. The average series resistance per bump is about 3 Ohms, and 100% yield is obtained for a total of 30 bumps.

  7. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals

    PubMed Central

    Kazys, Rymantas J.; Sliteris, Reimondas; Sestoke, Justina

    2017-01-01

    Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT) type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz) wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer −11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space. PMID:28067807

  8. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals.

    PubMed

    Kazys, Rymantas J; Sliteris, Reimondas; Sestoke, Justina

    2017-01-06

    Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT) type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz) wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer -11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space.

  9. A 2-D diode array and analysis software for verification of intensity modulated radiation therapy delivery.

    PubMed

    Jursinic, Paul A; Nelms, Ben E

    2003-05-01

    An analysis is made of a two-dimensional array of diodes that can be used for measuring dose generated in a plane by a radiation beam. This measuring device is the MapCHECK Model 1175 (Sun Nuclear, Melbourne, FL). This device has 445 N-type diodes in a 22 x 22 cm2 2-D array with variable spacing. The entire array of diodes is easily calibrated to allow for measurements in absolute dose. For IMRT quality assurance, each beam is measured individually with the beam central axis oriented perpendicular to the plane of diodes. Software is available to do the analytical comparison of measurements versus dose distributions calculated by a treatment planning system. Comparison criteria of percent difference and distance-to-agreement are defined by the operator. Data are presented that show the diode array has linear response when beam fluence changes by over 300-fold, which is typical of the level of modulation in intensity modulated radiation therapy, IMRT, beams. A linear dependence is also shown for a 100-fold change in monitors units delivered. Methods for how this device can be used in the clinic for quality assurance of IMRT fields are described. Measurements of typical IMRT beams that are modulated by compensators and MLCs are presented with comparisons to treatment planning system dose calculations. A time analysis is done for typical IMRT quality assurance measurements. The setup, calibration, and analysis time for the 2-D diode array are on the order of 20 min, depending on numbers of fields. This is significantly less time than required to do similar analysis with radiographic film. The 2-D diode array is ideal for per-plan quality assurance after an IMRT system is fully commissioned.

  10. PMN-PT single crystal for endoscopic ultrasound 2D array application

    NASA Astrophysics Data System (ADS)

    Zhu, Yuhang; Liang, Huageng; Zhu, Benpeng; Zhou, Dan; Yang, Xiaofei

    2017-03-01

    Based on lead magnesium niobate-lead titanate single crystal, a 24 × 24 row-column addressing endoscopic two-dimensional array has been successfully fabricated using novel flanged electrodes and "semi-kerf" technologies. Each row/column array element was measured to have an electromechanical coupling coefficient of 0.81, a center frequency of 5MHz, and a fractional bandwidth of approximately 88% at -6 dB. Of particular significance was that the lead magnesium niobate-lead titanate element exhibits much higher sensitivity compared with lead zirconate titanate-based 2D arrays with similar operational frequency and element area. According to the Field II simulated results, although the obtained beamwidth at -6 dB was a little inferior to that of the fully sampled 24 × 24 two-dimensional array, it is believed that the beamwidth can be improved by appropriately increasing the element number. These results demonstrated that the lead magnesium niobate-lead titanate single-crystal 2D array is a promising candidate for real-time three-dimensional endoscopic ultrasound imaging.

  11. A method to enhance 2D ion chamber array patient specific quality assurance for IMRT.

    PubMed

    Diaz Moreno, Rogelio Manuel; Venencia, Daniel; Garrigo, Edgardo; Pipman, Yakov

    2016-11-21

    Gamma index comparison has been established as a method for patient specific quality assurance in IMRT. Detector arrays can replace radiographic film systems to record 2D dose distributions and fulfill quality assurance requirements. These electronic devices present spatial resolution disadvantages with respect to films. This handicap can be partially overcome with a multiple acquisition sequence of adjacent 2D dose distributions. The detector spatial response influence can also be taken into account through the convolution of the calculated dose with the detector spatial response. A methodology that employs both approaches could allow for enhancements of the quality assurance procedure. 35 beams from different step and shoot IMRT plans were delivered on a phantom. 2D dose distributions were recorded with a PTW-729 ion chamber array for individual beams, following the multiple acquisition methodology. 2D dose distributions were also recorded on radiographic films. Measured dose distributions with films and with the PTW-729 array were processed with the software RITv5.2 for Gamma index comparison with calculated doses. Calculated dose was also convolved with the ion chamber 2D response and the Gamma index comparisons with the 2D dose distribution measured with the PTW-729 array was repeated. 3.7 ± 2.7% of points surpassed the accepted Gamma index when using radiographic films compared with calculated dose, with a minimum of 0.67 and a maximum of 13.27. With the PTW-729 multiple acquisition methodology compared with calculated dose, 4.1 ± 1.3% of points surpassed the accepted Gamma index, with a minimum of 1.44 and a maximum of 11.26. With the PTW- multiple acquisition methodology compared with convolved calculated dose, 2.7 ± 1.3% of points surpassed the accepted Gamma index, with a minimum of 0.42 and a maximum of 5.75. The results obtained in this work suggest that the comparison of merged adjacent dose distributions with convolved calculated dose

  12. Ultrasonic non-destructive testing of pieces of complex geometry with a flexible phased array transducer

    PubMed

    Chatillon; Cattiaux; Serre; Roy

    2000-03-01

    Ultrasonic non-destructive testing of components of complex geometry in the nuclear industry faces several difficulties: sensitivity variations due to unmatched contact, inaccurate localization of defects due to variations of transducer orientation, and uncovered area of the component. To improve the performances of such testing and defect characterization, we propose a new concept of ultrasonic contact phased array transducer. The phased array transducer has a flexible radiating surface able to fit the actual surface of the piece to optimize the contact and thus the sensitivity of the test. To control the transmitted field, and therefore to improve the defect characterization, a delay law optimizing algorithm is developed. To assess the capability of such a transducer, the Champ-Sons model, developed at the French Atomic Energy Commission for predicting field radiated by arbitrary transducers into pieces, has to be extended to sources directly in contact with pieces of complex geometry. The good behavior of this new type of probe predicted by computations is experimentally validated with a jointed transducer positioned on pieces of various profiles.

  13. Fundamental performance assessment of 2-D myocardial elastography in a phased-array configuration.

    PubMed

    Luo, Jianwen; Lee, Wei-Ning; Konofagou, Elisa E

    2009-10-01

    Two-dimensional myocardial elastography, an RF-based, speckle-tracking technique, uses 1-D cross-correlation and recorrelation methods in a 2-D search, and can estimate and image the 2-D transmural motion and deformation of the myocardium so as to characterize the cardiac function. Based on a 3-D finite-element (FE) canine left-ventricular model, a theoretical framework was previously developed by our group to evaluate the estimation quality of 2-D myocardial elastography using a linear array. In this paper, an ultrasound simulation program, Field II, was used to generate the RF signals of a model of the heart in a phased-array configuration and under 3-D motion conditions; thus simulating a standard echocardiography exam. The estimation method of 2-D myocardial elastography was adapted for use with such a configuration. All elastographic displacements and strains were found to be in good agreement with the FE solutions, as indicated by the mean absolute error (MAE) between the two. The classified first and second principal strains approximated the radial and circumferential strains, respectively, in the phased-array configuration. The results at different sonographic signal-to-noise ratios (SNR(s)) showed that the MAEs of the axial, lateral, radial, and circumferential strains remained relatively constant when the SNR(s) was equal to or higher than 20 dB. The MAEs of the strain estimation were not significantly affected when the acoustic attenuation was included in the simulations. A significantly reduced number of scatterers could be used to speed up the simulation, without sacrificing the estimation quality.The proposed framework can further be used to assess the estimation quality, explore the theoretical limitation and investigate the effects of various parameters in 2-D myocardial elastography under more realistic conditions.

  14. Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging

    PubMed Central

    Qiu, Yongqiang; Gigliotti, James V.; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E. M.; Cochran, Sandy; Trolier-McKinstry, Susan

    2015-01-01

    Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed. PMID:25855038

  15. Comparison of different sets of array configurations for multichannel 2D ERT acquisition

    NASA Astrophysics Data System (ADS)

    Martorana, R.; Capizzi, P.; D'Alessandro, A.; Luzio, D.

    2017-02-01

    Traditional electrode arrays such Wenner-Schlumberger or dipole-dipole are still widely used thanks to their well-known properties but the array configurations are generally not optimized for multi-channel resistivity measures. Synthetic datasets relating to four different arrays, dipole-dipole (DD), pole-dipole (PD), Wenner-Schlumberger (WS) and a modified version of multiple gradient (MG), have been made for a systematic comparison between 2D resistivity models and their inverted images. Different sets of array configurations generated from simple combinations of geometric parameters (potential dipole lengths and dipole separation factors) were tested with synthetic and field data sets, even considering the influence of errors and the acquisition velocity. The purpose is to establish array configurations capable to provide reliable results but, at the same time, not involving excessive survey costs, even linked to the acquiring time and therefore to the number of current dipoles used. For DD, PD and WS arrays a progression of different datasets were considered increasing the number of current dipoles trying to get about the same amount of measures. A multi-coverage MG array configuration is proposed by increasing the lateral coverage and so the number of current dipoles. Noise simulating errors both on the electrode positions and on the electric potential was added. The array configurations have been tested on field data acquired in the landfill site of Bellolampo (Palermo, Italy), to detect and locate the leachate plumes and to identify the HDPE bottom of the landfill. The inversion results were compared using a quantitative analysis of data misfit, relative model resolution and model misfit. The results show that the trends of the first two parameters are linked on the array configuration and that a cumulative analysis of these parameters can help to choose the best array configuration in order to obtain a good resolution and reliability of a survey, according

  16. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating

    PubMed Central

    Payne, Allison; Vyas, Urvi; Todd, Nick; Bever, Joshua de; Christensen, Douglas A.; Parker, Dennis L.

    2011-01-01

    Purpose: This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. Methods: The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes’ bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Results: Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Conclusions: Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will

  17. Two-dimensional analytic modeling of acoustic diffraction for ultrasonic beam steering by phased array transducers.

    PubMed

    Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam; Kar, Aravinda

    2017-04-01

    Phased array ultrasonic transducers enable modulating the focal position of the acoustic waves, and this capability is utilized in many applications, such as medical imaging and non-destructive testing. This type of transducers also provides a mechanism to generate tilted wavefronts in acousto-optic deflectors to deflect laser beams for high precision advanced laser material processing. In this paper, a theoretical model is presented for the diffraction of ultrasonic waves emitted by several phased array transducers into an acousto-optic medium such as TeO2 crystal. A simple analytic expression is obtained for the distribution of the ultrasonic displacement field in the crystal. The model prediction is found to be in good agreement with the results of a numerical model that is based on a non-paraxial multi-Gaussian beam (NMGB) model.

  18. Linear array transducer for high-power airborne ultrasound using flextensional structure

    NASA Astrophysics Data System (ADS)

    Yamamoto, Jun; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2015-07-01

    To change the direction of ultrasonic irradiation without moving a transducer, a high-power airborne ultrasonic transducer for a one-dimensional phased array system was designed and tested. A flextensional element transducer with higher-mode bending vibration was fabricated to obtain a high vibration amplitude over a wide aperture, where a phase-compensating stepped structure was employed. The width of the main lobe at half maximum and the sidelobe level were measured to be 14.3 deg and 0.78, respectively. The maximal sound pressure of 132 dB (0 dB re. 0.02 mPa) was obtained under the applied voltage of 4.0 V. The beam steering characteristics of a phased array using eight elements were compared with the simple theory.

  19. Photoacoustic imaging of the human forearm using 40 MHz linear-array transducer

    NASA Astrophysics Data System (ADS)

    Zafar, Haroon; Breathnach, Aedán.; Subhash, Hrebesh M.; Leahy, Martin J.

    2014-02-01

    In this work photoacoustic imaging (PAI) based on multi element linear-array transducer, combined with multichannel collecting system was used for in vivo imaging of microcirculation of the human forearm. The Vevo® 2100 LAZR PAT system (VISUALSONICS) was used for imaging which simultaneously collects high-resolution ultrasound and photoacoustic signals. 3D PA and high frequency ultrasound scans, measured 30.5 mm (length) x 14.1 mm (width) x 10 mm (depth) were acquired from the area of forearm skin using 40 MHz frequency transducer at 860 nm wavelength. 3D structural and functional (microcirculation) maps of the forearm skin were obtained. The multi element linear-array transducer based PAI has been found promising in terms of resolution, imaging depth and imaging speed for in vivo microcirculation imaging within human skin.

  20. Dependence of local sound vibration on time frequency in a monolithic array transducer

    SciTech Connect

    Saiga, N.; Suzuki, T.

    1982-02-01

    An approach of increasing spatial resolution in a monolithic array transducer was carried out which utilized the thickness vibration at frequencies slightly lower than the resonance band. At those frequencies, the optical probing manifested that an usual spatial impulse response shifted into a more sharp and monotonously damping one with a peak amplitude comparable to those in resonance. An actual imaging as a receiving array demonstrated the improvement of spatial resolution and the high uniformity of image contrast.

  1. Densely Packed 2-D Matrix-Addressable Vertical-Cavity Surface-Emitting Laser Arrays

    NASA Astrophysics Data System (ADS)

    Gadallah, Abdel-Sattar; Michalzik, Rainer

    2013-03-01

    We report on design, manufacturing, and characterization of densely packed top-emitting 16 × 16 elements wire-bonded matrix-addressable vertical-cavity surface-emitting laser (VCSEL) arrays, which may find future applications such as non-mechanical particle movement with optical multi-tweezers, confocal microscopy or free-space communications with beam steering capability. The factors that control the packing density such as layer structure, mask design, and VCSEL processing are investigated, aiming to minimize the pitch between VCSELs in the array. Both wet-etched and dry-etched arrays are presented and discussed. The single transverse mode VCSELs in the two-dimensional (2-D) matrix-addressable architecture have threshold currents which vary from 0.5 to 1.6 mA and maximum output powers between 2.4 and 4 mW. A simple analysis of the parasitic ohmic resistances is made.

  2. 2D and 3D ordered arrays of Co magnetic nanowires

    NASA Astrophysics Data System (ADS)

    Garcia, J.; Prida, V. M.; Vega, V.; Rosa, W. O.; Caballero-Flores, R.; Iglesias, L.; Hernando, B.

    2015-06-01

    Cobalt nanowire arrays spatially distributed in 2D and 3D arrangements have been performed by pulsed electrodeposition into the pores of planar and cylindrical nanoporous anodic alumina membranes, respectively. Morphological characterization points out the good filling factor reached by electroplated Co nanowires in both kinds of alumina membranes exhibiting hexagonally self-ordered porous structures. Co nanowires grown in both kinds of alumina templates exhibit the same crystalline phases. DC magnetometry and First Order Reversal Curve (FORC) analysis were carried out in order to determine the overall magnetic behavior for both nanowire array geometries. It is found that when the Co nanowires of two kinds of arrays are perpendicularly magnetized, both hysteresis loops are identical, suggesting that neither the intrinsic magnetic behavior of the nanowires nor the collective one depend on the arrays geometry. FORC analysis performed along the radial direction of the Co nanowire arrays embedded in the cylindrical alumina template reveals that the contribution of each nanowire to the magnetization reversal process involves its specific orientation with respect to the applied field direction. Furthermore, the comparison between the magnetic properties for both kinds of Co nanowire arrays allows discussing about the effect of the cylindrical geometry of the template on the magnetostatic interaction among nanowires.

  3. Multi-particle trapping and manipulation by a high-frequency array transducer

    SciTech Connect

    Yoon, Changhan; Kang, Bong Jin; Lee, Changyang; Kim, Hyung Ham Shung, K. Kirk

    2014-11-24

    We report the multiple micro-particle trapping and manipulation by a single-beam acoustic tweezer using a high-frequency array transducer. A single acoustic beam generated by a 30 MHz ultrasonic linear array transducer can entrap and transport multiple micro-particles located at the main lobe and the grating lobes. The distance between trapped particles can be adjusted by changing the transmit arrangement of array-based acoustic tweezers and subsequently the location of grating lobes. The experiment results showed that the proposed method can trap and manipulate multiple particles within a range of hundreds of micrometers. Due to its simplicity and low acoustic power, which is critical to protect cells from any thermal and mechanical damages, the technique may be used for transportation of cells in cell biology, biosensors, and tissue engineering.

  4. A new omnidirectional shear horizontal wave transducer using face-shear (d24) piezoelectric ring array.

    PubMed

    Miao, Hongchen; Huan, Qiang; Wang, Qiangzhong; Li, Faxin

    2017-02-01

    The non-dispersive fundamental shear horizontal (SH0) wave in plate-like structures is of practical importance in non-destructive testing (NDT) and structural health monitoring (SHM). Theoretically, an omnidirectional SH0 transducer phased array system can be used to inspect defects in a large plate in the similar manner to the phased array transducers used in medical B-scan ultrasonics. However, very few omnidirectional SH0 transducers have been proposed so far. In this work, an omnidirectional SH0 wave piezoelectric transducer (OSH-PT) was proposed, which consists of a ring array of twelve face-shear (d24) trapezoidal PZT elements. Each PZT element can produce face-shear deformation under applied voltage, resulting in circumferential shear deformation in the OSH-PT and omnidirectional SH0 waves in the hosting plate. Both finite element simulations and experiments were conducted to examine the performance of the proposed OSH-PT. Experimental testing shows that the OSH-PT exhibits good omnidirectional properties, no matter it is used as a SH0 wave transmitter or a SH0 wave receiver. This work may greatly promote the applications of SH0 waves in NDT and SHM.

  5. Diffraction aperture non-ideal behaviour of air coupled transducers array elements designed for NDT.

    PubMed

    Prego Borges, J L; Montero de Espinosa, F; Salazar, J; Garcia-Alvarez, J; Chávez, J A; Turó, A; Garcia-Hernandez, M J

    2006-12-22

    Air coupled piezoelectric ultrasonic array transducers are a novel tool that could lead to interesting advances in the area of non-contact laminar material testing using Lamb wave's propagation techniques. A key issue on the development of such transducers is their efficient coupling to air media (impedance mismatch between the piezoelectric material and air is 90 dB or more). Adaptation layers are used in order to attain good matching and avoid possible serious signal degradation. However, the introduction of these matching layers modify the transducer surface behaviour and, consequently, radiation characteristics are altered, making the usual idealization criteria (of uniform surface movement) adopted for field simulation purposes inaccurate. In our system, we have a concave linear-array transducer of 64 elements (electrically coupled by pairs) working at 0.8 MHz made of PZ27 rectangular piezoceramics (15 mm x 0.3 mm) with two matching layers made of polyurethane and porous cellulose bonded on them. Experimental measurements of the acoustic aperture of single excited array elements have shown an increment on the geometrical dimensions of its active surface. A sub-millimeter vibrometer laser scan has revealed an extension of the aperture beyond the supposed physical single array element dimensions. Non-uniform symmetric apodized velocity surface vibration amplitude profile with a concave delay contour indicates the presumed existence of travelling wave phenomena over the surface of the outer array matching layer. Also, asymptotic propagation velocities around 2500 m/s and attenuation coefficient between 15 and 20 dB/mm has been determined for the travelling waves showing clear tendencies. Further comparisons between the experimental measurements of single array element field radiation diagram and simulated equivalent aperture counterpart reveal good agreement versus the ideal (uniform displaced) rectangular aperture. For this purpose an Impulse Response Method

  6. Nanohole-array-based device for 2D snapshot multispectral imaging.

    PubMed

    Najiminaini, Mohamadreza; Vasefi, Fartash; Kaminska, Bozena; Carson, Jeffrey J L

    2013-01-01

    We present a two-dimensional (2D) snapshot multispectral imager that utilizes the optical transmission characteristics of nanohole arrays (NHAs) in a gold film to resolve a mixture of input colors into multiple spectral bands. The multispectral device consists of blocks of NHAs, wherein each NHA has a unique periodicity that results in transmission resonances and minima in the visible and near-infrared regions. The multispectral device was illuminated over a wide spectral range, and the transmission was spectrally unmixed using a least-squares estimation algorithm. A NHA-based multispectral imaging system was built and tested in both reflection and transmission modes. The NHA-based multispectral imager was capable of extracting 2D multispectral images representative of four independent bands within the spectral range of 662 nm to 832 nm for a variety of targets. The multispectral device can potentially be integrated into a variety of imaging sensor systems.

  7. Self-organized 2D periodic arrays of nanostructures in silicon by nanosecond laser irradiation.

    PubMed

    Nayak, Barada K; Sun, Keye; Rothenbach, Christian; Gupta, Mool C

    2011-06-01

    We report a phenomenon of spontaneous formation of self-organized 2D periodic arrays of nanostructures (protrusions) by directly exposing a silicon surface to multiple nanosecond laser pulses. These self-organized 2D periodic nanostructures are produced toward the edge as an annular region around the circular laser spot. The heights of these nanostructures are around 500 nm with tip diameter ~100 nm. The period of the nanostructures is about 1064 nm, the wavelength of the incident radiation. In the central region of the laser spot, nanostructures are destroyed because of the higher laser intensity (due to the Gaussian shape of the laser beam) and accumulation of large number of laser pulses. Optical diffraction from these nanostructures indicates a threefold symmetry, which is in accordance with the observed morphological symmetries of these nanostructures.

  8. Complete Acoustic Stop-Bands in 2-D Periodic Arrays of Liquid Cylinders

    NASA Astrophysics Data System (ADS)

    Kushwaha, M. S.; Halevi, P.

    1996-03-01

    Periodic binary systems can give rise to complete acoustic band--gaps (i.e. stop--bands) within which sound and vibrations are forbidden. We compute the band structure for 2D periodic arrays of long water cylinders surrounded by mercury. We have neglected the wall (latex) material needed to hold the liquid, assuming that it is sufficiently light and thin. Complete acoustic stop--bands are found for both square and hexagonal lattices. We emphasize that such a simple 2D inhomogeneous system of liquids exhibits the widest stop--bands ever reported for elastic as well as for dielectric composites. We find gap/midgap ratios as high as ~ 1. For mercury cylinders surrounded by water the gaps obtained are much smaller.

  9. Spatially Resolved Synthetic Spectra from 2D Simulations of Stainless Steel Wire Array Implosions

    SciTech Connect

    Clark, R. W.; Giuliani, J. L.; Thornhill, J. W.; Chong, Y. K.; Dasgupta, A.; Davis, J.

    2009-01-21

    A 2D radiation MHD model has been developed to investigate stainless steel wire array implosion experiments on the Z and refurbished Z machines. This model incorporates within the Mach2 MHD code a self-consistent calculation of the non-LTE kinetics and ray trace based radiation transport. Such a method is necessary in order to account for opacity effects in conjunction with ionization kinetics of K-shell emitting plasmas. Here the model is used to investigate multi-dimensional effects of stainless steel wire implosions. In particular, we are developing techniques to produce non-LTE, axially and/or radially resolved synthetic spectra based upon snapshots of our 2D simulations. Comparisons between experimental spectra and these synthetic spectra will allow us to better determine the state of the experimental pinches.

  10. Normal and shear strain imaging using 2D deformation tracking on beam steered linear array datasets

    PubMed Central

    Xu, Haiyan; Varghese, Tomy

    2013-01-01

    Purpose: Previous publications have reported on the use of one-dimensional cross-correlation analysis with beam-steered echo signals. However, this approach fails to accurately track displacements at larger depths (>4.5 cm) due to lower signal-to-noise. In this paper, the authors present the use of adaptive parallelogram shaped two-dimensional processing blocks for deformation tracking. Methods: Beam-steered datasets were acquired using a VFX 9L4 linear array transducer operated at a 6 MHz center frequency for steered angles from −15 to 15° in increments of 1°, on both uniformly elastic and single-inclusion tissue-mimicking phantoms. Echo signals were acquired to a depth of 65 mm with the focus set at 40 mm corresponding to the center of phantom. Estimated angular displacements along and perpendicular to the beam direction are used to compute axial and lateral displacement vectors using a least-squares approach. Normal and shear strain tensor component are then estimated based on these displacement vectors. Results: Their results demonstrate that parallelogram shaped two-dimensional deformation tracking significantly improves spatial resolution (factor of 7.79 along the beam direction), signal-to-noise (5 dB improvement), and contrast-to-noise (8–14 dB improvement) associated with strain imaging using beam steering on linear array transducers. Conclusions: Parallelogram shaped two-dimensional deformation tracking is demonstrated in beam-steered radiofrequency data, enabling its use in the estimation of normal and shear strain components. PMID:23298118

  11. Thermal-independent properties of PIN-PMN-PT single-crystal linear-array ultrasonic transducers.

    PubMed

    Chen, Ruimin; Wu, Jinchuan; Ho Lam, Kwok; Yao, Liheng; Zhou, Qifa; Tian, Jian; Han, Pengdi; Shung, K Kirk

    2012-12-01

    In this paper, low-frequency 32-element linear-array ultrasonic transducers were designed and fabricated using both ternary Pb(In(1/2)Nb(1/2))-Pb(Mg(1/3)Nb(2/3))-PbTiO(3) (PIN-PMN-PT) and binary Pb(Mg(1/3)Nb(2/3))-PbTiO(3) (PMNPT) single crystals. Performance of the array transducers was characterized as a function of temperature ranging from room temperature to 160°C. It was found that the array transducers fabricated using the PIN-PMN-PT single crystal were capable of satisfactory performance at 160°C, having a -6-dB bandwidth of 66% and an insertion loss of 37 dB. The results suggest that the potential of PIN-PMN-PT linear-array ultrasonic transducers for high-temperature ultrasonic transducer applications is promising.

  12. 2D array of cold-electron nanobolometers with double polarised cross-dipole antennas

    PubMed Central

    2012-01-01

    A novel concept of the two-dimensional (2D) array of cold-electron nanobolometers (CEB) with double polarised cross-dipole antennas is proposed for ultrasensitive multimode measurements. This concept provides a unique opportunity to simultaneously measure both components of an RF signal and to avoid complicated combinations of two schemes for each polarisation. The optimal concept of the CEB includes a superconductor-insulator-normal tunnel junction and an SN Andreev contact, which provides better performance. This concept allows for better matching with the junction gate field-effect transistor (JFET) readout, suppresses charging noise related to the Coulomb blockade due to the small area of tunnel junctions and decreases the volume of a normal absorber for further improvement of the noise performance. The reliability of a 2D array is considerably increased due to the parallel and series connections of many CEBs. Estimations of the CEB noise with JFET readout give an opportunity to realise a noise equivalent power (NEP) that is less than photon noise, specifically, NEP = 4 10−19 W/Hz1/2 at 7 THz for an optical power load of 0.02 fW. PMID:22512950

  13. Large 2D-arrays of size-controllable silver nanoparticles prepared by hybrid deposition

    NASA Astrophysics Data System (ADS)

    Dieu Thuy Ung, Thi; Hoa Nguyen, Thi; Liem Nguyen, Quang

    2016-09-01

    Two main results are presented in this paper. (i) Silver nanoparticles (AgNPs) with uniform size-distribution and controllability in the range of 20-50 nm were synthesized by seeding and growing at ambient conditions. The single-crystal Ag nano-seeds were created by reduction of AgNO3 in presence of citrate surfactant at 70 °C. Then, importantly, the fresh AgCl precursor was used in the presence of polyvinylpyrrolidone to adjust the reaction rate with ascorbic acid to generate Ag for growing on the surface of single-crystal Ag nano-seeds. The AgNPs size could be well-controlled by varying the amount of Ag nano-seeds while keeping the AgCl precursor concentration to be constant. (ii) The large 2D-arrays with homogeneous and dense monolayers of AgNPs were prepared on ITO substrates by hybrid method, in which the key technological point is the surface functionalization of AgNPs using mixed alkanethiols (dodecanethiol:octadecanethiol = 6:1). We have used the fabricated 2D-arrays from the 50 nm AgNPs as a surface enhanced Raman scattering substrate to take the Raman scattering spectra of rhodamine B (RhB), glucose and viral pathogen (H5N1) at very low concentrations of 10-10 M, 10-12 M and 4 ng μl-1, respectively.

  14. Guided wave structural health monitoring with an array of novel piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Lesky, A.; Lissenden, C. J.

    2014-02-01

    Multi-element, conformable piezoelectric strip transducers have been designed and fabricated for structural health monitoring using ultrasonic guided waves. The piezoelectric fiber composite elements function as a strip transducer to activate a planar wave. A mockup of a storage tank or pressure vessel has been constructed from a steel shell and a hexagonal array of strip transducers. A hot spot to which artificial damage has been induced is monitored with the strip transducers. In addition, conventional piezoelectric disks have also been affixed to the shell in a circular pattern for the purpose of comparison. Different operating conditions are represented by the presence of water inside the shell and temperature variations between 20 and 35°C. The strip transducers have been designed to excite the S1 Lamb wave mode at the dilatational wave speed, which is oblivious to the presence of liquid loaded boundary conditions. An artificial defect simulated a surface breaking fatigue crack. Preliminary results are presented for baseline and damaged conditions using transmission and reflection coefficients as a damage-sensitive feature. At the request of the Proceedings Editor, and all authors of the paper, an updated version of this article was published on 8 April 2014. The Corrigendum attached to the corrected article PDF file explains the changes made to the original paper.

  15. Effects of Non-Elevation-Focalized Linear Array Transducer on Ultrasound Plane-Wave Imaging

    PubMed Central

    Wang, Congzhi; Xiao, Yang; Xia, Jingjing; Qiu, Weibao; Zheng, Hairong

    2016-01-01

    Plane-wave ultrasound imaging (PWUS) has become an important method of ultrasound imaging in recent years as its frame rate has exceeded 10,000 frames per second, allowing ultrasound to be used for two-dimensional shear wave detection and functional brain imaging. However, compared to the traditional focusing and scanning method, PWUS images always suffer from a degradation of lateral resolution and contrast. To improve the image quality of PWUS, many different beamforming algorithms have been proposed and verified. Yet the influence of transducer structure is rarely studied. For this paper, the influence of using an acoustic lens for PWUS was evaluated. Two linear array transducers were fabricated. One was not self-focalized in the elevation direction (non-elevation-focalized transducer, NEFT); the other one was a traditional elevation-focalized transducer (EFT). An initial simulation was conducted to show the influence of elevation focusing. Then the images obtained with NEFT on a standard ultrasound imaging phantom were compared with those obtained with EFT. It was demonstrated that, in a relatively deep region, the contrast of an NEFT image is better than that of an EFT image. These results indicate that a more sophisticated design of ultrasound transducer would further improve the image quality of PWUS. PMID:27845751

  16. Optical vibration measurements of cross coupling effects in capacitive micromachined ultrasonic transducer arrays

    NASA Astrophysics Data System (ADS)

    Leirset, Erlend; Aksnes, Astrid

    2011-05-01

    Optical vibration measurement systems are excellent tools for characterizing ultrasonic transducers. This paper presents measurements on immersed arrays of capacitive ultrasonic transducers (CMUTs) using a heterodyne interferometer. The interferometer allows measurements of vibrations from DC up to 1 GHz with a noise floor of ~1pm/√Hz. Previously CMUTs have been characterized in air. The transducer is intended for intravascular use. Therefore the CMUTs were characterized in the transparent fluids kerosene and rapeseed oil that have acoustic properties closer to blood. The optical measurements on immersed CMUTs were validated by assessing the measurement errors caused by the acousto optic effects in the fluid. When immersed there is significant cross coupling between individual CMUTs within an array. Simulations presented here indicate that this causes an acoustic wave mode that is bound to the interface between the CMUTs and the fluid. This is confirmed by measurements of the phase velocity and attenuation coefficient of this wave. The measurement results indicate that the wave exists up to a maximum frequency and that the attenuation constant increases with increasing frequency. Rapeseed oil causes a significantly larger attenuation coefficient than kerosene, which most probably is due to a considerable difference in fluid viscosities. There was a mismatch between the simulated and measured phase velocity for low frequencies. It is likely that the cause of this is coupling between the fluid CMUT interface waves and Lamb waves in the substrate of the CMUT array. Measurements performed with the heterodyne interferometer have confirmed the presence of dispersive waves bound to the surface of the transducer by directly showing their propagation along the array. The setup has also characterized the bound waves by measuring dispersion relations.

  17. A spacing compensation factor for the optimization of guided wave annular array transducers.

    PubMed

    Borigo, Cody; Rose, Joseph L; Yan, Fei

    2013-01-01

    Transducer arrays can be utilized in ultrasonic guided wave applications to achieve preferential excitation of particular points on a dispersion curve. These arrays are designed according to the principles of wave interference and the influence of the wavelength excitation spectrum. This paper develops the relationships between the peak wavelength in the excitation spectra and the element spacing of linear comb and annular arrays. The excitation spectra are developed by applying Fourier and Hankel transforms to the spatial loading distribution functions of the comb and annular arrays, respectively. Although the peak wavelength of excitation of a comb array is typically assumed to be equal to the element spacing, it is shown that this can be an inaccurate assumption for annular arrays. The ratio of element spacing to the peak wavelength in the excitation spectrum is termed the spacing compensation factor, and is dependent on the number of array elements and the inner radius. It is determined that the compensation factor is negligible for comb arrays but is crucial for annular arrays in order to achieve optimal mode selection. Finite element analyses and experimental data are used to verify the calculations and demonstrate the significance of the compensation factor.

  18. Liquid sodium testing of in-house phased array EMAT transducer for L-wave applications

    SciTech Connect

    Le Bourdais, F.; Le Polles, T.; Baque, F.

    2015-07-01

    This paper describes the development of an in-house phased array EMAT transducer for longitudinal wave inspection in liquid sodium. The work presented herein is part of an undergoing project aimed at improving in-service inspection techniques for the ASTRID reactor project. The design process of the phased array EMAT probe is briefly explained and followed by a review of experimental test results. We first present test results obtained in the laboratory while the last part of the paper describes the liquid sodium testing and the produced ultrasound images. (authors)

  19. A LiNbO3 ultrasonic phased array transducer of more than 100 MHz

    NASA Astrophysics Data System (ADS)

    Xu, W. J.; Jib, X. M.; Zhang, J. Y.; Carlier, J.; Nongaillard, B.; Queste, S.; Huang, Y. P.; Piwakowski, B.

    2012-05-01

    High-frequency ultrasonic transducer arrays are essential for high resolution imaging in clinical analysis and Non-Destructive Evaluation (NDE). However, the structure design and fabrication of the kerfed ultrasonic array is quite challenging when very high frequency (≥ 100 MHz) is required. Inductively Coupled Plasma (ICP) deep etching process is used to etch 36°/Y-cut lithium niobate (LiNbO3) crystals. Furthermore, a finite element tool, COMSOL, is employed to calculate the electrical properties of the arrays, including crosstalk effect and electrical impedance. At last, arrays with a pitch of 40 μm are fabricated and characterized by a network analyzer. The measured results agree well with the theoretical predictions.

  20. Phase-rotation based receive-beamformer for miniaturized volumetric ultrasound imaging scanners using 2-D CMUT-on-ASIC arrays

    NASA Astrophysics Data System (ADS)

    Kim, Bae-Hyung; Lee, Seunghun; Song, Jongkeun; Kim, Youngil; Jeon, Taeho; Cho, Kyungil

    2013-03-01

    Up-to-date capacitive micromachined ultrasonic transducer (CMUT) technologies provide us unique opportunities to minimize the size and cost of ultrasound scanners by integrating front-end circuits into CMUT arrays. We describe a design prototype of a portable ultrasound scan-head probe using 2-D phased CMUT-on-ASIC arrays of 3-MHz 250 micrometer-pitch by fabricating and integrating front-end electronics with 2-D CMUT array elements. One of the objectives of our work is to design a receive beamformer architecture for the smart probe with compact size and comparable performance. In this work, a phase-rotation based receive beamformer using the sampling frequency of 4 times the center frequency and a hybrid beamforming to reduce the channel counts of the system-side are introduced. Parallel beamforming is considered for the purpose of saving power consumption of battery (by firing fewer times per image frame). This architecture has the advantage of directly obtaining I and Q components. By using the architecture, the interleaved I/Q data from the storage is acquired and I/Q demodulation for baseband processing is directly achieved without demodulators including sin and cosine lookup tables and mixers. Currently, we are extending the presented architecture to develop a true smart probe by including lower power devices and cooling systems, and bringing wireless data transmission into consideration.

  1. Frequency division multiple transmission method to utilize the wide bandwidth property of capacitive micromachined ultrasonic transducer arrays

    NASA Astrophysics Data System (ADS)

    Lee, Seunghun; Kim, Bae-Hyung; Jeon, Taeho; Kim, Youngil; Cho, Kyungil; Song, Jongkeun

    2013-03-01

    CMUT-on-ASIC integration techniques are promising for the development of lower cost smaller volume scanners with higher performance in terms of features and image qualities because it minimizes parasitic capacitances and ultimately improves signal-to-noise ratio (SNR). Moreover, a frequency bandwidth of CMUT array is known as relatively broader than that of other ultrasonic transducer arrays. To utilize the wide bandwidth characteristic of the CMUT arrays, in this paper, we introduce a FDMA (frequency division multiple access) based ultrasound imaging technique using orthogonally band-divided coded signals to provide dynamic transmit focused imaging without sacrificing the frame rate. In the presented method, the orthogonal sub-band coded signals are simultaneously fired on multiple ranges, in which each signal is focused at a different range, in one transmission event. This paper also presents an ultrasound imageformation method and a modulation and demodulation process of orthogonal sub-band coded signals designed within the frequency bandwidth of the CMUT arrays. The presented method is verified by computer simulations using Field II and experiments. The simulation results using a computer generated tissue mimicking phantom show that the presented method can be achieved with both increased image quality and frame rate. The experimental results to verify the feasibility of the presented method using orthogonal sub-band coded signals show that the reflected signals from targets are successfully separated into two compressed signals. Currently, we are extending the presented approach to ultrasound imaging technique for volumetric ultrasound scanners using 2-D CMUT-on-ASIC arrays.

  2. A simple device to couple linear array transducers to neonate heads for ultrasonic scanning of the brain.

    PubMed

    Smith, W L; Franklin, T D; Katakura, K; Patrick, J T; Fry, F J; Eggleton, R C

    1980-12-01

    A plastisol coupler has been designed that improves acoustical coupling for linear array ultrasound transducers. This device improves both ease in scanning and image quality in real-time scanning of the infant brain.

  3. A novel method for fabrication of high-frequency (>100 MHz) ZnO ultrasonic array transducers on silicon substrates

    NASA Astrophysics Data System (ADS)

    Xu, W. J.; Ji, X. M.; Gao, J. M.; Carlier, J.; Zhang, J. Y.; Nongaillard, B.; Huang, Y. P.; Piwakowski, B.

    2012-05-01

    High-frequency ultrasonic transducer arrays are essential for efficient imaging in clinical analysis and nondestructive evaluation (NDE). However, the fabrication of piezoelectric transducers is really a great challenge due to the small features in an array. A novel technique is presented to fabricate thick-film ZnO ultrasonic array transducers. Piezoelectric elements are formed by sputtering thick-film ZnO onto etched features of a silicon substrate so that the difficult etching process for ZnO films is avoided by etching silicon. This process is simple and efficient. A 13-μm-pitch ZnO sandwich array is achieved with a thickness of 8 μm for 300 MHz. Finite element method is employed to simulate the wave propagation in water based on this new transducer configuration. The acoustic field results indicate this configuration has an acceptable performance. A potential application is proposed based on integration with microfluidics.

  4. Beamforming of Ultrasound Signals from 1-D and 2-D Arrays under Challenging Imaging Conditions

    NASA Astrophysics Data System (ADS)

    Jakovljevic, Marko

    Beamforming of ultrasound signals in the presence of clutter, or partial aperture blockage by an acoustic obstacle can lead to reduced visibility of the structures of interest and diminished diagnostic value of the resulting image. We propose new beamforming methods to recover the quality of ultrasound images under such challenging conditions. Of special interest are the signals from large apertures, which are more susceptible to partial blockage, and from commercial matrix arrays that suffer from low sensitivity due to inherent design/hardware limitations. A coherence-based beamforming method designed for suppressing the in vivo clutter, namely Short-lag Spatial Coherence (SLSC) Imaging, is first implemented on a 1-D array to enhance visualization of liver vasculature in 17 human subjects. The SLSC images show statistically significant improvements in vessel contrast and contrast-to-noise ratio over the matched B-mode images. The concept of SLSC imaging is then extended to matrix arrays, and the first in vivo demonstration of volumetric SLSC imaging on a clinical ultrasound system is presented. The effective suppression of clutter via volumetric SLSC imaging indicates it could potentially compensate for the low sensitivity associated with most commercial matrix arrays. The rest of the dissertation assesses image degradation due to elements blocked by ribs in a transthoracic scan. A method to detect the blocked elements is demonstrated using simulated, ex vivo, and in vivo data from the fully-sampled 2-D apertures. The results show that turning off the blocked elements both reduces the near-field clutter and improves visibility of anechoic/hypoechoic targets. Most importantly, the ex vivo data from large synthetic apertures indicates that the adaptive weighing of the non-blocked elements can recover the loss of focus quality due to periodic rib structure, allowing large apertures to realize their full resolution potential in transthoracic ultrasound.

  5. Simulating ultrasound fields for 2D phased-array probes design optimization.

    PubMed

    Matrone, Giulia; Quaglia, Fabio; Magenes, Giovanni

    2011-01-01

    Nowadays, ultrasound diagnostic imaging is one of the non-invasive techniques mostly used in the clinical practice. Recent advances in this field have brought to the development of small and portable systems. New bidimensional probes consisting of 2D phased arrays, allow to obtain real-time 3D representations of moving organs and blood vessels anatomy. Being the complexity of such 4D ultrasound imaging systems significantly increased, new challenges concerning electronics integration arise for designers. In this paper a software simulator is described, which has been developed in order to model ultrasound wave generation, pressure field distribution and echoes reception, with the aim to become a useful tool for optimizing the probe design. The paper mainly focuses on linear ultrasound field modeling; preliminary results on non-linear interactions with contrast agents are also here introduced.

  6. Holographic method for site-resolved detection of a 2D array of ultracold atoms

    NASA Astrophysics Data System (ADS)

    Hoffmann, Daniel Kai; Deissler, Benjamin; Limmer, Wolfgang; Hecker Denschlag, Johannes

    2016-08-01

    We propose a novel approach to site-resolved detection of a 2D gas of ultracold atoms in an optical lattice. A near-resonant laser beam is coherently scattered by the atomic array, and after passing a lens its interference pattern is holographically recorded by superimposing it with a reference laser beam on a CCD chip. Fourier transformation of the recorded intensity pattern reconstructs the atomic distribution in the lattice with single-site resolution. The holographic detection method requires only about two hundred scattered photons per atom in order to achieve a high reconstruction fidelity of 99.9 %. Therefore, additional cooling during detection might not be necessary even for light atomic elements such as lithium. Furthermore, first investigations suggest that small aberrations of the lens can be post-corrected in imaging processing.

  7. Computationally Efficient 2D DOA Estimation with Uniform Rectangular Array in Low-Grazing Angle

    PubMed Central

    Shi, Junpeng; Hu, Guoping; Zhang, Xiaofei; Sun, Fenggang; Xiao, Yu

    2017-01-01

    In this paper, we propose a computationally efficient spatial differencing matrix set (SDMS) method for two-dimensional direction of arrival (2D DOA) estimation with uniform rectangular arrays (URAs) in a low-grazing angle (LGA) condition. By rearranging the auto-correlation and cross-correlation matrices in turn among different subarrays, the SDMS method can estimate the two parameters independently with one-dimensional (1D) subspace-based estimation techniques, where we only perform difference for auto-correlation matrices and the cross-correlation matrices are kept completely. Then, the pair-matching of two parameters is achieved by extracting the diagonal elements of URA. Thus, the proposed method can decrease the computational complexity, suppress the effect of additive noise and also have little information loss. Simulation results show that, in LGA, compared to other methods, the proposed methods can achieve performance improvement in the white or colored noise conditions. PMID:28245634

  8. Quantum simulation of 2D topological physics in a 1D array of optical cavities.

    PubMed

    Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-07-06

    Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.

  9. Synthesis of nanovoid Bi(2)WO(6) 2D ordered arrays as photoanodes for photoelectrochemical water splitting.

    PubMed

    Zhang, Liwu; Bahnemann, Detlef

    2013-02-01

    Herein we report a facile and economic method to prepare nanovoid Bi(2)WO(6) 2D ordered arrays employing a simple self-assembly procedure. The electrochemical properties and performance of the 2D nanoarray as a photoanode for water splitting are investigated and compared with a conventional photoanode of similar thickness. The 2D array photoanode shows a much higher photocurrent density and photon-to-H(2) conversion efficiency even with a small content of the Bi(2)WO(6) material. The enhancement is further studied and explained on the basis of the superiority of light scattering and photogenerated hole diffusion within the 2D array structure. This work provides a facile method to improve the efficiency of solar energy conversion systems by minimizing the charge-carrier diffusion length and reducing the light reflection, as well as reducing the amount of the semiconductor material (often costly and/or rare) present in the photoanode.

  10. Low-frequency phased-array 2D fluorescence localization in breast cancer detection

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Chen, Yu; Chance, Britton; Luo, Qingming

    2003-12-01

    A method for rapid, non-invasive 2D fluorescence localization of breast cancer using low frequency phased array near-infrared technique is presented in this article. In our study, we have developed a dual-channel fluorescence detection system to locate breast cancer. This system consists two pair of in-phase and out-of-phase light emitting diodes (LEDs) as the light sources and Photomultiplier Tube (PMT) as the detector. Two null planes generated by cancellation of diffusion photon density waves (DPDW) will indicate the 2D position of breast cancer with exogenous contrast agents. The fluorescent contrast agent used in this study is Indocyanine Green (ICG) and the minimum amount of ICG detected by our system is 0.5 μM. With the 2 cm separation of sources and detector, the maximum depth our system can detect is 10 mm. The whole system is in compact size and portable. Phantom experiments show that the system can provide real time detection and localization of small hidden absorbing-fluorescent objects inside the highly scattering medium with high accuracy of +/-3 mm. The potential application is that it is low-cost and can be used for breast cancer localization as operation aid and self-examination.

  11. Estimation of scatterer size and acoustic concentration in sound field produced by linear phased array transducer

    NASA Astrophysics Data System (ADS)

    Oguri, Takuma; Tamura, Kazuki; Yoshida, Kenji; Mamou, Jonathan; Hasegawa, Hideyuki; Maruyama, Hitoshi; Hachiya, Hiroyuki; Yamaguchi, Tadashi

    2015-07-01

    Although there have been several quantitative ultrasound studies on the methods of estimation of scatterer size and acoustic concentration based on the analysis of RF signals for tissue characterization, some problems, e.g., narrow frequency bandwidths and complex sound fields, have limited the clinical applications of such methods. In this report, two types of ultrasound transducer are investigated for the estimation of the scatterer size and acoustic concentration in two glass bead phantoms of different weight concentrations of 0.25 and 2.50% and those in an excised pig liver. The diameters of the glass beads ranged from 5 to 63 µm with an average of 50 µm. The first transducer is a single element and the other is a linear phased array. A comparison of the estimations obtained using both transducers gives an insight into how these methods could be applied clinically. Results obtained using the two transducers were significantly different. One of the possible explanations is that beamforming could significantly affect the backscatter coefficient estimation, which was not taken into account.

  12. A top-crossover-to-bottom addressed segmented annular array using piezoelectric micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Hong, Hyeryung; Yuen Song, Hi; Oh, Inn-yeal; Park, Chul Soon; Choi, Hongsoo

    2015-11-01

    We design and fabricate segmented annular arrays (SAAs) using piezoelectric micromachined ultrasonic transducers (pMUTs) to demonstrate the feasibility of acoustic focusing of ultrasound. The fabricated SAAs have 25 concentric top-electrode signal lines and eight bottom-electrodes for grounding to enable electronic steering of selectively grouped ultrasonic transducers from 2393 pMUT elements. Each element in the array is connected by top-crossover-to-bottom metal bridges, which reduce the parasitic capacitance. Circular-shaped pMUT elements, 120 μm in diameter, are fabricated using 1 μm-thick sol-gel lead zirconate titanate on a silicon wafer. To utilize the high-density pMUT array, a deep reactive ion etching process is used for anisotropic silicon etching to realize the transducer membranes. The resonant frequency and effective coupling coefficient of the elements, measured with an impedance analyzer, yields 1.517 MHz and 1.29%, respectively, in air. The SAAs using pMUTs are packaged on a printed circuit board and coated with parylene C for acoustic intensity measurements in water. The ultrasound generated by each segmented array is focused on a selected point in space. When a 5 Vpp, 1.5 MHz square wave is applied, the maximum spatial peak temporal average intensity ({{I}\\text{spta}} ) is found to be 79 mW cm-2 5 mm from the SAAs’ surface without beamforming. The beam widths (-3 dB) of ultrasonic radiation patterns in the elevation and azimuth directions are recorded as 3 and 3.4 mm, respectively. The results successfully show the feasibility of focusing ultrasound on a small area with SAAs using pMUTs.

  13. Performance assessment of a 2D array of plastic scintillation detectors for IMRT quality assurance

    NASA Astrophysics Data System (ADS)

    Guillot, Mathieu; Gingras, Luc; Archambault, Louis; Beddar, Sam; Beaulieu, Luc

    2013-07-01

    The purposes of this work are to assess the performance of a 2D plastic scintillation detectors array prototype for quality assurance in intensity-modulated radiation therapy (IMRT) and to determine its sensitivity and specificity to positioning errors of one multileaf collimator (MLC) leaf and one MLC leaf bank by applying the principles of signal detection theory. Ten treatment plans (step-and-shoot delivery) and one volumetric modulated arc therapy plan were measured and compared to calculations from two treatment-planning systems (TPSs) and to radiochromic films. The averages gamma passing rates per beam found for the step-and-shoot plans were 95.8% for the criteria (3%, 2 mm), 97.8% for the criteria (4%, 2 mm), and 98.1% for the criteria (3%, 3 mm) when measurements were compared to TPS calculations. The receiver operating characteristic curves for the one leaf errors and one leaf bank errors were determined from simulations (theoretical upper limits) and measurements. This work concludes that arrays of plastic scintillation detectors could be used for IMRT quality assurance in clinics. The use of signal detection theory could improve the quality of dosimetric verifications in radiation therapy by providing optimal discrimination criteria for the detection of different classes of errors.

  14. Simulation of Temperature Field Induced by 8-Element Phased Array HIFU Transducer with Concave Spherical Surface

    NASA Astrophysics Data System (ADS)

    Sun, Wujun; Zhang, Ping; Zhang, Xiaojing; Jian, Xiqi; Li, Zhihua

    2011-09-01

    Multi-element High Intensity Focused Ultrasound (HIFU) transducers can change their focal lengths and form multi-foci. In this paper the Westervelt formula and Pennes bio-heat transfer equation have been used along, with the Finite Difference Time Domain (FDTD) method, to study the temperature distribution induced by an 8-element phased array HIFU transducer inside the human body. We evaluated the effects of the gap in the arc between two rings, the frequency of excitation function and pre-focal length on the temperature field. For HIFU therapy, skin burns were caused by high frequency, small pre-focal length, or a big gap between two rings. The focal region may be no longer an ellipsoid due to high frequency. In addition, the actual focal length is slightly different from the pre-focal length.

  15. VHF-induced thermoacoustic imaging of fresh human prostates using a clinical ultrasound transducer array

    NASA Astrophysics Data System (ADS)

    Patch, S. K.; See, W. A.

    2016-03-01

    The purpose of this work was to demonstrate that a clinical ultrasound transducer array can practically detect thermoacoustic pulses induced by irradiation by very high frequency (VHF) electromagnetic energy. This is an important step because thermoacoustic signal strength is directly proportional to the specific absorption rate (SAR), which is lower in the VHF regime than in microwave or optical regimes. A 96-channel transducer array (P4-1) providing 3 cm coverage was incorporated into a benchtop thermoacoustic imaging system for imaging fresh surgical specimens. Thermoacoustic signal was generated by 700 ns irradiation pulses with 11 kV/m electric field strength and 108 MHz carrier frequency. To improve SNR 1024 pulses were averaged at a 250 Hz repetition rate. Two sets of sinograms were acquired, separated by a 2 cm translation along the tomographic axis and reconstructed over a 6 x 6 x 5 cm3 volume. Contrast and in-plane resolution were measured by imaging a homogeneous cylindrical phantom and an 80- micron wire designed to highlight E-field polarization effects. FWHM of the in-plane point spread function varied from 250 microns to 1.1 mm, depending upon transducer used and phantom orientation relative to the electric field. Several fresh human prostates were imaged immediately after surgery. Rudimentary comparison to histology was performed and volumetric reconstruction of the multi-channel P4-1 data visualizes anatomic features that are rarely seen in ultrasound, CT, or MRI. The single element transducer provided superior image contrast, but with inferior resolution.

  16. Real-time 3-d intracranial ultrasound with an endoscopic matrix array transducer.

    PubMed

    Light, Edward D; Mukundan, Srinivasan; Wolf, Patrick D; Smith, Stephen W

    2007-08-01

    A transducer originally designed for transesophageal echocardiography (TEE) was adapted for real-time volumetric endoscopic imaging of the brain. The transducer consists of a 36 x 36 array with an interelement spacing of 0.18 mm. There are 504 transmitting and 252 receive channels placed in a regular pattern in the array. The operating frequency is 4.5 MHz with a -6 dB bandwidth of 30%. The transducer is fabricated on a 10-layer flexible circuit from Microconnex (Snoqualmie, WA, USA). The purpose of this study is to evaluate the clinical feasibility of real-time 3-D intracranial ultrasound with this device. The Volumetrics Medical Imaging (Durham, NC, USA) 3-D scanner was used to obtain images in a canine model. A transcalvarial acoustic window was created under general anesthesia in the animal laboratory by placing a 10-mm burr hole in the high parietal calvarium of a 50-kg canine subject. The burr-hole was placed in a left parasagittal location to avoid the sagittal sinus, and the transducer was placed against the intact dura mater for ultrasound imaging. Images of the lateral ventricles were produced, including real-time 3-D guidance of a needle puncture of one ventricle. In a second canine subject, contrast-enhanced 3-D Doppler color flow images were made of the cerebral vessels including the complete Circle of Willis. Clinical applications may include real-time 3-D guidance of cerebrospinal fluid extraction from the lateral ventricles and bedside evaluation of critically ill patients where computed tomography and magnetic resonance imaging techniques are unavailable.

  17. Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.

    PubMed

    Wong, Chi-Man; Chen, Yan; Luo, Haosu; Dai, Jiyan; Lam, Kwok-Ho; Chan, Helen Lai-Wa

    2017-01-01

    In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d33>1000pC/N) and electromechanical coupling (k33>0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies.

  18. Applications of Flexible Ultrasonic Transducer Array for Defect Detection at 150 °C

    PubMed Central

    Shih, Jeanne-Louise; Wu, Kuo-Ting; Jen, Cheng-Kuei; Chiu, Chun-Hsiung; Tzeng, Jing-Chi; Liaw, Jiunn-Woei

    2013-01-01

    In this study, the feasibility of using a one dimensional 16-element flexible ultrasonic transducer (FUT) array for nondestructive testing at 150 °C is demonstrated. The FUT arrays were made by a sol-gel sprayed piezoelectric film technology; a PZT composite film was sprayed on a titanium foil of 75 μm thickness. Since the FUT array is flexible, it was attached to a steel pipe with an outer diameter of 89 mm and a wall thickness of 6.5 mm at 150 °C. Using the ultrasonic pulse-echo mode, pipe thickness measurements could be performed. Moreover, using the ultrasonic pulse-echo and pitch-catch modes of each element of FUT array, the defect detection was performed on an Al alloy block of 30 mm thickness with a side-drilled hole (SDH) of ϕ3 mm at 150 °C. In addition, a post-processing algorithm based on the total focusing method was used to process the full matrix of these A-scan signals of each single transmitter and multi-receivers, and then the phase-array image was obtained to indicate this defect- SDH. Both results show the capability of FUT array being operated at 150 °C for the corrosion and defect detections. PMID:23322101

  19. A comparison of methods for focusing the field of a HIFU array transducer through human ribs.

    PubMed

    Gélat, P; Ter Haar, G; Saffari, N

    2014-06-21

    A forward model, which predicts the scattering by human ribs of a multi-element high-intensity focused ultrasound transducer, was used to investigate the efficacy of a range of focusing approaches described in the literature. This forward model is based on the boundary element method and was described by Gélat et al (2011 Phys. Med. Biol. 56 5553-81; 2012 Phys. Med. Biol. 57 8471-97). The model has since been improved and features a complex surface impedance condition at the surface of the ribs. The inverse problem of focusing through the ribs was implemented on six transducer array-rib topologies and five methods of focusing were investigated, including spherical focusing, binarized apodization based on geometric ray tracing, phase conjugation and the decomposition of the time-reversal operator method. The excitation frequency was 1 MHz and the array was of spherical-section type. Both human and idealized rib topologies were considered. The merit of each method of focusing was examined. It was concluded that the constrained optimization approach offers greater potential than the other focusing methods in terms of maximizing the ratio of acoustic pressure magnitudes at the focus to those on the surface of the ribs whilst taking full advantage of the dynamic range of the phased array.

  20. Ring array transducers for real-time 3-D imaging of an atrial septal occluder.

    PubMed

    Light, Edward D; Lindsey, Brooks D; Upchurch, Joseph A; Smith, Stephen W

    2012-08-01

    We developed new miniature ring array transducers integrated into interventional device catheters such as used to deploy atrial septal occluders. Each ring array consisted of 55 elements operating near 5 MHz with interelement spacing of 0.20 mm. It was constructed on a flat piece of copper-clad polyimide and then wrapped around an 11 French O.D. catheter. We used a braided cabling technology from Tyco Electronics Corporation to connect the elements to the Volumetric Medical Imaging (VMI) real-time 3-D ultrasound scanner. Transducer performance yielded a -6 dB fractional bandwidth of 20% centered at 4.7 MHz without a matching layer vs. average bandwidth of 60% centered at 4.4 MHz with a matching layer. Real-time 3-D rendered images of an en face view of a Gore Helex septal occluder in a water tank showed a finer texture of the device surface from the ring array with the matching layer.

  1. Dynamic response of an insonified sonar window interacting with a Tonpilz transducer array.

    PubMed

    Hull, Andrew J

    2007-08-01

    This paper derives and evaluates an analytical model of an insonified sonar window in contact with an array of Tonpilz transducers operating in receive mode. The window is fully elastic so that all wave components are present in the analysis. The output of the model is a transfer function of a transducer element output voltage divided by input pressure versus arrival angle and frequency. This model is intended for analysis of sonar systems that are to be built or modified for broadband processing. The model is validated at low frequency with a comparison to a previously derived thin plate model. Once this is done, an example problem is studied so that the effects of higher order wave interaction with acoustic reception can be understood. It was found that these higher order waves cause multiple nulls in the region where the array detects acoustic energy and that their locations in the arrival angle-frequency plane can be determined. The effects of these nulls in the beam patterns of the array are demonstrated.

  2. A novel, flat, electronically-steered phased array transducer for tissue ablation: preliminary results

    NASA Astrophysics Data System (ADS)

    Ellens, Nicholas P. K.; Lucht, Benjamin B. C.; Gunaseelan, Samuel T.; Hudson, John M.; Hynynen, Kullervo H.

    2015-03-01

    Flat, λ/2-spaced phased arrays for therapeutic ultrasound were examined in silico and in vitro. All arrays were made by combining modules made of 64 square elements with 1.5 mm inter-element spacing along both major axes. The arrays were designed to accommodate integrated, co-aligned diagnostic transducers for targeting and monitoring. Six arrays of 1024 elements (16 modules) and four arrays of 6144 elements (96 modules) were modelled and compared according to metrics such as peak pressure amplitude, focal size, ability to be electronically-steered far off-axis and grating lobe amplitude. Two 1024 element prototypes were built and measured in vitro, producing over 100 W of acoustic power. In both cases, the simulation model of the pressure amplitude field was in good agreement with values measured by hydrophone. Using one of the arrays, it was shown that the peak pressure amplitude dropped by only 24% and 25% of the on-axis peak pressure amplitude when steered to the edge of the array (40 mm) at depths of 30 mm and 50 mm. For the 6144 element arrays studied in in silico only, similarly high steerability was found: even when steered 100 mm off-axis, the pressure amplitude decrease at the focus was less than 20%, while the maximum pressure grating lobe was only 20%. Thermal simulations indicate that the modules produce more than enough acoustic power to perform rapid ablations at physiologically relevant depths and steering angles. Arrays such as proposed and tested in this study have enormous potential: their high electronic steerability suggests that they will be able to perform ablations of large volumes without the need for any mechanical translation.

  3. Two-dimensional optoacoustic tomography: transducer array and image reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Oraevsky, Alexander A.; Andreev, Valeri A.; Karabutov, Alexander A.; Esenaliev, Rinat O.

    1999-06-01

    Opto-acoustic tomography (OAT) utilizes laser pulses to create acoustic sources in tissue and wide-band detection of pressure profiles for the image reconstruction. A new laser optoacoustic imaging system (LOIS) for breast cancer detection and two-dimensional visualization is described. A Q-switched Nd:YAG laser was used for generation of opto-acoustic profiles in phantoms and tissues in vitro. Acoustic pulses were detected by a 12 element linear array of piezoelectric transducers. Each transducer was made of 0.5-mm thick PVDF slabs with dimensions of 4.3 mm X 12.5 mm. Signal-to-noise ratio was calculated and the sensitivity of optoacoustic system was evaluated. The axial (in-depth) resolution and the lateral resolution of the system were determined. The axial resolution of the receiving array was limited by its frequency band and was estimated to be approximately 1 mm. The lateral resolution was about 2.5 times the lateral dimension of the 'tumor' and defined by the finite aperture of the array and relatively large size of the single transducer. The time of full data acquisition was limited by the time allowed in clinical procedure of about 5 - 10 minutes. The procedure of signal processing is described. It includes high-pass signal filtering, compensation for acoustic diffraction, detection of the irradiated surface position and rejection of the reverberating signal. Radial back-projection algorithm for image reconstruction was developed and included in the computer code. Two-dimensional opto-acoustic images of simulated spheres and objects inside tissue phantoms are presented. The contrast of these images and limits of detection and localization of deeply embedded tumors are discussed.

  4. A 2-D Array of Superconducting Magnesium Diboride (MgB2) Far-IR Thermal Detectors for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook

    2009-01-01

    A 2-D array of superconducting Magnesium Diboride(MgB2) far IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.

  5. In-flight measurement of ice growth on an airfoil using an array of ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Kirby, Mark S.; Mcknight, Robert C.; Humes, Robert L.

    1988-01-01

    Results of preliminary tests to measure ice growth on an airfoil during flight icing conditions are presented. Ultrasonic pulse echo measurements of ice thickness are obtained from an array of eight ultrasonic transducers mounted flush with the leading edge of the airfoil. These thickness measurements are used to document the evolution of the ice shape during the encounter in the form of successive ice profiles. Results from 3 research flights are presented and discussed. The accuracy of the ultrasonic measurements is found to be within 0.5 mm of mechanical and stereo photograph measurements of the ice accretion.

  6. Quality assurance of asymmetric jaw alignment using 2D diode array

    SciTech Connect

    Kim, Sun Mo; Yeung, Ivan W. T.; Moseley, Douglas J.

    2013-12-15

    Purpose: A method using a 2D diode array is proposed to measure the junction gap (or overlap) and dose with high precision for routine quality assurance of the asymmetric jaw alignment.Methods: The central axis (CAX) of the radiation field was determined with a 15 × 15 cm{sup 2} photon field at four cardinal collimator angles so that the junction gap (or overlap) can be measured with respect to the CAX. Two abutting fields having a field size of 15 cm (length along the axis parallel to the junction) × 7.5 cm (width along the axis perpendicular to the junction) were used to irradiate the 2D diode array (MapCHECK2) with 100 MU delivered at the photon energy of 6 MV. The collimator was slightly rotated at 15° with respect to the beam central axis to increase the number of diodes effective on the measurement of junction gap. The junction gap and dose measured in high spatial resolution were compared to the conventional methods using an electronic portal imaging device (EPID) and radiochromic film, respectively. In addition, the reproducibility and sensitivity of the proposed method to the measurements of junction gap and dose were investigated.Results: The junction gap (or overlap) and dose measured by MapCHECK2 agreed well to those measured by the conventional methods of EPID and film (the differences ranged from −0.01 to 0 cm and from −1.34% to 0.6% for the gap and dose, respectively). No variation in the repeat measurements of the junction gap was found whereas the measurements of junction dose were found to vary in quite a small range over the days of measurement (0.21%–0.35%). While the sensitivity of the measured junction gap to the actual junction gap applied was the ideal value of 1 cm/cm as expected, the sensitivity of the junction dose to the actual junction gap increased as the junction gap (or overlap) decreased (maximum sensitivity: 201.7%/cm).Conclusions: The initial results suggest that the method is applicable for a comprehensive quality

  7. Simulation of 3-D radiation beam patterns propagated through a planar interface from ultrasonic phased array transducers.

    PubMed

    Song, Sung-Jin; Kim, Chang-Hwan

    2002-05-01

    Phased array transducers are quite often mounted on solid wedges with specific angles in many practical ultrasonic inspections of thin plates <10 mm in their thickness or welded joints with convex crowns. For the reliable application of phased array techniques with testing set-up, it is essential to have thorough understanding on the characteristics of radiation beam pattern produced in the interrogated medium. To address such a need, this paper proposes a systematic way to calculate full 3-D radiation beam patterns produced in the interrogated solid medium by phased array transducers mounted on a solid wedge. In order to investigate the characteristics of radiation beam patterns in steel, simulation is carried out for 7.5 MHz array transducers mounted on an acrylic wedge with the angle of 15.45 degrees with various of steering angles and/or focal planes.

  8. A Fast Method to Calculate the Spatial Impulse Response for 1-D Linear Ultrasonic Phased Array Transducers.

    PubMed

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Muhammad, Salman; Zhang, Wenzeng; Chen, Qiang

    2016-11-08

    A method is developed to accurately determine the spatial impulse response at the specifically discretized observation points in the radiated field of 1-D linear ultrasonic phased array transducers with great efficiency. In contrast, the previously adopted solutions only optimize the calculation procedure for a single rectangular transducer and required approximation considerations or nonlinear calculation. In this research, an algorithm that follows an alternative approach to expedite the calculation of the spatial impulse response of a rectangular linear array is presented. The key assumption for this algorithm is that the transducer apertures are identical and linearly distributed on an infinite rigid plane baffled with the same pitch. Two points in the observation field, which have the same position relative to two transducer apertures, share the same spatial impulse response that contributed from corresponding transducer, respectively. The observation field is discretized specifically to meet the relationship of equality. The analytical expressions of the proposed algorithm, based on the specific selection of the observation points, are derived to remove redundant calculations. In order to measure the proposed methodology, the simulation results obtained from the proposed method and the classical summation method are compared. The outcomes demonstrate that the proposed strategy can speed up the calculation procedure since it accelerates the speed-up ratio which relies upon the number of discrete points and the number of the array transducers. This development will be valuable in the development of advanced and faster linear ultrasonic phased array systems.

  9. A Fast Method to Calculate the Spatial Impulse Response for 1-D Linear Ultrasonic Phased Array Transducers

    PubMed Central

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Muhammad, Salman; Zhang, Wenzeng; Chen, Qiang

    2016-01-01

    A method is developed to accurately determine the spatial impulse response at the specifically discretized observation points in the radiated field of 1-D linear ultrasonic phased array transducers with great efficiency. In contrast, the previously adopted solutions only optimize the calculation procedure for a single rectangular transducer and required approximation considerations or nonlinear calculation. In this research, an algorithm that follows an alternative approach to expedite the calculation of the spatial impulse response of a rectangular linear array is presented. The key assumption for this algorithm is that the transducer apertures are identical and linearly distributed on an infinite rigid plane baffled with the same pitch. Two points in the observation field, which have the same position relative to two transducer apertures, share the same spatial impulse response that contributed from corresponding transducer, respectively. The observation field is discretized specifically to meet the relationship of equality. The analytical expressions of the proposed algorithm, based on the specific selection of the observation points, are derived to remove redundant calculations. In order to measure the proposed methodology, the simulation results obtained from the proposed method and the classical summation method are compared. The outcomes demonstrate that the proposed strategy can speed up the calculation procedure since it accelerates the speed-up ratio which relies upon the number of discrete points and the number of the array transducers. This development will be valuable in the development of advanced and faster linear ultrasonic phased array systems. PMID:27834799

  10. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array.

    PubMed

    Yoganathan, S A; Das, K J Maria; Raj, D Gowtham; Kumar, Shaleen

    2015-01-01

    The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams.

  11. Quantum information experiments with 2D arrays of hundreds of trapped ions

    NASA Astrophysics Data System (ADS)

    Gilmore, Kevin; Bohnet, Justin; Sawyer, Brian; Britton, Joseph; Wall, Michael; Foss-Feig, Michael; Rey, Ana Maria; Bollinger, John

    2016-05-01

    We summarize recent experimental work with 2D arrays of hundreds of trapped 9 Be+ ions stored in a Penning trap. Penning traps utilize static magnetic and electric fields to confine ions, and enable the trapping and laser cooling of ion crystals larger than typically possible in RF ion traps. We work with single-plane ion crystals where the ions form a triangular lattice through minimization of their Coulomb potential energy. The crystals rotate, and we present numerical studies that determine optimal operating parameters for producing low temperature, stable 2-dimensional crystals with Doppler laser cooling and a rotating wall potential. Our qubit is the electron spin-flip transition in the ground state of 9 Be+ and is sensitive to magnetic field fluctuations. Through mitigation of part-per-billion, vibration-induced magnetic field fluctuations we demonstrate T2 coherence times longer than 50 ms. We engineer long-range Ising interactions with spin-dependent optical dipole forces, and summarize recent measurements that characterize the entanglement generated through single-axis twisting. Supported by: JILA-NSF-PFC-1125844, NSF-PHY-1521080, ARO, AFOSR, AFOSR-MURI.

  12. Self-alignment of silver nanoparticles in highly ordered 2D arrays

    NASA Astrophysics Data System (ADS)

    Rodríguez-León, Ericka; Íñiguez-Palomares, Ramón; Urrutia-Bañuelos, Efraín; Herrera-Urbina, Ronaldo; Tánori, Judith; Maldonado, Amir

    2015-03-01

    We have synthesized silver nanoparticles in the non-polar phase of non-aqueous microemulsions. The nanocrystals have been grown by reducing silver ions in the microemulsion cylindrical micelles formed by the reducing agent (ethylene glycol). By a careful deposit of the microemulsion phase on a substrate, the micelles align in a hexagonal geometry, thus forming a 2D array of parallel strings of individual silver nanoparticles on the substrate. The microemulsions are the ternary system of anionic surfactant, non-polar solvent (isooctane), and solvent polar (ethylene glycol); the size of synthesized nanoparticles is about 7 nm and they are monodisperse. The study of the microstructure was realized by transmission electron microscopy, high-resolution technique transmission electron microscopy (HR-TEM), and Fourier processing using the software Digital Micrograph for the determination of the crystalline structure of the HR-TEM images of the nanocrystals; chemical composition was determined using the energy-dispersive X-ray spectroscopy. Addition technique polarizing light microscopy allowed the observation of the hexagonal phase of the system. This method of synthesis and self-alignment could be useful for the preparation of patterned materials at the nanometer scale.

  13. Self-alignment of silver nanoparticles in highly ordered 2D arrays.

    PubMed

    Rodríguez-León, Ericka; Íñiguez-Palomares, Ramón; Urrutia-Bañuelos, Efraín; Herrera-Urbina, Ronaldo; Tánori, Judith; Maldonado, Amir

    2015-01-01

    We have synthesized silver nanoparticles in the non-polar phase of non-aqueous microemulsions. The nanocrystals have been grown by reducing silver ions in the microemulsion cylindrical micelles formed by the reducing agent (ethylene glycol). By a careful deposit of the microemulsion phase on a substrate, the micelles align in a hexagonal geometry, thus forming a 2D array of parallel strings of individual silver nanoparticles on the substrate. The microemulsions are the ternary system of anionic surfactant, non-polar solvent (isooctane), and solvent polar (ethylene glycol); the size of synthesized nanoparticles is about 7 nm and they are monodisperse. The study of the microstructure was realized by transmission electron microscopy, high-resolution technique transmission electron microscopy (HR-TEM), and Fourier processing using the software Digital Micrograph for the determination of the crystalline structure of the HR-TEM images of the nanocrystals; chemical composition was determined using the energy-dispersive X-ray spectroscopy. Addition technique polarizing light microscopy allowed the observation of the hexagonal phase of the system. This method of synthesis and self-alignment could be useful for the preparation of patterned materials at the nanometer scale.

  14. Optical metrology of AlN piezomachined ultrasonic transducer arrays and piezopumps

    NASA Astrophysics Data System (ADS)

    Mązik, Mateusz; Taha, Inas; Flores, Raquel; Janeiro, Ricardo; Viegas, Jaime

    2015-02-01

    Piezomachined ultrasonic transducer (PMUT) arrays are commonly found in applications in the field of ultrasonography and gesture recognition systems. Their application for bio and chemical sample preparation is another possibility, based on their beam steering and acoustic field manipulation capabilities. Post-fabrication non-destructive measurement of key device temporal and spatial parameters is required in order to adjust either simulation models or tune fabrication steps. In this work we report an optical testing setup for measuring the acoustic spectrum of PMUT devices and arrays, characterize maximum deflection of PMUTs and piezopumps and investigate the load effect of electrical contacts on the spatial and temporal oscillation behavior of these piezoelectric structures. Spatial parameters are evaluated with digital holography and temporal parameters with single point Doppler shift and frequency-shifted. We employ this testing setup to measure our own designed PMUT structures which were fabricated at IME-Singapore, evaluating the relative merits of the PMUT design parameters.

  15. Annular phased array transducer for preclinical testing of anti-cancer drug efficacy on small animals.

    PubMed

    Kujawska, Tamara; Secomski, Wojciech; Byra, Michał; Postema, Michiel; Nowicki, Andrzej

    2017-04-01

    A technique using pulsed High Intensity Focused Ultrasound (HIFU) to destroy deep-seated solid tumors is a promising noninvasive therapeutic approach. A main purpose of this study was to design and test a HIFU transducer suitable for preclinical studies of efficacy of tested, anti-cancer drugs, activated by HIFU beams, in the treatment of a variety of solid tumors implanted to various organs of small animals at the depth of the order of 1-2cm under the skin. To allow focusing of the beam, generated by such transducer, within treated tissue at different depths, a spherical, 2-MHz, 29-mm diameter annular phased array transducer was designed and built. To prove its potential for preclinical studies on small animals, multiple thermal lesions were induced in a pork loin ex vivo by heating beams of the same: 6W, or 12W, or 18W acoustic power and 25mm, 30mm, and 35mm focal lengths. Time delay for each annulus was controlled electronically to provide beam focusing within tissue at the depths of 10mm, 15mm, and 20mm. The exposure time required to induce local necrosis was determined at different depths using thermocouples. Location and extent of thermal lesions determined from numerical simulations were compared with those measured using ultrasound and magnetic resonance imaging techniques and verified by a digital caliper after cutting the tested tissue samples. Quantitative analysis of the results showed that the location and extent of necrotic lesions on the magnetic resonance images are consistent with those predicted numerically and measured by caliper. The edges of lesions were clearly outlined although on ultrasound images they were fuzzy. This allows to conclude that the use of the transducer designed offers an effective noninvasive tool not only to induce local necrotic lesions within treated tissue without damaging the surrounding tissue structures but also to test various chemotherapeutics activated by the HIFU beams in preclinical studies on small animals.

  16. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    NASA Astrophysics Data System (ADS)

    Song, Junho; Hynynen, Kullervo

    2009-04-01

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the back of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100×100×80 mm3 with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.

  17. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    SciTech Connect

    Song, Junho; Hynynen, Kullervo

    2009-04-14

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the back of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100x100x80 mm{sup 3} with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.

  18. Three-dimensional Ultrasound Molecular Imaging of Angiogenesis in Colon Cancer using a Clinical Matrix Array Ultrasound Transducer

    PubMed Central

    Wang, Huaijun; Kaneko, Osamu F.; Tian, Lu; Hristov, Dimitre; Willmann, Jürgen K.

    2015-01-01

    Objectives We sought to assess the feasibility and reproducibility of three-dimensional (3D) ultrasound molecular imaging (USMI) of vascular endothelial growth factor receptor 2 (VEGFR2) expression in tumor angiogenesis using a clinical matrix array transducer and a clinical grade VEGFR2-targeted contrast agent in a murine model of human colon cancer. Materials and Methods Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mice with human colon cancer xenografts (n=33) were imaged with a clinical ultrasound system and transducer (Philips iU22; X6-1) following intravenous injection of either clinical grade VEGFR2-targeted microbubbles (MBVEGFR2) or non-targeted control microbubbles (MBControl). Nineteen mice were scanned twice to assess imaging reproducibility. Fourteen mice were scanned both before and 24h after treatment with either bevacizumab (n=7) or saline only (n=7). 3D USMI datasets were retrospectively reconstructed into multiple consecutive 1-mm thick USMI data sets to simulate 2D imaging. Vascular VEGFR2 expression was assessed ex vivo using immunofluorescence. Results 3D USMI was highly reproducible using both MBVEGFR2 and MBControl (ICC=0.83). VEGFR2-targeted USMI signal significantly (P=0.02) decreased by 57% following anti-angiogenic treatment compared to the control group, which correlated well with ex vivo VEGFR2 expression on immunofluorescence (rho=0.93, P=0.003). If only central 1-mm tumor planes were analyzed to assess anti-angiogenic treatment response, the USMI signal change was significantly (P=0.006) overestimated by an average of 27% (range, 2–73%) compared to 3D USMI. Conclusions 3D USMI is feasible and highly reproducible and allows accurate assessment and monitoring of VEGFR2 expression in tumor angiogenesis in a murine model of human colon cancer. PMID:25575176

  19. Capacitive Micromachined Ultrasonic Transducer Arrays for Integrated Diagnostic/Therapeutic Catheters

    NASA Astrophysics Data System (ADS)

    Wong, Serena H.; Wygant, Ira O.; Yeh, David T.; Zhuang, Xuefeng; Bayram, Baris; Kupnik, Mario; Oralkan, Omer; Ergun, A. Sanli; Yaralioglu, Goksen G.; Khuri-Yakub, Butrus T.

    2006-05-01

    In recent years, medical procedures have become increasingly non-invasive. These include endoscopic procedures and intracardiac interventions (e.g., pulmonary vein isolation for treatment of atrial fibrillation and plaque ablation for treatment of arteriosclerosis). However, current tools suffer from poor visualization and difficult coordination of multiple therapeutic and imaging devices. Dual-mode (imaging and therapeutic) ultrasound arrays provide a solution to these challenges. A dual-mode transducer can provide focused, noncontact ultrasound suitable for therapy and can be used to provide high quality real-time images for navigation and monitoring of the procedure. In the last decade, capacitive micromachined ultrasonic transducers (CMUTs), have become an attractive option for ultrasonic imaging systems due to their fabrication flexibility, improved bandwidth, and integration with electronics. The CMUT's potential in therapeutic applications has also been demonstrated by surface output pressures as high as 1MPa peak to peak and continuous wave (CW) operation. This paper reviews existing interventional CMUT arrays, demonstrates the feasibility of CMUTs for high intensity focused ultrasound (HIFU), and presents a design for the next-generation CMUTs for integrated imaging and HIFU endoscopic catheters.

  20. Generation of the Ultrasonic Guided Waves in a Seamless Stainless Steel Pipe Using an Array Transducer

    SciTech Connect

    Kim, Young H.; Song, Sung-Jin; Park, Joon-Soo; Jeon, Jin Hong; Kim, Jae-Hee; Eom, Heung-Sup; Im, Kwang Hee

    2005-04-09

    Ultrasonic guided waves have been widely employed for the long range inspection of structures such as plates, rods and pipes. In ultrasonic guided waves, however, there are numerous modes with different wave velocities, so that the generation and detection of the appropriate wave mode of the guided wave is one of key techniques in the application of guided waves. In the present work, mode tuning using an array transducer was investigated with the hardware implements to generate ultrasonic guided waves in a seamless stainless steel pipe. For this purpose, 8-channel ultrasonic pulser/receiver and their controller which enables sequential activation of each channels with given time delay were developed. A series of experiments was carried out in order to demonstrate the feasibility of dynamic tuning of modes by hardware: tuning the mode of the generated guided wave, group velocity measurement, tuned receiving and mode identification. As a result, the selective tuning of wave mode can be achieved by changing the time interval between adjacent elements of an array transducer.

  1. The design of a focused ultrasound transducer array for the treatment of stroke: a simulation study

    PubMed Central

    Pajek, Daniel; Hynynen, Kullervo

    2014-01-01

    High intensity focused ultrasound (HIFU) is capable of mechanically disintegrating blood clots at high pressures. Safe thrombolysis may require frequencies higher than those currently utilized by transcranial HIFU. Since the attenuation and focal distortion of ultrasound in bone increases at higher frequencies, resulting focal pressures are diminished. This study investigated the feasibility of using transcranial HIFU for the non-invasive treatment of ischemic stroke. The use of large aperture, 1.1–1.5 MHz phased arrays in targeting four clinically relevant vessel locations was simulated. Resulting focal sizes decreased with frequency, producing a maximum −3 dB depth of field and lateral width of 2.0 and 1.2 mm, respectively. Mean focal gains above an order of magnitude were observed in three of four targets and transducer intensities required to achieve thrombolysis were determined. Required transducer element counts are about an order of magnitude higher than what currently exists and so, although technically feasible, new arrays would need to be developed to realize this as a treatment modality for stroke. PMID:22800986

  2. Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements.

    PubMed

    Ye, Xingwei; Zhang, Fangzheng; Pan, Shilong

    2016-09-01

    A hardware-compressive optical true time delay architecture for 2D beam steering in a planar phased array antenna is proposed using fiber-Bragg-grating-based tunable dispersive elements (TDEs). For an M×N array, the proposed system utilizes N TDEs and M wavelength-fixed optical carriers to control the time delays. Both azimuth and elevation beam steering are realized by programming the settings of the TDEs. An experiment is carried out to demonstrate the delay controlling in a 2×2 array, which is fed by a wideband pulsed signal. Radiation patterns calculated from the experimentally measured waveforms at the four antennas match well with the theoretical results.

  3. Hydrates in the California Borderlands: 2D CSEM inversion results from towed and seafloor arrays

    NASA Astrophysics Data System (ADS)

    Kannberg, P. K.; Constable, S.; Key, K.

    2013-12-01

    Methane hydrate, an ice-like solid clathrate of methane and water, forms in shallow continental slope sediments, and is both a potential energy source and geologic hazard. Traditionally, methane hydrate presence is inferred from a seismically detected bathymetry tracking velocity inversion, known as the bottom-simulating reflector (BSR). However the BSR is an indicator of free gas at the base of the hydrate stability zone, and not an indicator of hydrate. As such, seismic methods are limited in their capacity to identify and quantify hydrate presence and concentration. Controlled source electromagnetic (CSEM) methods are sensitive to, and are able to directly detect, the presence of electrically resistive methane hydrate and free gas. Additionally, because shallow resistors can mimic deeper resistors in seafloor instruments, understanding the shallow sediment structure can inform deeper crustal modeling. We conducted two CSEM surveys in the San Nicolas Basin, located 150km west of San Diego where a BSR was identified from legacy seismics. Both surveys were conducted using a deep-towed EM transmitter followed by 4 towed 3-axis electric field receivers spaced every 200 m from 400-1000 m behind the transmitter. Either a half-hertz or quarter-hertz modified square wave was transmitted on a 200 ampere, 100 m dipole that was flown between 50 and 100m above the seafloor. The short transmitter-receiver offset allows resolution of shallow structure (less than 1km below seafloor), while the longer transmitter-seafloor receiver resolves deeper structure. Between the two surveys, 27 seafloor receivers were deployed and ~150km of lines were towed, including 5 transects of the basin coincident with legacy seismic lines, and a short-offset repeatability study. Initial 1D modeling showed the presence of a resistor coincident with the BSR. Further 2D inversions using the MARE2DEM inversion program were run for the towed array. These inversions show a 4 ohm-m resistor in the central

  4. Substorm development as observed by Interball UV imager and 2-D magnetic array

    NASA Astrophysics Data System (ADS)

    Lyatsky, W.; Cogger, L. L.; Jackel, B.; Hamza, A. M.; Hughes, W. J.; Murr, D.; Rasmussen, O.

    2001-10-01

    Results of the study of two substorms from Interball auroral UV measurements and two-dimensional patterns of equivalent ionospheric currents derived from the MACCS/CANOPUS and Greenland magnetometer arrays are presented. Substorm development in 2-D equivalent ionospheric current patterns may be described in terms of the formation of two vortices in the equivalent currents: a morning vortex related to downward field-aligned current and an evening vortex related to upward field-aligned current. Poleward propagation of the magnetic disturbances during substorm expansive phase was found to be associated mainly with a poleward displacement of the morning vortex, whereas the evening vortex remained approximately at the same position. As a result, the initial quasi-azimuthal separation of the vortices was replaced by their quasi-meridional separation at substorm maximum. Interball UV images during this period showed the formation of a bright auroral border at the poleward edge of substorm auroral bulge. The auroral UV images showed also that the auroral distribution in the region between the polar border and the main auroral oval tends to have a form of bubbles or petals growing from a bright protuberant region on the equatorward boundary of the auroral oval. However, the resolution of the UV imager was not sufficient for the reliable separation of such the structures, therefore, this result should be considered as preliminary. Overlapping of the auroral UV images onto equivalent current patterns shows that the bright substorm surge was well collocated with the evening vortex whereas the poleward auroral border did not coincide with any evident feature in equivalent ionospheric currents and was located several degrees equatorward of the morning current vortex center related to downward field-aligned current. The ground-based magnetic array allowing us to obtain instantaneous patterns of equivalent ionospheric currents gives a possibility to propose a new index for

  5. Variable FOV optical illumination system with constant aspect ratio for 2-D array lasers diodes

    NASA Astrophysics Data System (ADS)

    Arasa, J.; de la Fuente, M. C.; Ibañez, C.

    2008-09-01

    In this contribution we present a compact system to create an illumination distribution with a constant aspect ratio 3:4 and FOV from 0.4 to 1 degree. Besides, the system must delivery 40 W from 170 individual laser diodes placed in a regular 2-D array distribution of 10 x 20 mm. The main problem that must be solved is the high asymmetry of the individual sources; emission divergence's ratio 3:73 (0.3 vs. 7.4 degree) combined with the flux holes due to the laser's heat drain. In one axis (divergence of 0.3º) the best design strategy approach is a Galileo telescope but in the other axis a collimator configuration is the best solution. To manage both solutions at the same time is the aim of this contribution. Unfortunately for the Galileo strategy, source dimensions are too large so aspheric surfaces are needed, and the collimator configuration requires an EFL that must change from 573 to 1432 mm. The presented solution uses a set of three fixed anamorphic lenses, two of them pure cylinders, combined with a wheel of anamorphic lenses that have the function to change the FOV of the system. The most important contribution of the design is to obtain a constant final ratio 3:4 from an initial ratio of 3:73 with no losses of energy. The proposed solution produces an illumination pattern with peaks and valleys lower than 40%. This pattern distribution might be unacceptable for a standard illumination solution. However, the actual FOV is used to illuminate far away targets thus air turbulence is enough to homogenize the distribution on the target.

  6. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia.

    PubMed

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N; Le Baron, Olivier; Ferrara, Katherine W

    2016-07-21

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  7. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    NASA Astrophysics Data System (ADS)

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-07-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  8. Photoacoustic tomography of small animal brain with a curved array transducer.

    PubMed

    Yang, Xinmai; Maurudis, Anastasios; Gamelin, John; Aguirre, Andres; Zhu, Quing; Wang, Lihong V

    2009-01-01

    We present the application of a curved array photoacoustic tomographic imaging system that can provide rapid, high-resolution photoacoustic imaging of small animal brains. The system is optimized to produce a B-mode, 90-deg field-of-view image at sub-200-microm resolution at a frame rate of approximately 1 frame/second when a 10-Hz pulse repetition rate laser is employed. By rotating samples, a complete 360-deg scan can be achieved within 15 s. In previous work, two-dimensional (2-D) ex vivo mouse brain cortex imaging has been reported. We report three-dimensional (3-D) small animal brain imaging obtained with the curved array system. The results are presented as a series of 2-D cross-sectional images. Besides structural imaging, the blood oxygen saturation of the animal brain cortex is also measured in vivo. In addition, the system can measure the time-resolved relative changes in blood oxygen saturation level in the small animal brain cortex. Last, ultrasonic gel coupling, instead of the previously adopted water coupling, is conveniently used in near-real-time 2-D imaging.

  9. Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer.

    PubMed

    Zemp, Roger J; Song, Liang; Bitton, Rachel; Shung, K Kirk; Wang, Lihong V

    2008-05-26

    We present a novel high-frequency photoacoustic microscopy system capable of imaging the microvasculature of living subjects in realtime to depths of a few mm. The system consists of a high-repetition-rate Q-switched pump laser, a tunable dye laser, a 30-MHz linear ultrasound array transducer, a multichannel high-frequency data acquisition system, and a shared-RAM multi-core-processor computer. Data acquisition, beamforming, scan conversion, and display are implemented in realtime at 50 frames per second. Clearly resolvable images of 6-microm-diameter carbon fibers are experimentally demonstrated at 80 microm separation distances. Realtime imaging performance is demonstrated on phantoms and in vivo with absorbing structures identified to depths of 2.5-3 mm. This work represents the first high-frequency realtime photoacoustic imaging system to our knowledge.

  10. In-flight measurement of ice growth on an airfoil using an array of ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Kirby, Mark S.; Mcknight, Robert C.; Humes, Robert L.

    1987-01-01

    Results from three research flights to obtain in-flight ultrasonic pulse-echo measurements of airfoil ice thickness as a function of time using an array of eight ultrasonic transducers mounted flush with the leading edge of the airfoil are presented. The accuracy of the thickness measurements is found to be within 0.5 mm of mechanical and stereophotograph measurements of the ice accretion. The ultrasonic measurements demonstrate that the ice growth rate typically varies during the flight, with variations in the ice growth rate for dry ice growth being primarily due to fluctuations in the cloud liquid water content. Discrepancies between experimental results and results predicted by an analytic icing code underline the need for a better understanding of the physics of wet ice growth.

  11. Guided Lamb wave based 2-D spiral phased array for structural health monitoring of thin panel structures

    NASA Astrophysics Data System (ADS)

    Yoo, Byungseok

    2011-12-01

    In almost all industries of mechanical, aerospace, and civil engineering fields, structural health monitoring (SHM) technology is essentially required for providing the reliable information of structural integrity of safety-critical structures, which can help reduce the risk of unexpected and sometimes catastrophic failures, and also offer cost-effective inspection and maintenance of the structures. State of the art SHM research on structural damage diagnosis is focused on developing global and real-time technologies to identify the existence, location, extent, and type of damage. In order to detect and monitor the structural damage in plate-like structures, SHM technology based on guided Lamb wave (GLW) interrogation is becoming more attractive due to its potential benefits such as large inspection area coverage in short time, simple inspection mechanism, and sensitivity to small damage. However, the GLW method has a few critical issues such as dispersion nature, mode conversion and separation, and multiple-mode existence. Phased array technique widely used in all aspects of civil, military, science, and medical industry fields may be employed to resolve the drawbacks of the GLW method. The GLW-based phased array approach is able to effectively examine and analyze complicated structural vibration responses in thin plate structures. Because the phased sensor array operates as a spatial filter for the GLW signals, the array signal processing method can enhance a desired signal component at a specific direction while eliminating other signal components from other directions. This dissertation presents the development, the experimental validation, and the damage detection applications of an innovative signal processing algorithm based on two-dimensional (2-D) spiral phased array in conjunction with the GLW interrogation technique. It starts with general backgrounds of SHM and the associated technology including the GLW interrogation method. Then, it is focused on the

  12. Magnetostrictive helical array transducer for inspecting spiral welded pipes using flexural guided waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Tang, Zhifeng; Lv, Fuzai

    2017-02-01

    A wavefront analysis indicates that a flexural wave propagates at a helix angle with respect to the pipe axis. The expression for calculation of the helix angle for each flexural mode is given, and the helix angle dispersion curves for flexural modes are calculated. According to the new understanding of flexural guided waves, a magnetostrictive helical array transducer (MHAT) is proposed for selectively exciting a single predominant flexural torsional guided wave in a pipe and inspecting spiral welded pipes using flexural waves. A MHAT contains a pre-magnetized magnetostrictive patch that is helically coupled with the outer surface of a pipe, and an array of novel compound comb coils that are wrapped around the helical magnetostrictive patch. The proposed wideband MHAT possesses the direction control ability. A verification experiment indicates that flexural torsional mode T(3,1) at center frequency f=64kHz is effectively actuated by a MHAT with 13-degree helix angle. A 20-degree MHAT is adopted to inspect a spiral welded pipe, an artificial notch with cross section loss CSL=2.7% is effectively detected by using flexural waves.

  13. Ultrasound Nondestructive Evaluation (NDE) Imaging with Transducer Arrays and Adaptive Processing

    PubMed Central

    Li, Minghui; Hayward, Gordon

    2012-01-01

    This paper addresses the challenging problem of ultrasonic non-destructive evaluation (NDE) imaging with adaptive transducer arrays. In NDE applications, most materials like concrete, stainless steel and carbon-reinforced composites used extensively in industries and civil engineering exhibit heterogeneous internal structure. When inspected using ultrasound, the signals from defects are significantly corrupted by the echoes form randomly distributed scatterers, even defects that are much larger than these random reflectors are difficult to detect with the conventional delay-and-sum operation. We propose to apply adaptive beamforming to the received data samples to reduce the interference and clutter noise. Beamforming is to manipulate the array beam pattern by appropriately weighting the per-element delayed data samples prior to summing them. The adaptive weights are computed from the statistical analysis of the data samples. This delay-weight-and-sum process can be explained as applying a lateral spatial filter to the signals across the probe aperture. Simulations show that the clutter noise is reduced by more than 30 dB and the lateral resolution is enhanced simultaneously when adaptive beamforming is applied. In experiments inspecting a steel block with side-drilled holes, good quantitative agreement with simulation results is demonstrated. PMID:22368457

  14. Ultrasound nondestructive evaluation (NDE) imaging with transducer arrays and adaptive processing.

    PubMed

    Li, Minghui; Hayward, Gordon

    2012-01-01

    This paper addresses the challenging problem of ultrasonic non-destructive evaluation (NDE) imaging with adaptive transducer arrays. In NDE applications, most materials like concrete, stainless steel and carbon-reinforced composites used extensively in industries and civil engineering exhibit heterogeneous internal structure. When inspected using ultrasound, the signals from defects are significantly corrupted by the echoes form randomly distributed scatterers, even defects that are much larger than these random reflectors are difficult to detect with the conventional delay-and-sum operation. We propose to apply adaptive beamforming to the received data samples to reduce the interference and clutter noise. Beamforming is to manipulate the array beam pattern by appropriately weighting the per-element delayed data samples prior to summing them. The adaptive weights are computed from the statistical analysis of the data samples. This delay-weight-and-sum process can be explained as applying a lateral spatial filter to the signals across the probe aperture. Simulations show that the clutter noise is reduced by more than 30 dB and the lateral resolution is enhanced simultaneously when adaptive beamforming is applied. In experiments inspecting a steel block with side-drilled holes, good quantitative agreement with simulation results is demonstrated.

  15. 2D SQIF arrays using 20 000 YBCO high R n Josephson junctions

    NASA Astrophysics Data System (ADS)

    Mitchell, E. E.; Hannam, K. E.; Lazar, J.; Leslie, K. E.; Lewis, C. J.; Grancea, A.; Keenan, S. T.; Lam, S. K. H.; Foley, C. P.

    2016-06-01

    Superconducting quantum interference filters (SQIFs) have been created using two dimensional arrays of YBCO step-edge Josephson junctions connected together in series and parallel configurations via superconducting loops with a range of loop areas and loop inductances. A SQIF response, as evidenced by a single large anti-peak at zero applied flux, is reported at 77 K for step-edge junction arrays with the junction number N = 1 000 up to 20 000. The SQIF sensitivity (slope of peak) increased linearly with N up to a maximum of 1530 V T-1. Array parameters related to geometry and average junction characteristics are investigated in order to understand and improve the SQIF performance in high temperature superconducting arrays. Initial investigations also focus on the effect of the SQUID inductance factor on the SQIF sensitivity by varying both the mean critical current and the mean inductance of the loops in the array. The RF response to a 30 MHz signal is demonstrated.

  16. Development of a C-Scan phased array ultrasonic imaging system using a 64-element 35MHz transducer

    NASA Astrophysics Data System (ADS)

    Zheng, Fan; Hu, Changhong; Zhang, Lequan; Snook, Kevin; Liang, Yu; Hackenberger, Wesley S.; Liu, Ruibin; Geng, Xuecang; Jiang, Xiaoning; Shung, K. Kirk

    2011-04-01

    Phased array imaging systems provide the features of electronic beam steering and dynamic depth focusing that cannot be obtained with conventional linear array systems. This paper presents a system design of a digital ultrasonic imaging system, which is capable of handling a 64-element 35MHz center frequency phased array transducer. The system consists of 5 parts: an analog front-end, a data digitizer, a DSP based beamformer, a computer controlled motorized linear stage, and a computer for post image processing and visualization. Using a motorized linear stage, C-scan images, parallel to the surface of scanned objects may be generated. This digital ultrasonic imaging system in combination a 35 MHz phased array appears to be a promising tool for NDT applications with high spatial resolution. It may also serve as an excellent research platform for high frequency phased array design and testing as well as ultrasonic array signal algorithm developing using system's raw RF data acquisition function.

  17. The Use of Geometric Properties of 2D Arrays across Development

    ERIC Educational Resources Information Center

    Gibson, Brett M.; Leichtman, Michelle D.; Costa, Rachel; Bemis, Rhyannon

    2009-01-01

    Four- to 10-year-old children (n = 50) participated in a 2D search task that included geometry (with- and without lines) and feature conditions. During each of 27 trials, participants watched as a cartoon character hid behind one of three landmarks arranged in a triangle on a computer screen. During feature condition trials, participants could use…

  18. A Fast Algorithm for 2D DOA Estimation Using an Omnidirectional Sensor Array.

    PubMed

    Nie, Weike; Xu, Kaijie; Feng, Dazheng; Wu, Chase Qishi; Hou, Aiqin; Yin, Xiaoyan

    2017-03-04

    The traditional 2D MUSIC algorithm fixes the azimuth or the elevation, and searches for the other without considering the directions of sources. A spectrum peak diffusion effect phenomenon is observed and may be utilized to detect the approximate directions of sources. Accordingly, a fast 2D MUSIC algorithm, which performs azimuth and elevation simultaneous searches (henceforth referred to as AESS) based on only three rounds of search is proposed. Firstly, AESS searches along a circle to detect the approximate source directions. Then, a subsequent search is launched along several straight lines based on these approximate directions. Finally, the 2D Direction of Arrival (DOA) of each source is derived by searching on several small concentric circles. Unlike the 2D MUSIC algorithm, AESS does not fix any azimuth and elevation parameters. Instead, the adjacent point of each search possesses different azimuth and elevation, i.e., azimuth and elevation are simultaneously searched to ensure that the search path is minimized, and hence the total spectral search over the angular field of view is avoided. Simulation results demonstrate the performance characters of the proposed AESS over some existing algorithms.

  19. A Fast Algorithm for 2D DOA Estimation Using an Omnidirectional Sensor Array

    PubMed Central

    Nie, Weike; Xu, Kaijie; Feng, Dazheng; Wu, Chase Qishi; Hou, Aiqin; Yin, Xiaoyan

    2017-01-01

    The traditional 2D MUSIC algorithm fixes the azimuth or the elevation, and searches for the other without considering the directions of sources. A spectrum peak diffusion effect phenomenon is observed and may be utilized to detect the approximate directions of sources. Accordingly, a fast 2D MUSIC algorithm, which performs azimuth and elevation simultaneous searches (henceforth referred to as AESS) based on only three rounds of search is proposed. Firstly, AESS searches along a circle to detect the approximate source directions. Then, a subsequent search is launched along several straight lines based on these approximate directions. Finally, the 2D Direction of Arrival (DOA) of each source is derived by searching on several small concentric circles. Unlike the 2D MUSIC algorithm, AESS does not fix any azimuth and elevation parameters. Instead, the adjacent point of each search possesses different azimuth and elevation, i.e., azimuth and elevation are simultaneously searched to ensure that the search path is minimized, and hence the total spectral search over the angular field of view is avoided. Simulation results demonstrate the performance characters of the proposed AESS over some existing algorithms. PMID:28273851

  20. Performance characteristics of the new detector array for the SANS2d instrument on the ISIS spallation neutron source

    NASA Astrophysics Data System (ADS)

    Duxbury, D.; Heenan, R.; McPhail, D.; Raspino, D.; Rhodes, N.; Rogers, S.; Schooneveld, E.; Spill, E.; Terry, A.

    2014-12-01

    The performance of the new position sensitive neutron detector arrays of the Small Angle Neutron Scattering (SANS) instrument SANS2d is described. The SANS2d instrument is one of the seven instruments currently available for users on the second target station (TS2) of the ISIS spallation neutron source. Since the instrument became operational in 2009 it has used two one metre square multi-wire proportional detectors (MWPC). However, these detectors suffer from a low count rate capability, are easily damaged by excess beam and are then expensive to repair. The new detector arrays each consist of 120 individual position sensitive detector tubes, filled with 15 bar of 3He. Each of the tubes is one metre long and has a diameter of 8mm giving a detector array with an overall area of one square metre. Two such arrays have been built and installed in the SANS2d vacuum tank where they are currently taking user data. For SANS measurements operation of the detector within a vacuum is essential in order to reduce air scattering. A novel, fully engineered approach has been utilised to ensure that the high voltage connections and preamps are located inside the SANS2d vacuum tank at atmospheric pressure, within air tubes and air boxes respectively. The signal processing electronics and data acquisition system are located remotely in a counting house outside of the blockhouse. This allows easy access for maintenance purposes, without the need to remove the detectors from the vacuum tank. The design will be described in detail. A position resolution of 8mm FWHM or less has been measured along the length of the tubes. The initial measurements taken from a standard sample indicate that whilst the detector arrays themselves only represent a moderate improvement in overall detection efficiency (~ 20%), compared to the previous detector, the count rate capability is increased by a factor of 100. A significant advantage of the new array is the ability to change a single tube in situ

  1. Functional 2D nanoparticle/polymer array: Interfacial assembly, transfer, characterization, and coupling to photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Xiong, Shisheng

    We developed a universal, facile and robust method to prepare free-standing, ordered and patternable nanoparticle/polymer monolayer arrays by evaporation-induced self-assembly at a fluid interface. The ultra-thin monolayer nanoparticle/polymer arrays are sufficiently robust that they can be transferred to arbitrary substrates, even with complex topographies. More importantly, the Poly (methyl methacrylate) (PMMA) in the system serves as a photoresist enabling two modes of electron beam (e-beam) nanoparticle patterning. These ultra-thin films of monolayer nanoparticle arrays are of fundamental interest as 2D artificial solids for electronic, magnetic and optical properties and are also of technological interest for a diverse range of applications in micro- and macro-scale devices including photovoltaics, sensors, catalysis, and magnetic storage. By co-assembly with block co-polymers, the nanoparticles were selectively positioned in one specific phase, representing a high throughput route for creating nanoparticle patterns. The self-assembly process was investigated by combined in-situ grazing incidence small angle x-ray scattering (GISAXS) and numerical simulation. By e-beam irradiation of free-standing 2D NP/polymer arrays, anisotropic nanowire arrays have been fabricated. Additionally, preliminary investigation on assembly of binary nanoparticle arrays has also been introduced, serving as promising future directions of interfacial assembly. Controlling the rate of spontaneous emission and thus promoting the photon generation efficiency is a key step toward fabrication of Quantum dot based single-photon sources, and harnessing of light energy from emitters with a broad emitting spectrum. Coupling of photo emitters to photonic cavities without perturbing the optical performance of cavities remains as a challenge in study of Purcell effect based on quantum electrodynamics. Taking advantage of interfacial assembly and transfer, we have achieved controlled deposition

  2. New piezocrystal material in the development of a 96-element array transducer for MR-guided focused ultrasound surgery

    NASA Astrophysics Data System (ADS)

    Qiu, Zhen; Habeshaw, Roderick; Fortine, Julien; Huang, Zhihong; Démoré, Christine; Cochran, Sandy

    2012-11-01

    Piezocrystal materials have been recognized as having better performance than piezoelectric ceramics, and have thus been widely adopted in ultrasound imaging arrays. Although their behaviour is susceptible to temperature and pressure, their large electromechanical coupling coefficients and other excellent piezoelectric properties also offer the potential for further improvements in the efficiency of therapeutic ultrasound transducers. Furthermore, new piezocrystals with modified compositions have been developed recently to increase their tolerance to temperature and pressure. In this work, a prototype of faceted bowl transducer was designed and manufactured as a proof of concept to explore practical issues associated with adoption of piezocrystals for magnetic resonance imaging guided focused ultrasound surgery.

  3. Characterization and use of a 2D-array of ion chambers for brachytherapy dosimetric quality assurance

    SciTech Connect

    Yewondwossen, Mammo

    2012-10-01

    The two-dimensional (2D) ionization chamber array MatriXX Evolution is one of the 2D ionization chamber arrays developed by IBA Dosimetry (IBA Dosimetry, Germany) for megavoltage real-time absolute 2D dosimetry and verification of intensity-modulated radiation therapy (IMRT). The purpose of this study was to (1) evaluate the performance of ion chamber array for submegavoltage range brachytherapy beam dose verification and quality assurance (QA) and (2) use the end-to-end dosimetric evaluation that mimics a patient treatment procedure and confirm the primary source strength calibration agrees in both the treatment planning system (TPS) and treatment delivery console computers. The dose linearity and energy dependence of the 2D ion chamber array was studied using kilovoltage X-ray beams (100, 180 and 300 kVp). The detector calibration factor was determined using 300 kVp X-ray beams so that we can use the same calibration factor for dosimetric verification of high-dose-rate (HDR) brachytherapy. The phantom used for this measurement consists of multiple catheters, the IBA MatriXX detector, and water-equivalent slab of RW3 to provide full scattering conditions. The treatment planning system (TPS) (Oncentra brachy version 3.3, Nucletron BV, Veenendaal, the Netherlands) dose distribution was calculated on the computed tomography (CT) scan of this phantom. The measured and TPS calculated distributions were compared in IBA Dosimetry OmniPro-I'mRT software. The quality of agreement was quantified by the gamma ({gamma}) index (with 3% delta dose and distance criterion of 2 mm) for 9 sets of plans. Using a dedicated phantom capable of receiving 5 brachytherapy intralumenal catheters a QA procedure was developed for end-to-end dosimetric evaluation for routine QA checks. The 2D ion chamber array dose dependence was found to be linear for 100-300 kVp and the detector response (k{sub user}) showed strong energy dependence for 100-300 kVp energy range. For the Ir-192 brachytherapy

  4. 2D Radiation MHD K-shell Modeling of Single Wire Array Stainless Steel Experiments on the Z Machine

    SciTech Connect

    Thornhill, J. W.; Giuliani, J. L.; Apruzese, J. P.; Chong, Y. K.; Davis, J.; Dasgupta, A.; Whitney, K. G.; Clark, R. W.; Jones, B.; Coverdale, C. A.; Ampleford, D. J.; Cuneo, M. E.; Deeney, C.

    2009-01-21

    Many physical effects can produce unstable plasma behavior that affect K-shell emission from arrays. Such effects include: asymmetry in the initial density profile, asymmetry in power flow, thermal conduction at the boundaries, and non-uniform wire ablation. Here we consider how asymmetry in the radiation field also contributes to the generation of multidimensional plasma behavior that affects K-shell power and yield. To model this radiation asymmetry, we have incorporated into the MACH2 r-z MHD code a self-consistent calculation of the non-LTE population kinetics based on radiation transport using multi-dimensional ray tracing. Such methodology is necessary for modeling the enhanced radiative cooling that occurs at the anode and cathode ends of the pinch during the run-in phase of the implosion. This enhanced radiative cooling is due to reduced optical depth at these locations producing an asymmetric flow of radiative energy that leads to substantial disruption of large initial diameter (>5 cm) pinches and drives 1D into 2D fluid (i.e., Rayleigh-Taylor like) flows. The impact of this 2D behavior on K-shell power and yield is investigated by comparing 1D and 2D model results with data obtained from a series of single wire array stainless steel experiments performed on the Z generator.

  5. 2D Arrays of Hexagonal Plasmonic Necklaces for Enhanced Second Harmonic Generation.

    PubMed

    Gómez-Tornero, Alejandro; Tserkezis, Christos; Mateos, Luis; Bausá, Luisa E; Ramírez, Mariola O

    2017-02-10

    Hexagonal plasmonic necklaces of silver nanoparticles organized in 2D superlattices on functional ferroelectric templates are fabricated in large-scale spatial regions by using a surfactant-free photo-deposition process. The plasmonic necklaces support broad radiative plasmonic resonances allowing the enhancement of second harmonic generation (SHG) at the ferroelectric domain boundaries. A 400-fold SHG enhancement is achieved at the near-UV spectral region with subsequent interest for technological applications.

  6. Dosimetric characteristics of the novel 2D ionization chamber array OCTAVIUS Detector 1500

    SciTech Connect

    Stelljes, T. S. Looe, H. K.; Chofor, N.; Poppe, B.; Harmeyer, A.; Reuter, J.; Harder, D.

    2015-04-15

    Purpose: The dosimetric properties of the OCTAVIUS Detector 1500 (OD1500) ionization chamber array (PTW-Freiburg, Freiburg, Germany) have been investigated. A comparative study was carried out with the OCTAVIUS Detector 729 and OCTAVIUS Detector 1000 SRS arrays. Methods: The OD1500 array is an air vented ionization chamber array with 1405 detectors in a 27 × 27 cm{sup 2} measurement area arranged in a checkerboard pattern with a chamber-to-chamber distance of 10 mm in each row. A sampling step width of 5 mm can be achieved by merging two measurements shifted by 5 mm, thus fulfilling the Nyquist theorem for intensity modulated dose distributions. The stability, linearity, and dose per pulse dependence were investigated using a Semiflex 31013 chamber (PTW-Freiburg, Freiburg, Germany) as a reference detector. The effective depth of measurement was determined by measuring TPR curves with the array and a Roos chamber type 31004 (PTW-Freiburg, Freiburg, Germany). Comparative output factor measurements were performed with the array, the Semiflex 31010 ionization chamber and the Diode 60012 (both PTW-Freiburg, Freiburg, Germany). The energy dependence of the OD1500 was measured by comparing the array’s readings to those of a Semiflex 31010 ionization chamber for varying mean photon energies at the depth of measurement, applying to the Semiflex chamber readings the correction factor k{sub NR} for nonreference conditions. The Gaussian lateral dose response function of a single array detector was determined by searching the convolution kernel suitable to convert the slit beam profiles measured with a Diode 60012 into those measured with the array’s central chamber. An intensity modulated dose distribution measured with the array was verified by comparing a OD1500 measurement to TPS calculations and film measurements. Results: The stability and interchamber sensitivity variation of the OD1500 array were within ±0.2% and ±0.58%, respectively. Dose linearity was within 1

  7. Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer

    NASA Astrophysics Data System (ADS)

    Iwasaki, Ryosuke; Takagi, Ryo; Nagaoka, Ryo; Jimbo, Hayato; Yoshizawa, Shin; Saijo, Yoshifumi; Umemura, Shin-ichiro

    2016-07-01

    Shear wave elastography (SWE) is expected to be a noninvasive monitoring method of high-intensity focused ultrasound (HIFU) treatment. However, conventional SWE techniques encounter difficulty in inducing shear waves with adequate displacements in deep tissue. To observe tissue coagulation at the HIFU focal depth via SWE, in this study, we propose using a two-dimensional-array therapeutic transducer for not only HIFU exposure but also creating shear sources. The results show that the reconstructed shear wave velocity maps detected the coagulated regions as the area of increased propagation velocity even in deep tissue. This suggests that “HIFU-push” shear elastography is a promising solution for the purpose of coagulation monitoring in deep tissue, because push beams irradiated by the HIFU transducer can naturally reach as deep as the tissue to be coagulated by the same transducer.

  8. A Novel 2-D Coherent DOA Estimation Method Based on Dimension Reduction Sparse Reconstruction for Orthogonal Arrays

    PubMed Central

    Wang, Xiuhong; Mao, Xingpeng; Wang, Yiming; Zhang, Naitong; Li, Bo

    2016-01-01

    Based on sparse representations, the problem of two-dimensional (2-D) direction of arrival (DOA) estimation is addressed in this paper. A novel sparse 2-D DOA estimation method, called Dimension Reduction Sparse Reconstruction (DRSR), is proposed with pairing by Spatial Spectrum Reconstruction of Sub-Dictionary (SSRSD). By utilizing the angle decoupling method, which transforms a 2-D estimation into two independent one-dimensional (1-D) estimations, the high computational complexity induced by a large 2-D redundant dictionary is greatly reduced. Furthermore, a new angle matching scheme, SSRSD, which is less sensitive to the sparse reconstruction error with higher pair-matching probability, is introduced. The proposed method can be applied to any type of orthogonal array without requirement of a large number of snapshots and a priori knowledge of the number of signals. The theoretical analyses and simulation results show that the DRSR-SSRSD method performs well for coherent signals, which performance approaches Cramer–Rao bound (CRB), even under a single snapshot and low signal-to-noise ratio (SNR) condition. PMID:27649191

  9. 2D Ultrasound Sparse Arrays Multi-Depth Radiation Optimization Using Simulated Annealing and Spiral-Array Inspired Energy Functions.

    PubMed

    Roux, Emmanuel; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Robini, Marc; Liebgott, Herve

    2016-08-24

    Full matrix arrays are excellent tools for 3D ultrasound imaging, but the required number of active elements is too high to be individually controlled by an equal number of scanner channels. The number of active elements is significantly reduced by the sparse array techniques, but the position of the remaining elements must be carefully optimized. This issue is here faced by introducing novel energy functions in the simulated annealing algorithm. At each iteration step of the optimization process, one element is freely translated and the associated radiated pattern is simulated. To control the pressure field behavior at multiple depths, three energy functions inspired by the pressure field radiated by a Blackman-tapered spiral array are introduced. Such energy functions aim at limiting the main lobe width while lowering the side lobe and grating lobe levels at multiple depths. Numerical optimization results illustrate the influence of the number of iterations, pressure measurement points and depths as well as the influence of the energy function definition on the optimized layout. It is also shown that performance close to- or even better than the one provided by a spiral array, here assumed as reference, may be obtained. The finite-time convergence properties of simulated annealing allow the duration of the optimization process to be set in advance.

  10. 2-D Ultrasound Sparse Arrays Multidepth Radiation Optimization Using Simulated Annealing and Spiral-Array Inspired Energy Functions.

    PubMed

    Roux, Emmanuel; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Robini, Marc C; Liebgott, Herve

    2016-12-01

    Full matrix arrays are excellent tools for 3-D ultrasound imaging, but the required number of active elements is too high to be individually controlled by an equal number of scanner channels. The number of active elements is significantly reduced by the sparse array techniques, but the position of the remaining elements must be carefully optimized. This issue is faced here by introducing novel energy functions in the simulated annealing (SA) algorithm. At each iteration step of the optimization process, one element is freely translated and the associated radiated pattern is simulated. To control the pressure field behavior at multiple depths, three energy functions inspired by the pressure field radiated by a Blackman-tapered spiral array are introduced. Such energy functions aim at limiting the main lobe width while lowering the side lobe and grating lobe levels at multiple depths. Numerical optimization results illustrate the influence of the number of iterations, pressure measurement points, and depths, as well as the influence of the energy function definition on the optimized layout. It is also shown that performance close to or even better than the one provided by a spiral array, here assumed as reference, may be obtained. The finite-time convergence properties of SA allow the duration of the optimization process to be set in advance.

  11. SU-E-T-758: To Determine the Source Dwell Positions of HDR Brachytherapy Using 2D 729 Ion Chamber Array

    SciTech Connect

    Kumar, Syam; Sitha

    2015-06-15

    Purpose: Determination of source dwell positions of HDR brachytherapy using 2D 729 ion chamber array Methods: Nucletron microselectron HDR and PTW 2D array were used for the study. Different dwell positions were assigned in the HDR machine. Rigid interstitial needles and vaginal applicator were positioned on the 2D array. The 2D array was exposed for this programmed dwell positions. The positional accuracy of the source was analyzed after the irradiation of the 2D array. This was repeated for different dwell positions. Different test plans were transferred from the Oncentra planning system and irradiated with the same applicator position on the 2D array. The results were analyzed using the in house developed excel program. Results: Assigned dwell positions versus corresponding detector response were analyzed. The results show very good agreement with the film measurements. No significant variation found between the planned and measured dwell positions. Average dose response with 2D array between the planned and nearby dwell positions was found to be 0.0804 Gy for vaginal cylinder applicator and 0.1234 Gy for interstitial rigid needles. Standard deviation between the doses for all the measured dwell positions for interstitial rigid needle for 1 cm spaced positions were found to be 0.33 and 0.37 for 2cm spaced dwell positions. For intracavitory vaginal applicator this was found to be 0.21 for 1 cm spaced dwell positions and 0.06 for 2cm spaced dwell positions. Intracavitory test plans reproduced on the 2D array with the same applicator positions shows the ideal dose distribution with the TPS planned. Conclusion: 2D array is a good tool for determining the dwell position of HDR brachytherapy. With the in-house developed program in excel it is easy and accurate. The traditional way with film analysis can be replaced by this method, as the films will be more costly.

  12. Innovative techniques for the production of low cost 2D laser diode arrays

    NASA Astrophysics Data System (ADS)

    1990-05-01

    The objective of this program was to develop a low cost fabrication method for high performance laser diode arrays. The program focussed on reliable and cost effective ways to grow, assemble and test diode bars of molecular beam epitaxy material. Quantum well laser structures were grown on 2 and 3 GaAs substrates. These wafers were photolithographically processed, scribed into bars, and the bars assembled by various techniques. The assemblies were tested for performance, reproducibility, and reliability. The originally proposed assembly, a grooved BeO block, was evaluated and abandoned as unreliable. However, a simplified bar and individual BeO substrate assembly method was developed, and state of the art results achieved on robust 1 cm linear diode arrays, which survived repeated high power testing to power level in excess of 80 watts/bar. This method may be scaled up for multiple bar assemblies without additional complexity by adding laser bars and BeO spacers as required. The BeO sub-mounts are coated prior to assembly in such a fashion to provide a low resistance series connection to each bar in the array, similar to the grooved substrate series connection geometry.

  13. A rapidly modulated multifocal detection scheme for parallel acquisition of Raman spectra from a 2-D focal array.

    PubMed

    Kong, Lingbo; Chan, James

    2014-07-01

    We report the development of a rapidly modulated multifocal detection scheme that enables full Raman spectra (~500-2000 cm(-1)) from a 2-D focal array to be acquired simultaneously. A spatial light modulator splits a laser beam to generate an m × n multifocal array. Raman signals generated within each focus are projected simultaneously into a spectrometer and imaged onto a TE-cooled CCD camera. A shuttering system using different masks is constructed to collect the superimposed Raman spectra of different multifocal patterns. The individual Raman spectrum from each focus is then retrieved from the superimposed spectra with no crosstalk using a postacquisition data processing algorithm. This system is expected to significantly improve the speed of current Raman-based instruments such as laser tweezers Raman spectroscopy and hyperspectral Raman imaging.

  14. Design and Fabrication of a Wide-Aperture HIFU Annular Array Transducer for the Treatment of Deep-Seated Tumors

    NASA Astrophysics Data System (ADS)

    Chen, Gin-Shin; Chang, Hsu; Kuo, Yi-Yuan; Lin, Winli; Chen, Wen-Shiang; Tseng, Wen-Yih

    2011-09-01

    In HIFU treatment applications, the annular array transducer is a feasible solution for the clinical/engineering requirements which are as follows: ablation of tumors deep inside body, electronic dynamic focusing in the depth direction, simple configuration/operation, and lower cost due to fewer elements/channels of amplifier. A 12 cm-diameter, 12 cm-radius-of-curvature annular array transducer has been developed in this study. The pseudo-inverse method was adopted to calculate the desired phase of each element for focusing, and the Rayleigh-Summerfield integral was used to obtain the ultrasonic pressure field. In the simulation, the operating frequency was 0.9 MHz, and the acoustic medium was water. A piece of 1-3 piezocomposite was fabricated using the dice and fill technique for the pilot test. The dimension of the sample was 4×2 cm, and it was thermally shaped using a spherical mold of 12 cm in radius. The results of the simulation showed that the focus could not be moved electronically in the depth direction until the number of elements (annuli) was equal to or higher than 5, and the dynamic focusing range increased as the number of elements increased. The intensity at the acoustic window or skin was also estimated from the simulated results and was only 0.03% of the intensity at focus. The curved composite sample was tested using an impedance analyser and a radiation force balance. The resonant frequency and electro-acoustic efficiency were measured to be 0.914 MHz and 65%, respectively. The results of the simulation can provide a design guideline for the development of different-size HIFU annular array transducers. A prototype of the HIFU annular array transducer designed is being fabricated in-house.

  15. Linear-array-based photoacoustic imaging of human microcirculation with a range of high frequency transducer probes

    NASA Astrophysics Data System (ADS)

    Zafar, Haroon; Breathnach, Aedán; Subhash, Hrebesh M.; Leahy, Martin J.

    2015-05-01

    Photoacoustic imaging (PAI) with a linear-array-based probe can provide a convenient means of imaging the human microcirculation within its native structural context and adds functional information. PAI using a multielement linear transducer array combined with multichannel collecting system was used for in vivo volumetric imaging of the blood microcirculation, the total concentration of hemoglobin (HbT), and the hemoglobin oxygen saturation (sO2) within human tissue. Three-dimensional (3-D) PA and ultrasound (US) volumetric scans were acquired from the forearm skin by linearly translating the transducer with a stepper motor over a region of interest, while capturing two-dimensional images using 15, 21, and 40 MHz frequency transducer probes. For the microvasculature imaging, PA images were acquired at 800- and 1064-nm wavelengths. For the HbT and sO2 estimates, PA images were collected at 750- and 850-nm wavelengths. 3-D microcirculation, HbT, and sO2 maps of the forearm skin were obtained from normal subjects. The linear-array-based PAI has been found promising in terms of resolution, imaging depth, and imaging speed for in vivo microcirculation imaging within human skin. We believe that a reflection type probe, similar to existing clinical US probes, is most likely to succeed in real clinical applications. Its advantages include ease of use, speed, and familiarity for radiographers and clinicians.

  16. Comparison of dose accuracy between 2D array detectors and Epid for IMRT of nasopharynx cancer

    NASA Astrophysics Data System (ADS)

    Altiparmak, Duygu; Coban, Yasin; Merih, Adil; Avci, Gulhan Guler; Yigitoglu, Ibrahim

    2017-02-01

    The aim of this study is to perform the dosimetric controls of nasopharynx cancer patient's intensity modulated radiation therapy (IMRT) treatment plans that generated by treatment planing system (TPS) with using two different equipments and also to make comparison in terms of their reliability and practicability. This study has been performed at Radiation Oncology Department, Medicine Faculty in Gaziosmanpasa University by using the VARIAN CLINAC DHX linear accelerator which is operated in the range of 6 MV. Selected 10 nasopharynx patients planned in TPS (Eclipce V13.0) and approved for treatment by medical physicists and radiation oncologists. These plans recalculated on EPID and mapcheck which are 2D dosimetric equipments to obtain dose maps. To compare these two dosimetric equipments gamma analysis method has been preferred. Achieved data is presented and discussed.

  17. Light Trapping Enhancement in a Thin Film with 2D Conformal Periodic Hexagonal Arrays

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Zhou, Suqiong; Wang, Dan; He, Jian; Zhou, Jun; Li, Xiaofeng; Gao, Pingqi; Ye, Jichun

    2015-07-01

    Applying a periodic light trapping array is an effective method to improve the optical properties in thin-film solar cells. In this work, we experimentally and theoretically investigate the light trapping properties of two-dimensional periodic hexagonal arrays in the framework of a conformal amorphous silicon film. Compared with the planar reference, the double-sided conformal periodic structures with all feature periodicities of sub-wavelength (300 nm), mid-wavelength (640 nm), and infrared wavelength (2300 nm) show significant broadband absorption enhancements under wide angles. The films with an optimum periodicity of 300 nm exhibit outstanding antireflection and excellent trade-off between light scattering performance and parasitic absorption loss. The average absorption of the optimum structure with a thickness of 160 nm is 64.8 %, which is much larger than the planar counterpart of 38.5 %. The methodology applied in this work can be generalized to rational design of other types of high-performance thin-film photovoltaic devices based on a broad range of materials.

  18. Arrayed van der Waals Vertical Heterostructures Based on 2D GaSe Grown by Molecular Beam Epitaxy.

    PubMed

    Yuan, Xiang; Tang, Lei; Liu, Shanshan; Wang, Peng; Chen, Zhigang; Zhang, Cheng; Liu, Yanwen; Wang, Weiyi; Zou, Yichao; Liu, Cong; Guo, Nan; Zou, Jin; Zhou, Peng; Hu, Weida; Xiu, Faxian

    2015-05-13

    Vertically stacking two-dimensional (2D) materials can enable the design of novel electronic and optoelectronic devices and realize complex functionality. However, the fabrication of such artificial heterostructures on a wafer scale with an atomically sharp interface poses an unprecedented challenge. Here, we demonstrate a convenient and controllable approach for the production of wafer-scale 2D GaSe thin films by molecular beam epitaxy. In situ reflection high-energy electron diffraction oscillations and Raman spectroscopy reveal a layer-by-layer van der Waals epitaxial growth mode. Highly efficient photodetector arrays were fabricated, based on few-layer GaSe on Si. These photodiodes show steady rectifying characteristics and a high external quantum efficiency of 23.6%. The resultant photoresponse is super-fast and robust, with a response time of 60 μs. Importantly, the device shows no sign of degradation after 1 million cycles of operation. We also carried out numerical simulations to understand the underlying device working principles. Our study establishes a new approach to produce controllable, robust, and large-area 2D heterostructures and presents a crucial step for further practical applications.

  19. A Free-Standing and Self-Healable 2D Supramolecular Material Based on Hydrogen Bonding: A Nanowire Array with Sub-2-nm Resolution.

    PubMed

    Li, Ming; Song, Mengyao; Wu, Guitai; Tang, Zhenyu; Sun, Yunfeng; He, Yunbin; Li, Jinhua; Li, Lei; Gu, Haoshuang; Liu, Xiong; Ma, Chuang; Peng, Zefei; Ai, Zhaoquan; Lewis, David J

    2017-04-07

    In many 2D materials reported thus far, the forces confining atoms in a 2D plane are often strong interactions, such as covalent bonding. Herein, the first demonstration that hydrogen (H)-bonding can be utilized to assemble polydiacetylene (a conductive polymer) toward a 2D material, which is stable enough to be free-standing, is shown. The 2D material is well characterized by a large number of techniques (mainly different microscopy techniques). The H-bonding allows splitting of the material into ribbons, which can reassemble, similar to a zipper, leading to the first example of a healable 2D material. Moreover, such technology can easily create 2D, organic, conductive nanowire arrays with sub-2-nm resolution. This material may have potential applications in stretchable electronics and nanowire cross-bar arrays.

  20. Design and analysis of an ultrasonic transducer micro-array for near-field imaging of age related macular degeneration

    NASA Astrophysics Data System (ADS)

    Clarke, Clyde C.

    Obtaining quantitative data about tissue has been a goal of ultrasonography since its inception, such data provides invaluable information for diagnosing disease. Traditional ultrasound imaging techniques (B-Mode, C-Mode and M-Mode) have been used to diagnose diseases from images of organs. However, images obtained via these techniques, in some cases, provide limited information about the pathology of the tissues being examined. This is because much of the information that is used for diagnosis depends upon qualitative cues emerging from the echoic profiles of bulk tissue properties. In order to obtain quantitative information about tissue properties, an understanding of the interaction of the ultrasound system proper and tissue is necessary. This requires the creation of detailed models of both the ultrasound imaging system and tissue. These models enable us to obtain quantitative information about tissue, by examining features of backscattered data, generated by the interaction of the ultrasonic imaging system with the tissue under examination. Imaging systems are typically designed with little consideration of the constraints of the imaging environment or the acoustic features of the tissue which include impedance, scatterer size, shape and density. We propose to take into account the physical properties of tissue in designing ultrasonic imaging arrays. We develop a framework for designing ultrasonic imaging systems (primarily the transducer and transducer array) with physical parameters that are tuned to detect specific features of tissue. The design methodology obtains the parameters of an NxN transducer array constrained to a size of e.g. 2mm x 2mm (the size required for medical imaging). The physical parameters of the transducer elements are also obtained for capacitive micromachined ultrasonic transducer (cMUT) technology. In addition to the overall size constraints (2 mm x 2 mm), several other constraints put limitation upon the possible system

  1. A MEMS probe card with 2D dense-arrayed 'hoe'-shaped metal tips

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Li, Xinxin; Feng, Songlin

    2008-05-01

    In this paper, we present a novel MEMS probe card with densely area-arrayed microprobes for the wafer-level test of advanced ICs. In a 4 inch silicon wafer, a total of about 110 000 probe tips can be simultaneously fabricated, with a two-dimensional tip pitch of 240 µm × 160 µm. The 'hoe-shaped' microprobe structure is composed of one or two planar arms and an up-tilted tip, both of which are high-yield fabricated with metal micromachining techniques including low-stress nickel electroplating. With micromachined cavities, the silicon wafer serves as moulds for the up-tilted metal probes. Then, the microprobes are finally flip-chip packaged to a ceramic board for further connection to automatic testing equipment (ATE). After the probe structures are formed, the silicon wafer is removed completely by using TMAH wet etching, while the probes are freed by silicon laterally etching. The measured spring constants for all the three types of probes agree well with the designed values. As both mechanical anchors and electrical interconnections, the Sn-Ag solder-bumps feature satisfactory properties. The tested contact resistance values for three different thin-film pads on dies under test are always below 0.8 Ω, while the current leakage between two adjacent probes is only about 150 pA under 3.3 V.

  2. Simulations and measurements of 3-D ultrasonic fields radiated by phased-array transducers using the westervelt equation.

    PubMed

    Doinikov, Alexander A; Novell, Anthony; Calmon, Pierre; Bouakaz, Ayache

    2014-09-01

    The purpose of this work is to validate, by comparing numerical and experimental results, the ability of the Westervelt equation to predict the behavior of ultrasound beams generated by phased-array transducers. To this end, the full Westervelt equation is solved numerically and the results obtained are compared with experimental measurements. The numerical implementation of the Westervelt equation is performed using the explicit finite-difference time-domain method on a three-dimensional Cartesian grid. The validation of the developed numerical code is first carried out by using experimental data obtained for two different focused circular transducers in the regimes of small-amplitude and finite-amplitude excitations. Then, the comparison of simulated and measured ultrasonic fields is extended to the case of a modified 32-element array transducer. It is shown that the developed code is capable of correctly predicting the behavior of the main lobe and the grating lobes in the cases of zero and nonzero steering angles for both the fundamental and the second-harmonic components.

  3. A Flexible Ultrasound Transducer Array with Micro-Machined Bulk PZT

    PubMed Central

    Wang, Zhe; Xue, Qing-Tang; Chen, Yuan-Quan; Shu, Yi; Tian, He; Yang, Yi; Xie, Dan; Luo, Jian-Wen; Ren, Tian-Ling

    2015-01-01

    This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications. PMID:25625905

  4. Integrated transducer systems

    NASA Astrophysics Data System (ADS)

    Syrzycki, Marek; Parameswaran, M.; Chapman, Glenn H.

    1995-06-01

    In the paper we discuss possible solutions to problems pertaining the implementation of integrated transducer systems, based on examples of WSI image transducers, magnetic field sensors and tactile sensors arrays, as well as arrays of chemical sensors. We also present the issues common to large area transducer arrays, such as building-in redundancy into WSI transducer arrays, and frequency domain circuits for the future communication pathway in integrated transducer systems. Advantages of standard CMOS technology, enhanced with various post-fabrication processes such as silicon micromachining and laser linking, are also stressed.

  5. The development of a 2D ultrasonic array system for the in situ inspection of single crystal turbine blades

    NASA Astrophysics Data System (ADS)

    Lane, C. J. L.; Dunhill, A. K.; Drinkwater, B. W.; Wilcox, P. D.

    2012-05-01

    Modern jet-engine turbine blades are cast from single crystals of nickel-based superalloys because of the excellent mechanical properties that these materials exhibit at high temperatures. However, the anisotropic behavior of single crystals causes difficulties when using ultrasound to inspect these components for defects that could potentially initiate in-service. This paper describes the development of a 2D ultrasonic array system for the in situ inspection of these components. The problems associated with the inspection of anisotropic single crystal materials such as the directional dependence of the ultrasonic velocity, beam directivities in anisotropic media and the variation in the crystallographic orientation, are all addressed in this paper. In addition, constraints regarding access to the inspection location within the engine are discussed. Finally, the defect detection sensitivity and sizing capability of the developed system is evaluated.

  6. WE-AB-BRB-04: A Novel Monolithic Silicon 2D Detector Array for Use in Stereotactic Applications

    SciTech Connect

    Gargett, M; Petasecca, M; Alnaghy, S; Rosenfeld, A; Oborn, B; Metcalfe, P

    2015-06-15

    Purpose: To assess the capability of a novel 2D monolithic silicon detector array in measuring stereotactic photon fields. Methods: The silicon array detector used in this work, named Magic Plate-512 (MP512), is a thin monolithic silicon wafer (52 × 52 × 0.47 mm{sup 3}) with 512 ion-implanted diodes (0.5 × 0.5 mm{sup 2}). Adjacent pixels are spaced evenly with 2 mm pitch, covering a maximum detection area 46 mm wide. Its fast, FPGA based read-out system is synchronised with the linac to allow readout of all pixels pulse-by-pulse. A clinical SABR lung plan (consisting of 9 single segment beams, 6MV) was measured with the array at 1.5 cm depth in a solid water phantom (100 cm SSD). The typical field size was in the range of 3 × 3 cm{sup 2} to 4 × 4 cm{sup 2}. Each beam was delivered at perpendicular incidence to the detector plane so as to avoid the need for angular dependence corrections. The fields were measured under the same conditions using Gafchromic EBT3 film for comparison. The film was scanned at 72 dpi resolution, with the red channel data used for analysis. Results: Average gamma passing rates of (92.3 ± 1.8) % for 2%/2mm criteria, and (86.6 ± 2.3) % for 1%/2mm criteria were achieved for MP512, using EBT3 film as the reference distribution. The detector array was able to accurately measure the full-width-at-half-maximum (FWHM), to within (0.77 ± 0.01) mm accuracy when compared to film. The penumbral widths (80%-20%) were measured to within (0.30 ± 0.01) mm accuracy to film. Conclusion: The MP512 is a feasible option for measurement of stereotactic photon fields, with its high density of detection points making it useful for small field applications. The prototype array has demonstrated merit; in the future the development of a larger array detection area would be beneficial for clinical applications.

  7. A 2D ion chamber array audit of wedged and asymmetric fields in an inhomogeneous lung phantom

    SciTech Connect

    Lye, Jessica; Dunn, Leon Alves, Andrew; Kenny, John; Lehmann, Joerg; Williams, Ivan; Kron, Tomas; Cole, Andrew

    2014-10-15

    Purpose: The Australian Clinical Dosimetry Service (ACDS) has implemented a new method of a nonreference condition Level II type dosimetric audit of radiotherapy services to increase measurement accuracy and patient safety within Australia. The aim of this work is to describe the methodology, tolerances, and outcomes from the new audit. Methods: The ACDS Level II audit measures the dose delivered in 2D planes using an ionization chamber based array positioned at multiple depths. Measurements are made in rectilinear homogeneous and inhomogeneous phantoms composed of slabs of solid water and lung. Computer generated computed tomography data sets of the rectilinear phantoms are supplied to the facility prior to audit for planning of a range of cases including reference fields, asymmetric fields, and wedged fields. The audit assesses 3D planning with 6 MV photons with a static (zero degree) gantry. Scoring is performed using local dose differences between the planned and measured dose within 80% of the field width. The overall audit result is determined by the maximum dose difference over all scoring points, cases, and planes. Pass (Optimal Level) is defined as maximum dose difference ≤3.3%, Pass (Action Level) is ≤5.0%, and Fail (Out of Tolerance) is >5.0%. Results: At close of 2013, the ACDS had performed 24 Level II audits. 63% of the audits passed, 33% failed, and the remaining audit was not assessable. Of the 15 audits that passed, 3 were at Pass (Action Level). The high fail rate is largely due to a systemic issue with modeling asymmetric 60° wedges which caused a delivered overdose of 5%–8%. Conclusions: The ACDS has implemented a nonreference condition Level II type audit, based on ion chamber 2D array measurements in an inhomogeneous slab phantom. The powerful diagnostic ability of this audit has allowed the ACDS to rigorously test the treatment planning systems implemented in Australian radiotherapy facilities. Recommendations from audits have led to

  8. Terasonic Excitations in 2D Gold Nanoparticle Arrays in a Water Matrix as Revealed by Atomistic Simulations

    DOE PAGES

    Bolmatov, Dima; Zhernenkov, Mikhail; Zav’yalov, Dmitry; ...

    2016-08-19

    Here in this work we report on terahertz phononic excitations in 2D gold nanoparticle arrays in a water matrix through a series of large-scale molecular dynamics simulations. For the first time, we observe acoustic Dirac-like crossings in H (H2O) atomic (molecular) networks which emerge due to an intraband phononic scattering. These crossings are the phononic fingerprints of ice-like arrangements of H (H2O) atomic (molecular) networks at nanometer scale. We reveal how phononic excitations in metallic nanoparticles and the water matrix reciprocally impact on one another providing the mechanism for the THz phononics manipulation via structural engineering. In addition, we showmore » that by tuning the arrangement of 2D gold nanoparticle assemblies the Au phononic polarizations experience sub-terahertz hybridization (Kohn anomaly) due to surface electron-phonon relaxation processes. This opens the way for the sound control and manipulation in soft matter metamaterials at nanoscale.« less

  9. Terasonic Excitations in 2D Gold Nanoparticle Arrays in a Water Matrix as Revealed by Atomistic Simulations

    SciTech Connect

    Bolmatov, Dima; Zhernenkov, Mikhail; Zav’yalov, Dmitry; Cai, Yong Q.; Cunsolo, Alessandro

    2016-08-19

    Here in this work we report on terahertz phononic excitations in 2D gold nanoparticle arrays in a water matrix through a series of large-scale molecular dynamics simulations. For the first time, we observe acoustic Dirac-like crossings in H (H2O) atomic (molecular) networks which emerge due to an intraband phononic scattering. These crossings are the phononic fingerprints of ice-like arrangements of H (H2O) atomic (molecular) networks at nanometer scale. We reveal how phononic excitations in metallic nanoparticles and the water matrix reciprocally impact on one another providing the mechanism for the THz phononics manipulation via structural engineering. In addition, we show that by tuning the arrangement of 2D gold nanoparticle assemblies the Au phononic polarizations experience sub-terahertz hybridization (Kohn anomaly) due to surface electron-phonon relaxation processes. This opens the way for the sound control and manipulation in soft matter metamaterials at nanoscale.

  10. Constraining Polarized Foregrounds for EoR Experiments I: 2D Power Spectra from the PAPER-32 Imaging Array

    NASA Astrophysics Data System (ADS)

    Kohn, S. A.; Aguirre, J. E.; Nunhokee, C. D.; Bernardi, G.; Pober, J. C.; Ali, Z. S.; Bradley, R. F.; Carilli, C. L.; DeBoer, D. R.; Gugliucci, N. E.; Jacobs, D. C.; Klima, P.; MacMahon, D. H. E.; Manley, J. R.; Moore, D. F.; Parsons, A. R.; Stefan, I. I.; Walbrugh, W. P.

    2016-06-01

    Current generation low-frequency interferometers constructed with the objective of detecting the high-redshift 21 cm background aim to generate power spectra of the brightness temperature contrast of neutral hydrogen in primordial intergalactic medium. Two-dimensional (2D) power spectra (power in Fourier modes parallel and perpendicular to the line of sight) that formed from interferometric visibilities have been shown to delineate a boundary between spectrally smooth foregrounds (known as the wedge) and spectrally structured 21 cm background emission (the EoR window). However, polarized foregrounds are known to possess spectral structure due to Faraday rotation, which can leak into the EoR window. In this work we create and analyze 2D power spectra from the PAPER-32 imaging array in Stokes I, Q, U, and V. These allow us to observe and diagnose systematic effects in our calibration at high signal-to-noise within the Fourier space most relevant to EoR experiments. We observe well-defined windows in the Stokes visibilities, with Stokes Q, U, and V power spectra sharing a similar wedge shape to that seen in Stokes I. With modest polarization calibration, we see no evidence that polarization calibration errors move power outside the wedge in any Stokes visibility to the noise levels attained. Deeper integrations will be required to confirm that this behavior persists to the depth required for EoR detection.

  11. On comparison between 2-D magnetotelluric FEM modering using triangular and rectangular elements along sea-land array

    NASA Astrophysics Data System (ADS)

    Minami, T.; Toh, H.; Oshiman, N.

    2010-12-01

    The San-in region of SW Japan is classified as an area of high seismicity/volcanic activity, and thus many magneto-telluric (MT) and seismic observations have been conducted. Below this region, the Philippine Sea plate and the Pacific Sea plate are subducting into shallow and deep parts respectively, which makes the subsurface electrical structures very complicated. For example, Adakite rocks from Mt. Daisen, which is the biggest volcano made in the Quaternary, appeared penetrating the alkari rocks of theTertiary(Kimura et al., 2003) In addition the epicenters shallower than 30km in this region was broad planely in the west of Daisen and along about a east-west line in the east of Daisen (Shiozaki et al., 2003). In the San-in region, such seismic/volcanic properties have been studied only using land surveys. However, the studies based on land surveys are not enough to understand the epicenter distributions and where the edge of Philippine Sea plate reaches now, because Mt. Daisen and the distributed epicenters are located near the coastline. Our group, therefore, started seafloor electromagnetic (EM) observations off the San-in region in 2006. As a result, we have obtained seafloor EM data at 10 sites to date. In this study, we compared the accuracy of EM responses calculated by different two-dimensional (2-D) FEM codes using triangular and rectangular elements in order to make a new 2-D inversion code available along sea-land array. That’s why because there are few 2-D MT inversion codes available in a region with coastline. We used Ogawa and Uchida’s (1996) code for rectangular elements and Utada’s (1987) code for triangular ones. We worked on a bathymetry with a constant inclination between the land-sea boundary whose horizontal-to-vertical ratio is 25 up to 4km depth. Using this bathymetry, we conducted 2-D transverse magnetic (TM) forward modeling for both elements and compared the apparent resistivities and phases of MT impedances. As for triangular

  12. Estimation and application of 2-D scattering matrices for sparse array imaging of simulated damage in composite panels

    NASA Astrophysics Data System (ADS)

    Williams, Westin B.; Michaels, Thomas E.; Michaels, Jennifer E.

    2017-02-01

    Reliable detection of damage in composites is critically important for failure prevention in the aerospace industry since these materials are more frequently being used in high stress applications. Structural health monitoring (SHM) via guided wave sensors mounted on or embedded within a composite structure can help detect and localize damage in real-time while potentially reducing overall maintenance costs. One approach to guided wave SHM is sparse array imaging via the minimum variance algorithm, and it has been shown in prior work that incorporating expected scattering from defects of interest can improve the quality of damage localization and characterization. For this study, simulated damage in the form of attached magnets was used for estimating scattering from recorded wavefield data. Data were recorded on a circle centered at the damage location from multiple incident directions before and after the magnets were attached. Baseline subtraction is used to estimate scattering patterns for each incident direction, and these patterns are combined and interpolated to form a full 2-D scattering matrix. This matrix is then incorporated into the minimum variance imaging algorithm, and the efficacy of this scattering estimation methodology is evaluated by comparing the resulting sparse array images to those generated using simpler scattering assumptions.

  13. Combining the switched-beam and beam-steering capabilities in a 2-D phased array antenna system

    NASA Astrophysics Data System (ADS)

    Tsai, Yi-Che; Chen, Yin-Bing; Hwang, Ruey-Bing

    2016-01-01

    This paper presents the development, fabrication, and measurement of a novel beam-forming system consisting of 16 subarray antennas, each containing four aperture-coupled patch antennas, and the application of this system in smart wireless communication systems. The beam patterns of each of the subarray antennas can be switched toward one of nine zones over a half space by adjusting the specific phase delay angles among the four antenna elements. Furthermore, when all subarrays are pointed at the same zone, slightly continuous beam steering in around 1° increments can be achieved by dynamically altering the progressive phase delay angle among the subarrays. Phase angle calibration was implemented by coupling each transmitter output and down converter into the in-phase/quadrature baseband to calculate the correction factor to the weight. In addition, to validate the proposed concepts and the fabricated 2-D phased array antenna system, this study measured the far-field radiation patterns of the aperture-coupled patch array integrated with feeding networks and a phase-calibration system to carefully verify its spatially switched-beam and beam-steering characteristics at a center frequency of 2.4 GHz which can cover the industrial, scientific, and medical band and some long-term evolution applications. In addition, measured results were compared with calculated results, and agreement between them was observed.

  14. Complex Source and Radiation Behaviors of Small Elements of Linear and Matrix Flexible Ultrasonic Phased-Array Transducers

    NASA Astrophysics Data System (ADS)

    Amory, V.; Lhémery, A.

    2008-02-01

    Inspection of irregular components is problematical: maladjustment of transducer shoes to surfaces causes aberrations. Flexible phased-arrays (FPAs) designed at CEA LIST to maximize contact are driven by adapted delay laws to compensate for irregularities. Optimizing FPA requires simulation tools. The behavior of one element computed by FEM is observed at the surface and its radiation experimentally validated. Efforts for one element prevent from simulating a FPA by FEM. A model is proposed where each element behaves as nonuniform source of stresses. Exact and asymptotic formulas for Lamb problem are used as convolution kernels for longitudinal, transverse and head waves; the latter is of primary importance for angle-T-beam inspections.

  15. SU-E-T-639: A Study On the Response of 2D Array Detector for VMAT Delivery for a Period of Two Years

    SciTech Connect

    Kumar, Syam; George, Anu

    2014-06-15

    Purpose: To evaluate the 2D array for radiation response for a period of 2 years. Methods: 45 VMAT plans already treated and quality assured before 2 years, 1.5 years and 1 year were selected for the study. Quality assurances of the plans were done using 2D array combined with Octavius phantom. Verification plans were recalculated without changing any parameters in Eclipse 10.0 TPS using the AAA algorithm. Response of 2D array to the plans treated before 2 years, 1.5 years and 1 year where evaluated. The results were analyzed using the Gamma analysis method with the standard gamma passing criteria of 3mm distance to agreement (DTA) and 3% dose difference (DD). Results: All the plans evaluated passed the gamma analysis with a percentage greater than 95, except for three cases. Higher gamma passing criteria where observed for all the analyzed plans, when analysis done before 2 years, 1.5 years and 1 year. The standard deviation of ± 1.38, ± 1.40,± 0.97 where observed between the plans when verification plans did before 2 years, 1.5 years and 1 year respectively. Same set of plans shows a standard deviation of ± 0.70, ± 1.36, and ± 1.18, when analysis done recently. A significance difference in response of the array when analysis done recently for the verification plans treated and quality assured before 2 years.This indicates a slightly reduced response of 2D array towards radiation response as the array gets older. Conclusion: It is found that 2D array shows a reduced response against radiation detection over a period of years. An onsite calibration of the instrument is recommended before the measurements. A dose correction factor can be applied if necessary to the results if the radiation response and efficiency of the array is very poor.

  16. Multi-view Hilbert transformation in full-ring-transducer-array based photoacoustic computed tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Lei; Li, Guo; Zhu, Liren; Xia, Jun; Wang, Lihong V.

    2016-03-01

    Photoacoustic tomography (PAT) exploits optical contrast and ultrasonic detection principles to form images of absorbed optical energy density within tissue. Based on the photoacoustic effect, PAT directly and quantitatively measures specific optical absorption. A full-ring ultrasonic transducer array based photoacoustic computed tomography (PACT) system was recently developed for small animal whole-body imaging with a full-view detection angle and high in-plane resolution (100 µm). However, due to the band-pass frequency response of the piezoelectric transducer elements, the reconstructed images present bipolar (both positive and negative) pixel values, which is artificial and counterintuitive for physicians and biologists seeking to interpret the image. Moreover, bipolar pixel values hinder quantification of physiological parameters, such as oxygen saturation and blood flow speed. Unipolar images can be obtained by deconvolving the raw channel data with the transducer's electrical impulse response and applying non-negativity during iteration, but this process requires complex transducer modeling and time-consuming computation. Here, we present a multi-view Hilbert transformation method to recover the unipolar initial pressure for full-ring PACT. Multi-view Hilbert transformation along the acoustic wave propagation direction minimizes reconstruction artifacts during envelope extraction and maintains the signal-to-noise ratio of the reconstructed images. The in-plane isotropic spatial resolution of this method was quantified to 168 μm within a 20 × 20 mm2 field of view. The effectiveness of the proposed algorithm was first validated by numerical simulations and then demonstrated with ex-vivo mouse brain structural imaging and in-vivo mouse wholebody imaging.

  17. Development of 2-D Array of Superconducting Magnesium Diboride (MgB2) for Far-IR Investigations of the Outer Planets and Icy Moons

    NASA Astrophysics Data System (ADS)

    Lakew, Brook

    2009-09-01

    A 2-D array of superconducting Magnesium Diboride(MgB2) far -IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.

  18. Extension of the crosstalk cancellation method in ultrasonic transducer arrays from the harmonic regime to the transient one.

    PubMed

    Bybi, A; Grondel, S; Assaad, J; Hladky-Hennion, A-C

    2014-02-01

    This paper describes a procedure to extend the crosstalk correction method presented in a previous paper [A. Bybi, S. Grondel, J. Assaad, A.-C. Hladky-Hennion, M. Rguiti, Reducing crosstalk in array structures by controlling the excitation voltage of individual elements: a feasibility study, Ultrasonics, 53 (6) (2013) 1135-1140] from the harmonic regime to the transient one. For this purpose a part of an ultrasonic transducer array radiating in water is modeled around the frequency 0.5 MHz using the finite element method. The study is carried out at low frequency in order to respect the same operating conditions than the previous paper. This choice facilitated the fabrication of the transducer arrays and the comparison of the numerical results with the experimental ones. The modeled array is composed of seventeen elements with the central element excited, while the others are grounded. The matching layers and the backing are not taken into account which limits the crosstalk only to the piezoelectric elements and fluid. This consideration reduces the structure density mesh and results in faster computation time (about 25 min for each configuration using a computer with a processor Intel Core i5-3210M, frequency 2.5 GHz and having 4 Go memory (RAM)). The novelty of this research work is to prove the efficiency of the crosstalk correction method in large frequency band as it is the case in medical imaging. The numerical results show the validity of the approach and demonstrate that crosstalk can be reduced by at least 13 dB in terms of displacement. Consequently, the directivity pattern of the individual element can be improved.

  19. In vivo liver tracking with a high volume rate 4D ultrasound scanner and a 2D matrix array probe

    NASA Astrophysics Data System (ADS)

    Lediju Bell, Muyinatu A.; Byram, Brett C.; Harris, Emma J.; Evans, Philip M.; Bamber, Jeffrey C.

    2012-03-01

    The effectiveness of intensity-modulated radiation therapy (IMRT) is compromised by involuntary motion (e.g. respiration, cardiac activity). The feasibility of processing ultrasound echo data to automatically estimate 3D liver motion for real-time IMRT guidance was previously demonstrated, but performance was limited by an acquisition speed of 2 volumes per second due to hardware restrictions of a mechanical linear array probe. Utilizing a 2D matrix array probe with parallel receive beamforming offered increased acquisition speeds and an opportunity to investigate the benefits of higher volume rates. In vivo livers of three volunteers were scanned with and without respiratory motion at volume rates of 24 and 48 Hz, respectively. Respiration was suspended via voluntary breath hold. Correlation-based, phase-sensitive 3D speckle tracking was applied to consecutively acquired volumes of echo data. Volumes were omitted at fixed intervals and 3D speckle tracking was re-applied to study the effect of lower scan rates. Results revealed periodic motion that corresponded with the heart rate or breathing cycle in the absence or presence of respiration, respectively. For cardiac-induced motion, volume rates for adequate tracking ranged from 8 to 12 Hz and was limited by frequency discrepancies between tracking estimates from higher and lower frequency scan rates. Thus, the scan rate of volume data acquired without respiration was limited by the need to sample the frequency induced by the beating heart. In respiratory-dominated motion, volume rate limits ranged from 4 to 12 Hz, interpretable from the root-mean-squared deviation (RMSD) from tracking estimates at 24 Hz. While higher volume rates yielded RMSD values less than 1 mm in most cases, lower volume rates yielded RMSD values of 2-6 mm.

  20. In vivo liver tracking with a high volume rate 4D ultrasound scanner and a 2D matrix array probe.

    PubMed

    Bell, Muyinatu A Lediju; Byram, Brett C; Harris, Emma J; Evans, Philip M; Bamber, Jeffrey C

    2012-03-07

    The effectiveness of intensity-modulated radiation therapy (IMRT) is compromised by involuntary motion (e.g. respiration, cardiac activity). The feasibility of processing ultrasound echo data to automatically estimate 3D liver motion for real-time IMRT guidance was previously demonstrated, but performance was limited by an acquisition speed of 2 volumes per second due to hardware restrictions of a mechanical linear array probe. Utilizing a 2D matrix array probe with parallel receive beamforming offered increased acquisition speeds and an opportunity to investigate the benefits of higher volume rates. In vivo livers of three volunteers were scanned with and without respiratory motion at volume rates of 24 and 48 Hz, respectively. Respiration was suspended via voluntary breath hold. Correlation-based, phase-sensitive 3D speckle tracking was applied to consecutively acquired volumes of echo data. Volumes were omitted at fixed intervals and 3D speckle tracking was re-applied to study the effect of lower scan rates. Results revealed periodic motion that corresponded with the heart rate or breathing cycle in the absence or presence of respiration, respectively. For cardiac-induced motion, volume rates for adequate tracking ranged from 8 to 12 Hz and was limited by frequency discrepancies between tracking estimates from higher and lower frequency scan rates. Thus, the scan rate of volume data acquired without respiration was limited by the need to sample the frequency induced by the beating heart. In respiratory-dominated motion, volume rate limits ranged from 4 to 12 Hz, interpretable from the root-mean-squared deviation (RMSD) from tracking estimates at 24 Hz. While higher volume rates yielded RMSD values less than 1 mm in most cases, lower volume rates yielded RMSD values of 2-6 mm.

  1. Application of Fresnel diffraction from a 2D array of reflective disks in optical profilometry of a flat surface

    NASA Astrophysics Data System (ADS)

    Darudi, Ahmad; Asgari, Pegah; Pourvais, Yousef

    2015-05-01

    Optical methods of three-dimensional profilometry have been of growing interest in both industrial and scientific applications. These techniques provide absolutely non-destructive measurement due to their non-contact nature and maintain their high precision in a large field of view. Most of these techniques however, are based on interferometry which happens to be considerably sensitive to environmental noises such as turbulence and vibration. We have used the phenomena of Fresnel diffraction from phase-steps instead of interferometry to maintain a higher precision and reduce sensitivity to environmental noises. This phenomena has been recently introduced as a method for precise measurement of wavelength, thickness and refractive index. A 2D array of reflective disks are placed above the test surface to provide the required phase-steps. In this paper, theoretical principles of Fresnel diffraction from phase-steps are discussed and the experimental results of testing an optical flat surface are presented. A flat mirror surface has been tested as an optical test surface and is been profiled. The results show that the method is precise and is not sensitive to environmental noises such as vibration and turbulence. Furthermore, the method seems to be a powerful means for testing of curved surfaces, too.

  2. A Comparative Analysis for Verification of IMRT and VMAT Treatment Plans using a 2-D and 3-D Diode Array

    NASA Astrophysics Data System (ADS)

    Dance, Michael J.

    With the added complexity of current radiation treatment dose delivery modalities such as IMRT (Intensity Modulated Radiation Therapy) and VMAT (Volumetric Modulated Arc Therapy), quality assurance (QA) of these plans become multifaceted and labor intensive. To simplify the patient specific quality assurance process, 2D or 3D diode arrays are used to measure the radiation fluence for IMRT and VMAT treatments which can then be quickly and easily compared against the planned dose distribution. Because the arrays that can be used for IMRT and VMAT patient-specific quality assurance are of different geometry (planar vs. cylindrical), the same IMRT or VMAT treatment plan measured by two different arrays could lead to different measured radiation fluences, regardless of the output and performance of linear accelerator. Thus, the purpose of this study is to compare patient specific QA results as measured by the MapCHECK 2 and ArcCHECK diode arrays for the same IMRT and VMAT treatment plans to see if one diode array consistently provides a closer comparison to reference data. Six prostate and three thoracic spine IMRT treatment plans as well as three prostate and three thoracic spine VMAT treatment plans were produced. Radiotherapy plans for this study were generated using the Pinnacle TPS v9.6 (Philips Radiation Oncology Systems, Fitchburg, WI) using 6 MV, 6 MV FFF, and 10 MV x-ray beams from a Varian TrueBeam linear accelerator (Varian Medical Systems, Palo Alto, CA) with a 120-millenium multi-leaf collimator (MLC). Each IMRT and VMAT therapy plan was measured on Sun Nuclear's MapCHECK 2 and ArcCHECK diode arrays. IMRT measured data was compared with planned dose distribution using Sun Nuclear's 3DVH quality assurance software program using gamma analysis and dose-volume histograms for target volumes and critical structures comparison. VMAT arc plans measured on the MapCHECK 2 and ArcCHECK were compared using beam-by-beam analysis with the gamma evaluation method with

  3. MagicPlate-512: A 2D silicon detector array for quality assurance of stereotactic motion adaptive radiotherapy

    SciTech Connect

    Petasecca, M. Newall, M. K.; Aldosari, A. H.; Fuduli, I.; Espinoza, A. A.; Porumb, C. S.; Guatelli, S.; Metcalfe, P.; Lerch, M. L. F.; Rosenfeld, A. B.; Booth, J. T.; Colvill, E.; Duncan, M.; Cammarano, D.; Carolan, M.; Oborn, B.; Perevertaylo, V.; Keall, P. J.

    2015-06-15

    Purpose: Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named “MagicPlate-512” for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. Methods: MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of small field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by GEANT4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Results: Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion

  4. SU-E-T-65: Characterization of a 2D Array for QA and Pretreatment Plan Verification

    SciTech Connect

    Anvari, A; Aghamiri, S; Mahdavi, S; Alaei, P

    2014-06-01

    Purpose: The OCTAVIUS detector729 is a 2D array of 729 air vented cubic plane parallel ion chambers used for pretreatment verification and QA. In this study we investigated dosimetric characteristics of this system for clinical photon beam dosimetry. Methods: Detector performance evaluation included determination of the location of the effective point of measurement (EPM), sensitivity, linearity, and reproducibility of detector response, as well as output factor, dose rate, and source to surface distance (SSD) dependence. Finally, assessment of wedge modulated fields was carried out. All the evaluations were performed five times for low and high photon energies. For reference measurements, a 0.6 cc ionization chamber was used. Data analysis and comparison of the OCTAVIUS detector with reference ion chamber data was performed using the VeriSoft patient plan verification software. Results: The reproducibility and stability of the measurements are excellent, the detector showed same signal with a maximum deviation of less than 0.5% in short and long term. Results of sensitivity test showed same signal with a maximum deviation of approximately 0.1%. As the detector 729 response is linear with dose and dose rate, it can be used for the measurement at regions of high dose gradient effectively. The detector agrees with the ionization chamber measurement to within 1% for SSD range of 75 to 125 cm. Also, its measured wedge modulated profiles matched very well with ion chamber dose profiles acquired in a water tank. Conclusions: As the response of the detector 729 is linear with dose and dose rate, it can be used for the measurements in the areas of dose gradients effectively. Based on the measurements and comparisons performed, this system is a reliable and accurate dosimeter for QA and pretreatment plan verification in radiotherapy.

  5. Micro-patterning of ionic reservoirs within a double bilayer lipid membrane to fabricate a 2D array of ion-channel switch based electrochemical biosensors

    SciTech Connect

    Sansinena, J. M.; Yee, C. K.; Sapuri, A.; Swanson, Basil I.; Redondo, A.; Parikh, A. N.

    2004-01-01

    We present a simple approach for the design of ionic reservoir arrays within a double phospholipid bilayer to ultimately develop a 2D array of ion-channel switch based electrochemical biosensors. As a first step, a primary bilayer lipid membrane is deposited onto an array of electrodes patterned onto a substrate surface. Subsequently, an array of microvoids is created within the bilayer by a wet photolithographic patterning of phospholipid bilayers using a deep UV light source and a quartz/chrome photomask. To ensure registry, the photomask used to pattern bilayers is designed to match up the microvoids within the primary bilayer with the array of electrodes on the substrate surface. The deposition of a secondary bilayer lipid membrane onto the primary bilayer that spans across the patterned microvoids leads to the formation of the array of ionic reservoirs within the double phospholipid bilayer. This is accomplished using giant unilamellar vesicles and by exploiting membrane electrostatics. The use of ion-channels incorporated into the secondary bilayer that covers the individual ionic reservoirs allows the construction of a 2D array of ion-channel switch based electrochemical biosensors that are able to recognize different target-agents simultaneously.

  6. Reflection at a liquid-solid interface of a transient ultrasonic field radiated by a linear phased array transducer.

    PubMed

    Maghlaoui, Nadir; Belgroune, Djema; Ourak, Mohamed; Djelouah, Hakim

    2016-09-01

    In order to put in evidence the specular reflection and the non-specular reflection in the transient case, we have used a model for the study of the transient ultrasonic waves radiated by a linear phased array transducer in a liquid and reflected by a solid plane interface. This method is an extension of the angular spectrum method to the transient case where the reflection at the plane interface is taken into account by using the reflection coefficient for harmonic plane waves. The results obtained highlighted the different components of the ultrasonic field: the direct and edge waves as well as the longitudinal head waves or leaky Rayleigh waves. The transient representation of these waves have been carefully analyzed and discussed by the rays model. Instantaneous cartographies allowed a clear description of all the waves which appear at the liquid-solid interface. The obtained results have been compared to those obtained with a finite element method package.

  7. Stability of Programmable Shunt Valve Settings with Simultaneous Use of the Optune Transducer Array: A Case Report

    PubMed Central

    Chan, Andrew K; Winkler, Ethan A; Viner, Jennifer A; Taylor, Jennie W; McDermott, Michael W.

    2016-01-01

    The Optune® transducer array (Novocure Ltd., Haifa, Israel) is an FDA-approved noninvasive regional therapy that aims to inhibit the growth of glioblastoma multiforme (GBM) cells via utilization of alternating electric fields. Some patients with GBM may develop hydrocephalus and benefit from subsequent shunt placement, but special attention must be paid to patients in whom programmable valves are utilized, given the potential effect of the magnetic fields on valve settings. We present the first case report illustrating the stability of programmable shunt valve settings in a neurosurgical patient undergoing therapy with the Optune device. In this study, shunt valve settings were stable over a period of five days despite Optune therapy. This is reassuring for patients with GBM who require simultaneous treatment with both the Optune device and a programmable shunt system. PMID:27551653

  8. Stability of Programmable Shunt Valve Settings with Simultaneous Use of the Optune Transducer Array: A Case Report.

    PubMed

    Chan, Andrew K; Birk, Harjus S; Winkler, Ethan A; Viner, Jennifer A; Taylor, Jennie W; McDermott, Michael W

    2016-07-07

    The Optune® transducer array (Novocure Ltd., Haifa, Israel) is an FDA-approved noninvasive regional therapy that aims to inhibit the growth of glioblastoma multiforme (GBM) cells via utilization of alternating electric fields. Some patients with GBM may develop hydrocephalus and benefit from subsequent shunt placement, but special attention must be paid to patients in whom programmable valves are utilized, given the potential effect of the magnetic fields on valve settings. We present the first case report illustrating the stability of programmable shunt valve settings in a neurosurgical patient undergoing therapy with the Optune device. In this study, shunt valve settings were stable over a period of five days despite Optune therapy. This is reassuring for patients with GBM who require simultaneous treatment with both the Optune device and a programmable shunt system.

  9. Large Volume Coagulation Utilizing Multiple Cavitation Clouds Generated by Array Transducer Driven by 32 Channel Drive Circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Kotaro; Asai, Ayumu; Sasaki, Hiroshi; Yoshizawa, Shin; Umemura, Shin-ichiro

    2013-07-01

    High-intensity focused ultrasound (HIFU) treatment is a noninvasive treatment, in which focused ultrasound is generated outside the body and coagulates a diseased tissue. The advantage of this method is minimal physical and mental stress to the patient, and the disadvantage is the long treatment time caused by the smallness of the therapeutic volume by a single exposure. To improve the efficiency and shorten the treatment time, we are focusing attention on utilizing cavitation bubbles. The generated microbubbles can convert the acoustic energy into heat with a high efficiency. In this study, using the class D amplifiers, which we have developed, to drive the array transducer, we demonstrate a new method to coagulate a large volume by a single HIFU exposure through generating cavitation bubbles distributing in a large volume and vibrating all of them. As a result, the coagulated volume by the proposed method was 1.71 times as large as that of the conventional method.

  10. Quantitative shear wave optical coherence elastography (SW-OCE) with acoustic radiation force impulses (ARFI) induced by phase array transducer

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong

    2015-03-01

    Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.

  11. Development of electromagnetic acoustic transducer (EMAT) phased arrays for SFR inspection

    SciTech Connect

    Le Bourdais, Florian; Marchand, Benoît

    2014-02-18

    A long-standing problem for Sodium cooled Fast Reactor (SFR) instrumentation is the development of efficient under-sodium visualization systems adapted to the hot and opaque sodium environment. Electromagnetic Acoustic Transducers (EMAT) are potential candidates for a new generation of Ultrasonic Testing (UT) probes well-suited for SFR inspection that can overcome drawbacks of classical piezoelectric probes in sodium environment. Based on the use of new CIVA simulation tools, we have designed and optimized an advanced EMAT probe for under-sodium visualization. This has led to the development of a fully functional L-wave EMAT sensing system composed of 8 elements and a casing withstanding 200° C sodium inspection. Laboratory experiments demonstrated the probe's ability to sweep an ultrasonic beam to an angle of 15 degrees. Testing in a specialized sodium facility has shown that it was possible to obtain pulse-echo signals from a target under several different angles from a fixed position.

  12. Development of electromagnetic acoustic transducer (EMAT) phased arrays for SFR inspection

    NASA Astrophysics Data System (ADS)

    Le Bourdais, Florian; Marchand, Benoît

    2014-02-01

    A long-standing problem for Sodium cooled Fast Reactor (SFR) instrumentation is the development of efficient under-sodium visualization systems adapted to the hot and opaque sodium environment. Electromagnetic Acoustic Transducers (EMAT) are potential candidates for a new generation of Ultrasonic Testing (UT) probes well-suited for SFR inspection that can overcome drawbacks of classical piezoelectric probes in sodium environment. Based on the use of new CIVA simulation tools, we have designed and optimized an advanced EMAT probe for under-sodium visualization. This has led to the development of a fully functional L-wave EMAT sensing system composed of 8 elements and a casing withstanding 200° C sodium inspection. Laboratory experiments demonstrated the probe's ability to sweep an ultrasonic beam to an angle of 15 degrees. Testing in a specialized sodium facility has shown that it was possible to obtain pulse-echo signals from a target under several different angles from a fixed position.

  13. Therapeutic Array Transducer Element Using Coresonance between Hemispherical Piezoceramic Shell and Water Sphere: Effect of Load Masses of Support and Electric Contact

    NASA Astrophysics Data System (ADS)

    Otsu, Kenji; Yoshizawa, Shin; Umemura, Shin-ichiro

    2012-07-01

    For therapeutic ultrasound array transducers, it is necessary to reduce the electrical impedance of their elements so that the transducer can produce high ultrasonic power at a relatively low drive voltage. For this purpose, a new concept of a breathing-mode piezoceramic transducer element has been proposed. Numerical simulation showed its low electric impedance as well as good acoustical coupling between the concave hemispherical piezoceramic shell, with a diameter on the order of a wavelength in water, and the volume of a water sphere half enclosed by the shell. In the preparation of a prototype transducer, the effect of additional load masses of the flange supporting the shell and the electric contact for driving the element was numerically analyzed in this paper.

  14. Focused, phased-array plane piston and spherically-shaped concave piston transducers: comparison for the same aperture and focal point.

    PubMed

    Warriner, Renée K; Cobbold, Richard S C

    2012-04-01

    It has sometimes been assumed that the phased-array plane piston transducer and the spherically-shaped concave piston transducer are equivalent structures when both have the same aperture and focal point. This assumption has not been previously examined, nor has an expression for the on-axis impulse response of the focused, phased-array plane piston transducer been derived. It is shown in this paper how such an expression can be obtained. Comparisons of the impulse response for both structures show similarities, as well as some differences that could be significant as the observation point approaches the focal point. Comparisons are also performed for wide-band pulses close to the focus as well as for sinusoidal excitation. A physical explanation for the cause of the impulse response discrepancy is shown to be due to the nature of the piston focusing delay and its effect on the Rayleigh integral.

  15. SU-E-P-35: Real-Time Patient Transit Dose Verification of Volumetric Modulated Arc Radiotherapy by a 2D Ionization Chamber Array

    SciTech Connect

    Liu, X

    2015-06-15

    Purpose: To explore the real-time dose verification method in volumetric modulated arc radiotherapy (VMAT) with a 2D array ion chamber array. Methods: The 2D ion chamber array was fixed on the panel of electronic portal imaging device (EPID). Source-detector distance (SDD)was 140cm. 8mm RW3 solid water was added to the detector panel to achieve maximum readings.The patient plans for esophageal, prostate and liver cancers were selected to deliver on the cylindrical Cheese phantom 5 times in order to validate the reproducibility of doses. Real-time patient transit dose measurements were performed at each fraction. Dose distributions wereevaluated using gamma index criteria of 3mm DTA and 3% dose difference referred to the firsttime Result. Results: The gamma index pass rate in the Cheese phantom were about 98%; The gamma index pass rate for esophageal, liver and prostate cancer patient were about 92%,94%, and 92%, respectively; Gamma pass rate for all single fraction were more than 90%. Conclusion: The 2D array is capable of monitoring the real time transit doses during VMAT delivery. It is helpful to improve the treatment accuracy.

  16. SU-E-T-645: Qualification of a 2D Ionization Chamber Array for Beam Steering and Profile Measurement

    SciTech Connect

    Gao, S; Balter, P; Rose, M; Simon, W

    2015-06-15

    Purpose: Establish a procedure for beam steering and profile measurement using a 2D ionization chamber array and show equivalence to a water scanning system. Methods: Multiple photon beams (30×30cm{sup 2} field) and electron beams (25×25cm{sup 2} cone) were steered in the radial and transverse directions using Sun Nuclear’s IC PROFILER (ICP). Solid water was added during steering to ensure measurements were beyond the buildup region. With steering complete, servos were zeroed and enabled. Photon profiles were collected in a 30×30cm{sup 2} field at dmax and 2.9 cm depth for flattened and FFF beams respectively. Electron profiles were collected with a 25×25cm{sup 2} cone and effective depth (solid water + 0.9 cm intrinsic buildup) as follows: 0.9 cm (6e), 1.9 cm (9e), 2.9 cm (12e, 16e, 20e). Profiles of the same energy, field size and depth were measured in water with Sun Nuclear’s 3D SCANNER (3DS). Profiles were re-measured using the ICP after the in-water scans. Profiles measured using the ICP and 3DS were compared by (a) examining the differences in Varian’s “Point Difference Symmetry” metric, (b) visual inspection of the overlaid profile shapes and (c) calculation of point-by-point differences. Results: Comparing ICP measurements before and after water scanning showed very good agreement indicating good stability of the linac and measurement system. Comparing ICP Measurements to water phantom measurements using Varian’s symmetry metric showed agreement within 0.5% for all beams. The average magnitude of the agreement was within 0.2%. Comparing ICP Measurements to water phantom measurements using point-by-point difference showed agreement within 0.5% inside of 80% area of the field width. Conclusion: Profile agreement to within 0.5% was observed between ICP and 3DS after steering multiple energies with the ICP. This indicates that the ICP may be used for steering electron beams, and both flattened and FFF photon beams. Song Gao: Sun Nuclear

  17. 3D Ultrasonic Needle Tracking with a 1.5D Transducer Array for Guidance of Fetal Interventions

    PubMed Central

    West, Simeon J.; Mari, Jean-Martial; Ourselin, Sebastien; David, Anna L.; Desjardins, Adrien E.

    2016-01-01

    Ultrasound image guidance is widely used in minimally invasive procedures, including fetal surgery. In this context, maintaining visibility of medical devices is a significant challenge. Needles and catheters can readily deviate from the ultrasound imaging plane as they are inserted. When the medical device tips are not visible, they can damage critical structures, with potentially profound consequences including loss of pregnancy. In this study, we performed 3D ultrasonic tracking of a needle using a novel probe with a 1.5D array of transducer elements that was driven by a commercial ultrasound system. A fiber-optic hydrophone integrated into the needle received transmissions from the probe, and data from this sensor was processed to estimate the position of the hydrophone tip in the coordinate space of the probe. Golay coding was used to increase the signal-to-noise (SNR). The relative tracking accuracy was better than 0.4 mm in all dimensions, as evaluated using a water phantom. To obtain a preliminary indication of the clinical potential of 3D ultrasonic needle tracking, an intravascular needle insertion was performed in an in vivo pregnant sheep model. The SNR values ranged from 12 to 16 at depths of 20 to 31 mm and at an insertion angle of 49° relative to the probe surface normal. The results of this study demonstrate that 3D ultrasonic needle tracking with a fiber-optic hydrophone sensor and a 1.5D array is feasible in clinically realistic environments. PMID:28111644

  18. Phased-ultrasonic receiving-planar array transducer for partial discharge location in transformer.

    PubMed

    Yongfen, Luo; Shengchang, Ji; Yanming, Li

    2006-03-01

    Partial discharge (PD) location in transformers is very important, and many methods that have been brought forward in past decades have a limitation theoretically, namely, they cannot locate multiple PDs in electrical equipment. In this paper, a new PD location method based on UHF and ultrasonic-phased arrays receiving theory has been presented, which has a possibility to locate multiple PDs. According to the method, a phased-ultrasonic receiving-planar array sensor that possesses 16 * 16 elements is designed; and, based on the phased-array theory, the characteristics of the plane sensor are studied. The laboratory experimental tests on the plane sensor element indicates that it has a good performance within the frequency band of the main ultrasonic energy produced by PD in transformer oil. Location tests are conducted on one or two piezoelectric ultrasonic sources in oil, which are both simulated as PD sources and triggered by an electrical pulse whose front is considered as a time benchmark in the locating algorithm. The test results show locations to one and two PDs can be realized in a single measurement, which lays a foundation for locating PDs in a power transformer in service.

  19. Conductive polymer-mediated 2D and 3D arrays of Mn3O4 nanoblocks and mesoporous conductive polymers as their replicas.

    PubMed

    Nakagawa, Yoshitaka; Kageyama, Hiroyuki; Matsumoto, Riho; Oaki, Yuya; Imai, Hiroaki

    2015-11-28

    Orientation-controlled 2D and 3D microarrays of Mn3O4 nanocuboids that were mediated by a conductive polymer were fabricated by evaporation-induced self-assembly of the oxide nanoblocks and subsequent polymerization of pyrrole in the interparticle spaces. Free-standing mesoporous polypyrroles (PPy) having chain- and square-grid-like nanovoid arrays were obtained as replicas of the composite assemblies by dissolving the oxide nanoblocks. The PPy-mediated manganese oxide arrays exhibited stable electrochemical performance as an ultrathin anode of a lithium-ion secondary battery.

  20. Smart time-pulse coding photoconverters as basic components 2D-array logic devices for advanced neural networks and optical computers

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Michalnichenko, Nikolay N.

    2004-04-01

    The article deals with a conception of building arithmetic-logic devices (ALD) with a 2D-structure and optical 2D-array inputs-outputs as advanced high-productivity parallel basic operational training modules for realization of basic operation of continuous, neuro-fuzzy, multilevel, threshold and others logics and vector-matrix, vector-tensor procedures in neural networks, that consists in use of time-pulse coding (TPC) architecture and 2D-array smart optoelectronic pulse-width (or pulse-phase) modulators (PWM or PPM) for transformation of input pictures. The input grayscale image is transformed into a group of corresponding short optical pulses or time positions of optical two-level signal swing. We consider optoelectronic implementations of universal (quasi-universal) picture element of two-valued ALD, multi-valued ALD, analog-to-digital converters, multilevel threshold discriminators and we show that 2D-array time-pulse photoconverters are the base elements for these devices. We show simulation results of the time-pulse photoconverters as base components. Considered devices have technical parameters: input optical signals power is 200nW_200μW (if photodiode responsivity is 0.5A/W), conversion time is from tens of microseconds to a millisecond, supply voltage is 1.5_15V, consumption power is from tens of microwatts to a milliwatt, conversion nonlinearity is less than 1%. One cell consists of 2-3 photodiodes and about ten CMOS transistors. This simplicity of the cells allows to carry out their integration in arrays of 32x32, 64x64 elements and more.

  1. Update on the Fabrication and Performance of 2-D Arrays of Superconducting Magnesium Diboride (MgB2) Thermal Detectors for Outer-Planets Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook; Aslam, S.

    2011-01-01

    Detectors with better performance than the current thermopile detectors that operate at room temperature will be needed at the focal plane of far-infrared instruments on future planetary exploration missions. We will present an update on recent results from the 2-D array of MgB2 thermal detectors being currently developed at NASA Goddard. Noise and sensitivity results will be presented and compared to thermal detectors currently in use on planetary missions.

  2. On-line quality assurance of rotational radiotherapy treatment delivery by means of a 2D ion chamber array and the Octavius phantom

    SciTech Connect

    Esch, Ann van; Clermont, Christian; Devillers, Magali; Iori, Mauro; Huyskens, Dominique P.

    2007-10-15

    For routine pretreatment verification of innovative treatment techniques such as (intensity modulated) dynamic arc therapy and helical TomoTherapy, an on-line and reliable method would be highly desirable. The present solution proposed by TomoTherapy, Inc. (Madison, WI) relies on film dosimetry in combination with up to two simultaneous ion chamber point dose measurements. A new method is proposed using a 2D ion chamber array (Seven29, PTW, Freiburg, Germany) inserted in a dedicated octagonal phantom, called Octavius. The octagonal shape allows easy positioning for measurements in multiple planes. The directional dependence of the response of the detector was primarily investigated on a dual energy (6 and 18 MV) Clinac 21EX (Varian Medical Systems, Palo Alto, CA) as no fixed angle incidences can be calculated in the Hi-Art TPS of TomoTherapy. The array was irradiated from different gantry angles and with different arc deliveries, and the dose distributions at the level of the detector were calculated with the AAA (Analytical Anisotropic Algorithm) photon dose calculation algorithm implemented in Eclipse (Varian). For validation on the 6 MV TomoTherapy unit, rotational treatments were generated, and dose distributions were calculated with the Hi-Art TPS. Multiple cylindrical ion chamber measurements were used to cross-check the dose calculation and dose delivery in Octavius in the absence of the 2D array. To compensate for the directional dependence of the 2D array, additional prototypes of Octavius were manufactured with built-in cylindrically symmetric compensation cavities. When using the Octavius phantom with a 2 cm compensation cavity, measurements with an accuracy comparable to that of single ion chambers can be achieved. The complete Octavius solution for quality assurance of rotational treatments consists of: The 2D array, two octagonal phantoms (with and without compensation layer), an insert for nine cylindrical ion chambers, and a set of inserts of

  3. Design and fabrication of a 5 MHz ultrasonic phased array probe with curved transducer

    NASA Astrophysics Data System (ADS)

    Fischer, Julia; Herzog, Thomas; Walter, Susan; Heuer, Henning

    2013-05-01

    A 5 MHz, 16-element phased array concave ultrasonic probe for non-destructive testing has been designed, fabricated and tested. To improve the probes performance its curvature, as opposed to present solutions, was not obtained by adding a corresponding delay wedge, but rather by manufacturing the functional elements (i.e. active material, matching layer) with a curvature. The piezoelectric material used here was a 1-3 composite material made of PZT. The finished probe was tested on a steel half circle with the corresponding radius (100 mm) and on the Olympus PAUT test piece. Good results could be obtained. Three transverse holes with a diameter of 1 mm and a distance of 5 mm to one another could be detected and resolved.

  4. SU-E-T-82: A Study On Enhanced Dynamic Wedge (EDW) Dosimetry Using 2D Seven29 Ion Chamber Array Detector

    SciTech Connect

    Kumar, Syam; Aparna

    2015-06-15

    Purpose: To study the dosimetric properties of Enhanced Dynamic Wedge (EDW) using PTW Seven29 ion chamber array Methods: PTW Seven29 ion chamber array and Solid Water phantoms for different depths were used for the study. The study was carried out in Varian Clinac ix with photon energies, 6MV & 15MV. Primarily the solid water phantoms with the 2D array were scanned using a CT scanner (GE Optima 580) at different depths. These scanned images were used for EDW planning in an Eclipse treatment planning system (version 10). Planning was done for different wedge angles and for different depths for 6MV & 15MV. A dose of 100 CGy was delivered in each cases. For each delivery, calculated the Monitoring Unit (MU) required. Same set-up was created before delivering the plans in Varian Clinac-ix. For each clinically relevant depth and for different wedge angles, the same MU was delivered as calculated. Different wedged dose distributions where reconstructed from the measured 2D array data using the in-house developed excel program. Results: It is observed that the shoulder like region in the profile which reduces as depth increases. For the same depth and energy, the percentage difference between planned and measured dose is lesser than 3%. For smaller wedge angles, the percentage difference is found to be greater than 3% for the largest wedge angle. Standard deviation between measured doses at shoulder region for planned and measured profiles is 0.08 and 0.02 respectively. Standard deviations between planned and measured wedge factors for different depths (2.5cm, 5cm, 10cm, and 15cm) are (0.0021, 0.0007, 0.0050, 0.0001) for 6MV and (0.0024, 0.0191, 0.0013, 0.0005) for 15MV respectively. Conclusion: The 2D Seven29 ion chamber array is a good tool for the Enhanced Dynamic Wedge (EDW) dosimetry.

  5. Super-radiant plasmon mode is more efficient for SERS than the sub-radiant mode in highly packed 2D gold nanocube arrays.

    PubMed

    Mahmoud, Mahmoud A

    2015-08-21

    The field coupling in highly packed plasmonic nanoparticle arrays is not localized due to the energy transport via the sub-radiant plasmon modes, which is formed in addition to the regular super-radiant plasmon mode. Unlike the sub-radiant mode, the plasmon field of the super-radiant mode cannot extend over long distances since it decays radiatively with a shorter lifetime. The coupling of the plasmon fields of gold nanocubes (AuNCs) when organized into highly packed 2D arrays was examined experimentally. Multiple plasmon resonance optical peaks are observed for the AuNC arrays and are compared to those calculated using the discrete dipole approximation. The calculated electromagnetic plasmon fields of the arrays displayed high field intensity for the nanocubes located in the center of the arrays for the lower energy super-radiant mode, while the higher energy sub-radiant plasmon mode displayed high field intensity at the edges of the arrays. The Raman signal enhancement by the super-radiant plasmon mode was found to be one hundred fold greater than that by sub-radiant plasmon mode because the super-radiant mode has higher scattering and stronger plasmon field intensity relative to the sub-radiant mode.

  6. Super-radiant plasmon mode is more efficient for SERS than the sub-radiant mode in highly packed 2D gold nanocube arrays

    SciTech Connect

    Mahmoud, Mahmoud A.

    2015-08-21

    The field coupling in highly packed plasmonic nanoparticle arrays is not localized due to the energy transport via the sub-radiant plasmon modes, which is formed in addition to the regular super-radiant plasmon mode. Unlike the sub-radiant mode, the plasmon field of the super-radiant mode cannot extend over long distances since it decays radiatively with a shorter lifetime. The coupling of the plasmon fields of gold nanocubes (AuNCs) when organized into highly packed 2D arrays was examined experimentally. Multiple plasmon resonance optical peaks are observed for the AuNC arrays and are compared to those calculated using the discrete dipole approximation. The calculated electromagnetic plasmon fields of the arrays displayed high field intensity for the nanocubes located in the center of the arrays for the lower energy super-radiant mode, while the higher energy sub-radiant plasmon mode displayed high field intensity at the edges of the arrays. The Raman signal enhancement by the super-radiant plasmon mode was found to be one hundred fold greater than that by sub-radiant plasmon mode because the super-radiant mode has higher scattering and stronger plasmon field intensity relative to the sub-radiant mode.

  7. Simulation study of a chaotic cavity transducer based virtual phased array used for focusing in the bulk of a solid material.

    PubMed

    Delrue, Steven; Van Den Abeele, Koen; Matar, Olivier Bou

    2016-04-01

    In acoustic and ultrasonic non-destructive testing techniques, it is sometimes beneficial to concentrate sound energy at a chosen location in space and at a specific instance in time, for example to improve the signal-to-noise ratio or activate the nonlinearity of damage features. Time Reversal (TR) techniques, taking advantage of the reversible character of the wave equation, are particularly suited to focus ultrasonic waves in time and space. The characteristics of the energy focusing in solid media using principles of time reversed acoustics are highly influenced by the nature and dimensions of the medium, the number of transducers and the length of the received signals. Usually, a large number of transducers enclosing the domain of interest is needed to improve the quality of the focusing. However, in the case of highly reverberant media, the number of transducers can be reduced to only one (single-channel TR). For focusing in a non-reverberant medium, which is impossible when using only one source, an adaptation of the single-channel reciprocal TR procedure has been recently suggested by means of a Chaotic Cavity Transducer (CCT), a single element transducer glued on a cavity of chaotic shape. In this paper, a CCT is used to focus elastic energy, at different times, in different points along a predefined line on the upper surface of a thick solid sample. Doing so, all focusing points can act as a virtual phased array transducer, allowing to focus in any point along the depth direction of the sample. This is impossible using conventional reciprocal TR, as you need to have access to all points in the bulk of the material for detecting signals to be used in the TR process. To asses and provide a better understanding of this concept, a numerical study has been developed, allowing to verify the basic concepts of the virtual phased array and to illustrate multi-component time reversal focusing in the bulk of a solid material.

  8. SU-E-T-644: Evaluation of Angular Dependence Correction for 2D Array Detector Using for Quality Assurance of Volumetric Modulated Arc Therapy

    SciTech Connect

    Karthikeyan, N; Ganesh, K M; Vikraman, S; Shariff, MH

    2014-06-15

    Purpose: To evaluate the angular dependence correction for Matrix Evolution 2D array detector in quality assurance of volumetric modulated arc therapy(VMAT). Methods: Total ten patients comprising of different sites were planned for VMAT and taken for the study. Each plan was exposed on Matrix Evolution 2D array detector with Omnipro IMRT software based on the following three different methods using 6MV photon beams from Elekta Synergy linear accelerator. First method, VMAT plan was delivered on Matrix Evolution detector as it gantry mounted with dedicated holder with build-up of 2.3cm. Second, the VMAT plan was delivered with the static gantry angle on to the table mounted setup. Third, the VMAT plan was delivered with actual gantry angle on Matrix Evolution detector fixed in Multicube phantom with gantry angle sensor and angular dependence correction were applied to quantify the plan quality. For all these methods, the corresponding QA plans were generated in TPS and the dose verification was done for both point and 2D fluence analysis with pass criteria of 3% dose difference and 3mm distance to agreement. Results: The measured point dose variation for the first method was observed as 1.58±0.6% of mean and SD with TPS calculated. For second and third method, the mean and standard deviation(SD) was observed as 1.67±0.7% and 1.85±0.8% respectively. The 2D fluence analysis of measured and TPS calculated has the mean and SD of 97.9±1.1%, 97.88±1.2% and 97.55±1.3% for first, second and third methods respectively. The calculated two-tailed Pvalue for point dose and 2D fluence analysis shows the insignificance with values of 0.9316 and 0.9015 respectively, among the different methods of QA. Conclusion: The qualitative evaluation of angular dependence correction for Matrix Evolution 2D array detector shows its competency in accuracy of quality assurance measurement of composite dose distribution of volumetric modulated arc therapy.

  9. Optimization of a phased-array transducer for multiple harmonic imaging in medical applications: frequency and topology.

    PubMed

    Matte, Guillaume M; Van Neer, Paul L M J; Danilouchkine, Mike G; Huijssen, Jacob; Verweij, Martin D; de Jong, Nico

    2011-03-01

    Second-harmonic imaging is currently one of the standards in commercial echographic systems for diagnosis, because of its high spatial resolution and low sensitivity to clutter and near-field artifacts. The use of nonlinear phenomena mirrors is a great set of solutions to improve echographic image resolution. To further enhance the resolution and image quality, the combination of the 3rd to 5th harmonics--dubbed the superharmonics--could be used. However, this requires a bandwidth exceeding that of conventional transducers. A promising solution features a phased-array design with interleaved low- and high-frequency elements for transmission and reception, respectively. Because the amplitude of the backscattered higher harmonics at the transducer surface is relatively low, it is highly desirable to increase the sensitivity in reception. Therefore, we investigated the optimization of the number of elements in the receiving aperture as well as their arrangement (topology). A variety of configurations was considered, including one transmit element for each receive element (1/2) up to one transmit for 7 receive elements (1/8). The topologies are assessed based on the ratio of the harmonic peak pressures in the main and grating lobes. Further, the higher harmonic level is maximized by optimization of the center frequency of the transmitted pulse. The achievable SNR for a specific application is a compromise between the frequency-dependent attenuation and nonlinearity at a required penetration depth. To calculate the SNR of the complete imaging chain, we use an approach analogous to the sonar equation used in underwater acoustics. The generated harmonic pressure fields caused by nonlinear wave propagation were modeled with the iterative nonlinear contrast source (INCS) method, the KZK, or the Burger's equation. The optimal topology for superharmonic imaging was an interleaved design with 1 transmit element per 6 receive elements. It improves the SNR by ~5 dB compared with

  10. Crack Orientation and Depth Estimation in a Low-Pressure Turbine Disc Using a Phased Array Ultrasonic Transducer and an Artificial Neural Network

    PubMed Central

    Yang, Xiaoxia; Chen, Shili; Jin, Shijiu; Chang, Wenshuang

    2013-01-01

    Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks. PMID:24064602

  11. Crack orientation and depth estimation in a low-pressure turbine disc using a phased array ultrasonic transducer and an artificial neural network.

    PubMed

    Yang, Xiaoxia; Chen, Shili; Jin, Shijiu; Chang, Wenshuang

    2013-09-13

    Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks.

  12. Slow magnetic relaxation in a hydrogen-bonded 2D array of mononuclear dysprosium(III) oxamates.

    PubMed

    Fortea-Pérez, Francisco R; Vallejo, Julia; Julve, Miguel; Lloret, Francesc; De Munno, Giovanni; Armentano, Donatella; Pardo, Emilio

    2013-05-06

    The reaction of N-(2,6-dimethylphenyl)oxamic acid with dysprosium(III) ions in a controlled basic media afforded the first example of a mononuclear lanthanide oxamate complex exhibiting a field-induced slow magnetic relaxation behavior typical of single-ion magnets (SIMs). The hydrogen-bond-mediated self-assembly of this new bifunctional dysprosium(III) SIM in the solid state provides a unique example of 2D hydrogen-bonded polymer with a herringbone net topology.

  13. Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array.

    PubMed

    Choi, Heejin; Park, Jae-Hyeung; Kim, Joohwan; Cho, Seong-Woo; Lee, Byoungho

    2005-10-17

    A wide-viewing-angle 3D/2D convertible display system with a thin structure is proposed that is able to display three-dimensional and two-dimensional images. With the use of a transparent display device in front of a conventional integral imaging system, it is possible to display planar images using the conventional system as a backlight source. By experiments, the proposed method is proven and compared with the conventional one.

  14. Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications

    NASA Astrophysics Data System (ADS)

    Kumara, N. T. R. N.; Chou Chau, Yuan-Fong; Huang, Jin-Wei; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-11-01

    Simulations of surface plasmon resonance (SPR) on the near field intensity and absorption spectra of one-dimensional (1D) and two-dimensional (2D) periodic arrays of rod-shape metal nanoparticle (MNP) pairs using the finite element method (FEM) and taking into account the different core patterns for biosensor and solar cell applications are investigated. A tunable optical spectrum corresponding to the transverse SPR modes is observed. The peak resonance wavelength (λ res) can be shifted to red as the core patterns in rod-shape MNPs have been changed. We find that the 2D periodic array of core-shell MNP pairs (case 2) exhibit a red shifted SPR that can be tuned the gap enhancement and absorption efficiency simultaneously over an extended wavelength range. The tunable optical performances give us a qualitative idea of the geometrical properties of the periodic array of rod-shape MNP pairs on SPRs that can be as a promising candidate for plasmonic biosensor and solar cell applications.

  15. Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI–LINAC systems

    SciTech Connect

    Gargett, Maegan Rosenfeld, Anatoly; Oborn, Brad; Metcalfe, Peter

    2015-02-15

    Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI

  16. SU-E-T-83: A Study On Evaluating the Directional Dependency of 2D Seven 29 Ion Chamber Array Clinically with Different IMRT Plans

    SciTech Connect

    Kumar, Syam; Aswathi, C.P.

    2015-06-15

    Purpose: To evaluate the directional dependency of 2D seven 29 ion chamber array clinically with different IMRT plans. Methods: 25 patients already treated with IMRT plans were selected for the study. Verification plans were created for each treatment plan in eclipse 10 treatment planning system using the AAA algorithm with the 2D array and the Octavius CT phantom. Verification plans were done 2 times for a single patient. First plan with real IMRT (plan-related approach) and second plan with zero degree gantry angle (field-related approach). Measurements were performed on a Varian Clinac-iX, linear accelerator equipped with a millennium 120 multileaf collimator. Fluence was measured for all the delivered plans and analyzed using the verisoft software. Comparison was done by selecting the fluence delivered in static gantry (zero degree gantry) versus IMRT with real gantry angles. Results: The gamma pass percentage is greater than 97 % for all IMRT delivered with zero gantry angle and between 95%–98% for real gantry angles. Dose difference between the TPS calculated and measured for IMRT delivered with zero gantry angle was found to be between (0.03 to 0.06Gy) and with real gantry angles between (0.02 to 0.05Gy). There is a significant difference between the gamma analysis between the zero degree and true angle with a significance of 0.002. Standard deviation of gamma pass percentage between the IMRT plans with zero gantry angle was 0.68 and for IMRT with true gantry angle was found to be 0.74. Conclusion: The gamma analysis for IMRT with zero degree gantry angles shows higher pass percentage than IMRT delivered with true gantry angles. Verification plans delivered with true gantry angles lower the verification accuracy when 2D array is used for measurement.

  17. Evaluation of adhesive-free crossed-electrode poly(vinylidene fluoride) copolymer array transducers for high frequency imaging

    NASA Astrophysics Data System (ADS)

    Wagle, Sanat; Decharat, Adit; Habib, Anowarul; Ahluwalia, Balpreet S.; Melandsø, Frank

    2016-07-01

    High frequency crossed-electrode transducers have been investigated, both as single and dual layer transducers. Prototypes of these transducers were developed for 4 crossed lines (yielding 16 square elements) on a polymer substrate, using a layer-by-layer deposition method for poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] with intermediate sputtered electrodes. The transducer was characterized using various methods [LCR analyzer, a pulse-echo experimental setup, and a numerical Finite element method (FEM) model] and evaluated in terms of uniformity of bandwidth and acoustical energy output. All 16 transducer elements produced broad-banded ultrasonic spectra with small variation in central frequency and -6 dB bandwidth. The frequency responses obtained experimentally were verified using a numerical model.

  18. Complex Waves on 1D, 2D, and 3D Periodic Arrays of Lossy and Lossless Magnetodielectric Spheres

    DTIC Science & Technology

    2010-05-16

    attention has been given to artificial dielectrics made from latt ices of different kinds of conducting elements. Similar interest in artificial...procedure is then used as the starting guess for a quasi-Newton method with a finite - difference gradient [44, Appendix A) implemented in the IMSL...ring resonators for example, then the array medium is anisotropic no matter how close ly spaced the elements. 19 At the time of writing [20J and [21 J

  19. Modal content based damage indicators and phased array transducers for structural health monitoring of aircraft structures using ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang

    Composite materials, especially carbon fiber reinforced polymers (CFRP), have been widely used in the aircraft industry because of their high specific strength and stiffness, resistance to corrosion and good fatigue life. Due to their highly anisotropic material properties and laminated structures, joining methods like bolting and riveting are no longer appropriate for joining CFRP since they initiate defects during the assembly and severely compromise the integrity of the structure; thus new techniques for joining CFRP are highly demanded. Adhesive bonding is a promising method because it relieves stress concentration, reduces weight and provides smooth surfaces. Additionally, it is a low-cost alternative to the co-cured method which is currently used to manufacture components of aircraft fuselage. Adhesive defects, disbonds at the interface between adherend and adhesive layer, are focused on in this thesis because they can be initialized by either poor surface preparation during the manufacturing or fatigue loads during service. Aircraft need structural health monitoring (SHM) systems to increase safety and reduce loss, and adhesive bonds usually represent the hotspots of the assembled structure. There are many nondestructive evaluation (NDE) methods for bond inspection. However, these methods cannot be readily integrated into an SHM system because of the bulk size and weight of the equipment and requirement of accessibility to one side of the bonded joint. The first objective of this work is to develop instruments, actuators, sensors and a data acquisition system for SHM of bond lines using ultrasonic guided waves which are well known to be able to cover large volume of the structure and inaccessible regions. Different from widely used guided wave sensors like PZT disks, the new actuators, piezoelectric fiber composite (PFC) phased array transducers0 (PAT), can control the modal content of the excited waves and the new sensors, polyvinylidene fluoride (PVDF

  20. A new water-equivalent 2D plastic scintillation detectors array for the dosimetry of megavoltage energy photon beams in radiation therapy

    SciTech Connect

    Guillot, Mathieu; Beaulieu, Luc; Archambault, Louis; Beddar, Sam; Gingras, Luc

    2011-12-15

    Purpose: The objective of this work is to present a new 2D plastic scintillation detectors array (2D-PSDA) designed for the dosimetry of megavoltage (MV) energy photon beams in radiation therapy and to characterize its basic performance. Methods: We developed a 2D detector array consisting of 781 plastic scintillation detectors (PSDs) inserted into a plane of a water-equivalent phantom. The PSDs were distributed on a 26 x 26 cm{sup 2} grid, with an interdetector spacing of 10 mm, except for two perpendicular lines centered on the detection plane, where the spacing was 5 mm. Each PSD was made of a 1 mm diameter by 3 mm long cylindrical polystyrene scintillating fiber coupled to a clear nonscintillating plastic optical fiber. All of the light signals emitted by the PSDs were read simultaneously with an optical system at a rate of one measurement per second. We characterized the performance of the optical system, the angular dependency of the device, and the perturbation of dose distributions caused by the hundreds of PSDs inserted into the phantom. We also evaluated the capacity of the system to monitor complex multileaf collimator (MLC) sequences such as those encountered in step-and-shoot intensity modulated radiation therapy (IMRT) plans. We compared our results with calculations performed by a treatment planning system and with measurements taken with a 2D ionization chamber array and with a radiochromic film. Results: The detector array that we developed allowed us to measure doses with an average precision of better than 1% for cumulated doses equal to or greater than 6.3 cGy. Our results showed that the dose distributions produced by the 6-MV photon beam are not perturbed (within {+-}1.1%) by the presence of the hundreds of PSDs located into the phantom. The results also showed that the variations in the beam incidences have little effect on the dose response of the device. For all incidences tested, the passing rates of the gamma tests between the 2D-PSDA and

  1. Dosimetric Verification and Validation of Conformal and IMRT Treatments Fields with an Ionization Chamber 2D-Array

    SciTech Connect

    Evangelina, Figueroa M.; Gabriel, Resendiz G.; Miguel, Perez P.

    2008-08-11

    A three-dimensional treatment planning system requires comparisons of calculated and measured dose distributions. It is necessary to confirm by means of patient specific QA that the dose distributions are correctly calculated, and that the patient data is correctly transferred to and delivered by the treatment machine. We used an analysis software for bi-dimensional dosimetric verification of conformal treatment and IMRT fields using as objective criterion the gamma index. An ionization chamber bi-dimensional array was used for absolute dose measurement in the complete field area.

  2. VFLOW2D - A Vorte-Based Code for Computing Flow Over Elastically Supported Tubes and Tube Arrays

    SciTech Connect

    WOLFE,WALTER P.; STRICKLAND,JAMES H.; HOMICZ,GREGORY F.; GOSSLER,ALBERT A.

    2000-10-11

    A numerical flow model is developed to simulate two-dimensional fluid flow past immersed, elastically supported tube arrays. This work is motivated by the objective of predicting forces and motion associated with both deep-water drilling and production risers in the oil industry. This work has other engineering applications including simulation of flow past tubular heat exchangers or submarine-towed sensor arrays and the flow about parachute ribbons. In the present work, a vortex method is used for solving the unsteady flow field. This method demonstrates inherent advantages over more conventional grid-based computational fluid dynamics. The vortex method is non-iterative, does not require artificial viscosity for stability, displays minimal numerical diffusion, can easily treat moving boundaries, and allows a greatly reduced computational domain since vorticity occupies only a small fraction of the fluid volume. A gridless approach is used in the flow sufficiently distant from surfaces. A Lagrangian remap scheme is used near surfaces to calculate diffusion and convection of vorticity. A fast multipole technique is utilized for efficient calculation of velocity from the vorticity field. The ability of the method to correctly predict lift and drag forces on simple stationary geometries over a broad range of Reynolds numbers is presented.

  3. MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.; Wendler, J.; Figgemeier, H.

    2016-09-01

    We present our latest results on n-on- p as well as on p-on- n low dark current planar mercury cadmium telluride (MCT) photodiode technology long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) two-dimensional focal plane arrays (FPAs) with quantum efficiency (QE) cut-off wavelength >11 μm at 80 K and a 512 × 640 pixel format FPA at 20 μm pitch stitched from two 512 × 320 pixel photodiode arrays. Significantly reduced dark currents as compared with Tennant's "Rule 07" are demonstrated in both polarities while retaining good detection efficiency ≥60% for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at 20 K higher operating temperature than with previous AIM INFRAROT-MODULE GmbH (AIM) technology. For p-on- n LWIR MCT FPAs, broadband photoresponse nonuniformity of only about 1.2% is achieved at 55 K with low defective pixel numbers. For an n-on- p VLWIR MCT FPA with 13.6 μm cut-off at 55 K, excellent photoresponse nonuniformity of about 3.1% is achieved at moderate defective pixel numbers. This advancement in detector technology paves the way for outstanding signal-to-noise ratio performance infrared detection, enabling cutting-edge next-generation LWIR/VLWIR detectors for space instruments and devices with higher operating temperature and low size, weight, and power for field applications.

  4. Accelerated short-TE 3D proton echo-planar spectroscopic imaging using 2D-SENSE with a 32-channel array coil.

    PubMed

    Otazo, Ricardo; Tsai, Shang-Yueh; Lin, Fa-Hsuan; Posse, Stefan

    2007-12-01

    MR spectroscopic imaging (MRSI) with whole brain coverage in clinically feasible acquisition times still remains a major challenge. A combination of MRSI with parallel imaging has shown promise to reduce the long encoding times and 2D acceleration with a large array coil is expected to provide high acceleration capability. In this work a very high-speed method for 3D-MRSI based on the combination of proton echo planar spectroscopic imaging (PEPSI) with regularized 2D-SENSE reconstruction is developed. Regularization was performed by constraining the singular value decomposition of the encoding matrix to reduce the effect of low-value and overlapped coil sensitivities. The effects of spectral heterogeneity and discontinuities in coil sensitivity across the spectroscopic voxels were minimized by unaliasing the point spread function. As a result the contamination from extracranial lipids was reduced 1.6-fold on average compared to standard SENSE. We show that the acquisition of short-TE (15 ms) 3D-PEPSI at 3 T with a 32 x 32 x 8 spatial matrix using a 32-channel array coil can be accelerated 8-fold (R = 4 x 2) along y-z to achieve a minimum acquisition time of 1 min. Maps of the concentrations of N-acetyl-aspartate, creatine, choline, and glutamate were obtained with moderate reduction in spatial-spectral quality. The short acquisition time makes the method suitable for volumetric metabolite mapping in clinical studies.

  5. Core-shell reconfiguration through thermal annealing in Fe(x)O/CoFe2O4 ordered 2D nanocrystal arrays.

    PubMed

    Yalcin, Anil O; de Nijs, Bart; Fan, Zhaochuan; Tichelaar, Frans D; Vanmaekelbergh, Daniël; van Blaaderen, Alfons; Vlugt, Thijs J H; van Huis, Marijn A; Zandbergen, Henny W

    2014-02-07

    A great variety of single- and multi-component nanocrystals (NCs) can now be synthesized and integrated into nanocrystal superlattices. However, the thermal and temporal stability of these superstructures and their components can be a limiting factor for their application as functional devices. On the other hand, temperature induced reconstructions can also reveal opportunities to manipulate properties and access new types of nanostructures. In situ atomically resolved monitoring of nanomaterials provides insight into the temperature induced evolution of the individual NC constituents within these superstructures at the atomic level. Here, we investigate the effect of temperature annealing on 2D square and hexagonal arrays of FexO/CoFe2O4 core/shell NCs by in situ heating in a transmission electron microscope (TEM). Both cubic and spherical NCs undergo a core-shell reconfiguration at a temperature of approximately 300 ° C, whereby the FexO core material segregates at the exterior of the CoFe2O4 shell, forming asymmetric dumbbells ('snowman-type' particles) with a small FexO domain attached to a larger CoFe2O4 domain. Upon continued annealing, the segregated FexO domains form bridges between the CoFe2O4 domains, followed by coalescence of all domains, resulting in loss of ordering in the 2D arrays.

  6. Graphene Paper Decorated with a 2D Array of Dendritic Platinum Nanoparticles for Ultrasensitive Electrochemical Detection of Dopamine Secreted by Live Cells

    PubMed Central

    Zan, Xiaoli; Wang, Chenxu

    2016-01-01

    Abstract To circumvent the bottlenecks of non‐flexibility, low sensitivity, and narrow workable detection range of conventional biosensors for biological molecule detection (e.g., dopamine (DA) secreted by living cells), a new hybrid flexible electrochemical biosensor has been created by decorating closely packed dendritic Pt nanoparticles (NPs) on freestanding graphene paper. This innovative structural integration of ultrathin graphene paper and uniform 2D arrays of dendritic NPs by tailored wet chemical synthesis has been achieved by a modular strategy through a facile and delicately controlled oil–water interfacial assembly method, whereby the uniform distribution of catalytic dendritic NPs on the graphene paper is maximized. In this way, the performance is improved by several orders of magnitude. The developed hybrid electrode shows a high sensitivity of 2 μA cm−2 μm −1, up to about 33 times higher than those of conventional sensors, a low detection limit of 5 nm, and a wide linear range of 87 nm to 100 μm. These combined features enable the ultrasensitive detection of DA released from pheochromocytoma (PC 12) cells. The unique features of this flexible sensor can be attributed to the well‐tailored uniform 2D array of dendritic Pt NPs and the modular electrode assembly at the oil–water interface. Its excellent performance holds much promise for the future development of optimized flexible electrochemical sensors for a diverse range of electroactive molecules to better serve society. PMID:26918612

  7. Progress in the development and demonstration of a 2D-matrix phased array ultrasonic probe for under-sodium viewing

    NASA Astrophysics Data System (ADS)

    Larche, M. R.; Baldwin, D. L.; Edwards, M. K.; Mathews, R. A.; Prowant, M. S.; Diaz, A. A.

    2016-02-01

    Optically opaque liquid sodium used in liquid metal fast reactors poses a unique set of challenges for nondestructive evaluation. The opaque nature of the sodium prevents visual examinations of components within this medium, but ultrasonic waves are able to propagate through sodium so an ultrasonic testing (UT) technique can be applied for imaging objects in sodium. A UT sensor used in liquid sodium during a refueling outage must be capable of withstanding the 260°C corrosive environment and must also be able to wet (couple the ultrasonic waves) so that sound can propagate into the sodium. A multi-year iterative design effort, based on earlier work in the 1970s, has set out to improve the design and fabrication processes needed for a UT sensor technology capable of overcoming the temperature and wetting issues associated with this environment. Robust materials and improved fabrication processes have resulted in single-element sensors and two different linear-array sensors that have functioned in liquid sodium. More recent efforts have been focused on improving signal-to-noise ratio and image resolution in the highly attenuating liquid sodium. In order to accomplish this, modeling and simulation tools were used to design a 60-element 2D phased-array sensor operating at 2 MHz that features a separate transmitter and receiver. This design consists of 30 transmit elements and another 30 receive elements, each arranged in a rectangular matrix pattern that is 10 rows tall and 3 wide. The fabrication of this 2D array is currently underway and will be followed by a series of performance tests in water, hot oil, and finally in liquid sodium at 260°C. The performance testing cycle will evaluate multiple characteristics of the sensor that are crucial to performance including: transmit-uniformity, element sensitivity variations, element-to-element energy leakage, sound field dimensions, and spatial resolution. This paper will present a summary of results from the previous UT

  8. Mitigation of 2D Rayleigh-Taylor Instability In an Imploding Wire Array With the Introduction of 3D Features

    NASA Astrophysics Data System (ADS)

    Derzon, M. S.; Nash, T. J.; Ryutov, D. D.

    1997-11-01

    The Rayleigh-Taylor instability is one of the most serious obstacles to applications of imploding wire arrays. In this paper, we propose to mitigate the instability with a deliberate introduction of periodic azimuthal non- uniformities. Their presence should interfere with the fastest-growing axisymmetric perturbations, destroy their coherence and reduce the velocity at which the "fingers" of the liner material penetrate to the axis. Because of the azimuthally varying surface mass density introduced, the liner is expected to become azimuthally corrugated (under the action of the magnetic pressure). Diagnosis of the improved pinch conditions would be made by observation of the power rise time and peak power and determination of the spatial frequencies in the x-ray emission as obtained with gated framing cameras and 1D streaked x-ray instruments.

  9. State of the art of AIM LWIR and VLWIR MCT 2D focal plane detector arrays for higher operating temperatures

    NASA Astrophysics Data System (ADS)

    Figgemeier, H.; Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.

    2016-05-01

    In this paper AIM presents its latest results on both n-on-p and p-on-n low dark current planar MCT photodiode technology LWIR and VLWIR two-dimensional focal plane detector arrays with a cut-off wavelength >11μm at 80K and a 640x512 pixel format at a 20μm pitch. Thermal dark currents significantly reduced as compared to `Tennant's Rule 07' at a yet good detection efficiency >60% as well as results from NETD and photo response performance characterization are presented. The demonstrated detector performance paces the way for a new generation of higher operating temperature LWIR MCT FPAs with a <30mK NETD up to a 110K detector operating temperature and with good operability.

  10. High density pixel array

    NASA Technical Reports Server (NTRS)

    Wiener-Avnear, Eliezer (Inventor); McFall, James Earl (Inventor)

    2004-01-01

    A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.

  11. Chemometric Classification of Unknown Vapors by Conversion of Sensor Array Pattern Vectors to Vapor Descriptors: Extension from Mass-Transducing Sensors To Volume-Transducing Sensors

    SciTech Connect

    Grate, Jay W.; Wise, Barry M.

    2001-06-28

    A new chemometric method was recently described for classifying unknowns by transforming the vector containing the responses from a multivariate detector to a vector containing descriptors of the detected analyte (Grate et al. 1999). This approach was derived for sensor arrays where each sensor's signal is proportional to the amount of vapor sorbed by a polymer on the sensor surface. In this case, the response is proportional to the partition coefficient, K, and the concentration of the vapor in the gas phase, Cv, where K is the ratio of the concentration of vapor in the sorbent polymer phase, Cs, to Cv.

  12. Single- and double-difference algorithms for position and time-delay calibration of transducer-elements in a sparse array.

    PubMed

    Li, Yue; Sharp, Ian; Hedley, Mark; Ho, Phil; Guo, Y Jay

    2007-06-01

    A method for the calibration of the position and time delay of transducer elements in a large, sparse array used for underwater, high-resolution, ultrasound imaging has been described in a previous work. This algorithm is based on the direct algorithm used in the global positioning system (GPS), but the wave propagation speed is treated as one of the to-be-calibrated parameters. In this article, the performance of two other commonly used GPS algorithms, namely the single-difference algorithm and the double-difference algorithm, is evaluated. The calibration of the propagation speed also is integrated into these two algorithms. Furthermore, a novel, least-squares method is proposed to calibrate the time delay associated with each transducer element for these two algorithms. The performances of these algorithms are theoretically analyzed and evaluated using numerical analysis and simulation study. The performance of the direct algorithm, the single-difference algorithm, and the double-difference algorithm is compared. It was found that the single-difference algorithm has the best performance among the three algorithms for the current application, and it is capable of calibrating the position and time delay of transducer elements to an accuracy of one-tenth of a wavelength.

  13. SU-E-T-375: Evaluation of a MapCHECK2(tm) Planar 2-D Diode Array for High-Dose-Rate Brachytherapy Treatment Delivery Verifications

    SciTech Connect

    Macey, N; Siebert, M; Shvydka, D; Parsai, E

    2015-06-15

    Purpose: Despite improvements of HDR brachytherapy delivery systems, verification of source position is still typically based on the length of the wire reeled out relative to the parked position. Yet, the majority of errors leading to medical events in HDR treatments continue to be classified as missed targets or wrong treatment sites. We investigate the feasibility of using dose maps acquired with a two-dimensional diode array to independently verify the source locations, dwell times, and dose during an HDR treatment. Methods: Custom correction factors were integrated into frame-by-frame raw counts recorded for a Varian VariSource™ HDR afterloader Ir-192 source located at various distances in air and in solid water from a MapCHECK2™ diode array. The resultant corrected counts were analyzed to determine the dwell position locations and doses delivered. The local maxima of polynomial equations fitted to the extracted dwell dose profiles provided the X and Y coordinates while the distance to the source was determined from evaluation of the full width at half maximum (FWHM). To verify the approach, the experiment was repeated as the source was moved through dwell positions at various distances along an inclined plane, mimicking a vaginal cylinder treatment. Results: Dose map analysis was utilized to provide the coordinates of the source and dose delivered over each dwell position. The accuracy in determining source dwell positions was found to be +/−1.0 mm of the preset values, and doses within +/−3% of those calculated by the BrachyVision™ treatment planning system for all measured distances. Conclusion: Frame-by-frame data furnished by a 2 -D diode array can be used to verify the dwell positions and doses delivered by the HDR source over the course of treatment. Our studies have verified that measurements provided by the MapCHECK2™ can be used as a routine QA tool for HDR treatment delivery verification.

  14. Evaluation of bias voltage modulation sequence for nonlinear contrast agent imaging using a capacitive micromachined ultrasonic transducer array.

    PubMed

    Novell, Anthony; Legros, Mathieu; Grégoire, Jean-Marc; Dayton, Paul A; Bouakaz, Ayache

    2014-09-07

    Many clinical diagnoses have now been improved thanks to the development of new techniques dedicated to contrast agent nonlinear imaging. Over the past few years, Capacitive Micromachined Ultrasonic Transducers (cMUTs) have emerged as a promising alternative to traditional piezoelectric transducers. One notable advantage of cMUTs is their wide frequency bandwidth. However, their use in nonlinear imaging approaches such as those used to detect contrast agents have been challenging due their intrinsic nonlinear character. We propose a new contrast imaging sequence, called bias voltage modulation (BVM), specifically developed for cMUTs to suppress their inherent nonlinear behavior. Theoretical and experimental results show that a complete cancellation of the nonlinear signal from the source can be reached when the BVM sequence is implemented. In-vitro validation of the sequence is performed using a cMUT probe connected to an open scanner and a flow phantom setup containing SonoVue microbubbles. Compared to the standard amplitude modulation imaging mode, a 6 dB increase of contrast-to-tissue ratio was achieved when the BVM sequence is applied. These results reveal that the problem of cMUT nonlinearity can be addressed, thus expanding the potential of this new transducer technology for nonlinear contrast agent detection and imaging.

  15. Time-resolved dosimetric verification of respiratory-gated radiotherapy exposures using a high-resolution 2D ionisation chamber array.

    PubMed

    King, R B; Agnew, C E; O'Connell, B F; Prise, K M; Hounsell, A R; McGarry, C K

    2016-08-07

    The aim of this work was to track and verify the delivery of respiratory-gated irradiations, performed with three versions of TrueBeam linac, using a novel phantom arrangement that combined the OCTAVIUS(®) SRS 1000 array with a moving platform. The platform was programmed to generate sinusoidal motion of the array. This motion was tracked using the real-time position management (RPM) system and four amplitude gating options were employed to interrupt MV beam delivery when the platform was not located within set limits. Time-resolved spatial information extracted from analysis of x-ray fluences measured by the array was compared to the programmed motion of the platform and to the trace recorded by the RPM system during the delivery of the x-ray field. Temporal data recorded by the phantom and the RPM system were validated against trajectory log files, recorded by the linac during the irradiation, as well as oscilloscope waveforms recorded from the linac target signal. Gamma analysis was employed to compare time-integrated 2D x-ray dose fluences with theoretical fluences derived from the probability density function for each of the gating settings applied, where gamma criteria of 2%/2 mm, 1%/1 mm and 0.5%/0.5 mm were used to evaluate the limitations of the RPM system. Excellent agreement was observed in the analysis of spatial information extracted from the SRS 1000 array measurements. Comparisons of the average platform position with the expected position indicated absolute deviations of  <0.5 mm for all four gating settings. Differences were observed when comparing time-resolved beam-on data stored in the RPM files and trajectory logs to the true target signal waveforms. Trajectory log files underestimated the cycle time between consecutive beam-on windows by 10.0  ±  0.8 ms. All measured fluences achieved 100% pass-rates using gamma criteria of 2%/2 mm and 50% of the fluences achieved pass-rates  >90% when criteria of 0.5%/0.5

  16. Time-resolved dosimetric verification of respiratory-gated radiotherapy exposures using a high-resolution 2D ionisation chamber array

    NASA Astrophysics Data System (ADS)

    King, R. B.; Agnew, C. E.; O'Connell, B. F.; Prise, K. M.; Hounsell, A. R.; McGarry, C. K.

    2016-08-01

    The aim of this work was to track and verify the delivery of respiratory-gated irradiations, performed with three versions of TrueBeam linac, using a novel phantom arrangement that combined the OCTAVIUS® SRS 1000 array with a moving platform. The platform was programmed to generate sinusoidal motion of the array. This motion was tracked using the real-time position management (RPM) system and four amplitude gating options were employed to interrupt MV beam delivery when the platform was not located within set limits. Time-resolved spatial information extracted from analysis of x-ray fluences measured by the array was compared to the programmed motion of the platform and to the trace recorded by the RPM system during the delivery of the x-ray field. Temporal data recorded by the phantom and the RPM system were validated against trajectory log files, recorded by the linac during the irradiation, as well as oscilloscope waveforms recorded from the linac target signal. Gamma analysis was employed to compare time-integrated 2D x-ray dose fluences with theoretical fluences derived from the probability density function for each of the gating settings applied, where gamma criteria of 2%/2 mm, 1%/1 mm and 0.5%/0.5 mm were used to evaluate the limitations of the RPM system. Excellent agreement was observed in the analysis of spatial information extracted from the SRS 1000 array measurements. Comparisons of the average platform position with the expected position indicated absolute deviations of  <0.5 mm for all four gating settings. Differences were observed when comparing time-resolved beam-on data stored in the RPM files and trajectory logs to the true target signal waveforms. Trajectory log files underestimated the cycle time between consecutive beam-on windows by 10.0  ±  0.8 ms. All measured fluences achieved 100% pass-rates using gamma criteria of 2%/2 mm and 50% of the fluences achieved pass-rates  >90% when criteria of 0.5%/0.5 mm were

  17. NOTE: Hybrid plan verification for intensity-modulated radiation therapy (IMRT) using the 2D ionization chamber array I'mRT MatriXX—a feasibility study

    NASA Astrophysics Data System (ADS)

    Dobler, Barbara; Streck, Natalia; Klein, Elisabeth; Loeschel, Rainer; Haertl, Petra; Koelbl, Oliver

    2010-01-01

    The 2D ionization chamber array I'mRT MatriXX (IBA, Schwarzenbruck, Germany) has been developed for absolute 2D dosimetry and verification of intensity-modulated radiation therapy (IMRT) for perpendicular beam incidence. The aim of this study is to evaluate the applicability of I'mRT MatriXX for oblique beam incidence and hybrid plan verification of IMRT with original gantry angles. For the assessment of angular dependence, open fields with gantry angles in steps of 10° were calculated on a CT scan of I'mRT MatriXX. For hybrid plan verification, 17 clinical IMRT plans and one rotational plan were used. Calculations were performed with pencil beam (PB), collapsed cone (CC) and Monte Carlo (MC) methods, which had been previously validated. Measurements were conducted on an Elekta SynergyS linear accelerator. To assess the potential and limitations of the system, gamma evaluation was performed with different dose tolerances and distances to agreement. Hybrid plan verification passed the gamma test with 4% dose tolerance and 3 mm distance to agreement in all cases, in 82-88% of the cases for tolerances of 3%/3 mm, and in 59-76% of the cases if 3%/2 mm were used. Separate evaluation of the low dose and high dose regions showed that I'mRT MatriXX can be used for hybrid plan verification of IMRT plans within 3% dose tolerance and 3 mm distance to agreement with a relaxed dose tolerance of 4% in the low dose region outside the multileaf collimator (MLC).

  18. Transducer characterization

    SciTech Connect

    Cross, B. T.; Eoff, J. M.; Schuetz, L. J.; Cunningham, K. R.

    1980-07-02

    This report has been prepared specifically for ultrasonic transducer users within the Nondestructive Testing Evaluation (NDE) community of the weapons complex. The purpose of the report is to establish an initial set of uniform procedures for measuring and recording transducer performance data, and to establish a common foundation on which more comprehensive transducer performance evaluations may be added as future transducer performance criteria expands. Transducer parameters and the problems with measuring them are discussed and procedures for measuring transducer performance are recommended with special precautionary notes regarding critical aspects of each measurement. An important consideration regarding the recommended procedures is the cost of implementation. There are two distinct needs for transducer performance characterization in the complex. Production oriented users need a quick, reliable means to check a transducer to ascertain its suitability for continued service. Development groups and the Transducer Center need a comprehensive characterization means to collect adequate data to evaluate theoretical concepts or to build exact replacement transducers. The instrumentation, equipment, and procedures recommended for monitoring production transducers are utilitarian and provide only that information needed to determine transducer condition.

  19. Singlet delta oxygen production in a 2D micro-discharge array in air: effect of gas residence time and discharge power

    NASA Astrophysics Data System (ADS)

    Nayak, Gaurav; Santos Sousa, João; Bruggeman, Peter J.

    2017-03-01

    The production of singlet delta oxygen (O2(a 1Δg)) is of growing interest for many applications. We report on the measurement of O2(a 1Δg) and ozone (O3) in a room temperature atmospheric pressure discharge in dry air. The plasma source is a 2D array of micro-discharges generated by an alternating current voltage at 20 kHz. The study focuses on the effect of gas flow through the discharge. The maximum investigated flow rate allows reducing the gas residence time in the discharge zone to half the discharge period. Results indicate that the residence time and discharge power have a major effect on the O2(a 1Δg) production. Different O2(a 1Δg) density dependencies on power are observed for different flow rates. Effects of collisional quenching on the as-produced and measured O2(a 1Δg) densities are discussed. The flow rate also allows for control of the O2(a 1Δg) to O3 density ratio in the effluent from 0.7 to conditions of pure O3.

  20. Inter-costal Liver Ablation Under Real Time MR-Thermometry With Partial Activation Of A HIFU Phased Array Transducer

    NASA Astrophysics Data System (ADS)

    Quesson, Bruno; Merle, Mathilde; Köhler, Max; Mougenot, Charles; Roujol, Sebastien; de Senneville, Baudouin Denis; Moonen, Chrit

    2010-03-01

    HIFU ablation of tumours located inside the liver is hampered by the rib cage, which partially obstructs the beam path and may create adverse effects such as skin burns. This study presents a method for selectively deactivating the transducer elements causing undesired temperature increases near the bones. A manual segmentation of the bones visualized on 3D anatomical MR images acquired prior to sonication was performed to identify the beam obstruction. The resulting mask was projected (ray tracing starting from the focal point) on the transducer and elements with more than 50% obstruction of their active surface were deactivated. The effectiveness of the method for HIFU ablations is demonstrated ex vivo and in vivo in the liver of pigs with real-time MR thermometry, using the proton resonant frequency (PRF) method. For both ex vivo and in vivo experiments, the temperature increase near the bones was significantly reduced when the elements located in front of the ribs were deactivated. The temperature evolution at the focal point were similar, indicative of the absence of loss of heating efficacy when the elements were deactivated. This method is simple, rapid and reliable and allows to perform intercostal MRgHIFU ablation of the liver while sparing the ribs.

  1. Quantitative verification of thin-film polyvinylidene fluoride (PVDF) transducer array performance up to 60 °C

    NASA Astrophysics Data System (ADS)

    Hakoda, Christopher; Ren, Baiyang; Lissenden, Cliff J.; Rose, Joseph L.

    2017-02-01

    Thin-film PVDF (polyvinylidene fluoride) transducers are appealing as low cost, light weight, durable, and flexible sensors for structural health monitoring applications in aircraft structures. However, due to the relatively low Curie temperature of PVDF, there is a concern that it's performance will drop below acceptable levels during elevated-temperature operating conditions. To verify acceptable performance in these environmental operating conditions, temperature history data were collected between 23-60 °C. The effect of temperature on the thin-film PVDF was investigated and a temperature-independent damage feature was assessed. The temperature dependence of the signal's peak amplitude was investigated in both the time domain and the spectral domain to get two damage features. It was found that the measurement of the incident guided wave by the thin-film PVDF transducer had a temperature dependence that varied with frequency. A third damage feature, the mode ratio, was also calculated in the spectral domain with the goal of defining a damage feature that is temperature independent. A comparison of how well these damage features performed when used to identify a notch in an aluminum plate was made using receiver operating characteristic curves and their respective area under the curve values. This result demonstrated that a temperature-independent damage feature can be calculated, to some degree, by using a mode ratio between two modes of similar temperature dependence.

  2. The evaluation of a 2D diode array in “magic phantom” for use in high dose rate brachytherapy pretreatment quality assurance

    SciTech Connect

    Espinoza, A.; Petasecca, M.; Fuduli, I.; Lerch, M. L. F.; Rosenfeld, A. B.; Howie, A.; Bucci, J.; Corde, S.; Jackson, M.

    2015-02-15

    Purpose: High dose rate (HDR) brachytherapy is a treatment method that is used increasingly worldwide. The development of a sound quality assurance program for the verification of treatment deliveries can be challenging due to the high source activity utilized and the need for precise measurements of dwell positions and times. This paper describes the application of a novel phantom, based on a 2D 11 × 11 diode array detection system, named “magic phantom” (MPh), to accurately measure plan dwell positions and times, compare them directly to the treatment plan, determine errors in treatment delivery, and calculate absorbed dose. Methods: The magic phantom system was CT scanned and a 20 catheter plan was generated to simulate a nonspecific treatment scenario. This plan was delivered to the MPh and, using a custom developed software suite, the dwell positions and times were measured and compared to the plan. The original plan was also modified, with changes not disclosed to the primary authors, and measured again using the device and software to determine the modifications. A new metric, the “position–time gamma index,” was developed to quantify the quality of a treatment delivery when compared to the treatment plan. The MPh was evaluated to determine the minimum measurable dwell time and step size. The incorporation of the TG-43U1 formalism directly into the software allows for dose calculations to be made based on the measured plan. The estimated dose distributions calculated by the software were compared to the treatment plan and to calibrated EBT3 film, using the 2D gamma analysis method. Results: For the original plan, the magic phantom system was capable of measuring all dwell points and dwell times and the majority were found to be within 0.93 mm and 0.25 s, respectively, from the plan. By measuring the altered plan and comparing it to the unmodified treatment plan, the use of the position–time gamma index showed that all modifications made could be

  3. Long-term decoding stability of local field potentials from silicon arrays in primate motor cortex during a 2D center out task

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zhang, Qiaosheng; Li, Yue; Wang, Yiwen; Zhu, Junming; Zhang, Shaomin; Zheng, Xiaoxiang

    2014-06-01

    Objective. Many serious concerns exist in the long-term stability of brain-machine interfaces (BMIs) based on spike signals (single unit activity, SUA; multi unit activity, MUA). Some studies showed local field potentials (LFPs) could offer a stable decoding performance. However, the decoding stability of LFPs was examined only when high quality spike signals were recorded. Here we aim to examine the long-term decoding stability of LFPs over a larger time scale when the quality of spike signals was from good to poor or even no spike was recorded. Approach. Neural signals were collected from motor cortex of three monkeys via silicon arrays over 230, 290 and 690 days post-implantation when they performed 2D center out task. To compare long-term stability between LFPs and spike signals, we examined them in neural signals characteristics, directional tuning properties and offline decoding performance, respectively. Main results. We observed slow decreasing trends in the number of LFP channels recorded and mean LFP power in different frequency bands when spike signals quality decayed over time. The number of significantly directional tuning LFP channels decreased more slowly than that of tuning SUA and MUA. The variable preferred directions for the same signal features across sessions indicated non-stationarity of neural activity. We also found that LFPs achieved better decoding performance than SUA and MUA in retrained decoder when the quality of spike signals seriously decayed. Especially, when no spike was recorded in one monkey after 671 days post-implantation, LFPs still provided some kinematic information. In addition, LFPs outperformed MUA in long-term decoding stability in a static decoder. Significance. Our results suggested that LFPs were more durable and could provide better decoding performance when spike signals quality seriously decayed. It might be due to their resistance to recording degradation and their high redundancy among channels.

  4. Piezoelectric transducer

    NASA Technical Reports Server (NTRS)

    Conragan, J.; Muller, R. S.

    1970-01-01

    Transducer consists of a hybrid thin film and a piezoelectric transistor that acts as a stress-sensitive device with built-in gain. It provides a stress/strain transducer that incorporates a signal amplification stage and sensor in a single package.

  5. Multiple matching scheme for broadband 0.72Pb(Mg(13)Nb(23))O(3)-0.28PbTiO(3) single crystal phased-array transducer.

    PubMed

    Lau, S T; Li, H; Wong, K S; Zhou, Q F; Zhou, D; Li, Y C; Luo, H S; Shung, K K; Dai, J Y

    2009-05-01

    Lead magnesium niobate-lead titanate single crystal 0.72Pb(Mg(13)Nb(23))O(3)-0.28PbTiO(3) (abbreviated as PMN-PT) was used to fabricate high performance ultrasonic phased-array transducer as it exhibited excellent piezoelectric properties. In this paper, we focus on the design and fabrication of a low-loss and wide-band transducer for medical imaging applications. A KLM model based simulation software PiezoCAD was used for acoustic design of the transducer including the front-face matching and backing. The calculated results show that the -6 dB transducer bandwidth can be improved significantly by using double lambda8 matching layers and hard backing. A 4.0 MHz PMN-PT transducer array (with 16 elements) was fabricated and tested in a pulse-echo arrangement. A -6 dB bandwidth of 110% and two-way insertion loss of -46.5 dB were achieved.

  6. Microinterferometer transducer

    DOEpatents

    Corey, III, Harry S.

    1979-01-01

    An air-bearing microinterferometer transducer is provided for increased accuracy, range and linearity over conventional displacement transducers. A microinterferometer system is housed within a small compartment of an air-bearing displacement transducer housing. A movable cube corner reflector of the interferometer is mounted to move with the displacement gauging probe of the transducer. The probe is disposed for axial displacement by means of an air-bearing. Light from a single frequency laser is directed into an interferometer system within the transducer housing by means of a self-focusing fiber optic cable to maintain light coherency. Separate fringe patterns are monitored by a pair of fiber optic cables which transmit the patterns to a detecting system. The detecting system includes a bidirectional counter which counts the light pattern fringes according to the direction of movement of the probe during a displacement gauging operation.

  7. Biasing of Capacitive Micromachined Ultrasonic Transducers.

    PubMed

    Caliano, Giosue; Matrone, Giulia; Savoia, Alessandro Stuart

    2017-02-01

    Capacitive micromachined ultrasonic transducers (CMUTs) represent an effective alternative to piezoelectric transducers for medical ultrasound imaging applications. They are microelectromechanical devices fabricated using silicon micromachining techniques, developed in the last two decades in many laboratories. The interest for this novel transducer technology relies on its full compatibility with standard integrated circuit technology that makes it possible to integrate on the same chip the transducers and the electronics, thus enabling the realization of extremely low-cost and high-performance devices, including both 1-D or 2-D arrays. Being capacitive transducers, CMUTs require a high bias voltage to be properly operated in pulse-echo imaging applications. The typical bias supply residual ripple of high-quality high-voltage (HV) generators is in the millivolt range, which is comparable with the amplitude of the received echo signals, and it is particularly difficult to minimize. The aim of this paper is to analyze the classical CMUT biasing circuits, highlighting the features of each one, and to propose two novel HV generator architectures optimized for CMUT biasing applications. The first circuit proposed is an ultralow-residual ripple (<5 [Formula: see text]) HV generator that uses an extremely stable sinusoidal power oscillator topology. The second circuit employs a commercially available integrated step-up converter characterized by a particularly efficient switching topology. The circuit is used to bias the CMUT by charging a buffer capacitor synchronously with the pulsing sequence, thus reducing the impact of the switching noise on the received echo signals. The small area of the circuit (about 1.5 cm(2)) makes it possible to generate the bias voltage inside the probe, very close to the CMUT, making the proposed solution attractive for portable applications. Measurements and experiments are shown to demonstrate the effectiveness of the new approaches

  8. SU-E-T-35: An Investigation of the Accuracy of Cervical IMRT Dose Distribution Using 2D/3D Ionization Chamber Arrays System and Monte Carlo Simulation

    SciTech Connect

    Zhang, Y; Yang, J; Liu, H; Liu, D

    2014-06-01

    Purpose: The purpose of this work is to compare the verification results of three solutions (2D/3D ionization chamber arrays measurement and Monte Carlo simulation), the results will help make a clinical decision as how to do our cervical IMRT verification. Methods: Seven cervical cases were planned with Pinnacle 8.0m to meet the clinical acceptance criteria. The plans were recalculated in the Matrixx and Delta4 phantom with the accurate plans parameters. The plans were also recalculated by Monte Carlo using leaf sequences and MUs for individual plans of every patient, Matrixx and Delta4 phantom. All plans of Matrixx and Delta4 phantom were delivered and measured. The dose distribution of iso slice, dose profiles, gamma maps of every beam were used to evaluate the agreement. Dose-volume histograms were also compared. Results: The dose distribution of iso slice and dose profiles from Pinnacle calculation were in agreement with the Monte Carlo simulation, Matrixx and Delta4 measurement. A 95.2%/91.3% gamma pass ratio was obtained between the Matrixx/Delta4 measurement and Pinnacle distributions within 3mm/3% gamma criteria. A 96.4%/95.6% gamma pass ratio was obtained between the Matrixx/Delta4 measurement and Monte Carlo simulation within 2mm/2% gamma criteria, almost 100% gamma pass ratio within 3mm/3% gamma criteria. The DVH plot have slightly differences between Pinnacle and Delta4 measurement as well as Pinnacle and Monte Carlo simulation, but have excellent agreement between Delta4 measurement and Monte Carlo simulation. Conclusion: It was shown that Matrixx/Delta4 and Monte Carlo simulation can be used very efficiently to verify cervical IMRT delivery. In terms of Gamma value the pass ratio of Matrixx was little higher, however, Delta4 showed more problem fields. The primary advantage of Delta4 is the fact it can measure true 3D dosimetry while Monte Carlo can simulate in patients CT images but not in phantom.

  9. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  10. MRI-guided Therapeutic Ultrasound : In vitro Validation of a New MR Compatible, Phased Array, Contact Endorectal Ultrasound Transducer with Active Feedback Control of Temperature Evolution

    NASA Astrophysics Data System (ADS)

    Salomir, Rares; Rata, Mihaela; Lafon, Cyril; Melodelima, David; Chapelon, Jean-Yves; Mathias, Adrien; Cotton, François; Bonmartin, Alain; Cathignol, Dominique

    2006-05-01

    Contact application of high intensity ultrasound was demonstrated to be suitable for thermal ablation of sectorial tumours of the digestive duct. Experimental validation of a new MR compatible ultrasonic device is described here, dedicated to the minimal invasive therapy of localized colorectal cancer. This is a cylindrical 1D 64-element phased array transducer of 14 mm diameter and 25 mm height (Imasonic, France) allowing electronic rotation of the acoustic beam. Operating frequency ranges from 3.5 to 4.0 MHz and up to 5 effective electrical watts per element are available. A plane wave is reconstructed by simultaneous excitation of eigth adjacent elements with an appropriate phase law. Driving electronics operates outside the Faraday cage of the scanner and provides fast switching capabilities. Excellent passive and active compatibility with the MRI data acquisition has been demonstrated. In addition, feasibility of active temperature control has been demonstrated based on real-time data export out of the MR scanner and a PID feedback algorithm. Further studies will address the in-vivo validation and the integration of a miniature NMR coil for increased SNR in the near field.

  11. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  12. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  13. Next-generation inductive transducers for position measurement

    NASA Astrophysics Data System (ADS)

    Howard, Mark A.

    2012-06-01

    Position transducers are common but critical elements in defence, aerospace, security and surveillance equipment. Traditional solutions such as potentiometers, optical encoders and inductive detectors, struggle to match the high operational, environmental and lifetime requirements demanded by such equipment. This paper outlines a radically new approach to position measurement suitable for a wide variety of shapes and sizes including rotary, linear, 2D and 3D geometries. The technology's main components are arrays of printed conductors on thin, lightweight flexible substrates. The result is a non-contact, absolute measurement technique which offers high reliability, accuracy and robust operation in a compact, non-ITAR and lightweight form.

  14. Ultrasonic transducer

    DOEpatents

    Taylor, Steven C.; Kraft, Nancy C.

    2007-03-13

    An ultrasonic transducer having an effective center frequency of about 42 MHz; a bandwidth of greater than 85% at 6 dB; a spherical focus of at least 0.5 inches in water; an F4 lens; a resolution sufficient to be able to detect and separate a 0.005 inch flat-bottomed hole at 0.005 inches below surface; and a beam size of approximately 0.006–0.008 inches measured off a 11/2 mm ball in water at the transducer's focal point.

  15. High density pixel array and laser micro-milling method for fabricating array

    NASA Technical Reports Server (NTRS)

    Wiener-Avnear, Eliezer (Inventor); McFall, James Earl (Inventor)

    2003-01-01

    A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.

  16. Scalable processes for fabricating non-volatile memory devices using self-assembled 2D arrays of gold nanoparticles as charge storage nodes.

    PubMed

    Muralidharan, Girish; Bhat, Navakanta; Santhanam, Venugopal

    2011-11-01

    We propose robust and scalable processes for the fabrication of floating gate devices using ordered arrays of 7 nm size gold nanoparticles as charge storage nodes. The proposed strategy can be readily adapted for fabricating next generation (sub-20 nm node) non-volatile memory devices.

  17. Conceptual design and optimization of a plastic scintillator array for 2D tomography using a compact D-D fast neutron generator.

    PubMed

    Adams, Robert; Zboray, Robert; Cortesi, Marco; Prasser, Horst-Michael

    2014-04-01

    A conceptual design optimization of a fast neutron tomography system was performed. The system is based on a compact deuterium-deuterium fast neutron generator and an arc-shaped array of individual neutron detectors. The array functions as a position sensitive one-dimensional detector allowing tomographic reconstruction of a two-dimensional cross section of an object up to 10 cm across. Each individual detector is to be optically isolated and consists of a plastic scintillator and a Silicon Photomultiplier for measuring light produced by recoil protons. A deterministic geometry-based model and a series of Monte Carlo simulations were used to optimize the design geometry parameters affecting the reconstructed image resolution. From this, it is expected that with an array of 100 detectors a reconstructed image resolution of ~1.5mm can be obtained. Other simulations were performed in order to optimize the scintillator depth (length along the neutron path) such that the best ratio of direct to scattered neutron counts is achieved. This resulted in a depth of 6-8 cm and an expected detection efficiency of 33-37%. Based on current operational capabilities of a prototype neutron generator being developed at the Paul Scherrer Institute, planned implementation of this detector array design should allow reconstructed tomograms to be obtained with exposure times on the order of a few hours.

  18. TRANSDUCER FIELD IMAGING USING ACOUSTOGRAPHY

    PubMed Central

    Sandhu, Jaswinder S.; Schoonover, Robert W.; Weber, Joshua I.; Tawiah, J.; Kunin, Vitaliy; Anastasio, Mark A.

    2013-01-01

    A common current practice for transducer field mapping is to scan, point-by-point, a hydrophone element in a 2D raster at various distances from the transducer radiating surface. This approach is tedious, requiring hours of scanning time to generate full cross-sectional and/or axial field distributions. Moreover, the lateral resolution of the field distribution image is dependent on the indexing steps between data points. Acoustography is an imaging process in which an acousto-optical (AO) area sensor is employed to record the intensity of an ultrasound wavefield on a two-dimensional plane. This paper reports on the application of acoustography as a simple but practical method for assessing transducer field characteristics. A case study performed on a commercial transducer is reported, where the radiated fields are imaged using acoustography and compared to the corresponding quantities that are predicted numerically. PMID:23967016

  19. PRESSURE TRANSDUCER

    DOEpatents

    Sander, H.H.

    1959-10-01

    A pressure or mechanical force transducer particularly adaptable to miniature telemetering systems is described. Basically the device consists of a transistor located within a magnetic field adapted to change in response to mechanical force. The conduction characteristics of the transistor in turn vary proportionally with changes in the magnetic flux across the transistor such that the output (either frequency of amplitude) of the transistor circuit is proportional to mechanical force or pressure.

  20. Pressure transducer

    DOEpatents

    Anderson, Thomas T.; Roop, Conard J.; Schmidt, Kenneth J.; Gunchin, Elmer R.

    1989-01-01

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output.

  1. Pressure transducer

    DOEpatents

    Anderson, T.T.; Roop, C.J.; Schmidt, K.J.; Gunchin, E.R.

    1987-02-13

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output. 7 figs.

  2. Ferrofluid Transducer.

    DTIC Science & Technology

    The patent discloses magnetic fluid transducer for producing a low-frequency sound field in a fluid medium. The device comprises a non-magnetic...cylindrical housing with end windows. The housing is surrounded by a magnetic-field-generator means and contains a magnetic fluid within the housing. The...magnetic field penetrates the housing and interacts with the magnetic fluid . A body force is developed within the fluid which produces an internal

  3. New developments in ultrasonic transducers and transducer systems; Proceedings of the Meeting, San Diego, CA, July 21, 22, 1992

    NASA Astrophysics Data System (ADS)

    Lizzi, Frederic L.

    Attention is given to advances in materials and modeling transducer performance, the means to control ultrasonic beams and to measure their properties, the variety of array configurations, and novel transducer configurations and design considerations. Emphasis is placed on new developments in piezoelectric polymer ultrasound transducers and transducer systems; micromachined acoustic matching layers; a dual frequency piezoelectric transducer for medical applications; modeling refraction and attenuation effects in invasive ultrasound probes; design and evaluation of ultrasonic arrays using 1-3 connectivity composites; artifact reduction through the use of concave linear arrays; real-time 3D ultrasound imaging with a 1D fan-beam transducer array; some conceptual approaches to innovative medical ultrasound transducers; and enhanced bandwidth ultrasound transducers with multiple piezoelectric polymer layers. (No individual items are abstracted in this volume)

  4. Length mode piezoelectric ultrasonic transducer for inspection of solid objects

    NASA Technical Reports Server (NTRS)

    Thompson, R. B. (Inventor)

    1978-01-01

    The transducer is constructed from individual transducer elements arranged in an array and configured to exhibit a predominant, longitudinal mode transversely to the array. The elements are interconnected through thin flexible sheets. Each element is individually damped, and the transducer as a whole is electrically damped through resonance with the clamped capacitance and dissipation. Electrical control permits inphase operation of all transducer elements or control with preselected phase differences.

  5. Reconstruction of 2D seismic wavefield from Long-Period Seismogram and Short-Period Seismogram Envelope by Seismic Gradiometry applied to the Hi-net Array

    NASA Astrophysics Data System (ADS)

    Maeda, Takuto; Nishida, Kiwamu; Takagi, Ryota; Obara, Kazushige

    2016-04-01

    The high-sensitive seismograph network (Hi-net) operated by National Research Institute for Earth Science and Disaster Prevention (NIED) has about 800 stations with average separation of 20 km all over the Japanese archipelago. Although it is equipped with short-period seismometers, we also can observe long-period seismic wave up to 100 s in periods for significantly large earthquakes. In this case, we may treat long-period seismic waves as a 2D wavefield with station separations shorter than wavelength rather than individual traces at stations. In this study, we attempt to reconstruct 2D wavefield and obtain its propagation properties from seismic gradiometry (SG) method. The SG estimates the wave amplitude and its spatial derivative coefficients from discrete station record by the Taylor series approximation with an inverse problem. By using spatial derivatives in horizontal directions, we can obtain properties of propagating wave packet such as the arrival direction, slowness, geometrical spreading and radiation pattern. In addition, by using spatial derivatives together with free-surface boundary condition, we may decompose the vector elastic 2D wavefield estimated by the SG into divergence and rotation components. First, we applied the seismic gradiometry to a synthetic long-period (20-50 s) seismogram dataset computed by numerical simulation in realistic 3D medium at the Hi-net station layout as a feasibility test. We confirmed that the wave amplitude and its spatial derivatives are very well reproduced with average correlation coefficients higher than 0.99 in this period range. Applications to a real large earthquakes show that the amplitude and phase of the wavefield are well reconstructed with additional information of arrival direction and its slowness. The reconstructed wavefield contained a clear contrast in slowness between body and surface waves, regional non-great-circle-path wave propagation which may be attributed to scattering. Slowness

  6. A 5-D Localization Method for a Magnetically Manipulated Untethered Robot using a 2-D Array of Hall-effect Sensors.

    PubMed

    Son, Donghoon; Yim, Sehyuk; Sitti, Metin

    2016-04-01

    This paper introduces a new five-dimensional localization method for an untethered meso-scale magnetic robot, which is manipulated by a computer-controlled electromagnetic system. The developed magnetic localization setup is a two-dimensional array of mono-axial Hall-effect sensors, which measure the perpendicular magnetic fields at their given positions. We introduce two steps for localizing a magnetic robot more accurately. First, the dipole modeled magnetic field of the electromagnet is subtracted from the measured data in order to determine the robot's magnetic field. Secondly, the subtracted magnetic field is twice differentiated in the perpendicular direction of the array, so that the effect of the electromagnetic field in the localization process is minimized. Five variables regarding the position and orientation of the robot are determined by minimizing the error between the measured magnetic field and the modeled magnetic field in an optimization method. The resulting position error is 2.1±0.8 mm and angular error is 6.7±4.3° within the applicable range (5 cm) of magnetic field sensors at 200 Hz. The proposed localization method would be used for the position feedback control of untethered magnetic devices or robots for medical applications in the future.

  7. A 5-D Localization Method for a Magnetically Manipulated Untethered Robot using a 2-D Array of Hall-effect Sensors

    PubMed Central

    Son, Donghoon; Yim, Sehyuk; Sitti, Metin

    2016-01-01

    This paper introduces a new five-dimensional localization method for an untethered meso-scale magnetic robot, which is manipulated by a computer-controlled electromagnetic system. The developed magnetic localization setup is a two-dimensional array of mono-axial Hall-effect sensors, which measure the perpendicular magnetic fields at their given positions. We introduce two steps for localizing a magnetic robot more accurately. First, the dipole modeled magnetic field of the electromagnet is subtracted from the measured data in order to determine the robot’s magnetic field. Secondly, the subtracted magnetic field is twice differentiated in the perpendicular direction of the array, so that the effect of the electromagnetic field in the localization process is minimized. Five variables regarding the position and orientation of the robot are determined by minimizing the error between the measured magnetic field and the modeled magnetic field in an optimization method. The resulting position error is 2.1±0.8 mm and angular error is 6.7±4.3° within the applicable range (5 cm) of magnetic field sensors at 200 Hz. The proposed localization method would be used for the position feedback control of untethered magnetic devices or robots for medical applications in the future. PMID:27458327

  8. The use of surface tension to predict the formation of 2D arrays of latex spheres formed via the Langmuir-Blodgett-like technique.

    PubMed

    Marquez, Maricel; Grady, Brian P

    2004-12-07

    Highly ordered hexagonal arrays of latex spheres on highly ordered pyrolytic graphite (HOPG) have been prepared from a Langmuir-Blodgett-like (LB-like) technique using both polymers and surfactants as spreading agents. The role of spreading agent concentration in forming a well-ordered, stable monolayer at the air-liquid interface was studied by means of atomic force microscopy, scanning electron microscopy, optical microscopy, and surface tension measurements for three different systems: a nonionic surfactant, octylphenoxy poly(ethyleneoxy)ethanol (Igepal CO 630); an anionic surfactant, sodium dodecyl sulfate; and a low-molecular-weight, water-soluble polymer, polyacrylamide. For both the anionic surfactant and the water soluble polymer, a correlation was found between a unique feature in surface tension measurements of the latex-spreading agent mixture and the concentrations at which hexagonal arrays of latex spheres form on the surface of HOPG. For the nonionic surfactant, no ordered structures were found on HOPG for any surfactant concentration, consistent with no appearance of the unique feature in surface tension measurements. These results show that a tensiometer can be used to determine the conditions under which well-ordered latex films have the possibility of forming on a substrate using the LB-like technique; however, other factors, such as pulling speed and surface chemistry, play a role as well.

  9. Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Wang, Huiqiao; Liu, Jinbin; Wu, Xuan; Tong, Zhonghua; Deng, Zhaoxiang

    2013-05-01

    Water-dispersible two-dimensional (2D) assemblies of Au@Ag core-shell nanoparticles are obtained through a highly selective electroless silver deposition on pre-assembled gold nanoparticles on bovine serum albumin (BSA)-coated graphene oxide (BSA-GO). While neither BSA-GO nor AuNP-decorated BSA-GO shows any antibacterial ability, the silver-coated GO@Au nanosheets (namely GO@Au@Ag) exhibit an enhanced antibacterial activity against Gram-negative Escherichia coli (E. coli) bacteria, superior to unassembled Au@Ag nanoparticles and even ionic Ag. Such an improvement may be attributed to the increased local concentration of silver nanoparticles around a bacterium and a polyvalent interaction with the bacterial surface. In addition, the colloidal stability of this novel nano-antimicrobial against the formation of random nanoparticle aggregates guarantees a minimized activity loss of the Au@Ag nanoparticles. The antibacterial efficacy of GO@Au@Ag is less sensitive to the existence of Cl-, in comparison with silver ions, providing another advantage for wound dressing applications. Our research unambiguously reveals a strong and very specific interaction between the GO@Au@Ag nanoassembly and E. coli, which could be an important clue toward a rational design, synthesis and assembly of innovative and highly active antibacterial nanomaterials.

  10. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... structures. This device includes phased arrays and two-dimensional scanning transducers. (b) Classification... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic transducer. 870.2880 Section 870.2880...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic...

  11. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... structures. This device includes phased arrays and two-dimensional scanning transducers. (b) Classification... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic transducer. 870.2880 Section 870.2880...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic...

  12. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... structures. This device includes phased arrays and two-dimensional scanning transducers. (b) Classification... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasonic transducer. 870.2880 Section 870.2880...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic...

  13. A novel two-axis micromechanical scanning transducer for handheld 3D ultrasound and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Hsien; Zou, Jun

    2016-03-01

    This paper reports the development of a new two-axis micromechanical scanning transducer for handheld 3D ultrasound imaging. It consists of a miniaturized single-element ultrasound transducer driven by a unique 2-axis liquid-immersible electromagnetic microactuator. With a mechanical scanning frequency of 19.532 Hz and an ultrasound pulse repetition rate of 5 kHz, the scanning transducer was scanned along 60 concentric paths with 256 detection points on each to simulate a physical 2D ultrasound transducer array of 60 × 256 elements. Using the scanning transducer, 3D pulse-echo ultrasound imaging of two silicon discs immersed in water as the imaging target was successfully conducted. The lateral resolution of the 3D ultrasound image was further improved with the synthetic aperture focusing technique (SAFT). The new two-axis micromechanical scanning transducer doesn't require complex and expensive multi-channel data acquisition (DAQ) electronics. Therefore, it could provide a new approach to achieve compact and low-cost 3D ultrasound and photoacoustic imaging systems, especially for handheld operations.

  14. Multifunctional transducer

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Lewis, G. W.; Culler, V. H.; Merrbaum, S. (Inventor)

    1981-01-01

    Several parameters of a small region of a muscle tissue or other object, can be simultaneously measured using with minimal traumatizing or damage of the object, a trifunctional transducer which can determine the force applied by a muscle fiber, the displacement of the fiber, and the change in thickness of the fiber. The transducer has three legs with inner ends joined together and outer ends formed to piece the tissue and remain within it. Two of the legs are relatively stiff, to measure force applied by the tissue, and a third leg is relatively flexible to measure displacement of the tissue relative to one or both stiff legs, and with the three legs lying in a common plane so that the force and displacement measurements all relate to the same direction of muscle movements. A flexible loop is attached to one of the stiff legs to measure changes in muscle thickness, with the upper end of the loop fixed to the leg and the lower end of the loop bearing against the surface of the tissue and being free to slide on the leg.

  15. Highly Selective and Repeatable Surface-Enhanced Resonance Raman Scattering Detection for Epinephrine in Serum Based on Interface Self-Assembled 2D Nanoparticles Arrays.

    PubMed

    Zhou, Binbin; Li, Xiaoyun; Tang, Xianghu; Li, Pan; Yang, Liangbao; Liu, Jinhuai

    2017-03-01

    Target analyte detection in complex systems with high selectivity and repeatability is crucial to analytical technology and science. Here we present a two-dimensional (2D) surface-enhanced resonance Raman scattering (SERRS) platform, which takes advantages of the high selectivity of the SERRS sensor as well as the sensitivity and reproducibility of the interfacial SERS platform, for detecting trace epinephrine (EP) in the serum. To realize sensitive and selective detection of EP in a complex system, Au NPs are modified with α,β-nitriloacetic acid and Fe(NO3)3 to form the Au NP-(Fe-NTA) sensor, and as a consequence, EP can be rapidly captured by the sensor on the surface of Au NPs and then delivered at the cyclohexane/water interface. More importantly, we synthesized the extremely stable Au NPs (PVP-stabilized Au NPs), where the presence of PVP prevents aggregation of Au NPs during the self-assembly process and then makes a more uniform distribution of Au NPs with analytes at the cyclohexane/water interface, approximately 2 nm interparticle distance between the Au NPs, which has been proved by synchrotron radiation grazing incidence small-angle X-ray scattering (SR-GISAXS) experiments. The self-assembly method not only effectively avoids the aggregation of Au NPs and decreases the influence of the background signal but also can capture and enrich EP molecules in the cyclohexane/water interface, realizing the sensitive and selective detection of EP in complex serum sample. This strategy overcomes the difficulty of bringing nanostructures together to form efficient interparticle distance with simple fabrication and maximum uniformity and also provides a powerful nanosensor for tracing amounts of analyte molecules in a complex system with the advantages of capturing and enriching of target molecules in the liquid/liquid interface during the self-assembly process. Our SERRS platform opens vast possibilities for repeatability, sensitivity, and selectivity detection of

  16. Bottom-Up Fabrication of Single-Layered Nitrogen-Doped Graphene Quantum Dots through Intermolecular Carbonization Arrayed in a 2D Plane.

    PubMed

    Li, Rui; Liu, Yousong; Li, Zhaoqian; Shen, Jinpeng; Yang, Yuntao; Cui, Xudong; Yang, Guangcheng

    2016-01-04

    A single-layered intermolecular carbonization method was applied to synthesize single-layered nitrogen-doped graphene quantum dots (N-GQDs) by using 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) as the only precursor. In this method, the gas produced in the pyrolysis of TATB assists with speeding up of the reactions and expanding the layered distance, so that it facilitates the formation of single-layered N-GQDs (about 80 %). The symmetric intermolecular carbonizations of TATB arrayed in a plane and six nitrogen-containing groups ensure small, uniform sizes (2-5 nm) of the resulting products, and provide high nitrogen-doping concentrations (N/C atomic ratio ca. 10.6 %). In addition to release of the produced gas, TATB is almost completely converted into aggregated N-GQDs; thus, relatively higher production rates are possible with this approach. Investigations show that the as-produced N-GQDs have superior fluorescent characteristics; high water solubility, biocompatibility, and low toxicity; and are ready for potential applications, such as biomedical imaging and optoelectronic devices.

  17. Intracardiac Forward-Looking Ultrasound Imaging Catheters Using Capacitive Micromachined Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    Nikoozadeh, A.; Wygant, I. O.; Lin, D.-S.; Oralkan, Ö.; Thomenius, K.; Dentinger, A.; Wildes, D.; Akopyan, G.; Shivkumar, K.; Mahajan, A.; Stephens, D. N.; O'Donnell, M.; Sahn, D.; Khuri-Yakub, P. T.

    Atrial fibrillation is the most common sustained arrhythmia that now affects approximately 2.2 million adults in the United States alone. Minimally invasive catheter-based electrophysiological interventions have revolutionized the management of cardiac arrhythmias. We are developing forward-viewing ultrasound imaging catheters based on two types of transducer arrays using the capacitive micromachined ultrasonic transducer technology: A 10-MHz, 24-element MicroLinear (ML) array with a footprint of 1.7 mm × 1.3 mm, and a 10-MHz, 64-element annular ring array with an outside diameter of 2.6 mm and inner diameter of 1.6 mm. Both arrays are integrated with custom-designed front-end electronic circuitry to overcome the performance degradation associated with long cables in the catheter. The ML and ring arrays provide real-time 2-D and 3-D images, respectively, in front of the catheter tip. Using the ML array, we demonstrated ex-vivo images of the left atrial appendage in an isolated Langendorff-perfused rabbit heart model and in-vivo images of heart through the open chest in a porcine animal model. We used the ring array to demonstrate 3-D images of coronary stents and an anatomic cast of a left atrial model.

  18. All-Optical Ultrasound Transducers for High Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Sheaff, Clay Smith

    High frequency ultrasound (HFUS) has increasingly been used within the past few decades to provide high resolution (< 200 mum) imaging in medical applications such as endoluminal imaging, intravascular imaging, ophthalmology, and dermatology. The optical detection and generation of HFUS using thin films offers numerous advantages over traditional piezoelectric technology. Circumvention of an electronic interface with the device head is one of the most significant given the RF noise, crosstalk, and reduced capacitance that encumbers small-scale electronic transducers. Thin film Fabry-Perot interferometers - also known as etalons - are well suited for HFUS receivers on account of their high sensitivity, wide bandwidth, and ease of fabrication. In addition, thin films can be used to generate HFUS when irradiated with optical pulses - a method referred to as Thermoelastic Ultrasound Generation (TUG). By integrating a polyimide (PI) film for TUG into an etalon receiver, we have created for the first time an all-optical ultrasound transducer that is both thermally stable and capable of forming fully sampled 2-D imaging arrays of arbitrary configuration. Here we report (1) the design and fabrication of PI-etalon transducers; (2) an evaluation of their optical and acoustic performance parameters; (3) the ability to conduct high-resolution imaging with synthetic 2-D arrays of PI-etalon elements; and (4) work towards a fiber optic PI-etalon for in vivo use. Successful development of a fiber optic imager would provide a unique field-of-view thereby exposing an abundance of prospects for minimally-invasive analysis, diagnosis, and treatment of disease.

  19. Cu-PDC-bpa solid coordination frameworks (PDC=2,5-pyrindinedicarboxylate; bpa=1,2-DI(4-pyridil)ethane)): 2D and 3D structural flexibility producing a 3-c herringbone array next to ideal

    SciTech Connect

    Llano-Tomé, Francisco; Bazán, Begoña; Urtiaga, Miren-Karmele; Barandika, Gotzone; Antonia Señarís-Rodríguez, M.; and others

    2015-10-15

    Combination of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce solid coordination frameworks (SCF) which are crystalline materials based on connections between metal ions through organic ligands. In this context, this work is focused on two novel Cu{sup II}-based SCFs exhibiting PDC (2,5-pyridinedicarboxylate) and bpa (1,2-di(4-pyridyl)ethane), being the first structures reported in literature containing both ligands. Chemical formula are [Cu{sub 2}[(PDC){sub 2}(bpa)(H{sub 2}O){sub 2}]·3H{sub 2}O·DMF (1), and [Cu{sub 2}(PDC){sub 2}(bpa)(H{sub 2}O){sub 2}]·7H{sub 2}O (2), where DMF is dimethylformamide. Compounds 1 and 2 have been characterized by means of X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric (TG) analysis, differential thermal analysis (DTA) and dielectric measurements. The crystallographic analysis revealed that compounds 1 and 2 can be described as herringbone-type layers formed by helicoidal Cu-PDC-Cu chains connected through bpa ligands. Solvent molecules are crystallized between the layers, providing the inter-layer connections through hydrogen bonds. Differences between both compounds are attributable to the flexibility of bpa (in 2D) as well as to the 3D packing of the layers which is solvent dependent. This fact results in the fact that compound 2 is the most regular 3-c herringbone array reported so far. The structural dynamism of these networks is responsible for the crystalline to-amorphous to-crystalline (CAC) transformation from compound 1 to compound 2. Crystallochemical features for both compounds have also been studied and compared to similar 3-connected herringbone-arrays. - Graphical abstract: Cu-PDC-bpa 3-c herringbone arrays. - Highlights: • The most ideal herringbone array reported so far is a Cu-PDC-bpa SCF. • Conformational freedom of bpa results in 2D and 3D flexibility of the SCFs. • The flexibility of the SCFs is related to a phase transformation. • Dielectric

  20. A dosimetric study of a heterogeneous phantom for lung stereotactic body radiation therapy comparing Monte Carlo and pencil beam calculations to dose distributions measured with a 2-D diode array

    NASA Astrophysics Data System (ADS)

    Curley, Casey Michael

    Monte Carlo (MC) and Pencil Beam (PB) calculations are compared to their measured planar dose distributions using a 2-D diode array for lung Stereotactic Body Radiation Therapy (SBRT). The planar dose distributions were studied for two different phantom types: an in-house heterogeneous phantom and a homogeneous phantom. The motivation is to mimic the human anatomy during a lung SBRT treatment and incorporate heterogeneities into the pre-treatment Quality Assurance process, where measured and calculated planar dose distributions are compared before the radiation treatment. Individual and combined field dosimetry has been performed for both fixed gantry angle (anterior to posterior) and planned gantry angle delivery. A gamma analysis has been performed for all beam arrangements. The measurements were obtained using the 2-D diode array MapCHECK 2(TM). MC and PB calculations were performed using the BrainLAB iPlan RTRTM Dose software. The results suggest that with the heterogeneous phantom as a quality assurance device, the MC calculations result in closer agreements to the measured values, when using the planned gantry angle delivery method for composite beams. For the homogeneous phantom, the results suggest that the preferred delivery method is at the fixed anterior to posterior gantry angle. Furthermore, the MC and PB calculations do not show significant differences for dose difference and distance to agreement criteria 3%/3mm. However, PB calculations are in better agreement with the measured values for more stringent gamma criteria when considering individual beam whereas MC agreements are closer for composite beam measurements.

  1. [Modeling and simulation of responses from ultrasonic linear phased array].

    PubMed

    He, Wenjing; Zhu, Yuanzhong; Wang, Yufeng; He, Lingli; Lai, Siyu

    2012-10-01

    Phased array transducers are very attractive because the beam generated by the arrays can be electronically focused and steered. The present work characterizes far-field 2D properties of phased array system by functions that are deduced from rectangle source, rectangle line array and phased array based on point source. Results are presented for the distribution of ultrasound intensity on plane xoz and on x-axis by simulation using numerical calculation. It is shown that the shape of response of rectangle line array is modulated by the single array element. It is also demonstrated that the delay time of phased array is the key to steer the beam, sacrificing the value of main lobe and increasing the number of side lobes.

  2. A new algorithm for spatial impulse response of rectangular planar transducers.

    PubMed

    Cheng, Jiqi; Lu, Jian-Yu; Lin, Wei; Qin, Yi-Xian

    2011-02-01

    Previous solutions for spatial impulse responses of rectangular planar transducers require either approximations or complex geometrical considerations. This paper describes a new, simplified and exact solution using only trigonometric functions and simple set operations. This solution, which can be numerically implemented with a straightforward algorithm, is an exact implementation of the Rayleigh integral without any far field or paraxial approximation. Additionally, a nonlinear relationship was also established for spatial impulse responses from two field points which share the same projection point on the transducer surface plane. By incorporating this relationship in the algorithm, the computational efficiency of spatial impulse responses and continuous fields is improved about 20-folds and 14-folds, respectively. This algorithm has practical applications in designing l-D linear/phased arrays, 1.5-D arrays and 2-D arrays, as demonstrated through numerical simulations with array transducers. Experiments were also conducted to verify the new solution and results show that the algorithm is both accurate and efficient. The application of this method may include development of ultrasound imaging system for hard and soft tissue nondestructive assessment.

  3. A new algorithm for spatial impulse response of rectangular planar transducers

    PubMed Central

    Cheng, Jiqi; Lu, Jian-yu; Lin, Wei; Qin, Yi-Xian

    2010-01-01

    Previous solutions for spatial impulse responses of rectangular planar transducers require either approximations or complex geometrical considerations. This paper describes a new, simplified and exact solution using only trigonometric functions and simple set operations. This solution, which can be numerically implemented with a straightforward algorithm, is an exact implementation of the Rayleigh integral without any far field or paraxial approximation. Additionally, a nonlinear relationship was also established for spatial impulse responses from two field points which share the same projection point on the transducer surface plane. By incorporating this relationship in the algorithm, the computational efficiency of spatial impulse responses and continuous fields is improved about 20 folds and 14 folds, respectively. This algorithm has practical applications in designing 1-D linear/phased arrays, 1.5-D arrays and 2-D arrays, as demonstrated through numerical simulations with array transducers. Experiments were also conducted to verify the new solution and results show that the algorithm is both accurate and efficient. The application of this method may include development of ultrasound imaging system for hard and soft tissue nondestructive assessment. PMID:20863543

  4. Capacitive micromachined ultrasonic transducers with through-wafer interconnects

    NASA Astrophysics Data System (ADS)

    Zhuang, Xuefeng

    -wafer via process, and result in low series resistance and small parasitic capacitance. Two-dimensional CMUT arrays incorporating trench-isolated interconnects show high output pressure (2.9 MPa), wide bandwidth (95%), small pulse-echo amplitude variation (sigma = 6.6% of the mean amplitude), and excellent element yield (100% in 16x16-element array). Volumetric ultrasound imaging was demonstrated by flip-chip bonding one of the fabricated 2D arrays to a custom-designed IC. An important added benefit of the trench-isolated interconnect is the capability to realize flexible arrays. A flexible 2D CMUT array is demonstrated by filling the trenches with polydimethylsiloxane (PDMS). The results presented in this dissertation show that through-wafer trench-isolation is a viable solution for providing electrical interconnects to CMUT elements. These techniques are potentially useful for providing through-wafer interconnects to many other types of MEMS sensors and actuators because of their post-process nature. The results also show that 2D CMUT arrays fabricated using wafer-bonding deliver good performance.

  5. Volumetric synthetic aperture imaging with a piezoelectric 2D row-column probe

    NASA Astrophysics Data System (ADS)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann; Beers, Christopher; Lei, Anders; Stuart, Matthias Bo; Nikolov, Svetoslav Ivanov; Thomsen, Erik Vilain; Jensen, Jørgen Arendt

    2016-04-01

    The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row-column addressed transducer array. Utilizing single element transmit events, a volume rate of 90 Hz down to 14 cm deep is achieved. Data are obtained using the experimental ultrasound scanner SARUS with a 70 MHz sampling frequency and beamformed using a delay-and-sum (DAS) approach. A signal-to-noise ratio of up to 32 dB is measured on the beamformed images of a tissue mimicking phantom with attenuation of 0.5 dB cm-1 MHz-1, from the surface of the probe to the penetration depth of 300λ. Measured lateral resolution as Full-Width-at-Half-Maximum (FWHM) is between 4λ and 10λ for 18% to 65% of the penetration depth from the surface of the probe. The averaged contrast is 13 dB for the same range. The imaging performance assessment results may represent a reference guide for possible applications of such an array in different medical fields.

  6. Evolutionary Technique for Designing Optimized Arrays

    NASA Astrophysics Data System (ADS)

    Villazón, J.; Ibañez, A.

    2011-06-01

    Many ultrasonic inspection applications in the industry could benefit from the use of phased array distributions specifically designed for them. Some common design requirements are: to adapt the shape of the array to that of the part to be inspected, to use large apertures for increasing lateral resolution, to find a layout of elements that avoids artifacts produced by lateral and/or grating lobes, to maintain the total number of independent elements (and the number of control channels) as low as possible to reduce complexity and cost of the inspection system. Recent advances in transducer technology have made possible to design and build arrays whit non-regular layout of elements. In this paper we propose to use Evolutionary Algorithms to find layouts of ultrasonic arrays (whether 1D or 2D array) that approach a set of specified beampattern characteristics using a low number of elements.

  7. Transducer of linear displacements

    NASA Astrophysics Data System (ADS)

    Malamed, Y. R.

    1984-02-01

    The basic PLP transducer is designed for a UIM-29 microscope and a 2-coordinate measuring instrument with electronic digital readout. Its optical system consists of an AL-107B light-emitting diode as light source, two condenser lenses, a special wedge carrying two pairs of joined receiver lenses, a prism-mirror, a photoreceiver, a wedge-shape transparent replica of a twin diffraction grating which prevents light reflected by the air-glass interface from focusing on the receiver photodiodes, and a reflective replica of a diffraction grating on a movable carriage. The already available three models of this transducer are PLP1-0.2, PLP1-0.5, and PLP1-1.0 with respectively 625, 250, 125 lines/mm on the transparent replica and respectively 312.5, 125, 62.5 lines/mm on the reflective replica. The scale of moire-interference fringes characterizing the shift between both diffraction gratings per grating period (9.16 mm in each model) is respectively 0.8, 2.0, 4.0 microns and the angle between the two arrays of grating lines on the transparent replica is respectively 36 + or - 4 deg, 90 + or - 10 deg, 190 + or - 20 deg.

  8. A silicon electrostatic ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Suzuki, Kenichiro; Higuchi, Kohei; Tanigawa, Hiroshi

    1989-11-01

    An electric ultrasonic transducer is developed by using a silicon IC process. Design considerations are first presented to obtain high sensitivity and the desired frequency responses in air. The measured transmitter sensitivity is 19.1 dB (0 dB = 1 microbar/V) at a point 50 cm away from the devices, when the devices are operated at 150 kHz. The receiving sensitivity is 0.47 mV/Pa in the 10-130-kHz range, with bias voltages as low as 30 V. An electronic sector scanning operation is also achieved by time-sequentially driving seven elements arranged in a linear array on the same chip. The results should be helpful in the design of phased-array transducers integrated with electronic scanning circuits.

  9. SU-E-T-634: Pre-Verification of FFF Prostate VMAT Plans with Gamma Method and DVHs Reconstructed Based On Measurements with 2D-ARRAY (PTW 1500) and OCTAVIUS 4D

    SciTech Connect

    Kruszyna, M; Adamczyk, M

    2015-06-15

    Purpose: The aim of this work was to characterize the clinical correctness of FFF prostate treatment VMAT plans based on analysis of DVHs reconstructed from pre-verification 2D-arrays measurements. Methods: The new 2D ion chamber array 1500 with rotational phantom cylindrical Octavius 4D and Verisoft 6.1 software with DVH option (PTW, Freiburg) were used to determine the clinical usefulness of the treatment plans. Ten patients treated with VMAT high-fractionated (2 fraction x 7,5 Gy) FFF prostate plans (TrueBeam, Varian) were analyzed using the 3D gamma analysis by local dose method with a 5% threshold for various tolerance parameters DTA [mm] and DD [%] were 1%/1, 2%/2, 3%/3. Additional, based on the measurements of irradiation dose distributions and patients’ CT scans with contoured structures of organs, the DVHs were reconstructed using a software. The obtained DVHs were compared to planned dose distributions and the deviations were analysed with parameters: for CTV D50, D98, D2, and D25, D50, Dmax for OARs — rectum, bladder and left/right femoral heads. Results: The analyzed treatment plans passed gamma criteria (3/3%; 95%), the results obtained were as follow: mean value and standard deviation of gamma score for criteria (DTA[mm]/DD[%]): 1/1% (L53.3±3.2); 2/2% (L87.0±2.2); 3/3% (L97.5±0.9). In the DVH analysis, the highest differences were observed for OARs (especially for bladder): the mean percentage differences values for rectum, bladder and left/right femoral heads were: D25 (1.67; 6.83)%, D50 (0.18; 7.18; 1.53; 0.30)%, Dmax (−0.84; −1.64; 0.37; −4.63)%, respectively. For the CTV mean relative deviations for proper parameters were in good agreement with TPS: D98 (0.95±2.21)%, D50 (1.93±0.67)%, D2 (1.76±0.76)%. Conclusion: The gamma method is recommended tool for pre-verification analysis of correctness of treatment plans. Moreover, the scrutiny checking with reconstructed DVH gives additional, clinical information about quality of plan

  10. Cu-PDC-bpa solid coordination frameworks (PDC=2,5-pyrindinedicarboxylate; bpa=1,2-DI(4-pyridil)ethane)): 2D and 3D structural flexibility producing a 3-c herringbone array next to ideal

    NASA Astrophysics Data System (ADS)

    Llano-Tomé, Francisco; Bazán, Begoña; Urtiaga, Miren-Karmele; Barandika, Gotzone; Antonia Señarís-Rodríguez, M.; Sánchez-Andújar, Manuel; Arriortua, María-Isabel

    2015-10-01

    Combination of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce solid coordination frameworks (SCF) which are crystalline materials based on connections between metal ions through organic ligands. In this context, this work is focused on two novel CuII-based SCFs exhibiting PDC (2,5-pyridinedicarboxylate) and bpa (1,2-di(4-pyridyl)ethane), being the first structures reported in literature containing both ligands. Chemical formula are [Cu2[(PDC)2(bpa)(H2O)2]·3H2O·DMF (1), and [Cu2(PDC)2(bpa)(H2O)2]·7H2O (2), where DMF is dimethylformamide. Compounds 1 and 2 have been characterized by means of X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric (TG) analysis, differential thermal analysis (DTA) and dielectric measurements. The crystallographic analysis revealed that compounds 1 and 2 can be described as herringbone-type layers formed by helicoidal Cu-PDC-Cu chains connected through bpa ligands. Solvent molecules are crystallized between the layers, providing the inter-layer connections through hydrogen bonds. Differences between both compounds are attributable to the flexibility of bpa (in 2D) as well as to the 3D packing of the layers which is solvent dependent. This fact results in the fact that compound 2 is the most regular 3-c herringbone array reported so far. The structural dynamism of these networks is responsible for the crystalline to-amorphous to-crystalline (CAC) transformation from compound 1 to compound 2. Crystallochemical features for both compounds have also been studied and compared to similar 3-connected herringbone-arrays.

  11. Model of a Piezoelectric Transducer

    NASA Technical Reports Server (NTRS)

    Goodenow, Debra

    2004-01-01

    It's difficult to control liquid and gas in propellant tanks in zero gravity. A possible a design would utilize acoustic liquid manipulation (ALM) technology which uses ultrasonic beams conducted through a liquid and solid media, to push gas bubbles in the liquid to desirable locations. We can propel and control the bubble with acoustic radiation pressure by aiming the acoustic waves on the bubble s surface. This allows us to design a so called smart tank in which the ALM devices transfer the gas to the outer wall of the tank and isolating the liquid in the center. Because the heat transfer rate of a gas is lower of that of the liquid it would substantially decrease boil off and provide of for a longer storage life. The ALM beam is composed of little wavelets which are individual waves that constructively interfere with each other to produce a single, combined acoustic wave front. This is accomplished by using a set of synchronized ultrasound transducers arranged in an array. A slight phase offset of these elements allows us to focus and steer the beam. The device that we are using to produce the acoustic beam is called the piezoelectric transducer. This device converts electrical energy to mechanical energy, which appears in the form of acoustic energy. Therefore the behavior of the device is dependent on both the mechanical characteristics, such as its density, cross-sectional area, and its electrical characteristics, such as, electric flux permittivity and coupling factor. These devices can also be set up in a number of modes which are determined by the way the piezoelectric device is arranged, and the shape of the transducer. For this application we are using the longitudinal or thickness mode for our operation. The transducer also vibrates in the lateral mode, and one of the goals of my project is to decrease the amount of energy lost to the lateral mode. To model the behavior of the transducers I will be using Pspice, electric circuit modeling tool, to

  12. Applications of the Method for Transducer Transient Suppression to Various Transducer Types

    DTIC Science & Technology

    1993-08-01

    previously. These types are (i) flexural disk, (ii) Helmholtz resonator, (iii) moving coil, (iv) inductor-tuned Tonpilz , and (v)a dual transducer array of...previously. These types are (i) flexural disk. (ii) Helmholtz resonator, (iii) moving coil, (iv) inductor-tuned Tonpilz , and (v) a dual transducer array of...cycle case, we findV(O -- t-- +i, R (t;>r. even number of half-cycles), (3) FIG. 2. Equivalent circuit for an inductor-tuned Tonpilz transducer . The

  13. Micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular array.

    PubMed

    Liu, Changgeng; Djuth, Frank; Li, Xiang; Chen, Ruimin; Zhou, Qifa; Shung, K Kirk

    2012-04-01

    This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9×9 μm. The width of the kerf among pillars was ∼5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm(2) with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and -6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about -35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers, e.g. 1D and 2D arrays.

  14. Micromachined High Frequency PMN-PT/Epoxy 1-3 Composite Ultrasonic Annular Array

    PubMed Central

    Liu, Changgeng; Djuth, Frank; Li, Xiang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9 μm × 9 μm. The width of the kerf among pillars was ~ 5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm2 with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and -6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about -35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers e.g. 1D and 2D arrays. PMID:22119324

  15. A Neoprene with Optimized Bondability for Sonar Transducer Applications

    DTIC Science & Technology

    1987-06-05

    TR-317R TRANSDUCER The TR-317R is a tonpilz transducer mounted in a large spherical array on the front of U.S. Navy submarines of several classes... TRANSDUCER APPLICATIONS TASK NO. 59-0593-0 [SQ-ns«A-n WORK UNIT ACCESSION NO. )N880-326 12. PERSONAL AUTHOR(S) "^ ^Zl!l ^’ ’^’^°"’P"°" ^"i... Transducer Applications tX: C. M. Thompson Materials Section Transducer Branch Underwater Sound Reference Detachment Naval Research Laboratory P.O

  16. Transducer characterization for Vibrothermography

    NASA Astrophysics Data System (ADS)

    Vaddi, Jyani Somayajulu

    Vibrothermography, also known as Sonic IR and Thermosonics, is an NDE technique for finding cracks and flaws based on vibration-induced frictional rubbing of unbonded surfaces. The vibration is usually generated by a piezoelectric stack transducer which transduces electrical energy into large amplitude mechanical vibrations. The purpose of this study is to develop an understanding of the excitation process for vibrothermography so that optimal parameters and transducers for the testing can be selected. The amplitude and impedance transfer characteristics of the transducer system control the vibration of the sample. Within a linear contact (no tip chatter) model, the interaction between the transducer system and the specimen can be characterized using the theory of linear time-invariant (LTI) systems and electro-mechanical Norton equivalence. This work presents quantitative measurements of the performance of piezoelectric stack transducers in a vibrothermography excitation system and the effect of transducer performance and specimen characteristics on the induced vibration in the specimen. We show that with compliant coupling, the specimen vibration is directly proportional to the transducer open circuit velocity and that the system resonances generated because of metal-metal contact of specimen and transducer are disconnected by adding a couplant between specimen and transducer. We then give suggestions for transducer and couplant selection for vibrothermography and suggest methods to flatten the velocity spectrum of the transducer. We extend our analysis to high amplitude transducer behavior and elaborate on the effect of power amplifier saturation on the transducer behavior. The saturation effect negates the effect of adding an external inductance to flatten the transducer velocity spectrum. Finally, preliminary results are reported on the effect of transducer degradation phenomenon.

  17. PRESSURE TRANSDUCER RESEARCH.

    DTIC Science & Technology

    PIEZOELECTRIC TRANSDUCERS, PRESSURE), UNDERGROUND EXPLOSIONS, ELECTRICAL RESISTANCE, SEEBECK EFFECT , PRESSURE GAGES, SHOCK WAVES, STRESSES, COMPUTER PROGRAMMING, NUCLEAR EXPLOSIONS, NUCLEAR RADIATION.

  18. Transducer applications, a compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The characteristics and applications of transducers are discussed. Subjects presented are: (1) thermal measurements, (2) liquid level and fluid flow measurements, (3) pressure transducers, (4) stress-strain measurements, (5) acceleration and velocity measurements, (6) displacement and angular rotation, and (7) transducer test and calibration methods.

  19. Megahertz tonpilz transducer

    NASA Astrophysics Data System (ADS)

    Van Tol, Dave; Hughes, W. Jack

    1999-06-01

    The tonpilz configuration is applied to a transducer operating in the megahertz frequency range. The KLM model is used to design the transducer using readily available components. The construction techniques used are the same as those applied to standard high frequency transducers. Modeled and measured pulse-echo results display a high level of agreement, but impedance and sensitivity comparisons are less promising.

  20. Trielectrode capacitive pressure transducer

    NASA Technical Reports Server (NTRS)

    Coon, G. W. (Inventor)

    1976-01-01

    A capacitive transducer and circuit especially suited for making measurements in a high-temperature environment are described. The transducer includes two capacitive electrodes and a shield electrode. As the temperature of the transducer rises, the resistance of the insulation between the capacitive electrode decreases and a resistive current attempts to interfere with the capacitive current between the capacitive electrodes. The shield electrode and the circuit coupled there reduce the resistive current in the transducer. A bridge-type circuit coupled to the transducer ignores the resistive current and measures only the capacitive current flowing between the capacitive electrodes.

  1. Comparison of piezoresistive and capacitive ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Neumann, John J.; Greve, David W.; Oppenheim, Irving J.

    2004-07-01

    MEMS ultrasonic transducers for flaw detection have heretofore been built as capacitive diaphragm-type devices. A diaphragm forms a moveable electrode, placed at a short gap from a stationary electrode, and diaphragm movement has been detected by capacitance change. Although several research teams have successfully demonstrated that technology, the detection of capacitance change is adversely affected by stray and parasitic capacitances, limiting the sensitivity of such transducers and typically requiring relatively large diaphragm areas. We describe the design and fabrication of what to our knowledge is the first CMOS-MEMS ultrasonic phased array transducer using piezoresistive strain sensing. Piezoresistors have been patterned within the diaphragms, and diaphragm movement creates bending strain which is detected by a bridge circuit, for which conductor losses will be less significant. The prospective advantage of such piezoresistive transducers is that sufficient sensitivity may be achieved with very small diaphragms. We compare transducer response under fluid-coupled ultrasonic excitation and report the experimental gauge factor for the piezoresistors. We also discuss the phased array performance of the transducer in sensing the direction of an incoming wave.

  2. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  3. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  4. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  5. Micromachined silicon seismic transducers

    SciTech Connect

    Barron, C.C.; Fleming, J.G.; Sniegowski, J.J.; Armour, D.L.; Fleming, R.P.

    1995-08-01

    Batch-fabricated silicon seismic transducers could revolutionize the discipline of CTBT monitoring by providing inexpensive, easily depolyable sensor arrays. Although our goal is to fabricate seismic sensors that provide the same performance level as the current state-of-the-art ``macro`` systems, if necessary one could deploy a larger number of these small sensors at closer proximity to the location being monitored in order to compensate for lower performance. We have chosen a modified pendulum design and are manufacturing prototypes in two different silicon micromachining fabrication technologies. The first set of prototypes, fabricated in our advanced surface- micromachining technology, are currently being packaged for testing in servo circuits -- we anticipate that these devices, which have masses in the 1--10 {mu}g range, will resolve sub-mG signals. Concurrently, we are developing a novel ``mold`` micromachining technology that promises to make proof masses in the 1--10 mg range possible -- our calculations indicate that devices made in this new technology will resolve down to at least sub-{mu}G signals, and may even approach to 10{sup {minus}10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

  6. Sonar Transducer Reliability Improvement Program FY 80

    DTIC Science & Technology

    1980-10-01

    Polyphenylene Sulfide 15,320 23,000 Nylon 6/10 14,070 26,000 High-Strength Nylon (ZYTEL) 11,270 24,000 Amorphous Nylon 14,139 25,000 PBT Polyester...transducer receiving sensitivity Goal -- less than ±1 dB variation from the specified value over operational frequency band . Threshold - less than ±2 dB...variation from the specified value over operational feequency band . rhe Sonar Transducer Reliability Impruvemen: Program (STRIP) is a part of Program

  7. Visualization and simulation of a linear explosive-induced pyroshock wave using Q-switched laser and phased array transducers in a space launcher composite structure

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Ryul; Jang, Jae-Kyeong; Choi, Mijin; Kong, Cheol-Won

    2015-04-01

    During space flights, pyrotechnic devices are used for various purposes such as separation of boosters, satellites, fairings, and stages. In particular, the prediction of high shock structural response induced by linear explosives is important for safe operation of pyrotechnic devices. In general, repetitive explosive testing using distributed accelerometers is widely used, but multiple test structures are usually necessary because they are easily damaged and not reusable. This paper pertains to a nondestructive technology to replace the damage-causing, time-consuming, expensive, dangerous, and low-repeatability explosive test with a laser-induced shock test. The method proposed in this paper predicts nondestructively the linear explosive-induced pyroshock wave, visualizes its propagation, and allows the simulation of some detonation conditions. A ballistic test based on a linear explosive and noncontact laser Doppler vibrometer (LDV) as well as a nondestructive pyroshock test using laser-induced shock and PZT array sensors is performed in a 12.68-mm thick composite sandwich panel. The optimal laser-induced shock experimental conditions to predict real pyroshock response spectra (SRSs) are investigated by controlling the optical characteristics of the laser beam and adjusting the frequency bands in signal acquisition. The similarity of the SRS of the conditioned laser-induced shock to that of the real explosive pyroshock is evaluated with the mean acceleration difference. Next, the experimentally-determined optimal conditions are applied to arbitrary points in the laser-induced shock scanning area. Finally, it is shown that the proposed method will allow nondestructive and quantitative pyroshock testing, pyroshock wave propagation visualization showing the direction and magnitude of principal wave propagation, and detonation speed simulation depending on explosive type and detonation initiation point and direction.

  8. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  9. Short-Lag Spatial Coherence Imaging on Matrix Arrays, Part I: Beamforming Methods and Simulation Studies

    PubMed Central

    Hyun, Dongwoon; Trahey, Gregg E.; Jakovljevic, Marko; Dahl, Jeremy J.

    2014-01-01

    Short-lag spatial coherence (SLSC) imaging is a beamforming technique that has demonstrated improved imaging performance compared with conventional B-mode imaging in previous studies. Thus far, the use of 1-D arrays has limited coherence measurements and SLSC imaging to a single dimension. Here, the SLSC algorithm is extended for use on 2-D matrix array transducers and applied in a simulation study examining imaging performance as a function of subaperture configuration and of incoherent channel noise. SLSC images generated with a 2-D array yielded superior contrast-to-noise ratio (CNR) and texture SNR measurements over SLSC images made on a corresponding 1-D array and over B-mode imaging. SLSC images generated with square subapertures were found to be superior to SLSC images generated with subapertures of equal surface area that spanned the whole array in one dimension. Subaperture beamforming was found to have little effect on SLSC imaging performance for subapertures up to 8 × 8 elements in size on a 64 × 64 element transducer. Additionally, the use of 8 × 8, 4 × 4, and 2 × 2 element subapertures provided 8, 4, and 2 times improvement in channel SNR along with 2640-, 328-, and 25-fold reduction in computation time, respectively. These results indicate that volumetric SLSC imaging is readily applicable to existing 2-D arrays that employ subaperture beamforming. PMID:24960700

  10. Short-lag spatial coherence imaging on matrix arrays, part 1: Beamforming methods and simulation studies.

    PubMed

    Hyun, Dongwoon; Trahey, Gregg E; Jakovljevic, Marko; Dahl, Jeremy J

    2014-07-01

    Short-lag spatial coherence (SLSC) imaging is a beamforming technique that has demonstrated improved imaging performance compared with conventional B-mode imaging in previous studies. Thus far, the use of 1-D arrays has limited coherence measurements and SLSC imaging to a single dimension. Here, the SLSC algorithm is extended for use on 2-D matrix array transducers and applied in a simulation study examining imaging performance as a function of subaperture configuration and of incoherent channel noise. SLSC images generated with a 2-D array yielded superior contrast-to-noise ratio (CNR) and texture SNR measurements over SLSC images made on a corresponding 1-D array and over B-mode imaging. SLSC images generated with square subapertures were found to be superior to SLSC images generated with subapertures of equal surface area that spanned the whole array in one dimension. Subaperture beamforming was found to have little effect on SLSC imaging performance for subapertures up to 8 x 8 elements in size on a 64 × 64 element transducer. Additionally, the use of 8 x 8, 4 x 4, and 2 x 2 element subapertures provided 8, 4, and 2 times improvement in channel SNR along with 2640-, 328-, and 25-fold reduction in computation time, respectively. These results indicate that volumetric SLSC imaging is readily applicable to existing 2-D arrays that employ subaperture beamforming.

  11. Control of complex components with Smart Flexible Phased Arrays.

    PubMed

    Casula, O; Poidevin, C; Cattiaux, G; Dumas, Ph

    2006-12-22

    The inspection is mainly performed in contact with ultrasonic wedge transducers; However, the shape cannot fit the changing geometries of components (butt weld, nozzle, elbow). The variable thickness of the coupling layer, between the wedge and the local surface, leads to beam distortions and losses of sensitivity. Previous studies have shown that these two phenomena contribute to reduce the inspection performances leading to shadow area, split beam.... Flexible phased arrays have been developed to fit the complex profile and improve such controls. The radiating surface is composed with independent piezoelectric elements mechanically assembled and a profilometer, embedded in the transducer, measures the local distortion. The computed shape is used by an algorithm to compute in real-time the adapted delay laws compensating the distortions of 2D or 3D profiles. Those delay laws are transferred to the real-time UT acquisition system, which applies them to the piezoelectric elements. This self-adaptive process preserves, during the scanning, the features of the focused beam (orientation and focal depth) in the specimen. To validate the concept of the Smart Flexible Phased Array Transducer, prototypes have been integrated to detect flaws machined in mock-ups with realistic irregular 2D and 3D shapes. Inspections have been carried out on samples showing the enhancement performances of the "Smart Flexible Phased Array" and validating the mechanical and acoustical behaviors of these probes.

  12. Implementation and comparison of reconstruction algorithms for two-dimensional optoacoustic tomography using a linear array

    NASA Astrophysics Data System (ADS)

    Modgil, Dimple; La Rivière, Patrick J.

    2009-07-01

    Our goal is to compare and contrast various image reconstruction algorithms for optoacoustic tomography (OAT) assuming a finite linear aperture of the kind that arises when using a linear-array transducer. Because such transducers generally have tall, narrow elements, they are essentially insensitive to out-of-plane acoustic waves, and the usually 3-D OAT problem reduces to a 2-D problem. Algorithms developed for the 3-D problem may not perform optimally in 2-D. We have implemented and evaluated a number of previously described OAT algorithms, including an exact (in 3-D) Fourier-based algorithm and a synthetic-aperture-based algorithm. We have also implemented a 2-D algorithm developed by Norton for reflection mode tomography that has not, to the best of our knowledge, been applied to OAT before. Our simulation studies of resolution, contrast, noise properties, and signal detectability measures suggest that Norton's approach-based algorithm has the best contrast, resolution, and signal detectability.

  13. Design considerations for piezoelectric polymer ultrasound transducers.

    PubMed

    Brown, L F

    2000-01-01

    Much work has been published on the design of ultrasound transducers using piezoelectric ceramics, but a great deal of this work does not apply when using the piezoelectric polymers because of their unique electrical and mechanical properties. The purpose of this paper is to review and present new insight into seven important considerations for the design of active piezoelectric polymer ultrasound transducers: piezoelectric polymer materials selection, transducer construction and packaging requirements, materials characterization and modeling, film thickness and active area design, electroding selection, backing material design, and front protection/matching layer design. Besides reviewing these design considerations, this paper also presents new insight into the design of active piezoelectric polymer ultrasonic transducers. The design and fabrication of an immersible ultrasonic transducer, which has no adhesive layer between the active element and backing layer, is included. The transducer features direct deposition of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer onto an insulated aluminum backing substrate. Pulse-echo tests indicated a minimum insertion loss of 37 dB and -6 dB bandwidth of 9.8 to 22 MHz (71%). The use of polymer wear-protection/quarter-wave matching layers is also discussed. Test results on a P(VDF-TrFE) transducer showed that a Mylar/sup TM/ front layer provided a slight increase in pulse-echo amplitude of 15% (or 1.2 dB) and an increase in -6 dB pulse-echo fractional bandwidth from 86 to 95%. Theoretical derivations are reported for optimizing the active area of the piezoelectric polymer element for maximum power transfer at resonance. These derivations are extended to the special case for a low profile (i.e., thin) shielded transducer. A method for modeling the non-linear loading effects of a commercial pulser-receiver is also included.

  14. Crossflow force transducer. [LMFBR

    SciTech Connect

    Mulcahy, T M

    1982-05-01

    A force transducer for measuring lift and drag coefficients for a circular cylinder in turbulent water flow is presented. In addition to describing the actual design and construction of the strain-gauged force- ring based transducer, requirements for obtained valid fluid force test data are discussed, and pertinent flow test experience is related.

  15. Experiments with Ultrasonic Transducers.

    ERIC Educational Resources Information Center

    Greenslade, Thomas R., Jr.

    1994-01-01

    Discusses the use of 40 kHz ultrasonic transducers to study wave phenomena. Determines that the resulting wavelength of 9 mm allows acoustic experiments to be performed on a tabletop. Includes transducer characteristics and activities on speed of sound, reflection, double- and single-slit diffraction, standing waves, acoustical zone plate, and…

  16. 2D versus 3D cross-correlation-based radial and circumferential strain estimation using multiplane 2D ultrafast ultrasound in a 3D atherosclerotic carotid artery model.

    PubMed

    Fekkes, Stein; Swillens, Abigail E S; Hansen, Hendrik H G; Saris, Anne E C M; Nillesen, Maartje M; Iannaccone, Francesco; Segers, Patrick; de Korte, Chris L

    2016-08-25

    Three-dimensional strain estimation might improve the detection and localization of high strain regions in the carotid artery for identification of vulnerable plaques. This study compares 2D vs. 3D displacement estimation in terms of radial and circumferential strain using simulated ultrasound images of a patient specific 3D atherosclerotic carotid artery model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on literature data. A Philips L11-3 linear array transducer was simulated which transmitted plane waves at 3 alternating angles at a pulse repetition rate of 10 kHz. Inter-frame radiofrequency ultrasound data were simulated in Field II for 191 equally spaced longitudinal positions of the internal carotid artery. Accumulated radial and circumferential displacements were estimated using tracking of the inter-frame displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2D and 3D method was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3D displacement estimation for the entire cardiac cycle. The 3D technique clearly outperformed the 2D technique in phases with high inter-frame longitudinal motion. In fact the large inter-frame longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2D technique.

  17. 2-D Versus 3-D Cross-Correlation-Based Radial and Circumferential Strain Estimation Using Multiplane 2-D Ultrafast Ultrasound in a 3-D Atherosclerotic Carotid Artery Model.

    PubMed

    Fekkes, Stein; Swillens, Abigail E S; Hansen, Hendrik H G; Saris, Anne E C M; Nillesen, Maartje M; Iannaccone, Francesco; Segers, Patrick; de Korte, Chris L

    2016-10-01

    Three-dimensional (3-D) strain estimation might improve the detection and localization of high strain regions in the carotid artery (CA) for identification of vulnerable plaques. This paper compares 2-D versus 3-D displacement estimation in terms of radial and circumferential strain using simulated ultrasound (US) images of a patient-specific 3-D atherosclerotic CA model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on the literature data. A Philips L11-3 linear array transducer was simulated, which transmitted plane waves at three alternating angles at a pulse repetition rate of 10 kHz. Interframe (IF) radio-frequency US data were simulated in Field II for 191 equally spaced longitudinal positions of the internal CA. Accumulated radial and circumferential displacements were estimated using tracking of the IF displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least-squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2-D and 3-D methods was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3-D displacement estimation for the entire cardiac cycle. The 3-D technique clearly outperformed the 2-D technique in phases with high IF longitudinal motion. In fact, the large IF longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2-D technique.

  18. Triple-resonant transducers.

    PubMed

    Butler, Stephen C

    2012-06-01

    A detailed analysis is presented of two novel multiple-resonant transducers which produce a wider transmit response than that of a conventional Tonpilz-type transducer. These multi-resonant transducers are Tonpilz-type longitudinal vibrators that produce three coupled resonances and are referred to as triple-resonant transducers (TRTs). One of these designs is a mechanical series arrangement of a tail mass, piezoelectric ceramic stack, central mass, compliant spring, second central mass, second compliant spring, and a piston-radiating head mass. The other TRT design is a mechanical series arrangement of a tail mass, piezoelectric ceramic stack, central mass, compliant spring, and head mass with a quarter-wave matching layer of poly(methyl methacrylate) on the head mass. Several prototype transducer element designs were fabricated that demonstrated proof-of-concept.

  19. New piezoelectric transducers for therapeutic ultrasound.

    PubMed

    Chapelon, J Y; Cathignol, D; Cain, C; Ebbini, E; Kluiwstra, J U; Sapozhnikov, O A; Fleury, G; Berriet, R; Chupin, L; Guey, J L

    2000-01-01

    Therapeutic ultrasound (US) has been of increasing interest during the past few years. However, the development of this technique depends on the availability of high-performance transducers. These transducers have to be optimised for focusing and steering high-power ultrasonic energy within the target volume. Recently developed high-power 1-3 piezocomposite materials bring to therapeutic US the exceptional electroacoustical properties of piezocomposite technology: these are high efficiency, large bandwidth, predictable beam pattern, more flexibility in terms of shaping and definition of sampling in annular arrays, linear arrays or matrix arrays. The construction and evaluation of several prototypes illustrates the benefit of this new approach that opens the way to further progress in therapeutic US.

  20. Sonar Transducer Reliability Improvement Program FY80.

    DTIC Science & Technology

    1980-01-01

    band Threshold - less than ±2 dB variation from the specified value over operational frequency band The Sonar Transducer Reliability Improvement...were Qetiker preformed clamps, Band -It preformed clamps, and Band -It Scru-Loct retrofittable clamps. *TASK 5: Manufacture Instrumented Connectors Under...cycle 6 PRE-kORM 10 PU-U Cable bond failure, Remove from test after DSS-3 under gap in clamp cycle 5 OETIKER 11 N-G " ring leakage was Removed from

  1. Pressure transducer and system for cryogenic environments

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor)

    1992-01-01

    A silicon pressure die is bonded to a borosilicate substrate above the pneumatic port. A Wheatstone bridge circuit is formed on the silicon pressure die and has bridge elements of silicon doped with boron to a deposit density level of approximately 1 x 10(exp 19)-10(exp 21) boron/cc. A current source is provided to excite the Wheatstone bridge circuit. In addition, a temperature sensor is provided to provide temperature readings. An array may be formed of the resulting pressure transducers. This unique solution of materials permits operation of a pressure transducer in cryogenic environments.

  2. Measurement of photoacoustic transducer position by robotic source placement and nonlinear parameter estimation

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Ephrat, Pinhas; Seabrook, Adam

    2008-02-01

    Source localization by photoacoustic tomography is dependent on time-of-flight pressure data collected by one or more transducers at multiple positions about the imaged object. Errors in transducer position lead directly to errors in source localization. The objective of this work was to develop a method for experimental determination of transducer position for the purpose of (i) comparison of the measured to the expected transducer position, and (ii) automated calibration of transducer position in scanning and array setups. Our approach was to acquire the time of arrival data at each transducer using a small, point-like photoacoustic source from many locations in the imaged volume. Source placement was controlled with a 3D robotic gantry (accuracy +/-0.01 mm). Time of arrival data for all source locations was used to compute a vector of source-transducer distances. The coordinates of each transducer location were then found by nonlinear parameter estimation for a function that related the source distance to the known source location and the unknown transducer location. Application of the method to a planar array of 14 transducers resulted in identification of the position of each element in the transducer array. This finding suggested that the method may be useful for (i) mapping transducer positions during validation and calibration studies, (ii) measuring the effective position of transducers that are asymmetric or have fabrication errors, and (iii) obtaining the mapping relationship between the imaging system and the imaging volume in situations where coregistration of image data from other modalities is desired.

  3. Transducer Arrays Suitable for Acoustic Imaging

    DTIC Science & Technology

    1978-06-01

    attention is placed on achieving high transduction efficiency and angular beam - widths of at least ±15°• T. Design techniques based on the transmission line...approximation so that the acoustic beam is caused to come to a focus in the exact analogue to a normal lens. The reference phase delays necessary to...fccus the acoustic beam are provided by a tapped surface acoustic wave delay line. A surface Ji acoustic wave is launched down the delay line with a

  4. The effects of transducer geometry on artifacts common to diagnostic bone imaging with conventional medical ultrasound.

    PubMed

    Mauldin, F William; Owen, Kevin; Tiouririne, Mohamed; Hossack, John A

    2012-06-01

    The portability, low cost, and non-ionizing radiation associated with medical ultrasound suggest that it has potential as a superior alternative to X-ray for bone imaging. However, when conventional ultrasound imaging systems are used for bone imaging, clinical acceptance is frequently limited by artifacts derived from reflections occurring away from the main axis of the acoustic beam. In this paper, the physical source of off-axis artifacts and the effect of transducer geometry on these artifacts are investigated in simulation and experimental studies. In agreement with diffraction theory, the sampled linear-array geometry possessed increased off-axis energy compared with single-element piston geometry, and therefore, exhibited greater levels of artifact signal. Simulation and experimental results demonstrated that the linear-array geometry exhibited increased artifact signal when the center frequency increased, when energy off-axis to the main acoustic beam (i.e., grating lobes) was perpendicularly incident upon off-axis surfaces, and when off-axis surfaces were specular rather than diffusive. The simulation model used to simulate specular reflections was validated experimentally and a correlation coefficient of 0.97 between experimental and simulated peak reflection contrast was observed. In ex vivo experiments, the piston geometry yielded 4 and 6.2 dB average contrast improvement compared with the linear array when imaging the spinous process and interlaminar space of an animal spine, respectively. This work indicates that off-axis reflections are a major source of ultrasound image artifacts, particularly in environments comprising specular reflecting (i.e., bone or bone-like) objects. Transducer geometries with reduced sensitivity to off-axis surface reflections, such as a piston transducer geometry, yield significant reductions in image artifact.

  5. Acoustooptic pulse-echo transducer system

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Wade, J. C.

    1983-01-01

    A pulse-echo transducer system which uses an ultrasonic generating element and an optical detection technique is described. The transmitting transducer consists of a concentric ring electrode pattern deposited on a circular, X-cut quartz substrate with a circular hole in the center. The rings are independently pulsed with a sequence high voltage signals phased in such a way that the ultrasonic waves generated by the separate rings superimpose to produce a composite field which is focused at a controllable distance below the surface of the specimen. The amplitude of the field reflected from this focus position is determined by the local reflection coefficient of the medium at the effective focal point. By processing the signals received for a range of ultrasonic transducer array focal lengths, the system can be used to locate and size anomalies within solids and liquids. Applications in both nondestructive evaluation and biomedical scanning are suggested.

  6. The Prediction of Transducer Element Performance from In-Air Measurements.

    DTIC Science & Technology

    1982-01-19

    radiating face velocity and the input current to the transducer at resonance. The equivalent circuit values of a group of Tonpilz -type transducers were...of a group of Tonpilz -type transducers were measured, and the self and mutual interaction acoustic loadings for a specific array geometry were...34 Tonpilz "-Type Transducer ...... ............ 6 2. Generalized Equivalent Circuit Model . ...... 11 3. The Ideal Transformer ..... .............. 14

  7. Digital magnetic temperature transducer.

    NASA Technical Reports Server (NTRS)

    Tchernev, D. I.; Collier, T. E.

    1971-01-01

    A new digital magnetic temperature transducer is reported. The device utilizes the discontinuous behavior of the initial permeability with temperature at the Curie temperature of some magnetic materials. Since the Curie temperature is determined by the chemical and crystallographic composition of the particular material only, the transducer requires no calibration and has extremely high stability and reproducibility with time. The output of the transducer is inherently digital and, therefore, is directly compatible with the digital information processing and control without A/D conversion. The temperature-sensing portion of the transducer consists only of magnetic cores and wire and, therefore, has extremely high reliability, is shock and radiation insensitive, small, and virtually indestructible.

  8. Improved myocardium transducer

    NASA Technical Reports Server (NTRS)

    Culler, V. H.; Feldstein, C.; Lewis, G. W.

    1979-01-01

    Method of implanting myocardium transducer uses special indented pins that are caught and securely held by epicardial fibers. Pins are small enough to cause minimum of trauma to myocardium during implantation or removal.

  9. Multilayer ionic polymer transducer

    NASA Astrophysics Data System (ADS)

    Akle, Barbar J.; Leo, Donald J.

    2003-07-01

    A transducer consisting of multiple layers of ionic polymer material is developed for applications in sensing, actuation, and control. The transducer consists of two to four individual layers each approximately 200 microns thick. The transducers are connected in parallel to minimize the electric field requirements for actuation. The tradeoff in deflection and force can be controlled by controlling the mechanical constraint at the interface. Packaging the transducer in an outer coating produces a hard constraint between layers and reduces the deflection with a force that increases linearly with the number of layers. This configuration also increases the bandwidth of the transducer. Removing the outer packaging produces an actuator that maintains the deflection of a single layer but has an increased force output. This is obtained by allowing the layers to slide relative to one another during bending. Experiments on transducers with one to three layers are performed and the results are compared to Newbury"s equivalent circuit model, which was modified to accommodate the multilayer polymers. The modification was performed on four different boundary conditions, two electrical the series and the parallel connection, and two mechanical the zero interfacial friction and the zero slip on the interface. Results demonstrate that the largest obstacle to obtaining good performance is water transport between the individual layers. Water crossover produces a near short circuit electrical condition and produces feedthrough between actuation layers and sensing layers. Electrical feedthrough due to water crossover eliminates the ability to produce a transducer that has combined sensing and actuation properties. Eliminating water crossover through good insulation enables the development of a small (5 mm x 30 mm) transducer that has sensing and actuation bandwidth on the order of 100 Hz.

  10. Investigation of transmit and receive performance at the fundamental and third harmonic resonance frequency of a medical ultrasound transducer.

    PubMed

    Frijlink, Martijn E; Løvstakken, Lasse; Torp, Hans

    2009-12-01

    In this study, the phenomenon of higher harmonic thickness resonance of a piezoelectric transducer was used to investigate potentially additional sensitivity at the third harmonic frequency for conventional medical transducers. The motivation for this research is that some applications in medical ultrasound (e.g. third harmonic transmit phasing and contrast imaging) need probes which are sensitive around both the fundamental and third harmonic frequencies, and that these higher harmonic thickness modes, although often considered as undesired, might be used beneficially. The novelty aspect in this study is the presented transmit and receive potential at both the fundamental and third harmonic of a conventional cardiac probe with modified electrical tuning. Elements of an experimental PZT-based phased-array probe (f(c)=3 MHz, 64 elements, element width=0.3mm, elevation aperture=13 mm) were electrically retuned with series inductors around the third harmonic resonance frequency at 10 MHz. Hydrophone measurements with 10-MHz-tuned elements showed that, as compared to a conventionally tuned element, the transmit transfer function at the third harmonic increased more than 23 dB, while the sensitivity at the fundamental frequency was only 6 dB lower. Pulse-echo measurements showed that the two-way transfer function of a 10-MHz-tuned element resulted in 20 dB increased sensitivity around the third harmonic as compared to an untuned element. Simulated transfer functions, from both a 1D KLM and 2D finite element model of an element of the experimental array transducer, confirmed the measured sensitivity peaks at the fundamental and third harmonic. In conclusion, this study demonstrated the effect of changing the electrical tuning on a conventional array transducer which increased the sensitivity around the third harmonic resonance frequency, while maintaining good sensitivity at the fundamental frequency.

  11. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  12. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN–PT and PIN–PMN–PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single–element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  13. Piezoelectric single crystals for ultrasonic transducers in biomedical applications.

    PubMed

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K Kirk

    2014-10-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state-of-art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN-PT and PIN-PMN-PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single-element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed.

  14. 2D focal-field aberration dependence on time/phase screen position and correlation lengths

    NASA Astrophysics Data System (ADS)

    Näsholm, Sven Peter

    2004-05-01

    For high-frequency annular array transducers used in medical ultrasound imaging, aberrations due to tissue and body wall have a significant effect on energy transfer from the main lobe to the sidelobes of the acoustic field: that is, the aberrations make the total sidelobe level increase. This effect makes the ultrasound image poor when imaging heterogeneous organs. This study performs an analysis of the focal-field quality as a function of time/phase screen z position and time/phase screen correlation length. It establishes some rules of thumb which indicate when the focal-field sidelobe energy is at its highest. It also introduces a simple screen-scaling model which is useful as long as the screen position is not closer to the focus than a certain limit distance. The scaling model allows the real screen at a depth z=zscreen to be treated as a scaled screen at the position z=ztransd. 2D sound fields after 3D propagation from the annular arrays to the focal plane have been simulated using an angular spectrum method. The aberrators are represented by amplitude and phase/time screens.

  15. Slip-ring-based multi-transducer photoacoustic tomography system.

    PubMed

    Deng, Zijian; Li, Wenzhao; Li, Changhui

    2016-06-15

    Although the transducer array-based photoacoustic tomography (PAT) system provides fast imaging speed, its high cost and system complexity hinder its implementations. In this Letter, for the first time, to the best of our knowledge, the electrical slip ring was used to develop a PAT system that compromises the cost and the imaging speed. This system enables using multiple transducers to image the target simultaneously and continuously. In addition, it is versatile to use different transducers. The performance of this PAT system has been demonstrated by both phantom and in vivo animal experiments.

  16. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  17. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  18. Catheter transducer and circuit

    NASA Technical Reports Server (NTRS)

    Harrison, D. R.; Kerwin, W. J.

    1971-01-01

    Simple integrated circuit located at transducer, enables use of single coaxial cable for both input and output connections. Circuit is sensitive to changes in RC time constant, has much improved sensitivity characteristics, and is unaffected by changes in cable capacitance effects.

  19. Broadband Ultrasonic Transducers

    NASA Technical Reports Server (NTRS)

    Heyser, R. C.

    1986-01-01

    New geometry spreads out resonance region of piezoelectric crystal. In new transducer, crystal surfaces made nonparallel. One surface planar; other, concave. Geometry designed to produce nearly uniform response over a predetermined band of frequencies and to attenuate strongly frequencies outside band. Greater bandwidth improves accuracy of sonar and ultrasonic imaging equipment.

  20. 3-D airborne ultrasound synthetic aperture imaging based on capacitive micromachined ultrasonic transducers.

    PubMed

    Park, Kwan Kyu; Khuri-Yakub, Butrus T

    2013-09-01

    In this paper, we present an airborne 3-D volumetric imaging system based on capacitive micromachined ultrasonic transducers (CMUTs). For this purpose we fabricated 89-kHz CMUTs where each CMUT is made of a circular single-crystal silicon plate with a radius of 1mm and a thickness of 20 μm, which is actuated by electrostatic force through a 20-μm vacuum gap. The measured transmit sensitivity at 300-V DC bias is 14.6 Pa/V and 24.2 Pa/V, when excited by a 30-cycle burst and a continuous wave, respectively. The measured receive sensitivity at 300-V DC bias is 16.6 mV/Pa (-35.6 dB re 1 V/Pa) for a 30-cycle burst. A 26×26 2-D array was implemented by mechanical scanning a co-located transmitter and receiver using the classic synthetic aperture (CSA) method. The measurement of a 1.6λ-size target at a distance of 500 mm presented a lateral resolution of 3.17° and also showed good agreement with the theoretical point spread function. The 3-D imaging of two plates at a distance of 350 mm and 400 mm was constructed to exhibit the capability of the imaging system. This study experimentally demonstrates that a 2-D CMUT array can be used for practical 3-D imaging applications in air, such as a human-machine interface.

  1. Curved PVDF airborne transducer.

    PubMed

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  2. phase_space_cosmo_fisher: Fisher matrix 2D contours

    NASA Astrophysics Data System (ADS)

    Stark, Alejo

    2016-11-01

    phase_space_cosmo_fisher produces Fisher matrix 2D contours from which the constraints on cosmological parameters can be derived. Given a specified redshift array and cosmological case, 2D marginalized contours of cosmological parameters are generated; the code can also plot the derivatives used in the Fisher matrix. In addition, this package can generate 3D plots of qH^2 and other cosmological quantities as a function of redshift and cosmology.

  3. Future needs for biomedical transducers

    NASA Technical Reports Server (NTRS)

    Wooten, F. T.

    1971-01-01

    In summary there are three major classes of transducer improvements required: improvements in existing transducers, needs for unexploited physical science phenomena in transducer design, and needs for unutilized physiological phenomena in transducer design. During the next decade, increasing emphasis will be placed on noninvasive measurement in all of these areas. Patient safety, patient comfort, and the need for efficient utilization of the time of both patient and physician requires that noninvasive methods of monitoring be developed.

  4. Ionic electroactive hybrid transducers

    NASA Astrophysics Data System (ADS)

    Akle, Barbar J.; Bennett, Matthew D.; Leo, Donald J.

    2005-05-01

    Ionic electroactive actuators have received considerable attention in the past ten years. Ionic electroactive polymers, sometimes referred to as artificial muscles, have the ability to generate large bending strain and moderate stress at low applied voltages. Typical types of ionic electroactive polymer transducers include ionic polymers, conducting polymers, and carbon nanotubes. Preliminary research combining multiple types of materials proved to enhance certain transduction properties such as speed of response, maximum strain, or quasi-static actuation. Recently it was demonstrated that ionomer-ionic liquid transducers can operate in air for long periods of time (>250,000 cycles) and showed potential to reduce or eliminate the back-relaxation issue associated with ionomeric polymers. In addition, ionic liquids have higher electrical stability window than those operated with water as the solvent thereby increasing the maximum strain that the actuator can produce. In this work, a new technique developed for plating metal particulates on the surface of ionomeric materials is applied to the development of hybrid transducers that incorporate carbon nanotubes and conducting polymers as electrode materials. The new plating technique, named the direct assembly process, consists of mixing a conducting powder with an ionomer solution. This technique has demonstrated improved response time and strain output as compared to previous methods. Furthermore, the direct assembly process is less costly to implement than traditional impregnation-reduction methods due to less dependence on reducing agents, it requires less time, and is easier to implement than other processes. Electrodes applied using this new technique of mixing RuO2 (surface area 45~65m2/g) particles and Nafion dispersion provided 5x the displacement and 10x the force compared to a transducer made with conventional methods. Furthermore, the study illustrated that the response speed of the transducer is optimized

  5. Seismic transducer modeling using ABAQUS

    SciTech Connect

    Stephen R. Novascone

    2004-05-01

    A seismic transducer, known as an orbital vibrator, consists of a rotating imbalance driven by an electric motor. When suspended in a liquid-filled wellbore, vibrations of the device are coupled to the surrounding geologic media. In this mode, an orbital vibrator can be used as an efficient rotating dipole source for seismic imaging. Alternately, the motion of an orbital vibrator is affected by the physical properties of the surrounding media. From this point of view, an orbital vibrator can be used as a stand-alone sensor. The reaction to the surroundings can be sensed and recorded by geophones inside the orbital vibrator. These reactions are a function of the media’s physical properties such as modulus, damping, and density, thereby identifying the rock type. This presentation shows how the orbital vibrator and surroundings were modeled with an ABAQUS acoustic FEM. The FEM is found to compare favorably with theoretical predictions. A 2D FEM and analytical model are compared to an experimental data set. Each model compares favorably with the data set.

  6. Nano-optomechanical transducer

    DOEpatents

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  7. Three dimensional transducer

    DOEpatents

    Warren, Oden Lee; Asif, Syed Amanulla Syed; Oh, Yunje; Feng, Yuxin; Cyrankowski, Edward; Major, Ryan

    2014-09-30

    A testing instrument for mechanical testing at nano or micron scale includes a transducer body, and a coupling shaft coupled with a probe tip. A transducer body houses a capacitor. The capacitor includes first and second counter electrodes and a center electrode assembly interposed therebetween. The center electrode assembly is movable with the coupling shaft relative to the first and second counter electrodes, for instance in one or more of dimensions including laterally and normally. The center electrode assembly includes a center plate coupled with the coupling shaft and one or more springs extending from the center plate. Upper and lower plates are coupled with the center plate and cover the center plate and the one or more springs. A shaft support assembly includes one or more support elements coupled along the coupling shaft. The shaft support assembly provides lateral support to the coupling shaft.

  8. Fluid force transducer

    DOEpatents

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  9. Training Tree Transducers

    DTIC Science & Technology

    2004-01-01

    trees (similar to the role played by the finite- state acceptor FSA for strings). We describe the version (equivalent to TSG ( Schabes , 1990)) where...strictly contained in tree sets of tree adjoining gram- mars (Joshi and Schabes , 1997). 4 Extended-LHS Tree Transducers (xR) Section 1 informally described...changes without modifying the training procedure, as long as we stick to tree automata. 10 Related Work Tree substitution grammars or TSG ( Schabes , 1990

  10. Polymer film composite transducer

    DOEpatents

    Owen, Thomas E.

    2005-09-20

    A composite piezoelectric transducer, whose piezoeletric element is a "ribbon wound" film of piezolectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.

  11. Stress wave focusing transducers

    SciTech Connect

    Visuri, S.R., LLNL

    1998-05-15

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.

  12. Thin film strain transducer

    NASA Astrophysics Data System (ADS)

    Rand, J. L.

    1981-01-01

    Previous attempts to develop an appropriate sensor for measuring the stress or strain of high altitude balloons during flight are reviewed as well as the various conditions that must be met by such a device. The design, development and calibration of a transducer which promises to satisfy the necessary design constraints are described. The thin film strain transducer has a low effective modulus so as not to interfere with the strain that would naturally occur in the balloon. In addition, the transducer has a high sensitivity to longitudinal strain (7.216 mV/V/unit strain) which is constant for all temperature from room temperature to -80 C and all strains from 5 percent compression to 10 percent tensile strain. At the same time, the sensor is relatively insensitive (0.27 percent) to transverse forces. The device has a standard 350 ohm impedance which is compatible with available bridge balance, amplification and telemetry instrumentation now available for balloon flight. Recommendations are included for improved coatings to provide passive thermal control as well as model, tethered and full scale flight testing.

  13. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  14. Transrectal Array Configurations Optimized For Prostate HIFU Ablation

    SciTech Connect

    Anand, Ajay; Raju, Balasundar I.; Sethuraman, Shriram; Sokka, Shunmugavelu

    2009-04-14

    The objectives of this study were to evaluate and compare steering and ablation rates from several types of transrectal arrays operated at different frequencies for whole prostate ablation. Three-dimensional acoustic and thermal modeling (Rayleigh-Sommerfield and Penne's BHTE) were performed. Treatment volumes up to 70cc and anterior-posterior distances up to 6 cm were considered. The maximum transducer dimensions were constrained to 5 cm (along rectum) and 2.5 cm (elevation), and the channel count was limited to 256. Planar array configurations for truncated-annular, 1/1.5D, and 2D random arrays were evaluated at 1, 2, and 4 MHz for capability to treat the entire prostate. The acoustic intensity at the surface was fixed at 10 W/cm{sup 2}. The maximum temperature was restricted to 80 deg. C. The volumetric ablation rate was computed to compare the treatment times amongst different configurations. The 1.5D Planar array at 1 MHz ablated the whole prostate in the shortest amount of time while maintaining adequate steering. The higher frequency arrays required smaller elevation apertures for a fixed channel count to maintain a single focal spot at the desired location. Consequently, these arrays resulted in slower heating rates with increased near-field heating. The 1 MHz 1.5D array would also be advantageous compared to single-element transducers since only one mechanical degree of motion is required. This study demonstrates the selection of an optimal array geometry and frequency for transrectal HIFU, resulting in faster ablation rates and reduced treatment times.

  15. Transrectal Array Configurations Optimized For Prostate HIFU Ablation

    NASA Astrophysics Data System (ADS)

    Anand, Ajay; Raju, Balasundar I.; Sethuraman, Shriram; Sokka, Shunmugavelu

    2009-04-01

    The objectives of this study were to evaluate and compare steering and ablation rates from several types of transrectal arrays operated at different frequencies for whole prostate ablation. Three-dimensional acoustic and thermal modeling (Rayleigh-Sommerfield and Penne's BHTE) were performed. Treatment volumes up to 70cc and anterior-posterior distances up to 6 cm were considered. The maximum transducer dimensions were constrained to 5 cm (along rectum) and 2.5 cm (elevation), and the channel count was limited to 256. Planar array configurations for truncated-annular, 1/1.5D, and 2D random arrays were evaluated at 1, 2, and 4 MHz for capability to treat the entire prostate. The acoustic intensity at the surface was fixed at 10 W/cm2. The maximum temperature was restricted to 80° C. The volumetric ablation rate was computed to compare the treatment times amongst different configurations. The 1.5D Planar array at 1 MHz ablated the whole prostate in the shortest amount of time while maintaining adequate steering. The higher frequency arrays required smaller elevation apertures for a fixed channel count to maintain a single focal spot at the desired location. Consequently, these arrays resulted in slower heating rates with increased near-field heating. The 1 MHz 1.5D array would also be advantageous compared to single-element transducers since only one mechanical degree of motion is required. This study demonstrates the selection of an optimal array geometry and frequency for transrectal HIFU, resulting in faster ablation rates and reduced treatment times.

  16. High performance relaxor-based ferroelectric single crystals for ultrasonic transducer applications.

    PubMed

    Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L W; Dai, Jiyan

    2014-07-29

    Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed.

  17. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    PubMed Central

    Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L. W.; Dai, Jiyan

    2014-01-01

    Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33∼2000 pC/N, kt∼60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222

  18. Huygen-Fresnel Diffraction Model H-Fdm for the Simulation of Ultrasonic Time-Of Diffraction Technique in 2d Geometries

    NASA Astrophysics Data System (ADS)

    Reddy, K. Sanjeeva; Krishnamurthy, C. V.; Balasubramaniam, Krishnan; Balasubramanian, T.

    2010-02-01

    This paper discusses the evaluation of diffracted signals from cracks in 2D based on a new Huygen-Fresnel Diffraction Model (H-FDM). The model employs the frequency-domain far-field displacement expressions derived by Miller & Pursey [1] in 2D for a line source located on the free surface of a semi-infinite elastic medium. At each frequency in the bandwidth of a pulsed excitation, the complex diffracted field is obtained by summing over the unblocked virtual sources located in the section containing a vertical crack. The time-domain diffracted signal is obtained using standard FFT procedures. The effect of beam refraction from a wedge-based finite transducer has been modeled by treating the finite transducer as an array of line sources. The model has been used for predicting diffracted signals in time-of-flight from the crack like defect. The model allows the evaluation of back wall signal amplitude and lateral wave amplitude as well. Experiments have been carried out on 10 mm thick aluminum sample with surface breaking crack of lengths 2 mm and 4 mm using shear probe shoe. The simulated A-Scan results for the aluminum sample with 2 mm and 4 mm surface breaking lengths compare very well in relative amplitudes and time of arrivals with experiments. The H-FDM model offers a tool to evaluate diffraction and related phenomena quantitatively with modest computational resources.

  19. Transducers for ultrasonic limb plethysmography

    NASA Technical Reports Server (NTRS)

    Nickell, W. T.; Wu, V. C.; Bhagat, P. K.

    1983-01-01

    The design, construction, and performance characteristics of ultasonic transducers suitable for limb plethysmography are presented. Both 3-mm-diameter flat-plate and 12-mm-diameter hemispheric ceramic transducers operating at 2 MHz were fitted in 1-mm thick epoxy-resin lens/acoustic-coupling structures and mounted in exercie-EKG electrode housings for placement on the calf using adhesive collars. The effects of transducer directional characteristics on performance under off-axis rotation and the electrical impedances of the transducers were measured: The flat transducer was found to be sensitive to rotation and have an impedance of 800 ohms; the hemispheric transducer, to be unaffected by rotation and have an impedance of 80 ohms. The use of hemispheric transducers as both transmitter and receiver, or of a flat transducer as transmitter and a hemispheric transducer as receiver, was found to produce adequate dimensional measurements, with minimum care in transducer placement, in short-term physiological experiments and long-term (up to 7-day) attachment tests.

  20. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  1. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  2. Phased-array vector velocity estimation using transverse oscillations.

    PubMed

    Pihl, Michael J; Marcher, Jonne; Jensen, Jorgen A

    2012-12-01

    A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical applicability of the method. A phased-array transducer has a smaller footprint and a larger field of view than a linear array, and is therefore more suited for, e.g., cardiac imaging. The method relies on suitable TO fields, and a beamforming strategy employing diverging TO beams is proposed. The implementation of the TO method using a phased-array transducer for vector velocity estimation is evaluated through simulation and flow-rig measurements are acquired using an experimental scanner. The vast number of calculations needed to perform flow simulations makes the optimization of the TO fields a cumbersome process. Therefore, three performance metrics are proposed. They are calculated based on the complex TO spectrum of the combined TO fields. It is hypothesized that the performance metrics are related to the performance of the velocity estimates. The simulations show that the squared correlation values range from 0.79 to 0.92, indicating a correlation between the performance metrics of the TO spectrum and the velocity estimates. Because these performance metrics are much more readily computed, the TO fields can be optimized faster for improved velocity estimation of both simulations and measurements. For simulations of a parabolic flow at a depth of 10 cm, a relative (to the peak velocity) bias and standard deviation of 4% and 8%, respectively, are obtained. Overall, the simulations show that the TO method implemented on a phased-array transducer is robust with relative standard deviations around 10% in most cases. The flow-rig measurements show similar results. At a depth of 9.5 cm using 32 emissions per estimate, the relative standard deviation is 9% and the relative bias is -9

  3. Calculation of 2D electronic band structure using matrix mechanics

    NASA Astrophysics Data System (ADS)

    Pavelich, R. L.; Marsiglio, F.

    2016-12-01

    We extend previous work, applying elementary matrix mechanics to one-dimensional periodic arrays (to generate energy bands), to two-dimensional arrays. We generate band structures for the square-lattice "2D Kronig-Penney model" (square wells), the "muffin-tin" potential (circular wells), and Gaussian wells. We then apply the method to periodic arrays of more than one atomic site in a unit cell, specifically to the case of materials with hexagonal lattices like graphene. These straightforward extensions of undergraduate-level calculations allow students to readily determine band structures of current research interest.

  4. Thin film strain transducer

    NASA Technical Reports Server (NTRS)

    Rand, J. L. (Inventor)

    1984-01-01

    A strain transducer system and process for making the same is disclosed. A beryllium copper ring having four strain gages is electrically connected in Wheatstone bridge fashion to the output instrumentation. Tabs are bonded to a balloon or like surface with strain on the surface causing bending of a ring which provides an electrical signal through the gages proportional to the surface strain. A photographic pattern of a one half ring segment as placed on a sheet of beryllium copper for chem-mill etch formation is illustrated.

  5. Lithium tetraborate transducer cuts

    NASA Astrophysics Data System (ADS)

    Kosinski, John; Ballato, Arthur; Lukaszek, Theodore

    1990-03-01

    Lithium tetraborate is a tetragonal material of considerable promise for frequency control and signal processing applications. It exhibits piezoelectric coupling values that fall between those of lithium niobate and quartz, but possesses orientations for which the temperature coefficient of frequency and delay time is zero for bulk and surface acoustic waves. In this report, we discuss the properties of two doubly rotated bulk wave resonator orientations having both first- and second-order temperature coefficients equal to zero. These are suitable for shear and compressional wave transducers in applications where very low temperature sensitivity is required simultaneously with moderately strong piezocoupling coefficients.

  6. Lithium tetraborate transducers

    NASA Astrophysics Data System (ADS)

    Ballato, Arthur; Kosinski, John A.; Lukaszek, Ted J.

    1991-01-01

    Lithium tetraborate is a tetragonal material of considerable promise for frequency control and signal processing applications. It exhibits piezoelectric coupling values that fall between those of lithium niobate and quartz, but possesses orientations for which the temperature coefficient of frequency and delay time is zero for bulk and surface acoustic waves. The properties of two doubly rotated bulk wave resonator orientations having first- and second-order temperature coefficients equal to zero are discussed. These are suitable for shear and compressional wave transducers in applications where very low temperature sensitivity is required simultaneously with moderately strong piezocoupling coefficients.

  7. An electromechanical displacement transducer

    NASA Astrophysics Data System (ADS)

    Villiers, Marius; Mahboob, Imran; Nishiguchi, Katsuhiko; Hatanaka, Daiki; Fujiwara, Akira; Yamaguchi, Hiroshi

    2016-08-01

    Two modes of an electromechanical resonator are coupled through the strain inside the structure with a cooperativity as high as 107, a state-of-the-art value for purely mechanical systems, which enables the observation of normal-mode splitting. This coupling is exploited to transduce the resonator’s fundamental mode into the bandwidth of the second flexural mode, which is 1.4 MHz higher in frequency. Thus, an all-mechanical heterodyne detection scheme is implemented that can be developed into a high-precision displacement sensor.

  8. Wellbore pressure transducer

    DOEpatents

    Shuck, Lowell Z.

    1979-01-01

    Subterranean earth formations containing energy values are subjected to hydraulic fracturing procedures to enhance the recovery of the energy values. These fractures are induced in the earth formation by pumping liquid into the wellbore penetrating the earth formation until the pressure of the liquid is sufficient to fracture the earth formation adjacent to the wellbore. The present invention is directed to a transducer which is positionable within the wellbore to generate a signal indicative of the fracture initiation useful for providing a timing signal to equipment for seismic mapping of the fracture as it occurs and for providing a measurement of the pressure at which the fracture is initiated.

  9. RADIO-ACTIVE TRANSDUCER

    DOEpatents

    Wanetick, S.

    1962-03-01

    ABS>ure the change in velocity of a moving object. The transducer includes a radioactive source having a collimated beam of radioactive particles, a shield which can block the passage of the radioactive beam, and a scintillation detector to measure the number of radioactive particles in the beam which are not blocked by the shield. The shield is operatively placed across the radioactive beam so that any motion normal to the beam will cause the shield to move in the opposite direction thereby allowing more radioactive particles to reach the detector. The number of particles detected indicates the acceleration. (AEC)

  10. Some design considerations for small piezo-electrical ceramic transducers

    NASA Astrophysics Data System (ADS)

    Rijnja, H. A. J.

    1989-07-01

    The design parameters and the characteristics of small omnidirectional transducers, to be applied under water as projectors in the frequency range of about 1 kHz to 100 kHz and as hydrophones from very low frequencies up to again 100kHz are described. The transducers are constructed with piezoelectrical ceramic materials in the shape of hollow spheres, end capped tubes or piston (Tonpilz) elements. The highest source levels are obtained with spherical transducers as single omnidirectional sound sources. If larger arrays of sources are applied the array should be composed of single ended Tonpilz elements. The most sensitive receivers (hydrophones) are obtained with tangentially polarized end-capped tubes.

  11. Physical and chemical sensing using monolithic semiconductor optical transducers

    NASA Astrophysics Data System (ADS)

    Zappe, Hans P.; Hofstetter, Daniel; Maisenhoelder, Bernd; Moser, Michael; Riel, Peter; Kunz, Rino E.

    1997-09-01

    We present two monolithically integrated optical sensor systems based on semiconductor photonic integrated circuits. These compact, robust and highly functional transducers perform all necessary optical and electro-optical functions on-chip; extension to multi-sensor arrays is easily envisaged. A monolithic Michelson interferometer for high-resolution displacement measurement and a monolithic Mach-Zehnder interferometer for refractometry are discussed.

  12. A new ultrasonic transducer for improved contrast nonlinear imaging.

    PubMed

    Bouakaz, Ayache; Cate, Folkert ten; de Jong, Nico

    2004-08-21

    Second harmonic imaging has provided significant improvement in contrast detection over fundamental imaging. This improvement is a result of a higher contrast-to-tissue ratio (CTR) achievable at the second harmonic frequency. Nevertheless, the differentiation between contrast and tissue at the second harmonic frequency is still in many situations cumbersome and contrast detection remains nowadays as one of the main challenges, especially in the capillaries. The reduced CTR is mainly caused by the generation of second harmonic energy from nonlinear propagation effects in tissue, which hence obscures the echoes from contrast bubbles. In a previous study, we demonstrated theoretically that the CTR increases with the harmonic number. Therefore the purpose of our study was to increase the CTR by selectively looking to the higher harmonic frequencies. In order to be able to receive these high frequency components (third up to the fifth harmonic), a new ultrasonic phased array transducer has been constructed. The main advantage of the new design is its wide frequency bandwidth. The new array transducer contains two different types of elements arranged in an interleaved pattern (odd and even elements). This design enables separate transmission and reception modes. The odd elements operate at 2.8 MHz and 80% bandwidth, whereas the even elements have a centre frequency of 900 kHz with a bandwidth of 50%. The probe is connected to a Vivid 5 system (GE-Vingmed) and proper software is developed for driving. The total bandwidth of such a transducer is estimated to be more than 150% which enables higher harmonic imaging at an adequate sensitivity and signal to noise ratio compared to standard medical array transducers. We describe in this paper the design and fabrication of the array transducer. Moreover its acoustic properties are measured and its performances for nonlinear contrast imaging are evaluated in vitro and in vivo. The preliminary results demonstrate the advantages of

  13. The prediction of transducer element performance from in air measurements

    NASA Astrophysics Data System (ADS)

    Schafer, M. E.

    1982-01-01

    A technique has been developed which accurately predicts the performance of underwater acoustic arrays prior to array construction. The technique is based upon the measurement of lumped-parameter equivalent circuit values for each element in the array, and is accurate in predicting the array transmit, receive and beam pattern response. The measurement procedure determines the shunt electrical and motional circuit elements from electrical imittance measurements. The electromechanical transformation ratio is derived from in-air measurements of the radiating face velocity and the input current to the transducer at resonance. The equivalent circuit values of a group of Tonpilz-type transducers were measured, and the self and mutual interaction acoustic loadings for a specific array geometry were calculated. The response of the elements was then predicted for water-loaded array conditions. Based on the predictions, a selection scheme was developed which minimized the effects of inter-element variability on array performance. The measured transmitting, receiving and beam pattern characteristics of a test array, built using the selected elements, were compared to predictions made before the array was built. The results indicated that the technique is accurate over a wide frequency range.

  14. Improved Piezoelectric Loudspeakers And Transducers

    NASA Technical Reports Server (NTRS)

    Regan, Curtis Randall; Jalink, Antony; Hellbaum, Richard F.; Rohrbach, Wayne W.

    1995-01-01

    Loudspeakers and related acoustic transducers of improved type feature both light weight and energy efficiency of piezoelectric transducers and mechanical coupling efficiency. Active component of transducer made from wafer of "rainbow" piezoelectric material, ceramic piezoelectric material chemically reduced on one face. Chemical treatment forms wafer into dishlike shallow section of sphere. Both faces then coated with electrically conductive surface layers serving as electrodes. Applications include high-fidelity loudspeakers, and underwater echo ranging devices.

  15. Ultrasonic Transducers for Fourier Analysis.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1995-01-01

    Describes an experiment that uses the ultrasonic transducer for demonstrating the Fourier components of waveshapes such as the square and triangular waves produced by laboratory function generators. (JRH)

  16. [Transducer hygiene -- an underrated topic?].

    PubMed

    Merz, E

    2005-02-01

    Transducers are medical products that are categorized as uncritical, semicritical and critical, depending on their applications and perceived risks. Uncritical medical products are transducers that solely come in contact with the intact skin, such as transducers used for sonography of the abdomen or breast. Semicritical medical products are transducers that come in contact with mucosal membranes or diseased skin, comprising transducers used for transesophageal, transvesical, transvaginal, transrectal and perineal sonography. Critical medical products are transducers that come in contact with blood, internal tissues or organs, such as transducers used for intraoperative sonography. Under the most unfavorable circumstances, sonographic transducers can become contaminated with pathogenic agents (e. g., MRSA, HBV, HCV, HIV, Herpes viruses) and turn into a not to be underrated source of infection. For this reason, correct handling as well as cleaning and disinfection of the transducers are indispensable. Depending on the application, the recommended handling of the transducers differs. Transducers counted to the uncritical medical products are adequately cleaned by removal of the applied ultrasound gel with subsequent wipe disinfection (e. g., foam spray). Transducers counted to the semicritical medical products, such as transvaginal or perineal transducers , should be exclusively used after a suitable cover has been applied. A Latex(R) allergy must be excluded before the examination. The cover is to be disposed after completion of the examination and the transducer itself cleaned and disinfected. The disinfecting agent must be antiviral but also compatible with the material (caution: damage to the transducer membrane when using an unsuited alcoholic disinfecting agent). In case of rupture of the protecting cover during the examination, the transducer is considered contaminated with secretion or even blood and must be thoroughly cleaned with subsequent disinfection

  17. An opening electromagnetic transducer

    NASA Astrophysics Data System (ADS)

    Sun, Yanhua; Kang, Yihua

    2013-12-01

    Tubular solenoids have been widely used without any change since an electrical wire was discovered to create magnetic fields by Hans Christian Oersted in 1820 and thereby the wire was first coiled as a helix into a solenoid coil by William Sturgeon in 1823 and was improved by Joseph Henry in 1829 [see http://www.myetymology.com/encyclopedia/History_of_the_electricity.html; J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, New York, 2010); and F. Winterberg, Plasma Phys. 8, 541553 (1996)]. A magnetic control method of C-shaped carrying-current wire is proposed, and thereby a new opening electromagnetic transducer evidently differing from the traditional tubular solenoid is created, capable of directly encircling and centering the acted objects in it, bringing about convenient and innovative electromagnetic energy conversion for electromagnetic heating, electromagnetic excitation, physical information capture, and electro-mechanical motion used in science research, industry, and even biomedical activities.

  18. Electromagnetic acoustic transducer

    DOEpatents

    Alers, George A.; Burns, Jr., Leigh R.; MacLauchlan, Daniel T.

    1988-01-01

    A noncontact ultrasonic transducer for studying the acoustic properties of a metal workpiece includes a generally planar magnetizing coil positioned above the surface of the workpiece, and a generally planar eddy current coil between the magnetizing coil and the workpiece. When a large current is passed through the magnetizing coil, a large magnetic field is applied to the near-surface regions of the workpiece. The eddy current coil can then be operated as a transmitter by passing an alternating current therethrough to excite ultrasonic waves in the surface of the workpiece, or operated as a passive receiver to sense ultrasonic waves in the surface by measuring the output signal. The geometries of the two coils can be varied widely to be effective for different types of ultrasonic waves. The coils are preferably packaged in a housing which does not interfere with their operation, but protects them from a variety of adverse environmental conditions.

  19. Optically transduced MEMS magnetometer

    DOEpatents

    Nielson, Gregory N; Langlois, Eric

    2014-03-18

    MEMS magnetometers with optically transduced resonator displacement are described herein. Improved sensitivity, crosstalk reduction, and extended dynamic range may be achieved with devices including a deflectable resonator suspended from the support, a first grating extending from the support and disposed over the resonator, a pair of drive electrodes to drive an alternating current through the resonator, and a second grating in the resonator overlapping the first grating to form a multi-layer grating having apertures that vary dimensionally in response to deflection occurring as the resonator mechanically resonates in a plane parallel to the first grating in the presence of a magnetic field as a function of the Lorentz force resulting from the alternating current. A plurality of such multi-layer gratings may be disposed across a length of the resonator to provide greater dynamic range and/or accommodate fabrication tolerances.

  20. Underwater Multimode Directional Transducer Evaluation

    DTIC Science & Technology

    2003-12-01

    The work described in the present thesis is intended to establish a procedure for analyzing directional transducers for future underwater wireless...networks, as well as to carry out the performance evaluation of a multimode transducer prototype with respect to its main operational requirements

  1. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K. Kirk

    2011-01-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol–gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed. PMID:21720451

  2. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.

    PubMed

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K Kirk

    2011-02-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol-gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.

  3. Defect Characterization Using Two-Dimensional Arrays

    NASA Astrophysics Data System (ADS)

    Velichko, A.; Wilcox, P. D.

    2011-06-01

    2D arrays are able to `view' a given defect from a range of angles leading to the possibility of obtaining richer characterization detail than possible with 1D arrays. In this paper a quantitative comparison of 2D arrays with different element layouts is performed. A technique for extracting the scattering matrix of a defect from the raw 2D array data is also presented. The method is tested on experimental data for characterization of various volumetric defects.

  4. 2D optical beam splitter using diffractive optical elements (DOE)

    NASA Astrophysics Data System (ADS)

    Wen, Fung J.; Chung, Po S.

    2006-09-01

    A novel approach for optical beam distribution into a 2-dimensional (2-D) packaged fiber arrays using 2-D Dammann gratings is investigated. This paper focuses on the design and fabrication of the diffractive optical element (DOE) and investigates the coupling efficiencies of the beamlets into a packaged V-grooved 2x2 fibre array. We report for the first time experimental results of a 2-D optical signal distribution into a packaged 2x2 fibre array using Dammann grating. This grating may be applicable to the FTTH network as it can support sufficient channels with good output uniformity together with low polarization dependent loss (PDL) and acceptable insertion loss. Using an appropriate optimization algorithm (the steepest descent algorithm in this case), the optimum profile for the gratings can be calculated. The gratings are then fabricated on ITO glass using electron-beam lithography. The overall performance of the design shows an output uniformity of around 0.14 dB and an insertion loss of about 12.63 dB, including the DOE, focusing lens and the packaged fiber array.

  5. Photoacoustic imaging of clinical metal needle by a LED light source integrated transducer

    NASA Astrophysics Data System (ADS)

    Agano, Toshitaka; Sato, Naoto; Nakatsuka, Hitoshi; Kitagawa, Kazuo; Hanaoka, Takamitsu; Morisono, Koji; Shigeta, Yusuke; Tanaka, Chizuyo

    2016-03-01

    We have achieved penetration depth of 30mm by photoacoustic imaging system using LED light source integrated transducer to image a clinical metal needle inserted into a tissue mimicking phantom. We developed the transducer that integrated near-infrared LED array light source, which was connected to a photoacoustic imaging system which drove LED array light source and controlled photoacoustic data acquisition process. Conventionally solid-state laser has been used as the light source for photoacoustic imaging system. Because LED is diffused light source, laser safety glasses is not necessary, also inflexible fibers are not used to guide light close to a transducer, and we integrated LED light source inside the transducer, which became compact and practical size for conventional ultrasound equipment users. We made LED light source unit as detachable to the transducer easily, so wave-length of light can be selectable by changing the LED light source unit.

  6. Circuit for Driving Piezoelectric Transducers

    NASA Technical Reports Server (NTRS)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the

  7. Design and development of a multi-hole broadband-based ultrasonic transducer.

    PubMed

    Dong, Hui-juan; Wu, Jian; Zhang, He; Zhang, Guang-yu

    2011-03-01

    In order to improve the efficiency of ultrasonic energy transformed from electricity for an ultrasonic transducer array, a novel 1/2 wavelength multi-hole broadband-based transducer was designed, developed and evaluated. The low equivalent mass of the transducer is realized in this work through drilling holes on the output end of the horn. In comparison with a traditional transducer, the developed transducer has demonstrated a lower mechanical quality coefficient and a wider broadband. As a result, an ultrasound treatment system for crude oil has been developed based on the new transducer design. Furthermore, we have demonstrated the effectiveness of the ultrasound treatment system on viscosity reduction of crude oil and paraffin.

  8. Kinetic energy transducing system

    SciTech Connect

    Danihel, M.

    1986-07-08

    A device is described for converting wave energy to mechanical motion comprising: a frame, at least one wave energy transducer each of which has a float to ride upon the undulating surface of a body of water, a rocker shaft rotatably mounted in the frame and connected to the float by a rocker arm to turn in response to movement of the float upon the undulating water surface, a pair of unidirectional clutch mechanisms coupled to the rocker shaft, a drive shaft rotatably mounted on the frame and connected to the clutch mechanisms to turn in a single direction of rotation responsive to alternative engagement of the clutch mechanisms therewith and turning movement of the rocker shaft in both directions of rotation, and a hydrofoil system for each float including a vertical shaft extending downwardly from the bottom of each float, a transverse rod which is rotatably coupled to the vertical shaft, a pair of hydrofoil wings secured to the transverse rod on opposite sides of the vertical shaft, and means for centering the hydrofoil wings acting between the vertical shaft and the transverse rod to urge the hydrofoil wings toward horizontal orientation.

  9. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  10. Valleytronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong

    2016-11-01

    Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

  11. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  12. Tonpilz piezoelectric transducers with acoustic matching plates for underwater color image transmission.

    PubMed

    Inoue, T; Nada, T; Tsuchiya, T; Nakanishi, T; Miyama, T; Konno, M

    1993-01-01

    Tonpilz piezoelectric transducers with multiple acoustic matching plates are suitable for color image acoustic transmission, to achieve wideband low-ripple characteristics as well as high-efficiency high-power transmitting capability. The design method for the transducers was investigated on the basis of multiple-mode filter synthesis theory. For transducers with single, double, and triple matching plates, optimum specific acoustic impedances and lengths were calculated. Moreover, based on this design method, a 24 kHz array comprising nine identical transducers with single matching plates was built and evaluated. As a result, this array showed high-efficiency, low-ripple, and wideband characteristics. Excellent agreement between theoretical values and experimental results was obtained. A field test was carried out on color image transmission from a 3500 m sea depth, using the fabricated array, during which good color images were received.

  13. Passive wireless ultrasonic transducer systems

    NASA Astrophysics Data System (ADS)

    Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.

    2014-02-01

    Inductive coupling and capacitive coupling both offer simple solutions to wirelessly probe ultrasonic transducers. This paper investigates the theory and feasibility of such system in the context of non-destructive evaluation (NDE) applications. Firstly, the physical principles and construction of an inductively coupled transducer system (ICTS) and a capacitively coupled transducer system (CCTS) are introduced. Then the development of a transmission line model with the measured impedance of a bonded piezoelectric ceramic disc representing a sensor attached to an arbitrary solid substrate for both systems is described. The models are validated experimentally. Several applications of CCTS are presented, such CCTS for the underwater and through-composite testing.

  14. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  15. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  16. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  17. Hybrid 2D-nanomaterials-based electrochemical immunosensing strategies for clinical biomarkers determination.

    PubMed

    Campuzano, S; Pedrero, M; Nikoleli, G-P; Pingarrón, J M; Nikolelis, D P

    2017-03-15

    Owing to the outstanding conductivity and biocompatibility as well as numerous other fascinating properties of two-dimensional (2D)-nanomaterials, 2D-based nanohybrids have shown unparalleled superiorities in the field of electrochemical biosensors. This review highlights latest advances in electrochemical immunosensors for clinical biomarkers based on different hybrid 2D-nanomaterials. Particular attention will be given to hybrid nanostructures involving graphene and other graphene-like 2D-layered nanomaterials (GLNs). Several recent strategies for using such 2D-nanomaterial heterostructures in the development of modern immunosensors, both for tagging or modifying electrode transducers, are summarized and discussed. These hybrid nanocomposites, quite superior than their rival materials, will undoubtedly have an important impact within the near future and not only in clinical areas. Current challenges and future perspectives in this rapidly growing field are also outlined.

  18. Fixture for holding testing transducer

    DOEpatents

    Wagner, T.A.; Engel, H.P.

    A fixture for mounting an ultrasonic transducer against the end of a threaded bolt or stud to test the same for flaws. A base means threadedly secured to the side of the bolt has a rotating ring thereon. A post rising up from the ring (parallel to the axis of the workpiece) pivotally mounts a variable length cross arm, on the inner end of which is mounted the transducer. A spring means acts between the cross arm and the base to apply the testing transducer against the workpiece at a constant pressure. The device maintains constant for successive tests the radial and circumferential positions of the testing transducer and its contact pressure against the end of the workpiece.

  19. Fixture for holding testing transducer

    DOEpatents

    Wagner, Thomas A.; Engel, Herbert P.

    1984-01-01

    A fixture for mounting an ultrasonic transducer against the end of a threaded bolt or stud to test the same for flaws. A base means threadedly secured to the side of the bolt has a rotating ring thereon. A post rising up from the ring (parallel to the axis of the workpiece) pivotally mounts a variable length cross arm, on the inner end of which is mounted the transducer. A spring means acts between the cross arm and the base to apply the testing transducer against the workpiece at a constant pressure. The device maintains constant for successive tests the radial and circumferential positions of the testing transducer and its contact pressure against the end of the workpiece.

  20. An enzyme logic bioprotonic transducer

    SciTech Connect

    Miyake, Takeo; Keene, Scott; Deng, Yingxin; Rolandi, Marco; Josberger, Erik E.

    2015-01-01

    Translating ionic currents into measureable electronic signals is essential for the integration of bioelectronic devices with biological systems. We demonstrate the use of a Pd/PdH{sub x} electrode as a bioprotonic transducer that connects H{sup +} currents in solution into an electronic signal. This transducer exploits the reversible formation of PdH{sub x} in solution according to PdH↔Pd + H{sup +} + e{sup −}, and the dependence of this formation on solution pH and applied potential. We integrate the protonic transducer with glucose dehydrogenase as an enzymatic AND gate for glucose and NAD{sup +}. PdH{sub x} formation and associated electronic current monitors the output drop in pH, thus transducing a biological function into a measurable electronic output.

  1. An enzyme logic bioprotonic transducer

    NASA Astrophysics Data System (ADS)

    Miyake, Takeo; Josberger, Erik E.; Keene, Scott; Deng, Yingxin; Rolandi, Marco

    2015-01-01

    Translating ionic currents into measureable electronic signals is essential for the integration of bioelectronic devices with biological systems. We demonstrate the use of a Pd/PdHx electrode as a bioprotonic transducer that connects H+ currents in solution into an electronic signal. This transducer exploits the reversible formation of PdHx in solution according to PdH↔Pd + H+ + e-, and the dependence of this formation on solution pH and applied potential. We integrate the protonic transducer with glucose dehydrogenase as an enzymatic and gate for glucose and NAD+. PdHx formation and associated electronic current monitors the output drop in pH, thus transducing a biological function into a measurable electronic output.

  2. Acoustic transducer with damping means

    DOEpatents

    Smith, Richard W.; Adamson, Gerald E.

    1976-11-02

    An ultrasonic transducer specifically suited to high temperature sodium applications is described. A piezoelectric active element is joined to the transducer faceplate by coating the faceplate and juxtaposed active element face with wetting agents specifically compatible with the bonding procedure employed to achieve the joint. The opposite face of the active element is fitted with a backing member designed to assure continued electrical continuity during adverse operating conditions which can result in the fracturing of the active element. The fit is achieved employing a spring-loaded electrode operably arranged to electrically couple the internal transducer components, enclosed in a hermetically sealed housing, to accessory components normally employed in transducer applications. Two alternative backing members are taught for assuring electrical continuity. The first employs a resilient, discrete multipoint contact electrode in electrical communication with the active element face. The second employs a resilient, elastomeric, electrically conductive, damped member in electrical communication with the active element face in a manner to effect ring-down of the transducer. Each embodiment provides continued electrical continuity within the transducer in the event the active element fractures, while the second provides the added benefit of damping.

  3. Top-orthogonal-to-bottom-electrode (TOBE) CMUT arrays for 3-D ultrasound imaging.

    PubMed

    Sampaleanu, Alex; Zhang, Peiyu; Kshirsagar, Abhijeet; Moussa, Walied; Zemp, Roger J

    2014-02-01

    Two-dimensional ultrasound arrays hold great promise for 3-D imaging; however, wiring of each channel becomes impractical for large arrays or for small-footprint catheter probes for which the number of wires must be limited. Capacitive micromachined ultrasound transducers offer a promising solution for such 2-D array applications, but channel routing is still non-trivial. A top-orthogonal-to-bottom-electrode (TOBE) 2-D CMUT array architecture is presented along with row-column addressing schemes for low-channel-count 3-D ultrasound imaging. An N × N TOBE array is capable of obtaining 3-D images using only 2N channels. An interfacing scheme is presented in which transmit-receive signals are routed along rows while bias voltages are applied along columns, effectively allowing for single-element transmit/receive control. Simulations demonstrated potentially finer resolution and improved side lobe suppression over a previously published row-column-based imaging method. Laser vibrometer testing was done to measure membrane displacement in air and confirmed that single-element air-coupled actuation in transmit mode could be achieved using our proposed interfacing scheme. Acoustic testing was also performed in both transmit and receive modes to characterize the ability of the proposed interfacing scheme to achieve dominant-element transmission and reception in immersion operation. It was seen that membrane displacement in both modes was indeed largely confined to the active area.

  4. Performance enhancement of an air-coupled multiple moving membrane capacitive micromachined ultrasonic transducer using an optimized middle plate configuration

    NASA Astrophysics Data System (ADS)

    Emadi, Arezoo; Buchanan, Douglas

    2016-10-01

    A multiple moving membrane capacitive micromachined ultrasonic transducer has been developed. This transducer cell structure includes a second flexible plate suspended between the transducer top plate and the fixed bottom electrode. The added plate influences the transducer top plate deflection map and, therefore, the transducer properties. Three series of individual air-coupled, dual deflectable plate transducers and two 1×27 element transducer arrays were fabricated using multiuser microelectromechanical systems (MEMS) processes (MUMPs). Each set of transducers included devices with middle plate radii from 22% to 65% of the corresponding transducer top plate radius. The effect of the transducer middle plate configuration has been investigated. Electrical, optical, and acoustic characterizations were conducted and the results were compared with the simulation findings. It was found that the transducer top plate amplitude of vibration is significantly enhanced with a wider middle deflectable plate. The electrical and optical measurement results are shown to be in good agreement with simulation results. The acoustic measurement results indicated a 37% increase in the amplitude of transmitted signal by the 1-MHz air-couple transducer when its middle plate radius was increased by 35%.

  5. Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.

    PubMed

    Rosnitskiy, Pavel B; Yuldashev, Petr V; Sapozhnikov, Oleg A; Maxwell, Adam D; Kreider, Wayne; Bailey, Michael R; Khokhlova, Vera A

    2017-02-01

    Various clinical applications of high-intensity focused ultrasound have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this paper is to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasi-linear conditions at the focus. Multiparametric nonlinear modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. The results are presented in terms of the parameters of an equivalent single-element spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields.

  6. Thermal Wick Cooling for Vibroacoustic Transducers

    DTIC Science & Technology

    2009-09-25

    affecting vibrational characteristics of the transducer . (2) Description of the Prior Art [0004] Vibroacoustic transducers , such as piezoceramic tonpilz ...Distribution is unlimited 20091013084 Attorney Docket No. 84708 THERMAL WICK COOLING FOR VIBROACOUSTIC TRANSDUCERS STATEMENT OF GOVERNMENT INTEREST...INVENTION (1) Field of the Invention [0003] The present invention provides a device for cooling a vibroacoustic transducer without adversely

  7. Performance, Thermal, and Vibration Qualification Testing of Zetec Acoustic Transducers, Model Z0002659-2, Sondicator Probes

    SciTech Connect

    Jacobson, G; Gemberling, S; Lavietes, A

    2006-03-10

    This report is a result of Qualification Test Plan No.001 prepared by Anthony Lavietes. The Qualification Test Plan outlines a list of requirements for thermal and vibrational testing of Zetac's Z0002659-2 Sondicator Probe acoustic transducers (hereafter called ''transducers''). The Zetec transducers are used in a system that employs an array of 7 acoustic transducers. Qualification testing of these transducers was required since they are a modified version of a standard catalog item from the manufacturer. This report documents the thermal, vibrational, and performance testing that was performed on a sampling of these transducers in order to qualify them for flight. A total of 14 transducers were tested. All 14 passed qualification testing with no failures.

  8. Ultrasonic Transducer Irradiation Test Results

    SciTech Connect

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert; Chien, Hual-Te; Kohse, Gordon; Tittmann, Bernhard; Reinhardt, Brian; Rempe, Joy

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  9. High intensity ultrasound transducer used in gene transfection

    NASA Astrophysics Data System (ADS)

    Morrison, Kyle P.; Keilman, George W.; Noble, Misty L.; Brayman, Andrew A.; Miao, Carol H.

    2012-11-01

    This paper describes a novel therapeutic high intensity non-focused ultrasound (HIU) transducer designed with uniform pressure distribution to aid in accelerated gene transfer in large animal liver tissues in vivo. The underlying HIU transducer was used to initiate homogeneous cavitation throughout the tissue while delivering up to 2.7 MPa at 1.1 MHz across its radiating surface. The HIU transducer was built into a 6 cm diameter x 1.3 cm tall housing ergonomically designed to avoid collateral damage to the surrounding anatomy during dynamic motion. The ultrasound (US) radiation was applied in a 'paintbrush-like' manner to the surface of the liver. The layers and geometry of the transducer were carefully selected to maximize the active diameter (5.74 cm), maximize the electrical to acoustic conversion efficiency (85%) to achieve 2.7 MPa of peak negative pressure, maximize the frequency operating band at the fundamental resonance to within a power transfer delta of 1 dB, and reduce the pressure delta to within 2 dB across the radiating surface. For maximum peak voltage into the transducer, a high performance piezoceramic was chosen and a DC bias circuit was built integral to the system. An apodized two element annular pattern was made from a single piezoceramic element, resulting in significant pressure uniformity enhancement. In addition to using apodization for pressure uniformity, a proprietary multi-layered structure was used to improve efficiency while sustaining an operating band from 900 kHz to 1.3 MHz. The resultant operating band allowed for dithering techniques using frequency modulation. The underlying HIU transducer for use in large animals enhances gene expression up to 6300-fold.

  10. Auto-positioning ultrasonic transducer system

    NASA Technical Reports Server (NTRS)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  11. Radially sandwiched cylindrical piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    Lin, Shuyu; Fu, Zhiqiang; Zhang, Xiaoli; Wang, Yong; Hu, Jing

    2013-01-01

    A new type of radially sandwiched piezoelectric short cylindrical transducer is developed and its radial vibration is studied. The transducer is composed of a solid metal disk, a radially polarized piezoelectric ceramic short tube and a metal tube. The radial vibrations of the solid metal disk, the radially polarized piezoelectric tube and the metal tube are analyzed and their electromechanical equivalent circuits are introduced. Based on the mechanical boundary conditions among the metal disk, the piezoelectric tube and the metal tube, a three-port electromechanical equivalent circuit for the radially sandwiched transducer is obtained and the frequency equation is given. The theoretical relationship of the resonance and anti-resonance frequencies and the effective electromechanical coupling coefficient with the geometrical dimensions is analyzed. The radial vibration of the sandwiched transducer is simulated by using two different numerical methods. It is shown that the analytical resonance and anti-resonance frequencies are in good agreement with the numerically simulated results. The transducer is expected to be used in piezoelectric resonators, actuators and ultrasonic radiators in ultrasonic and underwater sound applications.

  12. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  13. MEMS ultrasonic transducer for monitoring of steel structures

    NASA Astrophysics Data System (ADS)

    Jain, Akash; Greve, David W.; Oppenheim, Irving J.

    2002-06-01

    Ultrasonic methods can be used to monitor crack propagation, weld failure, or section loss at critical locations in steel structures. However, ultrasonic inspection requires a skilled technician, and most commonly the signal obtained at any inspection is not preserved for later use. A preferred technology would use a MEMS device permanently installed at a critical location, polled remotely, and capable of on-chip signal processing using a signal history. We review questions related to wave geometry, signal levels, flaw localization, and electromechanical design issues for microscale transducers, and then describe the design, characterization, and initial testing of a MEMS transducer to function as a detector array. The device is approximately 1-cm square and was fabricated by the MUMPS process. The chip has 23 sensor elements to function in a phased array geometry, each element containing 180 hexagonal polysilicon diaphragms with a typical leg length of 49 microns and an unloaded natural frequency near 3.5 MHz. We first report characterization studies including capacitance-voltage measurements and admittance measurements, and then report initial experiments using a conventional piezoelectric transducer for excitation, with successful detection of signals in an on-axis transmission experiment and successful source localization from phased array performance in an off-axis transmission experiment.

  14. Experiments in ultrasonic flaw detection using a MEMS transducer

    NASA Astrophysics Data System (ADS)

    Jain, Akash; Greve, David W.; Oppenheim, Irving J.

    2003-08-01

    In earlier work we developed a MEMS phased array transducer, fabricated in the MUMPs process, and we reported on initial experimental studies in which the device was affixed into contact with solids. We demonstrated the successful detection of signals from a conventional ultrasonic source, and the successful localization of the source in an off-axis geometry using phased array signal processing. We now describe the predicted transmission and coupling characteristics for such devices in contact with solids, demonstrating reasonable agreement with experimental behavior. We then describe the results of flaw detection experiments, as well as results for fluid-coupled detectors.

  15. 3-D numerical modeling for axisymmetrical piezoelectric structures: application to high-frequency ultrasonic transducers.

    PubMed

    Filoux, Erwan; Callé, Samuel; Lou-Moeller, Rasmus; Lethiecq, Marc; Levassort, Franck

    2010-05-01

    The transient analysis of piezoelectric transducers is often performed using finite-element or finite-difference time-domain methods, which efficiently calculate the vibration of the structure but whose numerical dispersion prevents the modeling of waves propagating over large distances. A second analytical or numerical simulation is therefore often required to calculate the pressure field in the propagating medium (typically water) to deduce many important characteristics of the transducer, such as spatial resolutions and side lobe levels. This is why a hybrid algorithm was developed, combining finite- difference and pseudo-spectral methods in the case of 2-D configurations to simulate accurately both the generation of acoustic waves by the piezoelectric transducer and their propagation in the surrounding media using a single model. The algorithm was redefined in this study to take all three dimensions into account and to model single-element transducers, which usually present axisymmetrical geometry. This method was validated through comparison of its results with those of finite-element software, and was used to simulate the behavior of planar and lens-focused transducers. A high-frequency (30 MHz) transducer based on a screen-printed piezoelectric thick film was fabricated and characterized. The numerical results of the hybrid algorithm were found to be in good agreement with the experimental measurements of displacements at the surface of the transducer and of pressure radiated in water in front of the transducer.

  16. Effects of transducer, velocity, Doppler angle, and instrument settings on the accuracy of color Doppler ultrasound.

    PubMed

    Stewart, S F

    2001-04-01

    The accuracy of a commercial color Doppler ultrasound (US) system was assessed in vitro using a rotating torus phantom. The phantom consisted of a thin rubber tube filled with a blood-mimicking fluid, joined at the ends to form a torus. The torus was mounted on a disk suspended in water, and rotated at constant speeds by a motor. The torus fluid was shown in a previous study to rotate as a solid body, so that the actual fluid velocity was dependent only on the motor speed and sample volume radius. The fluid velocity could, thus, be easily compared to the color Doppler-derived velocity. The effects of instrument settings, velocity and the Doppler angle was assessed in four transducers: a 2.0-MHz phased-array transducer designed for cardiac use, a 4.0-MHz curved-array transducer designed for general thoracic use, and two linear transducers designed for vascular use (one 4.0 MHz and one 6.0 MHz). The color Doppler accuracy was found to be significantly dependent on the transducer used, the pulse-repetition frequency and wall-filter frequency, the actual fluid velocity and the Doppler angle (p < 0.001 by analysis of variance). In particular, the phased array and curved array were observed to be significantly more accurate than the two linear arrays. The torus phantom was found to provide a sensitive measure of color Doppler accuracy. Clinicians need to be aware of these effects when performing color Doppler US exams.

  17. Application of PMN-32PT Piezoelectric Crystals for Novel Air-coupled Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    Kazys, Rymantas Jonas; Sliteris, Reimondas; Sestoke, Justina

    Due to very high piezoelectric properties of PMN-PT crystals they may significantly improve performance of air-coupled ultrasonic transducers. For these purpose vibrations of PMN-PT rectangular plates and strips were investigated. An air-coupled ultrasonic transducer and array consisting of 8 single piezoelectric strips were designed. Operation of the transducer was simulated by the finite element method using ANSYS Mechanical APDL Product Launcher software. Spatial distributions of displacements inside piezoelectric elements and matching strip were obtained. Experimental investigations were carried out by the laser Doppler vibrometer Polytec OFV-5000 and the Bruel&Kjaer microphone 4138 with the measurement amplifier NEXUS WH 3219. It was found that performance of the ultrasonic transducer with PMN-32PT crystals was a few times better than of a PZT based ultrasonic transducer.

  18. A dual-piston ring-driven X-spring transducer

    NASA Astrophysics Data System (ADS)

    Butler, Alexander L.; Butler, John L.; Pendleton, Robert L.; Ead, Richard M.

    2004-05-01

    Tonpilz transducers generally consist of a stack of piezoelectric material sandwiched between a single piston and an inertial tail mass or between two pistons. The result is a transducer with a large length-to-diameter ratio. The X-spring transducer design, based on U.S. Patent 4845688, allows a means for a shorter transducer length through an orthogonal piezoelectric drive system coupled to the pistons by lever arms. We present here a low-frequency, dual-piston piezoelectric ceramic ring driven version with a length of only 10 in. and a diameter of 19 in. Both single-element and two-element array results are presented. The measured response is shown to be in agreement with the finite-element model with a smooth, wideband 300- to 550-Hz response for this dual-piston, ring-driven X-spring transducer. [Work supported by a Phase II SBIR, through NUWC, Newport, RI 02841.

  19. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Appenzeller, J.

    2015-10-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  20. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D.

    PubMed

    Zhu, Y; Appenzeller, J

    2015-12-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  1. On the current drive capability of low dimensional semiconductors: 1D versus 2D

    SciTech Connect

    Zhu, Y.; Appenzeller, J.

    2015-10-29

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Lastly, our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  2. Environmental control system transducer development study

    NASA Technical Reports Server (NTRS)

    Brudnicki, M. J.

    1973-01-01

    A failure evaluation of the transducers used in the environmental control systems of the Apollo command service module, lunar module, and portable life support system is presented in matrix form for several generic categories of transducers to enable identification of chronic failure modes. Transducer vendors were contacted and asked to supply detailed information. The evaluation data generated for each category of transducer were compiled and published in failure design evaluation reports. The evaluation reports also present a review of the failure and design data for the transducers and suggest both design criteria to improve reliability of the transducers and, where necessary, design concepts for required redesign of the transducers. Remedial designs were implemented on a family of pressure transducers and on the oxygen flow transducer. The design concepts were subjected to analysis, breadboard fabrication, and verification testing.

  3. COMPARATIVE ANALYSIS OF SELECTED EDDY CURRENT TRANSDUCERS FOR TITANIUM ALLOY EVALUATION

    SciTech Connect

    Chady, T.; Sikora, R.; Baniukiewicz, P.; Lopato, P.; Kowalczyk, J.; Psuj, G.; Caryk, M.

    2010-02-22

    Titanium alloy based details due to their mechanical properties continue to be in extensive use in various structures (mainly aerospace, automotive and petro-chemical industrial applications). In this paper comparative study of various types of eddy current NDT transducers for testing titanium elements was done. Probes of absolute, differential and array configurations were constructed and analyzed. Two and three dimensional numerical analysis (FEM) were done in order to find the best type and configuration of the proposed transducers.

  4. Dual-frequency super harmonic imaging piezoelectric transducers for transrectal ultrasound

    NASA Astrophysics Data System (ADS)

    Kim, Jinwook; Li, Sibo; Kasoji, Sandeep; Dayton, Paul A.; Jiang, Xiaoning

    2015-03-01

    In this paper, a 2/14 MHz dual-frequency single-element transducer and a 2/22 MHz sub-array (16/48-elements linear array) transducer were developed for contrast enhanced super-harmonic ultrasound imaging of prostate cancer with the low frequency ultrasound transducer as a transmitter for contrast agent (microbubble) excitation and the high frequency transducer as a receiver for detection of nonlinear responses from microbubbles. The 1-3 piezoelectric composite was used as active materials of the single-element transducers due to its low acoustic impedance and high coupling factor. A high dielectric constant PZT ceramic was used for the sub-array transducer due to its high dielectric property induced relatively low electrical impedance. The possible resonance modes of the active elements were estimated using finite element analysis (FEA). The pulse-echo response, peak-negative pressure and bubble response were tested, followed by in vitro contrast imaging tests using a graphite-gelatin tissue-mimicking phantom. The single-element dual frequency transducer (8 × 4 × 2 mm3) showed a -6 dB fractional bandwidth of 56.5% for the transmitter, and 41.8% for the receiver. A 2 MHz-transmitter (730 μm pitch and 6.5 mm elevation aperture) and a 22 MHz-receiver (240 μm pitch and 1.5 mm aperture) of the sub-array transducer exhibited -6 dB fractional bandwidth of 51.0% and 40.2%, respectively. The peak negative pressure at the far field was about -1.3 MPa with 200 Vpp, 1-cycle 2 MHz burst, which is high enough to excite microbubbles for nonlinear responses. The 7th harmonic responses from micro bubbles were successfully detected in the phantom imaging test showing a contrast-to-tissue ratio (CTR) of 16 dB.

  5. High Temperature Ultrasonic Transducers for In-Service Inspection of Liquid Metal Fast Reactors

    SciTech Connect

    Griffin, Jeffrey W.; Posakony, Gerald J.; Harris, Robert V.; Baldwin, David L.; Jones, Anthony M.; Bond, Leonard J.

    2011-12-31

    In-service inspection of liquid metal (sodium) fast reactors requires the use of ultrasonic transducers capable of operating at high temperatures (>200°C), high gamma radiation fields, and the chemically reactive liquid sodium environment. In the early- to mid-1970s, the U.S. Atomic Energy Commission supported development of high-temperature, submersible single-element transducers, used for scanning and under-sodium imaging in the Fast Flux Test Facility and the Clinch River Breeder Reactor. Current work is building on this technology to develop the next generation of high-temperature linear ultrasonic transducer arrays for under-sodium viewing and in-service inspections.

  6. Multi sensor transducer and weight factor

    NASA Technical Reports Server (NTRS)

    Immer, Christopher D. (Inventor); Lane, John (Inventor); Eckhoff, Anthony J. (Inventor); Perotti, Jose M. (Inventor)

    2004-01-01

    A multi-sensor transducer and processing method allow insitu monitoring of the senor accuracy and transducer `health`. In one embodiment, the transducer has multiple sensors to provide corresponding output signals in response to a stimulus, such as pressure. A processor applies individual weight factors to reach of the output signals and provide a single transducer output that reduces the contribution from inaccurate sensors. The weight factors can be updated and stored. The processor can use the weight factors to provide a `health` of the transducer based upon the number of accurate versus in-accurate sensors in the transducer.

  7. Pressure-Coupled Acoustic-Transducer Assembly

    NASA Technical Reports Server (NTRS)

    Parker, F. Raymond

    1993-01-01

    Improved acoustic-transducer assembly easy to assemble, relocatable, and used at high temperatures. In assembly, piezoelectric acoustic transducer pressure-coupled to delay line or fixture through soft metal like aluminum, copper or gold. Transducer subassembly includes layered structure of coupling material, transducer, thin disk of coupling material acting as cushion for transducer, electrode disk with coaxial cable lead attached, insulation/damping material, and pressure plate. Pressure coupling precludes problem of matching coefficients of thermal expansion of transducer, coupling material, and delay line.

  8. Piezoelectric stack transducer evaluation and comparison for optimized energy harvesting

    NASA Astrophysics Data System (ADS)

    Gamboa, Bryan

    Lead Zirconate Titanate (PZT) is the most prevalent piezoelectric material used around the world. These materials are used in a wide array of devices across a vast group of applications. The primary focus of this research is on the application and optimization of direct piezoelectric effect in energy harvesting from low frequency mechanical vibration. The specific research aim is at understanding the stacked PZT transducers in their mechanisms and performance on effective electromechanical energy conversion. Piezoelectric power output has been determined based on understanding of the fundamental concepts in composites (1:3 bi-phasic) and stack transducers. Several property structure relations are evaluated by various experimental methods including the utilization of electrodynamic test systems (Acumen III and the Universal Testing Machine 25, both by MTS Systems Corp.). The converted power is monitored and recorded using pc interfaced digital multimeter (Metrahit by Messtechnik GmbH). Power evaluation is compared among several samples in order to understand the most efficient configuration utilizing PZT ceramics. Impedance measurements, piezoelectric coefficients and permittivity calculations are evaluated to more accurately compare the samples. Power density as function of applied mechanical force and pressure, are calculated and compared with experimental results which yield good agreement. Three types of stack PZT transducers were compared and systemically tested for their electromechanical power conversion performance. While 1:3 composite stack PZT transducer was found to be the best performer in term of power density per active volume, the custom fabricated stack PZT transducers (UTSA stack sample) were found to have the highest power density per total transducer volume, 0.615 muW/mm3, measured at 965 kN/m2 (140 PSI), among the three types studied.

  9. Numerical time domain modeling of the ultrasonic NDT with electromagnetic acoustic and piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Marklein, R.; Langenberg, K.-J.; Hübschen, G.; Willems, H.

    2000-05-01

    In principle, apart from laser generated ultrasound, two types of transducers, electromagnetic acoustic transducers (EMAT) and piezoelectric transducers, are applied in ultrasonic NDT. Piezoelectric transducers are primarily used to generate pressure, shear vertical, and Rayleigh waves; whereas electromagnetic acoustic transducers are primarily used to generate shear horizontal as well as Rayleigh waves. This paper presents numerical results for both transducer types in 2-D applying the EFIT code (EFIT: Elastodynamic Finite Integration Technique), which has been developed to simulate in 2-D the SH case and P-SV case separately. Three different cases will be studied in detail: (1.) detection of a backwall breaking notch in an isotropic test block, (2.) crack detection in an isotropic pipeline, and (3.) detection of a cracking an austenitic weld. In case (1.) and (3.) different wave modes (P-, SV-, and R-wave) as well as different inclination angles are used, whereas in case (2.), different wave modes are generated (guided SH-waves and R-waves). The numerical results will be validated against measurements if available.

  10. Non-bonded ultrasonic transducer

    DOEpatents

    Eoff, J.M.

    1984-07-06

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  11. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  12. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  13. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting th