Science.gov

Sample records for 2d western blot

  1. 2-D Western blotting for evaluation of antibodies developed for detection of host cell protein.

    PubMed

    Berkelman, Tom; Harbers, Adriana; Bandhakavi, Sricharan

    2015-01-01

    Recombinant proteins generated for therapeutic use must be substantially free of residual host cell protein (HCP). The presence of host cell protein (HCP) is usually assayed by ELISA using a polyclonal antibody mixture raised against a population of proteins derived from the host cell background. This antibody should recognize as high a proportion as possible of the potential HCPs in a given sample. A recommended method for evaluating the assay involves two-dimensional electrophoretic separation followed by Western blotting.We present here a method using commercial anti-HCP antibody and samples derived from Chinese Hamster Ovary (CHO) cells. The 2-D electrophoresis procedure gives highly reproducible spot patterns and entire procedure can be completed in less than 2 days. Software analysis enables the straightforward generation of percent coverage values for the antibody when used to probe HCP-containing samples. PMID:25820736

  2. The western blot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Western blotting is a technique that involves the separation of proteins by gel electrophoresis, their blotting or transfer to a membrane, and selective immunodetection of an immobilized antigen. This is an important and routine method for protein analysis that depends on the specificity of antibod...

  3. Single-cell western blotting

    PubMed Central

    Hughes, Alex J.; Spelke, Dawn P.; Xu, Zhuchen; Kang, Chi-Chih; Schaffer, David V.; Herr, Amy E.

    2014-01-01

    To measure cell-to-cell variation in protein-mediated functions — a hallmark of biological processes — we developed an approach to conduct ~103 concurrent single-cell western blots (scWesterns) in ~4 hours. A microscope slide supporting a 30 µm-thick photoactive polyacrylamide gel enables western blotting comprised of: settling of single cells into microwells, lysis in situ, gel electrophoresis, photoinitiated blotting to immobilize proteins, and antibody probing. We apply this scWestern to monitor single rat neural stem cell differentiation and responses to mitogen stimulation. The scWestern quantifies target proteins even with off-target antibody binding, multiplexes to 11 protein targets per single cell with detection thresholds of <30,000 molecules, and supports analyses of low starting cell numbers (~200) when integrated with fluorescence activated cell sorting. The scWestern thus overcomes limitations in single-cell protein analysis (i.e., antibody fidelity, sensitivity, and starting cell number) and constitutes a versatile tool for the study of complex cell populations at single-cell resolution. PMID:24880876

  4. Multiplexed Western Blotting Using Microchip Electrophoresis.

    PubMed

    Jin, Shi; Furtaw, Michael D; Chen, Huaxian; Lamb, Don T; Ferguson, Stephen A; Arvin, Natalie E; Dawod, Mohamed; Kennedy, Robert T

    2016-07-01

    Western blotting is a commonly used protein assay that combines the selectivity of electrophoretic separation and immunoassay. The technique is limited by long time, manual operation with mediocre reproducibility, and large sample consumption, typically 10-20 μg per assay. Western blots are also usually used to measure only one protein per assay with an additional housekeeping protein for normalization. Measurement of multiple proteins is possible; however, it requires stripping membranes of antibody and then reprobing with a second antibody. Miniaturized alternatives to Western blot based on microfluidic or capillary electrophoresis have been developed that enable higher-throughput, automation, and greater mass sensitivity. In one approach, proteins are separated by electrophoresis on a microchip that is dragged along a polyvinylidene fluoride membrane so that as proteins exit the chip they are captured on the membrane for immunoassay. In this work, we improve this method to allow multiplexed protein detection. Multiple injections made from the same sample can be deposited in separate tracks so that each is probed with a different antibody. To further enhance multiplexing capability, the electrophoresis channel dimensions were optimized for resolution while keeping separation and blotting times to less than 8 min. Using a 15 μm deep × 50 μm wide × 8.6 cm long channel, it is possible to achieve baseline resolution of proteins that differ by 5% in molecular weight, e.g., ERK1 (44 kDa) from ERK2 (42 kDa). This resolution allows similar proteins detected by cross-reactive antibodies in a single track. We demonstrate detection of 11 proteins from 9 injections from a single Jurkat cell lysate sample consisting of 400 ng of total protein using this procedure. Thus, multiplexed Western blots are possible without cumbersome stripping and reprobing steps. PMID:27270033

  5. Single cell-resolution western blotting.

    PubMed

    Kang, Chi-Chih; Yamauchi, Kevin A; Vlassakis, Julea; Sinkala, Elly; Duncombe, Todd A; Herr, Amy E

    2016-08-01

    This protocol describes how to perform western blotting on individual cells to measure cell-to-cell variation in protein expression levels and protein state. Like conventional western blotting, single-cell western blotting (scWB) is particularly useful for protein targets that lack selective antibodies (e.g., isoforms) and in cases in which background signal from intact cells is confounding. scWB is performed on a microdevice that comprises an array of microwells molded in a thin layer of a polyacrylamide gel (PAG). The gel layer functions as both a molecular sieving matrix during PAGE and a blotting scaffold during immunoprobing. scWB involves five main stages: (i) gravity settling of cells into microwells; (ii) chemical lysis of cells in each microwell; (iii) PAGE of each single-cell lysate; (iv) exposure of the gel to UV light to blot (immobilize) proteins to the gel matrix; and (v) in-gel immunoprobing of immobilized proteins. Multiplexing can be achieved by probing with antibody cocktails and using antibody stripping/reprobing techniques, enabling detection of 10+ proteins in each cell. We also describe microdevice fabrication for both uniform and pore-gradient microgels. To extend in-gel immunoprobing to gels of small pore size, we describe an optional gel de-cross-linking protocol for more effective introduction of antibodies into the gel layer. Once the microdevice has been fabricated, the assay can be completed in 4-6 h by microfluidic novices and it generates high-selectivity, multiplexed data from single cells. The technique is relevant when direct measurement of proteins in single cells is needed, with applications spanning the fundamental biosciences to applied biomedicine. PMID:27466711

  6. Western Blotting Inaccuracies with Unverified Antibodies: Need for a Western Blotting Minimal Reporting Standard (WBMRS)

    PubMed Central

    Gilda, Jennifer E.; Ghosh, Rajeshwary; Cheah, Jenice X.; West, Toni M.; Bodine, Sue C.; Gomes, Aldrin V.

    2015-01-01

    Western blotting is a commonly used technique in biological research. A major problem with Western blotting is not the method itself, but the use of poor quality antibodies as well as the use of different experimental conditions that affect the linearity and sensitivity of the Western blot. Investigation of some conditions that are commonly used and often modified in Western blotting, as well as some commercial antibodies, showed that published articles often fail to report critical parameters needed to reproduce the results. These parameters include the amount of protein loaded, the blocking solution and conditions used, the amount of primary and secondary antibodies used, the antibody incubation solutions, the detection method and the quantification method utilized. In the present study, comparison of ubiquitinated proteins in rat heart and liver samples showed different results depending on the antibody utilized. Validation of five commercial ubiquitin antibodies using purified ubiquitinated proteins, ubiquitin chains and free ubiquitin showed that these antibodies differ in their ability to detect free ubiquitin or ubiquitinated proteins. Investigating proteins modified with interferon-stimulated gene 15 (ISG15) in young and old rat hearts using six commercially available antibodies showed that most antibodies gave different semi-quantitative results, suggesting large variability among antibodies. Evidence showing the importance of the Western blot buffer and the concentration of antibody used is presented. Hence there is a critical need for comprehensive reporting of experimental conditions to improve the accuracy and reproducibility of Western blot analysis. A Western blotting minimal reporting standard (WBMRS) is suggested to improve the reproducibility of Western blot analysis. PMID:26287535

  7. Improved semiquantitative Western blot technique with increased quantification range.

    PubMed

    Heidebrecht, F; Heidebrecht, A; Schulz, I; Behrens, S-E; Bader, A

    2009-06-30

    With the development of new interdisciplinary fields such as systems biology, the quantitative analysis of protein expression in biological samples gains more and more importance. Although the most common method for this is ELISA, Western blot also has advantages: The separation of proteins by size allows the evaluation of only specifically bound protein. This work examines the Western blot signal chain, determines some of the parameters relevant for quantitative analysis and proposes a mathematical model of the reaction kinetics. Using this model, a semiquantitative Western blot method for simultaneous quantification of different proteins using a hyperbolic calibration curve was developed. A program was written for the purpose of hyperbolic regression that allows quick determination of the calibration curve coefficients. This program can be used also for approximation of calibration curves in other applications such as ELISA, BCA or Bradford assays. PMID:19351538

  8. An automated rotisserie system for processing Western blots.

    PubMed

    Ma, P W K

    2002-01-01

    An apparatus to automate completely the processing of Western blots is described. The prototype is based on a popular rotisserie system design. The incubation chamber consists of an inner cylinder that rotates inside an outer cylinder (incubation chamber). The blot is contained in the inner cylinder. Two magnets are mounted at one end of the inner cylinder, and rotation of the inner cylinder is effected by two magnets mounted on a motor drive outside the incubation chamber. Movement of chemicals into and out of the incubation chamber is driven pneumatically, and the entire process is controlled by a computer. Processing a blot for chemiluminescent detection takes 7 h to complete without human intervention. The quality of the resulting image is comparable to or better than a blot using manual processing. In addition, the prototype is capable of re-collecting all three antisera for future use. PMID:12564602

  9. [Contribution of Western blotting to the diagnosis of hydatidosis].

    PubMed

    Makni, F; Hachicha, L; Mseddi, F; Hammami, H; Cheikhrouhou, F; Sellami, H; Sellami, A; Mzali, R; Boujelbène, S; Rebaï, R; Beyrouti, I; Ayadi, A

    2007-08-01

    The aim of this study is to evaluate the contribution of the immunoWesternblot for the diagnosis and the post surgical follow-up of the hydatidosis. 71 sera from patients with hydatidosis confirmed by surgery were studied. All had a negative hydatic serology by screening tests (enzyme-linked immunosorbent assay, hemagglutination, electrosyneresis). 12 patients with sera in pre and post operative were monitored for 2 years. The Echinococcus Western blot IgG permitted to rectify the diagnosis of hydatidosis in 67.6 %. The rate of positivity was 100 % for the multivesicular liver cysts, 60 % for the young cysts and 50 % for the calcified cysts. Western blot permitted to rectify the diagnosis of lung cysts in 62.5 % of cases and in 50 % of cranial-spinal localizations. Analysis of Western Blot evolution in the 12 patients followed in pre and post-surgical revealed the disappearance of the bands 16, 18 and 26-28kDa in 8 month in the 8 patients with complete exeresis. This study proved the value added of Western blot compared to the other traditional techniques for the immunodiagnostic and the post-surgical monitoring of hydatidosis. PMID:17824307

  10. Western Blot of Stained Proteins from Dried Polyacrylamide Gels

    NASA Technical Reports Server (NTRS)

    Gruber, Claudia; Stan-Lotter, Helga

    1996-01-01

    Western blotting of proteins is customarily performed following their separation on polyacrylamide gels, either prior to staining (1) or, as recently reported, following staining (2). We describe here Western blotting with stained gels, which had been dried and some of which had been stored for years. This procedure permits immunological analysis of proteins, to which antisera may have become available only later, or where the application of newly developed sensitive detection methods is desired. Once rehydration of the gels is achieved, proteins can be-transferred to blotting membranes by any appropriate protocol. Proteins stained with Coomassie Blue have to be detected with a non-chromogenic method, such as the film-based enhanced chemiluminescence (ECL)2) procedure (3). Silver stained proteins, which transfer in the colorless form, may be visualized by any detection method, although, because of the usually very low amounts of proteins, detection by ECL is preferable. Blotting of stained proteins from rehydrated gels is as rapid and as quantitative as from freshly prepared gels, in contrast to blotting from wet stained gels, which requires extensive washing and results in low transfer efficiency (2). Together with a photographic record of the gel pattern, unambiguous identification of immunoreactive proteins from complex mixtures is possible. Some further applications of this work are discussed.

  11. Microfluidic Western Blotting of Low-Molecular-Mass Proteins

    PubMed Central

    2015-01-01

    We describe a microfluidic Western blot assay (μWestern) using a Tris tricine discontinuous buffer system suitable for analyses of a wide molecular mass range (6.5–116 kDa). The Tris tricine μWestern is completed in an enclosed, straight glass microfluidic channel housing a photopatterned polyacrylamide gel that incorporates a photoactive benzophenone methacrylamide monomer. Upon brief ultraviolet (UV) light exposure, the hydrogel toggles from molecular sieving for size-based separation to a covalent immobilization scaffold for in situ antibody probing. Electrophoresis controls all assay stages, affording purely electronic operation with no pumps or valves needed for fluid control. Electrophoretic introduction of antibody into and along the molecular sieving gel requires that the probe must traverse through (i) a discontinuous gel interface central to the transient isotachophoresis used to achieve high-performance separations and (ii) the full axial length of the separation gel. In-channel antibody probing of small molecular mass species is especially challenging, since the gel must effectively sieve small proteins while permitting effective probing with large-molecular-mass antibodies. To create a well-controlled gel interface, we introduce a fabrication method that relies on a hydrostatic pressure mismatch between the buffer and polymer precursor solution to eliminate the interfacial pore-size control issues that arise when a polymerizing polymer abuts a nonpolymerizing polymer solution. Combined with a new swept antibody probe plug delivery scheme, the Tris tricine μWestern blot enables 40% higher separation resolution as compared to a Tris glycine system, destacking of proteins down to 6.5 kDa, and a 100-fold better signal-to-noise ratio (SNR) for small pore gels, expanding the range of applicable biological targets. PMID:25268977

  12. Microfluidic Western blotting of low-molecular-mass proteins.

    PubMed

    Gerver, Rachel E; Herr, Amy E

    2014-11-01

    We describe a microfluidic Western blot assay (μWestern) using a Tris tricine discontinuous buffer system suitable for analyses of a wide molecular mass range (6.5-116 kDa). The Tris tricine μWestern is completed in an enclosed, straight glass microfluidic channel housing a photopatterned polyacrylamide gel that incorporates a photoactive benzophenone methacrylamide monomer. Upon brief ultraviolet (UV) light exposure, the hydrogel toggles from molecular sieving for size-based separation to a covalent immobilization scaffold for in situ antibody probing. Electrophoresis controls all assay stages, affording purely electronic operation with no pumps or valves needed for fluid control. Electrophoretic introduction of antibody into and along the molecular sieving gel requires that the probe must traverse through (i) a discontinuous gel interface central to the transient isotachophoresis used to achieve high-performance separations and (ii) the full axial length of the separation gel. In-channel antibody probing of small molecular mass species is especially challenging, since the gel must effectively sieve small proteins while permitting effective probing with large-molecular-mass antibodies. To create a well-controlled gel interface, we introduce a fabrication method that relies on a hydrostatic pressure mismatch between the buffer and polymer precursor solution to eliminate the interfacial pore-size control issues that arise when a polymerizing polymer abuts a nonpolymerizing polymer solution. Combined with a new swept antibody probe plug delivery scheme, the Tris tricine μWestern blot enables 40% higher separation resolution as compared to a Tris glycine system, destacking of proteins down to 6.5 kDa, and a 100-fold better signal-to-noise ratio (SNR) for small pore gels, expanding the range of applicable biological targets. PMID:25268977

  13. Antibody performance in western blot applications is context-dependent.

    PubMed

    Algenäs, Cajsa; Agaton, Charlotta; Fagerberg, Linn; Asplund, Anna; Björling, Lisa; Björling, Erik; Kampf, Caroline; Lundberg, Emma; Nilsson, Peter; Persson, Anja; Wester, Kenneth; Pontén, Fredrik; Wernérus, Henrik; Uhlén, Mathias; Ottosson Takanen, Jenny; Hober, Sophia

    2014-03-01

    An important concern for the use of antibodies in various applications, such as western blot (WB) or immunohistochemistry (IHC), is specificity. This calls for systematic validations using well-designed conditions. Here, we have analyzed 13 000 antibodies using western blot with lysates from human cell lines, tissues, and plasma. Standardized stratification showed that 45% of the antibodies yielded supportive staining, and the rest either no staining (12%) or protein bands of wrong size (43%). A comparative study of WB and IHC showed that the performance of antibodies is application-specific, although a correlation between no WB staining and weak IHC staining could be seen. To investigate the influence of protein abundance on the apparent specificity of the antibody, new WB analyses were performed for 1369 genes that gave unsupportive WBs in the initial screening using cell lysates with overexpressed full-length proteins. Then, more than 82% of the antibodies yielded a specific band corresponding to the full-length protein. Hence, the vast majority of the antibodies (90%) used in this study specifically recognize the target protein when present at sufficiently high levels. This demonstrates the context- and application-dependence of antibody validation and emphasizes that caution is needed when annotating binding reagents as specific or cross-reactive. WB is one of the most commonly used methods for validation of antibodies. Our data implicate that solely using one platform for antibody validation might give misleading information and therefore at least one additional method should be used to verify the achieved data. PMID:24403002

  14. Restricted specificity of the autoantibody response in Goodpasture's syndrome demonstrated by two-dimensional western blotting.

    PubMed

    Derry, C J; Dunn, M J; Rees, A J; Pusey, C D

    1991-12-01

    The autoantigen in Goodpasture's syndrome is known to be contained within the non-collagenous (NC1) domain of type IV collagen. We have examined the specificity of autoantibodies to glomerular basement membrane (GBM) using the technique of 2-D electrophoresis followed by Western blotting. Protein stains of 2-D gels of collagenase-digested human GBM revealed extensive charge and size heterogeneity. Major components were of mol. wt 24-30 kD and 43-56 kD, corresponding to monomeric and dimeric subunits of NCl. Western blotting of 2-D gels with IgG from patients with anti-GBM disease demonstrated that the most antigenic components migrated as cationic 28-kD monomers (pI 10) and similarly charged dimers, although other components were recognized less strongly. The mobility of the strongly antigenic polypeptides was different to that of the known alpha 1 and alpha 2 chains of type IV collagen. Autoantibodies from all 20 patients studied showed the same pattern of reactivity, regardless of their clinical features (in particular, the presence or absence of pulmonary haemorrhage) or HLA type. A monoclonal antibody (P1) to human GBM bound in a similar pattern, particularly recognizing the cationic components. 2-D gels of affinity-purified GBM from a P1 column showed enrichment of the 28-kD monomers, which were recognized by human autoantibodies on Western blotting. These results demonstrate that the autoimmune response in Goodpasture's syndrome is of restricted specificity, and support the suggestion that the major autoantigenic determinant is present on the novel alpha 3 chain of type IV collagen. PMID:1747953

  15. Characterization of Nora Virus Structural Proteins via Western Blot Analysis

    PubMed Central

    Ericson, Brad L.; Carlson, Darby J.

    2016-01-01

    Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses. PMID:27298753

  16. Characterization of Nora Virus Structural Proteins via Western Blot Analysis.

    PubMed

    Ericson, Brad L; Carlson, Darby J; Carlson, Kimberly A

    2016-01-01

    Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses. PMID:27298753

  17. A Laboratory Exercise Illustrating the Sensitivity and Specificity of Western Blot Analysis

    ERIC Educational Resources Information Center

    Chang, Ming-Mei; Lovett, Janice

    2011-01-01

    Western blot analysis, commonly known as "Western blotting," is a standard tool in every laboratory where proteins are analyzed. It involves the separation of polypeptides in polyacrylamide gels followed by the electrophoretic transfer of the separated polypeptides onto a nitrocellulose or polyvinylidene fluoride membrane. A replica of the…

  18. Preparation of Cell Lysate from Mouse Oocytes for Western Blotting Analysis.

    PubMed

    Marangos, Petros

    2016-01-01

    Western Blotting has been used extensively for the identification of the protein factors that regulate mammalian oocyte meiosis. However, the limitations in collecting sufficient numbers of oocytes can hinder the efficiency of the technique. Here we provide a detailed protocol for the accurate preparation of mouse oocyte samples for Western Blotting analysis. PMID:27557583

  19. The necessity of and strategies for improving confidence in the accuracy of western blots

    PubMed Central

    Ghosh, Rajeshwary; Gilda, Jennifer E.; Gomes, Aldrin V.

    2016-01-01

    Summary Western blotting is one of the most commonly used laboratory techniques for identifying proteins and semi-quantifying protein amounts, however, several recent findings suggest that western blots may not be as reliable as previously assumed. This is not surprising since many labs are unaware of the limitations of western blotting. In this manuscript we review essential strategies for improving confidence in the accuracy of western blots. These strategies include selecting the best normalization standard, proper sample preparation, determining the linear range for antibodies and protein stains relevant to the sample of interest, confirming the quality of the primary antibody, preventing signal saturation and accurately quantifying the signal intensity of the target protein. Although western blotting is a powerful and indispensable scientific technique that can be used to accurately quantify relative protein levels, it is necessary that proper experimental techniques and strategies are employed. PMID:25059473

  20. The necessity of and strategies for improving confidence in the accuracy of western blots.

    PubMed

    Ghosh, Rajeshwary; Gilda, Jennifer E; Gomes, Aldrin V

    2014-10-01

    Western blotting is one of the most commonly used laboratory techniques for identifying proteins and semi-quantifying protein amounts; however, several recent findings suggest that western blots may not be as reliable as previously assumed. This is not surprising since many labs are unaware of the limitations of western blotting. In this manuscript, we review essential strategies for improving confidence in the accuracy of western blots. These strategies include selecting the best normalization standard, proper sample preparation, determining the linear range for antibodies and protein stains relevant to the sample of interest, confirming the quality of the primary antibody, preventing signal saturation and accurately quantifying the signal intensity of the target protein. Although western blotting is a powerful and indispensable scientific technique that can be used to accurately quantify relative protein levels, it is necessary that proper experimental techniques and strategies are employed. PMID:25059473

  1. Resolution and identification of major peanut allergens using a combination of fluorescence two-dimensional differential gel electrophoresis, western blotting and Q-TOF mass spectrometry.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut allergy is triggered by several proteins known as allergens. The matching resolution and identification of major peanut allergens in 2D protein maps, was accomplished by the use of fluorescence two-dimensional differential gel electrophoresis (2D DIGE), Western blotting and quadrupole time-of...

  2. OVINE PROGRESSIVE PNEUMONIA VIRUS CAPSID IS B-CELL IMMUNODOMINANT USING WESTERN BLOT ANALYSIS: A COMPARISON OF SENSITIVITY BETWEEN WESTERN BLOT ANALYSIS AND IMMUNOPRECIPITATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A western blot assay (WB) was developed and analyzed against the comparable standard, immunoprecipitation of 35[S] methionine/cysteine-labeled ovine progressive pneumonia virus (OPPV) proteins (IP), for its ability to detect anti-OPPV antibodies using endpoint titers. WB is 12-fold more sensitive i...

  3. Identification of immunodiagnostic antigens for cerebrospinal filariasis in horses by western blot analysis

    PubMed Central

    TAKESUE, Masataka; OSAKA, Yuki; MURANAKA, Masanori; KATAYAMA, Yoshinari; IKADAI, Hiromi

    2016-01-01

    ABSTRACT In the present study, the serum and cerebrospinal fluid of horses diagnosed with Setaria digitata cerebrospinal filariasis were analyzed by western blot. The results revealed S. digitata protein bands measuring 65, 34, 22, and 18 kDa in molecular weight. In particular, the 18 kDa band is a possible candidate for clinical immunodiagnosis on the basis of western blot findings. PMID:27073332

  4. Protein analysis through Western blot of cells excised individually from human brain and muscle tissue

    PubMed Central

    Koob, A.O.; Bruns, L.; Prassler, C.; Masliah, E.; Klopstock, T.; Bender, A.

    2016-01-01

    Comparing protein levels from single cells in tissue has not been achieved through Western blot. Laser capture microdissection allows for the ability to excise single cells from sectioned tissue and compile an aggregate of cells in lysis buffer. In this study we analyzed proteins from cells excised individually from brain and muscle tissue through Western blot. After we excised individual neurons from the substantia nigra of the brain, the accumulated surface area of the individual cells was 120,000, 24,000, 360,000, 480,000, 600,000 μm2. We used an optimized Western blot protocol to probe for tyrosine hydroxylase in this cell pool. We also took 360,000 μm2 of astrocytes (1700 cells) and analyzed the specificity of the method. In muscle we were able to analyze the proteins of the five complexes of the electron transport chain through Western blot from 200 human cells. With this method, we demonstrate the ability to compare cell-specific protein levels in the brain and muscle and describe for the first time how to visualize proteins through Western blot from cells captured individually. PMID:22402104

  5. Western blotting using in-gel protein labeling as a normalization control: stain-free technology.

    PubMed

    Gilda, Jennifer E; Gomes, Aldrin V

    2015-01-01

    Western blotting is a commonly used laboratory technique for semi-quantifying protein amounts. It is important when quantifying protein expression to account for differences in the amount of total protein loaded onto the gel using a loading control. Common loading controls include housekeeping proteins, such as β-actin or GAPDH, quantified by Western blot, or total protein, quantified using a stain such as Coomassie Brilliant Blue or Ponceau S. A more recently developed method for total protein quantification utilizes stain-free technology, which has a linear dynamic detection range and allows for protein detection on both gels and membranes. Here, we describe the theory and use of stain-free gels for total protein quantification and normalization of Western blots. PMID:25820735

  6. HTLV-I/II seroindeterminate Western blot reactivity in a cohort of patients with neurological disease.

    PubMed

    Soldan, S S; Graf, M D; Waziri, A; Flerlage, A N; Robinson, S M; Kawanishi, T; Leist, T P; Lehky, T J; Levin, M C; Jacobson, S

    1999-09-01

    The human T-cell lymphotropic virus type I (HTLV-I) is associated with a chronic, progressive neurological disease known as HTLV-I-associated myelopathy/tropical spastic paraparesis. Screening for HTLV-I involves the detection of virus-specific serum antibodies by EIA and confirmation by Western blot. HTLV-I/II seroindeterminate Western blot patterns have been described worldwide. However, the significance of this blot pattern is unclear. We identified 8 patients with neurological disease and an HTLV-I/II seroindeterminate Western blot pattern, none of whom demonstrated increased spontaneous proliferation and HTLV-I-specific cytotoxic T lymphocyte activity. However, HTLV-I tax sequence was amplified from the peripheral blood lymphocytes of 4 of them. These data suggest that patients with chronic progressive neurological disease and HTLV-I/II Western blot seroindeterminate reactivity may harbor either defective HTLV-I, novel retrovirus with partial homology to HTLV-I, or HTLV-I in low copy number. PMID:10438355

  7. A Guide to Modern Quantitative Fluorescent Western Blotting with Troubleshooting Strategies

    PubMed Central

    Eaton, Samantha L.; Hurtado, Maica Llavero; Oldknow, Karla J.; Graham, Laura C.; Marchant, Thomas W.; Gillingwater, Thomas H.; Farquharson, Colin; Wishart, Thomas M.

    2014-01-01

    The late 1970s saw the first publicly reported use of the western blot, a technique for assessing the presence and relative abundance of specific proteins within complex biological samples. Since then, western blotting methodology has become a common component of the molecular biologists experimental repertoire. A cursory search of PubMed using the term “western blot” suggests that in excess of two hundred and twenty thousand published manuscripts have made use of this technique by the year 2014. Importantly, the last ten years have seen technical imaging advances coupled with the development of sensitive fluorescent labels which have improved sensitivity and yielded even greater ranges of linear detection. The result is a now truly Quantifiable Fluorescence based Western Blot (QFWB) that allows biologists to carry out comparative expression analysis with greater sensitivity and accuracy than ever before. Many “optimized” western blotting methodologies exist and are utilized in different laboratories. These often prove difficult to implement due to the requirement of subtle but undocumented procedural amendments. This protocol provides a comprehensive description of an established and robust QFWB method, complete with troubleshooting strategies. PMID:25490604

  8. Ferulic acid enhances IgE binding to peanut allergens in western blots.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic compounds at high concentrations are known to form insoluble complexes with proteins. We hypothesized that this complex formation could interfere with Western blot and ELISA assays for peanut allergens. To verify this, three simple phenolic compounds (ferulic, caffeic, and chlorogenic acids...

  9. Ferulic acid enhances IgE binding to peanut allergens in western blots.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because phenolic compounds can precipitate or complex with proteins, we postulated that interactions of phenolics with IgE antibodies help enhance IgE binding to peanut allergens in Western blots. Three different phenolics, such as, ferulic, caffeic and chlorogenic acids were examined. Each was mixe...

  10. A Streamlined Western Blot Exercise: An Efficient and Greener Approach in the Laboratory Classroom

    ERIC Educational Resources Information Center

    Ness, Traci L.; Robinson, Rebekah L.; Mojadedi, Wais; Peavy, Lydia; Weiland, Mitch H.

    2015-01-01

    SDS-PAGE and western blotting are two commonly taught protein detection techniques in biochemistry and molecular biology laboratory classrooms. A pitfall associated with incorporating these techniques into the laboratory is the significant wait times that do not allow students to obtain timely results. The waiting associated with SDS-PAGE comes…

  11. Effects of Reusing Gel Electrophoresis and Electrotransfer Buffers on Western Blotting

    PubMed Central

    Omotola, Oluwabukola B.; Heda, Rajiv P.; Avery, Jamie

    2016-01-01

    SDS-PAGE and Western blotting are 2 of the most commonly used biochemical methods for protein analysis. Proteins are electrophoretically separated based on their MWs by SDS-PAGE and then electrotransferred to a solid membrane surface for subsequent protein-specific analysis by immunoblotting, a procedure commonly known as Western blotting. Both of these procedures use a salt-based buffer, with the latter procedure consisting of methanol as an additive known for its toxicity. Previous reports present a contradictory view in favor or against reusing electrotransfer buffer, also known as Towbin’s transfer buffer (TTB), with an aim to reduce the toxic waste. In this report, we present a detailed analysis of not only reusing TTB but also gel electrophoresis buffer (EB) on proteins of low to high MW range. Our results suggest that EB can be reused for at least 5 times without compromising the electrophoretic separation of mixture of proteins in an MW standard, BSA, and crude cell lysates. Additionally, reuse of EB did not affect the quality of subsequent Western blots. Successive reuse of TTB, on the other hand, diminished the signal of proteins of different MWs in a protein standard and a high MW membrane protein cystic fibrosis transmembrane-conductance regulator (CFTR) in Western blotting. PMID:27582639

  12. COMPARISONS OF ELISA AND WESTERN BLOT ASSAYS FOR DETECTION OF CRYPTOSPORIDIUM ANTIBODY

    EPA Science Inventory

    A seroprevalence survey was conducted using ELISA and Western blot (WB) assays for antibody to three Cryptosporidium antigens on 380 blood donors in Jackson County, Oregon. The purpose was to determine if either assay could detect serological evidence of an outbreak which occurre...

  13. A Study of Rubisco through Western Blotting and Tissue Printing Techniques

    ERIC Educational Resources Information Center

    Ma, Zhong; Cooper, Cynthia; Kim, Hyun-Joo; Janick-Buckner, Diane

    2009-01-01

    We describe a laboratory exercise developed for a cell biology course for second-year undergraduate biology majors. It was designed to introduce undergraduates to the basic molecular biology techniques of Western blotting and immunodetection coupled with the technique of tissue printing in detecting the presence, relative abundance, and…

  14. Effects of Reusing Gel Electrophoresis and Electrotransfer Buffers on Western Blotting.

    PubMed

    Heda, Ghanshyam D; Omotola, Oluwabukola B; Heda, Rajiv P; Avery, Jamie

    2016-09-01

    SDS-PAGE and Western blotting are 2 of the most commonly used biochemical methods for protein analysis. Proteins are electrophoretically separated based on their MWs by SDS-PAGE and then electrotransferred to a solid membrane surface for subsequent protein-specific analysis by immunoblotting, a procedure commonly known as Western blotting. Both of these procedures use a salt-based buffer, with the latter procedure consisting of methanol as an additive known for its toxicity. Previous reports present a contradictory view in favor or against reusing electrotransfer buffer, also known as Towbin's transfer buffer (TTB), with an aim to reduce the toxic waste. In this report, we present a detailed analysis of not only reusing TTB but also gel electrophoresis buffer (EB) on proteins of low to high MW range. Our results suggest that EB can be reused for at least 5 times without compromising the electrophoretic separation of mixture of proteins in an MW standard, BSA, and crude cell lysates. Additionally, reuse of EB did not affect the quality of subsequent Western blots. Successive reuse of TTB, on the other hand, diminished the signal of proteins of different MWs in a protein standard and a high MW membrane protein cystic fibrosis transmembrane-conductance regulator (CFTR) in Western blotting. PMID:27582639

  15. Better management of Western blotting results using professional photo management software.

    PubMed

    Iorio-Morin, Christian; Germain, Pascale; Parent, Jean-Luc

    2013-04-01

    Western blotting is a proven technique essential to a significant proportion of molecular biology projects. However, as results accumulate over the years, managing data can become daunting. Recognizing that the needs of a scientist working with Western blotting results are conceptually the same as those of a professional photographer managing a summer's worth of wedding photos, we report here a new workflow for managing Western blotting results using professional photo management software. The workflow involves (i) scanning all film-based results; (ii) importing the scans into the software; (iii) processing the scans; (iv) tagging the files with metadata, and (v) creating appropriate "smart-albums." Advantages of this system include space savings (both on our hard drives and on our desks), safer archival, quicker access, and easier sharing of the results. In addition, metadata-based workflows improve cross-experiment discovery and enable questions like "show me all blots labelled with antibody X" or "show me all experiments featuring protein Y". As project size and breadth increase, workflows delegating results management to the computer will become more and more important so that scientists can keep focussing on science. PMID:23404762

  16. Total protein or high-abundance protein: Which offers the best loading control for Western blotting?

    PubMed

    Thacker, Jonathan S; Yeung, Derrick H; Staines, W Richard; Mielke, John G

    2016-03-01

    Western blotting routinely involves a control for variability in the amount of protein across immunoblot lanes. Normalizing a target signal to one found for an abundantly expressed protein is widely regarded as a reliable loading control; however, this approach is being increasingly questioned. As a result, we compared blotting for two high-abundance proteins (actin and glyceraldehyde 3-phosphate dehydrogenase [GAPDH]) and two total protein membrane staining methods (Ponceau and Coomassie Brilliant Blue) to determine the best control for loading variability. We found that Ponceau staining optimally balanced accuracy and precision, and we suggest that this approach be considered as an alternative to normalizing with a high-abundance protein. PMID:26706797

  17. Evaluation of immunoglobulin M western blot analysis in the diagnosis of congenital syphilis.

    PubMed Central

    Lewis, L L; Taber, L H; Baughn, R E

    1990-01-01

    Western immunoblots of solubilized Treponema pallidum antigens were reacted with sera and cerebrospinal fluid (CSF) and developed with enzyme-conjugated antibodies to immunoglobulin M (IgM). A blot was considered positive if reactions included bands at the 47-, 17-, and 15.5-kilodalton positions along with a variable pattern at other low-molecular-weight positions. Sera from 23 of 25 symptomatic infants diagnosed with congenital syphilis yielded positive reactions. Of 80 asymptomatic infants considered at risk for developing symptomatic infection, 16 exhibited IgM patterns consistent with those seen in congenital syphilis, although 5 of these 16 gave reactions that were equivocal. To exclude false-positive reactions due to IgM rheumatoid factor, sera were fractionated and the IgM fractions were retested. Only the five initially equivocal sera gave nonreactive blots with the IgM fractions, whereas all others gave more prominent reactions that were qualitatively similar to those seen in serum samples. Sera from 18 normal infants failed to show any IgM reactivity to T. pallidum antigens on Western blots. The IgM Western blot was both more sensitive and more specific than the fluorescent treponemal antibody-absorbed (IgM) test using fractionated serum. Of the 17 CSF samples from infants with symptomatic congenital syphilis, 14 showed IgM reactivity in Western blots, whereas only 12 had a reactive CSF in the Venereal Disease Research Laboratory test. Our results indicate that this technique can be used to identify both symptomatic and asymptomatic infection in infants with T. pallidum, in some cases before standard serologic studies can confirm the diagnosis. Images PMID:2179261

  18. Detection of Diverse and High Molecular Weight Nesprin-1 and Nesprin-2 Isoforms Using Western Blotting.

    PubMed

    Carthew, James; Karakesisoglou, Iakowos

    2016-01-01

    Heavily utilized in cell and molecular biology, western blotting is considered a crucial technique for the detection and quantification of proteins within complex mixtures. In particular, the detection of members of the nesprin (nuclear envelope spectrin repeat protein) family has proven difficult to analyze due to their substantial isoform diversity, molecular weight variation, and the sheer size of both nesprin-1 and nesprin-2 giant protein variants (>800 kDa). Nesprin isoforms contain distinct domain signatures, perform differential cytoskeletal associations, occupy different subcellular compartments, and vary in their tissue expression profiles. This structural and functional variance highlights the need to distinguish between the full range of proteins within the nesprin protein family, allowing for greater understanding of their specific roles in cell biology and disease. Herein, we describe a western blotting protocol modified for the detection of low to high molecular weight (50-1000 kDa) nesprin proteins. PMID:27147045

  19. A Fast and Inexpensive Western Blot Experiment for the Undergraduate Laboratory

    NASA Astrophysics Data System (ADS)

    Farrell, Shawn O.; Farrell, Lynn E.

    1995-08-01

    Western blotting is an important, modern technique for transferring proteins from a gel onto nitrocellulose or other suitable support and then detecting a protein of interest using antibodies. We have developed an experiment and optimized the conditions for the undergraduate laboratory. The experiment can be done quickly using an electrophoretic blotter or more cheaply using passive transfer. This experiment allows the student to learn valuable procedures currently used in biochemistry and other biological sciences.

  20. Western Blotting using the Invitrogen NuPage Novex Bis Tris minigels.

    PubMed

    Penna, Aubin; Cahalan, Michael

    2007-01-01

    Western Blotting (or immunoblotting) is a standard laboratory procedure allowing investigators to verify the expression of a protein, determine the relative amount of the protein present in different samples, and analyze the results of co-immunoprecipitation experiments. In this method, a target protein is detected with a specific primary antibody in a given sample of tissue homogenate or extract. Protein separation according to molecular weight is achieved using denaturing SDS-PAGE. After transfer to a membrane, the target protein is probed with a specific primary antibody and detected by chemiluminescence. Since its first description, the western-blotting technique has undergone several improvements, including pre-cast gels and user-friendly equipment. In our laboratory, we have chosen to use the commercially available NuPAGE electrophoresis system from Invitrogen. It is an innovative neutral pH, discontinuous SDS-PAGE, pre-cast mini-gel system. This system presents several advantages over the traditional Laemmli technique including: i) a longer shelf life of the pre-cast gels ranging from 8 months to 1 year; ii) a broad separation range of molecular weights from 1 to 400 kDa depending of the type of gel used; and iii) greater versatility (range of acrylamide percentage, the type of gel, and the ionic composition of the running buffer). The procedure described in this video article utilizes the Bis-Tris discontinuous buffer system with 4-12% Bis-Tris gradient gels and MES running buffer, as an illustration of how to perform a western-blot using the Invitrogen NuPAGE electrophoresis system. In our laboratory, we have obtained good and reproducible results for various biochemical applications using this western-blotting method. PMID:18989435

  1. Differentiation of larva migrans caused by Baylisascaris procyonis and Toxocara species by Western blotting.

    PubMed

    Dangoudoubiyam, Sriveny; Kazacos, Kevin R

    2009-11-01

    Baylisascaris procyonis and Toxocara species are two important causes of larva migrans in humans. Larva migrans caused by Toxocara spp. is well known and is diagnosed serologically by enzyme immunoassay. Over a dozen cases of larva migrans and associated eosinophilic encephalitis caused by B. procyonis have also been reported, and at least a dozen additional cases are known. An enzyme-linked immunosorbent assay (ELISA) using the excretory-secretory (ES) antigen of B. procyonis larvae is currently being used in our laboratory as an aid in the diagnosis of this infection in humans. Clinically affected individuals show very high reactivity (measured as the optical density) on this ELISA; however, a one-way cross-reactivity with Toxocara spp. has been observed. As an approach to differentiate these two infections based on serology, we performed Western blots, wherein the B. procyonis ES antigen was reacted with serum samples from individuals known to be positive for either Toxocara spp. or B. procyonis larva migrans. Western blot results showed that B. procyonis antigens of between 30 and 45 kDa were specifically identified only by the sera from individuals with Baylisascaris larva migrans, thus allowing for differentiation between the two infections. This included human patient serum samples submitted for serologic testing, as well as sera from rabbits experimentally infected with B. procyonis. When used in conjunction with the ELISA, Western blotting could be an efficient tool for diagnosis of this infection in humans. PMID:19741091

  2. Validation of Endothelin B Receptor Antibodies Reveals Two Distinct Receptor-related Bands on Western Blot

    PubMed Central

    Barr, Travis P.; Kornberg, Daniel; Montmayeur, Jean-Pierre; Long, Melinda; Reichheld, Stephen; Strichartz, Gary R.

    2014-01-01

    Antibodies are important tools for the study of protein expression, but are often used without full validation. In this study, we use Western blots to characterize antibodies targeted to the N- (NT) or C-termini (CT) and the second (IL2) or third intracellular (IL3) loops of the endothelin B receptor (ETB). The IL2-targeted antibody accurately detected endogenous ETB expression in rat brain and cultured rat astrocytes by labeling a 50kD band, the expected weight of full-length ETB. However, this antibody failed to detect transfected ETB in HEK293 cultures. In contrast, the NT-targeted antibody accurately detected endogenous ETB in rat astrocyte cultures and transfected ETB in HEK293 cultures by labeling a 37 kD band, but failed to detect endogenous ETB in rat brain. Bands detected by the CT-targeted or IL3-targeted antibodies were found to be unrelated to ETB. Our findings show that functional ETB receptors can be detected at 50 kD or 37 kD on Western blot, with drastic differences in antibody affinity for these bands. The 37 kD band likely reflects ETB receptor processing, which appears to be dependent on cell type and/or culture condition. PMID:25232999

  3. Evaluating cytoplasmic and nuclear levels of inflammatory cytokines in cancer cells by western blotting.

    PubMed

    Gatla, Himavanth R; Singha, Bipradeb; Persaud, Valerie; Vancurova, Ivana

    2014-01-01

    Increased expression and cellular release of inflammatory cytokines, interleukin-8 (IL-8; CXCL8), and high mobility group box-1 (HMGB1) are associated with increased cell proliferation, angiogenesis, and metastasis during cancer progression. In prostate and ovarian cancer cells, increased levels of IL-8 and HMGB1 correlate with poor prognosis. We have recently shown that proteasome inhibition by bortezomib (BZ) specifically increases IL-8 release from metastatic prostate and ovarian cancer cells. In this chapter, we describe a protocol to analyze the cytoplasmic and nuclear levels of IL-8 and HMGB1 in prostate and ovarian cancer cells by western blotting. IL-8 is localized in the cytoplasm in both cell types, and its protein levels are significantly increased by BZ. In contrast, HMGB1 is localized in the nucleus, and BZ increases its nuclear levels only in ovarian cancer cells. The protocol includes isolation of cytoplasmic and nuclear extracts, followed by SDS electrophoresis and western blotting, and can be easily modified to analyze the cytoplasmic and nuclear cytokine levels in other cell types. PMID:24908314

  4. Immunodiagnosis of Echinococcus Infections: Confirmatory Testing and Species Differentiation by a New Commercial Western Blot

    PubMed Central

    Liance, Martine; Janin, Veronique; Bresson-Hadni, Solange; Vuitton, Dominique-Angele; Houin, Rene; Piarroux, Renaud

    2000-01-01

    The Echinococcus Western Blot IgG (LDBIO Diagnostics, Lyon, France), using a whole larval antigen from Echinococcus multilocularis, was evaluated for serodiagnosis and differentiation between two human parasitic infections of worldwide importance: cystic echinococcosis, due to Echinococcus granulosus, and alveolar echinococcosis, due to E. multilocularis. Fifty and 61 serum samples from patients with cystic and alveolar echinococcosis, respectively, were used for assessing diagnostic sensitivity. The sensitivity of the assay was compared with those of screening tests used for these applications. Sera used for assessing cross-reactivities were from 154 patients with other diseases, either parasitic or not. The assay allowed the detection of serum immunoglobulin G antibodies in 97% of Echinococcus-infected patients. It had a higher sensitivity than screening assays for the detection for each echinococcosis. The assay allowed us to correctly distinguish between E. granulosus- and E. multilocularis-infected patients in 76% of cases. It did not allow us to distinguish active from inactive forms of both echinococcoses. The occurrence of cross-reactivities with neurocysticercosis indicates the necessity for retesting sera with species-specific antigens, for rare patients with neurologic disorders. This study shows the usefulness of the commercially available Echinococcus Western Blot IgG for the serological confirmation of human echinococcosis. PMID:11015390

  5. Western thymomas lack Epstein-Barr virus by Southern blotting analysis and by polymerase chain reaction.

    PubMed Central

    Inghirami, G.; Chilosi, M.; Knowles, D. M.

    1990-01-01

    The authors investigated 16 western thymomas, 9 from the United States and 7 from Europe, for the presence of Epstein-Barr virus (EBV) DNA sequences by both Southern blot hybridization analysis and polymerase chain reaction using EBV-specific DNA probes that detect the long internal repeat and terminal repeat regions and the EBNA-1 gene. None of the 16 thymomas contained evidence of the EBV genome, even though we could detect EBV by Southern blotting when EBV DNA represents less than or equal to 1% of the total DNA and by polymerase chain reaction when a single EBV-positive cell is present among 10(5) EBV-negative cells. These results fail to demonstrate EBV genome in western thymomas and stand in contrast to those of McGuire et al (Am J Pathol 1988, 131:385) who previously reported that the EBV genome is present in thymomas occurring in southern Chinese patients. Therefore EBV does not appear to be implicated in the pathogenesis of all thymomas. The presence of EBV in eastern thymomas, regions where EBV is endemic may be due to epidemiologic factors and/or genetic predispositions. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:2162629

  6. V3 Stain-free Workflow for a Practical, Convenient, and Reliable Total Protein Loading Control in Western Blotting

    PubMed Central

    Posch, Anton; Kohn, Jonathan; Oh, Kenneth; Hammond, Matt; Liu, Ning

    2013-01-01

    The western blot is a very useful and widely adopted lab technique, but its execution is challenging. The workflow is often characterized as a "black box" because an experimentalist does not know if it has been performed successfully until the last of several steps. Moreover, the quality of western blot data is sometimes challenged due to a lack of effective quality control tools in place throughout the western blotting process. Here we describe the V3 western workflow, which applies stain-free technology to address the major concerns associated with the traditional western blot protocol. This workflow allows researchers: 1) to run a gel in about 20-30 min; 2) to visualize sample separation quality within 5 min after the gel run; 3) to transfer proteins in 3-10 min; 4) to verify transfer efficiency quantitatively; and most importantly 5) to validate changes in the level of the protein of interest using total protein loading control. This novel approach eliminates the need of stripping and reprobing the blot for housekeeping proteins such as β-actin, β-tubulin, GAPDH, etc. The V3 stain-free workflow makes the western blot process faster, transparent, more quantitative and reliable. PMID:24429481

  7. Western Blot Detection of Human Anti-Chikungunya Virus Antibody with Recombinant Envelope 2 Protein.

    PubMed

    Yang, Zhaoshou; Lee, Jihoo; Ahn, Hye-Jin; Chong, Chom-Kyu; Dias, Ronaldo F; Nam, Ho-Woo

    2016-04-01

    Chikungunya virus (CHIKV), a tropical pathogen, has re-emerged and has massive outbreaks abruptly all over the world. Containing many dominant epitopes, the envelope E2 protein of CHIKV has been explored for the vaccination or diagnosis. In the present study, the antigenicity of a recombinant expressed intrinsically disorder domain (IUD) of E2 was tested for the detection of the antibody against CHIKV through western blot method. The gene of the IUD of E2 was inserted into 2 different vectors and expressed as recombinant GST-E2 and recombinant MBP-E2 fusion protein, respectively. Two kinds of fusion proteins were tested with 30 CHIKV patient sera and 30 normal sera, respectively. Both proteins were detected by 25 patients sera (83.3%) and 1 normal serum (3.3%). This test showed a relatively high sensitivity and very high specificity of the recombinant E2 proteins to be used as diagnostic antigens against CHIKV infection. PMID:27180586

  8. Western Blot Detection of Human Anti-Chikungunya Virus Antibody with Recombinant Envelope 2 Protein

    PubMed Central

    Yang, Zhaoshou; Lee, Jihoo; Ahn, Hye-Jin; Chong, Chom-Kyu; Dias, Ronaldo F.; Nam, Ho-Woo

    2016-01-01

    Chikungunya virus (CHIKV), a tropical pathogen, has re-emerged and has massive outbreaks abruptly all over the world. Containing many dominant epitopes, the envelope E2 protein of CHIKV has been explored for the vaccination or diagnosis. In the present study, the antigenicity of a recombinant expressed intrinsically disorder domain (IUD) of E2 was tested for the detection of the antibody against CHIKV through western blot method. The gene of the IUD of E2 was inserted into 2 different vectors and expressed as recombinant GST-E2 and recombinant MBP-E2 fusion protein, respectively. Two kinds of fusion proteins were tested with 30 CHIKV patient sera and 30 normal sera, respectively. Both proteins were detected by 25 patients sera (83.3%) and 1 normal serum (3.3%). This test showed a relatively high sensitivity and very high specificity of the recombinant E2 proteins to be used as diagnostic antigens against CHIKV infection. PMID:27180586

  9. Comparative evaluation of western blotting in hepatic and pulmonary cystic echinococcosis.

    PubMed

    Akisu, C; Delibas, S B; Bicmen, C; Ozkoc, S; Aksoy, U; Turgay, N

    2006-12-01

    Many serological tests are widely used in the diagnosis of cystic echinococcosis (CE), caused by the larval stages of Echinococcus granulosus. The present study was carried for differentiation between hepatic and pulmonary cystic echinococcosis by Western Blotting (WB). A total of 121 sera from patients with hepatic CE (37), pulmonary CE (31) and controls (53; consisting of six healthy, seven Hymenolepis nana infection, 20 hepatic and 20 pulmonary diseases other than CE) were examined. In all of the CE patients, E. gronulosus infection was confirmed by surgical intervention. Sera were previously tested using IHA and ELISA to detect the E. gronulosus specific antibodies. Sera from hepatic cases of CE reacted with 16 polypeptides of 6-116 kDa and sera from pulmonary cases of CE reacted with 14 polypeptides of 4-130 kDa by Western Blotting. The WB test enabled the detection of antibodies in the hepatic CE samples for proteins of 24, 32 34, 44-46 and 52-54 kDa in molecular weight in 78.4%, 75.7%, 78.4% and 89.2% of the patients, respectively. In the pulmonary CE samples sera WB test enabled the detection of antibodies 24, 44-46, 100, 110, 116 and 120 124 kDa in molecular weight in 81.3%, 75.0%, 87.5%, 71.9%, 84.4% and 65.6% of the patients, respectively. We indicated that the antigenic components of high molecular weight can be good candidates for differentiation of hepatic CE from pulmonary CE. PMID:17285854

  10. Identification of α1-Antitrypsin as a Potential Candidate for Internal Control for Human Synovial Fluid in Western Blot

    PubMed Central

    Wang, Shaowei; Zhou, Jingming; Wei, Xiaochun; Li, Pengcui; Li, Kai; Wang, Dongming; Wei, Fangyuan; Zhang, Jianzhong; Wei, Lei

    2015-01-01

    Western blot of synovial fluid has been widely used for osteoarthritis (OA) research and diagnosis, but there is no ideal loading control for this purpose. Although β-actin is extensively used as loading control in western blot, it is not suitable for synovial fluid because it is not required in synovial fluid as a cytoskeletal protein. A good loading control for synovial fluid in OA studies should have unchanged content in synovial fluids from normal and OA groups, because synovial fluid protein content can vary with changes in synovial vascular permeability with OA onset. In this study, we explore the potential of using α1-antitripsin (A1AT) as loading control for OA synovial fluid in western blot. A1AT level is elevated in inflammatory conditions such as rheumatoid arthritis (RA). Unlike RA, OA is a non-inflammation disease, which does not induce A1AT. In this study, we identified A1AT as an abundant component of synovial fluid by Mass Spectrometry and confirmed that the level of A1AT is relative constant between human OA and normal synovial fluid by western blot and ELISA. Hence, we proposed that A1AT may be a good loading control for western blot in human OA synovial fluid studies provided that pathological conditions such as RA or A1AT deficiency associated liver or lung diseases are excluded. PMID:26594594

  11. Easy and Fast Western Blotting by Thin-Film Direct Coating with Suction.

    PubMed

    Liu, Chao-Yuan; Lu, De-Chao; Jiang, Yi-Wei; Yen, Yi-Kuang; Chang, Shih-Chung; Wang, An-Bang

    2016-06-21

    Thin-film direct coating (TDC) has been successfully used in Western blotting (WB). In this study, the advanced technique of TDC with suction (TDCS) was developed to reduce the consumption amount of antibody by a factor of up to 10(4) in comparison with the amount consumed by the conventional WB using the capillary tube without any need of special micromachining processes. The operation time for completely finishing a high-quality WB can be reduced from 3 h in conventional WB to about 5 min or even less by TDCS. In addition, the signal-to-noise ratio of the immunoblotting by TDCS can be markedly increased. TDCS WB showed a high linearity within a 6-log2 dynamic range for detecting 90-6000 ng of purified recombinant glutathione-S-transferase (GST) proteins and could particularly detect extrinsic GST proteins added in crude Escherichia coli or 293T cell lysates. Moreover, a protein mixture containing bovine serum albumin, GST, and ubiquitin could be specifically probed in parallel with their corresponding antibodies through multichannel TDCS WB. This simple and innovative TDCS WB offers various potential applications in simultaneously finishing multiple antibody-antigen screenings in a fast and single experiment. PMID:27254752

  12. Identification of Yeast V-ATPase Mutants by Western Blots Analysis of Whole Cell Lysates

    NASA Astrophysics Data System (ADS)

    Parra-Belky, Karlett

    2002-11-01

    A biochemistry laboratory was designed for an undergraduate course to help students better understand the link between molecular engineering and biochemistry. Students identified unknown yeast strains with high specificity using SDS-PAGE and Western blot analysis of whole cell lysates. This problem-solving exercise is a common application of biochemistry in biotechnology research. Three different strains were used: a wild-type and two mutants for the proton pump vacuolar ATPase (V-ATPase). V-ATPases are multisubunit enzymes and the mutants used were deletion mutants; each lacked one structural gene of the complex. After three, three-hour labs, mutant strains were easily identified by the students and distinguished from wild-type cells analyzing the pattern of SDS-PAGE distribution of proteins. Identifying different subunits of one multimeric protein allowed for discussion of the structure and function of this metabolic enzyme, which captured the interest of the students. The experiment can be adapted to other multimeric protein complexes and shows improvement of the described methodology over previous reports, perhaps because the problem and its solution are representative of the type of techniques currently used in research labs.

  13. [Evaluation of IHA, ELISA and Western Blot tests in diagnosis of pulmonary cystic hidatidosis].

    PubMed

    Akisu, Ciler; Bayram Delibaş, Songül; Yuncu, Gökhan; Aksoy, Umit; Ozkoç, Soykan; Biçmen, Can; Sevinç, Serpil; Yaldiz, Sadik

    2005-01-01

    Pulmonary cystic hidatidosis caused by the larval stages of Echinococcus granulosus is a common parasitic disease in Turkey and throughout the world. In this study IHA, ELISA and Western Blot (WB) tests were performed with a panel of 59 sera from 31 surgically confirmed pulmonary cystic hidatidosis patients, 18 patients with pulmonary disease other than cystic hidatidosis and 10 healthy individual. The overall sensitivity of the IHA, ELISA and WB tests used for the serodiagnosis of pulmonary cystic hidatidosis were found as 96.7%, 87.1%, 100% and the specificities were 82.2%, 89.2% and %85.7, respectively. Using the WB test 8-12 kDa, 24 kDa and 124 kDa bands were detected as valuable for surgically confirmed patients' sera. One or more of these bands were also detected in sera of four patients with other pulmonary diseases false-positively. In conclusion conventional serologic test like IHA and ELISA is valuable in diagnosis of pulmonary cystic hidatidosis, also evaluation of some specific bands in WB would contribute to the diagnosis. PMID:16100652

  14. Qualitative and quantitative evaluation of Simon™, a new CE-based automated Western blot system as applied to vaccine development.

    PubMed

    Rustandi, Richard R; Loughney, John W; Hamm, Melissa; Hamm, Christopher; Lancaster, Catherine; Mach, Anna; Ha, Sha

    2012-09-01

    Many CE-based technologies such as imaged capillary IEF, CE-SDS, CZE, and MEKC are well established for analyzing proteins, viruses, or other biomolecules such as polysaccharides. For example, imaged capillary isoelectric focusing (charge-based protein separation) and CE-SDS (size-based protein separation) are standard replacement methods in biopharmaceutical industries for tedious and labor intensive IEF and SDS-PAGE methods, respectively. Another important analytical tool for protein characterization is a Western blot, where after size-based separation in SDS-PAGE the proteins are transferred to a membrane and blotted with specific monoclonal or polyclonal antibodies. Western blotting analysis is applied in many areas such as biomarker research, therapeutic target identification, and vaccine development. Currently, the procedure is very manual, laborious, and time consuming. Here, we evaluate a new technology called Simple Western™ (or Simon™) for performing automated Western analysis. This new technology is based on CE-SDS where the separated proteins are attached to the wall of capillary by a proprietary photo activated chemical crosslink. Subsequent blotting is done automatically by incubating and washing the capillary with primary and secondary antibodies conjugated with horseradish peroxidase and detected with chemiluminescence. Typically, Western blots are not quantitative, hence we also evaluated the quantitative aspect of this new technology. We demonstrate that Simon™ can quantitate specific components in one of our vaccine candidates and it provides good reproducibility and intermediate precision with CV <10%. PMID:22965727

  15. Evaluation of a Western Blot Test in an Outbreak of Acute Pulmonary Histoplasmosis

    PubMed Central

    Pizzini, Claudia V.; Zancopé-Oliveira, Rosely M.; Reiss, Errol; Hajjeh, Rana; Kaufman, Leo; Peralta, José Mauro

    1999-01-01

    A western blot (WB) test was evaluated for detection of antibodies against native glycosylated and chemically deglycosylated M and H antigens of Histoplasma capsulatum in serum obtained from patients during the acute phase of pulmonary histoplasmosis that occurred during an outbreak. Of 275 serum samples tested by immunodiffusion and complement fixation (CF) samples from 40 patients affected during this outbreak and from 37 negative controls were tested by WB test. A group of patients whose sera were negative for CF antibodies and precipitins early in the acute stage of histoplasmosis but who all seroconverted during convalescence 6 weeks later were tested with the WB test. Antibodies against untreated H and M antigens were detected at a 1:100 dilution by WB test in 45% of the 20 acute-phase serum samples and in all 20 of the convalescent-phase specimens. The WB test’s sensitivity for acute-phase specimens increased to 90% (18 of 20 specimens) when H and M antigens were treated by periodate oxidation to inactivate susceptible carbohydrate epitopes. When native glycosylated antigens were used in the WB test, positive reactions were observed in negative control serum specimens (3 of 37 specimens; 8%) and in serum specimens obtained from asymptomatic persons screened as part of the outbreak investigation (13 of 20 specimens; 65%). These positive reactions were also attributed to glycosidic epitopes since the specificity of the WB test increased from 78 to 100% when periodate-treated H and M antigens were used. WB test with deglycosylated H and M antigens of histoplasmin provides a rapid, sensitive, and specific test to diagnose acute pulmonary histoplasmosis before precipitins can be detected. PMID:9874658

  16. Enrichment of PrPSc in Formalin Fixed Paraffin Embedded Tissues Prior to Analysis by Western Blot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diagnosis of prion disease is primarily through immunodetection of the infectious agent. Typically, 2 distinct procedures are recommended for a definitive diagnosis with immunohistochemistry and Western blot providing the most information as to the specific isolate in question. In the past these app...

  17. A western blot assay to measure cyclin dependent kinase activity in cells or in vitro without the use of radioisotopes.

    PubMed

    Lewis, Cody W; Taylor, Ryan G; Kubara, Philip M; Marshall, Kris; Meijer, Laurent; Golsteyn, Roy M

    2013-09-17

    We developed a quantitative method to measure the activity of cyclin-dependent kinases (Cdks) by western blotting, without radioisotopes. We prepared a recombinant protein substrate based upon the natural Cdk1 substrate, PP1Cα. By combining this substrate in a western blot method using fluorochrome based antibodies and phospho-imager analysis, we measured the Km of ATP binding to Cdk1 to be 3.5 μM. We then measured Cdk1 activity in cell extracts from interphase or mitotic cells, and demonstrated that previously identified Cdk inhibitors could be detected by this assay. Our data show that we have a safe, reliable assay to identify Cdk1 inhibitors and measure Cdk1 activity. PMID:23954627

  18. Western blot (immunoblot) assay of small, round-structured virus associated with an acute gastroenteritis outbreak in Tokyo.

    PubMed Central

    Hayashi, Y; Ando, T; Utagawa, E; Sekine, S; Okada, S; Yabuuchi, K; Miki, T; Ohashi, M

    1989-01-01

    Small, round-structured virus (SRSV) was detected in a stool specimen of a patient during an acute gastroenteritis outbreak in Tokyo and was tentatively named SRSV-9. SRSV-9 was purified by sucrose velocity gradient centrifugation after CsCl density gradient centrifugation. The buoyant density of SRSV-9 appeared to be 1.36 g/ml in CsCl. A Western blot (immunoblot) assay using the biotin-avidin system revealed that SRSV-9 was antigenically related to the Hawaii agent but distinct from the Norwalk agent and contained a single major structural protein with a molecular size of 63.0 +/- 0.6 kilodaltons. The prevalence of SRSV-9 infection in Tokyo was surveyed by the Western blot antibody assay by using a crude virus preparation as the antigen. Seroconversion was observed in 56.5% of the patients involved in the outbreaks from which SRSV was detected by electron microscopy. Images PMID:2504773

  19. A Proteomics Approach to the Protein Normalization Problem: Selection of Unvarying Proteins for MS-Based Proteomics and Western Blotting.

    PubMed

    Wiśniewski, Jacek R; Mann, Matthias

    2016-07-01

    Proteomics and other protein-based analysis methods such as Western blotting all face the challenge of discriminating changes in the levels of proteins of interest from inadvertent changes in the amount loaded for analysis. Mass-spectrometry-based proteomics can now estimate the relative and absolute amounts of thousands of proteins across diverse biological systems. We reasoned that this new technology could prove useful for selection of very stably expressed proteins that could serve as better loading controls than those traditionally employed. Large-scale proteomic analyses of SDS lysates of cultured cells and tissues revealed deglycase DJ-1 as the protein with the lowest variability in abundance among different cell types in human, mouse, and amphibian cells. The protein constitutes 0.069 ± 0.017% of total cellular protein and occurs at a specific concentration of 34.6 ± 8.7 pmol/mg of total protein. Since DJ-1 is ubiquitous and therefore easily detectable with several peptides, it can be helpful in normalization of proteomic data sets. In addition, DJ-1 appears to be an advantageous loading control for Western blot that is superior to those used commonly used, allowing comparisons between tissues and cells originating from evolutionarily distant vertebrate species. Notably, this is not possible by the detection and quantitation of housekeeping proteins, which are often used in the Western blot technique. The approach introduced here can be applied to select the most appropriate loading controls for MS-based proteomics or Western blotting in any biological system. PMID:27297043

  20. Western blot can distinguish natural and acquired antibodies to Mycoplasma agassizii in the desert tortoise (Gopherus agassizii).

    PubMed

    Hunter, Kenneth W; Dupré, Sally A; Sharp, Tiffanny; Sandmeier, Franziska C; Tracy, C Richard

    2008-12-01

    Mycoplasma agassizi has been identified as a cause of upper respiratory tract disease (URTD) in the threatened Mojave population of the desert tortoise (Gopherus agassizii), and anti-M. agassizii antibodies have been found by ELISA in as many as 15% of these animals across their geographic range. Here we report that a cohort of 16 egg-reared desert tortoises never exposed to M. agassizii had ELISA antibody titers to this organism that overlapped with titers obtained from some M. agassizii-infected tortoises. These natural antibodies were predominantly of the IgM class. Western blots of plasma from these non-infected tortoises produced a characteristic banding pattern against M. agassizii antigens. A group of 38 wild-caught desert tortoises was tested by ELISA, and although some of these tortoises had antibody titers significantly higher than the non-infected tortoises, there was considerable overlap at the lower titer levels. However, Western blot analysis revealed distinct banding patterns that could readily distinguish between the non-infected tortoises and tortoises with acquired antibodies, regardless of ELISA antibody titers. We conclude that desert tortoises have natural antibodies to M. agassizii that can compromise the determination of infection status by ELISA. However, the Western blot technique can distinguish between natural and acquired antibody patterns and can be used to confirm the diagnosis of M. agassizii infections in the desert tortoise. PMID:18708096

  1. Densitometric analysis of Western blot (immunoblot) assays for human immunodeficiency virus antibodies and correlation with clinical status.

    PubMed Central

    Schmidt, G; Amiraian, K; Frey, H; Stevens, R W; Berns, D S

    1987-01-01

    Western blot assays for antibodies directed against components of human immunodeficiency virus (HIV) associated with acquired immunodeficiency syndrome (AIDS) were examined with a densitometer and integrator. Antibody responses to seven HIV proteins were determined from the areas under the peaks of bands on blots from 430 seropositive individuals. Antibody responses corresponded qualitatively and quantitatively with clinical status. The Western blot assays examined were done on single specimens from individuals in one of four clinical states: asymptomatic with no risk factor identified, asymptomatic with risk factor(s) identified, AIDS-related complex, and AIDS. The ratios of gp41 antibody to p24 antibody and of gp41 antibody to total HIV antibodies increased, and the number of total HIV antibodies decreased progressively in these populations. Parameters were assigned to characterize the typical response found in AIDS: gp41 antibody/p24 antibody ratio, greater than or equal to 2.0; gp41 antibody/total HIV antibodies ratio, greater than or equal to 0.30; and number of total HIV antibodies, less than or equal to 25.0 signal units. Parameter match increased with progression of clinical status. These parameters were applied in a brief follow-up study of 34 HIV-infected asymptomatic individuals who developed AIDS-related complex or AIDS. Initial specimens showed a stronger correlation than our population data base had predicted, suggesting that the parameters have prognostic value. Densitometric analysis of antibody responses on Western blot assays of single or serial specimens should prove useful to physicians in staging and monitoring HIV-infected individuals and in predicting which individuals will progress to AIDS. Images PMID:2444624

  2. Cross antigenicity of immunodominant polypeptides of somatic antigen of Oesophagostomum columbianum with other helminths by western blotting

    PubMed Central

    Dalal, Sunita; Prasad, Arvind; Nasir, Abdul; Saini, Vijesh Kumar

    2015-01-01

    Aim: Oesophagostomum columbianum in small ruminants in India is found as mixed infection commonly in sheep and goat. Haemonchus contortus, an abomasal nematode is found as concurrent infection with it. Eggs of Haemonchus and O. columbianum cannot be easily distinguished. Diagnosis of O. columbianum may only be possible if a non-cross antigenic polypeptide was available for immunodiagnosis. Materials and Methods: Somatic antigen (SoAg) of O. columbianum was fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunodominant polypeptides were identified by western blotting with homologous hyperimmune serum (HIS) and experimental sera of sheep or goat infected with other helminths. Results: SoAg of O. columbianum was immunoaffinity purified. Sharp polypeptide bands of 130, 72 and 68 KDa were observed along with several faint bands of lower molecular weight. Western blot of purified SoAg of O. columbianum with homologous HIS showed reaction with all the protein bands of 17, 28, 30, 32, 35, 38, 50, 68, 100, 130, 150, and 170 kDa. For identification of non-cross antigenic polypeptide, immunoaffinity purified SoAg of O. columbianum was reacted to heterologous HIS against H. contortus, Paramphistomum epiclitum, and Fasciola gigantica in western blotting utilizing completely dry method (i-blot). Among high molecular weight polypeptides 100 and 150 kDa were non-cross antigenic and among low molecular weight except 50 kDa polypeptide, 17, 30, 32, 35, and 38 kDa of O. columbianum were not cross antigenic with other helminths. Conclusions: Hence, polypeptides of 17, 30, 32, 35 and 38 kDa as well as 100 and 150 kDa polypeptides of O. columbianum may be exploited for immunodiagnosis of the infection in sheep and goat with extensive studies on cross antigenicity. PMID:27047030

  3. Immunohistochemical and Western Blotting Analyses of Ganoine in the Ganoid Scales of Lepisosteus oculatus: an Actinopterygian Fish.

    PubMed

    Sasagawa, Ichiro; Oka, Shunya; Mikami, Masato; Yokosuka, Hiroyuki; Ishiyama, Mikio; Imai, Akane; Shimokawa, Hitoyata; Uchida, Takashi

    2016-05-01

    In order to compare its characteristics with those of jaw tooth collar enamel, normally developing and experimentally regenerating ganoine from ganoid scales of Lepisosteus oculatus (spotted gar), an actinopterygian fish species, was examined by Western blotting and immunohistochemistry. Amelogenin, a major enamel matrix protein (EMP), is widely found from sarcopterygian fish to mammals. Therefore, we used antimammalian amelogenin antibodies and antisera: an antibody against bovine amelogenin; antiserum against porcine amelogenin; and region-specific antibodies or antiserum against the C-terminus, middle region, or N-terminus of porcine amelogenin in this study. Positive immunoreactivity with the antibody against bovine amelogenin, antiserum against porcine amelogenin, and the middle and C-terminal region-specific antibodies was detected in both normally developing and regenerating ganoine matrix, as well as in granules found within inner ganoine epithelial cells. These immunohistochemical analyses indicated that the Lepisosteus ganoine matrix contains EMP-like proteins with epitopes similar to mammalian amelogenins. In Western blotting analyses of regenerating ganoid scales with the antibovine amelogenin antibody, two protein bands with molecular weights of approximately 78 and 65 kDa were detected, which were similar to those found in Lepisosteus tooth enamel. Our study suggests that in Lepisosteus, EMP-like proteins in the ganoine matrix corresponded to those in tooth enamel. However, it was revealed that the 78 and 65 kDa EMP-like proteins were different from 27 kDa bovine amelogenin. PMID:27139791

  4. Identification of Glioblastoma Phosphotyrosine-Containing Proteins with Two-Dimensional Western Blotting and Tandem Mass Spectrometry

    PubMed Central

    Guo, Tianyao; Wang, Xiaowei; Li, Maoyu; Yang, Haiyan; Li, Ling; Peng, Fang

    2015-01-01

    To investigate the presence of, and the potential biological roles of, protein tyrosine phosphorylation in the glioblastoma pathogenesis, two-dimensional gel electrophoresis- (2DGE-) based Western blotting coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis was used to detect and identify the phosphotyrosine immunoreaction-positive proteins in a glioblastoma tissue. MS/MS and Mascot analyses were used to determine the phosphotyrosine sites of each phosphopeptide. Protein domain and motif analysis and systems pathway analysis were used to determine the protein domains/motifs that contained phosphotyrosine residue and signal pathway networks to clarify the potential biological functions of protein tyrosine phosphorylation. A total of 24 phosphotyrosine-containing proteins were identified. Each phosphotyrosine-containing protein contained at least one tyrosine kinase phosphorylation motif and a certain structural and functional domains. Those phosphotyrosine-containing proteins were involved in the multiple signal pathway systems such as oxidative stress, stress response, and cell migration. Those data show 2DGE-based Western blotting, MS/MS, and bioinformatics are a set of effective approaches to detect and identify glioblastoma tyrosine-phosphorylated proteome and to effectively rationalize the biological roles of tyrosine phosphorylation in the glioblastoma biological systems. It provides novel insights regarding tyrosine phosphorylation and its potential role in the molecular mechanism of a glioblastoma. PMID:26090378

  5. Phylogenetic distribution of apolipoproteins A-I and E in vertebrates as determined by Western blot analysis.

    PubMed

    Duggan, A E; Callard, I P

    2001-08-01

    A putative apolipoprotein E (apoE) has been identified in the HDL and VHDL fractions of the turtle. This observation is of particular interest considering apoE has been reported absent in the domestic hen (Hermier et al., '95; Biochim Biophys Acta: 105-118, 1995) and thus presumed absent in nonmammalian vertebrates altogether. As a result, partial amino acid sequencing of this protein was performed and revealed that one fragment shared 41% sequence identity to human apoE. Western blot analysis using antisera to apoE demonstrated cross-reactivity to a 34-kDa protein (putative apoE) in turtle plasma. Further investigation using anti-apoE antibody in Western blot analysis detected immunoreactive apoE in the plasma of lamprey, spiny dogfish, skate, and alligator, but not in flounder, newt or python; its absence in several species of birds was confirmed. Using anti-apoA-I antibody, apoA-I was detected in all vertebrate groups except a representative teleost (flounder). Apo-A-I antibody cross-reacted weakly with some putative apoE proteins (chicken, spiny dogfish and skate) and the reverse was true for anti-apoE, which cross-reacted with putative apoA-I in birds, reptiles, and elasmobranchs, confirming the molecular similarity and phylogenetic relatedness of these two proteins. PMID:11479905

  6. Western blot patterns of serum autoantibodies against optic nerve antigens in dogs with goniodysgenesis-related glaucoma

    PubMed Central

    Pumphrey, Stephanie A.; Pizzirani, Stefano; Pirie, Christopher G.; Anwer, M. Sawkat; Logvinenko, Tanya

    2014-01-01

    Objective To investigate whether differences existed between clinically normal dogs and dogs with goniodysgenesis-related glaucoma (GDRG) in serum autoantibodies against optic nerve antigens. Animals 16 dogs with GDRG, 17 healthy dogs with unremarkable pectinate ligament and iridocorneal angle morphology, and 13 euthanized dogs with no major ocular abnormalities or underlying diseases. Procedures Western blotting was performed with optic nerve extracts from the euthanized dogs as an antigen source and serum from clinically normal dogs and dogs with GDRG as a primary antibody (autoantibody) source. Blots were evaluated for presence and density of bands. Results Multiple bands were identified on western blots from all dogs with GDRG and all clinically normal dogs, with a high degree of variability among individual dogs. Dogs with GDRG were significantly more likely than healthy dogs to have bands present at 38, 40, and 68 kDa. Dogs with GDRG had significant increases in autoreactivity at 40 and 53 kDa and a significant decrease in autoreactivity at 48 kDa. Conclusions and Clinical Relevance Significant differences in serum autoantibodies against optic nerve antigens were found in dogs with versus without GDRG. Although it remains unclear whether these differences were part of the pathogenesis of disease or were sequelae to glaucomatous changes, these findings provide support for the hypothesis that immune-mediated mechanisms play a role in the development or progression of GDRG. However, the high degree of variability among individual dogs and the considerable overlap between groups suggest that the clinical usefulness of this technique for distinguishing dogs with GDRG from clinically normal dogs is likely limited. PMID:23531071

  7. Rabbit antisera against three different bacteria which can induce reactive arthritis: analysis by ELISA, immunoprecipitation and Western Blot.

    PubMed Central

    Ogasawara, M; Kobayashi, S; Hill, J L; Kono, D H; Yu, D T

    1985-01-01

    Three strains of bacteria which induce reactive arthritis were collected: a Shigella flexneri, designated 7060; another Sh. flexneri, designated 316; and a Yersinia enterocolitica of serotype 03. Rabbit antisera were generated against each of them to test for the extent and nature of cross-reactivity among these strains. When analysed by the ELISA technique, antisera against 7060 and 316 showed strong cross-reactivity with Y. enterocolitica. In contrast, the reaction of antisera prepared against putatively non-arthritis-causing bacteria reacted several-folds less. Using immunoprecipitation, sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western Blot procedures, a 92,000 MW cross-reactive antigen on the Yersinia was identified. The antigen was present on the outer membranes of the Y. enterocolitica, and enzyme digestion experiments showed that this antigen was protein in nature. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3884493

  8. Serologic immunoreactivity to Neospora caninum antigens in dogs determined by indirect immunofluorescence, western blotting and dot-ELISA.

    PubMed

    Pinheiro, A M; Costa, M F; Paule, B; Vale, V; Ribeiro, M; Nascimento, I; Schaer, R E; Almeida, M A O; Meyer, R; Freire, S M

    2005-06-10

    Neospora caninum, is a coccidian protozoan known as a major cause of bovine abortion and canine neuropathies. The aim of the present study was to develop a reliable and quick test to detect antibodies to N. caninum in dog sera. Sixty-five serum samples from dogs, including 35 positive and 30 negative for N. caninum antibodies were used for standardization of the test. In parallel, immunoreactivity of the sera to Toxoplasma gondii antigens was investigated using a passive agglutination test. A dot-ELISA test, using soluble extract of N. caninum tachyzoites on nitrocellulose ester membranes, was developed and standardized. SDS-PAGE and complementary analysis of reactivity by Western blotting were used for the characterization of the immunoreactive fractions of all tested sera. The sensitivity and specificity of the dot-ELISA were 94 and 73%, respectively, compared to IFAT at a cut-off of 1:50, and 87 and 100% compared to IFAT at a cut-off of 1:25. Among the sera that tested positively for both IFAT and dot-ELISA, only 8.6% were reactive to T. gondii. The most immunoreactive fractions in Western blots were the 14-, 33-, 42- and 55 kDa bands, with percentages of 42, 60, 42 and 37%, respectively. The 60 kDa band showed a non-specific reaction in 43% of neosporosis-negative animals by both dot-ELISA and IFAT. These results indicate that the dot-ELISA using N. caninum antigen present good sensitivity and specificity, and might be used as a screening test to detect antibodies to N. caninum in dogs. PMID:15893072

  9. Quantitative Western ligand blotting reveals common patterns and differential features of IGFBP-fingerprints in domestic ruminant breeds and species.

    PubMed

    Wirthgen, Elisa; Höflich, Christine; Spitschak, Marion; Helmer, Carina; Brand, Bodo; Langbein, Jan; Metzger, Friedrich; Hoeflich, Andreas

    2016-02-01

    The insulin-like growth factor binding proteins (IGFBPs) are determinants of local IGF-effects and thus have an impact on growth and metabolism in vertebrate species. In farm animals, IGFBPs are associated with traits such as growth rate, body composition, milk production, or fertility. It may be assumed, that selective breeding and characteristic phenotypes of breeds are related to differential expression of IGFBPs. Therefore, the aim of the present study was to investigate the effects of selective breeding on blood IGFBP concentrations of farm animals. Breeds of the sheep, goat, and cattle species were investigated. IGFBP-3, -2, and -4 were analyzed with quantitative Western ligand blotting (qWLB), enabling comprehensive monitoring of intact IGFBPs with IGF-binding capacity. We show that in sera of all species and breeds investigated, IGFBP-3, -2, and -4 were simultaneously detectable by qWLB analysis. IGFBP-3 and the total amount of IGFBPs were significantly increased (P<0.05) in Cameroon sheep, if compared to 3 of 4 other sheep breeds, as well as in Dwarf goats versus Toggenburg and Boer goats (P<0.01). IGFBP-2 was elevated in Cameroon sheep and Boer goats, if compared to other breeds of these species (P<0.01), respectively. Holstein Friesian dairy cows had higher levels of IGFBP-4 (P<0.05), if compared to conventional crossbreeds of beef cattle. In Dwarf goats the ratio of IGFBP-3/IGFBP-2 was about 3-fold higher than in other goat breeds (P<0.001). The total IGFBP amount of Toggenburg goats was reduced (P<0.05), compared to the other goat breeds. In conclusion, our data indicate that common and specific features of IGFBP fingerprints are found in different ruminant species and breeds. Our findings may introduce quantitative Western ligand blotting as an attractive tool for biomarker development and molecular phenotyping in farm animal breeds. PMID:26597140

  10. Western blot analysis to illustrate relative control levels of the lac and ara promoters in Escherichia coli.

    PubMed

    Nielsen, Brent L; Willis, Van C; Lin, Chin-Yo

    2007-03-01

    The lactose operon and its control is a fundamental transcriptional regulatory concept presented in introductory and many advanced molecular biology courses. Much is known about the positive and negative control mechanisms that govern levels of expression of this operon. One basic principle that is taught about the lac operon is that it is "leaky," meaning that the transcriptional control of the operon is not 100% efficient and that in wild-type cells, transcription from the promoter is never completely "off," but there is always some basal transcription. In contrast, the arabinose operon is often used as an example of a tightly controlled operon, and transcription from the ara promoter is very low in the absence of inducer. The relative levels of control of these two operons can be illustrated using Western blots of proteins expressed in the presence and absence of the appropriate inducers and antibodies against the gene products. Different times of growth and the addition of inducer can also be examined. The results are very dramatic and help to reinforce the principles of promoter control. PMID:21591073

  11. Comparison of trichloroacetic acid with other protein-precipitating agents in enriching abnormal prion protein for Western blot analysis.

    PubMed

    LeBrun, Matthew; Huang, Hongsheng; He, Runtao; Booth, Stephanie; Balachandran, Aru; Li, Xuguang

    2008-06-01

    Detection of the abnormal or the pathogenic form of prion protein (PrP(Sc)) by Western blot (WB) is challenging, especially, for samples derived from cell cultures that contain low levels of PrP(Sc). A variety of PrP(Sc) concentration methods have been reported with various PrP(Sc) recovery efficiencies. Ultracentrifugation is one of the methods used frequently to enrich the pathogenic form of PrP(Sc) prior to WB analyses. The resulting PrP(Sc) pellet is extremely insoluble and often requires sonication to be dissolved, potentially generating aerosols. We modified the common protein-precipitating protocol using trichloroacetic acid to concentrate PrP(Sc) by slow-speed centrifugation, followed by solubilization of the pellets with 6 mol/L urea prior to sodium dodecyl sulphate -- polyacrylamide gel electrophoresis and WB analyses. Comparative studies suggest this simple trichloroacetic acid protocol was more effective in enriching PrP(Sc) presented in cell cultures and brain homogenates than other reported protein-precipitating methods. Furthermore, incorporation of the urea treatment step to dissolve the precipitated PrP(Sc) pellets helped to reduce the infectivity of PrP(Sc). PMID:18535632

  12. The diagnosis of proventricular dilatation disease: use of a Western blot assay to detect antibodies against avian Borna virus.

    PubMed

    Villanueva, Itamar; Gray, Patricia; Mirhosseini, Negin; Payne, Susan; Hoppes, Sharman; Honkavuori, Kirsi S; Briese, Thomas; Turner, Debra; Tizard, Ian

    2010-07-14

    Avian Borna virus (ABV) has recently been shown to be the causal agent of proventricular dilatation disease (PDD) a lethal neurologic disease of captive psittacines and other birds. An immunoblot assay was used to detect the presence of antibodies against avian Borna virus in the serum of affected birds. A lysate from ABV-infected duck embryo fibroblasts served as a source of antigen. The assay was used to test for the presence of antibodies to ABV in 117 birds. Thirty of these birds had biopsy or necropsy-confirmed proventricular dilatation disease (PDD), while the remaining 87 birds were apparently healthy or were suffering from diseases other than PDD. Sera from 27 of the 30 PDD cases (90%) contained antibodies to ABV. Seventy-three (84%) of the apparently "healthy" birds were seronegative. Additionally, sera from seven macaws and one parrot trapped in the Peruvian Amazon were seronegative. Positive sera recognized the bornaviral nucleoprotein (N-protein). While the presence of antibodies to ABV largely corresponded with the development of clinical PDD, 14 apparently healthy normal birds possessed detectable antibodies to ABV. The existence of a carrier state was confirmed when 13 of 15 apparently healthy cockatiels were shown by PCR to have detectable ABV RNA in their feces. Western blot assays may be of significant assistance in diagnosing proventricular dilatation disease. Many apparently healthy birds may however be seronegative while, at the same time, shedding ABV in their feces. PMID:20036080

  13. Exposure to Sarcocystis spp. in horses from Spain determined by Western blot analysis using Sarcocystis neurona merozoites as heterologous antigen.

    PubMed

    Arias, M; Yeargan, M; Francisco, I; Dangoudoubiyam, S; Becerra, P; Francisco, R; Sánchez-Andrade, R; Paz-Silva, A; Howe, D K

    2012-04-30

    Horses serve as an intermediate host for several species of Sarcocystis, all of which utilize canids as the definitive host. Sarcocystis spp. infection and formation of latent sarcocysts in horses often appears to be subclinical, but morbidity can occur, especially when the parasite burden is large. A serological survey was conducted to determine the presence of antibodies against Sarcocystis spp. in seemingly healthy horses from the Galicia region of Spain. Western blot analyses using Sarcocystis neurona merozoites as heterologous antigen suggested greater than 80% seroprevalance of Sarcocystis spp. in a sample set of 138 horses. The serum samples were further tested with enzyme-linked immunosorbent assays (ELISAs) based on recombinant S. neurona-specific surface antigens (rSnSAGs). As expected for horses from the Eastern Hemisphere, less than 4% of the serum samples were positive when analyzed with either the rSnSAG2 or the rSnSAG4/3 ELISAs. An additional 246 horses were tested using the rSnSAG2 ELISA, which revealed that less than 3% of the 384 samples were seropositive. Collectively, the results of this serologic study suggested that a large proportion of horses from this region of Spain are exposed to Sarcocystis spp. Furthermore, the anti-Sarcocystis seroreactivity in these European horses could be clearly distinguished from anti-S. neurona antibodies using the rSnSAG2 and rSnSAG4/3 ELISAs. PMID:22019182

  14. Lectin staining and Western blot data showing differential sialylation of nutrient-deprived cancer cells to sialic acid supplementation

    PubMed Central

    Badr, Haitham A.; AlSadek, Dina M.M.; Mathew, Mohit P.; Li, Chen-Zhong; Djansugurova, Leyla B.; Yarema, Kevin J.; Ahmed, Hafiz

    2015-01-01

    This report provides data that are specifically related to the differential sialylation of nutrient deprived breast cancer cells to sialic acid supplementation in support of the research article entitled, “Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation" [1]. Particularly, breast cancer cells, when supplemented with sialic acid under nutrient deprivation, display sialylated glycans at the cell surface, but non-malignant mammary cells show sialylated glycans intracellularly. The impact of sialic acid supplementation under nutrient deprivation was demonstrated by measuring levels of expression and sialylation of two markers, EGFR1 and MUC1. This Data in Brief article complements the main manuscript by providing detailed instructions and representative results for cell-level imaging and Western blot analyses of changes in sialylation during nutrient deprivation and sialic acid supplementation. These methods can be readily generalized for the study of many types of glycosylation and various glycoprotein markers through the appropriate selection of fluorescently-labeled lectins. PMID:26629491

  15. Far-western blotting as a solution to the non-specificity of the anti-erythropoietin receptor antibody

    PubMed Central

    Fecková, Barbora; Kimáková, Patrícia; Ilkovičová, Lenka; Szentpéteriová, Erika; Debeljak, Nataša; Solárová, Zuzana; Sačková, Veronika; Šemeláková, Martina; Bhide, Mangesh; Solár, Peter

    2016-01-01

    The erythropoietin receptor (EpoR) is a member of the cytokine receptor family. The interaction between erythropoietin (Epo) and EpoR is important for the production and maturation of erythroid cells, resulting in the stimulation of hematopoiesis. The fact that EpoR was also detected in neoplastic cells has opened the question about the relevance of anemia treatment with recombinant Epo in cancer patients. Numerous studies have reported pro-stimulating and anti-apoptotic effects of Epo in cancer cells, thus demonstrating EpoR functionality in these cells. By contrast, a previous study claims the absence of EpoR in tumor cells. This apparent discrepancy is based, according to certain authors, on the use of non-specific anti-EpoR antibodies. With the aim of bypassing the direct detection of EpoR with an anti-EpoR antibody, the present authors propose a far-western blot methodology, which in addition, confirms the interaction of Epo with EpoR. Applying this technique, the presence of EpoR and its interaction with Epo in human ovarian adenocarcinoma A2780 and normal human umbilical vein endothelial cells was confirmed. Furthermore, modified immunoprecipitation of EpoR followed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis confirmed a 57 kDa protein as a human Epo-interacting protein in both cell lines. PMID:27446474

  16. Identification of recombinant human EPO variants in greyhound plasma and urine by ELISA, LC-MS/MS and western blotting: a comparative study.

    PubMed

    Timms, Mark; Steel, Rohan; Vine, John

    2016-02-01

    The recombinant human erythropoietins epoetin alfa (Eprex®), darbepoetin (Aranesp®) and methoxy polyethylene glycol-epoetin beta (Mircera®) were administered to greyhounds for 7, 10 and 14 days respectively. Blood and urine samples were collected and analysed for erythropoietin by ELISA, LC-MS/MS and western blotting. Limits of confirmation in plasma for western blotting and LC-MS/MS methods ranged from a low of 2.5mIU/mL, and closely matched the sensitivity of ELISA screening. PMID:26290355

  17. The Dot Blot ELISA.

    ERIC Educational Resources Information Center

    Gerbig, Donald G., Jr.; Fenk, Christopher J.; Goodhart, Amy S.

    2000-01-01

    Uses two laboratory techniques, Enzyme Linked Immunosorbent Assay (ELISA) and Western Blot, to demonstrate antibody-antigen binding concepts. Includes a list of required materials and directions for the procedure, and makes suggestions for classroom applications. (Contains 13 references.) (YDS)

  18. Evaluation of ELISA coupled with Western blot as a surveillance tool for Trichinella infection in wild boar (Sus scrofa).

    PubMed

    Cuttell, Leigh; Gómez-Morales, Maria Angeles; Cookson, Beth; Adams, Peter J; Reid, Simon A; Vanderlinde, Paul B; Jackson, Louise A; Gray, C; Traub, Rebecca J

    2014-01-31

    Trichinella surveillance in wildlife relies on muscle digestion of large samples which are logistically difficult to store and transport in remote and tropical regions as well as labour-intensive to process. Serological methods such as enzyme-linked immunosorbent assays (ELISAs) offer rapid, cost-effective alternatives for surveillance but should be paired with additional tests because of the high false-positive rates encountered in wildlife. We investigated the utility of ELISAs coupled with Western blot (WB) in providing evidence of Trichinella exposure or infection in wild boar. Serum samples were collected from 673 wild boar from a high- and low-risk region for Trichinella introduction within mainland Australia, which is considered Trichinella-free. Sera were examined using both an 'in-house' and a commercially available indirect-ELISA that used excretory-secretory (E/S) antigens. Cut-off values for positive results were determined using sera from the low-risk population. All wild boar from the high-risk region (352) and 139/321 (43.3%) of the wild boar from the low-risk region were tested by artificial digestion. Testing by Western blot using E/S antigens, and a Trichinella-specific real-time PCR was also carried out on all ELISA-positive samples. The two ELISAs correctly classified all positive controls as well as one naturally infected wild boar from Gabba Island in the Torres Strait. In both the high- and low-risk populations, the ELISA results showed substantial agreement (k-value=0.66) that increased to very good (k-value=0.82) when WB-positive only samples were compared. The results of testing sera collected from the Australian mainland showed the Trichinella seroprevalence was 3.5% (95% C.I. 0.0-8.0) and 2.3% (95% C.I. 0.0-5.6) using the in-house and commercial ELISA coupled with WB respectively. These estimates were significantly higher (P<0.05) than the artificial digestion estimate of 0.0% (95% C.I. 0.0-1.1). Real-time PCR testing of muscle from

  19. State-of-the-art housekeeping proteins for quantitative western blotting: Revisiting the first draft of the human proteome.

    PubMed

    Lee, Hyun-Gwan; Jo, Jihoon; Hong, Hyun-Hee; Kim, Kee K; Park, Joong-Ki; Cho, Sung-Jin; Park, Chungoo

    2016-07-01

    Western blotting (WB) analysis is the most popular and widely used methodology for protein detection and characterization over recent decades. In accordance with the advancement of the technologies for the acquisition of WB signals, a quantitative value is used to present the abundance of target proteins in a complex sample, thereby requiring the use of specific proteins as internal references that represent total proteins. Heretofore, proteins encoded by housekeeping genes such as GAPDH, β-tubulin and β-actin have been commonly used as loading controls without any hesitation because their mRNA expression levels tend to be high and constant in many different cells and tissues. Experimentally, however, some of the housekeeping reference proteins are often displayed with inconsistent expression levels in both homogeneous and heterogeneous tissues, and, in terms of mRNA levels, they have a weak correlation to the abundance of proteins. To estimate accurate, reliable, and reproducible protein quantifications, it is crucial to define appropriate reference controls. For this paper, we explored the recently released large-scale, human proteomic database ProteomicsDB including 16 857 liquid chromatography tandem-mass-spectrometry data from 27 human tissues, and suggest 20 ubiquitously- and constitutively-expressed, putative internal-reference controls for the quantification of differential protein expressions. Intriguingly, the most commonly used, known housekeeping genes were entirely excluded in our newly defined candidates. Although the applications of the candidates under many different biological conditions and in other organisms are yet to be empirically verified, we propose reliable, potential loading controls for a WB analysis in this paper. PMID:27125885

  20. Evaluation of a Western Blot and ELISA for the detection of anti-Trichinella-IgG in pig sera.

    PubMed

    Nöckler, K; Reckinger, S; Broglia, A; Mayer-Scholl, A; Bahn, P

    2009-08-26

    Human trichinellosis is a foodborne disease caused by ingestion of infective Trichinella muscle larvae via pork or meat of other food animals which are susceptible to this zoonotic parasite. There are new approaches for a risk-oriented meat inspection for Trichinella in pigs which are accompanied by monitoring programmes on herd level to control freedom from this parasite. For this purpose, testing schemes utilizing serological tests with a high sensitivity and specificity are required. This study aimed at the evaluation of an ELISA and a Western Blot (WB) for the detection of anti-Trichinella-IgG in terms of sensitivity and specificity taking results of artificial digestion as gold standard. For this purpose, 144 field sera from pigs confirmed as Trichinella-free as well as 159 sera from pigs experimentally infected with T. spiralis (123), T. britovi (19) or T. pseudospiralis (17) were examined by ELISA (excretory-secretory antigen) and WB (crude worm extract). Sera from pigs experimentally infected with four other nematode species were included to investigate the cross-reactivity of the antigen used in the WB. For all Trichinella-positive pig sera, band pattern profiles were identified in the WB and results were analysed in relation to ELISA OD% values. Testing of pig sera revealed a sensitivity of 96.8% for the ELISA and 98.1% for the WB whereas the methods showed a specificity of 97.9 and 100%, respectively. WB analysis of Trichinella-positive pig sera revealed five specific band patterns of 43, 47, 61, 66, and 102 kDa of which the 43 kDa protein was identified as the predominant antigen. The frequency of the band pattern profile was irrespective of the dose and the period of infection as well as the Trichinella species investigated. In conclusion, monitoring in swine farms for Trichinella antibodies should be based on screening pig sera by means of ELISA followed by confirmatory testing through WB analysis. PMID:19473770

  1. Distinctive western blot antibody patterns induced by infection of mice with individual strains of the Mycobacterium avium complex.

    PubMed Central

    Elsaghier, A; Nolan, A; Allen, B; Ivanyi, J

    1992-01-01

    Systemic infection of mice with organisms of the Mycobacterium avium complex (MAC) induced antibody responses, characteristic for each of the three tested individual strains. The influence of host genetic factors was reflected up to 3 months after infection by the finding of generally oligobanded and multibanded Western blot patterns in C57B1/6 and BALB/c mice, respectively. Nevertheless, more bands developed at 6 months in C57BL/6 mice. The response to three antigens of 18,000, 38,000 and 24,000 MW was analysed in greater detail. Antibodies to a protease-resistant 18,000 MW band produced only by BALB/c mice were either strain specific, following infection with M. avium, strain Maa-B2, or cross-reactive within MAC, following infection with M. avium strain Maa-A6 and M. paratuberculosis, strain Map-203. Another protease-resistant antigen of 38,000 MW was immunogenic only in Maa-B2 infected mice. This constituent was found to be related to the protease-sensitive antigen of corresponding molecular weight from M. tuberculosis. Two 24,000 MW proteins of M. paratuberculosis were separated by two-dimensional gel electrophoresis: antibodies to the anodic band were induced by Map-203 infection, whilst the cathodic band was revealed by heteroclitic antibodies from Maa-B2-infected mice. The latter antigen is apparently expressed during in vivo replication, but not during in vitro culture of Maa-B2 bacteria. We generally conclude, that the selective antibody patterns after live infection, could be attributed to differences in the release of native antigens within mycobacterial lesions. In view of a high degree of species specificity, some of the immunogenic constituents identified may also be useful for serodiagnostic application. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:1526646

  2. Evaluation of two sets of immunohistochemical and Western blot confirmatory methods in the detection of typical and atypical BSE cases

    PubMed Central

    2011-01-01

    Background Three distinct forms of bovine spongiform encephalopathy (BSE), defined as classical (C-), low (L-) or high (H-) type, have been detected through ongoing active and passive surveillance systems for the disease. The aim of the present study was to compare the ability of two sets of immunohistochemical (IHC) and Western blot (WB) BSE confirmatory protocols to detect C- and atypical (L- and H-type) BSE forms. Obex samples from cases of United States and Italian C-type BSE, a U.S. H-type and an Italian L-type BSE case were tested in parallel using the two IHC sets and WB methods. Results The two IHC techniques proved equivalent in identifying and differentiating between C-type, L-type and H-type BSE. The IHC protocols appeared consistent in the identification of PrPSc distribution and deposition patterns in relation to the BSE type examined. Both IHC methods evidenced three distinct PrPSc phenotypes for each type of BSE: prevailing granular and linear tracts pattern in the C-type; intraglial and intraneuronal deposits in the H-type; plaques in the L-type. Also, the two techniques gave comparable results for PrPSc staining intensity on the C- and L-type BSE samples, whereas a higher amount of intraglial and intraneuronal PrPSc deposition on the H-type BSE case was revealed by the method based on a stronger demasking step. Both WB methods were consistent in identifying classical and atypical BSE forms and in differentiating the specific PrPSc molecular weight and glycoform ratios of each form. Conclusions The study showed that the IHC and WB BSE confirmatory methods were equally able to recognize C-, L- and H-type BSE forms and to discriminate between their different immunohistochemical and molecular phenotypes. Of note is that for the first time one of the two sets of BSE confirmatory protocols proved effective in identifying the L-type BSE form. This finding helps to validate the suitability of the BSE confirmatory tests for BSE surveillance currently in

  3. Southern blotting.

    PubMed

    Brown, T

    2001-05-01

    Southern blotting is the transfer of DNA fragments from an electrophoresis gel to a membrane support (the properties and advantages of the different types of membrane, transfer buffer, and transfer method are discussed in detail), resulting in immobilization of the DNA fragments, so the membrane carries a semipermanent reproduction of the banding pattern of the gel. After immobilization, the DNA can be subjected to hybridization analysis, enabling bands with sequence similarity to a labeled probe to be identified. This appendix describes Southern blotting via upward capillary transfer of DNA from an agarose gel onto a nylon or nitrocellulose membrane, using a high-salt transfer buffer to promote binding of DNA to the membrane. With the high-salt buffer, the DNA becomes bound to the membrane during transfer but not permanently immobilized. Immobilization is achieved by UV irradiation (for nylon) or baking (for nitrocellulose). A Support Protocol describes how to calibrate a UV transilluminator for optimal UV irradiation of a nylon membrane. An alternate protocol details transfer using nylon membranes and an alkaline buffer, and is primarily used with positively charged nylon membranes. The advantage of this combination is that no post-transfer immobilization step is required, as the positively charged membrane binds DNA irreversibly under alkaline transfer conditions. The method can also be used with neutral nylon membranes but less DNA will be retained. A second alternate protocol describes a transfer method based on a different transfer-stack setup. The traditional method of upward capillary transfer of DNA from gel to membrane described in the first basic and alternate protocols has certain disadvantages, notably the fact that the gel can become crushed by the weighted filter papers and paper towels that are laid on top of it. This slows down the blotting process and may reduce the amount of DNA that can be transferred. The downward capillary method described in

  4. Performance of a Western blot assay to compare mother and newborn anti-Toxoplasma antibodies for the early neonatal diagnosis of congenital toxoplasmosis.

    PubMed

    Robert-Gangneux, F; Commerce, V; Tourte-Schaefer, C; Dupouy-Camet, J

    1999-09-01

    The aim of this study was to retrospectively evaluate the performance of a Western blot assay to compare mother and newborn anti-Toxoplasma gondii antibodies for the early neonatal diagnosis of congenital toxoplasmosis. Since specific anti-Toxoplasma IgM or IgA is detected inconstantly at birth in the neonate, the diagnosis of congenital toxoplasmosis is often delayed until 6-9 months, after IgG titers have been observed persistently. In this study, 81 paired samples from 60 mother/child pairs were tested for IgG and IgM patterns. All mothers had (or were strongly suspected to have) acquired toxoplasmosis during pregnancy. Specific IgM and IgA were simultaneously detected by immunocapture tests, and IgG was titrated. A serological and clinical follow-up of infants was conducted during the first year of life until the diagnosis of congenital toxoplasmosis could be either confirmed or ruled out. Seventeen of the 60 newborns were congenitally infected. Specific IgM or IgA was detected by immunocapture at birth in 76.5% and 70.6% of cord sera from infected neonates, respectively, with an equal specificity of 77.5%. Comparative Western blot allowed the detection of neosynthesized IgG and IgM in the cord blood of 50% and 78.6% of infected infants, respectively, with a specificity of 100%. The combination of IgA and IgM immunocapture tests, the analysis of IgG and IgM Western blot patterns, and the combination of both techniques allowed the detection of 94%, 94%, and 100% of cases within the first 3 months of life, respectively. In conclusion, Western blotting seems to be a useful complementary tool for the early postnatal diagnosis of congenital toxoplasmosis. PMID:10534187

  5. Mycoplasma agassizii strain variation and distinct host antibody responses explain differences between enzyme-linked immunosorbent assays and Western blot assays.

    PubMed

    Wendland, Lori D; Klein, Paul A; Jacobson, Elliott R; Brown, Mary B

    2010-11-01

    The precarious status of desert (Gopherus agassizii) and gopher (G. polyphemus) tortoises has resulted in conservation efforts that now include health assessment as an important component of management decision-making. Mycoplasmal upper respiratory tract disease (URTD) is one of very few diseases in chelonians for which comprehensive and rigorously validated diagnostic tests exist. In this study, serum samples obtained from eight Gopherus tortoises documented at necropsy to (i) be enzyme-linked immunosorbent assay (ELISA) seropositive using the PS6 antigen, (ii) be infected with Mycoplasma agassizii as indicated by direct isolation of the pathogen from the respiratory surfaces, and (iii) have histological lesions of mycoplasmal URTD were used to evaluate four distinct clinical isolates of M. agassizii as antigens for ELISA and Western blot analyses. Each animal sample reacted in the Western blot with its homologous M. agassizii strain, but recognition of heterologous M. agassizii strains was variable. Further, individual animals varied significantly with respect to the specific proteins recognized by the humoral immune response. An additional 114 Gopherus serum samples were evaluated using ELISA antigens prepared from the four distinct M. agassizii strains; A₄₀₅ values were significantly correlated (r² goodness of fit range, 0.708 to 0.771; P < 0.0001) for all antigens tested. The results confirm that strain variation is responsible for the observed differences between Western blot binding patterns. Thus, reliance on a single M. agassizii strain as an antigen in Western blot assays may provide false-negative results. This could have adverse consequences for the well-being of these environmentally sensitive hosts if false-negative animals were relocated to sites consisting of true-negative populations. PMID:20810678

  6. Mycoplasma agassizii Strain Variation and Distinct Host Antibody Responses Explain Differences between Enzyme-Linked Immunosorbent Assays and Western Blot Assays ▿

    PubMed Central

    Wendland, Lori D.; Klein, Paul A.; Jacobson, Elliott R.; Brown, Mary B.

    2010-01-01

    The precarious status of desert (Gopherus agassizii) and gopher (G. polyphemus) tortoises has resulted in conservation efforts that now include health assessment as an important component of management decision-making. Mycoplasmal upper respiratory tract disease (URTD) is one of very few diseases in chelonians for which comprehensive and rigorously validated diagnostic tests exist. In this study, serum samples obtained from eight Gopherus tortoises documented at necropsy to (i) be enzyme-linked immunosorbent assay (ELISA) seropositive using the PS6 antigen, (ii) be infected with Mycoplasma agassizii as indicated by direct isolation of the pathogen from the respiratory surfaces, and (iii) have histological lesions of mycoplasmal URTD were used to evaluate four distinct clinical isolates of M. agassizii as antigens for ELISA and Western blot analyses. Each animal sample reacted in the Western blot with its homologous M. agassizii strain, but recognition of heterologous M. agassizii strains was variable. Further, individual animals varied significantly with respect to the specific proteins recognized by the humoral immune response. An additional 114 Gopherus serum samples were evaluated using ELISA antigens prepared from the four distinct M. agassizii strains; A405 values were significantly correlated (r2 goodness of fit range, 0.708 to 0.771; P < 0.0001) for all antigens tested. The results confirm that strain variation is responsible for the observed differences between Western blot binding patterns. Thus, reliance on a single M. agassizii strain as an antigen in Western blot assays may provide false-negative results. This could have adverse consequences for the well-being of these environmentally sensitive hosts if false-negative animals were relocated to sites consisting of true-negative populations. PMID:20810678

  7. Anti-RAINBOW dye-specific antibodies as universal tools for the visualization of prestained protein molecular weight markers in Western blot analysis

    PubMed Central

    Schüchner, Stefan; Andorfer, Peter; Mudrak, Ingrid; Ogris, Egon

    2016-01-01

    Western blotting is one of the most widely used techniques in molecular biology and biochemistry. Prestained proteins are used as molecular weight standards in protein electrophoresis. In the chemiluminescent Western blot analysis, however, these colored protein markers are invisible leaving researchers with the unsatisfying situation that the signal for the protein of interest and the signal for the markers are not captured simultaneously and have to be merged in an error-prone step. To allow the simultaneous detection of marker proteins we generated monoclonal antibodies specific for the protein dyes. To elicit a dye rather than protein specific immune response we immunized mice sequentially with dye-carrier protein complexes, in which a new carrier protein was used for each subsequent immunization. Moreover, by sequentially immunizing with dye-carrier protein complexes, in which different but structurally related dyes were used, we could also generate an antibody, termed anti-RAINBOW, that cross-reacted even with structurally related dyes not used in the immunizations. Our novel antibodies represent convenient tools for the simultaneous Western blot detection of commercially available prestained marker proteins in combination with the detection of any specific protein of interest. These antibodies will render obsolete the anachronistic tradition of manually charting marker bands on film. PMID:27531616

  8. Anti-RAINBOW dye-specific antibodies as universal tools for the visualization of prestained protein molecular weight markers in Western blot analysis.

    PubMed

    Schüchner, Stefan; Andorfer, Peter; Mudrak, Ingrid; Ogris, Egon

    2016-01-01

    Western blotting is one of the most widely used techniques in molecular biology and biochemistry. Prestained proteins are used as molecular weight standards in protein electrophoresis. In the chemiluminescent Western blot analysis, however, these colored protein markers are invisible leaving researchers with the unsatisfying situation that the signal for the protein of interest and the signal for the markers are not captured simultaneously and have to be merged in an error-prone step. To allow the simultaneous detection of marker proteins we generated monoclonal antibodies specific for the protein dyes. To elicit a dye rather than protein specific immune response we immunized mice sequentially with dye-carrier protein complexes, in which a new carrier protein was used for each subsequent immunization. Moreover, by sequentially immunizing with dye-carrier protein complexes, in which different but structurally related dyes were used, we could also generate an antibody, termed anti-RAINBOW, that cross-reacted even with structurally related dyes not used in the immunizations. Our novel antibodies represent convenient tools for the simultaneous Western blot detection of commercially available prestained marker proteins in combination with the detection of any specific protein of interest. These antibodies will render obsolete the anachronistic tradition of manually charting marker bands on film. PMID:27531616

  9. Rapid fluorescent monitoring of total protein patterns on sodium dodecyl sulfate-polyacrylamide gels and western blots before immunodetection and sequencing.

    PubMed

    Alba, F J; Daban, J R

    1998-10-01

    The fluorogenic dye 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF) has been used for the detection of total protein patterns on polyvinylidene difluoride (PVDF) membranes. Fluorescent staining of protein bands on membranes with this covalent dye is completed in 20 min. Wet membranes are translucent, allowing protein visualization by transillumination with ultraviolet light. The resulting images can be recorded using Polaroid film or a charge-coupled device camera. Electrophoretic bands containing 5-10 ng of protein can be detected on the MDPF-stained Western blot. When proteins are directly transferred to the membrane using a slot blotting device, as little as 0.5 ng of protein can be detected. Previous visualization of protein bands on sodium dodecyl sulfate-polyacrylamide gels with the noncovalent fluorescent dye Nile red (Alba et al., BioTechniques, 1996, 21, 625-626) does not interfere with further MDPF staining and fluorescent detection of these bands transferred to PVDF membranes. Thus, Nile red and MDPF staining can be performed sequentially, allowing the rapid monitoring of total protein patterns on both the electrophoretic gel and Western blot. Using the conditions described in this study, MDPF staining does not preclude further N-terminal microsequencing and immunodetection of specific bands with polyclonal antibodies. PMID:9820958

  10. An improved method for western blotting when extracting proteins from mammalian cells cultured on a collagen gel under serum-free conditions.

    PubMed

    Ishihara, Seiichiro; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2016-01-01

    Western blotting is a widely used method for detection and quantification of specific proteins extracted from mammalian cells. In the conventional method of protein extraction, we found that collagen-containing gels interfered with detection of the p65 protein (one of the subunits in the NF-κB family of proteins) in human lung adenocarcinoma A549 cells cultured on a collagen gel containing serum. In contrast, the collagen gels did not affect detection of the GAPDH protein. Then, we established an improved method for preparation of protein extracts (using trichloroacetic acid fixation and collagenase treatment) from the cells cultured on the collagen gel. Using the improved method, we were able to detect p65 proteins without loss in A549 cells cultured on a collagen gel under serum-free conditions, but we could not detect the proteins if serum was present in cell culture. Thus, using western blotting and serum-free culture conditions, we succeeded in comparing the p65 expression between the cells grown in a plastic dish and cells grown on a collagen gel. PMID:25005915

  11. Quantifying nuclear p65 as a parameter for NF-κB activation: Correlation between ImageStream cytometry, microscopy, and Western blot.

    PubMed

    Maguire, Orla; Collins, Christine; O'Loughlin, Kieran; Miecznikowski, Jeffrey; Minderman, Hans

    2011-06-01

    The nuclear factor kappa B (NF-κB) pathway, which regulates many cellular processes including proliferation, apoptosis, and survival, has emerged as an important therapeutic target in cancer. Activation of the NF-κB transcription factor is associated with nuclear translocation of the p65 component of the complex. Conventional methods employed to determine nuclear translocation of NF-κB either lack statistical robustness (microscopy) or the ability to discern heterogeneity within the sampled populations (Western blotting and Gel Shift assays). The ImageStream platform combines the high image content information of microscopy with the high throughput and multiparameter analysis of flow cytometry which overcomes the aforementioned limitations of conventional assays. It is demonstrated that ImageStream assessment of receptor-mediated (TNFα) and drug (Daunorubicin, DNR)-induced NF-κB translocation in leukemic cell lines correlates well with microscopy analysis and Western blot analysis. It is further demonstrated that ImageStream cytometry enables quantitative assessment of p65 translocation in immunophenotypically defined subpopulations; and that this assessment is highly reproducible. It is also demonstrated that, quantitatively, the DNR-induced nuclear translocation of NF-κB correlates well with a biological response (apoptosis). We conclude that the ImageStream has the potential to be a powerful tool to evaluate NF-κB /p65 activity as a determinant of response to therapies designed to target aberrant NF-κB signaling activities. PMID:21520400

  12. The epidemiology of tick-borne haemoparasites as determined by the reverse line blot hybridization assay in an intensively studied cohort of calves in western Kenya

    PubMed Central

    Njiiri, Nyawira E.; Bronsvoort, B. Mark deC.; Collins, Nicola E.; Steyn, Helena C.; Troskie, Milana; Vorster, Ilse; Thumbi, S.M.; Sibeko, Kgomotso P.; Jennings, Amy; van Wyk, Ilana Conradie; Mbole-Kariuki, Mary; Kiara, Henry; Poole, E. Jane; Hanotte, Olivier; Coetzer, Koos; Oosthuizen, Marinda C.; Woolhouse, Mark; Toye, Philip

    2015-01-01

    The development of sensitive surveillance technologies using PCR-based detection of microbial DNA, such as the reverse line blot assay, can facilitate the gathering of epidemiological information on tick-borne diseases, which continue to hamper the productivity of livestock in many parts of Africa and elsewhere. We have employed a reverse line blot assay to detect the prevalence of tick-borne parasites in an intensively studied cohort of indigenous calves in western Kenya. The calves were recruited close to birth and monitored for the presence of infectious disease for up to 51 weeks. The final visit samples from 453 calves which survived for the study period were analyzed by RLB. The results indicated high prevalences of Theileria mutans (71.6%), T. velifera (62.8%), Anaplasma sp. Omatjenne (42.7%), A. bovis (39.9%), Theileria sp. (sable) (32.7%), T. parva (12.9%) and T. taurotragi (8.5%), with minor occurrences of eight other haemoparasites. The unexpectedly low prevalence of the pathogenic species Ehrlichia ruminantium was confirmed by a species-specific PCR targeting the pCS20 gene region. Coinfection analyses of the seven most prevalent haemoparasites indicated that they were present as coinfections in over 90% of the cases. The analyses revealed significant associations between several of the Theileria parasites, in particular T. velifera with Theileria sp. sable and T. mutans, and T. parva with T. taurotragi. There was very little coinfection of the two most common Anaplasma species, although they were commonly detected as coinfections with the Theileria parasites. The comparison of reverse line blot and serological results for four haemoparasites (T. parva, T. mutans, A. marginale and B. bigemina) indicated that, except for the mostly benign T. mutans, indigenous cattle seem capable of clearing infections of the three other, pathogenic parasites to below detectable levels. Although the study site was located across four agroecological zones, there was

  13. High rate of missed HIV infections in individuals with indeterminate or negative HIV western blots based on current HIV testing algorithm in China.

    PubMed

    Liu, Man-Qing; Zhu, Ze-Rong; Kong, Wen-Hua; Tang, Li; Peng, Jin-Song; Wang, Xia; Xu, Jun; Schilling, Robert F; Cai, Thomas; Zhou, Wang

    2016-08-01

    It remains unclear if China's current HIV antibody testing algorithm misses a substantial number of HIV infected individuals. Of 196 specimens with indeterminate or negative results on HIV western blot (WB) retrospectively examined by HIV-1 nucleic acid test (NAT), 67.57% (75/111) of indeterminate WB samples, and 16.47% (14/85) of negative WB samples were identified as NAT positive. HIV-1 loads in negative WB samples were significantly higher than those in indeterminate WB samples. Notably, 86.67% (13/15) of samples with negative WB and double positive immunoassay results were NAT positive. The rate of HIV-1 infections missed by China's current HIV testing algorithm is unacceptably high. Thus, China should consider using NAT or integrating fourth generation ELISA into current only antibodies-based HIV confirmation. J. Med. Virol. 88:1462-1466, 2016. © 2016 Wiley Periodicals, Inc. PMID:26856240

  14. Serum detection of IgG antibodies against Demodex canis by western blot in healthy dogs and dogs with juvenile generalized demodicosis.

    PubMed

    Ravera, Ivan; Ferreira, Diana; Gallego, Laia Solano; Bardagí, Mar; Ferrer, Lluís

    2015-08-01

    The aim of this study was to investigate the presence of canine immunoglobulins (Ig) G against Demodex proteins in the sera of healthy dogs and of dogs with juvenile generalized demodicosis (CanJGD) with or without secondary pyoderma. Demodex mites were collected from dogs with CanJGD. Protein concentration was measured and a western blot technique was performed. Pooled sera from healthy dogs reacted mainly with antigen bands ranging from 55 to 72 kDa. Pooled sera from dogs with CanJGD without secondary pyoderma reacted either with 10 kDa antigen band or 55 to 72 kDa bands. Pooled sera from dogs with CanJGD with secondary pyoderma reacted only with a 10 kDa antigen band. The results of this study suggest that both healthy dogs and dogs with CanJGD develop a humoral response against different proteins of Demodex canis. PMID:26267107

  15. A Secondary Antibody-Detecting Molecular Weight Marker with Mouse and Rabbit IgG Fc Linear Epitopes for Western Blot Analysis

    PubMed Central

    Cheng, Ta-Chun; Tung, Yi-Ching; Chu, Pei-Yu; Chuang, Chih-Hung; Hsieh, Yuan-Chin; Huang, Chien-Chiao; Wang, Yeng-Tseng; Kao, Chien-Han; Roffler, Steve R.; Cheng, Tian-Lu

    2016-01-01

    Molecular weight markers that can tolerate denaturing conditions and be auto-detected by secondary antibodies offer great efficacy and convenience for Western Blotting. Here, we describe M&R LE protein markers which contain linear epitopes derived from the heavy chain constant regions of mouse and rabbit immunoglobulin G (IgG Fc LE). These markers can be directly recognized and stained by a wide range of anti-mouse and anti-rabbit secondary antibodies. We selected three mouse (M1, M2 and M3) linear IgG1 and three rabbit (R1, R2 and R3) linear IgG heavy chain epitope candidates based on their respective crystal structures. Western blot analysis indicated that M2 and R2 linear epitopes are effectively recognized by anti-mouse and anti-rabbit secondary antibodies, respectively. We fused the M2 and R2 epitopes (M&R LE) and incorporated the polypeptide in a range of 15–120 kDa auto-detecting markers (M&R LE protein marker). The M&R LE protein marker can be auto-detected by anti-mouse and anti-rabbit IgG secondary antibodies in standard immunoblots. Linear regression analysis of the M&R LE protein marker plotted as gel mobility versus the log of the marker molecular weights revealed good linearity with a correlation coefficient R2 value of 0.9965, indicating that the M&R LE protein marker displays high accuracy for determining protein molecular weights. This accurate, regular and auto-detected M&R LE protein marker may provide a simple, efficient and economical tool for protein analysis. PMID:27494183

  16. Western blot analysis of BK channel β1‐subunit expression should be interpreted cautiously when using commercially available antibodies

    PubMed Central

    Bhattarai, Yogesh; Fernandes, Roxanne; Kadrofske, Mark M.; Lockwood, Lizbeth R.; Galligan, James J.; Xu, Hui

    2014-01-01

    Abstract Large conductance Ca2+‐activated K+ (BK) channels consist of pore‐forming α‐ and accessory β‐subunits. There are four β‐subunit subtypes (β1–β4), BK β1‐subunit is specific for smooth muscle cells (SMC). Reduced BK β1‐subunit expression is associated with SMC dysfunction in animal models of human disease, because downregulation of BK β1‐subunit reduces channel activity and increases SMC contractility. Several anti‐BK β1‐subunit antibodies are commercially available; however, the specificity of most antibodies has not been tested or confirmed in the tissues from BK β1‐subunit knockout (KO) mice. In this study, we tested the specificity and sensitivity of six commercially available antibodies from five manufacturers. We performed western blot analysis on BK β1‐subunit enriched tissues (mesenteric arteries and colons) and non‐SM tissue (cortex of kidney) from wild‐type (WT) and BK β1‐KO mice. We found that antibodies either detected protein bands of the appropriate molecular weight in tissues from both WT and BK β1‐KO mice or failed to detect protein bands at the appropriate molecular weight in tissues from WT mice, suggesting that these antibodies may lack specificity for the BK β1‐subunit. The absence of BK β1‐subunit mRNA expression in arteries, colons, and kidneys from BK β1‐KO mice was confirmed by RT‐PCR analysis. We conclude that these commercially available antibodies might not be reliable tools for studying BK β1‐subunit expression in murine tissues under the denaturing conditions that we have used. Data obtained using commercially available antibodies should be interpreted cautiously. Our studies underscore the importance of proper negative controls in western blot analyses. PMID:25355855

  17. Identification of Novel Laminin- and Fibronectin-binding Proteins by Far-Western Blot: Capturing the Adhesins of Streptococcus suis Type 2

    PubMed Central

    Li, Quan; Liu, Hanze; Du, Dechao; Yu, Yanfei; Ma, Caifeng; Jiao, Fangfang; Yao, Huochun; Lu, Chengping; Zhang, Wei

    2015-01-01

    Bacterial cell wall (CW) and extracellular (EC) proteins are often involved in interactions with extracellular matrix (ECM) proteins such as laminin (LN) and fibronectin (FN), which play important roles in adhesion and invasion. In this study, an efficient method combining proteomic analysis and Far-Western blotting assays was developed to screen directly for bacterial surface proteins with LN- and FN-binding capacity. With this approach, fifteen potential LN-binding proteins and five potential FN-binding proteins were identified from Streptococcus suis serotype 2 (SS2) CW and EC proteins. Nine newly identified proteins, including oligopeptide-binding protein OppA precursor (OppA), elongation factor Tu (EF-Tu), enolase, lactate dehydrogenase (LDH), fructose-bisphosphate aldolase (FBA), 3-ketoacyl-ACP reductase (KAR), Gly ceraldehyde-3-phosphate dehydrogenase (GAPDH), Inosine 5′-monophosphate dehydrogenase (IMPDH), and amino acid ABC transporter permease (ABC) were cloned, expressed, purified and further confirmed by Far-Western blotting and ELISA. Five proteins (OppA, EF-Tu, enolase, LDH, and FBA) exhibited specifically binding activity to both human LN and human FN. Furthermore, seven important recombinant proteins were selected and identified to have the ability to bind Hep-2 cells by the indirect immunofluorescent assay. In addition, four recombinant proteins, and their corresponding polyclonal antibodies, were observed to decrease SS2 adhesion to Hep-2 cells, which indicates that these proteins contribute to the adherence of SS2 to host cell surface. Collectively, these results show that the approach described here represents a useful tool for investigating the host-pathogen interactions. PMID:26636044

  18. Anti-Peptide Monoclonal Antibodies Generated for Immuno-Multiple Reaction Monitoring-Mass Spectrometry Assays Have a High Probability of Supporting Western blot and ELISA*

    PubMed Central

    Schoenherr, Regine M.; Saul, Richard G.; Whiteaker, Jeffrey R.; Yan, Ping; Whiteley, Gordon R.; Paulovich, Amanda G.

    2015-01-01

    Immunoaffinity enrichment of peptides coupled to targeted, multiple reaction monitoring-mass spectrometry (immuno-MRM) has recently been developed for quantitative analysis of peptide and protein expression. As part of this technology, antibodies are generated to short, linear, tryptic peptides that are well-suited for detection by mass spectrometry. Despite its favorable analytical performance, a major obstacle to widespread adoption of immuno-MRM is a lack of validated affinity reagents because commercial antibody suppliers are reluctant to commit resources to producing anti-peptide antibodies for immuno-MRM while the market is much larger for conventional technologies, especially Western blotting and ELISA. Part of this reluctance has been the concern that affinity reagents generated to short, linear, tryptic peptide sequences may not perform well in traditional assays that detect full-length proteins. In this study, we test the feasibility and success rates of generating immuno-MRM monoclonal antibodies (mAbs) (targeting tryptic peptide antigens) that are also compatible with conventional, protein-based immuno-affinity technologies. We generated 40 novel, peptide immuno-MRM assays and determined that the cross-over success rates for using immuno-MRM monoclonals for Western blotting is 58% and for ELISA is 43%, which compare favorably to cross-over success rates amongst conventional immunoassay technologies. These success rates could most likely be increased if conventional and immuno-MRM antigen design strategies were combined, and we suggest a workflow for such a comprehensive approach. Additionally, the 40 novel immuno-MRM assays underwent fit-for-purpose analytical validation, and all mAbs and assays have been made available as a resource to the community via the Clinical Proteomic Tumor Analysis Consortium's (CPTAC) Antibody (http://antibodies.cancer.gov) and Assay Portals (http://assays.cancer.gov), respectively. This study also represents the first

  19. Western blot analyses of measles virus antibody in normal persons and in patients with multiple sclerosis, subacute sclerosing panencephalitis, or atypical measles.

    PubMed Central

    Hankins, R W; Black, F L

    1986-01-01

    A version of the Western blot was developed to detect serum antibodies against measles virus polypeptides. With this technique, a seroepidemiological survey of antibodies to the several measles virus proteins in diverse measles-related conditions was conducted. The sera were obtained from individuals with a recent or long-past history of natural measles, from persons with a history of immunization with live attenuated measles vaccine, and from patients with multiple sclerosis, subacute sclerosing panencephalitis, or atypical measles. The findings indicated that live attenuated measles vaccine elicits an antibody response qualitatively resembling that of a natural infection. In addition, multiple sclerosis patients made less antibody to the measles virus M protein than did individuals with a long-past history of natural measles. Thus, the immunological reaction of multiple sclerosis patients to measles virus is qualitatively, as well as quantitatively, different from that of normal persons. Finally, persons with subacute sclerosing panencephalitis and atypical measles mounted abnormally high antibody responses to measles virus polypeptides, in particular the P protein. PMID:3531224

  20. Determination of the bovine food allergen casein in white wines by quantitative indirect ELISA, SDS-PAGE, Western blot and immunostaining.

    PubMed

    Patrick, Weber; Hans, Steinhart; Angelika, Paschke

    2009-09-23

    This study describes the characterization of allergic bovine casein and caseinate fining agents by SDS-PAGE analysis and the development of a quantitative indirect ELISA for the detection of these substances in wines. The ELISA was applied to various experimental wines that were treated with different caseinate dosages and went through different processing steps and to a panel of commercial wines. Positive results were assured by SDS-PAGE, Western blot, and immunostaining. Comprehensive literature research was done to evaluate the demanded sensitivity of the ELISA. The results showed that alpha- and beta-caseins remain in some wines and are detectable. Estimated amounts were in the range or below an estimated no-observed adverse effect level (NOAEL) of 0.9 mg/L, but it was concluded that there is still an uncertainty about this NOAEL. Additional applied processing, referring to bentonite treatment and successive filtration, was determined to contribute to a significant decrease of casein residues in wines. PMID:19754170

  1. IgG western blot for confirmatory diagnosis of equivocal cases of toxoplasmosis by EIA-IgG and fluorescent antibody test.

    PubMed

    Khammari, Imen; Saghrouni, Fatma; Yaacoub, Alia; Gaied Meksi, Sondoss; Ach, Hinda; Garma, Lamia; Fathallah, Akila; Ben Saïd, Moncef

    2013-08-01

    The performance values of available techniques used in serodiagnosis of toxoplasmosis are satisfactory but they raise problems of equivocal and discordant results for very low IgG titers. Recently marketed, LDBio-Toxo II IgG Western blot (IB) showed an excellent correlation with the dye test. We estimated the proportion of equivocal and discordant results between the enzyme immunoassay Platelia Toxo IgG (EIA-IgG) and fluorescent antibody test (FAT) and assessed the usefulness of the IB as a confirmatory test. Out of 2,136 sera collected from pregnant women, 1,644 (77.0%) tested unequivocally positive and 407 (19.0%) were negative in both EIA-IgG and FAT. The remaining 85 (4%) sera showed equivocal or discordant results. Among them, 73 (85.9%) were positive and 12 (14.1%) were negative in IB. Forty-one (89.1%) equivocal sera in EIA-IgG and 46 (86.8%) equivocal sera in FAT were positive in IB. Reducing the cut-off values of both screening techniques improved significantly their sensitivity in detecting very low IgG titers at the expense of their specificity. In conclusion, equivocal results in routine-used techniques and their discordance in determination of the immune status in pregnancy women were not uncommon. IB test appeard to be highly useful in these situations as a confirmatory technique. PMID:24039295

  2. IgG Western Blot for Confirmatory Diagnosis of Equivocal Cases of Toxoplasmosis by EIA-IgG and Fluorescent Antibody Test

    PubMed Central

    Saghrouni, Fatma; Yaacoub, Alia; Gaied Meksi, Sondoss; Ach, Hinda; Garma, Lamia; Fathallah, Akila; Ben Saïd, Moncef

    2013-01-01

    The performance values of available techniques used in serodiagnosis of toxoplasmosis are satisfactory but they raise problems of equivocal and discordant results for very low IgG titers. Recently marketed, LDBio-Toxo II IgG Western blot (IB) showed an excellent correlation with the dye test. We estimated the proportion of equivocal and discordant results between the enzyme immunoassay Platelia Toxo IgG (EIA-IgG) and fluorescent antibody test (FAT) and assessed the usefulness of the IB as a confirmatory test. Out of 2,136 sera collected from pregnant women, 1,644 (77.0%) tested unequivocally positive and 407 (19.0%) were negative in both EIA-IgG and FAT. The remaining 85 (4%) sera showed equivocal or discordant results. Among them, 73 (85.9%) were positive and 12 (14.1%) were negative in IB. Forty-one (89.1%) equivocal sera in EIA-IgG and 46 (86.8%) equivocal sera in FAT were positive in IB. Reducing the cut-off values of both screening techniques improved significantly their sensitivity in detecting very low IgG titers at the expense of their specificity. In conclusion, equivocal results in routine-used techniques and their discordance in determination of the immune status in pregnancy women were not uncommon. IB test appeard to be highly useful in these situations as a confirmatory technique. PMID:24039295

  3. Low Proviral Load is Associated with Indeterminate Western Blot Patterns in Human T-Cell Lymphotropic Virus Type 1 Infected Individuals: Could Punctual Mutations be Related?

    PubMed Central

    Cánepa, Camila; Salido, Jimena; Ruggieri, Matías; Fraile, Sindy; Pataccini, Gabriela; Berini, Carolina; Biglione, Mirna

    2015-01-01

    Background: indeterminate Western blot (WB) patterns are a major concern for diagnosis of human T-cell lymphotropic virus type 1 (HTLV-1) infection, even in non-endemic areas. Objectives: (a) to define the prevalence of indeterminate WB among different populations from Argentina; (b) to evaluate if low proviral load (PVL) is associated with indeterminate WB profiles; and (c) to describe mutations in LTR and tax sequence of these cases. Results: Among 2031 samples, 294 were reactive by screening. Of them, 48 (16.3%) were WB indeterminate and of those 15 (31.3%) were PCR+. Quantitative real-time PCR (qPCR) was performed to 52 HTLV-1+ samples, classified as Group 1 (G1): 25 WB+ samples from individuals with pathologies; Group 2 (G2): 18 WB+ samples from asymptomatic carriers (AC); and Group 3 (G3): 9 seroindeterminate samples from AC. Median PVL was 4.78, 2.38, and 0.15 HTLV-1 copies/100 PBMCs, respectively; a significant difference (p=0.003) was observed. Age and sex were associated with PVL in G1 and G2, respectively. Mutations in the distal and central regions of Tax Responsive Elements (TRE) 1 and 2 of G3 were observed, though not associated with PVL.The 8403A>G mutation of the distal region, previously related to high PVL, was absent in G3 but present in 50% of WB+ samples (p = 0.03). Conclusions: indeterminate WB results confirmed later as HTLV-1 positive may be associated with low PVL levels. Mutations in LTR and tax are described;  their functional relevance remains to be determined. PMID:26516904

  4. Identification of reference proteins for Western blot analyses in mouse model systems of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity.

    PubMed

    Prokopec, Stephenie D; Watson, John D; Pohjanvirta, Raimo; Boutros, Paul C

    2014-01-01

    Western blotting is a well-established, inexpensive and accurate way of measuring protein content. Because of technical variation between wells, normalization is required for valid interpretation of results across multiple samples. Typically this involves the use of one or more endogenous controls to adjust the measured levels of experimental molecules. Although some endogenous controls are widely used, validation is required for each experimental system. This is critical when studying transcriptional-modulators, such as toxicants like 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).To address this issue, we examined hepatic tissue from 192 mice representing 47 unique combinations of strain, sex, Ahr-genotype, TCDD dose and treatment time. We examined 7 candidate reference proteins in each animal and assessed consistency of protein abundance through: 1) TCDD-induced fold-difference in protein content from basal levels, 2) inter- and intra- animal stability, and 3) the ability of each candidate to reduce instability of the other candidates. Univariate analyses identified HPRT as the most stable protein. Multivariate analysis indicated that stability generally increased with the number of proteins used, but gains from using >3 proteins were small. Lastly, by comparing these new data to our previous studies of mRNA controls on the same animals, we were able to show that the ideal mRNA and protein control-genes are distinct, and use of only 2-3 proteins provides strong stability, unlike in mRNA studies in the same cohort, where larger control-gene batteries were needed. PMID:25329058

  5. Dogs vaccinated with gentamicin-attenuated Leishmania infantum or infected with wild-type parasite can be distinguished by Western blotting.

    PubMed

    Daneshvar, H; Mahmmodi, Z; Kamiabi, H; Phillips, R S; Burchmore, R

    2014-05-01

    An attenuated line of Leishmania infantum (the H-line), developed through exposure to gentamicin, has been shown to protect dogs against canine visceral leishmaniasis. A specific diagnostic test to differentiate dogs vaccinated with the attenuated line from dogs infected with L. infantum wild-type (L. infantum WT) could be a valuable tool in evaluating the effectiveness of canine vaccination. In this study, 28 healthy dogs were allocated into four groups. In Group I and Group II (eight dogs per group), dogs were immunized subcutaneously (s.c.) with L. infantum H-line, and the dogs of Group II challenged s.c. with L. infantum WT, at 2 months post-immunization. In Group III, eight animals were challenged s.c. with L. infantum WT, and four dogs of Group IV were injected s.c. with PBS. We found that sera from vaccinated dogs recognize a 21 kDa antigen of promastigotes of L. infantum H-line but not of L. infantum WT, whereas sera from unvaccinated dogs challenged with L. infantum WT, recognized a 21 kDa antigen of promastigotes of L. infantum WT but not of L. infantum H-line. Sera from dogs challenged with L. infantum WT with prior vaccination with L. infantum H-line, recognized a 21 kDa antigen of both L. infantum WT and L. infantum H-line. These results suggest that the Western blot analysis of antibodies against 21 kDa antigens of L. infantum H-line and WT may be a useful technique for distinguishing between dogs vaccinated with L. infantum H-line and dogs naturally infected with L. infantum WT. PMID:24611833

  6. Comparison of an indirect fluorescent antibody test with Western blot for the detection of serum antibodies against Encephalitozoon cuniculi in cats.

    PubMed

    Künzel, Frank; Peschke, Roman; Tichy, Alexander; Joachim, Anja

    2014-12-01

    Current clinical research indicates that Encephalitozoon (E.) cuniculi infections in cats may be underdiagnosed, especially in animals with typical ocular signs (cataract/anterior uveitis). Although molecular detection of the pathogen in tissue appears promising, serology remains the major diagnostic tool in the living animal. While serological tests are established for the main host of E. cuniculi, the rabbit, the routine serological diagnosis for cats still needs validation. The aim of the study was to evaluate the consistency of indirect fluorescence antibody test (IFAT) and Western blot (WB) for the detection of IgG antibodies against E. cuniculi in the serum of 84 cats. In addition, PCR of liquefied lens material or intraocular fluid was performed in those of the cats with a suspected ocular E. cuniculi infection. Twenty-one cats with positive PCR results were considered as a positive reference group. Results obtained by IFAT and WB corresponded in 83/84 serum samples, indicating a very good correlation between both serological methods. Using WB as the standard reference, sensitivity and specificity for the detection of antibodies against E. cuniculi by the IFAT were 97.6 and 100%, respectively. The positive and negative predictive values for the IFAT were 100 and 97.7%, respectively. The accuracy (correct classified proportion) for the detection of IgG antibodies against E. cuniculi in cats was 98.8%. The comparison of both serological methods with the PCR results also revealed a good agreement as 20 out of 21 PCR-positive samples were seropositive both in IFAT and WB. Both tests can be considered as equally reliable assays to detect IgG antibodies against E. cuniculi in cats. As the IFAT is quicker and easier to perform, it is recommended for routine use in the diagnosis of feline encephalitozoonosis. PMID:25199557

  7. Identification of Reference Proteins for Western Blot Analyses in Mouse Model Systems of 2,3,7,8-Tetrachlorodibenzo-P-Dioxin (TCDD) Toxicity

    PubMed Central

    Prokopec, Stephenie D.; Watson, John D.; Pohjanvirta, Raimo; Boutros, Paul C.

    2014-01-01

    Western blotting is a well-established, inexpensive and accurate way of measuring protein content. Because of technical variation between wells, normalization is required for valid interpretation of results across multiple samples. Typically this involves the use of one or more endogenous controls to adjust the measured levels of experimental molecules. Although some endogenous controls are widely used, validation is required for each experimental system. This is critical when studying transcriptional-modulators, such as toxicants like 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).To address this issue, we examined hepatic tissue from 192 mice representing 47 unique combinations of strain, sex, Ahr-genotype, TCDD dose and treatment time. We examined 7 candidate reference proteins in each animal and assessed consistency of protein abundance through: 1) TCDD-induced fold-difference in protein content from basal levels, 2) inter- and intra- animal stability, and 3) the ability of each candidate to reduce instability of the other candidates. Univariate analyses identified HPRT as the most stable protein. Multivariate analysis indicated that stability generally increased with the number of proteins used, but gains from using >3 proteins were small. Lastly, by comparing these new data to our previous studies of mRNA controls on the same animals, we were able to show that the ideal mRNA and protein control-genes are distinct, and use of only 2–3 proteins provides strong stability, unlike in mRNA studies in the same cohort, where larger control-gene batteries were needed. PMID:25329058

  8. BlotBase: a northern blot database.

    PubMed

    Schlamp, K; Weinmann, A; Krupp, M; Maass, T; Galle, Pr; Teufel, A

    2008-12-31

    With the availability of high-throughput gene expression analysis, multiple public expression databases emerged, mostly based on microarray expression data. Although these databases are of significant biomedical value, they do hold significant drawbacks, especially concerning the reliability of single gene expression profiles obtained by microarray data. Simultaneously, reliable data on an individual gene's expression are often published as single northern blots in individual publications. These data were not yet available for high-throughput screening. To reduce the gap between high-throughput expression data and individual highly reliable expression data, we designed a novel database "BlotBase", a freely and easily accessible database, currently containing approximately 700 published northern blots of human or mouse origin (http://www.medicalgenomics.org/Databases/BlotBase). As the database is open for public data submission, we expect this database to quickly become a large expression profiling resource, eventually providing higher reliability in high-throughput gene expression analysis. Realizing BlotBase, Pubmed was searched manually and by computer based text mining methods to obtain publications containing northern blot results. Subsequently, northern blots were extracted and expression values of different tissues calculated utilizing Image J. All data were made available through a user friendly web front end. The data may be searched by either full text search or list of available northern blots of a specific tissue. Northern blot expression profiles were displayed by three expression states as well as a bar chart, allowing for automated evaluation. Furthermore, we integrated additional features, e.g. instant access to the corresponding RNA sequence or primer design tools making further expression analysis more convenient. Finally, through a semiautomatic submission system this database was opened to the bioinformatics community. PMID:18838116

  9. Identification of immunodominant VP1 linear epitope of enterovirus 71 (EV71) using synthetic peptides for detecting human anti-EV71 IgG antibodies in Western blots.

    PubMed

    Foo, D G W; Ang, R X; Alonso, S; Chow, V T K; Quak, S H; Poh, C L

    2008-03-01

    A major IgG-specific immunodominant VP1 linear epitope of enterovirus 71 (EV71) strain 41 (5865/SIN/00009), defined by the core sequence LEGTTNPNG, was identified by Pepscan analysis. Oligonucleotides corresponding to the amino-acid sequence of synthetic peptide SP32 were cloned and over-expressed in Escherichia coli as a recombinant glutathione-S-transferase (GST)-SP32 fusion protein. In ELISAs, this protein did not react with human anti-EV71 IgG antibodies, but there was significant immunoreactivity according to western blot analysis. The amino-acid sequence of SP32 was highly specific for detecting EV71 strains in western blot analysis, and showed no immunoreactivity with monoclonal antibodies raised against other enteroviruses, e.g., CA9 and Echo 6. PMID:18076666

  10. Southwestern Blotting Assay

    PubMed Central

    Jia, Yinshan; Nagore, Linda; Jarrett, Harry

    2016-01-01

    Southwestern blotting is a technique used to study DNA-protein interactions. This method detects specific DNA-binding proteins by incubating radiolabeled DNA with a gel blot, washing, and visualizing through autoradiography. A blot resulting from 1-dimensional SDS-PAGE reveals the molecular weight of the binding proteins. To increase separation and determine isoelectric point a 2-dimensional gel can be blotted. Additional dimensions of electrophoresis, such as a gel shift (EMSA), can precede isoelectric focusing and SDS-PAGE to further improve separation. Combined with other techniques, such as mass spectrometry, the DNA-binding protein can be identified. PMID:26404144

  11. Problem-Solving Test: Southwestern Blotting

    ERIC Educational Resources Information Center

    Szeberényi, József

    2014-01-01

    Terms to be familiar with before you start to solve the test: Southern blotting, Western blotting, restriction endonucleases, agarose gel electrophoresis, nitrocellulose filter, molecular hybridization, polyacrylamide gel electrophoresis, proto-oncogene, c-abl, Src-homology domains, tyrosine protein kinase, nuclear localization signal, cDNA,…

  12. Genomic Southern blot analysis.

    PubMed

    Gebbie, Leigh

    2014-01-01

    This chapter describes a detailed protocol for genomic Southern blot analysis which can be used to detect transgene or endogenous gene sequences in cereal genomes. The protocol follows a standard approach that has been shown to generate high-quality results: size fractionation of genomic DNA; capillary transfer to a nylon membrane; hybridization with a digoxigenin-labelled probe; and detection using a chemiluminescent-based system. High sensitivity and limited background are key to successful Southern blots. The critical steps in this protocol are complete digestion of the right quantity of DNA, careful handling of the membrane to avoid unnecessary background, and optimization of probe concentration and temperatures during the hybridization step. Detailed instructions on how to successfully master these techniques are provided. PMID:24243203

  13. Interrogation of multidrug resistance (MDR1) P-glycoprotein (ABCB1) expression in human pancreatic carcinoma cells: correlation of 99mTc-Sestamibi uptake with western blot analysis.

    PubMed

    Harpstrite, Scott E; Gu, Hannah; Natarajan, Radhika; Sharma, Vijay

    2014-10-01

    Histopathological studies indicate that ∼63% of pancreatic tumors express multidrug resistance (MDR1) P-glycoprotein (Pgp) and its polymorphic variants. However, Pgp expression detected at the mRNA or protein level does not always correlate with functional transport activity. Because Pgp transport activity is affected by specific mutations and the phosphorylation state of the protein, altered or less active forms of Pgp may also be detected by PCR or immunohistochemistry, which do not accurately reflect the status of tumor cell resistance. To interrogate the status of the functional expression of MDR1 Pgp in MiaPaCa-2 and PANC-1 cells, cellular transport studies using Tc-Sestamibi were performed and correlated with western blot analysis. Biochemical transport assays in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells, human epidermal carcinoma drug-sensitive KB-3-1 cells, and human breast carcinoma MCF-7 cells (negative controls), and human epidermal carcinoma drug-resistant KB-8-5 cells, human breast carcinoma stably transfected with Pgp MCF-7/MDR1Pgp cells, and liver carcinoma HepG2 cells (positive controls) were performed. Protein levels were determined using a monoclonal antibody C219. Tc-Sestamibi demonstrates accumulation in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells. Uptake profiles are not affected by treatment with LY335979, a Pgp inhibitor, and correlate with western blot analysis. These cellular transport studies indicate an absence of Pgp at a functional level in MiaPaCa-2 and PANC-1 cells. Because major pancreatic tumors originate from the pancreatic duct and Tc-Sestamibi undergoes a dominant hepatobiliary mode of excretion, it would not be a sensitive probe for imaging pancreatic adenocarcinomas. Following interrogation of the functional status of Pgp in other pancreatic carcinoma cells, chemotherapeutic drugs that are also MDR1 substrates could offer alternative therapeutics for treating pancreatic adenocarcinomas. PMID:25036383

  14. Two-dimensional southwestern blotting and characterization of transcription factors on-blot.

    PubMed

    Jiang, Daifeng; Jia, Yinshan; Zhou, YanWen; Jarrett, Harry W

    2009-07-01

    Two-dimensional Southwestern blotting (2D-SW) described here combines several steps. Proteins are separated by two-dimensional gel electrophoresis and transferred to nitrocellulose (NC) or polyvinylidene fluoride (PVDF) membrane. The blotted proteins are then partially renatured and probed with a specific radiolabeled oligonucleotide for Southwestern blotting (SW) analysis. The detected proteins are then processed by on-blot digestion and identified by LC-MS/MS analysis. A transcription factor, bound by a specific radiolabeled element, is thus characterized without aligning with protein spots on a gel. In this study, we systematically optimize conditions for 2D-SW and on-blot digestion. By quantifying the SW signal using a scintillation counter, the optimal conditions for SW were determined to be PVDF membrane, 0.5% PVP40 for membrane blocking, serial dilution of guanidine HCl for denaturing and renaturing proteins on the blot, and an SDS stripping buffer to remove radiation from the blot. By the quantification of the peptide yields using nano-ESI-MS analysis, the optimized conditions for on-blot digestions were found to be 0.5% Zwittergent 3-16 and 30% acetonitrile in trypsin digestion buffer. With the use of the optimized 2D-SW technique and on-blot digestion combined with HPLC-nano-ESI-MS/MS, a GFP-C/EBP model protein was successfully characterized from a bacterial extract, and native C/EBP beta was identified from 100 microg of HEK293 nuclear extract without any previous purification. PMID:19388704

  15. Clinical performance of the Multispot HIV-1/HIV-2 rapid test to correctly differentiate HIV-2 from HIV-1 infection in screening algorithms using third and fourth generation assays and to identify cross reactivity with the HIV-1 Western Blot

    PubMed Central

    Ramos, Eric M.; Harb, Socorro; Dragavon, Joan; Coombs, Robert W.

    2014-01-01

    Background An accurate and rapid serologic method to differentiate HIV-2 from HIV-1 infection is required since the confirmatory HIV-1 Western Blot (WB) may demonstrate cross-reactivity with HIV-2 antibodies. Objectives To evaluate the performance of the Bio-Rad Multispot HIV-1/HIV-2 rapid assay as a supplemental test to correctly identify HIV-2 infection and identify HIV-1 WB cross-reactivity with HIV-2 in clinical samples tested at an academic medical center. Study design Between August 2008 and July 2012, clinical samples were screened for HIV using either 3rd-or 4th-generation HIV-1/2 antibody or combination antibody and HIV-1 p24 antigen assays, respectively. All repeatedly reactive samples were reflexed for Multispot rapid testing. Multispot HIV-2 and HIV-1 and HIV-2-reactive samples were further tested using an HIV-2 immunoblot assay and HIV-1 or HIV-2 RNA assays when possible. The HIV-1 WB was performed routinely for additional confirmation and to assess for HIV-2 antibody cross-reactivity. Results Of 46,061 samples screened, 890 (89.6%) of 993 repeatedly reactive samples were also Multispot-reactive: 882 for HIV-1; three for only HIV-2; and five for both HIV-1 and HIV-2. All three HIV-2-only Multispot-positives along with a single dually reactive HIV-1/2 Multispot-positive were also HIV-2 immunoblot-positive; the latter was HIV-1 RNA negative and HIV-2 RNA positive. Conclusions The Multispot rapid test performed well as a supplemental test for HIV-1/2 diagnostic testing. Four new HIV-2 infections (0.45%) were identified from among 890 Multispot-reactive tests. The use of HIV-1 WB alone to confirm HIV-1/2 screening assays may underestimate the true prevalence of HIV-2 infection in the United States. PMID:24342468

  16. Significance of quantitative enzyme-linked immunosorbent assay (ELISA) results in evaluation of three ELISAs and Western blot tests for detection of antibodies to human immunodeficiency virus in a high-risk population.

    PubMed Central

    Nishanian, P; Taylor, J M; Korns, E; Detels, R; Saah, A; Fahey, J L

    1987-01-01

    The characteristics of primary (first) tests with three enzyme-linked immunosorbent assay (ELISA) kits for human immunodeficiency virus (HIV) antibody were determined. The three ELISAs were performed on 3,229, 3,130, and 685 specimens from high-risk individuals using the Litton (LT; Litton Bionetics Laboratory Products, Charleston, S.C.), Dupont (DP; E. I. du Pont de Nemours & Co., Inc., Wilmington, Del.), and Genetic Systems (GS; Genetic Systems, Seattle, Wash.) kits, respectively. Evaluation was based on the distribution of quantitative test results (such as optical densities), a comparison with Western blot (WB) results, reproducibility of the tests, and identification of seroconverters. The performances of the GS and the DP kits were good by all four criteria and exceeded that of the LT kit. Primary ELISA-negative results were not always confirmed with repeat ELISA and by WB testing. The largest percentage of these unconfirmed negative test results came from samples with quantitative results in the fifth percentile nearest the cutoff. Thus, supplementary testing was indicated for samples with test results in this borderline negative range. Similarly, borderline positive primary ELISA results that were quantitatively nearest (fifth percentile) the cutoff value were more likely to be antibody negative on supplementary testing than samples with high antibody values. In this study, results of repeated tests by GS ELISA showed the least change from first test results. DP ELISA showed more unconfirmed primary positive test results, and LT ELISA showed more unconfirmed primary negative test results. Designation of a specimen with a single ELISA quantitative level near the cutoff value as positive or negative should be viewed with skepticism. A higher than normal proportion of specimens with high negative optical densities by GS ELISA (fifth percentile nearest the cutoff) and also negative by WB were found to be from individuals in the process of seroconversion. PMID

  17. Assessment of diagnostic accuracy of a commercial ELISA for the detection of Toxoplasma gondii infection in pigs compared with IFAT, TgSAG1-ELISA and Western blot, using a Bayesian latent class approach.

    PubMed

    Basso, Walter; Hartnack, Sonja; Pardini, Lais; Maksimov, Pavlo; Koudela, Bretislav; Venturini, Maria C; Schares, Gereon; Sidler, Xaver; Lewis, Fraser I; Deplazes, Peter

    2013-06-01

    Serological methods are the most commonly used diagnostic tools to detect Toxoplasma gondii infections in pigs. In the absence of a readily available 'gold standard', an estimation of diagnostic accuracy is difficult to assess. A commercial ELISA (PrioCHECK® Toxoplasma Ab porcine ELISA, Prionics, Schlieren, Switzerland) for the diagnosis of T. gondii infection in pigs was evaluated in naturally infected animals from two distinct populations; indoor and outdoor living animals. An assessment of diagnostic accuracy, using a Bayesian latent class approach with adjustment for within indoor and outdoor farm clustering using random effects, was performed. Tests used for comparison were: IFAT; ELISA using native affinity-purified P30 (SAG1) T. gondii tachyzoite surface antigen (TgSAG1-ELISA); and Western blot with T. gondii tachyzoites lysate. The data set comprised 297 pig serum samples across outdoor (n=149) and indoor (n=148) farms in Argentina. The estimated sensitivity and specificity for the commercial ELISA were 98.9% (95% credible interval: 96.2; 100) and 92.7% (95% credible interval: 87.7; 96.6), respectively. The analysis of sera and plasma from pigs (n=6) experimentally inoculated with 5,000 T. gondii oocysts revealed a pronounced antibody response beginning 2 weeks p.i. until the end of the observation period (11 weeks p.i.) in all animals. Meat juice obtained from inoculated animals after euthanasia also tested positive. These results suggest that the PrioCHECK® Toxoplasma Ab porcine ELISA may be a useful tool to perform serological diagnosis of T. gondii infections in pigs to control Toxoplasma infection in pigs and humans. PMID:23538054

  18. A new multi-host species indirect ELISA using protein A/G conjugate for detection of anti-Toxoplasma gondii IgG antibodies with comparison to ELISA-IgG, agglutination assay and Western blot.

    PubMed

    Al-Adhami, Batol H; Gajadhar, Alvin A

    2014-02-24

    Toxoplasma gondii is a zoonotic protozoan parasite which can cause significant disease and losses in livestock and wild animals. It is increasingly recognized as an important foodborne pathogen in a broad range of food animals and products. Effective control strategies require rapid, reliable and cost-effective detection methods for large scale surveys and diagnostic applications in a broad range of warm-blooded animals. To overcome one or more of these shortcomings in the currently available detection methods for T. gondii infection a non-species-specific protein A/G conjugate was used in the development of an indirect ELISA (ELISA-A/G) for the detection of IgG antibodies in serum samples obtained from experimentally infected pigs. The performance of the assay was evaluated using serum samples from pigs, cats, mice and seals with known positive or negative status for T. gondii infection. Results of the ELISA-A/G obtained with pig serum samples were compared with those generated by traditional ELISA using host specific IgG conjugate (ELISA-IgG), modified agglutination test (MAT) and Western blot analysis (WB). Using protein A/G conjugate, comparative analysis of results from 77 samples obtained from T. gondii infected pigs showed excellent agreement between the ELISA-A/G and in-house ELISA-IgG (0.917 κ). Similar agreements were also observed when these samples were tested by a commercial ELISA kit (0.816 κ), MAT (0.816 κ) and WB (0.79 κ). A total of 86 serum samples obtained from cats, mice and seals experimentally infected with T. gondii and tested by the ELISA-A/G as well as MAT for the presence of anti-Toxoplasma IgG antibodies yielded Kappa value of 1.0 for cats and mice and 0.79 for seals. These results show that the ELISA-A/G is a suitable method for serological detection of T. gondii infection in multiple host species and has the potential for testing samples from a broad range of domestic, wild, and aquatic mammalian host species. Simultaneous testing

  19. BLOT Ver. 1.65

    2009-03-24

    BLOT is a graphic program for post-processing finite element analyses output in the EXODUS II database format. It is command driven with free-format input and can drive graphics devices supported by the Sandia Virtual Device Interface. BLOT produces mesh plots of the analysis output variables including deformed mesh plots, line contours, filled (painted) contours, vector plots of two/three variables (velocity vectors), and symbol plots of scalar variables (discrete cracks). Features include pathlines of analysis variablesmore » drawn on the mesh, element selection by material, element birth and death, multiple views combining several displays on each plot, symmetry mirroring, and node and element numbering. X-Y plots of the analysis variables include time vs. variable plots or variable vs. variable plots, and distance vs. variable plots at selected time steps where distance is the accumulated distance between pairs of nodes or element centers. BLOT is written in as portable a form as possible. Fortran code is written in ANSI Standard FORTRAN-77. Machine-specific routines are limited in number and are grouped together to minimize the time required to adapt them to a new system. SEACAS codes have been ported to several Unix systems« less

  20. BLOT Ver. 1.65

    SciTech Connect

    MEYERS, RAY; GLICK, III, JOHN; FORSYTHE, CHRISTI; GILKEY, AMY; SJAARDEMA, GREGORY

    2009-03-24

    BLOT is a graphic program for post-processing finite element analyses output in the EXODUS II database format. It is command driven with free-format input and can drive graphics devices supported by the Sandia Virtual Device Interface. BLOT produces mesh plots of the analysis output variables including deformed mesh plots, line contours, filled (painted) contours, vector plots of two/three variables (velocity vectors), and symbol plots of scalar variables (discrete cracks). Features include pathlines of analysis variables drawn on the mesh, element selection by material, element birth and death, multiple views combining several displays on each plot, symmetry mirroring, and node and element numbering. X-Y plots of the analysis variables include time vs. variable plots or variable vs. variable plots, and distance vs. variable plots at selected time steps where distance is the accumulated distance between pairs of nodes or element centers. BLOT is written in as portable a form as possible. Fortran code is written in ANSI Standard FORTRAN-77. Machine-specific routines are limited in number and are grouped together to minimize the time required to adapt them to a new system. SEACAS codes have been ported to several Unix systems

  1. Detection of Blotted Proteins: Not All Blockers Are Created Equal.

    PubMed

    Kothari, Vishal; Mathews, Suresh T

    2015-01-01

    Western blotting is a standard analytical technique for detection of proteins. It is dependent on a number of components; from the specificity of the primary antibody to the reduction of competing biomolecules present in the assay. Blocking agents are a critical component for western blotting protocols as these diminish nonspecific binding by blocking off-target sites on the membrane. A variety of blocking agents are available and these are selected in an empirical manner, as no single blocker is compatible with every system. The best blocking agent and method for any particular assay will be an optimized but not absolute choice. Here, we describe characteristics of the most common blocking agents used in western blotting and discuss their advantages and disadvantages. PMID:26139251

  2. The Feasibility of Using High Resolution 2D Electrical Resistivity Imaging (ERI) for characterize the possible hydraulic boundaries along the western foothill of Bagua-Douliu Hills, Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, S.; Chang, P.; Wu, Y.; Chen, J.; Huang, C.; Wang, Y.; Chen, W.

    2011-12-01

    In the study we try to characteristize the hydraulic boundary that separates the Pleistocene Toukeshan Formation from the Holocene sediments with Electrical Resistivity Imaging (ERI) method near the Bizetou Pass of the Choushui River. Comparing 2D Electrical resistivity imaging (ERI) with water level logs and core data from observation wells, we attempted to map the distribution of the shallow groundwater surfaces and the composition variations of the shallow unconfined aquifer from upper to lower fan across the Bizetou Pass. We found that the shallow groundwater surface drops sudenly from about 110m to 70 m after passing the Bizetou Pass from observation wells at the east and west side of the Pass and with about 3 km apart. The inverted resistivity images also show that the hydraulic gradient estimated from the resistivity images is getting larger to about 7% near the Bizetou Pass and then becoming less than 3% in the west the Pass. In addition, we found a significant change from about 1500 ohm-m to 500 ohm-m in the unconfined aquifer after passing the Bizetou Pass from the upstream side. The high resistivity value (about 1500 ohm-m) in the east of Bizetou Pass may represent the compacted Pleistocene Tokeshan sand and gravel layers, and the relatively low resistivity value (about 500 ohm-m) in the west of Bizetou Pass was the loose Holocene alluvium sediments. Since the previous study shows that the Changhua fault is not outcropped at the ground surface, our findings imply that the hydraulic boundary may be due to the less permeable Toukoshan Formation. To confirm this, the future work will extend the study area in North-South direction between Changhua County and Yunlin County.

  3. The Use of Biotin to Demonstrate Immunohistochemistry, Western Blotting, and Dot Blots in University Practical Classes

    ERIC Educational Resources Information Center

    Millar, Thomas James; Knighton, Ronald; Chuck, Jo-Anne

    2012-01-01

    Immunological detection of proteins is an essential method to demonstrate to undergraduate biology students, however, is often difficult in resource and time poor student laboratory sessions. This method describes a failsafe method to rapidly and economically demonstrate this technique using biotinylated proteins or biotin itself as targets for…

  4. Development of a heat-mediated protein blotting method.

    PubMed

    O'Sullivan, Jack; McMahon, Hilary E M

    2016-04-15

    Western blotting is a significant tool employed for the detection of cell proteins. High-molecular-weight proteins have proven a challenge to detect by western blotting, but proteins even of 100 KDa can still present difficulties in detection. This work reports the development of a heat transfer method that is suitable for both low- and high-molecular-weight proteins. The procedure involves the use of a constant temperature at 78 °C in a dedicated heat transfer module. Through the use of this protocol the neuronal adaptor protein X11α (120 KDa), which prior to this methodology was undetectable endogenously in the neuroblastoma cell line (N2a), was successfully detected in the N2a cell line. The procedure provides a reproducible protocol that can be adapted for other high-molecular-weight proteins, and it provides the advantage that low-molecular-weight proteins are not sacrificed by the methodology. PMID:26869081

  5. False-Positive Results in a Recombinant Severe Acute Respiratory Syndrome-Associated Coronavirus (SARS-CoV) Nucleocapsid-Based Western Blot Assay Were Rectified by the Use of Two Subunits (S1 and S2) of Spike for Detection of Antibody to SARS-CoV

    PubMed Central

    Maache, Mimoun; Komurian-Pradel, Florence; Rajoharison, Alain; Perret, Magali; Berland, Jean-Luc; Pouzol, Stéphane; Bagnaud, Audrey; Duverger, Blandine; Xu, Jianguo; Osuna, Antonio; Paranhos-Baccalà, Glaucia

    2006-01-01

    To evaluate the reactivity of the recombinant proteins expressed in Escherichia coli strain BL21(DE3), a Western blot assay was performed by using a panel of 78 serum samples obtained, respectively, from convalescent-phase patients infected with severe acute respiratory syndrome-associated coronavirus (SARS-CoV) (30 samples) and from healthy donors (48 samples). As antigen for detection of SARS-CoV, the nucleocapsid protein (N) showed high sensitivity and strong reactivity with all samples from SARS-CoV patients and cross-reacted with all serum samples from healthy subjects, with either those obtained from China (10 samples) or those obtained from France (38 serum samples), giving then a significant rate of false positives. Specifically, our data indicated that the two subunits, S1 (residues 14 to 760) and S2 (residues 761 to 1190), resulted from the divided spike reacted with all samples from SARS-CoV patients and without any cross-reactivity with any of the healthy serum samples. Consequently, these data revealed the nonspecific nature of N protein in serodiagnosis of SARS-CoV compared with the S1 and S2, where the specificity is of 100%. Moreover, the reported results indicated that the use of one single protein as a detection antigen of SARS-CoV infection may lead to false-positive diagnosis. These may be rectified by using more than one protein for the serodiagnosis of SARS-CoV. PMID:16522785

  6. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  7. Streamlined Strategies to Better Visualize Southern Blotting

    ERIC Educational Resources Information Center

    Dean, Derek M.

    2012-01-01

    In this article, I describe an animated slideshow of Southern blotting that I have made freely available to other instructors. My hope is to provide a clear visualization of the logistics behind the technique so that instructors have a solid basis--as well as time freed up--to discuss its applications with students.

  8. Mesh2d

    SciTech Connect

    Greg Flach, Frank Smith

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.

  9. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  10. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  11. BLOT II Ver.1.39

    SciTech Connect

    2003-06-03

    BLOT II is a graphic program for post-processing finite element analyses output in the EXODUS II database format. It is command driven with free-format input and can drive graphics devices supported by the Sandia Virtual Device Interface. BLOT produces mesh plots of the analysis output variables including deformed mesh plots, line contours, filled (painted) contours, vector plots of two/three variables (velocity vectors), and symbol plots of scalar variables (discrete cracks). Features include pathlines of analysis variables drawn on the mesh, element selection by material, element birth and death, multiple views combining several displays on each plot, symmetry mirroring, and node and element numbering. X-Y plots of the analysis variables include time vs. variable plots or variable vs. variable plots, and distance vs. variable plots at selected time stips where distance is the accumulated distance between pairs of nodes or element centers.

  12. BLOT II Ver.1.39

    2003-06-03

    BLOT II is a graphic program for post-processing finite element analyses output in the EXODUS II database format. It is command driven with free-format input and can drive graphics devices supported by the Sandia Virtual Device Interface. BLOT produces mesh plots of the analysis output variables including deformed mesh plots, line contours, filled (painted) contours, vector plots of two/three variables (velocity vectors), and symbol plots of scalar variables (discrete cracks). Features include pathlines of analysismore » variables drawn on the mesh, element selection by material, element birth and death, multiple views combining several displays on each plot, symmetry mirroring, and node and element numbering. X-Y plots of the analysis variables include time vs. variable plots or variable vs. variable plots, and distance vs. variable plots at selected time stips where distance is the accumulated distance between pairs of nodes or element centers.« less

  13. Optimized semi-quantitative blot analysis in infection assays using the Stain-Free technology.

    PubMed

    Zeitler, Anna F; Gerrer, Katrin H; Haas, Rainer; Jiménez-Soto, Luisa F

    2016-07-01

    Western blots are a commonly used method for protein detection and quantification in biological samples. Compensation of loading variations is achieved by housekeeping protein (HKP) normalization and/or total protein normalization (TPN). However, under infection conditions, HKP normalization, traditionally used in cell biology for quantification of western blots, can be problematic. Binding of microbes to target cells via specific receptors can induce signal transduction events resulting in drastic changes in the level of expression of HKPs. Additionally, samples collected after infection assays will include cellular and microbial proteins altering the analysis with TPN. Here we demonstrate under experimental infection conditions, how a reliable semi-quantitative analysis of proteins in western blots can be achieved using the Stain-Free technology. PMID:27150675

  14. Cytochrome P450 2D6 enzyme neuroprotects against 1-methyl-4-phenylpyridinium toxicity in SH-SY5Y neuronal cells.

    PubMed

    Mann, Amandeep; Tyndale, Rachel F

    2010-04-01

    Cytochrome P450 (CYP) 2D6 is an enzyme that is expressed in liver and brain. It can inactivate neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1,2,3,4-tetrahydroisoquinoline and beta-carbolines. Genetically slow CYP2D6 metabolizers are at higher risk for developing Parkinson's disease, a risk that increases with exposure to pesticides. The goal of this study was to investigate the neuroprotective role of CYP2D6 in an in-vitro neurotoxicity model. SH-SY5Y human neuroblastoma cells express CYP2D6 as determined by western blotting, immunocytochemistry and enzymatic activity. CYP2D6 metabolized 3-[2-(N,N-diethyl-N-methylammonium)ethyl]-7-methoxy-4-methylcoumarin and the CYP2D6-specific inhibitor quinidine (1 microM) blocked 96 +/- 1% of this metabolism, indicating that CYP2D6 is functional in this cell line. Treatment of cells with CYP2D6 inhibitors (quinidine, propanolol, metoprolol or timolol) at varying concentrations significantly increased the neurotoxicity caused by 1-methyl-4-phenylpyridinium (MPP+) at 10 and 25 microM by between 9 +/- 1 and 22 +/- 5% (P < 0.01). We found that CYP3A is also expressed in SH-SY5Y cells and inhibiting CYP3A with ketoconazole significantly increased the cell death caused by 10 and 25 microM of MPP+ by between 8 +/- 1 and 30 +/- 3% (P < 0.001). Inhibiting both CYP2D6 and CYP3A showed an additive effect on MPP+ neurotoxicity. These data further support a possible role for CYP2D6 in neuroprotection from Parkinson's disease-causing neurotoxins, especially in the human brain where expression of CYP2D6 is high in some regions (e.g. substantia nigra). PMID:20345925

  15. 2D-DIGE proteomic analysis identifies new potential therapeutic targets for adrenocortical carcinoma

    PubMed Central

    Armignacco, Roberta; Ercolino, Tonino; Canu, Letizia; Baroni, Gianna; Nesi, Gabriella; Galli, Andrea; Mannelli, Massimo; Luconi, Michaela

    2015-01-01

    Adrenocortical carcinoma (ACC) is a rare aggressive tumor with poor prognosis when metastatic at diagnosis. The tumor biology is still mostly unclear, justifying the limited specificity and efficacy of the anti-cancer drugs currently available. This study reports the first proteomic analysis of ACC by using two-dimensional-differential-in-gel-electrophoresis (2D-DIGE) to evaluate a differential protein expression profile between adrenocortical carcinoma and normal adrenal. Mass spectrometry, associated with 2D-DIGE analysis of carcinomas and normal adrenals, identified 22 proteins in 27 differentially expressed 2D spots, mostly overexpressed in ACC. Gene ontology analysis revealed that most of the proteins concurs towards a metabolic shift, called the Warburg effect, in adrenocortical cancer. The differential expression was validated by Western blot for Aldehyde-dehydrogenase-6-A1,Transferrin, Fascin-1,Lamin A/C,Adenylate-cyclase-associated-protein-1 and Ferredoxin-reductase. Moreover, immunohistochemistry performed on paraffin-embedded ACC and normal adrenal specimens confirmed marked positive staining for all 6 proteins diffusely expressed by neoplastic cells, compared with normal adrenal cortex. In conclusion, our preliminary findings reveal a different proteomic profile in adrenocortical carcinoma compared with normal adrenal cortex characterized by overexpression of mainly metabolic enzymes, thus suggesting the Warburg effect also occurs in ACC. These proteins may represent promising novel ACC biomarkers and potential therapeutic targets if validated in larger cohorts of patients. PMID:25691058

  16. NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus.

    PubMed

    Swanger, Sharon A; Vance, Katie M; Pare, Jean-François; Sotty, Florence; Fog, Karina; Smith, Yoland; Traynelis, Stephen F

    2015-12-01

    The GluN2D subunit of the NMDA receptor is prominently expressed in the basal ganglia and associated brainstem nuclei, including the subthalamic nucleus (STN), globus pallidus, striatum, and substantia nigra. However, little is known about how GluN2D-containing NMDA receptors contribute to synaptic activity in these regions. Using Western blotting of STN tissue punches, we demonstrated that GluN2D is expressed in the rat STN throughout development [age postnatal day 7 (P7)-P60] and in the adult (age P120). Immunoelectron microscopy of the adult rat brain showed that GluN2D is predominantly expressed in dendrites, unmyelinated axons, and axon terminals within the STN. Using subunit-selective allosteric modulators of NMDA receptors (TCN-201, ifenprodil, CIQ, and DQP-1105), we provide evidence that receptors containing the GluN2B and GluN2D subunits mediate responses to exogenously applied NMDA and glycine, as well as synaptic NMDA receptor activation in the STN of rat brain slices. EPSCs in the STN were mediated primarily by AMPA and NMDA receptors and GluN2D-containing NMDA receptors controlled the slow deactivation time course of EPSCs in the STN. In vivo recordings from the STN of anesthetized adult rats demonstrated that the spike firing rate was increased by the GluN2C/D potentiator CIQ and decreased by the GluN2C/D antagonist DQP-1105, suggesting that NMDA receptor activity can influence STN output. These data indicate that the GluN2B and GluN2D NMDA receptor subunits contribute to synaptic activity in the STN and may represent potential therapeutic targets for modulating subthalamic neuron activity in neurological disorders such as Parkinson's disease. PMID:26631477

  17. An Experimental Study of the Potential Biological Effects Associated with 2-D Shear Wave Elastography on the Neonatal Brain.

    PubMed

    Li, Changtian; Zhang, Changsheng; Li, Junlai; Cao, Xiaolin; Song, Danfei

    2016-07-01

    2-D Shear wave elastography (SWE) imaging is widely used in clinical practice, and some researchers have applied this technique in the evaluation of neonatal brains. However, the immediate and long-term impacts of dynamic radiation force exposure on the neonatal central nervous system remain unknown. In this study, we exposed neonatal mice to 2-D SWE scanning for 10 min, 20 min and 30 min under diagnostic mode (mechanical index [MI]: 1.3; thermal index [TI]: 0.5), respectively. For the control group, the neonatal mice were sham irradiated for 30 min with the machine powered off. Their brains were collected and analyzed using histologic staining and western blot analysis at 24 h and 3 mo after the 2-D SWE scanning. The Morris water maze (MWM) test was used to assess learning and memory function of the mice at 3 mo of age. The results indicated that using 2-D SWE in evaluating brains of neonatal mice does not cause detectable histologic changes, nor does it have long-term effects on their learning and memory abilities. However, the PI3 K/AKT/mTOR pathway was disturbed when the 2-D SWE scanning lasted for more than 30 min, and the expression of p-PKCa was suppressed by 10 min or more in 2-D SWE scanning. Although these injuries may be self-repaired as the mice grow, more attention should be paid to the scanning duration when applying 2-D-SWE elastography in the assessment of neonatal brains. PMID:27112914

  18. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  19. Geometry of the inverted Cretaceous Chañarcillo Basin based on 2-D gravity and field data - an approach to the structure of the western Central Andes of northern Chile

    NASA Astrophysics Data System (ADS)

    Martínez, F.; Maksymowicz, A.; Ochoa, H.; Díaz, D.

    2015-12-01

    This paper discusses an integrated approach that provides new ideas about the structural geometry of the NNE-striking, Cretaceous Chañarcillo Basin located along the eastern Coastal Cordillera in the western Central Andes of northern Chile (27-28° S). The results obtained from the integration of two transverse (E-W) gravity profiles with previous geological information show that the architecture of this basin is defined by a large NNE-SSE-trending and east-vergent anticline ("Tierra Amarilla Anticlinorium"), which is related to the positive reactivation of a former Cretaceous normal fault (Elisa de Bordos Master Fault). Moreover, intercalations of high and low gravity anomalies and steep gravity gradients reveal a set of buried, west-tilted half-grabens associated with a synthetic normal fault pattern. These results, together with the uplift and folding style of the Cretaceous synextensional deposits recognized within the basin, suggest that its structure could be explained by an inverted fault system linked to the shortening of pre-existing Cretaceous normal fault systems. Ages of the synorogenic deposits exposed unconformably over the frontal limb of the Tierra Amarilla Anticlinorium confirm a Late Cretaceous age for the Andean deformation and tectonic inversion of the basin.

  20. Geometry of the inverted Cretaceous Chañarcillo Basin based on 2-D gravity and field data. An approach to the structure of the western Central Andes of northern Chile

    NASA Astrophysics Data System (ADS)

    Martínez, F.; Maksymowicz, A.; Ochoa, H.; Díaz, D.

    2015-08-01

    This paper discusses an integrated approach that provides new ideas about the structural geometry of the NNE-striking, Cretaceous Chañarcillo Basin located along the eastern Coastal Cordillera in the western Central Andes of northern Chile (27-28° S). The results obtained from the integration of two transverse (E-W) gravity profiles with previous geological information, show that the architecture of this basin is defined by a large NNE-SSE-trending and east-vergent anticline ("Tierra Amarilla Anticlinorium"), which is related to the positive reactivation of a former Cretaceous normal fault (Elisa de Bordos Master Fault). Moreover, intercalations of high and low gravity anomalies and steep gravity gradients reveal a set of buried, west-tilted half-grabens associated with a synthetic normal fault pattern. These results, together with the uplift and folding style of the Cretaceous syn-rift recognized within the basin, suggest that their complete structural geometry could be explained by an inverted fault system linked to the shortening of pre-existing Cretaceous normal fault systems. Ages of the synorogenic deposits exposed unconformably over the frontal limb of the Tierra Amarilla Anticlinorium confirm a Late Cretaceous age for the Andean deformation and tectonic inversion of the basin.

  1. NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus

    PubMed Central

    Swanger, Sharon A.; Vance, Katie M.; Pare, Jean-François; Sotty, Florence; Fog, Karina; Smith, Yoland

    2015-01-01

    The GluN2D subunit of the NMDA receptor is prominently expressed in the basal ganglia and associated brainstem nuclei, including the subthalamic nucleus (STN), globus pallidus, striatum, and substantia nigra. However, little is known about how GluN2D-containing NMDA receptors contribute to synaptic activity in these regions. Using Western blotting of STN tissue punches, we demonstrated that GluN2D is expressed in the rat STN throughout development [age postnatal day 7 (P7)–P60] and in the adult (age P120). Immunoelectron microscopy of the adult rat brain showed that GluN2D is predominantly expressed in dendrites, unmyelinated axons, and axon terminals within the STN. Using subunit-selective allosteric modulators of NMDA receptors (TCN-201, ifenprodil, CIQ, and DQP-1105), we provide evidence that receptors containing the GluN2B and GluN2D subunits mediate responses to exogenously applied NMDA and glycine, as well as synaptic NMDA receptor activation in the STN of rat brain slices. EPSCs in the STN were mediated primarily by AMPA and NMDA receptors and GluN2D-containing NMDA receptors controlled the slow deactivation time course of EPSCs in the STN. In vivo recordings from the STN of anesthetized adult rats demonstrated that the spike firing rate was increased by the GluN2C/D potentiator CIQ and decreased by the GluN2C/D antagonist DQP-1105, suggesting that NMDA receptor activity can influence STN output. These data indicate that the GluN2B and GluN2D NMDA receptor subunits contribute to synaptic activity in the STN and may represent potential therapeutic targets for modulating subthalamic neuron activity in neurological disorders such as Parkinson's disease. SIGNIFICANCE STATEMENT The subthalamic nucleus (STN) is a key component of the basal ganglia, a group of subcortical nuclei that control movement and are dysregulated in movement disorders such as Parkinson's disease. Subthalamic neurons receive direct excitatory input, but the pharmacology of excitatory

  2. Blot-MS of Carbonylated Proteins: A Tool to Identify Oxidized Proteins.

    PubMed

    Ferreira, Rita; Domingues, Pedro; Amado, Francisco; Vitorino, Rui

    2016-01-01

    The efficiency of proteostasis regulation declines during aging and the failure of protein homeostasis is common in age-related diseases. Protein oxidation is a major contributor to the loss of proteome homeostasis, also called "proteostasis," precluding protein misfolding and aggregation. So, the identification of the molecular pathways impaired by protein oxidation will increase the understanding of proteostasis and the pathophysiological conditions related to the loss of proteostasis. Sample derivatization with dinitrophenyl hydrazine and western blot immunoassay detection of carbonylated proteins (commonly known as Oxyblot™) coupled to mass spectrometry (blot-MS) is an attractive methodological approach to identify proteins that are more prone to carbonylation, a typical oxidative modification of amino acid residues. The integration of blot-MS data of carbonylated proteins with bioinformatics tools allows the identification of the biological processes more affected by protein oxidation and that, eventually, result in the loss of proteostasis.In this chapter, we describe a blot-MS methodology to identify the proteins more prone to oxidation in biological samples, as cell and tissue extracts, and biofluids. Analysis of mitochondria isolated from cardiac tissue is provided as an example. Bioinformatic strategy to deal with data retrieved from blot-MS experiments are proposed for the identification of relevant biological processes modulated by oxidative stress stimuli. PMID:27613049

  3. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  4. MiR-451 inhibits proliferation of esophageal carcinoma cell line EC9706 by targeting CDKN2D and MAP3K1

    PubMed Central

    Zang, Wen-Qiao; Yang, Xuan; Wang, Tao; Wang, Yuan-Yuan; Du, Yu-Wen; Chen, Xiao-Nan; Li, Min; Zhao, Guo-Qiang

    2015-01-01

    AIM: To investigate the underlying molecular mechanisms of miR-451 to inhibit proliferation of esophageal carcinoma cell line EC9706. METHODS: Assays for cell growth, apoptosis and invasion were used to evaluate the effects of miR-451 expression on EC cells. Luciferase reporter and Western blot assays were used to test whether cyclin-dependent kinase inhibitor 2D (CDKN2D) and MAP3K1 act as major targets of miR-451. RESULTS: The results showed that CDKN2D and MAP3K1 are direct targets of miR-451. CDKN2D and MAP3K1 overexpression reversed the effect of miR-451. MiR-451 inhibited the proliferation of EC9706 by targeting CDKN2D and MAP3K1. CONCLUSION: These findings suggest that miR-451 might be a novel prognostic biomarker and a potential target for the treatment of esophageal squamous cell carcinoma in the future. PMID:26019450

  5. 1,25(OH)2D3 inhibits high glucose-induced apoptosis and ROS production in human peritoneal mesothelial cells via the MAPK/P38 pathway.

    PubMed

    Yang, Lina; Wu, Lan; Du, Shuyan; Hu, Ye; Fan, Yi; Ma, Jianfei

    2016-07-01

    The regulation of cell proliferation, differentiation and immunomodulation are affected by 1,25(OH)2D3. However, its function during apoptosis and oxidative stress in human peritoneal mesothelial cells (HPMCs) remains unknown. The aim of the present study was to investigate whether the regulation of apoptosis and oxidative stress have therapeutic relevance in peritoneal dialysis (PD) therapy. The present study investigated the effects of 1,25(OH)2D3 on high glucose (HG)-induced apoptosis and reactive oxygen species (ROS) production in HPMCs, and examined the underlying molecular mechanisms. Flow cytometry and western blotting were performed to detect cell apoptosis, 2,7-dichlorofluorescein diacetate was used to measure reactive oxygen species production and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used to measure cell viability. The results of the present study demonstrated that exposure to HG increased apoptosis and ROS production in HPMCs, whereas pretreatment with 1,25(OH)2D3 significantly inhibited HG‑induced apoptosis and ROS production. Further analysis revealed that 1,25(OH)2D3 facilitated cell survival via the MAPK/P38 pathway. The results of the present study indicate that 1,25(OH)2D3 inhibits apoptosis and ROS production in HG‑induced HPMCs via inhibition of the MAPK/P38 pathway. PMID:27220355

  6. DNT cell inhibits the growth of pancreatic carcinoma via abnormal expressions of NKG2D and MICA in vivo.

    PubMed

    Xu, Hong; Zhu, Xing-Xing; Chen, Jiong

    2016-01-01

    This research aimed to investigate the effects of natural killer group 2 member D (NKG2D) and its ligands major histocompatibility complex class I chain-related molecules A(MICA) in DNT cell killing pancreatic carcinoma. Antibodies adsorption was used to separate DNT cell from human peripheral blood. Human pancreatic tumor models were established via implanting BXPC-3 cells into nude mice. Then randomly divided mice into blank group, gemcitabine group and DNT group. Mice weights and mice tumor volumes were measured every 5 days. 50 days later mice were euthanized at cervical dislocation method. Tumor weights were measured. Relative tumor volume and tumor inhibition rate were calculated. Western blot and qPCR were used to detect the expressions of NKG2D and MICA in the transplanted tumors of the three groups. DNT cell significantly increased over time. The blank group tumor volume and weight were significantly larger than the other groups (p < 0.001, p < 0.001), but there were no significantly difference between DNT group and gemcitabine group (p > 0.05). Gemcitabine and DNT cell tumor inhibition rate were 40.4% and 35.5%. Western blot and qPCR showed that MICA mRNA and protein levels in blank group were significantly higher than DNT group (p = 0.001, p = 0.003). NKG2D mRNA and protein levels in blank group were significantly lower than DNT cells group (p < 0.001, p = 0.001). In conclusion DNT cell can significantly inhibit the growth of pancreatic carcinoma in vivo, and the mechanism may be involved in abnormal expressions of MICA and NKG2D. PMID:26616050

  7. BLOTS AND ALL: A HISTORY OF THE RORSCHACH INK BLOT TEST IN BRITAIN.

    PubMed

    Hubbard, Katherine; Hegarty, Peter

    2016-01-01

    Despite the easily recognizable nature of the Rorschach ink blot test very little is known about the history of the test in Britain. We attend to the oft-ignored history of the Rorschach test in Britain and compare it to its history in the US. Prior to the Second World War, Rorschach testing in Britain had attracted advocates and critiques. Afterward, the British Rorschach Forum, a network with a high proportion of women, developed around the Tavistock Institute in London and The Rorschach Newsletter. In 1968, the International Rorschach Congress was held in London but soon after the group became less exclusive, and fell into decline. A comparative account of the Rorschach in Britain demonstrates how different national institutions invested in the 'projective hypothesis' according to the influence of psychoanalysis, the adoption of a nationalized health system, and the social positioning of 'others' throughout the twentieth century. In comparing and contrasting the history of the Rorschach in Britain and the US, we decentralize and particularize the history of North American Psychology. PMID:26924673

  8. Stacking up 2D materials

    NASA Astrophysics Data System (ADS)

    Mayor, Louise

    2016-05-01

    Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.

  9. Antibodies directed to the gram-negative bacterium Neisseria gonorrhoeae cross-react with the 60 kDa heat shock protein and lead to impaired neurite outgrowth in NTera2/D1 cells.

    PubMed

    Reuss, B; Asif, A R

    2014-09-01

    Children of mothers with prenatal gonococcal infections are of increased risk to develop schizophrenic psychosis in later life. The present study hypothesizes an autoimmune mechanism for this, investigating interactions of a commercial rabbit antiserum directed to Neisseria gonorrhoeae (α-NG) with human NTera2/D1 cells, an established in vitro model for human neuronal differentiation. Immunocytochemistry demonstrated α-NG to label antigens on an intracellular organelle, which by Western blot analysis showed a molecular weight shortly below 72 kDa. An antiserum directed to Neisseria meningitidis (α-NM) reacts with an antigen shortly below 95 kDa, confirming antibody specificity of these interactions. Two-dimensional gel electrophoresis and partial Western transfer, allowed to localize an α-NG reactive protein spot which was identified by LC-Q-TOF MS/MS analysis as mitochondrial heat shock protein Hsp60. This was confirmed by Western blot analysis of α-NG immunoreactivity with a commercial Hsp60 protein sample, with which α-NM failed to interact. Finally, analysis of neurite outgrowth in retinoic acid-stimulated differentiating NTera2-D1 cells, demonstrates that α-NG but not α-NM treatment reduces neurite length. These results demonstrate that α-NG can interact with Hsp60 in vitro, whereas pathogenetic relevance of this interaction for psychotic symptomatology remains to be clarified. PMID:24577885

  10. Quantitative autoradiography of dot blots using a microwell densitometer

    SciTech Connect

    Ross, P.M.; Woodley, K.; Baird, M. )

    1989-07-01

    We have established conditions for the quantitation of DNA hybridization by reading dot blot autoradiographs with a microwell plate densitometer. This method is more convenient, as accurate, and more sensitive than counting the spots in a liquid scintillation counter.

  11. IDENTIFICATION OF IMMUNOGENS OF 'MYCOPLASMA PNEUMONIAE' BY PROTEIN BLOTTING

    EPA Science Inventory

    Proteins of Mycoplasma pneumoniae were separated by SDS-polyacrylamide gel electrophoresis and transferred to a nitrocellulose sheet by blotting. Sera obtained from infected hamsters and immunized rabbits were then incubated with the nitrocellulose strips. Proteins which are capa...

  12. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  13. Identification and characterization of the 2D6 and Mr 23,000 antigens on the plasma membrane of rat spermatozoa.

    PubMed Central

    Jones, R; Brown, C R

    1987-01-01

    Previous investigations [Jones, Brown, von Glos & Gaunt (1985) Exp. Cell Res. 156, 31-44] have demonstrated the appearance of a new antigenic determinant (recognized by monoclonal antibody 2D6) on the plasma membrane of rat spermatozoa during post-testicular maturation in the epididymis. Identification of the 2D6 antigen on Western blots from one-dimensional SDS/polyacrylamide gels revealed that it co-migrated with a membrane protein (designated Mr 23,000 antigen) present on testicular and immature germ cells, suggesting that one antigen might be a modified version of the other. In the present work, however, we demonstrate that, although they have similar Mr and are present in soluble and membrane-bound forms, the 2D6 and Mr 23,000 antigens are biochemically and immunologically distinct molecules. The properties of the antigens are described and compared. The Mr 23,000 antigen is present on both testicular and cauda epididymidal spermatozoa, has a pI of 6.1, contains no detectable carbohydrate, is not tissue-specific and is degraded by V8 protease. By contrast, the 2D6 antigen is glycosylated, has a broad pI from 4.5 to 6.1, is tissue- and species-specific and is resistant to digestion with V8 protease. Its role in sperm-egg recognition is discussed. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2439064

  14. Nanoimprint lithography: 2D or not 2D? A review

    NASA Astrophysics Data System (ADS)

    Schift, Helmut

    2015-11-01

    Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.

  15. Multiplexed miRNA northern blots via hybridization chain reaction.

    PubMed

    Schwarzkopf, Maayan; Pierce, Niles A

    2016-09-01

    Northern blots enable detection of a target RNA of interest in a biological sample using standard benchtop equipment. miRNAs are the most challenging targets as they must be detected with a single short nucleic acid probe. With existing approaches, it is cumbersome to perform multiplexed blots in which several RNAs are detected simultaneously, impeding the study of interacting regulatory elements. Here, we address this shortcoming by demonstrating multiplexed northern blotting based on the mechanism of hybridization chain reaction (HCR). With this approach, nucleic acid probes complementary to RNA targets trigger chain reactions in which fluorophore-labeled DNA hairpins self-assemble into tethered fluorescent amplification polymers. The programmability of HCR allows multiple amplifiers to operate simultaneously and independently within a blot, enabling straightforward multiplexing. We demonstrate simultaneous detection of three endogenous miRNAs in total RNA extracted from 293T and HeLa cells. For a given target, HCR signal scales linearly with target abundance, enabling relative and absolute quantitation. Using non-radioactive HCR, sensitive and selective miRNA detection is achieved using 2'OMe-RNA probes. The HCR northern blot protocol takes ∼1.5 days independent of the number of target RNAs. PMID:27270083

  16. Multiplexed miRNA northern blots via hybridization chain reaction

    PubMed Central

    Schwarzkopf, Maayan; Pierce, Niles A.

    2016-01-01

    Northern blots enable detection of a target RNA of interest in a biological sample using standard benchtop equipment. miRNAs are the most challenging targets as they must be detected with a single short nucleic acid probe. With existing approaches, it is cumbersome to perform multiplexed blots in which several RNAs are detected simultaneously, impeding the study of interacting regulatory elements. Here, we address this shortcoming by demonstrating multiplexed northern blotting based on the mechanism of hybridization chain reaction (HCR). With this approach, nucleic acid probes complementary to RNA targets trigger chain reactions in which fluorophore-labeled DNA hairpins self-assemble into tethered fluorescent amplification polymers. The programmability of HCR allows multiple amplifiers to operate simultaneously and independently within a blot, enabling straightforward multiplexing. We demonstrate simultaneous detection of three endogenous miRNAs in total RNA extracted from 293T and HeLa cells. For a given target, HCR signal scales linearly with target abundance, enabling relative and absolute quantitation. Using non-radioactive HCR, sensitive and selective miRNA detection is achieved using 2′OMe-RNA probes. The HCR northern blot protocol takes ∼1.5 days independent of the number of target RNAs. PMID:27270083

  17. Genetic relatedness of orbiviruses by RNA-RNA blot hybridization

    SciTech Connect

    Bodkin, D.K.

    1985-01-01

    RNA-RNA blot hybridization was developed in order to identify type-specific genes among double-stranded (ds) RNA viruses, to assess the genetic relatedness of dsRNA viruses and to classify new strains. Viral dsRNA segments were electrophoresed through 10% polyacrylamide gels, transferred to membranes, and hybridized to (5'/sup 32/P)-pCp labeled genomic RNA from a related strain. Hybridization was performed at 52/sup 0/C, 50% formamide, 5X SSC. Under these conditions heterologous RNA species must share greater than or equal to 74% sequence homology in order to form stable dsRNA hybrids. Cognate genes of nine members of the Palyam serogroup of orbiviruses were identified and their sequence relatedness to the prototype. Palyam virus, was determined. Reciprocal blot hybridizations were performed using radiolabeled genomic RNA of all members of the Palyam serogroup. Unique and variant genes were identified by lack of cross-homology or by weak homology between segments. Since genes 2 and 6 exhibited the highest degree of sequence variability, response to the vertebrate immune system may be a major cause of sequence divergence among members of a single serogroup. Changuinola serogroup isolates were compared by dot-blot hybridization, while Colorado tick fever (CTF) serogroup isolates were compared by the RNA-RNA blot hybridization procedure described for reovirus and Palyam serogroup isolates. Preliminary blot hybridization data were also obtained on the relatedness of members of different Orbivirus serogroups.

  18. Regional and cellular expression of CYP2D6 in human brain: higher levels in alcoholics.

    PubMed

    Miksys, Sharon; Rao, Yushu; Hoffmann, Ewa; Mash, Deborah C; Tyndale, Rachel F

    2002-09-01

    Cytochrome P450 (CYP) 2D6 is expressed in liver, brain and other extrahepatic tissues where it metabolizes a range of centrally acting drugs and toxins. As ethanol can induce CYP2D in rat brain, we hypothesized that CYP2D6 expression is higher in brains of human alcoholics. We examined regional and cellular expression of CYP2D6 mRNA and protein by RT-PCR, Southern blotting, slot blotting, immunoblotting and immunocytochemistry. A significant correlation was found between mean mRNA and CYP2D6 protein levels across 13 brain regions. Higher expression was detected in 13 brain regions of alcoholics (n = 8) compared to nonalcoholics (n = 5) (anovap < 0.0001). In hippocampus this was localized in CA1-3 pyramidal cells and dentate gyrus granular neurons. In cerebellum this was localized in Purkinje cells and their dendrites. Both of these brain regions, and these same cell-types, are known to be susceptible to alcohol damage. For one case, a poor metabolizer (CYP2D6*4/*4), there was no detectable CYP2D6 protein, confirming the specificity of the antibody used. These data suggest that in alcoholics elevated brain CYP2D6 expression may contribute to altered sensitivity to centrally acting drugs and to the mediation of neurotoxic and behavioral effects of alcohol. PMID:12354285

  19. Substituted Imidazole of 5-Fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine Inactivates Cytochrome P450 2D6 by Protein Adduction

    PubMed Central

    Nagy, Leslie D.; Mocny, Catherine S.; Diffenderfer, Laura E.; Hsi, David J.; Butler, Brendan F.; Arthur, Evan J.; Fletke, Kyle J.; Palamanda, Jairam R.; Nomeir, Amin A.

    2011-01-01

    5-Fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine (SCH 66712) is a potent mechanism-based inactivator of human cytochrome P450 2D6 that displays type I binding spectra with a Ks of 0.39 ± 0.10 μM. The partition ratio is ∼3, indicating potent inactivation that addition of exogenous nucleophiles does not prevent. Within 15 min of incubation with SCH 66712 and NADPH, ∼90% of CYP2D6 activity is lost with only ∼20% loss in ability to bind CO and ∼25% loss of native heme over the same time. The stoichiometry of binding to the protein was 1.2:1. SDS-polyacrylamide gel electrophoresis with Western blotting and autoradiography analyses of CYP2D6 after incubations with radiolabeled SCH 66712 further support the presence of a protein adduct. Metabolites of SCH 66712 detected by mass spectrometry indicate that the phenyl group on the imidazole ring of SCH 66712 is one site of oxidation by CYP2D6 and could lead to methylene quinone formation. Three other metabolites were also observed. For understanding the metabolic pathway that leads to CYP2D6 inactivation, metabolism studies with CYP2C9 and CYP2C19 were performed because neither of these enzymes is significantly inhibited by SCH 66712. The metabolites formed by CYP2C9 and CYP2C19 are the same as those seen with CYP2D6, although in different abundance. Modeling studies with CYP2D6 revealed potential roles of various active site residues in the oxidation of SCH 66712 and inactivation of CYP2D6 and showed that the phenyl group of SCH 66712 is positioned at 2.2 Å from the heme iron. PMID:21422192

  20. Detection of PrP**Sc in formalin-fixed tissues by western blot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Formalin fixation is the most prevalent form of tissue preservative. As such, formalin fixed tissue represents an important source of archival material for study. Formalin fixation requires little environmental control and preserves the cellular architecture of a wide range of tissues, an importan...

  1. Utility of Western Blot Analysis for the Diagnosis of Cutaneous Leishmaniasis

    PubMed Central

    ASHRAFMANSOURI, Marzieh; SARKARI, Bahador; HATAM, Gholamreza; HABIBI, Parvaneh; ABDOLAHI KHABISI, Samaneh

    2015-01-01

    Background: Cutaneous leishmaniasis (CL) is a parasitic disease with a relatively wide distribution in different areas of the world, including Iran. The parasite is mainly diagnosed microscopically, but serological approaches might be useful for diagnosis as well. This study aimed to assess the efficacy of an immunoblotting system for serodiagnosis of cutaneous leishmaniasis in Iran. Methods: Sixty-one sera samples from parasitologically confirmed CL patients and 50 sera samples from healthy controls along with 50 sera sample from non-CL patients were collected. Native strain of Leishmania major was cultured in Schneider medium and soluble Leishmania antigens were prepared from amastigotes-like parasites. All of sera samples were evaluated by an immunoblotting system. Results: Components of 14 to 135 kDa were detectable by the sera of CL patients. From 61 sera of CL patients, 59 cases (96.7%) detected a 63 kDa subunit and 51 cases (83.6%) recognized a 32–35 kDa component. Among all subunits, the 63 kDa band showed the highest sensitivity (96.7%) and a 75 kDa band had the highest (98%) specificity. Conclusion: Immunoblotting has a satisfactory performance in diagnosis of CL and this test can be used, as an aid, for proper diagnosis of CL. PMID:26811727

  2. Western blotting of high and low molecular weight proteins using heat.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2015-01-01

    A method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 °C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7 % (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5 % gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5 % gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol. PMID:26044007

  3. Mucin Agarose Gel Electrophoresis: Western Blotting for High-molecular-weight Glycoproteins.

    PubMed

    Ramsey, Kathryn A; Rushton, Zachary L; Ehre, Camille

    2016-01-01

    Mucins, the heavily-glycosylated proteins lining mucosal surfaces, have evolved as a key component of innate defense by protecting the epithelium against invading pathogens. The main role of these macromolecules is to facilitate particle trapping and clearance while promoting lubrication of the mucosa. During protein synthesis, mucins undergo intense O-glycosylation and multimerization, which dramatically increase the mass and size of these molecules. These post-translational modifications are critical for the viscoelastic properties of mucus. As a result of the complex biochemical and biophysical nature of these molecules, working with mucins provides many challenges that cannot be overcome by conventional protein analysis methods. For instance, their high-molecular-weight prevents electrophoretic migration via regular polyacrylamide gels and their sticky nature causes adhesion to experimental tubing. However, investigating the role of mucins in health (e.g., maintaining mucosal integrity) and disease (e.g., hyperconcentration, mucostasis, cancer) has recently gained interest and mucins are being investigated as a therapeutic target. A better understanding of the production and function of mucin macromolecules may lead to novel pharmaceutical approaches, e.g., inhibitors of mucin granule exocytosis and/or mucolytic agents. Therefore, consistent and reliable protocols to investigate mucin biology are critical for scientific advancement. Here, we describe conventional methods to separate mucin macromolecules by electrophoresis using an agarose gel, transfer protein into nitrocellulose membrane, and detect signal with mucin-specific antibodies as well as infrared fluorescent gel reader. These techniques are widely applicable to determine mucin quantitation, multimerization and to test the effects of pharmacological compounds on mucins. PMID:27341489

  4. Lipid A binding proteins in macrophages detected by ligand blotting

    SciTech Connect

    Hampton, R.Y.; Golenbock, D.T.; Raetz, C.R.H.

    1987-05-01

    Endotoxin (LPS) stimulates a variety of eukaryotic cells. These actions are involved in the pathogenesis of Gram-negative septicemia. The site of action of the LPS toxic moiety, lipid A (LA), is unclear. Their laboratory has previously identified a bioactive LA precursor lipid IV/sub A/, which can be enzymatically labeled with /sup 32/P/sub i/ (10/sup 9/ dpm/nmole) and purified (99%). They now show that this ligand binds to specific proteins immobilized on nitrocellulose (NC) from LPS-sensitive RAW 264.7 cultured macrophages. NC blots were incubated with (/sup 32/P)-IV/sub A/ in a buffer containing BSA, NaCl, polyethylene glycol, and azide. Binding was assessed using autoradiography or scintillation counting. Dot blot binding of the radioligand was inhibited by excess cold IV/sub A/, LA, or ReLPS but not by phosphatidylcholine, cardiolipin, phosphatidylinositol, or phosphatidic acid. Binding was trypsin-sensitive and dependent on protein concentration. Particulate macrophage proteins were subjected to SDS-PAGE and then electroblotted onto NC. Several discrete binding proteins were observed. Identical treatment of fetal bovine serum or molecular weight standards revealed no detectable binding. By avoiding high nonspecific binding of intact membranes, this ligand blotting assay may be useful in elucidating the molecular actions of LPS.

  5. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  6. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  7. The detection of DNA-binding proteins by protein blotting.

    PubMed Central

    Bowen, B; Steinberg, J; Laemmli, U K; Weintraub, H

    1980-01-01

    A method, called "protein blotting," for the detection of DNA-binding proteins is described. Proteins are separated on an SDA-polyacrylamide gel. The gel is sandwiched between 2 nitrocellulose filters and the proteins allowed to diffuse out of the gel and onto the filters. The proteins are tightly bound to each filter, producing a replica of the original gel pattern. The replica is used to detect DNA-binding proteins, RNA-binding proteins or histone-binding proteins by incubation of the filter with [32P]DNA, [125I]RNA, or [125I] histone. Evidence is also presented that specific protein-DNA interactions may be detected by this technique; under appropriate conditions, the lac repressor binds only to DNA containing the lac operator. Strategies for the detection of specific protein-DNA interactions are discussed. Images PMID:6243775

  8. Quantitative Northern Blot Analysis of Mammalian rRNA Processing.

    PubMed

    Wang, Minshi; Pestov, Dimitri G

    2016-01-01

    Assembly of eukaryotic ribosomes is an elaborate biosynthetic process that begins in the nucleolus and requires hundreds of cellular factors. Analysis of rRNA processing has been instrumental for studying the mechanisms of ribosome biogenesis and effects of stress conditions on the molecular milieu of the nucleolus. Here, we describe the quantitative analysis of the steady-state levels of rRNA precursors, applicable to studies in mammalian cells and other organisms. We include protocols for gel electrophoresis and northern blotting of rRNA precursors using procedures optimized for the large size of these RNAs. We also describe the ratio analysis of multiple precursors, a technique that facilitates the accurate assessment of changes in the efficiency of individual pre-rRNA processing steps. PMID:27576717

  9. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  10. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  11. Light field morphing using 2D features.

    PubMed

    Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung

    2005-01-01

    We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field. PMID:15631126

  12. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  13. Inertial solvation in femtosecond 2D spectra

    NASA Astrophysics Data System (ADS)

    Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David

    2001-03-01

    We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.

  14. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  15. Monitoring post mortem changes in porcine muscle through 2-D DIGE proteome analysis of Longissimus muscle exudate

    PubMed Central

    2013-01-01

    Background Meat quality is a complex trait influenced by a range of factors with post mortem biochemical processes highly influential in defining ultimate quality. High resolution two-dimensional DIfference Gel Electrophoresis (2-D DIGE) and Western blot were applied to study the influence of post mortem meat ageing on the proteome of pork muscle. Exudate collected from the muscle following centrifugation was analysed at three timepoints representing a seven day meat ageing period. Results The intensity of 136 spots varied significantly (p < 0.05) across this post mortem period and 40 spots were identified using mass spectrometry. The main functional categories represented were metabolic proteins, stress-related proteins, transport and structural proteins. Metabolic and structural proteins were generally observed to increase in abundance post mortem and many likely represent the accumulation of the degradation products of proteolytic enzyme activity. In contrast, stress-related proteins broadly decreased in abundance across the ageing period. Stress response proteins have protective roles in maintaining cellular integrity and a decline in their abundance over time may correlate with a reduction in cellular integrity and the onset of meat ageing. Since cellular conditions alter with muscle ageing, changes in solubility may also contribute to observed abundance profiles. Conclusions Muscle exudate provided valuable information about the pathways and processes underlying the post mortem ageing period, highlighting the importance of post mortem modification of proteins and their interaction for the development of meat quality traits. PMID:23514628

  16. Malignant transformation in a defined genetic background: proteome changes displayed by 2D-PAGE

    PubMed Central

    2010-01-01

    Background Cancer arises from normal cells through the stepwise accumulation of genetic alterations. Cancer development can be studied by direct genetic manipulation within experimental models of tumorigenesis. Thereby, confusion by the genetic heterogeneity of patients can be circumvented. Moreover, identification of the critical changes that convert a pre-malignant cell into a metastatic, therapy resistant tumor cell, however, is one necessary step to develop effective and selective anti-cancer drugs. Thus, for the current study a cell culture model for malignant transformation was used: Primary human fibroblasts of the BJ strain were sequentially transduced with retroviral vectors encoding the genes for hTERT (cell line BJ-T), simian virus 40 early region (SV40 ER, cell line BJ-TE) and H-Ras V12 (cell line BJ-TER). Results The stepwise malignant transformation of human fibroblasts was analyzed on the protein level by differential proteome analysis. We observed 39 regulated protein spots and therein identified 67 different proteins. The strongest change of spot patterns was detected due to integration of SV40 ER. Among the proteins being significantly regulated during the malignant transformation process well known proliferating cell nuclear antigen (PCNA) as well as the chaperones mitochondrial heat shock protein 75 kDa (TRAP-1) and heat shock protein HSP90 were identified. Moreover, we find out, that TRAP-1 is already up-regulated by means of SV40 ER expression instead of H-Ras V12. Furthermore Peroxiredoxin-6 (PRDX6), Annexin A2 (p36), Plasminogen activator inhibitor 2 (PAI-2) and Keratin type II cytoskeletal 7 (CK-7) were identified to be regulated. For some protein candidates we confirmed our 2D-PAGE results by Western Blot. Conclusion These findings give further hints for intriguing interactions between the p16-RB pathway, the mitochondrial chaperone network and the cytoskeleton. In summary, using a cell culture model for malignant transformation analyzed

  17. 2D proteome analysis initiates new Insights on the Salmonella Typhimurium LuxS protein

    PubMed Central

    2009-01-01

    Background Quorum sensing is a term describing a bacterial communication system mediated by the production and recognition of small signaling molecules. The LuxS enzyme, catalyzing the synthesis of AI-2, is conserved in a wide diversity of bacteria. AI-2 has therefore been suggested as an interspecies quorum sensing signal. To investigate the role of endogenous AI-2 in protein expression of the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), we performed a 2D-DIGE proteomics experiment comparing total protein extract of wildtype S. Typhimurium with that of a luxS mutant, unable to produce AI-2. Results Differential proteome analysis of wildtype S. Typhimurium versus a luxS mutant revealed relatively few changes beyond the known effect on phase 2 flagellin. However, two highly differentially expressed protein spots with similar molecular weight but differing isoelectric point, were identified as LuxS whereas the S. Typhimurium genome contains only one luxS gene. This observation was further explored and we show that the S. Typhimurium LuxS protein can undergo posttranslational modification at a catalytic cysteine residue. Additionally, by constructing LuxS-βla and LuxS-PhoA fusion proteins, we demonstrate that S. Typhimurium LuxS can substitute the cognate signal peptide sequences of β-lactamase and alkaline phosphatase for translocation across the cytoplasmic membrane in S. Typhimurium. This was further confirmed by fractionation of S. Typhimurium protein extracts, followed by Western blot analysis. Conclusion 2D-DIGE analysis of a luxS mutant vs. wildtype Salmonella Typhimurium did not reveal new insights into the role of AI-2/LuxS in Salmonella as only a small amount of proteins were differentially expressed. However, subsequent in depth analysis of the LuxS protein itself revealed two interesting features: posttranslational modification and potential translocation across the cytoplasmic membrane. As the S. Typhimurium Lux

  18. Development of a V79 cell line expressing human cytochrome P450 2D6 and its application as a metabolic screening tool.

    PubMed

    Rauschenbach, R; Gieschen, H; Salomon, B; Kraus, C; Kühne, G; Hildebrand, M

    1997-02-15

    Expression of human cytochrome P450 (CYP) in heterologous cells is a means of specifically studying the role of these enzymes in drug metabolism. The complete cDNA encoding CYP2D6-VAL(374) was inserted into an expression vector containing the strong mycloproliferative sarcoma virus promotor in combination with the enhancer of the cytomegalovirus and stably expressed in V79 Chinese hamster cells. The presence of genomically integrated CYP2D6 cDNA was confirmed by polymerase chain reaction analysis. The protein expression was shown by Western blotting. Functional expression could be demonstrated by O-demethylation of dextromethorphan to dextrorphan in live cells. The enzymatic activity of 154 ± 16 pmol min(-1) mg(-1) protein was comparable with dextromethorphan-O-demethylation activities of human liver. The metabolism of two dopaminergic ergoline derivatives was investigated in whole recombinant V19 cells. Both lisuride and terguride were monodeethylated; in case of lisuride a correlation to the in vivo situation was demonstrated comparing poor and extensive metabolizers. PMID:21781755

  19. Blot overlays with 32P-labeled fusion proteins.

    PubMed

    Zhao, Z; Lim, L; Manser, E

    2001-07-01

    Proteins labeled with 32P can be used as sensitive "prime" in blot overlays to detect binding proteins or domains. Small G-protein Ras can bind GTP with extremely high affinity (Kd approximately 10(-11)-10(-12) M) in the presence of Mg2+. We have taken advantage of this property of Ras to develop a vector that expresses proteins of interest such as glutathione S-transferase (GST)/Ras fusion proteins for noncovalent labeling with [gamma-32P]GTP. The labeling efficiency of this method is >60% and involves a single short incubation step. We have previously identified several binding proteins for the second SH3 domain of the adaptor Nck using this method. Here we illustrate the overlay method using the GST/Ras system and compare results with the SH3 domain labeled by phosphorylation with [gamma-32P]ATP. Both methods are similarly specific and sensitive; however, we show that signals are dependent primarily on GST-mediated probe dimerization. These dimeric probes allow a more stable probe-target complex similar to immunoglobulin interactions, thus significantly improving the sensitivity of the technique. PMID:11403569

  20. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  1. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  2. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  3. 2D electronic materials for army applications

    NASA Astrophysics Data System (ADS)

    O'Regan, Terrance; Perconti, Philip

    2015-05-01

    The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.

  4. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  5. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083

  6. 2D Seismic Reflection Data across Central Illinois

    SciTech Connect

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made

  7. Extended 2D generalized dilaton gravity theories

    NASA Astrophysics Data System (ADS)

    de Mello, R. O.

    2008-09-01

    We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.

  8. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  9. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  10. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  11. 2D microwave imaging reflectometer electronics

    NASA Astrophysics Data System (ADS)

    Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  12. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247

  13. 2D-Crystal-Based Functional Inks.

    PubMed

    Bonaccorso, Francesco; Bartolotta, Antonino; Coleman, Jonathan N; Backes, Claudia

    2016-08-01

    The possibility to produce and process graphene, related 2D crystals, and heterostructures in the liquid phase makes them promising materials for an ever-growing class of applications as composite materials, sensors, in flexible optoelectronics, and energy storage and conversion. In particular, the ability to formulate functional inks with on-demand rheological and morphological properties, i.e., lateral size and thickness of the dispersed 2D crystals, is a step forward toward the development of industrial-scale, reliable, inexpensive printing/coating processes, a boost for the full exploitation of such nanomaterials. Here, the exfoliation strategies of graphite and other layered crystals are reviewed, along with the advances in the sorting of lateral size and thickness of the exfoliated sheets together with the formulation of functional inks and the current development of printing/coating processes of interest for the realization of 2D-crystal-based devices. PMID:27273554

  14. The 2D lingual appliance system.

    PubMed

    Cacciafesta, Vittorio

    2013-09-01

    The two-dimensional (2D) lingual bracket system represents a valuable treatment option for adult patients seeking a completely invisible orthodontic appliance. The ease of direct or simplified indirect bonding of 2D lingual brackets in combination with low friction mechanics makes it possible to achieve a good functional and aesthetic occlusion, even in the presence of a severe malocclusion. The use of a self-ligating bracket significantly reduces chair-side time for the orthodontist, and the low-profile bracket design greatly improves patient comfort. PMID:24005953

  15. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  16. Measurement of 2D birefringence distribution

    NASA Astrophysics Data System (ADS)

    Noguchi, Masato; Ishikawa, Tsuyoshi; Ohno, Masahiro; Tachihara, Satoru

    1992-10-01

    A new measuring method of 2-D birefringence distribution has been developed. It has not been an easy job to get a birefringence distribution in an optical element with conventional ellipsometry because of its lack of scanning means. Finding an analogy between the rotating analyzer method in ellipsometry and the phase-shifting method in recently developed digital interferometry, we have applied the phase-shifting algorithm to ellipsometry, and have developed a new method that makes the measurement of 2-D birefringence distribution easy and possible. The system contains few moving parts, assuring reliability, and measures a large area of a sample at one time, making the measuring time very short.

  17. Parallel stitching of 2D materials

    DOE PAGESBeta

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  18. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-01

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits. PMID:26813882

  19. Baby universes in 2d quantum gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Jain, Sanjay; Thorleifsson, Gudmar

    1993-06-01

    We investigate the fractal structure of 2d quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent γstring.

  20. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  1. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  2. Static & Dynamic Response of 2D Solids

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  3. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  4. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  5. Explicit 2-D Hydrodynamic FEM Program

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  6. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  7. Layer Engineering of 2D Semiconductor Junctions.

    PubMed

    He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel

    2016-07-01

    A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275

  8. 2dF mechanical engineering

    NASA Astrophysics Data System (ADS)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  9. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  10. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  11. 2D materials: Graphene and others

    NASA Astrophysics Data System (ADS)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  12. TACO (2D AND 3D). Taco

    SciTech Connect

    Mason, W.E.

    1983-03-01

    A set of finite element codes for the solution of nonlinear, two-dimensional (TACO2D) and three-dimensional (TACO3D) heat transfer problems. Performs linear and nonlinear analyses of both transient and steady state heat transfer problems. Has the capability to handle time or temperature dependent material properties. Materials may be either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions and loadings are available including temperature, flux, convection, radiation, and internal heat generation.

  13. Tomosynthesis imaging with 2D scanning trajectories

    NASA Astrophysics Data System (ADS)

    Khare, Kedar; Claus, Bernhard E. H.; Eberhard, Jeffrey W.

    2011-03-01

    Tomosynthesis imaging in chest radiography provides volumetric information with the potential for improved diagnostic value when compared to the standard AP or LAT projections. In this paper we explore the image quality benefits of 2D scanning trajectories when coupled with advanced image reconstruction approaches. It is intuitively clear that 2D trajectories provide projection data that is more complete in terms of Radon space filling, when compared with conventional tomosynthesis using a linearly scanned source. Incorporating this additional information for obtaining improved image quality is, however, not a straightforward problem. The typical tomosynthesis reconstruction algorithms are based on direct inversion methods e.g. Filtered Backprojection (FBP) or iterative algorithms that are variants of the Algebraic Reconstruction Technique (ART). The FBP approach is fast and provides high frequency details in the image but at the same time introduces streaking artifacts degrading the image quality. The iterative methods can reduce the image artifacts by using image priors but suffer from a slow convergence rate, thereby producing images lacking high frequency details. In this paper we propose using a fast converging optimal gradient iterative scheme that has advantages of both the FBP and iterative methods in that it produces images with high frequency details while reducing the image artifacts. We show that using favorable 2D scanning trajectories along with the proposed reconstruction method has the advantage of providing improved depth information for structures such as the spine and potentially producing images with more isotropic resolution.

  14. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  15. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells. PMID:25602462

  16. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  17. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  18. Interparticle Attraction in 2D Complex Plasmas

    NASA Astrophysics Data System (ADS)

    Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.

    2016-03-01

    Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.

  19. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  20. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  1. A scalable 2-D parallel sparse solver

    SciTech Connect

    Kothari, S.C.; Mitra, S.

    1995-12-01

    Scalability beyond a small number of processors, typically 32 or less, is known to be a problem for existing parallel general sparse (PGS) direct solvers. This paper presents a parallel general sparse PGS direct solver for general sparse linear systems on distributed memory machines. The algorithm is based on the well-known sequential sparse algorithm Y12M. To achieve efficient parallelization, a 2-D scattered decomposition of the sparse matrix is used. The proposed algorithm is more scalable than existing parallel sparse direct solvers. Its scalability is evaluated on a 256 processor nCUBE2s machine using Boeing/Harwell benchmark matrices.

  2. 2D stepping drive for hyperspectral systems

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin

    2015-07-01

    We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.

  3. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  4. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  5. Photocurrent spectroscopy of 2D materials

    NASA Astrophysics Data System (ADS)

    Cobden, David

    Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.

  6. Multienzyme Inkjet Printed 2D Arrays.

    PubMed

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  7. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  8. Molecular combing compared to Southern blot for measuring D4Z4 contractions in FSHD.

    PubMed

    Vasale, Jessica; Boyar, Fatih; Jocson, Michael; Sulcova, Vladimira; Chan, Patricia; Liaquat, Khalida; Hoffman, Carol; Meservey, Marc; Chang, Isabell; Tsao, David; Hensley, Kerri; Liu, Yan; Owen, Renius; Braastad, Corey; Sun, Weimin; Walrafen, Pierre; Komatsu, Jun; Wang, Jia-Chi; Bensimon, Aaron; Anguiano, Arturo; Jaremko, Malgorzata; Wang, Zhenyuan; Batish, Sat; Strom, Charles; Higgins, Joseph

    2015-12-01

    We compare molecular combing to Southern blot in the analysis of the facioscapulohumeral muscular dystrophy type 1 locus (FSHD1) on chromosome 4q35-qter (chr 4q) in genomic DNA specimens sent to a clinical laboratory for FSHD testing. A de-identified set of 87 genomic DNA specimens determined by Southern blot as normal (n = 71), abnormal with D4Z4 macrosatellite repeat array contractions (n = 7), indeterminate (n = 6), borderline (n = 2), or mosaic (n = 1) was independently re-analyzed by molecular combing in a blinded fashion. The molecular combing results were identical to the Southern blot results in 75 (86%) of cases. All contractions (n = 7) and mosaics (n = 1) detected by Southern blot were confirmed by molecular combing. Of the 71 samples with normal Southern blot results, 67 (94%) had concordant molecular combing results. The four discrepancies were either mosaic (n = 2), rearranged (n = 1), or borderline by molecular combing (n = 1). All indeterminate Southern blot results (n = 6) were resolved by molecular combing as either normal (n = 4), borderline (n = 1), or rearranged (n = 1). The two borderline Southern blot results showed a D4Z4 contraction on the chr 4qA allele and a normal result by molecular combing. Molecular combing overcomes a number of technical limitations of Southern blot by providing direct visualization of D4Z4 macrosatellite repeat arrays on specific chr 4q and chr 10q alleles and more precise D4Z4 repeat sizing. This study suggests that molecular combing has superior analytical validity compared to Southern blot for determining D4Z4 contraction size, detecting mosaicism, and resolving borderline and indeterminate Southern blot results. Further studies are needed to establish the clinical validity and diagnostic accuracy of these findings in FSHD. PMID:26420234

  9. Consensus brain-derived protein, extraction protocol for the study of human and murine brain proteome using both 2D-DIGE and mini 2DE immunoblotting.

    PubMed

    Fernandez-Gomez, Francisco-Jose; Jumeau, Fanny; Derisbourg, Maxime; Burnouf, Sylvie; Tran, Hélène; Eddarkaoui, Sabiha; Obriot, Hélène; Dutoit-Lefevre, Virginie; Deramecourt, Vincent; Mitchell, Valérie; Lefranc, Didier; Hamdane, Malika; Blum, David; Buée, Luc; Buée-Scherrer, Valérie; Sergeant, Nicolas

    2014-01-01

    Two-dimensional gel electrophoresis (2DE) is a powerful tool to uncover proteome modifications potentially related to different physiological or pathological conditions. Basically, this technique is based on the separation of proteins according to their isoelectric point in a first step, and secondly according to their molecular weights by SDS polyacrylamide gel electrophoresis (SDS-PAGE). In this report an optimized sample preparation protocol for little amount of human post-mortem and mouse brain tissue is described. This method enables to perform both two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mini 2DE immunoblotting. The combination of these approaches allows one to not only find new proteins and/or protein modifications in their expression thanks to its compatibility with mass spectrometry detection, but also a new insight into markers validation. Thus, mini-2DE coupled to western blotting permits to identify and validate post-translational modifications, proteins catabolism and provides a qualitative comparison among different conditions and/or treatments. Herein, we provide a method to study components of protein aggregates found in AD and Lewy body dementia such as the amyloid-beta peptide and the alpha-synuclein. Our method can thus be adapted for the analysis of the proteome and insoluble proteins extract from human brain tissue and mice models too. In parallel, it may provide useful information for the study of molecular and cellular pathways involved in neurodegenerative diseases as well as potential novel biomarkers and therapeutic targets. PMID:24747743

  10. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  11. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  12. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  13. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  14. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  15. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  16. The mouse ruby-eye 2(d) (ru2(d) /Hps5(ru2-d) ) allele inhibits eumelanin but not pheomelanin synthesis.

    PubMed

    Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa

    2013-09-01

    The novel mutation named ru2(d) /Hps5(ru2-d) , characterized by light-colored coats and ruby-eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr-related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2(d) allele affects pheomelanin synthesis in recessive yellow (e/Mc1r(e) ) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2(d) allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5-week-old mice from F2 generation between C57BL/10JHir (B10)-co-isogenic ruby-eye 2(d) and B10-congenic recessive yellow or agouti. Eumelanin content was decreased in ruby-eye 2(d) and ruby-eye 2(d) agouti mice, whereas pheomelanin content in ruby-eye 2(d) recessive yellow and ruby-eye 2(d) agouti mice did not differ from the corresponding Ru2(d) /- mice, suggesting that the ru2(d) allele inhibits eumelanin but not pheomelanin synthesis. PMID:23672590

  17. Western-blot detection of PrP**sc in archived paraffin-embedded brainstem from scrapie-affected sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scrapie is a naturally occurring fatal neurodegenerative disease of adult sheep and goats, one of a group of mammalian diseases known as transmissible spongiform encephalopathies or prion diseases. Immunoassays that identify disease-associated prion protein (PrP**Sc) are integral to the diagnosis o...

  18. Evaluation of two sets of immunohistochemical and Western blot confirmatory methods in the detection of typical and atypical BSE cases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To compare the ability of the Italian and the U.S. bovine spongiform encephalopathy (BSE) confirmatory protocols in the detection of classical (C-) and atypical - low (L-) and high (H-) type- BSE forms. Methods and Results: Obex samples from U.S. and Italian C-type BSE cases, a U.S. H-type and...

  19. Detection of the disease-associated isoform of the prion protein in formalin-fixed tissues by Western blot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clinical signs of prion disease are not pathognomonic and include a variety of differential diagnoses. Specific immune responses have not been detected in affected organisms, serological tests to obtain evidence for the presence of the infectious agent are not available, and nucleic acid-based detec...

  20. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  1. Multiplexed microfluidic blotting of proteins and nucleic acids by parallel, serpentine microchannels.

    PubMed

    He, Sha; Zhang, Yi; Wang, Pei; Xu, Xingzhi; Zhu, Kui; Pan, Wenying; Liu, Wenwen; Cai, Kaiyong; Sun, Jiashu; Zhang, Wei; Jiang, Xingyu

    2015-01-01

    This work develops a high-throughput, high-efficiency and straightforward microfluidic blotting method for analyzing proteins and nucleic acids. Sample solutions containing antibodies (for protein detection) or hybridization probes (for nucleic acid detection) are introduced into the parallel, serpentine microchannels to specifically recognize the immobilized targets on the substrate, achieving the identification of multiple targets in multiple samples simultaneously. The loading control, molecular weight markers, and antigen/antibody titration are designed and integrated into the microfluidic chip, thus allowing for the quantification of proteins and nucleic acids. Importantly, we could easily distinguish the adjacent blotting bands inside parallel microchannels, which may be difficult to achieve in conventional blotting. The small dimensions of microfluidic channels also help to reduce the amount of probing molecules and to accelerate the biochemical reaction. Our microfluidic blotting could bypass the steps of blocking and washing, further reducing the operation time and complexity. PMID:25342223

  2. Detection of DNA sequence polymorphisms in human genomic DNA by using denaturing gradient gel blots

    SciTech Connect

    Gray, M.R. )

    1992-02-01

    Denaturing gradient gel electrophoresis can detect sequence differences outside restriction-enzyme recognition sites. DNA sequence polymorphisms can be detected as restriction-fragment melting polymorphisms (RFMPs) in genomic DNA by using blots made from denaturing gradient gels. In contrast to the use of Southern blots to find sequence differences, denaturing gradient gel blots can detect differences almost anywhere, not just at 4-6-bp restriction-enzyme recognition sites. Human genomic DNA was digested with one of several randomly selected 4-bp recognition-site restriction enzymes, electrophoresed in denaturing gradient gels, and transferred to nylon membranes. The blots were hydridized with radioactive probes prepared from the factor VIII, type II collagen, insulin receptor, [beta][sub 2]-adrenergic receptor, and 21-hydroxylase genes; in unrelated individuals, several RFM's were found in fragments from every locus tested. No restriction map or sequence information was used to detect RFMP's.

  3. SOLID-PHASE ASSAY FOR THE PHOSPHORYLATION OF PROTEINS BLOTTED ON NITROCELLULOSE MEMBRANE FILTERS

    EPA Science Inventory

    A new procedure for the phosphorylation and assay of phosphoproteins is described. Proteins are solubilized from tissue samples, separated by polyacrylamide gel electrophoresis, transferred onto nitrocellulose membrane filters and the blotted polypeptides are phosphorylated with ...

  4. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  5. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  6. 2D Radiative Processes Near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Varnai, T.

    2012-01-01

    Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.

  7. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse. PMID:26988702

  8. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  9. Ion Transport in 2-D Graphene Nanochannels

    NASA Astrophysics Data System (ADS)

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  10. Parallel map analysis on 2-D grids

    SciTech Connect

    Berry, M.; Comiskey, J.; Minser, K.

    1993-12-31

    In landscape ecology, computer modeling is used to assess habitat fragmentation and its ecological iMPLications. Specifically, maps (2-D grids) of habitat clusters must be analyzed to determine number, sizes and geometry of clusters. Models prior to this study relied upon sequential Fortran-77 programs which limited the sizes of maps and densities of clusters which could be analyzed. In this paper, we present more efficient computer models which can exploit recursion or parallelism. Significant improvements over the original Fortran-77 programs have been achieved using both recursive and nonrecursive C implementations on a variety of workstations such as the Sun Sparc 2, IBM RS/6000-350, and HP 9000-750. Parallel implementations on a 4096-processor MasPar MP-1 and a 32-processor CM-5 are also studied. Preliminary experiments suggest that speed improvements for the parallel model on the MasPar MP-1 (written in MPL) and on the CM-5 (written in C using CMMD) can be as much as 39 and 34 times faster, respectively, than the most efficient sequential C program on a Sun Sparc 2 for a 512 map. An important goal in this research effort is to produce a scalable map analysis algorithm for the identification and characterization of clusters for relatively large maps on massively-parallel computers.

  11. 2D Turbulence with Complicated Boundaries

    NASA Astrophysics Data System (ADS)

    Roullet, G.; McWilliams, J. C.

    2014-12-01

    We examine the consequences of lateral viscous boundary layers on the 2D turbulence that arises in domains with complicated boundaries (headlands, bays etc). The study is carried out numerically with LES. The numerics are carefully designed to ensure all global conservation laws, proper boundary conditions and a minimal range of dissipation scales. The turbulence dramatically differs from the classical bi-periodic case. Boundary layer separations lead to creation of many small vortices and act as a continuing energy source exciting the inverse cascade of energy throughout the domain. The detachments are very intermittent in time. In free decay, the final state depends on the effective numerical resolution: laminar with a single dominant vortex for low Re and turbulent with many vortices for large enough Re. After very long time, the turbulent end-state exhibits a striking tendency for the emergence of shielded vortices which then interact almost elastically. In the forced case, the boundary layers allow the turbulence to reach a statistical steady state without any artificial hypo-viscosity or other large-scale dissipation. Implications are discussed for the oceanic mesoscale and submesoscale turbulence.

  12. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  13. Competing coexisting phases in 2D water.

    PubMed

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  14. 2-D wavelet with position controlled resolution

    NASA Astrophysics Data System (ADS)

    Walczak, Andrzej; Puzio, Leszek

    2005-09-01

    Wavelet transformation localizes all irregularities in the scene. It is most effective in the case when intensities in the scene have no sharp details. It is the case often present in a medical imaging. To identify the shape one has to extract it from the scene as typical irregularity. When the scene does not contain sharp changes then common differential filters are not efficient tool for a shape extraction. The new 2-D wavelet for such task has been proposed. Described wavelet transform is axially symmetric and has varied scale in dependence on the distance from the centre of the wavelet symmetry. The analytical form of the wavelet has been presented as well as its application for details extraction in the scene. Most important feature of the wavelet transform is that it gives a multi-scale transformation, and if zoom is on the wavelet selectivity varies proportionally to the zoom step. As a result, the extracted shape does not change during zoom operation. What is more the wavelet selectivity can be fit to the local intensity gradient properly to obtain best extraction of the irregularities.

  15. Accuracy of Reverse Dot-Blot PCR in Detection of Different β-Globin Gene Mutations.

    PubMed

    El-Fadaly, N; Abd-Elhameed, A; Abd-Elbar, E; El-Shanshory, M

    2016-06-01

    Prevention programs for β-thalassemia based on molecular diagnosis of heterozygous carriers and/or patients require the use of reliable mutation screening methods. The aim of this study was to compare between direct DNA sequencing, and reverse dot-blot PCR in detection of different β-globin gene mutations in Egyptian children with β-thalassemia. Forty children with β-thalassemia were subjected to mutation analysis, performed by both direct DNA sequencing and β-globin Strip Assay MED™ (based on reverse dot-blot PCR). The most frequent mutant alleles detected by reverse dot-blot PCR were; IVSI-110 G>A (31.25 %), IVS I-6 T > C (21.25 %), and IVS I-1 G>A (20 %). Relatively less frequent mutant alleles detected by reverse dot-blot PCR were "IVSII-1 G>A (5 %), IVSII-745 C>G (5 %), IVSII-848 C>A (2.5 %), IVSI-5 G>C (2.5 %), -87 C>G(2.5 %), and cd39 C>T (2.5 %)", While the genotypes of three patients (6 alleles 7.5 %) were not detected by reverse dot-blot PCR. Mutant alleles detected by direct DNA sequencing were the same as reverse dot-blot PCR method except it revealed the genotypes of 3 undetected patients (one patient was homozygous IVSI-110 G>A, and two patients were homozygous IVS I-1 G>A. Sensitivity of the reverse dot-blot PCR was 92.5 % when compared to direct DNA sequencing for detecting β-thalassemia mutations. Our results therefore suggest that, direct DNA sequencing may be preferred over reverse dot-blot PCR in critical diagnostic situations like genetic counseling for prenatal diagnosis. PMID:27065589

  16. 2-D Animation's Not Just for Mickey Mouse.

    ERIC Educational Resources Information Center

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  17. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  18. On 2D graphical representation of DNA sequence of nondegeneracy

    NASA Astrophysics Data System (ADS)

    Zhang, Yusen; Liao, Bo; Ding, Kequan

    2005-08-01

    Some two-dimensional (2D) graphical representations of DNA sequences have been given by Gates, Nandy, Leong and Mogenthaler, Randić, and Liao et al., which give visual characterizations of DNA sequences. In this Letter, we introduce a nondegeneracy 2D graphical representation of DNA sequence, which is different from Randić's novel 2D representation and Liao's 2D representation. We also present the nondegeneracy forms corresponding to the representations of Gates, Nandy, Leong and Mogenthaler.

  19. Generates 2D Input for DYNA NIKE & TOPAZ

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  20. 2d PDE Linear Symmetric Matrix Solver

    1983-10-01

    ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  1. 2d PDE Linear Asymmetric Matrix Solver

    1983-10-01

    ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  2. Ultrasonic 2D matrix PVDF transducer

    NASA Astrophysics Data System (ADS)

    Ptchelintsev, A.; Maev, R. Gr.

    2000-05-01

    During the past decade a substantial amount of work has been done in the area of ultrasonic imaging technology using 2D arrays. The main problems arising for the two-dimensional matrix transducers at megahertz frequencies are small size and huge count of the elements, high electrical impedance, low sensitivity, bad SNR and slower data acquisition rate. The major technological difficulty remains the high density of the interconnect. To solve these problems numerous approaches have been suggested. In the present work, a 24×24 elements (24 transmit+24 receive) matrix and a switching board were developed. The transducer consists of two 52 μm PVDF layers each representing a linear array of 24 elements placed one on the top of the other. Electrodes in these two layers are perpendicular and form the grid of 0.5×0.5 mm pitch. The layers are bonded together with the ground electrode being monolithic and located between the layers. The matrix is backed from the rear surface with an epoxy composition. During the emission, a linear element from the emitting layer generates a longitudinal wave pulse propagating inside the test object. Reflected pulses are picked-up by the receiving layer. During one transmit-receive cycle one transmit element and one receive element are selected by corresponding multiplexers. These crossed elements emulate a small element formed by their intersection. The present design presents the following advantages: minimizes number of active channels and density of the interconnect; reduces the electrical impedance of the element improving electrical matching; enables the transmit-receive mode; due to the efficient backing provides bandwidth and good time resolution; and, significantly reduces the electronics complexity. The matrix can not be used for the beam steering and focusing. Owing to this impossibility of focusing, the penetration depth is limited as well by the diffraction phenomena.

  3. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  4. A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data.

    PubMed

    Spiegel, M; Redel, T; Struffert, T; Hornegger, J; Doerfler, A

    2011-10-01

    Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling. PMID:21908904

  5. A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data

    NASA Astrophysics Data System (ADS)

    Spiegel, M.; Redel, T.; Struffert, T.; Hornegger, J.; Doerfler, A.

    2011-10-01

    Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling.

  6. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  7. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  8. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  9. Telomere length measurement by a novel Luminex-based assay: a blinded comparison to Southern blot.

    PubMed

    Pierce, Brandon L; Jasmine, Farzana; Roy, Shantanu; Zhang, Chenan; Aviv, Abraham; Hunt, Steven C; Ahsan, Habibul; Kibriya, Muhammad G

    2016-01-01

    Telomere length (TL) is a potential biomarker of aging and age-related disease risk. We recently published a novel Luminex-based method for high-throughput, low-cost TL measurement. Here we describe a blinded comparison of the Luminex method to Southern blot, the most precise TL measurement method. Luminex and Southern blot measurements for the same 50 DNA samples were taken in two independent laboratories; each sample was measured twice, several months apart. The inter-assay CV for Luminex ranged from 5.5 to 9.1 (depending on CV estimation method), and Southern blot CV from 1.0 to 1.7. Both measures were inversely associated with age. The correlation between the repeated measurements was 0.66 for Luminex and 0.97 for Southern blot. The correlation between Southern blot and Luminex was 0.65 in round 1 and 0.75 in round 2, and the relationship showed no evidence of non-linearity. Our results demonstrate that the Luminex assay is a valid and reproducible method for high-throughput TL measurement. The Luminex assay involves no DNA amplification, which may make Luminex an attractive alternative to PCR-based TL measurement. PMID:27186324

  10. Telomere length measurement by a novel Luminex-based assay: a blinded comparison to Southern blot

    PubMed Central

    Pierce, Brandon L; Jasmine, Farzana; Roy, Shantanu; Zhang, Chenan; Aviv, Abraham; Hunt, Steven C; Ahsan, Habibul; Kibriya, Muhammad G

    2016-01-01

    Telomere length (TL) is a potential biomarker of aging and age-related disease risk. We recently published a novel Luminex-based method for high-throughput, low-cost TL measurement. Here we describe a blinded comparison of the Luminex method to Southern blot, the most precise TL measurement method. Luminex and Southern blot measurements for the same 50 DNA samples were taken in two independent laboratories; each sample was measured twice, several months apart. The inter-assay CV for Luminex ranged from 5.5 to 9.1 (depending on CV estimation method), and Southern blot CV from 1.0 to 1.7. Both measures were inversely associated with age. The correlation between the repeated measurements was 0.66 for Luminex and 0.97 for Southern blot. The correlation between Southern blot and Luminex was 0.65 in round 1 and 0.75 in round 2, and the relationship showed no evidence of non-linearity. Our results demonstrate that the Luminex assay is a valid and reproducible method for high-throughput TL measurement. The Luminex assay involves no DNA amplification, which may make Luminex an attractive alternative to PCR-based TL measurement. PMID:27186324

  11. Differential CYP 2D6 Metabolism Alters Primaquine Pharmacokinetics

    PubMed Central

    Potter, Brittney M. J.; Xie, Lisa H.; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T.; Bandara Herath, H. M. T.; Dhammika Nanayakkara, N. P.; Tekwani, Babu L.; Walker, Larry A.; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.

    2015-01-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity. PMID:25645856

  12. A 2-D modeling contribution to river training design

    NASA Astrophysics Data System (ADS)

    Anselmo, V.; Coccato, M.; Frank, E.; Guiot, E.

    2003-04-01

    In the last ten years, two major floods (1994 and 2000) occurred in North-western Italy and a few questions arose about the hydraulic behavior of the streams as well about the choice and design of protection works. The River Po Authority is oriented to assign "design flows" in selected cross sections of the main rivers, as a design constraint to land management and river training in the upstream areas. Since the region has been fully developed in the last century and somewhere it is overcrowded, space for spreading flood flows is strongly reduced, while large partially developed areas are prone to flooding and residents ask for being protected. A first question regards the contribution to flood peak reduction of the still existing flood prone undeveloped areas beside the main channels, and a second question is about the best way to improve such a behavior. A 2-D unsteady model (Sobek, originated by Delft Hydraulics) was applied to a 25 km reach of the upper River Po. The effects of major floods was investigated, proving that the reduction of the peak flow is minor mainly because of the rather high slope (0.0015) and of the flood volume (500·106 m3). Aiming to enhance the role of the flooded areas, a few types of river training schemes were checked, with particular attention to the so called "Po system". Depth and extension of compartments are the main variables. Results are interesting, but must be evaluated in front of the cost-benefit analysis. The investigation is being extended to more steep stream reaches (up to 0.01), which are representative of the main upper Po tributaries.

  13. 2D density model of the Chinese continental lithosphere along a NW-SE transect

    NASA Astrophysics Data System (ADS)

    Šimonová, Barbora; Bielik, Miroslav; Dérerová, Jana

    2015-06-01

    This paper presents a 2D density model along a transect from NW to SE China. The model was first constructed by the transformation of seismic velocity to density, revealed by previous deep seismic soundings (DSS) investigations in China. Then, the 2D density model was updated using the GM-SYS software by fitting the computed to the observed gravity data. Based on the density distribution of anomalous layers we divided the Chinese continental crust along the transect into three regions: north-western, central and south-eastern. The first one includes the Junggar Basin, Tianshan and Tarim Basin. The second part consists of the Qilian Orogen, the Qaidam Basin and the Songpan Ganzi Basin. The third region is represented by the Yangtze and the Cathaysia blocks. The low velocity body (vp =5.2 - 6.2 km/s) at the junction of the North-western and Central parts at a depth between 21 - 31 km, which was discovered out by DSS, was also confirmed by our 2D density modelling.

  14. 2D to 3D to 2D Dimensionality Crossovers in Thin BSCCO Films

    NASA Astrophysics Data System (ADS)

    Williams, Gary A.

    2003-03-01

    With increasing temperature the superfluid fraction in very thin BSCCO films undergoes a series of dimensionality crossovers. At low temperatures the strong anisotropy causes the thermal excitations to be 2D pancake-antipancake pairs in uncoupled layers. At higher temperatures where the c-axis correlation length becomes larger than a layer there is a crossover to 3D vortex loops. These are initially elliptical, but as the 3D Tc is approached they become more circular as the anisotropy scales away, as modeled by Shenoy and Chattopadhyay [1]. Close to Tc when the correlation length becomes comparable to the film thickness there is a further crossover to a 2D Kosterlitz-Thouless transition, with a drop of the superfluid fraction to zero at T_KT which can be of the order of 1 K below T_c. Good agreement with this model is found for experiments on thin BSCCO 2212 films [2]. 1. S. R. Shenoy and B. Chattopadhyay, Phys. Rev. B 51, 9129 (1995). 2. K. Osborn et al., cond-mat/0204417.

  15. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  16. Differential Cytochrome P450 2D Metabolism Alters Tafenoquine Pharmacokinetics

    PubMed Central

    Vuong, Chau; Xie, Lisa H.; Potter, Brittney M. J.; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Nanayakkara, N. P. Dhammika; Tekwani, Babu L.; Walker, Larry A.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.; Smith, Bryan

    2015-01-01

    Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. PMID:25870069

  17. Line scanning system for direct digital chemiluminescence imaging of DNA sequencing blots

    SciTech Connect

    Karger, A.E.; Weiss, R.; Gesteland, R.F. Eccles Inst. of Human Genetics, Salt Lake City, UT )

    1993-07-01

    A cryogenically cooled charge-coupled device (CCD) camera equipped with an area CCD array is used in a line scanning system for low-light-level imaging of chemiluminescent DNA sequencing blots. Operating the CCD camera in time-delayed integration (TDI) mode results in continuous data acquisition independent of the length of the CCD array. Scanning is possible with a resolution of 1.4 line pairs/mm at the 50% level of the modulation transfer function. High-sensitivity, low-light-level scanning of chemiluminescent direct-transfer electrophoresis (DTE) DNA sequencing blots is shown. The detection of DNA fragments on the blot involves DNA-DNA hybridization with oligonucleotide-alkaline phosphatase conjugate and 1,2-dioxetane-based chemiluminescence. The width of the scan allows the recording of up to four sequencing reactions (16 lanes) on one scan. The scan speed of 52 cm/h used for the sequencing blots corresponds to a data acquisition rate of 384 pixels/s. The chemiluminescence detection limit on the scanned images is 3.9 [times] 10[sup [minus]18] mol of plasmid DNA. A conditional median filter is described to remove spikes caused by cosmic ray events from the CCD images. 39 refs., 9 refs.

  18. A Geometric Boolean Library for 2D Objects

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less

  19. A Geometric Boolean Library for 2D Objects

    SciTech Connect

    McBride, Corey L.; Yarberry, Victor; Jorgensen, Craig

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various file formats, are also provided in the library.

  20. AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode

    SciTech Connect

    Toomey, Aoife

    2005-01-06

    This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.

  1. Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung

    NASA Astrophysics Data System (ADS)

    Bergmeir, Christoph; Subramanian, Navneeth

    Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.

  2. Identification of olive pollen allergens using a fluorescence-based 2D multiplex method.

    PubMed

    Zienkiewicz, Krzysztof; Alché, Juan de Dios; Zienkiewicz, Agnieszka; Tormo, Alejandro; Castro, Antonio Jesús

    2015-04-01

    Olive (Olea europaea L.) pollen is a major health concern in the Mediterranean countries and some olive growing regions in America and Australia. The molecular variability of pollen allergens constitutes a handicap for commercial extract standardization, which is the base of current diagnosis and vaccination procedures. In this paper, we report a time-saving and plant material saving multiplex detection method for the rapid and simultaneous analysis of Ole e 1, Ole e 2, and Ole e 5 allergen polymorphism on a single blot. This method combines high-resolution 2DE techniques with high-sensitive fluorescence-based detection methods. Using this strategy, we were capable to identify a higher number of allergen forms compared with classical 1D approach. The use of fluorescent probes and the increased resolution of 2D blots avoided overlapping effects, and allow estimating the amount of individual allergen forms. In addition, the pattern and identity of the IgE-reactive proteins of either a population or individual patients allergic to olive pollen was also effortlessly determined in a single additional step. This flexible method might be extended to a higher number of olive allergens and cultivars, and is also applicable to other allergogenic plant species and sources. PMID:25640071

  3. Functional characterization of CYP2D6 enhancer polymorphisms

    PubMed Central

    Wang, Danxin; Papp, Audrey C.; Sun, Xiaochun

    2015-01-01

    CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. PMID:25381333

  4. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  5. Western Samoa.

    PubMed

    1985-12-01

    This discussion of Western Samoa, which lies 2575 km northeast of Auckland, New Zealand, focuses on the following: geography; the people; history; government; political conditions; the economy; foreign relations; and relations the US. The population of Western Samoa, as of 1985, totals 163,000 with an annual growth rate of 0.9%. The infant mortality rate is 13/1000; life expectancy is 65 years. The main islands are formed ranges of extinct volcanoes. Volcanic activity last occurred in 1911. More than 2000 years age, waves of Polynesians migrated from Southeast Asia to the Samoan Islands. Samoans are the 2nd largest Polynesian group, after the Maoris of New Zealand, and speak a Polynesian dialect. Samoans have tended to retain their traditional ways despite exposure to European influence for more than 150 years. Most Samoans live within the traditional social system based on an extended family group, headed by a chief. Western Samoans are Christian. Education is free but not compulsory. In 1967, 95% of the children of primary school age attended school. From 1947 to 1961, a series of constitutional advances, assisted by visits from UN missions, brought Western Samoa from dependent status to self-government and finally to independence. The 1960 constitution is based on the British pattern of parliamentary democracy, modified to take Samoan customs into account. The present head of state holds his position for life. Future heads of state will be elected by the Legislative Assembly for 5-year terms. The Parliament consists of the Legislative Assembly and the head of state. The Supreme Court is the superior court of record and has full jurisdiction in civil, criminal, and constitutional matters. The "matai" of chief system still dominates the politics of Western Samoa, although several political parties have been formed and seem to be taking root. The "matai" system is a predominantly conservative force but does provide for change. Western Samoa is predominantly

  6. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788

  7. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  8. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  9. Unitary quantum lattice gas representation of 2D quantum turbulence

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Vahala, George; Vahala, Linda; Soe, Min

    2011-05-01

    Quantum vortex structures and energy cascades are examined for two dimensional quantum turbulence (2D QT) using a special unitary evolution algorithm. The qubit lattice gas (QLG) algorithm, is employed to simulate the weakly-coupled Bose-Einstein condensate (BEC) governed by the Gross-Pitaevskii (GP) equation. A parameter regime is uncovered in which, as in 3D QT, there is a very short Poincare recurrence time. This short recurrence time is destroyed as the nonlinear interaction energy is increased. Energy cascades for 2D QT are considered to examine whether 2D QT exhibits the inverse cascades of 2D classical turbulence. In the parameter regime considered, the spectra analysis reveals no such dual cascades---dual cascades being a hallmark of 2D classical turbulence.

  10. CYP2D6 polymorphism in patients with eating disorders.

    PubMed

    Peñas-Lledó, E M; Dorado, P; Agüera, Z; Gratacós, M; Estivill, X; Fernández-Aranda, F; Llerena, A

    2012-04-01

    CYP2D6 polymorphism is associated with variability in drug response, endogenous metabolism (that is, serotonin), personality, neurocognition and psychopathology. The relationship between CYP2D6 genetic polymorphism and the risk of eating disorders (ED) was analyzed in 267 patients with ED and in 285 controls. A difference in the CYP2D6 active allele distribution was found between these groups. Women carrying more than two active genes (ultrarapid metabolizers) (7.5 vs 4.6%) or two (67 vs 58.9%) active genes were more frequent among patients with ED, whereas those with one (20.6 vs 30.2%) or zero active genes (4.9 vs 6.3%) were more frequent among controls (P<0.05). Although further research is needed, present findings suggest an association between CYP2D6 and ED. CYP2D6 allele distribution in patients with ED seems related to increased enzyme activity. PMID:20877302

  11. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices. PMID:27471306

  12. Application of saturation dye 2D-DIGE proteomics to characterize proteins modulated by oxidized low density lipoprotein treatment of human macrophages.

    PubMed

    Dupont, Annabelle; Chwastyniak, Maggy; Beseme, Olivia; Guihot, Anne-Laure; Drobecq, Hervé; Amouyel, Philippe; Pinet, Florence

    2008-08-01

    Macrophages are believed to play a crucial role in atherogenesis and atherosclerotic plaque progression, mainly through their role in the accumulation of large amounts of cholesteryl ester and foam cell formation after the uptake into the arterial intima of oxidized LDL (oxLDL) particles known to be proatherogenic. The aim of this study was to use a differential proteomic approach to identify the response of human monocyte-derived macrophages after treatment with oxLDL for 24 h. Mass spectrometry analysis (MALDI-TOF) of 2D-DIGE gels made it possible to identify 9 intracellular and 3 secreted proteins that were up-regulated, 11 intracellular and 1 secreted proteins that were down-regulated, and 2 secreted proteins that were induced. This methodological approach not only confirmed the differential expression levels of proteins known to be regulated by oxLDL in macrophages, such as catalase and pyruvate kinase, but also identified oxLDL modulation of other proteins for the first time, including heat shock proteins (HSP) and Actin cytoskeletal proteins. Semiquantitative Western blot confirmed their role. The HSPs identified included heat shock cognate 71 kDa protein (Hsc70), 75 kDa glucose-regulated protein (GRP75), heat shock 70 kDa protein (Hsp70), and 60 kDa (Hsp60) proteins. These highly conserved intracellular protein chaperones, commonly seen in atherosclerotic plaques, appear to participate in protection against cellular stress. Interestingly, oxLDL also modulated several F-Actin capping proteins involved in Actin polymerization and motility: gelsolin, CapG, and CapZ. In conclusion, we have demonstrated the effects of oxLDL in the modulation of several proteins in human macrophages and established a functional profile of the human macrophage during the atherosclerotic process. PMID:18549265

  13. Comparative proteome analysis of brown adipose tissue in obese C57BL/6J mice using iTRAQ-coupled 2D LC-MS/MS.

    PubMed

    Li, Juan; Zhao, Wei-Gang; Shen, Zhu-Fang; Yuan, Tao; Liu, Shuai-Nan; Liu, Quan; Fu, Yong; Sun, Wei

    2015-01-01

    High-fat diet (HFD) leads to the development of obesity accompanied by insulin resistance, which increases the risk of type 2 diabetes mellitus and cardiovascular disease. Brown adipose tissue (BAT) plays an essential role in energy metabolism, thus it will give us promising treatment targets through elucidating underlying mechanisms of BAT in obesity. In this study, female C57BL/6J mice were fed HFD or normal diet (ND) for 22 weeks. Hyperinsulinemic-euglycemic clamp was performed to evaluate insulin sensitivity, which was independently correlated with obesity. Using isobaric tag for relative and absolute quantification (iTRAQ) coupled with 2D LC-MS/MS, we quantitated 3048 proteins in BAT. As compared HFD with ND, we obtained 727 differentially expressed proteins. Functional analysis found that those proteins were mainly assigned to the pathway of mitochondrial function. In this pathway, carnitine O-palmitoyltransferase 2 (CPT2), uncoupling protein 1 (UCP1) and apoptosis-inducing factor 1 (AIF1) were up-regulated significantly by HFD, and they were confirmed by western blotting. The results indicated that HFD might induce the apoptosis of brown adipocytes via the up-regulated AIF1. Meanwhile, HFD also stimulated fatty acid β-oxidation and raised compensatory energy consuming through the increases of CPT2 and UCP1, respectively. However, the apoptosis of brown adipocytes might weaken the compensatory energy expenditure, and finally contribute to overweight/obesity. So, preventing the apoptosis of brown adipocytes may be the key target to treat obesity. PMID:25747866

  14. Optimization of northern analysis by vacuum-blotting, RNA-transfer visualization, and ultraviolet fixation

    SciTech Connect

    Kroczek, R.A.; Siebert, E. )

    1990-01-01

    We have optimized Northern analysis at several steps. Overnight electrophoresis was replaced by short gel runs and overnight capillary transfer by rapid vacuum-blotting adapted to Northern analysis. Short uv irradiation was used as a substitute for the usual RNA fixation by baking. Direct staining of RNA before electrophoresis made it possible to check RNA integrity and to evaluate the quality of the size separation immediately after electrophoresis. In this system, RNA transfer onto the membrane support could also be quickly assessed after the blotting step. The net result of all modifications was a doubling of the autoradiography signal compared with that obtained by modern Northern protocols. At the same time, the duration of the procedure was shortened drastically, allowing an autoradiography signal to be obtained within 24 h.

  15. Dot Blot Assay for Detection of Antidiacyltrehalose Antibodies in Tuberculous Patients

    PubMed Central

    Vera-Cabrera, Lucio; Rendon, Adrian; Diaz-Rodriguez, Manuel; Handzel, Vera; Laszlo, Adalbert

    1999-01-01

    A simple dot blot test with diacyltrehalose (DAT) as the antigen was developed to detect anti-DAT antibodies in tuberculous patients. To enhance antigen-antibody reaction detection, rabbit serum raised against human immunoglobulins was used prior to incubation with a protein A-colloidal gold complex. With the dot blot system, it was possible to obtain a sensitivity similar to that of enzyme-linked immunosorbent assay (ELISA) and a specificity of 97.14%, versus a specificity of 94.29% by the ELISA. We conclude that this simple and fast assay could be used in places where ELISA equipment is not easy available and that it might also be applicable with other Mycobacterium tuberculosis immunogenic antigens. PMID:10473518

  16. Solid-phase assay for the phosphorylation of proteins blotted on nitrocellulose membrane filters

    SciTech Connect

    Valtorta, F.; Schiebler, W.; Jahn, R.; Ceccarelli, B.; Greengard, P.

    1986-10-01

    A new procedure for the phosphorylation and assay of phosphoproteins is described. Proteins are solubilized from tissue samples, separated by polyacrylamide gel electrophoresis, transferred onto nitrocellulose membrane filters, and the blotted polypeptides are phyosphorylated with the catalytic subunit of cyclic AMP (adenosine 3':5'-monophosphate)-dependent protein kinase. The method was developed for the assay of dephosphosynapsin I, but it has also proven suitable for the phosphorylation of other proteins. The patterns of phosphorylation of tissue samples phosphorylated using the new method are similar to those obtained using the conventional test tube assay. Once phosphorylated, the adsorbed proteins can be digested with proteases and subjected to phosphopeptide mapping. The phosphorylated blotted proteins can also be analyzed by overlay techniques for the immunological detection of polypeptides.

  17. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples. PMID:27378648

  18. PCR versus Southern blot detection of somatic mosaicism in fragile X syndrome

    SciTech Connect

    Mueller, O.T.; Amar, M.J.A.; Gallardo, L.A.; Kousseff, B.G.

    1994-09-01

    The incidence of somatic mosaicism in males with fragile X syndrome has been reported to be as high as 17% of all clinically affected males. Mosaic cases usually do not show the cytogenetic fragile site at Xq27.3 and generally are fully affected according to the clinical criteria, although some subjects show somewhat milder symptoms. Detection of mosaicism relies on the identification of multiple distinct sizes of the CGG size anomaly in the 5{prime} untranslated exon of the FMR-1 gene. Some alleles identified are of a premutation size with trinucleotides numbering 50 to 80 X CGG. In addition, there is a greatly expanded allele with well over 200 copies of the CGG repeat detected. We screened 314 subjects for fragile X syndrome over a three year period. Cases were routinely screened by Southern blotting using the StB12.3 probe as well as by polymerase chain reaction. The PCR amplification products were electrophoresed in agarose, blotted and hybridized with a (CGG){sub 5} oligonucleotide followed by chemiluminescent detection. Seventeen males and 16 females were identified with a CGG expansion, including two males with premutations with repeat sizes of between 50 and 100 CGG trinucleotides and three cases exhibiting somatic mosaicism. The mosaic cases had both a premutation-sized allele and one or more expanded alleles of over 250 CGG copies. The mosaic cases were usually undetected with Southern blotting but easily identified with this PCR protocol. The relative proportion of the expanded allele as determined by scanning densitometry were 70%, 35%, and 5% in the three cases. All three cases were cytogenetically negative. The clinical severity of the mosaic cases was variable, with symptoms ranging from severe MR with most of the physical stigmata to mild learning disability. In our experience, Southern blotting allows more accurate sizing of the expanded allele; however, PCR is essential to identify cases that exhibit mosaicism.

  19. A slot blot procedure for the measurement of yessotoxins by a functional assay.

    PubMed

    Pierotti, Silvia; Albano, Clara; Milandri, Anna; Callegari, Federica; Poletti, Roberto; Rossini, Gian Paolo

    2007-01-01

    We originally developed a functional assay for the detection of yessotoxins (YTX) based on its capacity to induce dose-dependent changes in cellular levels of two marker proteins, consisting of E-cadherin and an E-cadherin fragment (ECRA100) in epithelial cells. The procedure is time-consuming and we have shortened it by a slot blot format, using antibodies recognizing two different epitopes of E-cadherin (HECD-1 and C20820), thereby discriminating those markers. The best performing membrane under our conditions, in terms of binding capacity and even absorption of proteins, was a positively charged nylon membrane. Treatment of the membrane with 0.5mug of Ab/ml was appropriate for maximal detection of antigens by our slot blot procedure with both HECD-1 and C20820 antibodies. The treatment of cells with YTX, resulting in a relative increase in the cellular levels of ECRA100, led to a dose-dependent increase of the signal detected by Ab HECD-1 without a concomitant increase in the signal detected by Ab C20820 in our slot blot format, and the concentrations of YTX were correlated to both the increase of the signal detected through Ab HECD-1 and to the decrease in the ratio of the signals obtained with the two Abs (C20820 over HECD-1). Upon analyses of extracts from cells treated with shellfish samples, we could detect and quantify YTX in naturally contaminated materials. The slot blot format of our functional assay allows a substantial shortening of its analytical step (about seven hr, as compared to the two working days of the original method), providing YTX measurements that are accurate but show large standard deviations. PMID:17055548

  20. Selection of a Clostridium perfringens type D epsilon toxin producer via dot-blot test.

    PubMed

    Gonçalves, Luciana A; Lobato, Zélia I P; Silva, Rodrigo O S; Salvarani, Felipe M; Pires, Prhiscylla S; Assis, Ronnie A; Lobato, Francisco C F

    2009-11-01

    Clostridium perfringens type D produces enterotoxemia, an enteric disease in ruminants, also known as pulpy kidney disease. Caused by epsilon toxin, enterotoxemia is a major exotoxin produced by this microorganism. Epsilon toxin is also the main component of vaccines against this enteric disorder. In this study, a standardized dot-blot was used to choose strains of C. perfringens type D that are producers of epsilon toxin. Clones producing epsilon toxin were chosen by limiting dilution; after three passages, lethal minimum dose titers were determined by soroneutralization test in mice. These clones produced epsilon toxin 240 times more concentrated than the original strain. The presence of the epsilon toxin gene (etx) was verified by polymerase chain reaction. All clones were positive, including those determined to be negative by dot-blot tests, suggesting that mechanisms in addition to the presence of the etx gene can influence toxin production. The dot-blot test was efficient for the selection of toxigenic colonies of C. perfringens type D and demonstrated that homogeneous populations selected from toxigenic cultures produce higher titers of epsilon toxin. PMID:19779698

  1. Western USA

    Atmospheric Science Data Center

    2014-05-15

    article title:  Western United States Beyond the Four Corners ... to examine Earth's land, oceans, atmosphere, ice, and life as a total integrated system. MISR was built and is managed by NASA's ... D.C. The Terra spacecraft is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. The MISR data were obtained from the NASA ...

  2. 2D vs. 3D mammography observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  3. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  4. NKG2D receptor and its ligands in host defense

    PubMed Central

    Lanier, Lewis L.

    2015-01-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808

  5. 1-Aryl-3-[4-(thieno[3,2-d]pyrimidin-4-yloxy)phenyl]ureas as VEGFR-2 Tyrosine Kinase Inhibitors: Synthesis, Biological Evaluation, and Molecular Modelling Studies

    PubMed Central

    Soares, Pedro; Costa, Raquel; Froufe, Hugo J. C.; Calhelha, Ricardo C.; Peixoto, Daniela; Ferreira, Isabel C. F. R.; Abreu, Rui M. V.; Soares, Raquel; Queiroz, Maria-João R. P.

    2013-01-01

    The vascular endothelial growth factor receptor-2 (VEGFR-2) is a tyrosine kinase receptor involved in the growth and differentiation of endothelial cells that are implicated in tumor-associated angiogenesis. In this study, novel 1-aryl-3-[4-(thieno[3,2-d]pyrimidin-4-yloxy)phenyl]ureas were synthesized and evaluated for the VEGFR-2 tyrosine kinase inhibition. Three of these compounds showed good VEGFR-2 inhibition presenting low IC50 values (150–199 nM) in enzymatic assays, showing also a significant proliferation inhibition of VEGF-stimulated human umbilical vein endothelial cells (HUVECs) at low concentrations (0.5–1 µM), using the Bromodeoxyuridine (BrdU) assay, not affecting cell viability. The determination of the total and phosphorylated (active) VEGFR-2 was performed by western blot, and it was possible to conclude that the compounds significantly inhibit the phosphorylation of the receptor at 1 µM pointing to their antiproliferative mechanism of action in HUVECs. The molecular rationale for inhibiting the tyrosine kinase domain of VEGFR-2 was also performed and discussed using molecular docking studies. PMID:23936775

  6. 2D constant-loss taper for mode conversion

    NASA Astrophysics Data System (ADS)

    Horth, Alexandre; Kashyap, Raman; Quitoriano, Nathaniel J.

    2015-03-01

    Proposed in this manuscript is a novel taper geometry, the constant-loss taper (CLT). This geometry is derived with 1D slabs of silicon embedded in silicon dioxide using coupled-mode theory (CMT). The efficiency of the CLT is compared to both linear and parabolic tapers using CMT and 2D finite-difference time-domain simulations. It is shown that over a short 2D, 4.45 μm long taper the CLT's mode conversion efficiency is ~90% which is 10% and 18% more efficient than a 2D parabolic or linear taper, respectively.

  7. Recent advances in 2D materials for photocatalysis

    NASA Astrophysics Data System (ADS)

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-03-01

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  8. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  9. Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee

    2015-07-01

    Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.

  10. Western Analysis of Histone Modifications (Aspergillus nidulans)

    PubMed Central

    Soukup, Alexandra; Keller, Nancy P.

    2016-01-01

    Western blotting allows for the specific detection of proteins and/or modifications of proteins by an antibody of interest. This protocol utilizes a crude nuclei extraction protocol for Aspergillus nidulans to enrich for histones and other nuclear proteins prior to gel electrophoresis. Post translational modifications of histones may then be easily detected. After electrophoresis, the selected antibodies are used to detect and quantify levels of the modifications of interest.

  11. Phenotyping breast cancer cell lines EM-G3, HCC1937, MCF7 and MDA-MB-231 using 2-D electrophoresis and affinity chromatography for glutathione-binding proteins

    PubMed Central

    2010-01-01

    Background Transformed phenotypes are common to cell lines derived from various cancers. Proteome profiling is a valuable tool that may reveal uncharacteristic cell phenotypes in transformed cells. Changes in expression of glutathione S-transferases (GSTs) and other proteins interacting with glutathione (GSH) in model cell lines could be of particular interest. Methods We compared the phenotypes of breast cell lines EM-G3, HCC1937, MCF7 and MDA-MB-231 using 2-D electrophoresis (2-DE). We further separated GSH-binding proteins from the cell lines using affinity chromatography with GSH-Sepharose 4B, performed 2-DE analysis and identified the main protein spots. Results Correlation coefficients among 2-DE gels from the cell lines were lower than 0.65, pointing to dissimilarity among the cell lines. Differences in primary constituents of the cytoskeleton were shown by the 2-D protein maps and western blots. The spot patterns in gels of GSH-binding fractions from primary carcinoma-derived cell lines HCC1937 and EM-G3 were similar to each other, and they differed from the spot patterns of cell lines MCF7 and MDA-MB-231 that were derived from pleural effusions of metastatic mammary carcinoma patients. Major differences in the expression of GST P1-1 and carbonyl reductase [NADPH] 1 were observed among the cell lines, indicating differential abilities of the cell lines to metabolize xenobiotics. Conclusions Our results confirmed the applicability of targeted affinity chromatography to proteome profiling and allowed us to characterize the phenotypes of four breast cancer cell lines. PMID:20731849

  12. Recent developments in 2D layered inorganic nanomaterials for sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  13. 2. D Street facade and rear (east) blank wall of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. D Street facade and rear (east) blank wall of parking garage. Farther east is 408 8th Street (National Art And Frame Company). - PMI Parking Garage, 403-407 Ninth Street, Northwest, Washington, District of Columbia, DC

  14. Collective excitations in 2D hard-disc fluid.

    PubMed

    Huerta, Adrian; Bryk, Taras; Trokhymchuk, Andrij

    2015-07-01

    Collective dynamics of a two-dimensional (2D) hard-disc fluid was studied by molecular dynamics simulations in the range of packing fractions that covers states up to the freezing. Some striking features concerning collective excitations in this system were observed. In particular, the short-wavelength shear waves while being absent at low packing fractions were observed in the range of high packing fractions, just before the freezing transition in a 2D hard-disc fluid. In contrast, the so-called "positive sound dispersion" typically observed in dense Lennard-Jones-like fluids, was not detected for the 2D hard-disc fluid. The ratio of specific heats in the 2D hard-disc fluid shows a monotonic increase with density approaching the freezing, resembling in this way the similar behavior in the vicinity of the Widom line in the case of supercritical fluids. PMID:25595625

  15. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956

  16. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  17. From weakly to strongly interacting 2D Fermi gases

    NASA Astrophysics Data System (ADS)

    Dyke, Paul; Fenech, Kristian; Lingham, Marcus; Peppler, Tyson; Hoinka, Sascha; Vale, Chris

    2014-05-01

    We study ultracold 2D Fermi gases of 6Li formed in a highly oblate trapping potential. The potential is generated by a cylindrically focused, blue detuned TEM01 mode laser beam. Weak magnetic field curvature provides highly harmonic confinement in the radial direction and we can readily produce single clouds with an aspect ratio of 230. Our experiments investigate the dimensional crossover from 3D to 2D for a two component Fermi gas in the Bose-Einstein Condensate to Bardeen Cooper Schrieffer crossover. Observation of an elbow in measurements of the cloud width vs. atom number is consistent with populating only the lowest transverse harmonic oscillator state for weak attractive interactions. This measurement is extended to the strongly interacting region using the broad Feshbach resonance at 832 G. We also report our progress towards measurement of the 2D equation of state for an interacting 2D Fermi gas via in-situ absorption imaging.

  18. Chemical vapour deposition: Transition metal carbides go 2D

    NASA Astrophysics Data System (ADS)

    Gogotsi, Yury

    2015-11-01

    The unique properties of 2D materials, such as graphene or transition metal dichalcogenides, have been attracting much attention in the past decade. Now, metallically conductive and even superconducting transition metal carbides are entering the game.

  19. Dominant 2D magnetic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1995-01-01

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  20. Dominant 2D magnetic turbulence in the solar wind

    SciTech Connect

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1996-07-20

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevectors aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of mid-inertial range magnetic spectra in the solar wind. The first test is based upon a characteristic difference between reduced magnetic power spectra in the two different directions perpendicular to the mean field. Such a difference is expected for 2D geometry but not for slab geometry. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant ({approx}85% by energy) 2D component in solar wind magnetic turbulence.

  1. Efficient framework for deformable 2D-3D registration

    NASA Astrophysics Data System (ADS)

    Fluck, Oliver; Aharon, Shmuel; Khamene, Ali

    2008-03-01

    Using 2D-3D registration it is possible to extract the body transformation between the coordinate systems of X-ray and volumetric CT images. Our initial motivation is the improvement of accuracy of external beam radiation therapy, an effective method for treating cancer, where CT data play a central role in radiation treatment planning. Rigid body transformation is used to compute the correct patient setup. The drawback of such approaches is that the rigidity assumption on the imaged object is not valid for most of the patient cases, mainly due to respiratory motion. In the present work, we address this limitation by proposing a flexible framework for deformable 2D-3D registration consisting of a learning phase incorporating 4D CT data sets and hardware accelerated free form DRR generation, 2D motion computation, and 2D-3D back projection.

  2. Computational Design of 2D materials for Energy Applications

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    2015-03-01

    Since the successful synthesis of graphene, tremendous efforts have been devoted to two-dimensional monolayers such as boron nitride (BN), silicene and MoS2. These 2D materials exhibit a large variety of physical and chemical properties with unprecedented applications. Here we report our recent studies of computational design of 2D materials for fuel cell applications which include hydrogen storage, CO2 capture, CO conversion and O2 reduction.

  3. Generating a 2D Representation of a Complex Data Structure

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  4. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  5. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  6. Fluorescent detection of Southern blots and PCR-based genetic typing tests

    SciTech Connect

    Mansfield, E.S.; Worley, J.M.; Zimmerman, P.A.

    1994-09-01

    The Southern blot is used to study gene organization, to identify disease-causing genomic rearrangements, or for typing RFLP markers in forensic, paternity, or prenatal diagnostic testing. Fluorescence offers a much greater dynamic range and a more linear response than film used in radioactive or chemiluminescent detection of RFLPs. We therefore investigated using the Fluorimager{trademark} 575 (Molecular Dynamics, Inc.) for analyzing Southern blots. Using a single-locus probe to D2S44 (YNH24) (Promega Corp.), we detect as little as 100 ng (0.05 attomole) genomic DNA. The alkaline phosphatase-labeled probe is detected using AttoPhos (JBL Scientific), and the developed membrane is scanned with the Fluorimager. Biotinylated hybridization probes can also be developed using a streptavidin-alkaline phosphatase conjugate and AttoPhos. The instrument scan parameters can be adjusted to prevent overexposure and accompanying loss of resolution in images of blots, gels, or 96-well microplates. We have used these other sample formats in PCR-based genetic typing assays. We use FluorKit DQS (Molecular Dynamics) to accurately quantify PCR template DNA (1-500 ng) in 96-well microplates scanned using the same instrument. Mutation detection assays run include heteroduplex gels (5% polyacrylamide, 2.7 M urea), short tandem repeat (STR) markers, amplified fragment length polymorphisms (AmpFLP), competitive priming PCR, and allele-specific oligotyping. These assays are run using either 1- or 2-color labeling. We detect unlabeled PCR products, such as the AmpFLP marker D1S80 (Perkin-Elmer) by post-staining gels for 10 minutes with SYBR Green 1 (Molecular Probes) and scanning the wet gel. The Fluorimager scans a 20 x 25 cm sample within three minutes, allowing rapid optimization of fluorescent protocols and high sample throughput.

  7. RNA Colony Blot Hybridization Method for Enumeration of Culturable Vibrio cholerae and Vibrio mimicus Bacteria▿

    PubMed Central

    Grim, Christopher J.; Zo, Young-Gun; Hasan, Nur A.; Ali, Afsar; Chowdhury, Wasimul B.; Islam, Atiqul; Rashid, Mohammed H.; Alam, Munirul; Morris, J. Glenn; Huq, Anwar; Colwell, Rita R.

    2009-01-01

    A species-specific RNA colony blot hybridization protocol was developed for enumeration of culturable Vibrio cholerae and Vibrio mimicus bacteria in environmental water samples. Bacterial colonies on selective or nonselective plates were lysed by sodium dodecyl sulfate, and the lysates were immobilized on nylon membranes. A fluorescently labeled oligonucleotide probe targeting a phylogenetic signature sequence of 16S rRNA of V. cholerae and V. mimicus was hybridized to rRNA molecules immobilized on the nylon colony lift blots. The protocol produced strong positive signals for all colonies of the 15 diverse V. cholerae-V. mimicus strains tested, indicating 100% sensitivity of the probe for the targeted species. For visible colonies of 10 nontarget species, the specificity of the probe was calculated to be 90% because of a weak positive signal produced by Grimontia (Vibrio) hollisae, a marine bacterium. When both the sensitivity and specificity of the assay were evaluated using lake water samples amended with a bioluminescent V. cholerae strain, no false-negative or false-positive results were found, indicating 100% sensitivity and specificity for culturable bacterial populations in freshwater samples when G. hollisae was not present. When the protocol was applied to laboratory microcosms containing V. cholerae attached to live copepods, copepods were found to carry approximately 10,000 to 50,000 CFU of V. cholerae per copepod. The protocol was also used to analyze pond water samples collected in an area of cholera endemicity in Bangladesh over a 9-month period. Water samples collected from six ponds demonstrated a peak in abundance of total culturable V. cholerae bacteria 1 to 2 months prior to observed increases in pathogenic V. cholerae and in clinical cases recorded by the area health clinic. The method provides a highly specific and sensitive tool for monitoring the dynamics of V. cholerae in the environment. The RNA blot hybridization protocol can also be

  8. Blotting Assisted by Heating and Solvent Extraction for DESI-MS Imaging

    NASA Astrophysics Data System (ADS)

    Cabral, Elaine C.; Mirabelli, Mario F.; Perez, Consuelo J.; Ifa, Demian R.

    2013-06-01

    Imprints of potato sprout ( Solanum tuberosum L.), gingko leaves (Gingko biloba L. ) and strawberries (Fragaria x ananassa Duch. ) were successfully imaged by desorption electrospray ionization mass spectrometry (DESI-MS) on TLC plates through blotting assisted by heating and/or solvent extraction. Ion images showing the distribution of significant compounds such as glycoalkaloid toxins in potato sprout, ginkgolic acids and flavonoids in ginkgo leaves, and sugars and anthocyanidin in strawberry were obtained. Practical implications of this work include analysis of a wide range of irregular or soft materials by different imprinting conditions without requiring the addition of matrices or use of specific kinds of surfaces.

  9. Neurofilament dot blot assays: novel means of assessing axon viability in culture.

    PubMed

    Hares, Kelly; Kemp, Kevin; Gray, Elizabeth; Scolding, Neil; Wilkins, Alastair

    2011-06-15

    Axonal structure and integrity are vital to overall neuronal maintenance and action potential propagation. Neurofilaments (NFs) are one of the main cytoskeletal components of axons and phosphorylation of NF subunits regulates speed of NF transport through axons and determines optimal axonal calibre required for signal propagation. Many previous studies of neuroprotective agents have focussed on neuronal viability in models of neurodegenerative disease, without specifically considering axon function as an indicator of neuronal damage. In this study, we have focused on developing novel assays for determining axon viability by measuring levels of neurofilament phosphorylation in cultured cortical neurons. The nitric oxide donor DETANONOate (NO) was used as an inflammatory insult and glial cell line-derived neurotrophic factor (GDNF) and superoxide dismutase (SOD) were tested as potential axonal protective agents. Using 'dot blot' methodologies, we show a decrease in NF phosphorylation in cortical neurons exposed to NO-mediated cell toxicity and an attenuation of NO-mediated changes in NF phosphorylation associated with GDNF and SOD treatment. These results correlated well with immunocytochemical counts. We propose therefore that the dot blot assay is a novel method for assessing axonal integrity in vitro and may play a useful role in the future for testing the effects of agents on axonal viability, providing a reliable and reproducible screening method for potential therapeutics for neurodegenerative diseases. PMID:21459112

  10. Visualization of heparin-binding proteins by ligand blotting with /sup 125/I-heparin

    SciTech Connect

    Cardin, A.D.; Witt, K.R.; Jackson, R.L.

    1984-03-01

    A ligand-blotting procedure which allows detection of heparin-binding proteins is described. Crude commercial heparin was fractionated by chromatography on a column of human plasma low-density lipoproteins immobilized to Sepharose CL-4B. Chromatography yielded an unbound and a bound fraction of heparin, designated URH and HRH, respectively. The HRH fraction was reacted with the N-hydroxysuccinimidyl ester of 3-(p-hydroxyphenyl)propionic acid and then labeled with /sup 125/I. Proteins were separated by 3-20% pore-gradient gel electrophoresis, transferred to nitrocellulose, and then assayed for their ability to bind /sup 125/I-labeled HRH. Human plasma apolipoproteins B-100, B-48, and E of chylomicrons, very low-density lipoproteins, and low-density lipoproteins bound the /sup 125/I-labeled HRH; the radiolabeled haparin did not bind to serum albumin, ferritin, catalase, and lactate dehydrogenase. The ligand-blotting procedure should facilitate the purification of heparin-binding domains from these proteins and, moreover may be applicable to the investigation of heparin-protein interactions in general. 15 references.

  11. Analysis of sperm antigens by sodium dodecyl sulfate gel/protein blot radioimmunobinding method

    SciTech Connect

    Lee, C.Y.G.; Huang, Y.S.; Hu, P.C.; Gomel, V.; Menge, A.C.

    1982-06-01

    A radioimmunobinding method based on the blotting of renatured proteins from sodium dodecyl sulfate gels on to nitrocellulose filter papers was developed to analyze the sperm antigens that elicit serum anti-sperm antibodies. In rabbits, serum anti-sperm antibodies were raised by immunization with homologous epididymal spermatozoa mixed with complete Freund's adjuvant. The raised antisera from either male or female rabbits were shown to react with three major sperm protein bands on sodium dodecyl sulfate gels with the corresponding molecular weights of about 70,000 +/- 5000, 14,000, and 13,000, respectively. In humans, the monoclonal antibodies against human sperm were raised by a hybridoma technique. Out of six independent hybrid cell lines that were generated, three of them were shown to secrete immunoglobulins that react with the same two protein bands on sodium dodecyl sulfate gels, which have the approximate molecular weight of 10,000. The same procedure was also used to analyze human serum samples that were shown to contain anti-sperm antibodies by the known techniques. Unique sperm antigens that elicit anti-sperm antibodies in humans were identified and correlated. The results of this study suggest that sodium dodecyl sulfate gel/protein blot radioimmunobinding method may be a sensitive and useful tool for the study of sperm antigens that elicit autoimmune responses and their association with human infertility.

  12. Western Canada

    SciTech Connect

    Hay, P.W.; Robertson, D.C.

    1981-10-01

    In 1980, a third successive all-time drilling record was set in western Canada, with 8865 wells being drilled, up 20% since 1979. Exploratory drilling increased 30%, to 3744 wells, and development drilling increased 14%, to 5121 wells. The exploratory success rate increased to 66% in 1980, based on 1017 oil discoveries and 1463 gas discoveries. The development success rate increased marginally to 89%, with 1774 oil discoveries and 2778 gas discoveries. Average well depth increased in all four western provinces, and total land sales reached the record $1 billion mark in Alberta and a record $78 million in Saskatchewan. British Columbia land sales declined slightly to $181 million. Alberta drilling activity continued in the deeper portions of the Alberta basin and foothills, with major gas discoveries at Hanlan, Big Mountain, Blackstone, and Elmworth. Significant oil discoveries were made in the West Pembina Nisku pinnacle reefs, in the Upper Devonian at Del Bonita and Eaglesham, and in the Lower Cretaceous glauconite river channels in southern Alberta between Countess and Grand Forks. British Columbia successes occurred as the Elmworth Deep Basin play spilled over into British Columbia with gas discoveries at Tupper and Steeprock. Gas finds were also made at West Sierra and Murray. The Arctic Islands continued to yield the largest discoveries. Two major successes occurred in the Beaufort Sea, in an oil and gas discovery by Esso at Issungnak and a reentry oil discovery by Dome at Tarsuit. However, 1980 will especially be remembered for the introduction of the federal government's National Energy Program during October, with new taxes on revenue, lower than expected wellhead price increases, and major emphasis on increasing Canadian ownership and self-sufficiency. Industry and provincial government reaction was highly critical, and a major downturn in exploration is expected in western Canada in 1981. 3 figures, 8 tables.

  13. Growth and Characterization of Silicon at the 2D Limit

    NASA Astrophysics Data System (ADS)

    Mannix, Andrew; Kiraly, Brian; Hersam, Mark; Guisinger, Nathan

    2015-03-01

    Because bulk silicon has dominated the development of microelectronics over the past 50 years, the recent interest in two-dimensional (2D) materials (e.g., graphene, MoS2, phosphorene, etc.) naturally raises questions regarding the growth and properties of silicon at the 2D limit. Utilizing atomic-scale, ultra-high vacuum (UHV) scanning tunneling microscopy (STM), we have investigated the 2D limits of silicon growth on Ag(111). In agreement with previous reports of sp2-bonded silicene phases, we observe the temperature-dependent evolution of ordered 2D phases. However, we attribute these to apparent Ag-Si surface alloys. At sufficiently high silicon coverage, we observe the precipitation of crystalline, sp3-bonded Si(111) domains. These domains are capped with a √3 honeycomb phase that is indistinguishable from the silver-induced √3 honeycomb-chained-trimer reconstruction on bulk Si(111). Further ex-situcharacterization with Raman spectroscopy, atomic force microscopy, cross-sectional transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy reveals that these sheets are ultrathin sheets of bulk-like, (111) oriented, sp3 silicon. Even at the 2D limit, scanning tunneling spectroscopy shows that these silicon nanosheets exhibit semiconducting electronic characteristics.

  14. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future. PMID:27506268

  15. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  16. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.

    PubMed

    Giraudeau, Patrick; Frydman, Lucio

    2014-01-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  17. Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Giraudeau, Patrick; Frydman, Lucio

    2014-06-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.

  18. Phosphorene: A New High-Mobility 2D Semiconductor

    NASA Astrophysics Data System (ADS)

    Liu, Han; Neal, Adam; Zhu, Zhen; Tomanek, David; Ye, Peide

    2014-03-01

    The rise of 2D crystals has opened various possibilities for future electrical and optical applications. MoS2 n-type transistors are showing great potential in ultra-scaled and low-power electronics. Here, we introduce phosphorene, a name we coined for 2D few-layer black phosphorus, a new 2D material with layered structure. We perform ab initio band structure calculations and show that the fundamental band gap depends sensitively on the number of layers. We observe transport behavior, which shows a mobility variation in the 2D plane. High on-current of 194 mA/mm, high hole mobility up to 286 cm2/V .s and on/off ratio up to 104 was achieved with phosphorene transistors at room temperature. Schottky barrier height at the metal/phosphorene interface was also measured as a function of temperature. We demonstrate a CMOS inverter with combination to MoS2 NMOS transistors, which shows great potential for semiconducting 2D crystals in future electronic, optoelectronic and flexible electronic devices.

  19. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  20. 2D materials for photon conversion and nanophotonics

    NASA Astrophysics Data System (ADS)

    Tahersima, Mohammad H.; Sorger, Volker J.

    2015-09-01

    The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.

  1. Perception-based reversible watermarking for 2D vector maps

    NASA Astrophysics Data System (ADS)

    Men, Chaoguang; Cao, Liujuan; Li, Xiang

    2010-07-01

    This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.

  2. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  3. Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings

    PubMed Central

    Rosenberger, Manuel; Eisenbeil, Waltraud; Schmauss, Bernhard; Hellmann, Ralf

    2015-01-01

    We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG) fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain. PMID:25686313

  4. Simultaneous 2D strain sensing using polymer planar Bragg gratings.

    PubMed

    Rosenberger, Manuel; Eisenbeil, Waltraud; Schmauss, Bernhard; Hellmann, Ralf

    2015-01-01

    We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG) fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain. PMID:25686313

  5. Focusing surface wave imaging with flexible 2D array

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan

    2016-04-01

    Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.

  6. 2D bifurcations and Newtonian properties of memristive Chua's circuits

    NASA Astrophysics Data System (ADS)

    Marszalek, W.; Podhaisky, H.

    2016-01-01

    Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.

  7. Microscale 2D separation systems for proteomic analysis

    PubMed Central

    Xu, Xin; Liu, Ke; Fan, Z. Hugh

    2012-01-01

    Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786

  8. Real-time 2-D temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy. PMID:19884075

  9. Design of the LRP airfoil series using 2D CFD

    NASA Astrophysics Data System (ADS)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.; Vronsky, Tomas; Gaudern, Nicholas

    2014-06-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils.

  10. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  11. Evaluation of 2D ceramic matrix composites in aeroconvective environments

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza

    1992-01-01

    An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.

  12. Radiative heat transfer in 2D Dirac materials

    DOE PAGESBeta

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  13. Nomenclature for human CYP2D6 alleles.

    PubMed

    Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M

    1996-06-01

    To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658

  14. The 2D large deformation analysis using Daubechies wavelet

    NASA Astrophysics Data System (ADS)

    Liu, Yanan; Qin, Fei; Liu, Yinghua; Cen, Zhangzhi

    2010-01-01

    In this paper, Daubechies (DB) wavelet is used for solution of 2D large deformation problems. Because the DB wavelet scaling functions are directly used as basis function, no meshes are needed in function approximation. Using the DB wavelet, the solution formulations based on total Lagrangian approach for two-dimensional large deformation problems are established. Due to the lack of Kroneker delta properties in wavelet scaling functions, Lagrange multipliers are used for imposition of boundary condition. Numerical examples of 2D large deformation problems illustrate that this method is effective and stable.

  15. Optical imaging systems analyzed with a 2D template.

    PubMed

    Haim, Harel; Konforti, Naim; Marom, Emanuel

    2012-05-10

    Present determination of optical imaging systems specifications are based on performance values and modulation transfer function results carried with a 1D resolution template (such as the USAF resolution target or spoke templates). Such a template allows determining image quality, resolution limit, and contrast. Nevertheless, the conventional 1D template does not provide satisfactory results, since most optical imaging systems handle 2D objects for which imaging system response may be different by virtue of some not readily observable spatial frequencies. In this paper we derive and analyze contrast transfer function results obtained with 1D as well as 2D templates. PMID:22614498

  16. 2dF grows up: Echidna for the AAT

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg

    2008-07-01

    We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.

  17. CH2D+, the Search for the Holy Grail

    NASA Astrophysics Data System (ADS)

    Roueff, Evelyne; Gerin, Maryvonne; Lis, Dariusz C.; Wootten, Alwyn; Marcelino, Nuria; Cernicharo, Jose; Tercero, Belen

    2013-10-01

    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of Kelvin, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+, and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.

  18. EM 2dV1.0.F

    2012-01-05

    Code is for a layered electric medium with 2d structure. Includes air-earth interface at node z=2.. The electric ex and ez fields are calculated on edges of elemental grid and magnetic field hy is calculated on the face of the elemental grid. The code allows for a layered earth with 2d structures. Solutions of coupled first order Maxwell's equations are solved in the two dimensional environment using a finite- difference scheme on a staggered spationamore » and temporal grid.« less

  19. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  20. On 2D bisection method for double eigenvalue problems

    SciTech Connect

    Ji, X.

    1996-06-01

    The two-dimensional bisection method presented in (SIAM J. Matrix Anal. Appl. 13(4), 1085 (1992)) is efficient for solving a class of double eigenvalue problems. This paper further extends the 2D bisection method of full matrix cases and analyses its stability. As in a single parameter case, the 2D bisection method is very stable for the tridiagonal matrix triples satisfying the symmetric-definite condition. Since the double eigenvalue problems arise from two-parameter boundary value problems, an estimate of the discretization error in eigenpairs is also given. Some numerical examples are included. 42 refs., 1 tab.

  1. Experimental validation of equations for 2D DIC uncertainty quantification.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2010-03-01

    Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.

  2. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  3. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR. PMID:27448174

  4. Comparative analysis of human papillomavirus detection by dot blot hybridisation and non-isotopic in situ hybridisation.

    PubMed Central

    Troncone, G; Anderson, S M; Herrington, C S; de Angelis, M L; Noell, H; Chimera, J A; O'D McGee, J

    1992-01-01

    AIMS: To determine the relative diagnostic performance of non-isotopic in situ hybridisation (NISH) and a dot-blot assay for detecting human papillomavirus (HPV) on exfoliated cervical cells; and to correlate the results with cytopathological assessment. METHODS: Cervical smears and cytological samples were obtained from 122 patients during the same clinical examination and the presence of HPV sequences determined by NISH and dot-blot analysis, respectively. RESULTS: Dot-blot analysis gave an autoradiographic signal in 15 of 121 (12.4%) cases, while NISH detected viral genomes in 38 of 114 (33.3%) cases. Even in the presence of koilocytosis, where vegetative replication of the virus occurs, NISH was positive in over twice as many cases as dot-blot analysis (NISH 90%, dot-blot 40%), while in smears within normal cytological limits, where the viral copy number is likely to be considerably lower, the differences were more striking (NISH 31%, dot-blot 5%). CONCLUSIONS: These data show that NISH on cytological smears is more sensitive than a standardised dot-blot hybridisation assay for detecting HPV infection in cytological material and is therefore a more appropriate screening tool. Images PMID:1331197

  5. Simultaneous Detection and Identification of Candida, Aspergillus, and Cryptococcus Species by Reverse Line Blot Hybridization

    PubMed Central

    Playford, E. Geoffrey; Kong, Fanrong; Sun, Ying; Wang, Hui; Halliday, Catriona; Sorrell, Tania C.

    2006-01-01

    We report on a reverse line blot (RLB) assay, utilizing fungal species-specific oligonucleotide probes to hybridize with internal transcribed spacer 2 region sequences amplified using a nested panfungal PCR. Reference and clinical strains of 16 Candida species (116 strains), Cryptococcus neoformans (five strains of Cryptococcus neoformans var. neoformans, five strains of Cryptococcus neoformans var. grubii, and six strains of Cryptococcus gatti), and five Aspergillus species (68 strains) were all correctly identified by the RLB assay. Additional fungal species (16 species and 26 strains) not represented on the assay did not exhibit cross-hybridization with the oligonucleotide probes. In simulated clinical specimens, the sensitivity of the assay for Candida spp. and Aspergillus spp. was 100.5 cells/ml and 102 conidia/ml, respectively. This assay allows sensitive and specific simultaneous detection and identification of a broad range of fungal pathogens. PMID:16517870

  6. Reexamination of alcohol dehydrogenase structural mutants in Drosophila using protein blotting

    SciTech Connect

    Hollocher, H.; Place, A.R.

    1987-06-01

    Using protein blotting and an immuno-overlay procedure, the authors have reexamined the cross-reacting material produced by ADH null-activity mutants generated with ethyl methanesulfonate (EMS). Of the 13 mutants, 11 have an immunodetectable polypeptide of wild-type size. The native and urea denatured isoelectric points (pI) establish that 7 of 13 of the mutations have no effect on protein charge. The electrophoretic mobilities of each variant on increasing percent acrylamide gels (Ferguson analysis), reveal that 9 of the 11 immunodetectable mutations have retained the ability form dimers under native conditions. None of the inactive mutant proteins has the ability to form the adduct-bound isozyme. The authors have found no correlation between protein pI and i vivo stability. The observed frequencies of specific charge class alterations do not dispute the propensity of G:A transitions previously found for EMS mutagenesis.

  7. Chronic nicotine treatment induces rat CYP2D in the brain but not in the liver: an investigation of induction and time course

    PubMed Central

    Yue, Jiang; Miksys, Sharon; Hoffmann, Ewa; Tyndale, Rachel F.

    2008-01-01

    Objectives CYP2D6 levels are higher in many brain regions of human smokers in comparison with nonsmokers. We have shown that CYP2D is expressed in rat brain regions and that enzyme activities correlate with protein and messenger ribonucleic acid (mRNA) levels. The aims of this study were to investigate whether nicotine can induce rat brain CYP2D, to determine the recovery time course of the induction and to investigate the mechanism of induction through measuring mRNA levels over time. Methods Rats were either treated once with either saline or nicotine (1 mg base/kg, subcutaneous and sacrificed 8 hours after the treatment or treated daily for 7 days and sacrificed 0.5–24 hours after the last injection. The CYP2D protein and mRNA levels were assessed by immunoblotting, immunocytochemistry and slot blotting. Results There were no changes in brain CYP2D levels after a single nicotine injection. Following chronic nicotine treatment, levels were maximal at 8 hours and returned to control levels by 12 hours after nicotine treatment in all 3 regions assessed. At 8 hours after nicotine treatment, CYP2D levels were significantly (p < 0.05) higher than levels in saline-treated control animals in the cerebellum (1.4-fold), hippocampus (1.3-fold) and striatum (3.2-fold); they tended to be higher in the frontal cortex, brainstem and thalamus. Induction was specific to brain region and cell, for example, in some striatal neurons and in neurons in the cerebellar granular layer and white matter. At no time was there any increase in brain CYP2D mRNA levels. Hepatic CYP2D levels were unchanged at all times tested. Conclusion Chronic nicotine treatment induced CYP2D enzymes in rat brain but not rat liver. The induction was maximal 8 hours after the last injection and did not involve alterations in mRNA, indicating a posttranscriptional mechanism. These findings suggest that, in humans exposed to nicotine, response to centrally acting drugs metabolized by CYP2D, susceptibility to

  8. Theory for spiralling ions for 2D FT-ICR and comparison with precessing magnetization vectors in 2D NMR.

    PubMed

    Sehgal, Akansha Ashvani; Pelupessy, Philippe; Rolando, Christian; Bodenhausen, Geoffrey

    2016-04-01

    Two-dimensional (2D) Fourier transform ion cyclotron resonance (FT-ICR) offers an approach to mass spectrometry (MS) that pursuits similar objectives as MS/MS experiments. While the latter must focus on one ion species at a time, 2D FT ICR can examine all possible correlations due to ion fragmentation in a single experiment: correlations between precursors, charged and neutral fragments. We revisited the original 2D FT-ICR experiment that has hitherto fallen short of stimulating significant analytical applications, probably because it is technically demanding. These shortcomings can now be overcome by improved FT-ICR instrumentation and computer hard- and software. We seek to achieve a better understanding of the intricacies of the behavior of ions during a basic two-dimensional ICR sequence comprising three simple monochromatic pulses. Through simulations based on Lorentzian equations, we have mapped the ion trajectories for different pulse durations and phases. PMID:26974979

  9. ELLIPT2D: A Flexible Finite Element Code Written Python

    SciTech Connect

    Pletzer, A.; Mollis, J.C.

    2001-03-22

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.

  10. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  11. Creation of a scalar potential in 2D dilaton gravity

    SciTech Connect

    Behrndt, K.

    1994-09-01

    The authors investigate quantum corrections of the 2-d dilaton gravity near the singularity. Their motivation comes from a s-wave reduced cosmological solution which is classically singular in the scalar fields (dilaton and moduli). As a result they find, that the singularity disappears and a dilaton/moduli potential is created.

  12. NKG2D ligands mediate immunosurveillance of senescent cells

    PubMed Central

    Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-01-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  13. Discrepant Results in a 2-D Marble Collision

    ERIC Educational Resources Information Center

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  14. Validation and testing of the VAM2D computer code

    SciTech Connect

    Kool, J.B.; Wu, Y.S. )

    1991-10-01

    This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs.

  15. On Regularity Criteria for the 2D Generalized MHD System

    NASA Astrophysics Data System (ADS)

    Jiang, Zaihong; Wang, Yanan; Zhou, Yong

    2016-06-01

    This paper deals with the problem of regularity criteria for the 2D generalized MHD system with fractional dissipative terms {-Λ^{2α}u} for the velocity field and {-Λ^{2β}b} for the magnetic field respectively. Various regularity criteria are established to guarantee smoothness of solutions. It turns out that our regularity criteria imply previous global existence results naturally.

  16. Dispersionless 2D Toda hierarchy, Hurwitz numbers and Riemann theorem

    NASA Astrophysics Data System (ADS)

    Natanzon, Sergey M.

    2016-01-01

    We describe all formal symmetric solutions of dispersionless 2D Toda hierarchy. This classification we use for solving of two classical problems: 1) The calculation of conformal mapping of an arbitrary simply connected domain to the standard disk; 2) Calculation of 2- Hurwitz numbers of genus 0.

  17. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  18. RADMC: A 2-D Continuum Radiative Transfer Tool

    NASA Astrophysics Data System (ADS)

    Dullemond, C. P.

    2011-08-01

    RADMC is a 2-D Monte-Carlo code for dust continuum radiative transfer circumstellar disks and envelopes. It is based on the method of Bjorkman & Wood (ApJ 2001, 554, 615), but with several modifications to produce smoother results with fewer photon packages.

  19. Kinematics of segregating granular mixtures in quasi-2D heaps

    NASA Astrophysics Data System (ADS)

    Fan, Yi; Umbanhowar, Paul; Ottino, Julio; Lueptow, Richard

    2012-11-01

    Segregation of granular mixtures of different sized particles in heap flow appears in a variety of contexts. Our recent experiments showed that when bi-disperse mixtures of different sized spherical particles fill a quasi-two dimensional (2D) silo, three different final heap configurations - stratified, segregated, and mixed - occur, depending on either 2D flow rate or heap rise velocity. However, since it is difficult to measure the kinematic details of the segregating granular mixtures in heap flow experimentally, the underlying mechanisms for how 2D flow rate or heap rise velocity influences final particle configurations have not been well understood. In this work, we use the discrete element method (DEM) to simulate heap flow of bi-disperse mixtures in experimental scale quasi-2D heaps. The final particle distributions in the simulations agree quantitatively with experiments. We measure several key kinematic properties of the segregating granular mixtures including the local flow rate, velocity, and flowing layer thickness. We correlate the characteristics of these kinematic properties with the local particle distributions of the mixtures. This provides new insights for understanding the mechanisms of segregation and stratification in heap flow including the linear decrease in flow rate and maximum velocity down the heap as well as the relatively constant flowing layer thickness along the length of the heap. Funded by Dow Chemical Co.

  20. On the phase diagram of 2d Lorentzian Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Anagnostopoulos, K. N.; Loll, R.

    The phase diagram of 2d Lorentzian quantum gravity (LQG) coupled to conformal matter is studied. A phase transition is observed at c = c crit ( {1}/{2} < c crit < 4) which can be thought of as the analogue of the c = 1 barrier of Euclidean quantum gravity (EQG). The non-trivial properties of the quantum geometry are discussed.

  1. Optoelectronics of supported and suspended 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bolotin, Kirill

    2014-03-01

    Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.

  2. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  3. NKG2D ligands mediate immunosurveillance of senescent cells.

    PubMed

    Sagiv, Adi; Burton, Dominick G A; Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-02-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  4. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  5. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  6. Resonances of piezoelectric plate with embedded 2D electron system

    NASA Astrophysics Data System (ADS)

    Suslov, A. V.

    2009-02-01

    A thin GaAs/AlGaAs plate was studied by the resonant ultrasound spectroscopy (RUS) in the temperature range 0.3-10 K and in magnetic fields of up to 18 T. The resonance frequencies and linewidths were measured. Quantum oscillations of both these values were observed and were associated with the quantum Hall effect occurred in the 2D electron system. For an analysis the sample was treated as a dielectric piezoelectric plate covered on one side by a film with a field dependent conductivity. Screening of the strain-driven electric field was changed due to the variation of the electron relaxation time in the vicinity of the metal-dielectric transitions caused by the magnetic field in the 2D system. The dielectric film does not affect properties of GaAs and thus the resonance frequencies are defined only by the elastic, piezoelectric and dielectric constants of GaAs. A metallic 2D sheet effectively screens the parallel electric field, so the ultrasound wave velocities and resonance frequencies decrease when the sheet conductivity increases. Oscillations of the resonance linewidth reflect the influence of the 2D system on the ultrasound attenuation, which is proportional to the linewidth. A metallic film as well as a dielectric one does not affect this attenuation but at some finite nonzero value of the conductivity the linewidth approaches a maximum. In high magnetic field each oscillation of the conductivity produces one oscillation of a resonance frequency and two linewidth peaks. The observed phenomena can be described by the relaxation type equations and the resonant ultrasound spectroscopy opens another opportunity for contactless studies on 2D electron systems.

  7. The physics of 2D microfluidic droplet ensembles

    NASA Astrophysics Data System (ADS)

    Beatus, Tsevi; Bar-Ziv, Roy H.; Tlusty, Tsvi

    2012-07-01

    We review non-equilibrium many-body phenomena in ensembles of 2D microfluidic droplets. The system comprises of continuous two-phase flow with disc-shaped droplets driven in a channel, at low Reynolds number of 10-4-10-3. The basic physics is that of an effective potential flow, governed by the 2D Laplace equation, with multiple, static and dynamic, boundaries of the droplets and the walls. The motion of the droplets induces dipolar flow fields, which mediate 1/r2 hydrodynamic interaction between the droplets. Summation of these long-range 2D forces over droplet ensembles converges, in contrast to the divergence of the hydrodynamic forces in 3D. In analogy to electrostatics, the strong effect of boundaries on the equations of motion is calculated by means of image dipoles. We first consider the dynamics of droplets flowing in a 1D crystal, which exhibits unique phonon-like excitations, and a variety of nonlinear instabilities-all stemming from the hydrodynamic interactions. Narrowing the channel results in hydrodynamic screening of the dipolar interactions, which changes salient features of the phonon spectra. Shifting from a 1D ordered crystal to 2D disordered ensemble, the hydrodynamic interactions induce collective density waves and shocks, which are superposed on single-droplet randomized motion and dynamic clustering. These collective modes originate from density-velocity coupling, whose outcome is a 1D Burgers equation. The rich observational phenomenology and the tractable theory render 2D droplet ensembles a suitable table-top system for studying non-equilibrium many-body physics with long-range interactions.

  8. 2d-LCA - an alternative to x-wires

    NASA Astrophysics Data System (ADS)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  9. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. PMID:27541575

  10. Detection and typing of human papillomavirus using the Vira Type "in situ" kit: comparison with a conventional dot blot technique.

    PubMed Central

    Faulkner-Jones, B E; Bellomarino, V M; Borg, A J; Orzeszko, K; Garland, S M

    1990-01-01

    A new commercial kit (Vira Type "in situ", Life Technologies, Inc., Molecular Diagnostics Division, Guithersburg, Maryland, USA) for the detection of human papillomavirus (HPV) types 6, 11, 16, 18, 31, 33 and 35 in routinely processed human anogenital tissue was compared with a conventional dot blot assay for HPV 6, 11, 16 and 18. Both systems use double-stranded genomic DNA probes for the detection of type specific HPV DNA. The probes used on the dot blots were labelled with 32P and visualised autoradiographically. The Vira Type probes were labelled with biotin and visualised using a streptavidin-alkaline phosphatase conjugate with NBT-BCIP substrate. Biopsy specimens from the cervix, vagina, and vulva of 46 women were processed by both methods and compared. The histological diagnoses ranged from benign changes, to dysplasia, and invasive carcinoma. Overall, 50% of biopsy specimens were positive for HPV DNA by dot blot hybridisation; only 39% were positive by Vira Type in situ hybridisation. Three of the specimens positive by the Vira Type "in situ" kit showed no cross hybridisation and were the same HPV type as the dot blot. A further 13 showed hybridisation, but the showed cross hybridisation, but the to the dot blot results. One biopsy specimen was positive for different HPV types by the two tests and one was positive by Vira Type and negative by dot blot. Six biopsy specimens were negative by Vira Type but positive by dot blot. It is concluded that the Vira Type "in situ" kit has a similar specificity but lower sensitivity than the dot blot hybridisation method for the detection of HPV DNA. Images PMID:2175755

  11. Exploring the Foundation of Genomics: A Northern Blot Reference set for the Comparative Analysis of Transcript Profiling Technologies

    PubMed Central

    Kemmer, Danielle; Faxén, Margareta; Hodges, Emily; Lim, Jonathan; Herzog, Elena; Ljungström, Elsebrit; Lundmark, Anders; Olsen, Mary K.; Podowski, Raf; Sonnhammer, Erik L. L.; Nilsson, Peter; Reimers, Mark; Lenhard, Boris; Roberds, Steven L.; Wahlestedt, Claes; Höög, Christer; Agarwal, Pankaj

    2004-01-01

    In this paper we aim to create a reference data collection of Northern blot results and demonstrate how such a collection can enable a quantitative comparison of modern expression profiling techniques, a central component of functional genomics studies. Historically, Northern blots were the de facto standard for determining RNA transcript levels. However, driven by the demand for analysis of large sets of genes in parallel, high-throughput methods, such as microarrays, dominate modern profiling efforts. To facilitate assessment of these methods, in comparison to Northern blots, we created a database of published Northern results obtained with a standardized commercial multiple tissue blot (dbMTN). In order to demonstrate the utility of the dbMTN collection for technology comparison, we also generated expression profiles for genes across a set of human tissues, using multiple profiling techniques. No method produced profiles that were strongly correlated with the Northern blot data. The highest correlations to the Northern blot data were determined with microarrays for the subset of genes observed to be specifically expressed in a single tissue in the Northern analyses. The database and expression profiling data are available via the project website (http://www.cisreg.ca). We believe that emphasis on multitechnique validation of expression profiles is justified, as the correlation results between platforms are not encouraging on the whole. Supplementary material for this article can be found at: http://www.interscience.wiley.com/jpages/1531-6912/suppmat PMID:18629180

  12. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong

    2015-09-01

    Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners. PMID:26025508

  13. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali

    2016-02-01

    Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.

  14. 2-D linear motion system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology

  15. 2-D Coda and Direct Wave Attenuation Tomography in Northern Italy

    SciTech Connect

    Morasca, P; Mayeda, K; Gok, R; Phillips, W S; Malagnini, L

    2007-10-17

    A 1-D coda method was proposed by Mayeda et al. (2003) in order to obtain stable seismic source moment-rate spectra using narrowband coda envelope measurements. That study took advantage of the averaging nature of coda waves to derive stable amplitude measurements taking into account all propagation, site, and Sto-coda transfer function effects. Recently this methodology was applied to micro earthquake data sets from three sub-regions of northern Italy (i.e., western Alps, northern Apennines and eastern Alps). Since the study regions were small, ranging between local-to-near-regional distances, the simple 1-D path assumptions used in the coda method worked very well. The lateral complexity of this region would suggest, however, that a 2-D path correction might provide even better results if the datasets were combined, especially when paths traverse larger distances and complicated regions. The structural heterogeneity of northern Italy makes the region ideal to test the extent to which coda variance can be reduced further by using a 2-D Q tomography technique. The approach we use has been developed by Phillips et al. (2005) and is an extension of previous amplitude ratio techniques to remove source effects from the inversion. The method requires some assumptions such as isotropic source radiation which is generally true for coda waves. Our results are compared against direct Swave inversions for 1/Q and results from both share very similar attenuation features that coincide with known geologic structures. We compare our results with those derived from direct waves as well as some recent results from northern California obtained by Mayeda et al. (2005) which tested the same tomographic methodology applied in this study to invert for 1/Q. We find that 2-D coda path corrections for this region significantly improve upon the 1-D corrections, in contrast to California where only a marginal improvement was observed. We attribute this difference to stronger lateral

  16. MPEG-4-based 2D facial animation for mobile devices

    NASA Astrophysics Data System (ADS)

    Riegel, Thomas B.

    2005-03-01

    The enormous spread of mobile computing devices (e.g. PDA, cellular phone, palmtop, etc.) emphasizes scalable applications, since users like to run their favorite programs on the terminal they operate at that moment. Therefore appliances are of interest, which can be adapted to the hardware realities without loosing a lot of their functionalities. A good example for this is "Facial Animation," which offers an interesting way to achieve such "scalability." By employing MPEG-4, which provides an own profile for facial animation, a solution for low power terminals including mobile phones is demonstrated. From the generic 3D MPEG-4 face a specific 2D head model is derived, which consists primarily of a portrait image superposed by a suited warping mesh and adapted 2D animation rules. Thus the animation process of MPEG-4 need not be changed and standard compliant facial animation parameters can be used to displace the vertices of the mesh and warp the underlying image accordingly.

  17. In search of a 2-dB coding gain

    NASA Technical Reports Server (NTRS)

    Yuen, J. H.; Vo, Q. D.

    1985-01-01

    A recent code search found a (15,1/5), a (14,1/6), and a (15,1/6) convolutional code which, when concatenated with a 10-bit (1023,959) Reed-Solomon (RS) code, achieves a bit-error rate (BER) of 0.000001 at a bit signal-to-noise ratio (SNR) of 0.50 dB, 0.47 dB and 0.42 B, respectively. All of these three codes outperform the Voyager communication system, our baseline, which achieves a BER of 10.000001 at bit SNR of 2.53 db, by more than 2 dB. The 2 dB coding improvement goal was exceeded.

  18. Critical Dynamics in Quenched 2D Atomic Gases

    NASA Astrophysics Data System (ADS)

    Larcher, F.; Dalfovo, F.; Proukakis, N. P.

    2016-05-01

    Non-equilibrium dynamics across phase transitions is a subject of intense investigations in diverse physical systems. One of the key issues concerns the validity of the Kibble-Zurek (KZ) scaling law for spontaneous defect creation. The KZ mechanism has been recently studied in cold atoms experiments. Interesting open questions arise in the case of 2D systems, due to the distinct nature of the Berezinskii-Kosterlitz-Thouless (BKT) transition. Our studies rely on the stochastic Gross-Pitaevskii equation. We perform systematic numerical simulations of the spontaneous emergence and subsequent dynamics of vortices in a uniform 2D Bose gas, which is quenched across the BKT phase transition in a controlled manner, focusing on dynamical scaling and KZ-type effects. By varying the transverse confinement, we also look at the extent to which such features can be seen in current experiments. Financial support from EPSRC and Provincia Autonoma di Trento.

  19. Graphical representations of DNA as 2-D map

    NASA Astrophysics Data System (ADS)

    Randić, Milan

    2004-03-01

    We describe a modification of the compact representation of DNA sequences which transforms the sequence into a 2-D diagram in which the 'spots' have integer coordinates. As a result the accompanying numerical characterization of DNA is quite simple and straightforward. This is an important advantage, particularly when considering DNA sequences having thousands of nucleic bases. The approach starts with the compact representation of DNA based on zigzag spiral template used for placing 'spots' associated with binary codes of the nucleic acids and subsequent suppression of the underlying zigzag curve. As a result, a 2-D map is formed in which all 'spots' have integer coordinates. By using only distances between spots having the same x or the same y coordinate one can construct a 'map profile' using integer arithmetic. The approach is illustrated on DNA sequences of the first exon of human β-globin.

  20. Interpretation of Magnetic Phase Anomalies over 2D Tabular Bodies

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, M.

    2016-05-01

    In this study, phase angle (inverse tangent of the ratio of the horizontal to vertical gradients of magnetic anomalies) profile over two-dimensional tabular bodies has been subjected to detailed analysis for determining the source parameters. Distances between certain characteristic positions on this phase curve are related to the parameters of two-dimensional tabular magnetic sources. In this paper, I have derived the mathematical expressions for these relations. It has been demonstrated here that for locating the origin of the 2D tabular source, knowledge on the type of the model (contact, sheet, dyke, and fault) is not necessary. A procedure is evolved to determine the location, depth, width and magnetization angle of the 2D sources from the mathematical expressions. The method is tested on real field data. The effect of the overlapping bodies is also discussed with two synthetic examples. The interpretation technique is developed for contact, sheet, dike and inclined fault bodies.

  1. Semiregular solid texturing from 2D image exemplars.

    PubMed

    Du, Song-Pei; Hu, Shi-Min; Martin, Ralph R

    2013-03-01

    Solid textures, comprising 3D particles embedded in a matrix in a regular or semiregular pattern, are common in natural and man-made materials, such as brickwork, stone walls, plant cells in a leaf, etc. We present a novel technique for synthesizing such textures, starting from 2D image exemplars which provide cross-sections of the desired volume texture. The shapes and colors of typical particles embedded in the structure are estimated from their 2D cross-sections. Particle positions in the texture images are also used to guide spatial placement of the 3D particles during synthesis of the 3D texture. Our experiments demonstrate that our algorithm can produce higher quality structures than previous approaches; they are both compatible with the input images, and have a plausible 3D nature. PMID:22614330

  2. FPCAS2D user's guide, version 1.0

    NASA Astrophysics Data System (ADS)

    Bakhle, Milind A.

    1994-12-01

    The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.

  3. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  4. 2D FEM Heat Transfer & E&M Field Code

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more » By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  5. 2D ice from first principles: structures and phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Schusteritsch, Georg; Pickard, Chris J.; Salzmann, Christoph G.; Michaelides, Angelos

    Despite relevance to disparate areas such as cloud microphysics and tribology, major gaps in the understanding of the structures and phase transitions of low-dimensional water ice remain. Here we report a first principles study of confined 2D ice as a function of pressure. We find that at ambient pressure hexagonal and pentagonal monolayer structures are the two lowest enthalpy phases identified. Upon mild compression the pentagonal structure becomes the most stable and persists up to ca. 2 GPa at which point square and rhombic phases are stable. The square phase agrees with recent experimental observations of square ice confined within graphene sheets. We also find a double layer AA stacked square ice phase, which clarifies the difference between experimental observations and earlier force field simulations. This work provides a fresh perspective on 2D confined ice, highlighting the sensitivity of the structures observed to both the confining pressure and width.

  6. 2-D and 3-D computations of curved accelerator magnets

    SciTech Connect

    Turner, L.R.

    1991-01-01

    In order to save computer memory, a long accelerator magnet may be computed by treating the long central region and the end regions separately. The dipole magnets for the injector synchrotron of the Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), employ magnet iron consisting of parallel laminations, stacked with a uniform radius of curvature of 33.379 m. Laplace's equation for the magnetic scalar potential has a different form for a straight magnet (x-y coordinates), a magnet with surfaces curved about a common center (r-{theta} coordinates), and a magnet with parallel laminations like the APS injector dipole. Yet pseudo 2-D computations for the three geometries give basically identical results, even for a much more strongly curved magnet. Hence 2-D (x-y) computations of the central region and 3-D computations of the end regions can be combined to determine the overall magnetic behavior of the magnets. 1 ref., 6 figs.

  7. 2D FEM Heat Transfer & E&M Field Code

    SciTech Connect

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  8. MasterChem: cooking 2D-polymers.

    PubMed

    Rodríguez-San-Miguel, D; Amo-Ochoa, P; Zamora, F

    2016-03-18

    2D-polymers are still dominated by graphene and closely related materials such as boron nitride, transition metal sulphides and oxides. However, the rational combination of molecules with suitable design is already showing the high potential of chemistry in this new research field. The aim of this feature article is to illustrate, and provide some perspectives, the current state-of-the-art in the field of synthetic 2D-polymers showing different alternatives to prepare this novel type of polymers based on the rational use of chemistry. This review comprises a brief revision of the essential concepts, the strategies of preparation following the two general approaches, bottom-up and top-down, and a revision of the promising seminal properties showed by some of these nanomaterials. PMID:26790817

  9. Controlling avalanche criticality in 2D nano arrays

    NASA Astrophysics Data System (ADS)

    Zohar, Y. C.; Yochelis, S.; Dahmen, K. A.; Jung, G.; Paltiel, Y.

    2013-05-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  10. A 2D MEMS stage for optical applications

    NASA Astrophysics Data System (ADS)

    Ataman, Caglar; Petremand, Yves; Noell, Wilfried; Ürey, Hakan; Epitaux, Marc; de Rooij, Nico F.

    2006-04-01

    A 2D MEMS platform for a microlens scanner application is reported. The platform is fabricated on an SOI wafer with 50 μm thick device layer. Entire device is defined with a single etching step on the same layer. Through four S-shaped beams, the device is capable of producing nonlinear 2D motion from linear 1D translation of two pairs of comb actuator sets. The device has a clear aperture of 2mm by 2mm, which is hallowed from the backside for micro-optics assembly. In this paper, a numerical device model and its validation via experimental characterization results are presented. Integration of the micro-optical components with the stage is also discussed. Additionally, a new driving scheme to minimize the settling time of the device in DC operation is explored.

  11. A Better 2-D Mechanical Energy Conservation Experiment

    NASA Astrophysics Data System (ADS)

    Paesler, Michael

    2012-02-01

    A variety of simple classical mechanics energy conservation experiments are used in teaching laboratories. Typical one-dimensional (1-D) setups may involve falling balls or oscillating springs. Many of these can be quite satisfying in that students can confirm—within a few percent—that mechanical energy is conserved. Students generally have little trouble identifying discrepancies such as the loss of a few percent of the gravitational potential energy due to air friction encountered by a falling ball. Two-dimensional (2-D) systems can require more sophisticated analysis for higher level laboratories, but such systems often incorporate complicating components that can make the exercise academically incomplete and experimentally less accurate. The following describes a simple 2-D energy conservation experiment based on the popular "Newton's Cradle" toy that allows students to account for nearly all of the mechanical energy in the system in an academically complete analysis.

  12. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Mak, Kin Fai; Shan, Jie

    2016-04-01

    Recent advances in the development of atomically thin layers of van der Waals bonded solids have opened up new possibilities for the exploration of 2D physics as well as for materials for applications. Among them, semiconductor transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se), have bandgaps in the near-infrared to the visible region, in contrast to the zero bandgap of graphene. In the monolayer limit, these materials have been shown to possess direct bandgaps, a property well suited for photonics and optoelectronics applications. Here, we review the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties.

  13. Thermal conductivity measurements in a 2D Yukawa system

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Ivlev, A.; Zhdanov, S.; Morfill, G.; Goree, J.; Piel, A.

    2007-03-01

    Thermal conductivity was measured for a 2D Yukawa system. First, we formed a monolayer suspension of microspheres in a plasma, i.e., a dusty plasma, which is like a colloidal suspension, but with an extremely low volume fraction and a partially-ionized rarefied gas instead of solvent. In the absence of manipulation, the suspension forms a 2D triangular lattice. To melt this lattice and form a liquid, we used a laser-heating method. Two focused laser beams were moved rapidly around in the monolayer. The kinetic temperature of the particles increased with the laser power applied, and above a threshold a melting transition occurred. We used digital video microscopy for direct imaging and particle tracking. The spatial profiles of the particle kinetic temperature were calculated. Using the heat transport equation with an additional term to account for the energy dissipation due to the gas drag, we analyzed the temperature distribution to derive the thermal conductivity.

  14. Performance of PCR-reverse blot hybridization assay for detection of rifampicin-resistant Mycobacterium leprae.

    PubMed

    Wang, Hye-young; Kim, Hyunjung; Kim, Yeun; Bang, Hyeeun; Kim, Jong-Pill; Hwang, Joo Hwan; Cho, Sang-Nae; Kim, Tae Ue; Lee, Hyeyoung

    2015-10-01

    Drug resistance in Mycobacterium leprae is a significant problem in countries where leprosy is endemic. A sensitive, specific, and high-throughput reverse blot hybridization assay (REBA) for the detection of genotypic resistance to rifampicin (RIF) was designed and evaluated. It has been shown that resistance to RIF in M. leprae involves mutations in the rpoB gene encoding the -subunit of the RNA polymerase. The PCR-REBA simultaneously detects both 6 wild-type regions and 5 different mutations (507 AGC, 513 GTG, 516 TAT, 531 ATG, and 531 TTC) including the most prevalent mutations at positions 507 and 531. Thirty-one clinical isolates provided by Korea Institute of Hansen-s Disease were analyzed by PCR-REBA with RIF resistance of rpoB gene. As a result, missense mutations at codons 507 AGC and 531 ATG with 2-nucleotide substitutions were found in one sample, and a missense mutation at codon 516 TAT and ΔWT6 (deletion of 530-534) was found in another sample. These cases were confirmed by DNA sequence analysis. This rapid, simple, and highly sensitive assay provides a practical alternative to sequencing for genotypic evaluation of RIF resistance in M. leprae. PMID:26428919

  15. Analysis of common mitochondrial DNA mutations by allele-specific oligonucleotide and Southern blot hybridization.

    PubMed

    Tang, Sha; Halberg, Michelle C; Floyd, Kristen C; Wang, Jing

    2012-01-01

    Mitochondrial disorders are clinically and genetically heterogeneous. There are a set of recurrent point mutations in the mitochondrial DNA (mtDNA) that are responsible for common mitochondrial diseases, including MELAS (mitochondrial encephalopathy, lactic acidosis, stroke-like episodes), MERRF (myoclonic epilepsy and ragged red fibers), LHON (Leber's hereditary optic neuropathy), NARP (neuropathy, ataxia, retinitis pigmentosa), and Leigh syndrome. Most of the pathogenic mtDNA point mutations are present in the heteroplasmic state, meaning that the wild-type and mutant-containing mtDNA molecules are coexisting. Clinical heterogeneity may be due to the degree of mutant load (heteroplasmy) and distribution of heteroplasmic mutations in affected tissues. Additionally, Kearns-Sayre syndrome and Pearson syndrome are caused by large mtDNA deletions. In this chapter, we describe a multiplex PCR/allele-specific oligonucleotide (ASO) hybridization method for the screening of 13 common point mutations. This method allows the detection of low percentage of mutant heteroplasmy. In addition, a nonradioactive Southern blot hybridization protocol for the analysis of mtDNA large deletions is also described. PMID:22215554

  16. Pairwise detection of site-specific receptor phosphorylations using single-molecule blotting

    PubMed Central

    Kim, Kyung Lock; Kim, Daehyung; Lee, Seongsil; Kim, Su-Jeong; Noh, Jung Eun; Kim, Joung-Hun; Chae, Young Chan; Lee, Jong-Bong; Ryu, Sung Ho

    2016-01-01

    Post-translational modifications (PTMs) of receptor tyrosine kinases (RTKs) at the plasma membrane (PM) determine the signal transduction efficacy alone and in combination. However, current approaches to identify PTMs provide ensemble results, inherently overlooking combinatorial PTMs in a single polypeptide molecule. Here, we describe a single-molecule blotting (SiMBlot) assay that combines biotinylation of cell surface receptors with single-molecule fluorescence microscopy. This method enables quantitative measurement of the phosphorylation status of individual membrane receptor molecules and colocalization analysis of multiple immunofluorescence signals to directly visualize pairwise site-specific phosphorylation patterns at the single-molecule level. Strikingly, application of SiMBlot to study ligand-dependent epidermal growth factor receptor (EGFR) phosphorylation, which is widely thought to be multi-phosphorylated, reveals that EGFR on cell membranes is hardly multi-phosphorylated, unlike in vitro autophosphorylated EGFR. Therefore, we expect SiMBlot to aid understanding of vast combinatorial PTM patterns, which are concealed in ensemble methods, and to broaden knowledge of RTK signaling. PMID:27009355

  17. Digital chemiluminescence imaging of DNA sequencing blots using a charge-coupled device camera.

    PubMed Central

    Karger, A E; Weiss, R; Gesteland, R F

    1992-01-01

    Digital chemiluminescence imaging with a cryogenically cooled charge-coupled device (CCD) camera is used to visualize DNA sequencing fragments covalently bound to a blotting membrane. The detection is based on DNA hybridization with an alkaline phosphatase(AP) labeled oligodeoxyribonucleotide probe and AP triggered chemiluminescence of the substrate 3-(2'-spiro-adamantane)-4-methoxy-4-(3"-phosphoryloxy)phenyl- 1,2-dioxetane (AMPPD). The detection using a direct AP-oligonucleotide conjugate is compared to the secondary detection of biotinylated oligonucleotides with respect to their sensitivity and nonspecific binding to the nylon membrane by quantitative imaging. Using the direct oligonucleotide-AP conjugate as a hybridization probe, sub-attomol (0.5 pg of 2.7 kb pUC plasmid DNA) quantities of membrane bound DNA are detectable with 30 min CCD exposures. Detection using the biotinylated probe in combination with streptavidin-AP was found to be background limited by nonspecific binding of streptavidin-AP and the oligo(biotin-11-dUTP) label in equal proportions. In contrast, the nonspecific background of AP-labeled oligonucleotide is indistinguishable from that seen with 5'-32P-label, in that respect making AP an ideal enzymatic label. The effect of hybridization time, probe concentration, and presence of luminescence enhancers on the detection of plasmid DNA were investigated. Images PMID:1480487

  18. Retrospective Study of Hemoparasites in Cattle in Southern Italy by Reverse Line Blot Hybridization

    PubMed Central

    CECI, Luigi; IARUSSI, Fabrizio; GRECO, Beatrice; LACINIO, Rosanna; FORNELLI, Stefania; CARELLI, Grazia

    2014-01-01

    ABSTRACT Tick-borne diseases are widespread in tropical and temperate regions and are responsible for important economic losses in those areas. In order to assess the presence and prevalence of various pathogens in southern Italy, we retrospectively analyzed cattle blood samples collected for a previous study in 2000 using reverse line blot (RLB) hybridization. The study had been carried out in three regions of southern Italy on 1,500 randomly selected and apparently healthy adult cattle. RLB showed that 43.7% of the cattle were positive for nine different species of hemoparasites with either a single infection or a mixed infection. Theileria buffeli was the most common species found, being present in 27.3% of the animals, followed by Anaplasma marginale in 18.1%, Anaplasma centrale in 13.8%, Babesia bigemina and Anaplasma bovis in 4.2%, Anaplasma phagocytophilum in 1.7%, Babesia bovis in 1.6%, Babesia major in 0.2% and Babesia divergens in 0.1%. Complete blood counts showed different degrees of anemia in 363 animals (24.2%) and of these, 169 were RLB-positive for at least one pathogen. Among the ticks that were collected from the cattle, the following species were identified: Rhipicephalus bursa, Ixodes ricinus, Hyalomma marginatum, Boophilus annulatus, Dermacentor marginatus and Haemaphysalis (sulcata, parva, inermis and punctata). The results obtained confirmed the spread of endemic tick-borne pathogens in the regions studied. PMID:24614604

  19. Detection of strawberry vein banding virus by polymerase chain reaction and dot blot hybridization.

    PubMed

    Mráz, I; Petrzik, K; Fránová-Honetslegrová, J; Síp, M

    1997-08-01

    Strawberry vein banding virus (SVBV) is one of seventeen members of the family Caulimoviridae. Natural infection with the virus is known in Fragaria species only. Infections caused by SVBV are often symptomless (1), but their significance increases in mixed infections with strawberry crinkle or strawberry latent C viruses (2,3). This virus has been originally found on strawberries in USA and firstly described by Frazier (4), but it is probably world-wide distributed by planting or breeding materials. SVBV has been observed on cultivated strawberries in North America, Australia, Brazil, Japan (5) and recently in Europe (6,7). The concentration of SVBV in infected plants is usually very low. Its detection by ELISA is impossible because of lack of specific antibodies. Evidence of the caulimovirus nature of SVBV has been confirmed by its circular dsDNA genome, shape and size of viral particles (8), presence of cytoplasmic inclusion bodies typical for caulimoviruses, and distant serological relationship with cauliflower mosaic virus (CaMV, 9). In this paper we present detection of SVBV by combination of two detection methods--polymerase chain reaction (PCR) and dot blot hybridization with a non-radioactive probe. PMID:9391655

  20. The blot rolling assay: a method for identifying adhesion molecules mediating binding under shear conditions.

    PubMed

    Sackstein, Robert; Fuhlbrigge, Robert

    2006-01-01

    Adhesive interactions of cells with blood vessel walls under flow conditions are critical to a variety of processes, including hemostasis, leukocyte trafficking, tumor metastasis, and atherosclerosis. We have developed a new technique for the observation of binding interactions under shear, which we have termed the "blot rolling assay." In this method, molecules in a complex mixture are resolved by gel electrophoresis and transferred to a membrane. This membrane can be rendered semitransparent and incorporated into a parallel-plate flow chamber apparatus. Cells or particles bearing adhesion proteins of interest are then introduced into the chamber under controlled flow, and their interactions with individual components of the immobilized substrates can be visualized in real time. The substrate molecules can be identified by staining with specific antibodies or by excising the relevant band(s) and performing mass spectrometry or microsequencing of the isolated material. Thus, this method allows for the identification, within a complex mixture and without previous isolation or purification, of both known and novel adhesion molecules capable of binding under shear conditions. PMID:16799202

  1. Fully automated 2D-3D registration and verification.

    PubMed

    Varnavas, Andreas; Carrell, Tom; Penney, Graeme

    2015-12-01

    Clinical application of 2D-3D registration technology often requires a significant amount of human interaction during initialisation and result verification. This is one of the main barriers to more widespread clinical use of this technology. We propose novel techniques for automated initial pose estimation of the 3D data and verification of the registration result, and show how these techniques can be combined to enable fully automated 2D-3D registration, particularly in the case of a vertebra based system. The initialisation method is based on preoperative computation of 2D templates over a wide range of 3D poses. These templates are used to apply the Generalised Hough Transform to the intraoperative 2D image and the sought 3D pose is selected with the combined use of the generated accumulator arrays and a Gradient Difference Similarity Measure. On the verification side, two algorithms are proposed: one using normalised features based on the similarity value and the other based on the pose agreement between multiple vertebra based registrations. The proposed methods are employed here for CT to fluoroscopy registration and are trained and tested with data from 31 clinical procedures with 417 low dose, i.e. low quality, high noise interventional fluoroscopy images. When similarity value based verification is used, the fully automated system achieves a 95.73% correct registration rate, whereas a no registration result is produced for the remaining 4.27% of cases (i.e. incorrect registration rate is 0%). The system also automatically detects input images outside its operating range. PMID:26387052

  2. A discrete simulation of 2-D fluid flow on TERASYS

    SciTech Connect

    Mullins, P.G.; Krolak, P.D.

    1995-12-01

    A discrete simulation of two-dimensional (2-D) fluid flow, on a recently designed novel architecture called TERASYS is presented. The simulation uses a cellular automaton approach, implemented in a new language called data-parallel bit C (dbC). A performance comparison between our implementation on TERASYS and an implementation on the Connection Machine is discussed. We comment briefly on the suitability of the TERASYS system for modeling fluid flow using cellular automata.

  3. An inverse design method for 2D airfoil

    NASA Astrophysics Data System (ADS)

    Liang, Zhi-Yong; Cui, Peng; Zhang, Gen-Bao

    2010-03-01

    The computational method for aerodynamic design of aircraft is applied more universally than before, in which the design of an airfoil is a hot problem. The forward problem is discussed by most relative papers, but inverse method is more useful in practical designs. In this paper, the inverse design of 2D airfoil was investigated. A finite element method based on the variational principle was used for carrying out. Through the simulation, it was shown that the method was fit for the design.

  4. NASA High-Speed 2D Photogrammetric Measurement System

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2012-01-01

    The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.

  5. Report of the 1988 2-D Intercomparison Workshop, chapter 3

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar

    1989-01-01

    Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.

  6. Statistical analysis of quiet stance sway in 2-D

    PubMed Central

    DiZio, Paul; Lackner, James R.

    2014-01-01

    Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909–912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model’s ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior–posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation. PMID:24477760

  7. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  8. 2D imaging of functional structures in perfused pig heart

    NASA Astrophysics Data System (ADS)

    Kessler, Manfred D.; Cristea, Paul D.; Hiller, Michael; Trinks, Tobias

    2002-06-01

    In 2000 by 2D-imaging we were able for the first time to visualize in subcellular space functional structures of myocardium. For these experiments we used hemoglobin-free perfused pig hearts in our lab. Step by step we learned to understand the meaning of subcellular structures. Principally, the experiment revealed that in subcellular space very fast changes of light scattering can occur. Furthermore, coefficients of different parameters were determined on the basis of multicomponent system theory.

  9. Multicolor symbology for remotely scannable 2D barcodes

    NASA Astrophysics Data System (ADS)

    Wissner-Gross, Alexander D.; Sullivan, Timothy M.

    2008-03-01

    There has been much recent interest in mobile systems for augmented reality. However, existing visual tagging solutions are not robust at the low resolutions typical of current camera phones or at the low solid angles needed for "across-the-room" reality augmentation. In this paper, we propose a new 2D barcode symbology that uses multiple colors in order to address these challenges. We present preliminary results, showing the detection of example barcodes in this scheme over a range of angles.

  10. 2 1/2 -D compressible reconnection model

    NASA Astrophysics Data System (ADS)

    Skender, M.; Vršnak, B.

    The exact solution of the jump conditions on the RD/SMS discontinuity system in a two-and-half-dimensional (2 1/2 -D) symmetrical reconnection model enables one to analyse the outflowing jet characteristics in dependence on the inflow velocity, and to follow changes in transition to the two-dimensional model. Implications arising from the exact solution and its relevance for solar flares are discussed.

  11. CBEAM. 2-D: a two-dimensional beam field code

    SciTech Connect

    Dreyer, K.A.

    1985-05-01

    CBEAM.2-D is a two-dimensional solution of Maxwell's equations for the case of an electron beam propagating through an air medium. Solutions are performed in the beam-retarded time frame. Conductivity is calculated self-consistently with field equations, allowing sophisticated dependence of plasma parameters to be handled. A unique feature of the code is that it is implemented on an IBM PC microcomputer in the BASIC language. Consequently, it should be available to a wide audience.

  12. Universal Fabrication of 2D Electron Systems in Functional Oxides.

    PubMed

    Rödel, Tobias Chris; Fortuna, Franck; Sengupta, Shamashis; Frantzeskakis, Emmanouil; Fèvre, Patrick Le; Bertran, François; Mercey, Bernard; Matzen, Sylvia; Agnus, Guillaume; Maroutian, Thomas; Lecoeur, Philippe; Santander-Syro, Andrés Felipe

    2016-03-01

    2D electron systems (2DESs) in functional oxides are promising for applications, but their fabrication and use, essentially limited to SrTiO3 -based heterostructures, are hampered by the need for growing complex oxide overlayers thicker than 2 nm using evolved techniques. It is demonstrated that thermal deposition of a monolayer of an elementary reducing agent suffices to create 2DESs in numerous oxides. PMID:26753522

  13. Statistical analysis of quiet stance sway in 2-D.

    PubMed

    Bakshi, Avijit; DiZio, Paul; Lackner, James R

    2014-04-01

    Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909-912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model's ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior-posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation. PMID:24477760

  14. Valley and electric photocurrents in 2D silicon and graphene

    SciTech Connect

    Tarasenko, S. A.; Ivchenko, E. L.; Olbrich, P.; Ganichev, S. D.

    2013-12-04

    We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.

  15. Baby universes and fractal structure of 2d gravity

    NASA Astrophysics Data System (ADS)

    Thorleifsson, Gudmar

    1994-04-01

    We extract the string susceptibility exponent γstr by measuring the distribution of baby universes on surfaces in the case of various matter fields coupled to discrete 2d quantum gravity. For c <= 1 the results are in good agreement with the KPZ-formula, if logarithmic corrections are taken into account for c = 1. For c > 1 it is not as clear how to extract γstr but universality with respect to c is observed in the fractal structure.

  16. An Intercomparison of 2-D Models Within a Common Framework

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Jackman, Charles H.; Fleming, Eric L.; Considine, David B.; Kinnison, Douglas E.; Connell, Peter S.; Rotman, Douglas A.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    A model intercomparison among the Atmospheric and Environmental Research (AER) 2-D model, the Goddard Space Flight Center (GSFC) 2-D model, and the Lawrence Livermore National Laboratory 2-D model allows us to separate differences due to model transport from those due to the model's chemical formulation. This is accomplished by constructing two hybrid models incorporating the transport parameters of the GSFC and LLNL models within the AER model framework. By comparing the results from the native models (AER and e.g. GSFC) with those from the hybrid model (e.g. AER chemistry with GSFC transport), differences due to chemistry and transport can be identified. For the analysis, we examined an inert tracer whose emission pattern is based on emission from a High Speed Civil Transport (HSCT) fleet; distributions of trace species in the 2015 atmosphere; and the response of stratospheric ozone to an HSCT fleet. Differences in NO(y) in the upper stratosphere are found between models with identical transport, implying different model representations of atmospheric chemical processes. The response of O3 concentration to HSCT aircraft emissions differs in the models from both transport-dominated differences in the HSCT-induced perturbations of H2O and NO(y) as well as from differences in the model represent at ions of O3 chemical processes. The model formulations of cold polar processes are found to be the most significant factor in creating large differences in the calculated ozone perturbations

  17. Resolving 2D Amorphous Materials with Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Burson, Kristen M.; Buechner, Christin; Lewandowski, Adrian; Heyde, Markus; Freund, Hans-Joachim

    Novel two-dimensional (2D) materials have garnered significant scientific interest due to their potential technological applications. Alongside the emphasis on crystalline materials, such as graphene and hexagonal BN, a new class of 2D amorphous materials must be pursued. For amorphous materials, a detailed understanding of the complex structure is necessary. Here we present a structural study of 2D bilayer silica on Ru(0001), an insulating material which is weakly coupled to the substrate. Atomic structure has been determined with a dual mode atomic force microscopy (AFM) and scanning tunneling microscopy (STM) sensor in ultra-high vacuum (UHV) at low temperatures, revealing a network of different ring sizes. Liquid AFM measurements with sub-nanometer resolution bridge the gap between clean UHV conditions and the environments that many material applications demand. Samples are grown and characterized in vacuum and subsequently transferred to the liquid AFM. Notably, the key structural features observed, namely nanoscale ring networks and larger holes to the substrate, show strong quantitative agreement between the liquid and UHV microscopy measurements. This provides direct evidence for the structural stability of these silica films for nanoelectronics and other applications. KMB acknowledges support from the Alexander von Humboldt Foundation.

  18. Hunting down magnetic monopoles in 2D topological insulators?

    NASA Astrophysics Data System (ADS)

    He, Xugang; Cmpmsd At Bnl Team

    Contrary to the existence of electric charge, magnetic monopole does not exist in nature. It is thus extraordinary to find that magnetic monopoles can be pictured conceptually in topological insulators. For 2D topological insulators, the topological invariant corresponds to the total flux of an effective magnetic field (the Berry curvature) over the reciprocal space. Upon wrapping the 2D reciprocal space into a compact manifold as a torus, the non-zero total flux can be considered to originate from magnetic monopoles with quantized charge. We will first illustrate the intrinsic difficulty via extending a 2D problem to a 3D reciprocal space, and then demonstrate that analytical continuation to the complex momentum space offers a natural solution in which 1) the magnetic monopoles emerge naturally in pairs each forming a string above and below the real axis possessing opposite charge, and 2) the total charge below the real axis gives exactly the topological invariant. In essence, the robustness of the topology is mapped to the robustness of the total charge in the lower complex plan, a mapping intriguing even mathematically. Finally, we will illustrate the evolution across the topological phase transition, providing a natural description of the metallic nature in the phase boundary, and offering a clear explanation why a change of global topology can be induced via a local change in reciprocal space. Work supported by US DOE BES DE-AC02-98CH10886.

  19. F-theory and 2d (0, 2) theories

    NASA Astrophysics Data System (ADS)

    Schäfer-Nameki, Sakura; Weigand, Timo

    2016-05-01

    F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N = (0 , 2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0 , 2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0 , 2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0 , 2) GLSM is realized via different T-branes or gluing data in F-theory.

  20. Design Application Translates 2-D Graphics to 3-D Surfaces

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  1. Role of defects in frictional properties of 2-D materials

    NASA Astrophysics Data System (ADS)

    Kavalur, Aditya; Kim, Woo Kyun

    Graphene and other 2-D materials have provided a promising prospect to improve the tribological properties of small length scale devices such as MEMS/NEMS due to their low friction coefficient and excellent wear resistance. Several recent research efforts have been devoted to unveiling the physical origin of the superior tribological properties of these 2-D materials from both experimental and theoretical standpoints, however, many of them still remain far from clearly understood. Recently, it was shown that lamellar materials do not conform to the predictions of the Prandtl-Tomlinson model due to additional friction mechanisms of delamination and visco-elastic ploughing. These mechanisms are critical as they explain the low and negative coefficients of friction observed in recent AFM experiments. However, thus far, most simulation and theoretical studies about these novel friction mechanisms have focused on only pristine graphene whereas real graphene sheets prepared by CVD and other conventional techniques possess various forms of defects such as vacancies and non-hexagonal rings. In this study we examine the role of these defects in frictional properties of 2-D materials in relation to delamination and visco-elastic ploughing.

  2. Region-based Statistical Analysis of 2D PAGE Images

    PubMed Central

    Li, Feng; Seillier-Moiseiwitsch, Françoise; Korostyshevskiy, Valeriy R.

    2011-01-01

    A new comprehensive procedure for statistical analysis of two-dimensional polyacrylamide gel electrophoresis (2D PAGE) images is proposed, including protein region quantification, normalization and statistical analysis. Protein regions are defined by the master watershed map that is obtained from the mean gel. By working with these protein regions, the approach bypasses the current bottleneck in the analysis of 2D PAGE images: it does not require spot matching. Background correction is implemented in each protein region by local segmentation. Two-dimensional locally weighted smoothing (LOESS) is proposed to remove any systematic bias after quantification of protein regions. Proteins are separated into mutually independent sets based on detected correlations, and a multivariate analysis is used on each set to detect the group effect. A strategy for multiple hypothesis testing based on this multivariate approach combined with the usual Benjamini-Hochberg FDR procedure is formulated and applied to the differential analysis of 2D PAGE images. Each step in the analytical protocol is shown by using an actual dataset. The effectiveness of the proposed methodology is shown using simulated gels in comparison with the commercial software packages PDQuest and Dymension. We also introduce a new procedure for simulating gel images. PMID:21850152

  3. 2D luminescence imaging of pH in vivo

    PubMed Central

    Schreml, Stephan; Meier, Robert J.; Wolfbeis, Otto S.; Landthaler, Michael; Szeimies, Rolf-Markus; Babilas, Philipp

    2011-01-01

    Luminescence imaging of biological parameters is an emerging field in biomedical sciences. Tools to study 2D pH distribution are needed to gain new insights into complex disease processes, such as wound healing and tumor metabolism. In recent years, luminescence-based methods for pH measurement have been developed. However, for in vivo applications, especially for studies on humans, biocompatibility and reliability under varying conditions have to be ensured. Here, we present a referenced luminescent sensor for 2D high-resolution imaging of pH in vivo. The ratiometric sensing scheme is based on time-domain luminescence imaging of FITC and ruthenium(II)tris-(4,7-diphenyl-1,10-phenanthroline). To create a biocompatible 2D sensor, these dyes were bound to or incorporated into microparticles (aminocellulose and polyacrylonitrile), and particles were immobilized in polyurethane hydrogel on transparent foils. We show sensor precision and validity by conducting in vitro and in vivo experiments, and we show the versatility in imaging pH during physiological and chronic cutaneous wound healing in humans. Implementation of this technique may open vistas in wound healing, tumor biology, and other biomedical fields. PMID:21262842

  4. A 2-D ECE Imaging Diagnostic for TEXTOR

    NASA Astrophysics Data System (ADS)

    Wang, J.; Deng, B. H.; Domier, C. W.; Luhmann, H. Lu, Jr.

    2002-11-01

    A true 2-D extension to the UC Davis ECE Imaging (ECEI) concept is under development for installation on the TEXTOR tokamak in 2003. This combines the use of linear arrays with multichannel conventional wideband heterodyne ECE radiometers to provide a true 2-D imaging system. This is in contrast to current 1-D ECEI systems in which 2-D images are obtained through the use of multiple plasma discharges (varying the scanned emission frequency each discharge). Here, each array element of the 20 channel mixer array measures plasma emission at 16 simultaneous frequencies to form a 16x20 image of the plasma electron temperature Te. Correlation techniques can then be applied to any pair of the 320 image elements to study both radial and poloidal characteristics of turbulent Te fluctuations. The system relies strongly on the development of low cost, wideband (2-18 GHz) IF detection electronics for use in both ECE Imaging as well as conventional heterodyne ECE radiometry. System details, with a strong focus on the wideband IF electronics development, will be presented. *Supported by U.S. DoE Contracts DE-FG03-95ER54295 and DE-FG03-99ER54531.

  5. Dopamine D2/D3 receptor availability and venturesomeness.

    PubMed

    Bernow, Nina; Yakushev, Igor; Landvogt, Christian; Buchholz, Hans-Georg; Smolka, Michael N; Bartenstein, Peter; Lieb, Klaus; Gründer, Gerhard; Vernaleken, Ingo; Schreckenberger, Mathias; Fehr, Christoph

    2011-08-30

    The construct of impulsivity is considered as a major trait of personality. There is growing evidence that the mesolimbic dopamine system plays an important role in the modulation of impulsivity and venturesomeness, the two key components within the impulsivity-construct. The aim of the present study was to explore an association between trait impulsivity measured with self-assessment and the dopaminergic neurotransmission as measured by positron emission tomography (PET) in a cohort of healthy male subjects. In vivo D2/D3 receptor availability was determined with [(18)F]fallypride PET in 18 non-smoking healthy subjects. The character trait impulsivity was measured using the Impulsiveness-Venturesomeness-Empathy questionnaire (I7). Image processing and statistical analysis was performed on a voxel-by-voxel basis using statistical parametric mapping (SPM) software. The I7 subscale venturesomeness correlated positively with the D2/D3 receptor availability within the left temporal cortex and the thalamus. Measures on the I7 subscale impulsiveness and empathy did not correlate with the D2/D3 receptor availability in any brain region investigated. Our results suggest the involvement of extrastriatal dopaminergic neurotransmission in venturesomeness, a component of impulsivity. PMID:21689908

  6. Characterization of Porous Medium Properties Using 2D NMR

    NASA Astrophysics Data System (ADS)

    Sun, Boqin; Dunn, Keh-Jim

    2003-03-01

    We have successfully applied the concept of 2D NMR to the characterization of properties of fluid-saturated porous medium. Using a two-windowed modified CPMG pulse sequence, we were able to explore the magnetic internal filed gradient distribution within the pore space of a fluid-saturated porous medium due to magnetic susceptibility contrast between the solid matrix and pore fluid. Similar scheme is used to identify and quantify different types of pore fluids, such as oil, water, and gas, based on the contrast in their diffusion coefficients. The magic angle spinning technique (MAS) can also be applied in the 2D NMR framework for delineating the chemical shift spectra of the pore fluids in a porous medium at different T1 or T2 relaxation times. The results can be displayed in a two-dimensional plot, with one axis being the T1 or T2 relaxation times, the other axis being the internal field gradient, diffusion coefficient, or chemical shift, and the third axis being the proton population. Our preliminary laboratory work indicates that the 2D NMR approach can be a powerful tool for the characterization of properties of fluid-saturated porous medium, such as fluid typing, oil viscosity determination, surface wettability, etc.

  7. Broadband THz Spectroscopy of 2D Nanoscale Materials

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Tripathi, Shivendra; Huang, Mengchen; Hsu, Jen-Feng; D'Urso, Brian; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides (TMDC) have attracted intense research interest in the past decade. Their unique electronic and optical properties offer the promise of novel optoelectronic applications in the terahertz regime. Recently, generation and detection of broadband terahertz (10 THz bandwidth) emission from 10-nm-scale LaAlO3/SrTiO3 nanostructures created by conductive atomic force microscope (c-AFM) lithography has been demonstrated . This unprecedented control of THz emission at 10 nm length scales creates a pathway toward hybrid THz functionality in 2D-material/LaAlO3/SrTiO3 heterostructures. Here we report initial efforts in THz spectroscopy of 2D nanoscale materials with resolution comparable to the dimensions of the nanowire (10 nm). Systems under investigation include graphene, single-layer molybdenum disulfide (MoS2), and tungsten diselenide (WSe2) nanoflakes. 1. Y. Ma, et al., Nano Lett. 13, 2884 (2013). We gratefully acknowledge financial support from the following agencies and grants: AFOSR (FA9550-12-1-0268 (JL, PRI), FA9550-12-1-0342 (CBE)), ONR (N00014-13-1-0806 (JL, CBE), N00014-15-1-2847 (JL)), NSF DMR-1124131 (JL, CBE) and DMR-1234096 (CBE).

  8. Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)

    ClinicalTrials.gov

    2015-12-09

    Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  9. Transcription factor proteomics: identification by a novel gel mobility shift-three-dimensional electrophoresis method coupled with southwestern blot and high-performance liquid chromatography-electrospray-mass spectrometry analysis.

    PubMed

    Jiang, Daifeng; Jia, Yinshan; Jarrett, Harry W

    2011-09-28

    Transcription factor (TF) purification and identification is an important step in elucidating gene regulatory mechanisms. In this study, we present two new electrophoretic mobility shift assay (EMSA)-based multi-dimensional electrophoresis approaches to isolate and characterize TFs, using detection with either southwestern or western blotting and HPLC-nanoESI-MS/MS analysis for identification. These new techniques involve several major steps. First, EMSA is performed with agents that diminish non-specific DNA-binding and the DNA-protein complex is separated by native PAGE gel. The gel is then electrotransferred to PVDF membrane and visualized by autoradiography. Next, the DNA-protein complex, which has been transferred onto the blot, is extracted using a detergent-containing elution buffer. Following detergent removal, concentrated extract is separated by SDS-PAGE (EMSA-2DE), followed by in-gel trypsin digestion and HPLC-nanoESI-MS/MS analysis, or the concentrated extract is separated by two-dimensional gel electrophoresis (EMSA-3DE), followed by southwestern or western blot analysis to localize DNA binding proteins on blot which are further identified by on-blot trypsin digestion and HPLC-nanoESI-MS/MS analysis. Finally, the identified DNA binding proteins are further validated by EMSA-immunoblotting or EMSA antibody supershift assay. This approach is used to purify and identify GFP-C/EBP fusion protein from bacterial crude extract, as well as purifying AP1 and CEBP DNA binding proteins from a human embryonic kidney cell line (HEK293) nuclear extract. AP1 components, c-Jun, Jun-D, c-Fos, CREB, ATF1 and ATF2 were successfully identified from 1.5 mg of nuclear extract (equivalent to 3×10(7) HEK293 cells) with AP1 binding activity of 750 fmol. In conclusion, this new strategy of combining EMSA with additional dimensions of electrophoresis and using southwestern blotting for detection proves to be a valuable approach in the identification of transcriptional complexes

  10. Future Trends in the Pharmacogenomics of Brain Disorders and Dementia: Influence of APOE and CYP2D6 Variants

    PubMed Central

    Cacabelos, Ramón; Fernández-Novoa, Lucía; Martínez-Bouza, Rocío; McKay, Adam; Carril, Juan C.; Lombardi, Valter; Corzo, Lola; Carrera, Iván; Tellado, Iván; Nebril, Laura; Alcaraz, Margarita; Rodríguez, Susana; Casas, Ángela; Couceiro, Verónica; Álvarez, Antón

    2010-01-01

    About 80% of functional genes in the human genome are expressed in the brain and over 1,200 different genes have been associated with the pathogenesis of CNS disorders and dementia. Pharmacogenetic studies of psychotropic drug response have focused on determining the relationship between variations in specific candidate genes and the positive and adverse effects of drug treatment. Approximately, 18% of neuroleptics are substrates of CYP1A2 enzymes, 40% of CYP2D6, and 23% of CYP3A4; 24% of antidepressants are substrates of CYP1A2 enzymes, 5% of CYP2B6, 38% of CYP2C19, 85% of CYP2D6, and 38% of CYP3A4; 7% of benzodiazepines are substrates of CYP2C19 enzymes, 20% of CYP2D6, and 95% of CYP3A4. 10-20% of Western populations are defective in genes of the CYP superfamily; and the pharmacogenomic response of psychotropic drugs also depends on genetic variants associated with dementia. Prospective studies with anti-dementia drugs or with multifactorial strategies have revealed that the therapeutic response to conventional drugs in Alzheimer’s disease is genotype-specific. The disease-modifying effects (cognitive performance, biomarker modification) of therapeutic intervention are APOE-dependent, with APOE-4 carriers acting as the worst responders (APOE-3/3 > APOE-3/4 > APOE-4/4). APOE-CYP2D6 interactions also influence the therapeutic outcome in patients with dementia.

  11. Simulated KWAJEX Convective Systems Using a 2D and 3D Cloud Resolving Model and Their Comparisons with Radar Observations

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    The 1999 Kwajalein Atoll field experiment (KWAJEX), one of several major TRMM (Tropical Rainfall Measuring Mission) field experiments, has successfully obtained a wealth of information and observation data on tropical convective systems over the western Central Pacific region. In this paper, clouds and convective systems that developed during three active periods (Aug 7-12, Aug 17-21, and Aug 29-Sep 13) around Kwajalein Atoll site are simulated using both 2D and 3D Goddard Cumulus Ensemble (GCE) models. Based on numerical results, the clouds and cloud systems are generally unorganized and short lived. These features are validated by radar observations that support the model results. Both the 2D and 3D simulated rainfall amounts and their stratiform contribution as well as the heat, water vapor, and moist static energy budgets are examined for the three convective episodes. Rainfall amounts are quantitatively similar between the two simulations, but the stratiform contribution is considerably larger in the 2D simulation. Regardless of dimension, fo all three cases, the large-scale forcing and net condensation are the two major physical processes that account for the evolution of the budgets with surface latent heat flux and net radiation solar and long-wave radiation)being secondary processes. Quantitative budget differences between 2D and 3D as well as between various episodes will be detailed.Morover, simulated radar signatures and Q1/Q2 fields from the three simulations are compared to each other and with radar and sounding observations.

  12. Simulation of 2D Fields of Raindrop Size Distributions

    NASA Astrophysics Data System (ADS)

    Berne, A.; Schleiss, M.; Uijlenhoet, R.

    2008-12-01

    The raindrop size distribution (DSD hereafter) is of primary importance for quantitative applications of weather radar measurements. The radar reflectivity~Z (directly measured by radar) is related to the power backscattered by the ensemble of hydrometeors within the radar sampling volume. However, the rain rate~R (the flux of water to the surface) is the variable of interest for many applications (hydrology, weather forecasting, air traffic for example). Usually, radar reflectivity is converted into rain rate using a power law such as Z=aRb. The coefficients a and b of the Z-R relationship depend on the DSD. The variability of the DSD in space and time has to be taken into account to improve radar rain rate estimates. Therefore, the ability to generate a large number of 2D fields of DSD which are statistically homogeneous provides a very useful simulation framework that nicely complements experimental approaches based on DSD data, in order to investigate radar beam propagation through rain as well as radar retrieval techniques. The proposed approach is based on geostatistics for structural analysis and stochastic simulation. First, the DSD is assumed to follow a gamma distribution. Hence a 2D field of DSDs can be adequately described as a 2D field of a multivariate random function consisting of the three DSD parameters. Such fields are simulated by combining a Gaussian anamorphosis and a multivariate Gaussian random field simulation algorithm. Using the (cross-)variogram models fitted on data guaranties that the spatial structure of the simulated fields is consistent with the observed one. To assess its validity, the proposed method is applied to data collected during intense Mediterranean rainfall. As only time series are available, Taylor's hypothesis is assumed to convert time series in 1D range profile. Moreover, DSD fields are assumed to be isotropic so that the 1D structure can be used to simulate 2D fields. A large number of 2D fields of DSD parameters are

  13. Application of reverse dot blot hybridization to simultaneous detection and identification of harmful algae.

    PubMed

    Chen, Guo Fu; Zhang, Chun Yun; Wang, Yuan Yuan; Chen, Wen

    2015-07-01

    Warning and monitoring projects of harmful algal blooms require simple and rapid methods for simultaneous and accurate detection and identification of causative algae present in the environmental samples. Here, reverse dot blot hybridization (RDBH) was employed to simultaneously detect several harmful algae by using five representative bloom-forming microalgae along the Chinese coast. A set of specific probes for RDBH were developed by PCR, cloning, and sequencing of the internal transcribed spacer (ITS), alignment analysis, and probe design. Each probe was oligo (dT)-tailed and spotted onto positively charged nylon membrane to make up a low-density oligonucleotide array. Universal primers designed within the conserved regions were used to amplify the ITS sequences by using genomic DNA of target as templates. The digoxigenin (Dig)-labeled PCR products were denatured and then hybridized to the oligonucleotide array. The array produced a unique hybridization pattern for each target species differentiating them from each other. The preparations of oligonucleotide array and hybridization conditions were optimized. The developed RDBH demonstrated a detection limit up to 10 cells. The detection performance of RDBH was relatively stable and not affected by non-target species and the fixation time of target species over at least 30 days. The RDBH could recover all the target species from the simulated field samples and target species confirmed by the subsequent microscopy examination in the environmental samples. These results indicate that RDBH can be a new technical platform for parallel discrimination of harmful algae and is promising for environmental monitoring of these microorganisms. PMID:25731086

  14. Immuno-Northern Blotting: Detection of RNA Modifications by Using Antibodies against Modified Nucleosides.

    PubMed

    Mishima, Eikan; Jinno, Daisuke; Akiyama, Yasutoshi; Itoh, Kunihiko; Nankumo, Shinnosuke; Shima, Hisato; Kikuchi, Koichi; Takeuchi, Yoichi; Elkordy, Alaa; Suzuki, Takehiro; Niizuma, Kuniyasu; Ito, Sadayoshi; Tomioka, Yoshihisa; Abe, Takaaki

    2015-01-01

    The biological roles of RNA modifications are still largely not understood. Thus, developing a method for detecting RNA modifications is important for further clarification. We developed a method for detecting RNA modifications called immuno-northern blotting (INB) analysis and herein introduce its various capabilities. This method involves the separation of RNAs using either polyacrylamide or agarose gel electrophoresis, followed by transfer onto a nylon membrane and subsequent immunoblotting using antibodies against modified nucleosides for the detection of specific modifications. We confirmed that INB with the antibodies for 1-methyladenosine (m1A), N6-methyladenosine (m6A), pseudouridine, and 5-methylcytidine (m5C) showed different modifications in a variety of RNAs from various species and organelles. INB with the anti-m5C antibody revealed that the antibody cross-reacted with another modification on DNA, suggesting the application of this method for characterization of the antibody for modified nucleosides. Additionally, using INB with the antibody for m1A, which is a highly specific modification in eukaryotic tRNA, we detected tRNA-derived fragments known as tiRNAs under the cellular stress response, suggesting the application for tracking target RNA containing specific modifications. INB with the anti-m6A antibody confirmed the demethylation of m6A by the specific demethylases fat mass and obesity-associated protein (FTO) and ALKBH5, suggesting its application for quantifying target modifications in separated RNAs. Furthermore, INB demonstrated that the knockdown of FTO and ALKBH5 increased the m6A modification in small RNAs as well as in mRNA. The INB method has high specificity, sensitivity, and quantitative capability, and it can be employed with conventional experimental apparatus. Therefore, this method would be useful for research on RNA modifications and metabolism. PMID:26606401

  15. Multiplex PCR and Reverse Line Blot Hybridization Assay (mPCR/RLB)

    PubMed Central

    O'Sullivan, Matthew V. N.; Zhou, Fei; Sintchenko, Vitali; Kong, Fanrong; Gilbert, Gwendolyn L.

    2011-01-01

    Multiplex PCR/Reverse Line Blot Hybridization assay allows the detection of up to 43 molecular targets in 43 samples using one multiplex PCR reaction followed by probe hybridization on a nylon membrane, which is re-usable. Probes are 5' amine modified to allow fixation to the membrane. Primers are 5' biotin modified which allows detection of hybridized PCR products using streptavidin-peroxidase and a chemiluminescent substrate via photosensitive film. With low setup and consumable costs, this technique is inexpensive (approximately US$2 per sample), high throughput (multiple membranes can be processed simultaneously) and has a short turnaround time (approximately 10 hours). The technique can be utilized in a number of ways. Multiple probes can be designed to detect sequence variation within a single amplified product, or multiple products can be amplified simultaneously, with one (or more) probes used for subsequent detection. A combination of both approaches can also be used within a single assay. The ability to include multiple probes for a single target sequence makes the assay highly specific. Published applications of mPCR/RLB include detection of antibiotic resistance genes1,2, typing of methicillin-resistant Staphylococcus aureus3-5 and Salmonella sp6, molecular serotyping of Streptococcus pneumoniae7,8, Streptococcus agalactiae9 and enteroviruses10,11, identification of Mycobacterium sp12, detection of genital13-15 and respiratory tract16 and other17 pathogens and detection and identification of mollicutes18. However, the versatility of the technique means the applications are virtually limitless and not restricted to molecular analysis of micro-organisms. The five steps in mPCR/RLB are a) Primer and Probe design, b) DNA extraction and PCR amplification c) Preparation of the membrane, d) Hybridization and detection, and e) Regeneration of the Membrane. PMID:21847083

  16. Enzyme-linked immunoelectrotransfer blot test for diagnosis of human hydatid disease.

    PubMed Central

    Verastegui, M; Moro, P; Guevara, A; Rodriguez, T; Miranda, E; Gilman, R H

    1992-01-01

    Sera from 71 patients with surgically confirmed hydatid disease (which is caused by Echinococcus granulosus) were studied by an enzyme-linked immunoelectrotransfer blot (EITB) assay. Sera from patients either with other cestode infections or with another illness were used as controls. Results of the EITB test for hydatidosis were compared with those of the double-diffusion (DD5) test and an enzyme-linked immunosorbent assay (ELISA). In the EITB assay with bovine lyophilized hydatid fluid, three antigen bands of 8, 16, and 21 kDa were diagnostically important. The sensitivity of the assay by using these antigen bands was 80% for hepatic cysts, 56% for pulmonary cysts, and 56% for cysts located in multiple organs. In sera from controls, the specificity of the EITB assay was 100%. Cross-reactions to the 8-, 16-, and 21-kDa bands occurred, respectively, in 12, 4, and 4% of sera from patients with cysticercosis. No cross-reactions were noted in patients infected with Hymenolepis nana. The ELISA in which swine hydatid fluid was used as the antigen was as sensitive as the EITB test but was less specific (80%) and frequently cross-reacted with sera from patients with other cestode infections. The sensitivity of the DD5 test, which uses sheep hydatid fluid, was low (47%) , but its specificity was as high as that of the EITB assay. However, in patients with cysticercosis, cross-reactions were observed in 23% of sera tested. Despite the higher sensitivity found with the EITB assay, 23% (n = 5) of the serum samples that were positive by the DD5 test were not detected by the EITB assay. The EITB assay offers greater sensitivity and specificity than do the ELISA and the DD5 test. The highest proportion of hydatid cases is detected when the EITB and DD5 tests are run simultaneously. Images PMID:1624574

  17. Validity of the Enzyme-linked Immunoelectrotransfer Blot (EITB) for naturally acquired porcine cysticercosis.

    PubMed

    Jayashi, César M; Gonzalez, Armando E; Castillo Neyra, Ricardo; Rodríguez, Silvia; García, Hector H; Lightowlers, Marshall W

    2014-01-17

    The Enzyme-linked Immunoelectrotransfer Blot (EITB) has been used widely as a screening test for Taenia solium cysticercosis in swine. However, the relation between seropositivity and infection in pig populations from endemic areas has not been well defined. The aim of this study is to relate EITB seropositivity with infection and infection burden, analyse the trade-off between sensitivity and specificity with various cut-off points for the EITB assay, and finally describe the serology changes in a cohort of rural pigs raised under natural conditions. A group of 107 pigs that were used as controls during a vaccination field trial in Peru was our study population. The prevalence of porcine cysticercosis determined by necropsy examination was 16.82% (18/107) in these animals. Using EITB reactivity to ≥ 1 band as a cut-off point for the assay, the sensitivity was 88.89% (65.29-98.62, 95% CI) and the specificity was 48.31% (37.59-59.16, 95% CI). Comparing other cut-off points, involving up to as many as 7 reactive bands, a reactivity of ≥ 3 bands provided the best trade-offs in sensitivity and specificity. Using this cut-off point for the assay, the sensitivity was 77.77% (52.36-93.59, 95% CI) and the specificity was 76.40% (66.22-84.76, 95% CI). A significant association was found between cyst counts over 100 cysts and reactivity to ≥ 3 bands in the EITB assay (Fisher's exact test, p<0.05). The results of this study suggest that the use of the EITB assay to study porcine cysticercosis may require setting different cut-offs under field and experimental conditions, and depending upon the objective of the screening process. PMID:24183647

  18. Immuno-Northern Blotting: Detection of RNA Modifications by Using Antibodies against Modified Nucleosides

    PubMed Central

    Akiyama, Yasutoshi; Itoh, Kunihiko; Nankumo, Shinnosuke; Shima, Hisato; Kikuchi, Koichi; Takeuchi, Yoichi; Elkordy, Alaa; Suzuki, Takehiro; Niizuma, Kuniyasu; Ito, Sadayoshi; Tomioka, Yoshihisa; Abe, Takaaki

    2015-01-01

    The biological roles of RNA modifications are still largely not understood. Thus, developing a method for detecting RNA modifications is important for further clarification. We developed a method for detecting RNA modifications called immuno-northern blotting (INB) analysis and herein introduce its various capabilities. This method involves the separation of RNAs using either polyacrylamide or agarose gel electrophoresis, followed by transfer onto a nylon membrane and subsequent immunoblotting using antibodies against modified nucleosides for the detection of specific modifications. We confirmed that INB with the antibodies for 1-methyladenosine (m1A), N6-methyladenosine (m6A), pseudouridine, and 5-methylcytidine (m5C) showed different modifications in a variety of RNAs from various species and organelles. INB with the anti-m5C antibody revealed that the antibody cross-reacted with another modification on DNA, suggesting the application of this method for characterization of the antibody for modified nucleosides. Additionally, using INB with the antibody for m1A, which is a highly specific modification in eukaryotic tRNA, we detected tRNA-derived fragments known as tiRNAs under the cellular stress response, suggesting the application for tracking target RNA containing specific modifications. INB with the anti-m6A antibody confirmed the demethylation of m6A by the specific demethylases fat mass and obesity-associated protein (FTO) and ALKBH5, suggesting its application for quantifying target modifications in separated RNAs. Furthermore, INB demonstrated that the knockdown of FTO and ALKBH5 increased the m6A modification in small RNAs as well as in mRNA. The INB method has high specificity, sensitivity, and quantitative capability, and it can be employed with conventional experimental apparatus. Therefore, this method would be useful for research on RNA modifications and metabolism. PMID:26606401

  19. Development of a dot blot assay using gene probes for the detection of enteroviruses in water

    SciTech Connect

    Margolin, A.B.

    1986-01-01

    Enteric viruses are viruses which replicate in the intestinal tract of man and animals. One mode of transmission for enteric viruses is the fecal-oral route. Drinking water which has been contaminated with sewage or sewage effluent has been implicated as a means for the spread of enteric viruses. Current methods for the detection of enteric viruses in water requires the use of animal cell culture. This technique has several drawbacks. More rapid techniques, such as fluorescent antibody or radioimmunoassay do not have the needed sensitivity to detect the low levels of virus found in contaminated water. An alternative technique for the detection of viruses in water was sought. Recent advances in recombinant DNA technology now makes it possible to detect viruses without the use of cell culture or antibodies. Gene probes that hybridize to the RNA of poliovirus and hepatitis A virus were tested for their ability to detect different enteric viruses. The probes were labeled with /sup 32/P dCTP and /sup 32/P dATP to a specific activity greater then 1.0 x 10/sup 9/ cpm/ug DNA. One infectious unit of poliovirus and hepatitis A virus was detected using labeled cDNA probes. Upon comparison, the dot blot assay was as sensitive as tissue culture for the detection of poliovirus in beef extract, secondary effluent, and tap water. Environmental samples, such as secondary effluent, reclaimed wastewater and unchlorinated drinking water were also assayed for poliovirus and hepatitis A virus with the use of gene probes. The results presented here offer an alternative method for screening water samples for the presence of enteric viruses.

  20. Immunodot blot assay to detect Helicobacter pylori using monoclonal antibodies against the 26 kDa protein.

    PubMed

    Amini Najafabadi, Hossein; Paknejad, Maliheh; Farshad, Shohreh; Mohammadian, Taher; Seyyed Ebrahimi, Shadi Sadat; Amini Najafabadi, Azadeh

    2012-12-01

    Development of a specific immunoassay to detect Helicobacter pylori infection in stool samples requires monoclonal antibody against the specific antigen. The aims of this study were to establish monoclonal antibodies against the 26 kDa protein of H. pylori and develop an immunodot blot for their application to recognize H. pylori infection using stool samples. Mice were immunized intraperitoneally with homogenized gel containing the 26 kDa band of cell surface proteins of H. pylori in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The monoclonal antibodies were produced using the hybridoma technique. Reactivity of monoclonal antibodies was tested with the purified 26 kDa antigen and cell surface proteins from cultured H. pylori by ELISA. Furthermore reactivity of monoclonal antibodies was tested on negative and positive stool samples for H. pylori and suspensions of several major bacteria in stool by immunodot blot assay. Five stable hybridoma monoclones were obtained. The concordant reactivity of the monoclonal antibodies with H. pylori present in the stool samples, which had been tested previously using an ACON ELISA kit for H. pylori stool antigen testing, and unreactivity with several different major fecal bacteria in immunodot blotting indicates high specificity of the immunodot blot based on the reaction of produced monoclonal antibodies with the H. pylori antigen in stools. The findings indicate that the novel immunodot blot developed based on new monoclonal antibodies for stool antigens would be useful as a noninvasive method of diagnosing H. pylori infection. PMID:23244318

  1. Solution conformation of 2-aminopurine (2-AP) dinucleotide determined by ultraviolet 2D fluorescence spectroscopy (UV-2D FS)

    PubMed Central

    Widom, Julia R.; Johnson, Neil P.; von Hippel, Peter H.; Marcus, Andrew H.

    2013-01-01

    We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analog of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS) – a fluorescence-detected variation of 2D electronic spectroscopy – to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point-dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 Å ± 0.5 Å, twist angle θ12 = 5° ± 5°), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV-2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein-nucleic acid complexes. PMID:24223491

  2. Cloning and characterization of a novel human phosphatidic acid phosphatase type 2, PAP2d, with two different transcripts PAP2d_v1 and PAP2d_v2.

    PubMed

    Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin

    2005-04-01

    This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney. PMID:16010976

  3. Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander

    2014-07-01

    The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin “wrapping”, i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.

  4. 2D to 3D conversion implemented in different hardware

    NASA Astrophysics Data System (ADS)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli

    2015-02-01

    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.

  5. Progress in 2D photonic crystal Fano resonance photonics

    NASA Astrophysics Data System (ADS)

    Zhou, Weidong; Zhao, Deyin; Shuai, Yi-Chen; Yang, Hongjun; Chuwongin, Santhad; Chadha, Arvinder; Seo, Jung-Hun; Wang, Ken X.; Liu, Victor; Ma, Zhenqiang; Fan, Shanhui

    2014-01-01

    In contrast to a conventional symmetric Lorentzian resonance, Fano resonance is predominantly used to describe asymmetric-shaped resonances, which arise from the constructive and destructive interference of discrete resonance states with broadband continuum states. This phenomenon and the underlying mechanisms, being common and ubiquitous in many realms of physical sciences, can be found in a wide variety of nanophotonic structures and quantum systems, such as quantum dots, photonic crystals, plasmonics, and metamaterials. The asymmetric and steep dispersion of the Fano resonance profile promises applications for a wide range of photonic devices, such as optical filters, switches, sensors, broadband reflectors, lasers, detectors, slow-light and non-linear devices, etc. With advances in nanotechnology, impressive progress has been made in the emerging field of nanophotonic structures. One of the most attractive nanophotonic structures for integrated photonics is the two-dimensional photonic crystal slab (2D PCS), which can be integrated into a wide range of photonic devices. The objective of this manuscript is to provide an in depth review of the progress made in the general area of Fano resonance photonics, focusing on the photonic devices based on 2D PCS structures. General discussions are provided on the origins and characteristics of Fano resonances in 2D PCSs. A nanomembrane transfer printing fabrication technique is also reviewed, which is critical for the heterogeneous integrated Fano resonance photonics. The majority of the remaining sections review progress made on various photonic devices and structures, such as high quality factor filters, membrane reflectors, membrane lasers, detectors and sensors, as well as structures and phenomena related to Fano resonance slow light effect, nonlinearity, and optical forces in coupled PCSs. It is expected that further advances in the field will lead to more significant advances towards 3D integrated photonics, flat

  6. 3D track initiation in clutter using 2D measurements

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Kirubarajan, Thiagalingam; Bar-Shalom, Yaakov

    2001-11-01

    In this paper we present an algorithm for initiating 3-D tracks using range and azimuth (bearing) measurements from a 2-D radar on a moving platform. The work is motivated by the need to track possibly low-flying targets, e.g., cruise missiles, using reports from an aircraft-based surveillance radar. Previous work on this problem considered simple linear motion in a flat earth coordinate frame. Our research extends this to a more realistic scenario where the earth"s curvature is also considered. The target is assumed to be moving along a great circle at a constant altitude. After the necessary coordinate transformations, the measurements are nonlinear functions of the target state and the observability of target altitude is severely limited. The observability, quantified by the Cramer-Rao Lower Bound (CRLB), is very sensitive to the sensor-to-target geometry. The paper presents a Maximum Likelihood (ML) estimator for estimating the target motion parameters in the Earth Centered Earth Fixed coordinate frame from 2-D range and angle measurements. In order to handle the possibility of false measurements and missed detections, which was not considered in, we use the Probabilistic Data Association (PDA) algorithm to weight the detections in a frame. The PDA-based modified global likelihood is optimized using a numerical search. The accuracies obtained by the resulting ML-PDA estimator are quantified using the CRLB for different sensor-target configurations. It is shown that the proposed estimator is efficient, that is, it meets the CRLB. Of particular interest is the achievable accuracy for estimating the target altitude, which is not observed directly by the 2-D radar, but can be only inferred from the range and bearing observations.

  7. 2D induced gravity from the canonically gauged WZNW system

    NASA Astrophysics Data System (ADS)

    Blagojević, M.; Popović, D. S.; Sazdović, B.

    1999-02-01

    Starting from the Kac-Moody structure of the WZNW model for SL(2,R) and using the general canonical formalism, we formulate a gauge theory invariant under local SL(2,R)×SL(2,R) and diffeomorphisms. This theory represents a gauge extension of the WZNW system, defined by a difference of two simple WZNW actions. By performing a partial gauge fixing and integrating out some dynamical variables, we prove that the resulting effective theory coincides with the induced gravity in 2D. The geometric properties of the induced gravity are obtained out of the gauge properties of the WZNW system with the help of the Dirac brackets formalism.

  8. Recent update of the RPLUS2D/3D codes

    NASA Technical Reports Server (NTRS)

    Tsai, Y.-L. Peter

    1991-01-01

    The development of the RPLUS2D/3D codes is summarized. These codes utilize LU algorithms to solve chemical non-equilibrium flows in a body-fitted coordinate system. The motivation behind the development of these codes is the need to numerically predict chemical non-equilibrium flows for the National AeroSpace Plane Program. Recent improvements include vectorization method, blocking algorithms for geometric flexibility, out-of-core storage for large-size problems, and an LU-SW/UP combination for CPU-time efficiency and solution quality.

  9. Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.

    2009-01-01

    VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.

  10. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  11. 2D/3D Synthetic Vision Navigation Display

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, jason L.

    2008-01-01

    Flight-deck display software was designed and developed at NASA Langley Research Center to provide two-dimensional (2D) and three-dimensional (3D) terrain, obstacle, and flight-path perspectives on a single navigation display. The objective was to optimize the presentation of synthetic vision (SV) system technology that permits pilots to view multiple perspectives of flight-deck display symbology and 3D terrain information. Research was conducted to evaluate the efficacy of the concept. The concept has numerous unique implementation features that would permit enhanced operational concepts and efficiencies in both current and future aircraft.

  12. Efficient 2d full waveform inversion using Fortran coarray

    NASA Astrophysics Data System (ADS)

    Ryu, Donghyun; Kim, ahreum; Ha, Wansoo

    2016-04-01

    We developed a time-domain seismic inversion program using the coarray feature of the Fortran 2008 standard to parallelize the algorithm. We converted a 2d acoustic parallel full waveform inversion program with Message Passing Interface (MPI) to a coarray program and examined performance of the two inversion programs. The results show that the speed of the waveform inversion program using the coarray is slightly faster than that of the MPI version. The standard coarray lacks features for collective communication; however, it can be improved in following standards since it is introduced recently. The parallel algorithm can be applied for 3D seismic data processing.

  13. Unitary matrix models and 2D quantum gravity

    SciTech Connect

    Dalley, S. . Joseph Henry Labs.); Johnson, C.V.; Morris, T.R. . Dept. of Physics); Watterstam, A. )

    1992-09-21

    In this paper the KdV and modified KdV integrable hierarchies are shown to be different descriptions of the same 2D gravitational system - open-closed string theory. Non-perturbative solutions of the multicritical unitary matrix models map to non-singular solutions of the renormalization group equation for the string susceptibility, [P, Q] = Q. The authors also demonstrate that the large-N solutions of unitary matrix integrals in external fields, studied by Gross and Newman, equal the non-singular pure closed-string solutions of [[bar P], Q] = Q.

  14. 2-D scalable optical controlled phased-array antenna system

    NASA Astrophysics Data System (ADS)

    Chen, Maggie Yihong; Howley, Brie; Wang, Xiaolong; Basile, Panoutsopoulos; Chen, Ray T.

    2006-02-01

    A novel optoelectronically-controlled wideband 2-D phased-array antenna system is demonstrated. The inclusion of WDM devices makes a highly scalable system structure. Only (M+N) delay lines are required to control a M×N array. The optical true-time delay lines are combination of polymer waveguides and optical switches, using a single polymeric platform and are monolithically integrated on a single substrate. The 16 time delays generated by the device are measured to range from 0 to 175 ps in 11.6 ps. Far-field patterns at different steering angles in X-band are measured.

  15. Ring Correlations in Two-Dimensional (2D) Random Networks

    NASA Astrophysics Data System (ADS)

    Sadjadi, Mahdi; Thorpe, M. F.

    Amorphous materials can be characterized by their ring structure. Recently, two experimental groups imaged bilayers of vitreous silica at atomic resolution which provides a direct access to the ring structure of a 2D glass. It has been shown that experimental samples have various ring statistics, obey Aboav-Weaire law and have a distinct area law. In this work, we study correlations between rings as a function of their size and topological separation. We show that correlation is medium-range and vanishes when the separation is about three rings apart. We also present a generalization of the Aboav-Weaire law.

  16. Breakdown of wave diffusion in 2D due to loops.

    PubMed

    Haney, Matthew; Snieder, Roel

    2003-08-29

    The validity of the diffusion approximation for the intensity of multiply scattered waves is tested with numerical simulations in a strongly scattering 2D medium of finite extent. We show that the diffusion equation underestimates the intensity and attribute this to both the neglect of recurrent scattering paths and interference within diffusion theory. We present a theory to quantify this discrepancy based on counting all possible scattering paths between point scatterers. Interference phenomena, due to loop paths, are incorporated in a way similar to coherent backscattering. PMID:14525183

  17. Anomalous Hall Effect in a 2D Rashba Ferromagnet.

    PubMed

    Ado, I A; Dmitriev, I A; Ostrovsky, P M; Titov, M

    2016-07-22

    Skew scattering on rare impurity configurations is shown to dominate the anomalous Hall effect in a 2D Rashba ferromagnet. The mechanism originates in scattering on rare impurity pairs separated by distances of the order of the Fermi wavelength. The corresponding theoretical description goes beyond the conventional noncrossing approximation. The mechanism provides the only contribution to the anomalous Hall conductivity in the most relevant metallic regime and strongly modifies previously obtained results for lower energies in the leading order with respect to impurity strength. PMID:27494487

  18. Ultrathin 2D Metal-Organic Framework Nanosheets.

    PubMed

    Zhao, Meiting; Wang, Yixian; Ma, Qinglang; Huang, Ying; Zhang, Xiao; Ping, Jianfeng; Zhang, Zhicheng; Lu, Qipeng; Yu, Yifu; Xu, Huan; Zhao, Yanli; Zhang, Hua

    2015-12-01

    A facile surfactant-assisted bottom-up synthetic method to prepare a series of freestanding ultrathin 2D M-TCPP (M = Zn, Cu, Cd or Co, TCPP = tetrakis(4-carboxyphenyl)porphyrin) nanosheets with a thickness of sub-10 nm is developed. As a proof-of-concept application, some of them are successfully used as new platforms for DNA detection. The Cu-TCPP nanosheet-based sensor shows excellent fluorescent sensing performance and is used for the simultaneous detection of multiple DNA targets. PMID:26468970

  19. Finite Element Analysis of 2-D Elastic Contacts Involving FGMs

    NASA Astrophysics Data System (ADS)

    Abhilash, M. N.; Murthy, H.

    2014-05-01

    The response of elastic indenters in contact with Functionally Graded Material (FGM) coated homogeneous elastic half space has been presented in the current paper. Finite element analysis has been used due to its ability to handle complex geometry, material, and boundary conditions. Indenters of different typical surface profiles have been considered and the problem has been idealized as a two-dimensional (2D) plane strain problem considering only normal loads. Initially, indenters were considered to be rigid and the results were validated with the solutions presented in the literature. The analysis has then been extended to the case of elastic indenters on FGM-coated half spaces and the results are discussed.

  20. Topology-Preserving Rigid Transformation of 2D Digital Images.

    PubMed

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping. PMID:26270925

  1. VECTUM. Irregular 2D Velocity Vector Field Plotting Package

    SciTech Connect

    McClurg, F.R.; Mousseau, V.A.

    1992-05-04

    VECTUM is a NCAR Graphics based package, for generating a plot of an irregular 2D velocity vector field. The program reads an ASCII database of x, y, u, v, data pairs and produces a plot in Computer Graphics Metafile (CGM) format. The program also uses an ASCII parameter file for controlling annotation details such as the plot title, arrowhead style, scale of vectors, windowing, etc. Simple geometry (i.e. lines, arcs, splines) can be defined to be included with the velocity vectors. NCAR Graphics drivers can be used to display the CGM file into PostScript, HPGL, HDF, etc, output.

  2. A parallel splitting wavelet method for 2D conservation laws

    NASA Astrophysics Data System (ADS)

    Schmidt, Alex A.; Kozakevicius, Alice J.; Jakobsson, Stefan

    2016-06-01

    The current work presents a parallel formulation using the MPI protocol for an adaptive high order finite difference scheme to solve 2D conservation laws. Adaptivity is achieved at each time iteration by the application of an interpolating wavelet transform in each space dimension. High order approximations for the numerical fluxes are computed by ENO and WENO schemes. Since time evolution is made by a TVD Runge-Kutta space splitting scheme, the problem is naturally suitable for parallelization. Numerical simulations and speedup results are presented for Euler equations in gas dynamics problems.

  3. Quantum Oscillations in an Interfacial 2D Electron Gas.

    SciTech Connect

    Zhang, Bingop; Lu, Ping; Liu, Henan; Lin, Jiao; Ye, Zhenyu; Jaime, Marcelo; Balakirev, Fedor F.; Yuan, Huiqiu; Wu, Huizhen; Pan, Wei; Zhang, Yong

    2016-01-01

    Recently, it has been predicted that topological crystalline insulators (TCIs) may exist in SnTe and Pb1-xSnxTe thin films [1]. To date, most studies on TCIs were carried out either in bulk crystals or thin films, and no research activity has been explored in heterostructures. We present here the results on electronic transport properties of the 2D electron gas (2DEG) realized at the interfaces of PbTe/ CdTe (111) heterostructures. Evidence of topological state in this interfacial 2DEG was observed.

  4. The 2d MIT: The Pseudogap and Fermi Liquid Theory

    NASA Astrophysics Data System (ADS)

    Castner, T. G.

    2005-06-01

    Fermi liquid theory for the 2d metal-insulator transition is extended to include the correlation gap in the density-of-states. The results are consistent with the scaling form g=gce[on(To/T)] at T larger than a characteristic T* ∝ xTc (Tc=Ec= mobility edge). The two-component model n1+nloc=n=nc(1+x) for n>nc is required and the theory explains the T-dependence of the data of Hanein et al. for p-type GaAs.

  5. New perspective on matter coupling in 2D quantum gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Anagnostopoulos, K. N.; Loll, R.

    1999-11-01

    We provide compelling evidence that a previously introduced model of nonperturbative 2D Lorentzian quantum gravity exhibits (two-dimensional) flat-space behavior when coupled to Ising spins. The evidence comes from both a high-temperature expansion and from Monte Carlo simulations of the combined gravity-matter system. This weak-coupling behavior lends further support to the conclusion that the Lorentzian model is a genuine alternative to Liouville quantum gravity in two dimensions, with a different and much ``smoother'' critical behavior.

  6. The quantum spacetime of c > 0 2 d gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Anagnostopoulos, K. N.; Thorleifsson, G.

    1998-04-01

    We review recent developments in the understanding of the fractal properties of quantum spacetime of 2d gravity coupled to c > 0 conformal matter. In particular we discuss bounds put by numerical simulations using dynamical triangulations on the value of the Hausdorff dimension dH obtained from scaling properties of two point functions defined in terms of geodesic distance. Further insight to the fractal structure of spacetime is obtained from the study of the loop length distribution function which reveals that the 0 < c ≤ 1 system has similar geometric properties with pure gravity, whereas the branched polymer structure becomes clear for c ≥ 5.

  7. Black liquor gasification phase 2D final report

    SciTech Connect

    Kohl, A.L.; Stewart, A.E.

    1988-06-01

    This report covers work conducted by Rockwell International under Amendment 5 to Subcontract STR/DOE-12 of Cooperative Agreement DE-AC-05-80CS40341 between St. Regis Corporation (now Champion International) and the Department of Energy (DOE). The work has been designated Phase 2D of the overall program to differentiate it from prior work under the same subcontract. The overall program is aimed at demonstrating the feasibility of and providing design data for the Rockwell process for gasifying Kraft black liquor. In this process, concentrated black liquor is converted into low-Btu fuel gas and reduced melt by reaction with air in a specially designed gasification reactor.

  8. Real-time SPECT and 2D ultrasound image registration.

    PubMed

    Bucki, Marek; Chassat, Fabrice; Galdames, Francisco; Asahi, Takeshi; Pizarro, Daniel; Lobo, Gabriel

    2007-01-01

    In this paper we present a technique for fully automatic, real-time 3D SPECT (Single Photon Emitting Computed Tomography) and 2D ultrasound image registration. We use this technique in the context of kidney lesion diagnosis. Our registration algorithm allows a physician to perform an ultrasound exam after a SPECT image has been acquired and see in real time the registration of both modalities. An automatic segmentation algorithm has been implemented in order to display in 3D the positions of the acquired US images with respect to the organs. PMID:18044572

  9. Beam-Plasma Instabilities in a 2D Yukawa Lattice

    SciTech Connect

    Kyrkos, S.; Kalman, G. J.; Rosenberg, M.

    2009-06-05

    We consider a 2D Yukawa lattice of grains, with a beam of other charged grains moving in the lattice plane. In contrast to Vlasov plasmas, where the electrostatic instability excited by the beam is only longitudinal, here both longitudinal and transverse instabilities of the lattice phonons can develop. We determine and compare the transverse and longitudinal growth rates. The growth rate spectrum in wave number space exhibits remarkable gaps where no instability can develop. Depending on the system parameters, the transverse instability can be selectively excited.

  10. Protection of rat intestinal epithelial cells from ischemia/reperfusion injury by (D-Ala2, D-Leu5)-enkephalin through inhibition of the MKK7-JNK signaling pathway

    PubMed Central

    WANG, ZHENRAN; TANG, BO; TANG, FANG; LI, YANG; ZHANG, GUANGYU; ZHONG, LI; DONG, CHENCHENG; HE, SONGQING

    2015-01-01

    Previous studies have demonstrated that (D-Ala2, D-Leu5)-enkephalin (DADLE) protects rats from hepatic ischemia/reperfusion (I/R) injury. In the present study, DADLE was also observed to alleviate IR-induced intestinal epithelial cell injury in rats by inhibiting mitogen-activated protein kinase kinase 7 (MKK7)-c-Jun N-terminal kinase (JNK) pathway signaling. To investigate the protective effect of DADLE on hypoxia/reoxygenation injury in rat intestinal epithelial cells, rat intestinal epithelial cells were treated with different concentrations of DADLE, following which the cell survival rate was determined using a tetrazolium (MTT) colorimetric assay, and apoptosis was determined using flow cytometry. To confirm whether the protective effect of DADLE was due to its effect on MKK7-JNK signaling, the phosphorylation levels of MKK7 and JNK were analyzed using western blot analysis following treatment with different concentrations of DADLE. The results demonstrated that, following treatment with DADLE, the survival rate of the rat intestinal cells subjected to I/R-induced injury increased significantly and the apoptotic rate decreased in a concentration-dependent manner. In addition, the levels of phosphorylated MKK7 and JNK decreased in a concentration-dependent manner following treatment with DADLE. Silencing the gene expression of MKK7 using small interfering RNA prior to DADLE treatment resulted in a reduction in the protective effects of DADLE on the rat intestinal epithelial cells subjected to I/R injury. Collectively, the results of the present study demonstrated that the protective effects of DADLE in I/R injury in rat intestinal cells occurred through inhibition of the MKK7-JNK pathway. PMID:26126577

  11. A Slot Blot Immunoassay for Quantitative Detection of Plasmodium falciparum Circumsporozoite Protein in Mosquito Midgut Oocyst

    PubMed Central

    Kumar, Sanjai; Zheng, Hong; Deng, Bingbing; Mahajan, Babita; Grabias, Bryan; Kozakai, Yukiko; Morin, Merribeth J.; Locke, Emily; Birkett, Ashley; Miura, Kazutoyo; Long, Carole

    2014-01-01

    There is still a need for sensitive and reproducible immunoassays for quantitative detection of malarial antigens in preclinical and clinical phases of vaccine development and in epidemiology and surveillance studies, particularly in the vector host. Here we report the results of sensitivity and reproducibility studies for a research-grade, quantitative enhanced chemiluminescent-based slot blot assay (ECL-SB) for detection of both recombinant Plasmodium falciparum circumsporozoite protein (rPfCSP) and native PfCSP from Oocysts (Pf Oocyst) developing in the midguts of Anopheles stephensi mosquitoes. The ECL-SB detects as little as 1.25 pg of rPfCSP (linear range of quantitation 2.5–20 pg; R2 = 0.9505). We also find the earliest detectable expression of native PfCSP in Pf Oocyst by ECL-SB occurs on day 7 post feeding with infected blood meal. The ECL-SB was able to detect approximately as few as 0.5 day 8 Pf Oocysts (linear quantitation range 1–4, R2 = 0.9795) and determined that one Pf Oocyst expressed approximately 2.0 pg (0.5–3 pg) of native PfCSP, suggesting a similar range of detection for recombinant and native forms of Pf CSP. The ECL-SB is highly reproducible; the Coefficient of Variation (CV) for inter-assay variability for rPf CSP and native PfCSP were 1.74% and 1.32%, respectively. The CVs for intra-assay variability performed on three days for rPf CSP were 2.41%, 0.82% and 2% and for native Pf CSP 1.52%, 0.57%, and 1.86%, respectively. In addition, the ECL-SB was comparable to microscopy in determining the P. falciparum prevalence in mosquito populations that distinctly contained either high and low midgut Pf Oocyst burden. In whole mosquito samples, estimations of positivity for P. falciparum in the high and low burden groups were 83.3% and 23.3% by ECL-SB and 85.7% and 27.6% by microscopy. Based on its performance characteristics, ECL-SB could be valuable in vaccine development and to measure the parasite prevalence in mosquitoes and

  12. Inhibitory effects of phytochemicals on metabolic capabilities of CYP2D6*1 and CYP2D6*10 using cell-based models in vitro

    PubMed Central

    Qu, Qiang; Qu, Jian; Han, Lu; Zhan, Min; Wu, Lan-xiang; Zhang, Yi-wen; Zhang, Wei; Zhou, Hong-hao

    2014-01-01

    Aim: Herbal products have been widely used, and the safety of herb-drug interactions has aroused intensive concerns. This study aimed to investigate the effects of phytochemicals on the catalytic activities of human CYP2D6*1 and CYP2D6*10 in vitro. Methods: HepG2 cells were stably transfected with CYP2D6*1 and CYP2D6*10 expression vectors. The metabolic kinetics of the enzymes was studied using HPLC and fluorimetry. Results: HepG2-CYP2D6*1 and HepG2-CYP2D6*10 cell lines were successfully constructed. Among the 63 phytochemicals screened, 6 compounds, including coptisine sulfate, bilobalide, schizandrin B, luteolin, schizandrin A and puerarin, at 100 μmol/L inhibited CYP2D6*1- and CYP2D6*10-mediated O-demethylation of a coumarin compound AMMC by more than 50%. Furthermore, the inhibition by these compounds was dose-dependent. Eadie-Hofstee plots demonstrated that these compounds competitively inhibited CYP2D6*1 and CYP2D6*10. However, their Ki values for CYP2D6*1 and CYP2D6*10 were very close, suggesting that genotype-dependent herb-drug inhibition was similar between the two variants. Conclusion: Six phytochemicals inhibit CYP2D6*1 and CYP2D6*10-mediated catalytic activities in a dose-dependent manner in vitro. Thus herbal products containing these phytochemicals may inhibit the in vivo metabolism of co-administered drugs whose primary route of elimination is CYP2D6. PMID:24786236

  13. Preconditioning 2D Integer Data for Fast Convex Hull Computations.

    PubMed

    Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L

    2016-01-01

    In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved. PMID:26938221

  14. Magnetic gating of a 2D topological insulator.

    PubMed

    Dang, Xiaoqian; Burton, J D; Tsymbal, Evgeny Y

    2016-09-28

    Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic 'gate' representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate. PMID:27437829

  15. MESH2D GRID GENERATOR DESIGN AND USE

    SciTech Connect

    Flach, G.; Smith, F.

    2012-01-20

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.

  16. 3D surface configuration modulates 2D symmetry detection.

    PubMed

    Chen, Chien-Chung; Sio, Lok-Teng

    2015-02-01

    We investigated whether three-dimensional (3D) information in a scene can affect symmetry detection. The stimuli were random dot patterns with 15% dot density. We measured the coherence threshold, or the proportion of dots that were the mirror reflection of the other dots in the other half of the image about a central vertical axis, at 75% accuracy with a 2AFC paradigm under various 3D configurations produced by the disparity between the left and right eye images. The results showed that symmetry detection was difficult when the corresponding dots across the symmetry axis were on different frontoparallel or inclined planes. However, this effect was not due to a difference in distance, as the observers could detect symmetry on a slanted surface, where the depth of the two sides of the symmetric axis was different. The threshold was reduced for a hinge configuration where the join of two slanted surfaces coincided with the axis of symmetry. Our result suggests that the detection of two-dimensional (2D) symmetry patterns is subject to the 3D configuration of the scene; and that coplanarity across the symmetry axis and consistency between the 2D pattern and 3D structure are important factors for symmetry detection. PMID:25536469

  17. Mass loss in 2D rotating stellar models

    SciTech Connect

    Lovekin, Caterine; Deupree, Bob

    2010-10-05

    Radiatively driven mass loss is an important factor in the evolution of massive stars . The mass loss rates depend on a number of stellar parameters, including the effective temperature and luminosity. Massive stars are also often rapidly rotating, which affects their structure and evolution. In sufficiently rapidly rotating stars, both the effective temperature and radius vary significantly as a function of latitude, and hence mass loss rates can vary appreciably between the poles and the equator. In this work, we discuss the addition of mass loss to a 2D stellar evolution code (ROTORC) and compare evolution sequences with and without mass loss. Preliminary results indicate that a full 2D calculation of mass loss using the local effective temperature and luminosity can significantly affect the distribution of mass loss in rotating main sequence stars. More mass is lost from the pole than predicted by 1D models, while less mass is lost at the equator. This change in the distribution of mass loss will affect the angular momentum loss, the surface temperature and luminosity, and even the interior structure of the star. After a single mass loss event, these effects are small, but can be expected to accumulate over the course of the main sequence evolution.

  18. Modelling RF sources using 2-D PIC codes

    SciTech Connect

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT`S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (``port approximation``). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  19. Flatbands in 2D boroxine-linked covalent organic frameworks.

    PubMed

    Wang, Rui-Ning; Zhang, Xin-Ran; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Jiang-Long

    2016-01-14

    Density functional calculations have been performed to analyze the electronic and mechanical properties of a number of 2D boroxine-linked covalent organic frameworks (COFs), which are experimentally fabricated from di-borate aromatic molecules. Furthermore, the band structures are surprising and show flat-band characteristics which are mainly attributed to the delocalized π-conjugated electrons around the phenyl rings and can be better understood within aromaticity theories. Next, the effects of branch sizes and hydrostatic strains on their band structures are systematically considered within generalized gradient approximations. It is found that their band gaps will start to saturate when the branch size reaches 9. For boroxine-linked COFs with only one benzene ring in the branch, the band gap is robust under compressive strain while it decreases with the tensile strain increasing. When the branch size is equal or greater than 2, their band gaps will monotonously increase with the strain increasing in the range of [-1.0, 2.0] Å. All boroxine-linked COFs are semiconductors with controllable band gaps, depending on the branch length and the applied strain. In comparison with other 2D materials, such as graphene, hexagonal boron nitride, and even γ-graphyne, all boroxine-linked COFs are much softer and even more stable. That is, they can maintain the planar features under a larger compressive strain, which means that they are good candidates in flexible electronics. PMID:26662215

  20. Magnetic gating of a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.

    2016-09-01

    Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic ‘gate’ representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate.