Science.gov

Sample records for 2d-dige proteomic analysis

  1. 2D-DIGE proteomic analysis of mesenchymal stem cell cultured on the elasticity-tunable hydrogels.

    PubMed

    Kuboki, Thasaneeya; Kantawong, Fahsai; Burchmore, Richard; Dalby, Matthew J; Kidoaki, Satoru

    2012-01-01

    The present study focuses on mechanotransduction in mesenchymal stem cells (MSCs) in response to matrix elasticity. By using photocurable gelatinous gels with tunable stiffness, proteomic profiles of MSCs cultured on tissue culture plastic, soft (3 kPa) and stiff (52 kPa) matrices were deciphered using 2-dimensional differential in-gel analysis (2D-DIGE). The DIGE data, tied to immunofluorescence, indicated abundance and organization changes in the cytoskeletonal proteins as well as differential regulation of important signaling-related proteins, stress-responsing proteins and also proteins involved in collagen synthesis. The major CSK proteins including actin, tubulin and vimentin of the cells cultured on the gels were remarkably changed their expressions. Significant down-regulation of α-tubulin and β-actin can be observed on gel samples in comparison to the rigid tissue culture plates. The expression abundance of vimentin appeared to be highest in the MSCs cultured on hard gels. These results suggested that the substrate stiffness significantly affects expression balances in cytoskeletal proteins of MSCs with some implications to cellular tensegrity. PMID:22971925

  2. Monitoring post mortem changes in porcine muscle through 2-D DIGE proteome analysis of Longissimus muscle exudate

    PubMed Central

    2013-01-01

    Background Meat quality is a complex trait influenced by a range of factors with post mortem biochemical processes highly influential in defining ultimate quality. High resolution two-dimensional DIfference Gel Electrophoresis (2-D DIGE) and Western blot were applied to study the influence of post mortem meat ageing on the proteome of pork muscle. Exudate collected from the muscle following centrifugation was analysed at three timepoints representing a seven day meat ageing period. Results The intensity of 136 spots varied significantly (p < 0.05) across this post mortem period and 40 spots were identified using mass spectrometry. The main functional categories represented were metabolic proteins, stress-related proteins, transport and structural proteins. Metabolic and structural proteins were generally observed to increase in abundance post mortem and many likely represent the accumulation of the degradation products of proteolytic enzyme activity. In contrast, stress-related proteins broadly decreased in abundance across the ageing period. Stress response proteins have protective roles in maintaining cellular integrity and a decline in their abundance over time may correlate with a reduction in cellular integrity and the onset of meat ageing. Since cellular conditions alter with muscle ageing, changes in solubility may also contribute to observed abundance profiles. Conclusions Muscle exudate provided valuable information about the pathways and processes underlying the post mortem ageing period, highlighting the importance of post mortem modification of proteins and their interaction for the development of meat quality traits. PMID:23514628

  3. Proteome analysis of the large and the small rubber particles of Hevea brasiliensis using 2D-DIGE.

    PubMed

    Xiang, Qiulan; Xia, Kecan; Dai, Longjun; Kang, Guijuan; Li, Yu; Nie, Zhiyi; Duan, Cuifang; Zeng, Rizhong

    2012-11-01

    The rubber particle is a specialized organelle in which natural rubber is synthesised and stored in the laticifers of Hevea brasiliensis (para rubber tree). It has been demonstrated that the small rubber particles (SRPs) has higher rubber biosynthesis ratio than the large rubber particles (LRPs), but the underlying molecular mechanism still remains unknown. In this study, LRPs and SRPs were firstly separated from the fresh latex using differential centrifugation, and two-dimensional difference in-gel electrophoresis (2D-DIGE) combined with MALDI-TOF/TOF was then applied to investigate the proteomic alterations associated with the changed rubber biosynthesis capacity between LRPs and SRPs. A total of 53 spots corresponding to 22 gene products, were significantly altered with the |ratio|≥2.0 and T value ≤0.05, among which 15 proteins were up-regulated and 7 were down-regulated in the SRPs compared with the LRPs. The 15 up-regulated proteins in the SRPs included small rubber particle protein (SRPP), 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS), phospholipase D alpha (PLD α), ethylene response factor 2, eukaryotic translation initiation factor 5A isoform IV (eIF 5A-4), 70-kDa heat shock cognate protein (HSC 70), several unknown proteins, etc., whereas the 7 up-regulated proteins in the LRPs were rubber elongation factor (REF, 19.6kDa), ASR-like protein 1, REF-like stress-related protein 1, a putative phosphoglyceride transfer family protein, β-1,3-glucanase, a putative retroelement, and a hypothetical protein. Since several proteins related to rubber biosynthesis were differentially expressed between LRPs and SRPs, the comparative proteome data may provide useful insights into understanding the mechanism involved in rubber biosynthesis and latex coagulation in H. brasiliensis.

  4. Proteomic analysis of doxorubicin-induced changes in the proteome of HepG2cells combining 2-D DIGE and LC-MS/MS approaches.

    PubMed

    Hammer, Elke; Bien, Sandra; Salazar, Manuela Gesell; Steil, Leif; Scharf, Christian; Hildebrandt, Petra; Schroeder, Henry W S; Kroemer, Heyo K; Völker, Uwe; Ritter, Christoph A

    2010-01-01

    HepG-2 cells are widely used as a cell model to investigate hepatocellular carcinomas and the effect of anticancer drugs such as doxorubicin, an effective antineoplastic agent, which has broad antitumoral activity against many solid and hematological malignancies. To investigate the effect of doxorubicin on the protein pattern, we used complementary proteomic workflows including 2-D gel-based and gel-free methods. The analysis of crude HepG2 cell extracts by 2-D DIGE provided data on 1835 protein spots which was then complemented by MS-centered analysis of stable isotope labeling by amino acids in cell culture-labeled cells. The monitoring of more than 1300 distinct proteins, including proteins of the membrane fraction provides the most comprehensive overview on the proteome of the widely used model cell line HepG2. Of the proteins monitored in total, 155 displayed doxorubicin-induced changes in abundance. Functional analysis revealed major influences of doxorubicin on proteins involved in protein synthesis, DNA damage control, electron transport/mitochondrial function, and tumor growth. The strongest decrease in level was found for proteins involved in DNA replication and protein synthesis, whereas proteins with a function in DNA damage control and oxidative stress management displayed increased levels following treatment with doxorubicin compared with control cells. Furthermore, the doxorubicin-associated increase in levels of multiple forms of keratins 8, 18, and 19 and other structural proteins revealed an influence on the cytoskeleton network.

  5. Proteomic analysis of ovomucoid hypersensitivity in mice by two-dimensional difference gel electrophoresis (2D-DIGE).

    PubMed

    Hobson, D J; Rupa, P; Diaz, G J; Zhang, H; Yang, M; Mine, Y; Turner, P V; Kirby, G M

    2007-12-01

    There is a need to develop reliable methods to assess the safety of genetically modified and other novel foods. The aim of this study was to identify protein biomarkers of food allergy in mice exposed to ovomucoid (OVM), a major food allergen found in chicken egg white. BALB/c mice were repeatedly sensitized by gavage with OVM and cholera toxin (CT) and control mice were exposed to a mixture of amino acids with CT. At the endpoint, all mice were challenged intraperitoneally with OVM and alum. Type-1 hypersensitivity was confirmed in OVM-sensitized mice by observation of clinical signs of anaphylaxis and elevated levels of plasma histamine, OVM-specific IgE and OVM-specific IgG by ELISA. Differential protein expression was assessed in albumin-depleted plasma as well as in mesenteric lymph node, liver, spleen, and ileum by two-dimensional difference gel electrophoresis (2D-DIGE). Differentially expressed proteins were identified by liquid chromatography with tandem mass spectrometry. Plasma proteins overexpressed in OVM-sensitized mice included haptoglobin (41-fold), serum amyloid A (19-fold) and peroxiredoxin-2 (1.9-fold). Further validation of these plasma proteins in other animal models of food allergy with different food allergens is required to assess their potential as candidate biomarkers for use in evaluating the allergenicity of novel foods.

  6. Distinct metabolic changes between wheat embryo and endosperm during grain development revealed by 2D-DIGE-based integrative proteome analysis.

    PubMed

    Cao, Hui; He, Miao; Zhu, Chong; Yuan, Linlin; Dong, Liwei; Bian, Yanwei; Zhang, Wenying; Yan, Yueming

    2016-05-01

    Two Chinese bread wheat cultivars, Jinghua 9 and Zhongmai 175, distinct in grain weight and dough quality, were used to study proteome changes in the embryo and endosperm during grain development using a two-dimensional difference gel electrophoresis (2D-DIGE)-based proteomics approach. In total, 138 and 127 differentially expressed protein (DEP) spots representing 116 and 113 unique DEPs were identified in the embryo and endosperm, respectively. Among them, 54 (31%) DEPs were commonly present in both organs while 62 (35%) and 59 (34%) DEPs occurred only in the embryo and endosperm, respectively. Embryonic DEPs are primarily stress-related proteins and involved in carbohydrate and lipid metabolism, while those from the endosperm are related primarily to carbohydrate metabolism and storage. Principal component analysis (PCA) indicated that the proteome differences in the endosperm caused by different cultivars were greater than those by development stages, while the differences in the embryo showed the opposite pattern. Protein-protein interaction (PPI) analysis revealed a complex network centered primarily on enzymes involved in carbohydrate and protein metabolism. The transcriptional levels of fourteen important DEPs encoding genes showed high similarity between organs and cultivars. In particular, some key DEPs of the endosperm, such as phosphoglucomutase, ADP-glucose pyrophosphorylase (AGPase), and sucrose synthase (SUS), showed significantly upregulated expression, indicating their key roles in starch biosynthesis and grain yield. Moreover, upregulated expression of some storage proteins in the endosperm could improve wheat bread-making quality.

  7. A 2D-DIGE-based proteomic analysis reveals differences in the platelet releasate composition when comparing thrombin and collagen stimulations

    PubMed Central

    Vélez, Paula; Izquierdo, Irene; Rosa, Isaac; García, Ángel

    2015-01-01

    Upon stimulation, platelets release a high number of proteins (the releasate). There are clear indications that these proteins are involved in the pathogenesis of several diseases, such as atherosclerosis. In the present study we compared the platelet releasate following platelet activation with two major endogenous agonists: thrombin and collagen. Proteome analysis was based on 2D-DIGE and LC-MS/MS. Firstly, we showed the primary role of thrombin and collagen receptors in platelet secretion by these agonists; moreover, we demonstrated that GPVI is the primary responsible for collagen-induced platelet activation/aggregation. Proteomic analysis allowed the detection of 122 protein spots differentially regulated between both conditions. After excluding fibrinogen spots, down-regulated in the releasate of thrombin-activated platelets, 84 differences remained. From those, we successfully identified 42, corresponding to 37 open-reading frames. Many of the differences identified correspond to post-translational modifications, primarily, proteolysis induced by thrombin. Among others, we show vitamin K-dependent protein S, an anticoagulant plasma protein, is up-regulated in thrombin samples. Our results could have pathological implications given that platelets might be playing a differential role in various diseases and biological processes through the secretion of different subsets of granule proteins and microvesicles following a predominant activation of certain receptors. PMID:25645904

  8. 2D-DIGE analysis of mango (Mangifera indica L.) fruit reveals major proteomic changes associated with ripening.

    PubMed

    Andrade, Jonathan de Magalhães; Toledo, Tatiana Torres; Nogueira, Silvia Beserra; Cordenunsi, Beatriz Rosana; Lajolo, Franco Maria; do Nascimento, João Roberto Oliveira

    2012-06-18

    A comparative proteomic investigation between the pre-climacteric and climacteric mango fruits (cv. Keitt) was performed to identify protein species with variable abundance during ripening. Proteins were phenol-extracted from fruits, cyanine-dye-labeled, and separated on 2D gels at pH 4-7. Total spot count of about 373 proteins spots was detected in each gel and forty-seven were consistently different between pre-climacteric and climacteric fruits and were subjected to LC-MS/MS analysis. Functional classification revealed that protein species involved in carbon fixation and hormone biosynthesis decreased during ripening, whereas those related to catabolism and the stress-response, including oxidative stress and abiotic and pathogen defense factors, accumulated. In relation to fruit quality, protein species putatively involved in color development and pulp softening were also identified. This study on mango proteomics provides an overview of the biological processes that occur during ripening.

  9. Allergenicity study of EGFP-transgenic chicken meat by serological and 2D-DIGE analysis.

    PubMed

    Nakamura, Rika; Nakamura, Ryosuke; Nakano, Mikiharu; Arisawa, Kenjiro; Ezaki, Ryo; Horiuchi, Hiroyuki; Teshima, Reiko

    2010-05-01

    Genetically modified (GM) foods must be tested for safety, including by allergenicity tests to ensure that they do not contain new allergens or higher concentrations of known allergens than the same non-GM foods. In this study experimentally developed EGFP-transgenic chickens were used and evaluated the allergenicity of meat from the chicken based on a serological and two-dimensional difference gel electrophoresis (2D-DIGE) analysis. For the serological analysis, a Western blotting with allergen-specific antibodies and a proteomic analysis of chicken meat allergens with patients' sera, a so-called allergenome analysis, were used. The allergenome analysis allowed us to identify five IgE-binding proteins in chicken meat, including a known allergen, chicken serum albumin, and no qualitative difference in their expressions between the GM and non-GM chicken meat was found. Results of the 2D-DIGE analysis showed that none of the IgE-binding proteins in chicken meat were significantly changed in expression levels between non-GM and GM chicken, and only 3 of the 1500 soluble protein spots including green fluorescence protein were markedly different as a result of gene transfer. These above results showed that the combination of serological and 2D-DIGE analysis is a valid method of evaluating quality and quantity of allergens in GM foods.

  10. Comparative 2D-DIGE Proteomic Analysis of Bovine Mammary Epithelial Cells during Lactation Reveals Protein Signatures for Lactation Persistency and Milk Yield

    PubMed Central

    Janjanam, Jagadeesh; Singh, Surender; Jena, Manoj K.; Varshney, Nishant; Kola, Srujana; Kumar, Sudarshan; Kaushik, Jai K.; Grover, Sunita; Dang, Ajay K.; Mukesh, Manishi; Prakash, B. S.; Mohanty, Ashok K.

    2014-01-01

    Mammary gland is made up of a branching network of ducts that end with alveoli which surrounds the lumen. These alveolar mammary epithelial cells (MEC) reflect the milk producing ability of farm animals. In this study, we have used 2D-DIGE and mass spectrometry to identify the protein changes in MEC during immediate early, peak and late stages of lactation and also compared differentially expressed proteins in MEC isolated from milk of high and low milk producing cows. We have identified 41 differentially expressed proteins during lactation stages and 22 proteins in high and low milk yielding cows. Bioinformatics analysis showed that a majority of the differentially expressed proteins are associated in metabolic process, catalytic and binding activity. The differentially expressed proteins were mapped to the available biological pathways and networks involved in lactation. The proteins up-regulated during late stage of lactation are associated with NF-κB stress induced signaling pathways and whereas Akt, PI3K and p38/MAPK signaling pathways are associated with high milk production mediated through insulin hormone signaling. PMID:25111801

  11. Circadian Profiling of the Arabidopsis Proteome Using 2D-DIGE

    PubMed Central

    Choudhary, Mani K.; Nomura, Yuko; Shi, Hua; Nakagami, Hirofumi; Somers, David E.

    2016-01-01

    Clock-generated biological rhythms provide an adaptive advantage to an organism, resulting in increased fitness and survival. To better elucidate the plant response to the circadian system, we surveyed protein oscillations in Arabidopsis seedlings under constant light. Using large-scale two-dimensional difference in gel electrophoresis (2D-DIGE) the abundance of more than 1000 proteins spots was reproducibly resolved quantified and profiled across a circadian time series. A comparison between phenol-extracted samples and RuBisCO-depleted extracts identified 71 and 40 rhythmically-expressed proteins, respectively, and between 30 and 40% of these derive from non-rhythmic transcripts. These included proteins influencing transcriptional regulation, translation, metabolism, photosynthesis, protein chaperones, and stress-mediated responses. The phasing of maximum expression for the cyclic proteins was similar for both datasets, with a nearly even distribution of peak phases across the time series. STRING clustering analysis identified two interaction networks with a notable number of oscillating proteins: plastid-based and cytosolic chaperones and 10 proteins involved in photosynthesis. The oscillation of the ABA receptor, PYR1/RCAR11, with peak expression near dusk adds to a growing body of evidence that intimately ties ABA signaling to the circadian system. Taken together, this study provides new insights into the importance of post-transcriptional circadian control of plant physiology and metabolism. PMID:27462335

  12. Circadian Profiling of the Arabidopsis Proteome Using 2D-DIGE.

    PubMed

    Choudhary, Mani K; Nomura, Yuko; Shi, Hua; Nakagami, Hirofumi; Somers, David E

    2016-01-01

    Clock-generated biological rhythms provide an adaptive advantage to an organism, resulting in increased fitness and survival. To better elucidate the plant response to the circadian system, we surveyed protein oscillations in Arabidopsis seedlings under constant light. Using large-scale two-dimensional difference in gel electrophoresis (2D-DIGE) the abundance of more than 1000 proteins spots was reproducibly resolved quantified and profiled across a circadian time series. A comparison between phenol-extracted samples and RuBisCO-depleted extracts identified 71 and 40 rhythmically-expressed proteins, respectively, and between 30 and 40% of these derive from non-rhythmic transcripts. These included proteins influencing transcriptional regulation, translation, metabolism, photosynthesis, protein chaperones, and stress-mediated responses. The phasing of maximum expression for the cyclic proteins was similar for both datasets, with a nearly even distribution of peak phases across the time series. STRING clustering analysis identified two interaction networks with a notable number of oscillating proteins: plastid-based and cytosolic chaperones and 10 proteins involved in photosynthesis. The oscillation of the ABA receptor, PYR1/RCAR11, with peak expression near dusk adds to a growing body of evidence that intimately ties ABA signaling to the circadian system. Taken together, this study provides new insights into the importance of post-transcriptional circadian control of plant physiology and metabolism. PMID:27462335

  13. An overview of 2D DIGE analysis of marine (environmental) bacteria.

    PubMed

    Rabus, Ralf

    2012-01-01

    Microbes are the "unseen majority" of living organisms on Earth and main drivers of the biogeochemical cycles in marine and most other environments. Their significance for an intact biosphere is bringing environmental bacteria increasingly into the focus of genome-based science. Proteomics is playing a prominent role for providing a molecular understanding of how these microbes work and for identifying the key biocatalysts involved in the major biogeochemical processes. This overview describes the major insights obtained from two-dimensional difference gel electrophoresis (2D DIGE) analyses of specific degradation pathways, complex metabolic networks, cellular processes, and regulatory patterns in the marine aerobic heterotrophs Rhodopirellula baltica SH1 (Planctomycetes) and Phaeobacter gallaeciensis DSM 17395 (Roseobacter clade) and the anaerobic aromatic compound degrader Aromatoleum aromaticum EbN1 (Betaproteobacteria). PMID:22311773

  14. Proteomics Approaches for Identification of Tumor Relevant Protein Targets in Pulmonary Squamous Cell Carcinoma by 2D-DIGE-MS

    PubMed Central

    Yiping, Guo; Yang, Song; Xiaoyu, Qi; Zhuzhu, Guan; Xiaohan, Yang; Xin, Zhou; Liyan, Xue; Shujuan, Shao

    2014-01-01

    Potential markers for progression of pulmonary squamous cell carcinoma (SCC) were identified by examining samples of lung SCC and adjacent normal tissues using a combination of fluorescence two-dimensional difference gel electrophoresis (2D-DIGE), matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS), and electrospray ionization quadrupole-time of flight mass spectrometry (ESI-Q-TOF). The PANTHER System was used for gel image based quantification and statistical analysis. An analysis of proteomic data revealed that 323 protein spots showed significantly different levels of expression (P≤0.05) in lung SCC tissue compared to expression in normal lung tissue. A further analysis of these protein spots by MALDI-TOF-MS identified 81 different proteins. A systems biology approach was used to map these proteins to major pathways involved in numerous cellular processes, including localization, transport, cellular component organization, apoptosis, and reproduction. Additionally, the expression of several proteins in lung SCC and normal tissues was examined using immunohistochemistry and western blot. The functions of individual proteins are being further investigated and validated, and the results might provide new insights into the mechanism of lung SCC progression, potentially leading to the design of novel diagnostic and therapeutic strategies. PMID:24740010

  15. Revealing oxidative damage to enzymes of carbohydrate metabolism in yeast: An integration of 2D DIGE, quantitative proteomics, and bioinformatics.

    PubMed

    Boone, Cory H T; Grove, Ryan A; Adamcova, Dana; Braga, Camila P; Adamec, Jiri

    2016-07-01

    Clinical usage of lidocaine, a pro-oxidant has been linked with severe, mostly neurological complications. The mechanism(s) causing these complications is independent of the blockade of voltage-gated sodium channels. The budding yeast Saccharomyces cerevisiae lacks voltage-gated sodium channels, thus provides an ideal system to investigate lidocaine-induced protein and pathway alterations. Whole-proteome alterations leading to these complications have not been identified. To address this, S. cerevisiae was grown to stationary phase and exposed to an LC50 dose of lidocaine. The differential proteomes of lidocaine treatment and control were resolved 6 h post exposure using 2D DIGE. Amine reactive dyes and carbonyl reactive dyes were used to assess protein abundance and protein oxidation, respectively. Quantitative analysis of these dyes (⩾ 1.5-fold alteration, p ⩽ 0.05) revealed a total of 33 proteoforms identified by MS differing in abundance and/or oxidation upon lidocaine exposure. Network analysis showed enrichment of apoptotic proteins and cell wall maintenance proteins, while the abundance of proteins central to carbohydrate metabolism, such as triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase, and redox proteins superoxide dismutase and peroxiredoxin were significantly decreased. Enzymes of carbohydrate metabolism, such as phosphoglycerate kinase and enolase, the TCA cycle enzyme aconitase, and multiple ATP synthase subunits were found to be oxidatively modified. Also, the activity of aconitase was found to be decreased. Overall, these data suggest that toxic doses of lidocaine induce significant disruption of glycolytic pathways, energy production, and redox balance, potentially leading to cell malfunction and death. PMID:27193513

  16. 2D-DIGE-based proteome expression changes in leaves of rice seedlings exposed to low-level gamma radiation at Iitate village, Fukushima.

    PubMed

    Hayashi, Gohei; Moro, Carlo F; Rohila, Jai Singh; Shibato, Junko; Kubo, Akihiro; Imanaka, Tetsuji; Kimura, Shinzo; Ozawa, Shoji; Fukutani, Satoshi; Endo, Satoru; Ichikawa, Katsuki; Agrawal, Ganesh Kumar; Shioda, Seiji; Hori, Motohide; Fukumoto, Manabu; Rakwal, Randeep

    2015-01-01

    The present study continues our previous research on investigating the biological effects of low-level gamma radiation in rice at the heavily contaminated Iitate village in Fukushima, by extending the experiments to unraveling the leaf proteome. 14-days-old plants of Japonica rice (Oryza sativa L. cv. Nipponbare) were subjected to gamma radiation level of upto 4 µSv/h, for 72 h. Following exposure, leaf samples were taken from the around 190 µSv/3 d exposed seedling and total proteins were extracted. The gamma irradiated leaf and control leaf (harvested at the start of the experiment) protein lysates were used in a 2-D differential gel electrophoresis (2D-DIGE) experiment using CyDye labeling in order to asses which spots were differentially represented, a novelty of the study. 2D-DIGE analysis revealed 91 spots with significantly different expression between samples (60 positive, 31 negative). MALDI-TOF and TOF/TOF mass spectrometry analyses revealed those as comprising of 59 different proteins (50 up-accumulated, 9 down-accumulated). The identified proteins were subdivided into 10 categories, according to their biological function, which indicated that the majority of the differentially expressed proteins consisted of the general (non-energy) metabolism and stress response categories. Proteome-wide data point to some effects of low-level gamma radiation exposure on the metabolism of rice leaves.

  17. 2D-DIGE-based proteome expression changes in leaves of rice seedlings exposed to low-level gamma radiation at Iitate village, Fukushima

    PubMed Central

    Hayashi, Gohei; Moro, Carlo F; Rohila, Jai Singh; Shibato, Junko; Kubo, Akihiro; Imanaka, Tetsuji; Kimura, Shinzo; Ozawa, Shoji; Fukutani, Satoshi; Endo, Satoru; Ichikawa, Katsuki; Agrawal, Ganesh Kumar; Shioda, Seiji; Hori, Motohide; Fukumoto, Manabu; Rakwal, Randeep

    2015-01-01

    The present study continues our previous research on investigating the biological effects of low-level gamma radiation in rice at the heavily contaminated Iitate village in Fukushima, by extending the experiments to unraveling the leaf proteome. 14-days-old plants of Japonica rice (Oryza sativa L. cv. Nipponbare) were subjected to gamma radiation level of upto 4 µSv/h, for 72 h. Following exposure, leaf samples were taken from the around 190 µSv/3 d exposed seedling and total proteins were extracted. The gamma irradiated leaf and control leaf (harvested at the start of the experiment) protein lysates were used in a 2-D differential gel electrophoresis (2D-DIGE) experiment using CyDye labeling in order to asses which spots were differentially represented, a novelty of the study. 2D-DIGE analysis revealed 91 spots with significantly different expression between samples (60 positive, 31 negative). MALDI-TOF and TOF/TOF mass spectrometry analyses revealed those as comprising of 59 different proteins (50 up-accumulated, 9 down-accumulated). The identified proteins were subdivided into 10 categories, according to their biological function, which indicated that the majority of the differentially expressed proteins consisted of the general (non-energy) metabolism and stress response categories. Proteome-wide data point to some effects of low-level gamma radiation exposure on the metabolism of rice leaves. PMID:26451896

  18. An omics approach to rational feed: Enhancing growth in CHO cultures with NMR metabolomics and 2D-DIGE proteomics.

    PubMed

    Blondeel, Eric J M; Ho, Raymond; Schulze, Steffen; Sokolenko, Stanislav; Guillemette, Simon R; Slivac, Igor; Durocher, Yves; Guillemette, J Guy; McConkey, Brendan J; Chang, David; Aucoin, Marc G

    2016-09-20

    Expression of recombinant proteins exerts stress on cell culture systems, affecting the expression of endogenous proteins, and contributing to the depletion of nutrients and accumulation of waste metabolites. In this work, 2D-DIGE proteomics was employed to analyze differential expression of proteins following stable transfection of a Chinese Hamster Ovary (CHO) cell line to constitutively express a heavy-chain monoclonal antibody. Thirty-four proteins of significant differential expression were identified and cross-referenced with cellular functions and metabolic pathways to identify points of cell stress. Subsequently, 1D-(1)H NMR metabolomics experiments analyzed cultures to observe nutrient depletion and waste metabolite accumulations to further examine these cell stresses and pathways. From among fifty metabolites tracked in time-course, eight were observed to be completely depleted from the production media, including: glucose, glutamine, proline, serine, cystine, asparagine, choline, and hypoxanthine, while twenty-three excreted metabolites were also observed to accumulate. The differentially expressed proteins, as well as the nutrient depletion and accumulation of these metabolites corresponded with upregulated pathways and cell systems related to anaplerotic TCA-replenishment, NADH/NADPH replenishment, tetrahydrofolate cycle C1 cofactor conversions, limitations to lipid synthesis, and redox modulation. A nutrient cocktail was assembled to improve the growth medium and alleviate these cell stresses to achieve a ∼75% improvement to peak cell densities. PMID:27496566

  19. Consensus brain-derived protein, extraction protocol for the study of human and murine brain proteome using both 2D-DIGE and mini 2DE immunoblotting.

    PubMed

    Fernandez-Gomez, Francisco-Jose; Jumeau, Fanny; Derisbourg, Maxime; Burnouf, Sylvie; Tran, Hélène; Eddarkaoui, Sabiha; Obriot, Hélène; Dutoit-Lefevre, Virginie; Deramecourt, Vincent; Mitchell, Valérie; Lefranc, Didier; Hamdane, Malika; Blum, David; Buée, Luc; Buée-Scherrer, Valérie; Sergeant, Nicolas

    2014-01-01

    Two-dimensional gel electrophoresis (2DE) is a powerful tool to uncover proteome modifications potentially related to different physiological or pathological conditions. Basically, this technique is based on the separation of proteins according to their isoelectric point in a first step, and secondly according to their molecular weights by SDS polyacrylamide gel electrophoresis (SDS-PAGE). In this report an optimized sample preparation protocol for little amount of human post-mortem and mouse brain tissue is described. This method enables to perform both two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mini 2DE immunoblotting. The combination of these approaches allows one to not only find new proteins and/or protein modifications in their expression thanks to its compatibility with mass spectrometry detection, but also a new insight into markers validation. Thus, mini-2DE coupled to western blotting permits to identify and validate post-translational modifications, proteins catabolism and provides a qualitative comparison among different conditions and/or treatments. Herein, we provide a method to study components of protein aggregates found in AD and Lewy body dementia such as the amyloid-beta peptide and the alpha-synuclein. Our method can thus be adapted for the analysis of the proteome and insoluble proteins extract from human brain tissue and mice models too. In parallel, it may provide useful information for the study of molecular and cellular pathways involved in neurodegenerative diseases as well as potential novel biomarkers and therapeutic targets. PMID:24747743

  20. Phosphoproteomic analysis of wild-type and antimony-resistant Leishmania braziliensis lines by 2D-DIGE technology.

    PubMed

    Moreira, Douglas de Souza; Pescher, Pascale; Laurent, Christine; Lenormand, Pascal; Späth, Gerald F; Murta, Silvane M F

    2015-09-01

    Protein phosphorylation is one of the most studied post-translational modifications that is involved in different cellular events in Leishmania. In this study, we performed a comparative phosphoproteomics analysis of potassium antimonyl tartrate (SbIII)-resistant and -susceptible lines of Leishmania braziliensis using a 2D-DIGE approach followed by MS. In order to investigate the differential phosphoprotein abundance associated with the drug-induced stress response and SbIII-resistance mechanisms, we compared nontreated and SbIII-treated samples of each line. Pair wise comparisons revealed a total of 116 spots that showed a statistically significant difference in phosphoprotein abundance, including 11 and 34 spots specifically correlated with drug treatment and resistance, respectively. We identified 48 different proteins distributed into seven biological process categories. The category "protein folding/chaperones and stress response" is mainly implicated in response to SbIII treatment, while the categories "antioxidant/detoxification," "metabolic process," "RNA/DNA processing," and "protein biosynthesis" are modulated in the case of antimony resistance. Multiple sequence alignments were performed to validate the conservation of phosphorylated residues in nine proteins identified here. Western blot assays were carried out to validate the quantitative phosphoproteome analysis. The results revealed differential expression level of three phosphoproteins in the lines analyzed. This novel study allowed us to profile the L. braziliensis phosphoproteome, identifying several potential candidates for biochemical or signaling networks associated with antimony resistance phenotype in this parasite.

  1. 2D-DIGE screening of high-productive CHO cells under glucose limitation--basic changes in the proteome equipment and hints for epigenetic effects.

    PubMed

    Wingens, Marc; Gätgens, Jochem; Schmidt, Anica; Albaum, Stefan P; Büntemeyer, Heino; Noll, Thomas; Hoffrogge, Raimund

    2015-05-10

    CHO derivates (Chinese hamster ovary) belong to the most important mammalian cells for industrial recombinant protein production. Many efforts have been made to improve productivity and stability of CHO cells in bioreactor processes. Here, we followed up one barely understood phenomenon observed with process optimizations: a significantly increased cell-specific productivity in late phases of glucose-limited perfusion cultivations, when glucose (and lactate) reserves are exhausted. Our aim was to elucidate the cellular activities connected to the metabolic shift from glucose surplus to glucose limitation phase. With 2D-DIGE, we compared three stages in a perfusion culture of CHO cells: the initial growth with high glucose concentration and low lactate production, the second phase with glucose going to limitation and high lactate level, and finally the state of glucose limitation and also low lactate concentration but increased cell-specific productivity. With our proteomic approach we were able to demonstrate consequences of glucose limitation for the protein expression machinery which also could play a role for a higher recombinant protein production. Most interestingly, we detected epigenetic effects on the level of proteins involved in histone modification (HDAC1/-2, SET, RBBP7, DDX5). Together with shifts in the protein inventory of energy metabolism, cytoskeleton and protein expression, a picture emerges of basic changes in the cellular equipment under long-term glucose limitation of CHO cells.

  2. Protein expression profiles of human lymph and plasma mapped by 2D-DIGE and 1D SDS–PAGE coupled with nanoLC–ESI–MS/MS bottom-up proteomics

    PubMed Central

    Clement, Cristina C.; Aphkhazava, David; Nieves, Edward; Callaway, Myrasol; Olszewski, Waldemar; Rotzschke, Olaf; Santambrogio, Laura

    2013-01-01

    In this study a proteomic approach was used to define the protein content of matched samples of afferent prenodal lymph and plasma derived from healthy volunteers. The analysis was performed using two analytical methodologies coupled with nanoliquid chromatography-tandem mass spectrometry: one-dimensional gel electrophoresis (1DEF nanoLC Orbitrap–ESI–MS/MS), and two-dimensional fluorescence difference-in-gel electrophoresis (2D-DIGE nanoLC–ESI–MS/MS). The 253 significantly identified proteins (p<0.05), obtained from the tandem mass spectrometry data, were further analyzed with pathway analysis (IPA) to define the functional signature of prenodal lymph and matched plasma. The 1DEF coupled with nanoLC–MS–MS revealed that the common proteome between the two biological fluids (144 out of 253 proteins) was dominated by complement activation and blood coagulation components, transporters and protease inhibitors. The enriched proteome of human lymph (72 proteins) consisted of products derived from the extracellular matrix, apoptosis and cellular catabolism. In contrast, the enriched proteome of human plasma (37 proteins) consisted of soluble molecules of the coagulation system and cell–cell signaling factors. The functional networks associated with both common and source-distinctive proteomes highlight the principal biological activity of these immunologically relevant body fluids. PMID:23202415

  3. High performance CCD camera system for digitalisation of 2D DIGE gels.

    PubMed

    Strijkstra, Annemieke; Trautwein, Kathleen; Roesler, Stefan; Feenders, Christoph; Danzer, Daniel; Riemenschneider, Udo; Blasius, Bernd; Rabus, Ralf

    2016-07-01

    An essential step in 2D DIGE-based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge-coupled device (CCD) camera-based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high-end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection.

  4. High performance CCD camera system for digitalisation of 2D DIGE gels.

    PubMed

    Strijkstra, Annemieke; Trautwein, Kathleen; Roesler, Stefan; Feenders, Christoph; Danzer, Daniel; Riemenschneider, Udo; Blasius, Bernd; Rabus, Ralf

    2016-07-01

    An essential step in 2D DIGE-based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge-coupled device (CCD) camera-based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high-end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection. PMID:27252121

  5. The use of 2D-DIGE to understand the regeneration of somatic embryos in avocado.

    PubMed

    Guzmán-García, Eva; Sánchez-Romero, Carolina; Panis, Bart; Carpentier, Sebastien Christian

    2013-12-01

    Avocado embryogenic cell cultures can be classified into two groups based on their morphology when cultured on a medium containing auxin: somatic embryo (SE) and proembryonic masses (PEM) type cultures. The calli of SE-type cell lines are able to go through the maturation process, whereas the calli of PEM cell lines rarely mature. We have investigated four independent avocado cell cultures (two SE and two PEM). The aim of this study was to link the differential regeneration capacity of the four cell cultures to a proteomic pattern and to gain insight into the regeneration capacity. A 2D-DIGE analysis followed by a blind multivariate analysis was able to separate the two SE lines from the PEM lines indicating that the protein profiles of SE and PEM calli are different. Based on the variable importance, that is, the differential protein pattern, we hypothesize that the regeneration capacity in avocado is correlated to the ability to overcome the physicochemical stress stimuli associated with the in vitro culture. Our identical culture conditions do not seem to trigger an appropriate response in PEM lines.

  6. Image Pretreatment Tools II: Normalization Techniques for 2-DE and 2-D DIGE.

    PubMed

    Robotti, Elisa; Marengo, Emilio; Quasso, Fabio

    2016-01-01

    Gel electrophoresis is usually applied to identify different protein expression profiles in biological samples (e.g., control vs. pathological, control vs. treated). Information about the effect to be investigated (a pathology, a drug, a ripening effect, etc.) is however generally confounded with experimental variability that is quite large in 2-DE and may arise from small variations in the sample preparation, reagents, sample loading, electrophoretic conditions, staining and image acquisition. Obtaining valid quantitative estimates of protein abundances in each map, before the differential analysis, is therefore fundamental to provide robust candidate biomarkers. Normalization procedures are applied to reduce experimental noise and make the images comparable, improving the accuracy of differential analysis. Certainly, they may deeply influence the final results, and to this respect they have to be applied with care. Here, the most widespread normalization procedures are described both for what regards the applications to 2-DE and 2D Difference Gel-electrophoresis (2-D DIGE) maps.

  7. Primary style protein expression in the self-incompatible/compatible apricot by the 2D-DIGE technique.

    PubMed

    Cao, Xiaoyan; Feng, Jianrong; Wang, Dajiang; Sun, Junli; Lu, Xiaoyan; Liu, Huaifeng

    2012-07-15

    In order to explore the molecular mechanism underlying self-incompatibility (SI) in the apricot (Prunus armeniaca L.) at the proteome level, we examined the style proteomes at different stages of flower development: small bud, big bud, 24h after self-pollination and 24h after cross-pollination with cultivar Badanshui in the SI apricot cultivar Xinshiji and the self-compatible (SC) apricot cultivar Katy by 2D fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS). About 1500 style protein spots were detected; 66 were expressed differently in the four stages in Xinshiji. About 1600 style protein spots were detected; 143 were expressed differently in the four stages of flower development in Katy. In Xinshiji, one protein was expressed specifically, four proteins showed up-regulated expression and twenty-nine proteins showed down-regulated expression in the cross-pollinated style compared to the self-pollinated style. Thirteen proteins were identified unambiguously. In Katy, three proteins were expressed specifically, five proteins showed up-regulated expression and thirteen proteins showed down-regulated expression in the cross-pollinated style compared to self-pollinated style. Seven proteins were identified unambiguously. The different reactions of the style at the proteomic level were triggered in Xinshiji and Katy by self pollen and non-self pollen.

  8. Identification of NaCl Stress-Responsive Apoplastic Proteins in Rice Shoot Stems by 2D-DIGE

    PubMed Central

    Song, Yun; Zhang, Cuijun; Ge, Weina; Zhang, Yafang; Burlingame, Alma L.; Guo, Yi

    2011-01-01

    Plants have evolved sophisticated systems to cope with adverse environmental conditions such as cold, drought, and salinity. Although a number of stress response networks have been proposed, the role of plant apoplast in plant stress response has been ignored. To investigate the role of apoplastic proteins in the salt-stress response, 10-day-old rice plants were treated with 200 mM NaCl for 1, 6 or 12 hours, and the soluble apoplast proteins of rice shoot stems were extracted for differential analysis, compared with untreated controls, by 2-D DIGE saturation labeling techniques. One hundred twenty-two significantly changed spots were identified by LC-MS/MS, and 117 spots representing 69 proteins have been identified. Of these proteins, 37 are apoplastic proteins according to the bioinformatic analysis. These proteins are mainly involved in the processes of carbohydrate metabolism, oxido-reduction, and protein processing and degradation. According to their functional categories and cluster analysis, a stress response model of apoplastic proteins has been proposed. These data indicate that the apoplast is important in plant stress signal reception and response. PMID:21420516

  9. Identification and Validation of Potential New Biomarkers for Prostate Cancer Diagnosis and Prognosis Using 2D-DIGE and MS

    PubMed Central

    Geisler, Cordelia; Gaisa, Nadine T.; Pfister, David; Fuessel, Susanne; Kristiansen, Glen; Braunschweig, Till; Gostek, Sonja; Beine, Birte; Diehl, Hanna C.; Jackson, Angela M.; Borchers, Christoph H.; Heidenreich, Axel; Meyer, Helmut E.; Knüchel, Ruth; Henkel, Corinna

    2015-01-01

    This study was designed to identify and validate potential new biomarkers for prostate cancer and to distinguish patients with and without biochemical relapse. Prostate tissue samples analyzed by 2D-DIGE (two-dimensional difference in gel electrophoresis) and mass spectrometry (MS) revealed downregulation of secernin-1 (P < 0.044) in prostate cancer, while vinculin showed significant upregulation (P < 0.001). Secernin-1 overexpression in prostate tissue was validated using Western blot and immunohistochemistry while vinculin expression was validated using immunohistochemistry. These findings indicate that secernin-1 and vinculin are potential new tissue biomarkers for prostate cancer diagnosis and prognosis, respectively. For validation, protein levels in urine were also examined by Western blot analysis. Urinary vinculin levels in prostate cancer patients were significantly higher than in urine from nontumor patients (P = 0.006). Using multiple reaction monitoring-MS (MRM-MS) analysis, prostatic acid phosphatase (PAP) showed significant higher levels in the urine of prostate cancer patients compared to controls (P = 0.012), while galectin-3 showed significant lower levels in the urine of prostate cancer patients with biochemical relapse, compared to those without relapse (P = 0.017). Three proteins were successfully differentiated between patients with and without prostate cancer and patients with and without relapse by using MRM. Thus, this technique shows promise for implementation as a noninvasive clinical diagnostic technique. PMID:25667921

  10. 2D DIGE Does Not Reveal all: A Scotopic Report Suggests Differential Expression of a Single “Calponin Family Member” Protein for Tetany of Sphincters!

    PubMed Central

    Chaudhury, Arun

    2015-01-01

    Using 2D differential gel electrophoresis (DIGE) and mass spectrometry (MS), a recent report by Rattan and Ali (2015) compared proteome expression between tonically contracted sphincteric smooth muscles of the internal anal sphincter (IAS), in comparison to the adjacent rectum [rectal smooth muscles (RSM)] that contracts in a phasic fashion. The study showed the differential expression of a single 23 kDa protein SM22, which was 1.87 fold, overexpressed in RSM in comparison to IAS. Earlier studies have shown differences in expression of different proteins like Rho-associated protein kinase II, myosin light chain kinase, myosin phosphatase, and protein kinase C between IAS and RSM. The currently employed methods, despite its high-throughput potential, failed to identify these well-characterized differences between phasic and tonic muscles. This calls into question the fidelity and validatory potential of the otherwise powerful technology of 2D DIGE/MS. These discrepancies, when redressed in future studies, will evolve this recent report as an important baseline study of “sphincter proteome.” Proteomics techniques are currently underutilized in examining pathophysiology of hypertensive/hypotensive disorders involving gastrointestinal sphincters, including achalasia, gastroesophageal reflux disease (GERD), spastic pylorus, seen during diabetes or chronic chemotherapy, intestinal pseudo-obstruction, and recto-anal incontinence. Global proteome mapping may provide instant snapshot of the complete repertoire of differential proteins, thus expediting to identify the molecular pathology of gastrointestinal motility disorders currently labeled “idiopathic” and facilitating practice of precision medicine. PMID:26151053

  11. Proteomic analysis of the mouse brain after repetitive exposure to hypoxia.

    PubMed

    Cui, Can; Zhou, Tao; Li, Jingyi; Wang, Hong; Li, Xiaorong; Xiong, Jie; Xu, Pingxiang; Xue, Ming

    2015-07-01

    Hypoxic preconditioning (HPC) is known to have a protective effect against hypoxic damage; however, the precise mechanisms involved remain unknown. In this study, an acute and repetitive hypoxia mouse model, two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/TOF-MS), and Western blot experiments were used to identify the differential expression of key proteins in the mouse brain during HPC. Approximately 2100 2D-DIGE spots were observed following gel imaging and spot detection. Significant differences (p < 0.05) in the expression of 66 proteins were observed between the 3× HPC treatment group and the control group, 45 proteins were observed between the 6× HPC treatment group and the control group, and 70 proteins were observed between the 3× HPC treatment group and the 6× HPC group. Consistent results among Western blot, 2D-DIGE and MS methods were observed for the proteins, ATP synthase subunit alpha, malate dehydrogenase, guanine nucleotide-binding protein subunit beta-1 and proteasome subunit alpha type-2. The proteins associated with ATP synthesis and the citric acid cycle were down-regulated, while those linked to glycolysis and oxygen-binding were up-regulated. This proteomic analysis of the mouse brain after HPC furthers understanding of the molecular pathways involved in the protective effect of HPC and these findings provide new insight into the mechanisms of hypoxia and HPC. PMID:25937538

  12. Holistic differential analysis of embryo-induced alterations in the proteome of bovine endometrium in the preattachment period.

    PubMed

    Berendt, Frank J; Fröhlich, Thomas; Schmidt, Susanne E M; Reichenbach, Horst-Dieter; Wolf, Eckhard; Arnold, Georg J

    2005-07-01

    During the peri-implantation period, molecular signaling between embryo and endometrium (layer of tissue lining the uterus lumen) is supposed to be crucial for the maintenance of pregnancy. To investigate embryo-induced alterations in the proteome of bovine endometrium in the preattachment period (day 18), we used monozygotic cattle twins (generated by embryo splitting) as a model eliminating genetic variability as a source for proteome differences. One of the twins was pregnant after the transfer of two in vitro produced blastocysts, while the corresponding twin received a sham-transfer and served as a nonpregnant control. The two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) analysis of the endometrium samples of three twin pairs (pregnant/nonpregnant) revealed four proteins with significantly higher abundance (p < 10(-9)) in each sample derived from the pregnant animals: Rho GDP dissociation inhibitor beta; 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD); soluble NADP(+)-dependent isocitrate dehydrogenase 1; and acyl-CoA-binding protein. To verify the accuracy of the 2-D DIGE quantification, the abundances of 20 alpha-HSD were quantified by a targeted cleavable isotope-coded affinity tag (ICAT) approach. The mass spectrometry-based ICAT quantification matched perfectly the results obtained by 2-D DIGE quantification, demonstrating the accuracy of our data. These results demonstrate that our model (monozygotic twins) in combination with the appropriate analytical tools is particularly suitable for the detection of the proteins involved in the embryo-maternal interactions.

  13. Identification of novel biomarkers of abdominal aortic aneurysms by 2D-DIGE and MALDI-MS from AAA-thrombus-conditioned media.

    PubMed

    Martinez-Pinna, Roxana; Lopez, Juan Antonio; Ramos-Mozo, Priscila; Blanco-Colio, Luis M; Camafeita, Emilio; Calvo, Enrique; Meilhac, Olivier; Michel, Jean Baptiste; Egido, Jesús; Martin-Ventura, José Luis

    2013-01-01

    In the search for novel biomarkers, noncandidate-based proteomic strategies open up new opportunities to gain a deeper insight into disease processes regarding their molecular mechanisms, the risk factors involved, and the monitoring of disease progression. To carry out these complex analyses, the combined use of gel electrophoresis with mass spectrometry (MS) represents a powerful choice. In addition, the introduction of protein dye labeling has notably improved the reliability of differential expression studies by increasing the statistical significance of the protein candidates. Here, we describe a strategy where different layers (luminal/abluminal) from the intraluminal thrombus (ILT) of human abdominal aortic aneurysm (AAA) patients were incubated in protein-free medium. Then, the levels of the proteins released were compared by two-dimensional differential in-gel electrophoresis (2D-DIGE) and the proteins of interest identified by MS. We consider that the use of tissue-conditioned media could offer a substantial advantage in the analytical study of biological fluids, as they provide a source of proteins to be released to the bloodstream, which could serve as potential circulating biomarkers.

  14. Leveraging Genomics Software to Improve Proteomics Results

    SciTech Connect

    Fodor, I K; Nelson, D O

    2005-09-06

    Rigorous data analysis techniques are essential in quantifying the differential expression of proteins in biological samples of interest. Statistical methods from the microarray literature were applied to the analysis of two-dimensional difference gel electrophoresis (2-D DIGE) proteomics experiments, in the context of technical variability studies involving human plasma. Protein expression measurements were corrected to account for observed intensity-dependent biases within gels, and normalized to mitigate observed gel to gel variations. The methods improved upon the results achieved using the best currently available 2-D DIGE proteomics software. The spot-wise protein variance was reduced by 10% and the number of apparently differentially expressed proteins was reduced by over 50%.

  15. [FUNCTIONAL DIFFERENTIATION IN BRYOZOAN COLONY: A PROTEOMIC ANALYSIS].

    PubMed

    Kutyumov, V A; Maltseva, A L; Kotenko, N; Ostrovsky, A N

    2016-01-01

    Bryozoans are typical modular organisms. They consist of repetitive structural units, the zooids. Bryozoan colonies grow by zooidal budding, with the distribution pattern of the budding loci underlying the diversity of colony forms. Budding is usually restricted to the zooids at the periphery of the colony, which form a "growing edge" or local terminal growth zones. Non-budding parts of the colony can be functionally subdivided, too. In many species colonies consists of regular, often repetitive zones of feeding and non-feeding modules, associated with a periodical degeneration and regeneration of the polypide, retractile tentacle crown with a gut and the accompanying musculature. So, there is functional differentiation in bryozoan colonies but its mechanisms are unknown. Presumably, budding and/or polypide recycling in different colony parts are induced or inhibited by certain determinants of functional specialization. An effective tool of their identification is the comparison of proteomes of functionally different zones. Here we report the results of proteomic analysis of three bryozoan species from the White Sea, which have a different colony form: Flustrellidra hispida, Terminoflustra membranaceotruncata and Securiflustra securifrons. Using differential two-dimensional electrophoresis (2D-DIGE), we compared proteomes of the growing edge and the zones consisting of feeding and non-feeding zooids in these species. We estimated the overall proteome variability, revealed proteins whose relative abundance gradually changed along the proximal-distal colony axis and suggested that they might be involved in the functional differentiation of the colony.

  16. [FUNCTIONAL DIFFERENTIATION IN BRYOZOAN COLONY: A PROTEOMIC ANALYSIS].

    PubMed

    Kutyumov, V A; Maltseva, A L; Kotenko, N; Ostrovsky, A N

    2016-01-01

    Bryozoans are typical modular organisms. They consist of repetitive structural units, the zooids. Bryozoan colonies grow by zooidal budding, with the distribution pattern of the budding loci underlying the diversity of colony forms. Budding is usually restricted to the zooids at the periphery of the colony, which form a "growing edge" or local terminal growth zones. Non-budding parts of the colony can be functionally subdivided, too. In many species colonies consists of regular, often repetitive zones of feeding and non-feeding modules, associated with a periodical degeneration and regeneration of the polypide, retractile tentacle crown with a gut and the accompanying musculature. So, there is functional differentiation in bryozoan colonies but its mechanisms are unknown. Presumably, budding and/or polypide recycling in different colony parts are induced or inhibited by certain determinants of functional specialization. An effective tool of their identification is the comparison of proteomes of functionally different zones. Here we report the results of proteomic analysis of three bryozoan species from the White Sea, which have a different colony form: Flustrellidra hispida, Terminoflustra membranaceotruncata and Securiflustra securifrons. Using differential two-dimensional electrophoresis (2D-DIGE), we compared proteomes of the growing edge and the zones consisting of feeding and non-feeding zooids in these species. We estimated the overall proteome variability, revealed proteins whose relative abundance gradually changed along the proximal-distal colony axis and suggested that they might be involved in the functional differentiation of the colony. PMID:27220253

  17. Interaction network and mass spectrometry data of Xanthomonas citri subsp. citri surface proteins from differential proteomic analysis of infectious and non-infectious cells.

    PubMed

    Carnielli, Carolina Moretto; Artier, Juliana; Franco de Oliveira, Julio Cezar; Novo-Mansur, Maria Teresa Marques

    2016-09-01

    Here we provide the mass-spectrometry and in silico interaction network dataset of proteins identified on our research article on surface proteomic analysis from Xanthomonas citri subsp. citri (XAC) cells grown in vivo (infectious) and in vitro (non-infectious, control) by 2D-DIGE approach. Fluorescence labeling of proteins were performed on intact cells followed by cellular lysis and labeled spots from 2D gel differing in abundance between the two conditions (ANOVA, p-value<0.05) were analyzed by a nano-electrospray tandem mass spectrometry Q-Tof Ultima API mass spectrometer (MicroMass/Waters) (LC-ESI-MS/MS). This article contains raw data of proteins detected in the 79 spots analyzed by LC-ESI-MS/MS approach and also an enrichment analysis on the resulting protein-protein interaction network performed with the Integrated Interactome System (IIS) platform and Cytoscape software. The data are supplementary to our original research article, "Xanthomonas citri subsp. citri surface proteome by 2D-DIGE: ferric enterobactin receptor and other outer membrane proteins potentially involved in citric host interaction" (Carnielli et al., 2016) [1], and raw data are available via Peptide Atlas (ftp://PASS00850:ZJ7425v@ftp.peptideatlas.org/). PMID:27595129

  18. Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE)

    PubMed Central

    2010-01-01

    Background Peach fruit undergoes a rapid softening process that involves a number of metabolic changes. Storing fruit at low temperatures has been widely used to extend its postharvest life. However, this leads to undesired changes, such as mealiness and browning, which affect the quality of the fruit. In this study, a 2-D DIGE approach was designed to screen for differentially accumulated proteins in peach fruit during normal softening as well as under conditions that led to fruit chilling injury. Results The analysis allowed us to identify 43 spots -representing about 18% of the total number analyzed- that show statistically significant changes. Thirty-nine of the proteins could be identified by mass spectrometry. Some of the proteins that changed during postharvest had been related to peach fruit ripening and cold stress in the past. However, we identified other proteins that had not been linked to these processes. A graphical display of the relationship between the differentially accumulated proteins was obtained using pairwise average-linkage cluster analysis and principal component analysis. Proteins such as endopolygalacturonase, catalase, NADP-dependent isocitrate dehydrogenase, pectin methylesterase and dehydrins were found to be very important for distinguishing between healthy and chill injured fruit. A categorization of the differentially accumulated proteins was performed using Gene Ontology annotation. The results showed that the 'response to stress', 'cellular homeostasis', 'metabolism of carbohydrates' and 'amino acid metabolism' biological processes were affected the most during the postharvest. Conclusions Using a comparative proteomic approach with 2-D DIGE allowed us to identify proteins that showed stage-specific changes in their accumulation pattern. Several proteins that are related to response to stress, cellular homeostasis, cellular component organization and carbohydrate metabolism were detected as being differentially accumulated

  19. Quantitative analysis of proteome extracted from barley crowns grown under different drought conditions

    PubMed Central

    Vítámvás, Pavel; Urban, Milan O.; Škodáček, Zbynek; Kosová, Klára; Pitelková, Iva; Vítámvás, Jan; Renaut, Jenny; Prášil, Ilja T.

    2015-01-01

    Barley cultivar Amulet was used to study the quantitative proteome changes through different drought conditions utilizing two-dimensional difference gel electrophoresis (2D-DIGE). Plants were cultivated for 10 days under different drought conditions. To obtain control and differentially drought-treated plants, the soil water content was kept at 65, 35, and 30% of soil water capacity (SWC), respectively. Osmotic potential, water saturation deficit, 13C discrimination, and dehydrin accumulation were monitored during sampling of the crowns for proteome analysis. Analysis of the 2D-DIGE gels revealed 105 differentially abundant spots; most were differentially abundant between the controls and drought-treated plants, and 25 spots displayed changes between both drought conditions. Seventy-six protein spots were successfully identified by tandem mass spectrometry. The most frequent functional categories of the identified proteins can be put into the groups of: stress-associated proteins, amino acid metabolism, carbohydrate metabolism, as well as DNA and RNA regulation and processing. Their possible role in the response of barley to drought stress is discussed. Our study has shown that under drought conditions barley cv. Amulet decreased its growth and developmental rates, displayed a shift from aerobic to anaerobic metabolism, and exhibited increased levels of several protective proteins. Comparison of the two drought treatments revealed plant acclimation to milder drought (35% SWC); but plant damage under more severe drought treatment (30% SWC). The results obtained revealed that cv. Amulet is sensitive to drought stress. Additionally, four spots revealing a continuous and significant increase with decreasing SWC (UDP-glucose 6-dehydrogenase, glutathione peroxidase, and two non-identified) could be good candidates for testing of their protein phenotyping capacity together with proteins that were significantly distinguished in both drought treatments. PMID:26175745

  20. Biomarker discovery from the top down: Protein biomarkers for efficient virus transmission by insects (Homoptera: Aphididae) discovered by coupling genetics and 2-D DIGE.

    PubMed

    Cilia, Michelle; Howe, Kevin; Fish, Tara; Smith, Dawn; Mahoney, Jaclyn; Tamborindeguy, Cecilia; Burd, John; Thannhauser, Theodore W; Gray, Stewart

    2011-06-01

    Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwide and are vectored by aphids. The identification of vector proteins mediating virus transmission is critical to develop sustainable virus management practices and to understand viral strategies for circulative movement in all insect vectors. Previously, we applied 2-D DIGE to an aphid filial generation 2 population to identify proteins correlated with the transmission phenotype that were stably inherited and expressed in the absence of the virus. In the present study, we examined the expression of the DIGE candidates in previously unstudied, field-collected aphid populations. We hypothesized that the expression of proteins involved in virus transmission could be clinically validated in unrelated, virus transmission-competent, field-collected aphid populations. All putative biomarkers were expressed in the field-collected biotypes, and the expression of nine of these aligned with the virus transmission-competent phenotype. The strong conservation of the expression of the biomarkers in multiple field-collected populations facilitates new and testable hypotheses concerning the genetics and biochemistry of virus transmission. Integration of these biomarkers into current aphid-scouting methodologies will enable rational strategies for vector control aimed at judicious use and development of precision pest control methods that reduce plant virus infection. PMID:21648087

  1. Comprehensive Analysis of Temporal Alterations in Cellular Proteome of Bacillus subtilis under Curcumin Treatment

    PubMed Central

    Reddy, Panga Jaipal; Sinha, Sneha; Ray, Sandipan; Sathe, Gajanan J.; Chatterjee, Aditi; Prasad, T. S. Keshava; Dhali, Snigdha; Srikanth, Rapole; Panda, Dulal; Srivastava, Sanjeeva

    2015-01-01

    Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division. PMID:25874956

  2. Statistical Analysis of Variation in the Human Plasma Proteome

    DOE PAGES

    Corzett, Todd H.; Fodor, Imola K.; Choi, Megan W.; Walsworth, Vicki L.; Turteltaub, Kenneth W.; McCutchen-Maloney, Sandra L.; Chromy, Brett A.

    2010-01-01

    Quantifying the variation in the human plasma proteome is an essential prerequisite for disease-specific biomarker detection. We report here on the longitudinal and individual variation in human plasma characterized by two-dimensional difference gel electrophoresis (2-D DIGE) using plasma samples from eleven healthy subjects collected three times over a two week period. Fixed-effects modeling was used to remove dye and gel variability. Mixed-effects modeling was then used to quantitate the sources of proteomic variation. The subject-to-subject variation represented the largest variance component, while the time-within-subject variation was comparable to the experimental variation found in a previous technical variability study where onemore » human plasma sample was processed eight times in parallel and each was then analyzed by 2-D DIGE in triplicate. Here, 21 protein spots had larger than 50% CV, suggesting that these proteins may not be appropriate as biomarkers and should be carefully scrutinized in future studies. Seventy-eight protein spots showing differential protein levels between different individuals or individual collections were identified by mass spectrometry and further characterized using hierarchical clustering. The results present a first step toward understanding the complexity of longitudinal and individual variation in the human plasma proteome, and provide a baseline for improved biomarker discovery.« less

  3. 2D proteome analysis initiates new Insights on the Salmonella Typhimurium LuxS protein

    PubMed Central

    2009-01-01

    Background Quorum sensing is a term describing a bacterial communication system mediated by the production and recognition of small signaling molecules. The LuxS enzyme, catalyzing the synthesis of AI-2, is conserved in a wide diversity of bacteria. AI-2 has therefore been suggested as an interspecies quorum sensing signal. To investigate the role of endogenous AI-2 in protein expression of the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), we performed a 2D-DIGE proteomics experiment comparing total protein extract of wildtype S. Typhimurium with that of a luxS mutant, unable to produce AI-2. Results Differential proteome analysis of wildtype S. Typhimurium versus a luxS mutant revealed relatively few changes beyond the known effect on phase 2 flagellin. However, two highly differentially expressed protein spots with similar molecular weight but differing isoelectric point, were identified as LuxS whereas the S. Typhimurium genome contains only one luxS gene. This observation was further explored and we show that the S. Typhimurium LuxS protein can undergo posttranslational modification at a catalytic cysteine residue. Additionally, by constructing LuxS-βla and LuxS-PhoA fusion proteins, we demonstrate that S. Typhimurium LuxS can substitute the cognate signal peptide sequences of β-lactamase and alkaline phosphatase for translocation across the cytoplasmic membrane in S. Typhimurium. This was further confirmed by fractionation of S. Typhimurium protein extracts, followed by Western blot analysis. Conclusion 2D-DIGE analysis of a luxS mutant vs. wildtype Salmonella Typhimurium did not reveal new insights into the role of AI-2/LuxS in Salmonella as only a small amount of proteins were differentially expressed. However, subsequent in depth analysis of the LuxS protein itself revealed two interesting features: posttranslational modification and potential translocation across the cytoplasmic membrane. As the S. Typhimurium Lux

  4. Proteome Differences Between Male and Female Fetal Cells in Amniotic Fluid

    PubMed Central

    Chen, Chih-Ping; Lai, Tzu-Chia; Chern, Schu-Rern; Li, Sheng-Hsiang; Chou, Hsiu-Chuan; Chen, Yi-Wen; Lin, Szu-Ting; Lu, Ying-Chieh; Wu, Chieh-Lin; Li, Ji-Min

    2013-01-01

    Abstract In mammals, sex development is genetically and hormonally regulated. The process starts with the establishment of chromosomal structures (XY or XX), followed by the expression of sex-dependent genes. In order to elucidate the differential protein profiles between male and female amniocytes, a proteomic approach has been performed in this study. Here, we utilized a proteomics-based approach including 2D-DIGE and MALDI-TOF MS analysis to obtain differentially expressed proteins between male and female amniocytes. After resolving protein samples with 2D-DIGE technique, 45 proteins corresponding to 28 unique proteins were differentially expressed between male and female amninocytes from three independent batches of amniotic fluid. Of all of these unique identified spots, five of them (annexin A1, cathepsin D, cytoskeletal 19, protein disulfide-isomerase, and vimentin) exhibited more than 1.5-fold upregulation or downregulation in at least two independent experiments. Importantly, the identified proteins involved in protein degradation and protein folding display upregulated in male amniocytes, implying the differential regulations of protein degradation and protein folding during sex development. In conclusion, the identified differentially expressed proteins may be employed as potential signatures for the sex development. Moreover, the established proteomic platform might further utilize to discover the potential biomarkers for the prenatal genetic disorders in fetus. PMID:22404150

  5. Proteomic Analysis Reveals Key Proteins and Phosphoproteins upon Seed Germination of Wheat (Triticum aestivum L.)

    PubMed Central

    Dong, Kun; Zhen, Shoumin; Cheng, Zhiwei; Cao, Hui; Ge, Pei; Yan, Yueming

    2015-01-01

    Wheat (Triticum aestivum L.) is one of the oldest cultivated crops and the second most important food crop in the world. Seed germination is the key developmental process in plant growth and development, and poor germination directly affects plant growth and subsequent grain yield. In this study, we performed the first dynamic proteome analysis of wheat seed germination using a two-dimensional differential gel electrophoresis (2D-DIGE)-based proteomic approach. A total of 166 differentially expressed protein (DEP) spots representing 73 unique proteins were identified, which are mainly involved in storage, stress/defense/detoxification, carbohydrate metabolism, photosynthesis, cell metabolism, and transcription/translation/transposition. The identified DEPs and their dynamic expression profiles generally correspond to three distinct seed germination phases after imbibition: storage degradation, physiological processes/morphogenesis, and photosynthesis. Some key DEPs involved in storage substance degradation and plant defense mechanisms, such as globulin 3, sucrose synthase type I, serpin, beta-amylase, and plastid ADP-glucose pyrophosphorylase (AGPase) small subunit, were found to be phosphorylated during seed germination. Particularly, the phosphorylation site Ser355 was found to be located in the enzyme active region of beta-amylase, which promotes substrate binding. Phosphorylated modification of several proteins could promote storage substance degradation and environmental stress defense during seed germination. The central metabolic pathways involved in wheat seed germination are proposed herein, providing new insights into the molecular mechanisms of cereal seed germination. PMID:26635843

  6. Proteomic Analysis Reveals Key Proteins and Phosphoproteins upon Seed Germination of Wheat (Triticum aestivum L.).

    PubMed

    Dong, Kun; Zhen, Shoumin; Cheng, Zhiwei; Cao, Hui; Ge, Pei; Yan, Yueming

    2015-01-01

    Wheat (Triticum aestivum L.) is one of the oldest cultivated crops and the second most important food crop in the world. Seed germination is the key developmental process in plant growth and development, and poor germination directly affects plant growth and subsequent grain yield. In this study, we performed the first dynamic proteome analysis of wheat seed germination using a two-dimensional differential gel electrophoresis (2D-DIGE)-based proteomic approach. A total of 166 differentially expressed protein (DEP) spots representing 73 unique proteins were identified, which are mainly involved in storage, stress/defense/detoxification, carbohydrate metabolism, photosynthesis, cell metabolism, and transcription/translation/transposition. The identified DEPs and their dynamic expression profiles generally correspond to three distinct seed germination phases after imbibition: storage degradation, physiological processes/morphogenesis, and photosynthesis. Some key DEPs involved in storage substance degradation and plant defense mechanisms, such as globulin 3, sucrose synthase type I, serpin, beta-amylase, and plastid ADP-glucose pyrophosphorylase (AGPase) small subunit, were found to be phosphorylated during seed germination. Particularly, the phosphorylation site Ser(355) was found to be located in the enzyme active region of beta-amylase, which promotes substrate binding. Phosphorylated modification of several proteins could promote storage substance degradation and environmental stress defense during seed germination. The central metabolic pathways involved in wheat seed germination are proposed herein, providing new insights into the molecular mechanisms of cereal seed germination. PMID:26635843

  7. Proteomics of rat prostate lobes treated with 2-N-hydroxylamino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 5α-dihydrotestosterone, individually and in combination

    PubMed Central

    BOYIRI, TELIH; SOMIARI, RICHARD I.; RUSSELL, STEPHEN; ALIAGA, CESAR; EL-BAYOUMY, KARAM

    2013-01-01

    Epidemiological and preclinical studies suggest that environmental factors, hormonal responses and lifestyle, including diet and physical inactivity, are likely contributors to the initiation and progression of prostate cancer in humans. Although the effects of the food derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and/or testosterone (T) in the development of prostate cancer in the rat have been reported, the extent to which such compounds impact cancer related proteins is not clear. Knowledge of cancer-related proteins impacted by PhIP and/or T is pre-requisite to developing novel strategies to early-detect prostate cancer. Male F344 rats were sacrificed, the prostate tissue isolated and separated into dorsolateral, ventral, and anterior lobes. The lobes were cultured and treated with 10−3 M NHPhIP and/or 10−7 M DT for 24 h. NHPhIP is the genotoxic form of PhIP and DT is the more proliferative form of T. We used 2D-DIGE and LC/MS/MS technologies to study the proteome of the prostate lobes to determine if the compounds will trigger detectable changes in expression of cancer-related proteins. Analysis of the signals from 2D-DIGE revealed that about 10% of proteins were differentially expressed in the NHPhIP and/or DT treatments compared to controls. Eight candidate protein spots detected by 2D-DIGE in at least two out of three lobes showed ≥2-fold difference between treated and control samples. Five out of the eight spots contained single proteins; including, phospholipase C (PLP-Cα), Rab7, SAR1a, ribosomal protein S7 (RPS7), and nucleoside diphosphate kinase (NDPK). A survey of the literature shows that NDPK expression is altered in human cancers, including prostate cancer. Thus, we validated the altered expression of NDPK by Western blot analysis. The concordance between 2D-DIGE and Western blot analysis was 80%. The results of this study demonstrate, for the first time, that the combination of 2D-DIGE and LC/MS/MS is a powerful

  8. Comparative proteomic analysis of rice after seed ground simulated radiation and spaceflight explains the radiation effects of space environment

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing

    In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level

  9. Plasma proteomic alterations in non-human primates and humans after chronic alcohol self-administration

    PubMed Central

    Freeman, Willard M.; VanGuilder, Heather D.; Guidone, Elizabeth; Krystal, John H.; Grant, Kathleen A.; Vrana, Kent E.

    2011-01-01

    Objective diagnostics of excessive alcohol use are valuable tools in the identification and monitoring of subjects with alcohol use disorders. A number of potential biomarkers of alcohol intake have been proposed, but none have reached widespread clinical usage, often due to limited diagnostic sensitivity and specificity. In order to identify novel potential biomarkers, we performed proteomic biomarker target discovery in plasma samples from non-human primates that chronically self-administer high levels of ethanol. 2-dimensional in-gel electrophoresis (2D-DIGE) was used to quantify plasma proteins from within subject samples collected before exposure to ethanol and after three months of excessive ethanol self-administration. Highly abundant plasma proteins were depleted from plasma samples to increase proteomic coverage. Altered plasma levels of SAA4, RBP, ITIH4, clusterin, and fibronectin, identified by 2D-DIGE analysis, were confirmed in unmanipulated, whole plasma from these animals by immunoblotting. Examination of these target plasma proteins in human subjects with excessive alcohol consumption (and control subjects) revealed increased levels of SAA4 and clusterin and decreased levels of fibronectin compared to controls. These proteins not only serve as targets for further development as biomarker candidates or components of biomarker panels, but also add to the growing understanding of dysregulated immune function and lipoprotein metabolism with chronic, excessive alcohol consumption. PMID:21303580

  10. Proteomic analysis of hippocampal proteins of F344 rats exposed to 1-bromopropane

    SciTech Connect

    Huang, Zhenlie; Ichihara, Sahoko; Oikawa, Shinji; Chang, Jie; Zhang, Lingyi; Takahashi, Masahide; Subramanian, Kaviarasan; Mohideen, Sahabudeen Sheik; Wang, Yun; Ichihara, Gaku

    2011-11-15

    1-Bromopropane (1-BP) is a compound used as an alternative to ozone-depleting solvents and is neurotoxic both in experimental animals and human. However, the molecular mechanisms of the neurotoxic effects of 1-BP are not well known. To identify the molecular mechanisms of 1-BP-induced neurotoxicity, we analyzed quantitatively changes in protein expression in the hippocampus of rats exposed to 1-BP. Male F344 rats were exposed to 1-BP at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks by inhalation. Two-dimensional difference in gel electrophoresis (2D-DIGE) combined with matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) were conducted to detect and identify protein modification. Changes in selected proteins were further confirmed by western blot. 2D-DIGE identified 26 proteins with consistently altered model (increase or decrease after both 1- and 4-week 1-BP exposures) and significant changes in their levels (p < 0.05; fold change {>=} {+-} 1.2) at least at one exposure level or more compared with the corresponding controls. Of these proteins, 19 were identified by MALDI-TOF-TOF/MS. Linear regression analysis of 1-BP exposure level identified 8 differentially expressed proteins altered in a dose-dependent manner both in 1- and 4-week exposure experiments. The identified proteins could be categorized into diverse functional classes such as nucleocytoplasmic transport, immunity and defense, energy metabolism, ubiquitination-proteasome pathway, neurotransmitter and purine metabolism. Overall, the results suggest that 1-BP-induced hippocampal damage involves oxidative stress, loss of ATP production, neurotransmitter dysfunction and inhibition of ubiquitination-proteasome system. -- Highlights: Black-Right-Pointing-Pointer 1-BP modified hippocampal proteome in rat and 19 altered proteins were identified. Black-Right-Pointing-Pointer Expression of Ran, TPI, HSP60, PSMA1, ECH1, TPI, B-CK and DJ-1 was changed by 1-BP. Black

  11. Transcriptomic and Proteomic Analysis of Oenococcus oeni Adaptation to Wine Stress Conditions

    PubMed Central

    Margalef-Català, Mar; Araque, Isabel; Bordons, Albert; Reguant, Cristina; Bautista-Gallego, Joaquín

    2016-01-01

    Oenococcus oeni, the main lactic acid bacteria responsible for malolactic fermentation in wine, has to adapt to stressful conditions, such as low pH and high ethanol content. In this study, the changes in the transcriptome and the proteome of O. oeni PSU-1 during the adaptation period before MLF start have been studied. DNA microarrays were used for the transcriptomic analysis and two complementary proteomic techniques, 2-D DIGE and iTRAQ labeling were used to analyze the proteomic response. One of the most influenced functions in PSU-1 due to inoculation into wine-like medium (WLM) was translation, showing the over-expression of certain ribosomal genes and the corresponding proteins. Amino acid metabolism and transport was also altered and several peptidases were up regulated both at gene and protein level. Certain proteins involved in glutamine and glutamate metabolism showed an increased abundance revealing the key role of nitrogen uptake under stressful conditions. A strong transcriptional inhibition of carbohydrate metabolism related genes was observed. On the other hand, the transcriptional up-regulation of malate transport and citrate consumption was indicative of the use of L-malate and citrate associated to stress response and as an alternative energy source to sugar metabolism. Regarding the stress mechanisms, our results support the relevance of the thioredoxin and glutathione systems in the adaptation of O. oeni to wine related stress. Genes and proteins related to cell wall showed also significant changes indicating the relevance of the cell envelop as protective barrier to environmental stress. The differences found between transcriptomic and proteomic data suggested the relevance of post-transcriptional mechanisms and the complexity of the stress response in O. oeni adaptation. Further research should deepen into the metabolisms mostly altered due to wine conditions to elucidate the role of each mechanism in the O. oeni ability to develop MLF. PMID

  12. Hop (Humulus lupulus L.) response mechanisms in drought stress: Proteomic analysis with physiology.

    PubMed

    Kolenc, Zala; Vodnik, Dominik; Mandelc, Stanislav; Javornik, Branka; Kastelec, Damijana; Čerenak, Andreja

    2016-08-01

    Drought is one of the major environmental devastating stressors that impair the growth and productivity of crop plants. Despite the relevance of drought stress, changes in physiology and resistance mechanisms are not completely understood for certain crops, including hop (Humulus lupulus L.). In this research the drought response of hop was studied using a conventional physiological approach (gas exchange techniques, fluorescence, relative water content measurements) and proteomic analysis (2D-DIGE). Plants of two cultivars (Aurora and Savinjski golding) were exposed to progressive drought in a pot experiment and analysed at different stress stages (mild, moderate and severe). Measurements of relative water content revealed a hydrostable water balance of hop. Photosynthesis was decreased due to stomatal and non-stomatal limitation to the same extent in both cultivars. Of 28 identified differentially abundant proteins, the majority were down regulated and included in photosynthetic (41%) and sugar metabolism (33%). Fifteen % of identified proteins were classified into the nitrogen metabolism, 4% were related to a ROS related pathway and 7% to other functions. PMID:27085598

  13. Proteomic analysis of white and yellow seminal plasma in turkeys (Meleagris gallopavo).

    PubMed

    Słowińska, M; Kozłowski, K; Jankowski, J; Ciereszko, A

    2015-06-01

    Yellow semen syndrome (YSS) is endemic within domestic turkey populations. Yellow semen is of lower quality and, when used for insemination, results in reduced fertility and hatchability. Little is known about the etiology of YSS. The aim of this study was to compare the proteome of white and yellow seminal plasma of turkeys using 1) 2-dimensional difference gel electrophoresis (2D-DIGE) to quantify seminal plasma proteins and 2) matrix-assisted laser desorption/ionization mass spectrometry to identify the proteins that are differentially abundant in white and yellow seminal plasma. A total of 49 protein spots (30 upregulated and 19 downregulated) were differentially expressed in yellow seminal plasma compared with white seminal plasma. Transthyretin and serum albumin-like showed a 3-fold increase in seminal plasma from males with YSS, and the latter was validated using Western blot analysis. A 3-fold increase was observed for hemopexin-like and immunoglobulin light chain V-J-C region. Pantetheinase-like showed a 1.3-fold increase. Ovotransferrin, hepatocyte growth factor activator, cysteine-rich secretory protein 3-like, and ferritin heavy chain-like showed a significant decrease (at least a 1.3-fold decrease) in yellow semen. Further studies are necessary to evaluate the precise function of the above-mentioned proteins in YSS and to establish quality markers of turkey semen to predict the reproductive potential of individual turkeys.

  14. Proteome analysis of Physcomitrella patens exposed to progressive dehydration and rehydration.

    PubMed

    Cui, Suxia; Hu, Jia; Guo, Shilei; Wang, Jie; Cheng, Yali; Dang, Xinxing; Wu, Lili; He, Yikun

    2012-01-01

    Physcomitrella patens is an extremely dehydration-tolerant moss. However, the molecular basis of its responses to loss of cellular water remains unclear. A comprehensive proteomic analysis of dehydration- and rehydration-responsive proteins has been conducted using quantitative two-dimensional difference in-gel electrophoresis (2D-DIGE), and traditional 2-D gel electrophoresis (2-DE) combined with MALDI TOF/TOF MS. Of the 216 differentially-expressed protein spots, 112 and 104 were dehydration- and rehydration-responsive proteins, respectively. The functional categories of the most differentially-expressed proteins were seed maturation, defence, protein synthesis and quality control, and energy production. Strikingly, most of the late embryogenesis abundant (LEA) proteins were expressed at a basal level under control conditions and their synthesis was strongly enhanced by dehydration, a pattern that was confirmed by RT-PCR. Actinoporins, phosphatidylethanolamine-binding protein, arabinogalactan protein, and phospholipase are the likely dominant players in the defence system. In addition, 24 proteins of unknown function were identified as novel dehydration- or rehydration-responsive proteins. Our data indicate that Physcomitrella adopts a rapid protein response mechanism to cope with dehydration in its leafy-shoot and basal expression levels of desiccation-tolerant proteins are rapidly upgraded at high levels under stress. This mechanism appears similar to that seen in angiosperm seeds.

  15. Proteomic Identification of Cathepsin B and Nucleophosmin as Novel UVA-Targets in Human Skin Fibroblasts

    PubMed Central

    Lamore, Sarah D.; Qiao, Shuxi; Horn, David; Wondrak, Georg T.

    2010-01-01

    Solar UVA exposure plays a causative role in skin photoaging and photocarcinogenesis. Here we describe the proteomic identification of novel UVA-targets in human dermal fibroblasts following a 2D-DIGE (two-dimensional-difference-gel-electrophoresis) approach. Fibroblasts were exposed to non-cytotoxic doses of UVA or left untreated, and total protein extracts underwent CyDye-labeling followed by 2D-DIGE/mass spectrometric identification of differentially expressed proteins, confirmed independently by immunodetection. The protein displaying the most pronounced UVA-induced upregulation was identified as the nucleolar protein nucleophosmin. The protein undergoing the most pronounced UVA-induced downregulation was identified as cathepsin B, a lysosomal cysteine-protease displaying loss of enzymatic activity and altered maturation after cellular UVA exposure. Extensive lysosomal accumulation of lipofuscin-like autofluorescence and osmiophilic material occurred in UVA-exposed fibroblasts as detected by confocal fluorescence microscopy and transmission electron microscopy, respectively. Array analysis indicated UVA-induced upregulation of oxidative stress response gene expression, and UVA-induced loss of cathepsin B enzymatic activity in fibroblasts was suppressed by antioxidant intervention. Pharmacological cathepsin B-inhibition using CA074Me mimicked UVA-induced accumulation of lysosomal autofluorescence and deficient cathepsin B-maturation. Taken together, these data support the hypothesis that cathepsin B is a crucial target of UVA-induced photooxidative stress causatively involved in dermal photodamage through impairment of lysosomal removal of lipofuscin. PMID:20946361

  16. Leaf proteome analysis provides insights into the molecular mechanisms of bentazon detoxification in rice.

    PubMed

    Fang, Yingzhi; Lu, Haiping; Chen, Si; Zhu, Kun; Song, Hao; Qian, Haifeng

    2015-11-01

    Bentazon is a widely used herbicide that selectively removes broad-leaf weeds by competing with plastoquinone for the binding site in the D1 protein and interrupting the PET (photosynthetic electron transfer) chain. However, monocotyledonous plants, such as rice, show strong resistance to bentazon due to CYP81A6 induction, which results in herbicide detoxification. Here, we confirmed that rice was sensitive to bentazon treatment during the initial exposure period, in which bentazon rapidly inhibited photosynthesis efficiency and electron transfer, based on results of chlorophyll fluorescence analysis. In order to gain a comprehensive, pathway-oriented, mechanistic understanding of the effects directly induced by bentazon, we employed 2D-DIGE (two-dimensional difference gel electrophoresis) to analyze the leaf proteome after 8h of bentazon treatment coupled with individual protein identification by MALDI-TOF (Matrix assisted laser desorption/ionization-time of flight) MS/MS. Proteomic analyses revealed that bentazon induced the relative upregulation or downregulation of 30 and 71 proteins (by 1.5-fold or more, p<0.05), respectively. The pathways involved include photosynthesis processes, carbohydrate metabolism, antioxidant systems, and DNA stabilization and protein folding. Protein analysis data revealed that bentazon primarily suppressed photosynthesis processes, and showed inhibitory effects on carbohydrate metabolism and ATP synthesis, whereas several stress response proteins were induced in response to bentazon. Importantly, we identified a 519kD protein containing two histidine kinase-like ATPase domains and a C3HC4 RING type zinc finger domain which may function as a transcript factor to drive expression of detoxification genes such as CYP81A6, leading to bentazon tolerance. This study identifies, for the first time, a candidate transcription factor that could up-regulate CYP81A6 expression, and provides a foundation for further research to advance our

  17. The effects of daily supplementation of Dendrobium huoshanense polysaccharide on ethanol-induced subacute liver injury in mice by proteomic analysis.

    PubMed

    Wang, Xiao-Yu; Luo, Jian-Ping; Chen, Rui; Zha, Xue-Qiang; Wang, He

    2014-09-01

    Polysaccharides isolated from edible Dendrobium huoshanense have been shown to possess a hepatoprotection function for selenium- and carbon tetrachloride-induced liver injury. In this study, we investigated the preventive effects of daily supplementation with an homogeneous polysaccharide (DHP) purified from D. huoshanense on ethanol-induced subacute liver injury in mice and its potential mechanisms in liver protection by a proteomic approach. DHP was found to effectively depress the increased ratio of liver weight to body weight, reduce the elevated levels of serum aspartate aminotransferase, total cholesterol, total bilirubin and low density lipoprotein, and alleviate hepatic steatosis in mice with ethanol-induced subacute liver injury. Hepatic proteomics analysis performed by two-dimensional difference gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) revealed that cystathionine beta-synthase (Cbs) and D-lactate dehydrogenase (Ldhd) were two key proteins regulated by daily DHP intervention, which may assist in correcting the abnormal hepatic methionine metabolism pathway and decreasing the level of hepatic methylglyoxal generated from disordered metabolic pathways caused by ethanol. Our data suggest that DHP can protect liver function from alcoholic injury with complicated molecular mechanisms involving regulation of Cbs and Ldhd.

  18. Proteomic analysis of beta-catenin activation in mouse liver by DIGE analysis identifies glucose metabolism as a new target of the Wnt pathway.

    PubMed

    Chafey, Philippe; Finzi, Laetitia; Boisgard, Raphael; Caüzac, Michèle; Clary, Guillem; Broussard, Cédric; Pégorier, Jean-Paul; Guillonneau, François; Mayeux, Patrick; Camoin, Luc; Tavitian, Bertrand; Colnot, Sabine; Perret, Christine

    2009-08-01

    The Wnt/beta-catenin signaling pathway has been increasingly implicated in liver development and physiology. Aberrant activation of this pathway is one of the major genetic events observed during the process of human HCC development. To gain insight into the mechanism underlying beta-catenin action in the liver, we conducted a quantitative differential proteomic analysis using 2-D DIGE combined with MS, in mice with liver-specific deletion of Apc resulting in acute activation of beta-catenin signaling (Apc(KOliv) mice). We identified 94 protein spots showing differential expression between mutant Apc(KOliv) and control mice, corresponding to 56 individual proteins. Most of the proteins identified were associated with metabolic pathways, such as ammonia and glucose metabolism. Our analysis showed an increase in lactate dehydrogenase activity together with a downregulation of two mitochondrial ATPase subunits (ATP5a1 and ATP5b). These observations indicate that beta-catenin signaling may induce a shift in the glucose metabolism from oxidative phosphorylation to glycolysis, known as the "Warburg effect". Imaging with (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography suggests that the specific metabolic reprogramming induced by beta-catenin in the liver does not imply the first step of glycolysis. This observation may explain why some HCCs are difficult to assess by fluoro-2-deoxy-D-glucose-positron emission tomography imaging.

  19. Nanoscaled Proteomic Analysis

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Jia, Lee

    2013-09-01

    Global proteomics research is currently hampered by the extremely complexity of the proteome and the absence of techniques like the polymerase chain reaction in genomics which enables multiplication of a single protein molecule. Since all the existing analytical technologies cannot overcome the detection limit and the dynamic concentration barrier, development of improved analytical technologies at nanoscale, ideally those that could recognize single protein molecule in the presence of high abundant of others, is a high priority for proteomics. In this chapter, we will show the state-of-the-art of nanoproteomics, i.e., the application of nanotechnologies to proteomics. Various nanomaterials including carbon nanomaterials, magnetic nanoparticles, silica nanoparticles, polymer and copolymer nanoparticles, metal and metal oxide nanoparticles have been used to improve sensitivity, specificity, and repeatability of proteomic analysis especially when the multidimensional separation system coupled with MALDI-TOF-MS is used. Among them, gold nanoparticles (GNPs) and carbon nanotubes (CNTs) are the two most important nanomaterials: while GNPs are frequently utilized for enzyme immobilization, high throughput bioassay, selection of target-peptides and target-protein, CNTs including single-walled carbon nanotubes (SWCNTs) and mutiple-walled carbon nanotubes (MWCNTs) have wide applications to electronic sensor, sensitive immunodetection, nanobiocatalysis, affinity probes, MALDI matrices, protein digestion, peptides enrichment and analysis. In perspectives, a deep understanding of the structures and property of nanomaterials and interdisciplinary applications of nanotechnology to proteomics will certainly be revolutionary and intellectually rewarding.

  20. Proteomic profiles of the embryonic chorioamnion and uterine caruncles in buffaloes (Bubalus bubalis) with normal and retarded embryonic development.

    PubMed

    Balestrieri, Maria Luisa; Gasparrini, Bianca; Neglia, Gianluca; Vecchio, Domenico; Strazzullo, Maria; Giovane, Alfonso; Servillo, Luigi; Zicarelli, Luigi; D'Occhio, Michael J; Campanile, Giuseppe

    2013-05-01

    The aim of this study was to compare the proteome profiles of the chorioamnion and corresponding caruncle for buffalo embryos that had either normal or retarded development on Day 25 after artificial insemination (AI). In experiment 1, embryos that were to subsequently undergo late embryonic mortality had a smaller width on Day 25 after AI than embryos associated with pregnancy on Day 45 after AI. In experiment 2, 25 Italian Mediterranean buffaloes underwent transrectal ultrasonography on Day 25 after AI, and pregnant animals were categorized as one of two groups based on embryonic width: normal embryos (embryonic width > 2.7 mm) and retarded embryos (embryonic width < 2.7 mm). Three buffaloes of each group were slaughtered on Day 27 after AI to collect chorioamnion and caruncle tissues for subsequent proteomic analyses. Two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight mass spectrometer analysis were used to ascertain the proteomic profiles. To confirm 2D-DIGE-results, three selected proteins were analyzed by Western blot. The proteomic profiles of the chorioamnion of retarded embryos and the corresponding caruncles showed differences in the expression of several proteins compared to normal embryos. In particular, a down-regulation was observed for proteins involved in protein folding (HSP 90-alpha, calreticulin), calcium binding (annexin A1, annexin A2), and coagulation (fibrinogen alpha-chain) (P < 0.05), whereas proteins involved in protease inhibition (alpha-1-antiproteinase, serpin H1, serpin A3-8), DNA and RNA binding (heterogeneous nuclear ribonucleoproteins A2/B1 and K), chromosome segregation (serine/threonine-protein phosphatase 2A), cytoskeletal organization (ezrin), cell redox homeostasis (amine oxidase-A), and hemoglobin binding (haptoglobin) were up-regulated (P < 0.05). PMID:23575152

  1. Proteomic analysis of Plasmodium falciparum induced alterations in humans from different endemic regions of India to decipher malaria pathogenesis and identify surrogate markers of severity.

    PubMed

    Ray, Sandipan; Kumar, Vipin; Bhave, Amruta; Singh, Vaidhvi; Gogtay, Nithya J; Thatte, Urmila M; Talukdar, Arunansu; Kochar, Sanjay K; Patankar, Swati; Srivastava, Sanjeeva

    2015-09-01

    India significantly contributes to the global malaria burden and has the largest population in the world at risk of malaria. This study aims to analyze alterations in the human serum proteome as a consequence of non-severe and severe infections by the malaria parasite Plasmodium falciparum to identify markers related to disease severity and to obtain mechanistic insights about disease pathogenesis and host immune responses. In discovery phase of the study, a comprehensive quantitative proteomic analysis was performed using gel-based (2D-DIGE) and gel-free (iTRAQ) techniques on two independent mass spectrometry platforms (ESI-Q-TOF and Q-Exactive mass spectrometry), and selected targets were validated by ELISA. Proteins showing altered serum abundance in falciparum malaria patients revealed the modulation of different physiological pathways including chemokine and cytokine signaling, IL-12 signaling and production in macrophages, complement cascades, blood coagulation, and protein ubiquitination pathways. Some muscle related and cytoskeletal proteins such as titin and galectin-3-binding protein were found to be up-regulated in severe malaria patients. Hemoglobin levels and platelet counts were also found to be drastically lower in severe malaria patients. Identified proteins including serum amyloid A, C-reactive protein, apolipoprotein E and haptoglobin, which exhibited sequential alterations in their serum abundance in different severity levels of malaria, could serve as potential predictive markers for disease severity. To the best of our information, we report here the first comprehensive analysis describing the serum proteomic alterations observed in severe P. falciparum infected patients from different malaria endemic regions of India. This article is part of a Special Issue entitled: Proteomics in India.

  2. Proteomic Analysis of the Reproductive Organs of the Hermaphroditic Gastropod Lymnaea stagnalis Exposed to Different Endocrine Disrupting Chemicals

    PubMed Central

    Giusti, Arnaud; Leprince, Pierre; Mazzucchelli, Gabriel; Thomé, Jean-Pierre; Lagadic, Laurent; Ducrot, Virginie; Joaquim-Justo, Célia

    2013-01-01

    Many studies have reported perturbations of mollusc reproduction following exposure to low concentrations (ng/L range) of endocrine disrupting chemicals (EDCs). However, the mechanisms of action of these molecules on molluscs are still poorly understood. Investigation of the modifications of protein expression in organisms exposed to chemicals using proteomic methods can provide a broader and more comprehensive understanding of adverse impacts of pollution on organisms than conventional biochemical biomarkers (e.g., heat-shock proteins, metallothioneins, GST, EROD). In this study we have investigated the impacts of four chemicals, which exhibit different endocrine disrupting properties in vertebrates, on the proteome of the hermaphroditic freshwater pulmonate gastropod Lymnaea stagnalis after 21 days of exposure. Testosterone, tributyltin, chlordecone and cyproterone acetate were chosen as tested compounds as they can induce adverse effects on the reproduction of this snail. The 2D-DIGE method was used to identify proteins whose expression was affected by these compounds. In addition to modifying the expression of proteins involved in the structure and function of the cytoskeleton, chemicals had impacts on the expression of proteins involved in the reproduction of L. stagnalis. Exposure to 19.2 µg/L of chlordecone increased the abundance of ovipostatin, a peptide transmitted during mating through seminal fluid, which reduces oviposition in this species. The expression of yolk ferritin, the vitellogenin equivalent in L. stagnalis, was reduced after exposure to 94.2 ng Sn/L of tributyltin. The identification of yolk ferritin and the modification of its expression in snails exposed to chemicals were refined using western blot analysis. Our results showed that the tested compounds influenced the abundance of yolk ferritin in the reproductive organs. Alteration in proteins involved in reproductive pathways (e.g., ovipostatin and yolk ferritin) could constitute relevant

  3. Cessation of coleoptile elongation and loss of auxin sensitivity in developing rye seedlings: a quantitative proteomic analysis.

    PubMed

    Kutschera, U; Deng, Z; Oses-Prieto, J A; Burlingame, A L; Wang, Z-Y

    2010-05-01

    The use of the grass coleoptile for the elucidation of the mechanism of cell elongation is a legacy of the classic experiments of Charles Darwin, who described this organ in 1880 as a "reddish sheath". In this study we quantified the growth of intact, etiolated rye (Secale cereale L.) seedlings and selected 3-day-old (growing) vs. 4-day-old (pierced) coleoptiles for a comparative analysis. Upon emergence of the reddish primary leaf on day 4 after sowing, growth slowed down by 70% and the sensitivity of the coleoptile to auxin (Indole-3-acetic acid) was lost, but turgor pressure was maintained. A quantitative comparison of the proteome (microsomal- and cytoplasmic protein fractions, respectively), using the two-dimensional difference gel electrophoresis (2-D DIGE)-technique, revealed that at least 28 proteins (spots) were differentially up- or down-regulated more than 1.5-fold. Eight of these proteins were identified by reverse-phase liquid chromatography-electrospray tandem mass spectrometry. Cessation of coleoptile growth was associated with the down-regulation (- 81 %) of subunit E of the vacuolar H(+)-ATPase (V-ATPase) and the up-regulation of enzymes involved in lignification (phenylalanine ammonia lyase) and wounding responses (xylanase inhibitor; two lipoxygenases). We conclude that the degradation of the V-ATPases, electrogenic proton pumps on the tonoplast and the membranes of the Golgi- dependent secretory pathway, may be the cause for the cessation of growth in turgid coleoptiles and the associated loss of auxin sensitivity. However, the intracellular signals that cause these proteomic changes have not yet been identified.

  4. Urinary proteome alterations in HER2 enriched breast cancer revealed by multipronged quantitative proteomics.

    PubMed

    Gajbhiye, Akshada; Dabhi, Raju; Taunk, Khushman; Vannuruswamy, Garikapati; RoyChoudhury, Sourav; Adhav, Ragini; Seal, Shubhendu; Mane, Anupama; Bayatigeri, Santhakumari; Santra, Manas K; Chaudhury, Koel; Rapole, Srikanth

    2016-09-01

    Globally, breast cancer is the second most common cancer among women. Although biomarker discoveries through various proteomic approaches of tissue and serum samples have been studied in breast cancer, urinary proteome alterations in breast cancer are least studied. Urine being a noninvasive biofluid and a significant source of proteins, it has the potential in early diagnosis of breast cancer. This study used complementary quantitative gel-based and gel-free proteomic approaches to find a panel of urinary protein markers that could discriminate HER2 enriched (HE) subtype breast cancer from the healthy controls. A total of 183 differentially expressed proteins were identified using three complementary approaches, namely 2D-DIGE, iTRAQ, and sequential window acquisition of all theoretical mass spectra. The differentially expressed proteins were subjected to various bioinformatics analyses for deciphering the biological context of these proteins using protein analysis through evolutionary relationships, database for annotation, visualization and integrated discovery, and STRING. Multivariate statistical analysis was undertaken to identify the set of most significant proteins, which could discriminate HE breast cancer from healthy controls. Immunoblotting and MRM-based validation in a separate cohort testified a panel of 21 proteins such as zinc-alpha2-glycoprotein, A2GL, retinol-binding protein 4, annexin A1, SAP3, SRC8, gelsolin, kininogen 1, CO9, clusterin, ceruloplasmin, and α1-antitrypsin could be a panel of candidate markers that could discriminate HE breast cancer from healthy controls. PMID:27324523

  5. Proteomic analysis of sera from common variable immunodeficiency patients undergoing replacement intravenous immunoglobulin therapy.

    PubMed

    Spadaro, Giuseppe; D'Orio, Concetta; Genovese, Arturo; Galeotafiore, Antonella; D'Ambrosio, Chiara; Di Giovanni, Stefano; Vitale, Monica; Capasso, Mario; Lamberti, Vincenzo; Scaloni, Andrea; Marone, Gianni; Zambrano, Nicola

    2011-01-01

    Common variable immunodeficiency is the most common form of symptomatic primary antibody failure in adults and children. Replacement immunoglobulin is the standard treatment of these patients. By using a differential proteomic approach based on 2D-DIGE, we examined serum samples from normal donors and from matched, naive, and immunoglobulin-treated patients. The results highlighted regulated expression of serum proteins in naive patients. Among the identified proteins, clusterin/ApoJ serum levels were lower in naive patients, compared to normal subjects. This finding was validated in a wider collection of samples from newly enrolled patients. The establishment of a cellular system, based on a human hepatocyte cell line HuH7, allowed to ascertain a potential role in the regulation of CLU gene expression by immunoglobulins.

  6. Comparative Analysis of Sorghum bicolor Proteome in Response to Drought Stress and following Recovery.

    PubMed

    Jedmowski, Christoph; Ashoub, Ahmed; Beckhaus, Tobias; Berberich, Thomas; Karas, Michael; Brüggemann, Wolfgang

    2014-01-01

    The adaptive response of Sorghum bicolor landraces from Egypt to drought stress and following recovery was analyzed using two-dimensional difference gel electrophoresis, 2D-DIGE. Physiological measurements and proteome alterations of accession number 11434, drought tolerant, and accession number 11431, drought sensitive, were compared to their relative control values after drought stress and following recovery. Differentially expressed proteins were analysed by Matrix assisted laser desorption ionisation time-of-flight mass spectrometry, MALDI-TOF-MS. Alterations in protein contents related to the energy balance, metabolism (sensu Mewes et al. 1997), and chaperons were the most apparent features to elucidate the differences between the drought tolerant and sensitive accessions. Further alterations in the levels of proteins related to transcription and protein synthesis are discussed.

  7. Proteomic Analysis of Growth Phase-Dependent Expression of Legionella pneumophila Proteins Which Involves Regulation of Bacterial Virulence Traits

    PubMed Central

    Naitou, Hirotaka; Ohashi, Norio; Imai, Yasuyuki; Miyake, Masaki

    2010-01-01

    Legionella pneumophila, which is a causative pathogen of Legionnaires' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE) combined with Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry (MALDI-TOF-MS). Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB) biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins) were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs). Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase. PMID:20661449

  8. Proteomic analysis of "Moncada" mandarin leaves with contrasting fruit load.

    PubMed

    Muñoz-Fambuena, Natalia; Mesejo, Carlos; Agustí, Manuel; Tárraga, Susana; Iglesias, Domingo J; Primo-Millo, Eduardo; González-Mas, M Carmen

    2013-01-01

    A proteomic approach was used to know more about the molecular mechanism related to Citrus alternate bearing. To this end, we researched protein expression differences between on-crop and off-crop "Moncada" [Clementine 'Oroval' (Citrus clementina Hort ex Tanaka) x 'Kara' mandarin (Citrus unshiu Marc. x Citrus nobilis Lou.)] mandarin leaves. This variety usually shows a remarkable behaviour in alternate production. Samples were collected in the period during which the fruit affect flowering induction. From 2D DIGE gel, 110 spots were isolated: 43 showed increased expression in the off-crop samples compared to on-crop samples, while 67 showed increased expression in the on-crop samples against off-crop samples. These spots were identified by MALDI-MS or LC-MS-MS. According to the up-expressed proteins in off-crop leaves such as proteins related to nutrient reservoir activity or to the pentose phosphate pathway, the primary metabolism was more active in off-crop trees than in on-crop trees. In contrast, the proteins up-expressed in on-crop samples such as catalase were related to the oxidoreductase activity and, therefore, the redox state seemed different for off-crop and for on-crop leaves. Other proteins with unknown functions were isolated, which could be also related to the alternate bearing and to the flowering induction.

  9. Proteomic analysis identifies interleukin 11 regulated plasma membrane proteins in human endometrial epithelial cells in vitro

    PubMed Central

    2011-01-01

    Background During the peri-implantation period, the embryo adheres to an adequately prepared or receptive endometrial surface epithelium. Abnormal embryo adhesion to the endometrium results in embryo implantation failure and infertility. Endometrial epithelial cell plasma membrane proteins critical in regulating adhesion may potentially be infertility biomarkers or targets for treating infertility. Interleukin (IL) 11 regulates human endometrial epithelial cells (hEEC) adhesion. Its production is abnormal in women with infertility. The objective of the study was to identify IL11 regulated plasma membrane proteins in hEEC in vitro using a proteomic approach. Methods Using a 2D-differential in-gel electrophoresis (DIGE) electrophoresis combined with LCMS/MS mass spectrometry approach, we identified 20 unique plasma membrane proteins differentially regulated by IL11 in ECC-1 cells, a hEEC derived cell line. Two IL11 regulated proteins with known roles in cell adhesion, annexin A2 (ANXA2) and flotillin-1 (FLOT1), were validated by Western blot and immunocytochemistry in hEEC lines (ECC-1 and an additional cell line, Ishikawa) and primary hEEC. Flotilin-1 was further validated by immunohistochemistry in human endometrium throughout the menstrual cycle (n = 6-8/cycle). Results 2D-DIGE analysis identified 4 spots that were significantly different between control and IL11 treated group. Of these 4 spots, there were 20 proteins that were identified with LCMS/MS. Two proteins; ANXA2 and FLOT1 were chosen for further analyses and have found to be significantly up-regulated following IL11 treatment. Western blot analysis showed a 2-fold and a 2.5-fold increase of ANXA2 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. Similarly, a 1.8-fold and a 2.3/2.4-fold increase was also observed for FLOT1 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. In vitro, IL11 induced stronger ANXA2 expression on cell surface of primary hEEC and ECC-1 whilst

  10. Identification of the key molecules involved in chronic copper exposure-aggravated memory impairment in transgenic mice of Alzheimer's disease using proteomic analysis.

    PubMed

    Yu, Jun; Luo, Xiaobin; Xu, Hua; Ma, Quan; Yuan, Jianhui; Li, Xuling; Chang, Raymond Chuen-Chung; Qu, Zhongsen; Huang, Xinfeng; Zhuang, Zhixiong; Liu, Jianjun; Yang, Xifei

    2015-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by a progressive impairment of cognitive functions including spatial learning and memory. Excess copper exposure accelerates the development of AD; however, the potential mechanisms by which copper exacerbates the symptoms of AD remain unknown. In this study, we explored the effects of chronic copper exposure on cognitive function by treating 6 month-old triple AD transgenic (3xTg-AD) mice with 250 ppm copper sulfate in drinking water for 6 months, and identified several potential key molecules involved in the effects of chronic copper exposure on memory by proteomic analysis. The behavioral test showed that chronic copper exposure aggravated memory impairment of 3xTg-AD mice. Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry revealed a total of 44 differentially expressed proteins (18 upregulated and 26 down-regulated) in hippocampus between the wild-type (WT) mice and non-exposed 3xTg-AD mice. A total of 40 differentially expressed proteins were revealed (20 upregulated and 20 down-regulated) in hippocampus between copper exposed and non-exposed 3xTg-AD mice. Among these differentially expressed proteins, complexin-1 and complexin-2, two memory associated proteins, were significantly decreased in hippocampus of 3xTg-AD mice compared with the WT mice. Furthermore, the expression of these two proteins was further down-regulated in 3xTg-AD mice when exposed to copper. The abnormal expression of complexin-1 and complexin-2 identified by proteomic analysis was verified by western blot analysis. Taken together, our data showed that chronic copper exposure accelerated memory impairment and altered the expression of proteins in hippocampus in 3xTg-AD mice. The functional analysis on the differentially expressed proteins suggested that complexin-1 and complexin-2 may be the key molecules involved in chronic copper exposure

  11. Identification of the key molecules involved in chronic copper exposure-aggravated memory impairment in transgenic mice of Alzheimer's disease using proteomic analysis.

    PubMed

    Yu, Jun; Luo, Xiaobin; Xu, Hua; Ma, Quan; Yuan, Jianhui; Li, Xuling; Chang, Raymond Chuen-Chung; Qu, Zhongsen; Huang, Xinfeng; Zhuang, Zhixiong; Liu, Jianjun; Yang, Xifei

    2015-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by a progressive impairment of cognitive functions including spatial learning and memory. Excess copper exposure accelerates the development of AD; however, the potential mechanisms by which copper exacerbates the symptoms of AD remain unknown. In this study, we explored the effects of chronic copper exposure on cognitive function by treating 6 month-old triple AD transgenic (3xTg-AD) mice with 250 ppm copper sulfate in drinking water for 6 months, and identified several potential key molecules involved in the effects of chronic copper exposure on memory by proteomic analysis. The behavioral test showed that chronic copper exposure aggravated memory impairment of 3xTg-AD mice. Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry revealed a total of 44 differentially expressed proteins (18 upregulated and 26 down-regulated) in hippocampus between the wild-type (WT) mice and non-exposed 3xTg-AD mice. A total of 40 differentially expressed proteins were revealed (20 upregulated and 20 down-regulated) in hippocampus between copper exposed and non-exposed 3xTg-AD mice. Among these differentially expressed proteins, complexin-1 and complexin-2, two memory associated proteins, were significantly decreased in hippocampus of 3xTg-AD mice compared with the WT mice. Furthermore, the expression of these two proteins was further down-regulated in 3xTg-AD mice when exposed to copper. The abnormal expression of complexin-1 and complexin-2 identified by proteomic analysis was verified by western blot analysis. Taken together, our data showed that chronic copper exposure accelerated memory impairment and altered the expression of proteins in hippocampus in 3xTg-AD mice. The functional analysis on the differentially expressed proteins suggested that complexin-1 and complexin-2 may be the key molecules involved in chronic copper exposure

  12. Early changes in the liver-soluble proteome from mice fed a nonalcoholic steatohepatitis inducing diet.

    PubMed

    Thomas, Anja; Stevens, Axel P; Klein, Matthias S; Hellerbrand, Claus; Dettmer, Katja; Gronwald, Wolfram; Oefner, Peter J; Reinders, Jörg

    2012-05-01

    Despite the increasing incidence of nonalcoholic steatohepatitis (NASH) with the rise in lifestyle-related diseases such as the metabolic syndrome, little is known about the changes in the liver proteome that precede the onset of inflammation and fibrosis. Here, we investigated early changes in the liver-soluble proteome of female C57BL/6N mice fed an NASH-inducing diet by 2D-DIGE and nano-HPLC-MS/MS. In parallel, histology and measurements of hepatic content of triglycerides, cholesterol and intermediates of the methionine cycle were performed. Hepatic steatosis manifested itself after 2 days of feeding, albeit significant changes in the liver-soluble proteome were not evident before day 10 in the absence of inflammatory or fibrotic signs. Proteomic alterations affected mainly energy and amino acid metabolism, detoxification processes, urea cycle, and the one-carbon/S-adenosylmethionine pathways. Additionally, intermediates of relevant affected pathways were quantified from liver tissue, confirming the findings from the proteomic analysis.

  13. Preliminary Proteomic Analysis of A549 Cells Infected with Avian Influenza Virus H7N9 and Influenza A Virus H1N1

    PubMed Central

    Ding, Xiaoman; Lu, Jiahai; Yu, Ruoxi; Wang, Xin; Wang, Ting; Dong, Fangyuan; Peng, Bo; Wu, Weihua; Liu, Hui; Geng, Yijie; Zhang, Renli; Ma, Hanwu; Cheng, Jinquan; Yu, Muhua; Fang, Shisong

    2016-01-01

    A newly emerged H7N9 influenza virus poses high risk to human beings. However, the pathogenic mechanism of the virus remains unclear. The temporal response of primary human alveolar adenocarcinoma epithelial cells (A549) infected with H7N9 influenza virus and H1N1 influenza A virus (H1N1, pdm09) were evaluated using the proteomics approaches (2D-DIGE combined with MALDI-TOF-MS/MS) at 24, 48 and 72 hours post of the infection (hpi). There were 11, 12 and 33 proteins with significant different expressions (P<0.05) at 24, 48 and 72hpi, especially F-actin-capping protein subunit alpha-1 (CAPZA1), Ornithine aminotransferase (OAT), Poly(rC)-binding protein 1 (PCBP1), Eukaryotic translation initiation factor 5A-1 (EIF5A) and Platelet-activating factor acetylhydrolaseⅠb subunit beta (PAFAH1B2) were validated by western-blot analysis. The functional analysis revealed that the differential proteins in A549 cells involved in regulating cytopathic effect. Among them, the down-regulation of CAPZA1, OAT, PCBP1, EIF5A are related to the death of cells infected by H7N9 influenza virus. This is the first time show that the down-regulation of PAFAH1B2 is related to the later clinical symptoms of patients infected by H7N9 influenza virus. These findings may improve our understanding of pathogenic mechanism of H7N9 influenza virus in proteomics. PMID:27223893

  14. Preliminary Proteomic Analysis of A549 Cells Infected with Avian Influenza Virus H7N9 and Influenza A Virus H1N1.

    PubMed

    Ding, Xiaoman; Lu, Jiahai; Yu, Ruoxi; Wang, Xin; Wang, Ting; Dong, Fangyuan; Peng, Bo; Wu, Weihua; Liu, Hui; Geng, Yijie; Zhang, Renli; Ma, Hanwu; Cheng, Jinquan; Yu, Muhua; Fang, Shisong

    2016-01-01

    A newly emerged H7N9 influenza virus poses high risk to human beings. However, the pathogenic mechanism of the virus remains unclear. The temporal response of primary human alveolar adenocarcinoma epithelial cells (A549) infected with H7N9 influenza virus and H1N1 influenza A virus (H1N1, pdm09) were evaluated using the proteomics approaches (2D-DIGE combined with MALDI-TOF-MS/MS) at 24, 48 and 72 hours post of the infection (hpi). There were 11, 12 and 33 proteins with significant different expressions (P<0.05) at 24, 48 and 72hpi, especially F-actin-capping protein subunit alpha-1 (CAPZA1), Ornithine aminotransferase (OAT), Poly(rC)-binding protein 1 (PCBP1), Eukaryotic translation initiation factor 5A-1 (EIF5A) and Platelet-activating factor acetylhydrolaseⅠb subunit beta (PAFAH1B2) were validated by western-blot analysis. The functional analysis revealed that the differential proteins in A549 cells involved in regulating cytopathic effect. Among them, the down-regulation of CAPZA1, OAT, PCBP1, EIF5A are related to the death of cells infected by H7N9 influenza virus. This is the first time show that the down-regulation of PAFAH1B2 is related to the later clinical symptoms of patients infected by H7N9 influenza virus. These findings may improve our understanding of pathogenic mechanism of H7N9 influenza virus in proteomics. PMID:27223893

  15. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

    PubMed

    Zhou, Hui; Qu, Zhe; Mossine, Valeri V; Nknolise, Dineo L; Li, Jilong; Chen, Zhenzhou; Cheng, Jianlin; Greenlief, C Michael; Mawhinney, Thomas P; Brown, Paula N; Fritsche, Kevin L; Hannink, Mark; Lubahn, Dennis B; Sun, Grace Y; Gu, Zezong

    2014-01-01

    Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.

  16. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

    PubMed

    Zhou, Hui; Qu, Zhe; Mossine, Valeri V; Nknolise, Dineo L; Li, Jilong; Chen, Zhenzhou; Cheng, Jianlin; Greenlief, C Michael; Mawhinney, Thomas P; Brown, Paula N; Fritsche, Kevin L; Hannink, Mark; Lubahn, Dennis B; Sun, Grace Y; Gu, Zezong

    2014-01-01

    Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress. PMID:25420111

  17. Proteomic Analysis of the Effects of Aged Garlic Extract and Its FruArg Component on Lipopolysaccharide-Induced Neuroinflammatory Response in Microglial Cells

    PubMed Central

    Mossine, Valeri V.; Nknolise, Dineo L.; Li, Jilong; Chen, Zhenzhou; Cheng, Jianlin; Greenlief, C. Michael; Mawhinney, Thomas P.; Brown, Paula N.; Fritsche, Kevin L.; Hannink, Mark; Lubahn, Dennis B.; Sun, Grace Y.; Gu, Zezong

    2014-01-01

    Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress. PMID:25420111

  18. Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: potential roles in GABAergic interneuron pathology.

    PubMed

    Schubert, Klaus Oliver; Föcking, Melanie; Cotter, David R

    2015-09-01

    Neuropathological changes of the hippocampus have been associated with psychotic disorders such as schizophrenia and bipolar disorder. Recent work has particularly implicated hippocampal GABAergic interneurons in the pathophysiology of these diseases. However, the molecular mechanisms underlying structural and cellular hippocampal pathology remain poorly understood. We used data from comprehensive difference-in-gel electrophoresis (2-D DIGE) investigations of postmortem human hippocampus of people with schizophrenia and bipolar disorder, covering the acidic (isoelectric point (pI) between pH4 and 7) and, separately, the basic (pI between pH6 and 11) sub-proteome, for Ingenuity Pathway Analysis (IPA) of implicated protein networks and pathways. Comparing disease and control cases, we identified 58 unique differentially expressed proteins in schizophrenia, and 70 differentially expressed proteins in bipolar disorder, using mass spectrometry. IPA implicated, most prominently, 14-3-3 and aryl hydrocarbon receptor signaling in schizophrenia, and gluconeogenesis/glycolysis in bipolar disorder. Both disorders were characterized by alterations of proteins involved in the oxidative stress response, mitochondrial function, and protein-endocytosis, -trafficking, -degradation, and -ubiquitination. These findings are interpreted with a focus on GABAergic interneuron pathology in the hippocampus.

  19. Analysis of proteins using DIGE and MALDI mass spectrometry

    EPA Science Inventory

    In this work the sensitivity of the quantitative proteomics approach 2D-DIGE/MS (twoDimensional Difference Gel Electrophoresis / Mass Spectrometry) was tested by detecting decreasing amounts of a specific protein at the low picomole and sub-picomole range. Sensitivity of the 2D-D...

  20. Functional proteomic analysis revealed ground-base ion radiations cannot reflect biological effects of space radiations of rice

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (p<0.05) and reproducible quantitative differences in ground-base ion radiation and spaceflight experiments respectively. The functions of ground-base radiation and spaceflight proteins were both involved in a wide range of biological processes. Gene Ontology enrichment analysis further revealed that ground-base radiation responsive proteins were mainly involved in removal of superoxide radicals, defense response to stimulus and photosynthesis, while spaceflight responsive proteins mainly participate in nucleoside metabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing

  1. Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling

    PubMed Central

    Tannu, Nilesh S; Hemby, Scott E

    2007-01-01

    Quantitative proteomics is the workhorse of the modern proteomics initiative. The gel-based and MuDPIT approaches have facilitated vital advances in the measurement of protein expression alterations in normal and disease phenotypic states. The methodological advance in two-dimensional gel electrophoresis (2DGE) has been the multiplexing fluorescent two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). 2D-DIGE is based on direct labeling of lysine groups on proteins with cyanine CyDye DIGE Fluor minimal dyes before isoelectric focusing, enabling the labeling of 2–3 samples with different dyes and electrophoresis of all the samples on the same 2D gel. This capability minimizes spot pattern variability and the number of gels in an experiment while providing simple, accurate and reproducible spot matching. This protocol can be completed in 3–5 weeks depending on the sample size of the experiment and the level of expertise of the investigator. PMID:17487156

  2. Comparative Mitochondrial Proteomic Analysis of Raji Cells Exposed to Adriamycin

    PubMed Central

    Jiang, Yu-Jie; Sun, Qing; Fang, Xiao-Sheng; Wang, Xin

    2009-01-01

    The antitumor mechanisms of adriamycin (ADR) have been thought to contribute to induction of apoptosis and inefficiency of DNA repair, processes that are to a large extent mediated by mitochondria. This study aimed to investigate characteristics of ADR, including its antineoplastic activity, drug resistance, and unexpected toxicity in non-Hodgkin lymphoma (NHL) Raji cells at the mitochondrial proteomic level. The alterations of the mitochondrial proteome of Raji cells treated with ADR were analyzed by two-dimensional differential in-gel electrophoresis (2D-DIGE) coupled with linear ion trap quadrupole–electrospray ionization tandem mass spectrometry (LTQ-ESI-MS/MS).The altered patterns of three identified proteins were validated by Western blot and analyzed by pathway studio software. The results showed that 34 proteins were downregulated and 3 proteins upregulated in the study group compared with the control group. The differentially expressed proteins distributed their functions in reduction-oxidation reactions, DNA repair, cell cycle regulation, transporters and channels, and oxidative phosphorylation. Furthermore, heat shock protein 70 (HSP70), ATP-binding cassette transporter isoform B6 (ABCB6), and prohibitin (PHB) identified in this study may be closely related to chemoresistance and could serve as potential chemotherapeutic targets for NHL. Collectively, these results suggest that specific mitochondrial proteins are uniquely susceptible to alterations in abundance following exposure to ADR and carry implications for the investigation of therapeutic and prognostic markers. Further studies focusing on these identified proteins will be used to predict treatment response and reverse apoptosis resistance,and to explore drug-combination strategies associated with ADR for NHL therapy. PMID:19209238

  3. Integrative proteomic analysis of the nucleus accumbens in rhesus monkeys following cocaine self-administration.

    PubMed

    Tannu, N S; Howell, L L; Hemby, S E

    2010-02-01

    The reinforcing effects and long-term consequences of cocaine self-administration have been associated with brain regions of the mesolimbic dopamine pathway, namely the nucleus accumbens (NAc). Studies of cocaine-induced biochemical adaptations in rodent models have advanced our knowledge; however, unbiased detailed assessments of intracellular alterations in the primate brain are scarce, yet essential, to develop a comprehensive understanding of cocaine addiction. To this end, two-dimensional difference in gel electrophoresis (2D-DIGE) was used to compare changes in cytosolic protein abundance in the NAc between rhesus monkeys self-administering cocaine and controls. Following image normalization, spots with significantly differential image intensities (P<0.05) were identified, excised, trypsin digested and analyzed by matrix-assisted laser-desorption ionization time-of-flight time-of-flight (MALDI-TOF-TOF). In total, 1098 spots were subjected to statistical analysis with 22 spots found to be differentially abundant of which 18 proteins were positively identified by mass spectrometry. In addition, approximately 1000 protein spots were constitutively expressed of which 21 proteins were positively identified by mass spectrometry. Increased levels of proteins in the cocaine-exposed monkeys include glial fibrillary acidic protein, syntaxin-binding protein 3, protein kinase C isoform, adenylate kinase isoenzyme 5 and mitochondrial-related proteins, whereas decreased levels of proteins included beta-soluble N-ethylmaleimide-sensitive factor attachment protein and neural and non-neural enolase. Using a complimentary proteomics approach, the differential expression of phosphorylated proteins in the cytosolic fraction of these subjects was examined. Two-dimensional gel electrophoresis (2DGE) was followed by gel staining with Pro-Q Diamond phosphoprotein gel stain, enabling differentiation of approximately 150 phosphoprotein spots between the groups. Following excision and

  4. Proteomic and Epigenetic Analysis of Rice after Seed Spaceflight and Ground-Base Ion Radiations

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sun, Yeqing; Peng, Yuming; Zhao, Qian; Wen, Bin; Yang, Jun

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to plant seeds. In previous work, we compared the proteomic profiles of rice plants growing after seed spaceflights to ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) with mass spectrometry and found that the protein expression profiles were changed and differentially expressed proteins participated in most of the biological processes of rice. To further evaluate the dosage effects of space radiation and compare between low- and high-dose ion effects, we carried out three independent ground-base ionizing radiation experiments with different cumulative doses (low-dose range: 2~1000mGy, high-dose range: 2000~20000mGy) to rice seeds and performed proteomic analysis of seedlings. We found that protein expression profiles showed obvious boundaries between low- and high-dose radiation groups. Rates of differentially expressed proteins presented a dose-dependent effect, it reached the highest value at 2000mGy dosage point in all three radiation experiments coincidently; while proteins responded to low-dose radiations preferred to change their expressions at the minimum dosage (2mGy). Proteins participating in rice biological processes also responded differently between low- and high-dose radiations: proteins involved in energy metabolism and photosynthesis tended to be regulated after low-dose radiations while stress responding, protein folding and cell redox homeostasis related proteins preferred to change their expressions after high-dose radiations. By comparing the proteomic profiles between ground-base radiations and spaceflights, it was worth noting that ground-base low-dose ion radiation effects shared similar biological effects as space environment. In addition, we discovered that protein nucleoside diphosphate kinase 1 (NDPK1) showed obvious increased regulation after spaceflights and ion radiations. NDPK1 catalyzes nucleotide metabolism

  5. Effect of Embryo Vitrification on Rabbit Foetal Placenta Proteome during Pregnancy

    PubMed Central

    Saenz-de-Juano, Maria Desemparats; Vicente, José Salvador; Hollung, Kristin; Marco-Jiménez, Francisco

    2015-01-01

    Very limited information on the post-implantatory effects of vitrification has been published till now. We observed in a previous study that the vitrification procedure for the cryopreservation of embryos introduced transcriptomic and proteomic modifications in the rabbit foetal placenta at the middle of gestation. Now, we have conducted a proteomic study to determine whether protein alterations in the foetal placenta induced by the vitrification procedure remain during pregnancy. In this study, we used 2D-DIGE and mass spectrometry (MALDI-TOF-TOF and LC-MS/MS analysis) to identify the protein changes during middle and late stages of gestation (Day 14 and Day 24, respectively) in rabbit foetal placenta. We identified 11 differentially expressed proteins at Day 14 and 13 proteins at Day 24. Data are available via ProteomeXchange with identifiers PXD001840 and PXD001836. In addition, we demonstrate the presence of three proteins, serum albumin, isocitrate dehydrogenase 1 [NADP+], and phosphoglycerate mutase 1, which were altered during pregnancy. We demonstrate the existence of changes in foetal placental protein during pregnancy induced by the vitrification procedure, which brings into question whether vitrification effects observed during foetal development could lead to physiological and metabolic disorders in adulthood. This effect, taken together with other effects reported in the literature, suggests that embryo cryopreservation is not neutral. PMID:25915775

  6. Proteome analysis of leaves of the desiccation-tolerant grass, Sporobolus stapfianus, in response to dehydration.

    PubMed

    Oliver, Melvin J; Jain, Renuka; Balbuena, Tiago S; Agrawal, Ganesh; Gasulla, Franscisco; Thelen, Jay J

    2011-07-01

    Drought and its affects on agricultural production is a serious issue facing global efforts to increase food supplies and ensure food security for the growing world population. Understanding how plants respond to dehydration is an important prerequisite for developing strategies for crop improvement in drought tolerance. This has proved to be a difficult task as all of the current research plant models do not tolerate cellular dehydration well and, like all crops, they succumb to the effects of a relatively small water deficit of -4MPa or less. For these reasons many researchers have started to investigate the usefulness of resurrection plants, plants that can survive extremes of dehydration to the point of desiccation, to provide answers as to how plants tolerate water loss. We have chosen to investigate the leaf proteome response of the desiccation-tolerant grass Sporobolus stapfianus Gandoger to dehydration to a water content that encompasses the initiation of the cellular protection response evident in these plants. We used a combination of two-dimensional Difference Gel Electrophoresis (2D-DIGE) and liquid chromatography-tandem-mass spectrometry to compare the proteomes of young leaves from hydrated plants to those dehydrated to approximately 30% relative water content. High-resolution 2D-DIGE revealed 96 significantly different proteins and 82 of these spots yielded high-quality protein assignments by tandem-mass spectrometry. Inferences from the bioinformatic annotations of these proteins revealed the possible involvement of protein kinase-based signaling cascades and brassinosteroid involvement in the regulation of the cellular protection response. Enzymes of glycolysis, both cytoplasmic and plastidic, as well as five enzymes of the Calvin cycle increased in abundance. However, the RuBisCO large subunit and associated proteins were reduced, indicating a loss of carbon fixation but a continued need to supply the necessary carbon skeletons for the

  7. Proteomics analysis of human oligodendroglioma proteome.

    PubMed

    Khaghani-Razi-Abad, Solmaz; Hashemi, Mehrdad; Pooladi, Mehdi; Entezari, Maliheh; Kazemi, Elham

    2015-09-10

    Proteomics analyses enable the identification and quantitation of proteins. From a purely clinical perspective, the application of proteomics based on innovations, may greatly affect the future management of malignant brain tumors. This optimism is based on four main reasons: diagnosis, prognosis, selection of targeted therapy based on molecular profile of the brain tumor and monitoring therapeutic response, or resistance. We extracted the proteins of tumor and normal brain tissues, and then evaluated the protein purity by Bradford test. In this study, we separated the proteins by two-dimensional (2DG) gel electrophoresis methods. Then spots were analyzed, compared using statistical data and specific software and were identified by pH isoelectric, molecular weights and data banks. The protein profiles were determined using 2D gel electrophoresis and MALDI TOF/TOF mass spectrometry approaches. Simple statistical tests were used to establish a putative hierarchy in which the change in protein level was ranked according to a cut-off point with p<0.05. The 2D gel showed a total of 1328 spots among which 157 spots were under-expressed and 276 spots were overexpressed. Most proteins are subjects to post-translational modifications, where amino acid residues may be chemically modified or conjugated by small proteins like ubiquitin. Proteomics is a powerful way to identifying multiple proteins which are altered following a neuropharmacological intervention in a CNS disease. PMID:26002447

  8. Proteomic Analysis of Menstrual Blood*

    PubMed Central

    Yang, Heyi; Zhou, Bo; Prinz, Mechthild; Siegel, Donald

    2012-01-01

    Menstruation is the expulsion of the endometrial lining of the uterus following a nearly month long preparation for embryo implantation and pregnancy. Increasingly, the health of the endometrium is being recognized as a critical factor in female fertility, and proteomes and transcriptomes from endometrial biopsies at different stages of the menstrual cycle have been studied for both diagnostic and therapeutic purposes (1 Kao, L. C., et al. 2003 Endocrinology 144, 2870–2881; Strowitzki, Tet al. 2006 Hum. Reprod. Update 12, 617–630; DeSouza, L., et al. 2005 Proteomics 5, 270–281). Disorders of the uterus ranging from benign to malignant tumors, as well as endometriosis, can cause abnormal menstrual bleeding and are frequently diagnosed through endometrial biopsy (Strowitzki, Tet al. 2006 Hum. Reprod. Update 12, 617–630; Ferenczy, A. 2003 Maturitas 45, 1–14). Yet the proteome of menstrual blood, an easily available noninvasive source of endometrial tissue, has yet to be examined for possible causes or diagnoses of infertility or endometrial pathology. This study employed five different methods to define the menstrual blood proteome. A total of 1061 proteins were identified, 361 were found by at least two methods and 678 were identified by at least two peptides. When the menstrual blood proteome was compared with those of circulating blood (1774 proteins) and vaginal fluid (823 proteins), 385 proteins were found unique to menstrual blood. Gene ontology analysis and evaluation of these specific menstrual blood proteins identified pathways consistent with the processes of the normal endometrial cycle. Several of the proteins unique to menstrual blood suggest that extramedullary uterine hematopoiesis or parenchymal hemoglobin synthesis may be occurring in late endometrial tissue. The establishment of a normal menstrual blood proteome is necessary for the evaluation of its usefulness as a diagnostic tool for infertility and uterine pathologies. Identification of

  9. First evidence of overlaps between HIV-Associated Dementia (HAD) and non-viral neurodegenerative diseases: proteomic analysis of the frontal cortex from HIV+ patients with and without dementia

    PubMed Central

    2010-01-01

    Background The pathogenesis of HIV-associated dementia (HAD) is poorly understood. To date, detailed proteomic fingerprinting directly from autopsied brain tissues of HAD and HIV non-dementia patients has not been performed. Result Here, we have analyzed total proteins from the frontal cortex of 9 HAD and 5 HIV non-dementia patients. Using 2-Dimensional differential in-gel electrophoresis (2-DIGE) to analyze the brain tissue proteome, 76 differentially expressed proteins (p < 0.05; fold change>1.25) were identified between HAD and HIV non-dementia patients, of which 36 protein spots (based on 3D appearance of spots on the images) were chosen for the mass spectrometry analysis. The large majority of identified proteins were represented in the energy metabolic (mitochondria) and signal transduction pathways. Furthermore, over 90% of the protein candidates are common to both HAD and other non-viral neurodegenerative disease, such as Alzheimer's disease. The data was further validated using specific antibodies to 4 proteins (CA2, GS, CKMT and CRMP2) by western blot (WB) in the same samples used for 2D-DIGE, with additional confirmation by immunohistochemitsry (IHC) using frontal lobe tissue from different HAD and HIV+ non-dementia patients. The validation for all 4 antibodies by WB and IHC was in concordance with the DIGE results, lending further credence to the current findings. Conclusion These results suggest not only convergent pathogenetic pathways for the two diseases but also the possibility of increased Alzheimer's disease (AD) susceptibility in HAD patients whose life expectancy has been significantly increased by highly active antiretroviral therapy. PMID:20573273

  10. Enabling Proteomics Discovery Through Visual Analysis

    SciTech Connect

    Havre, Susan L.; Singhal, Mudita; Payne, Deborah A.; Lipton, Mary S.; Webb-Robertson, Bobbie-Jo M.

    2005-05-01

    With the completion of the Human Genome Project and the sequencing of large genomes, proteomics is the new big challenge. A proteome is the collection of all the proteins present in an organism at a given moment. Unlike the genome, the proteome is dynamic, changing continuously in response to tens of thousands of intra- and extra-cellular environmental signals. Proteomics is the study of proteomes under different conditions—for example, over time, under different environments, or in different disease states. Because proteins are the key actors in cellular processes and proteomics is the study of not one or two proteins at a time but whole proteomes, proteomics has a key role in revealing the complex processes of cells at a global or systems level. There are several high-throughput proteomics techniques; all generate data faster than the data can currently be analyzed. The tremendous size and complexity of the high-throughput experimental data make it very difficult to process and interpret. The success of proteomics will rely on high-throughput experimental techniques coupled with sophisticated visual analysis and data mining methods. This article presents the motivation for developing visual analysis tools for proteomic data and demonstrates their application to proteomics research with a visualization tool named Peptide Permutation and Protein Prediction, or PQuad. PQuad is a functioning visual analytic tool in operation at the Pacific Northwest National Laboratory for the study of systems biology. PQuad supports the exploration of proteins identified by proteomic techniques in the context of supplemental biological information.

  11. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean.

    PubMed

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak; Rohila, Jai S

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2. PMID:27034942

  12. Striatal proteomic analysis suggests that first L-dopa dose equates to chronic exposure.

    PubMed

    Scholz, Birger; Svensson, Marcus; Alm, Henrik; Sköld, Karl; Fälth, Maria; Kultima, Kim; Guigoni, Céline; Doudnikoff, Evelyne; Li, Qin; Crossman, Alan R; Bezard, Erwan; Andrén, Per E

    2008-01-01

    L-3,4-dihydroxypheylalanine (L-dopa)-induced dyskinesia represent a debilitating complication of therapy for Parkinson's disease (PD) that result from a progressive sensitization through repeated L-dopa exposures. The MPTP macaque model was used to study the proteome in dopamine-depleted striatum with and without subsequent acute and chronic L-dopa treatment using two-dimensional difference in-gel electrophoresis (2D-DIGE) and mass spectrometry. The present data suggest that the dopamine-depleted striatum is so sensitive to de novo L-dopa treatment that the first ever administration alone would be able (i) to induce rapid post-translational modification-based proteomic changes that are specific to this first exposure and (ii), possibly, lead to irreversible protein level changes that would be not further modified by chronic L-dopa treatment. The apparent equivalence between first and chronic L-dopa administration suggests that priming would be the direct consequence of dopamine loss, the first L-dopa administrations only exacerbating the sensitization process but not inducing it. PMID:18270577

  13. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    PubMed Central

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2. PMID:27034942

  14. Proteomic Investigation of Aphid Honeydew Reveals an Unexpected Diversity of Proteins

    PubMed Central

    Haubruge, Eric; Hance, Thierry; Thonart, Philippe; De Pauw, Edwin; Francis, Frédéric

    2013-01-01

    Aphids feed on the phloem sap of plants, and are the most common honeydew-producing insects. While aphid honeydew is primarily considered to comprise sugars and amino acids, its protein diversity has yet to be documented. Here, we report on the investigation of the honeydew proteome from the pea aphid Acyrthosiphon pisum. Using a two-Dimensional Differential in-Gel Electrophoresis (2D-Dige) approach, more than 140 spots were isolated, demonstrating that aphid honeydew also represents a diverse source of proteins. About 66% of the isolated spots were identified through mass spectrometry analysis, revealing that the protein diversity of aphid honeydew originates from several organisms (i.e. the host aphid and its microbiota, including endosymbiotic bacteria and gut flora). Interestingly, our experiments also allowed to identify some proteins like chaperonin, GroEL and Dnak chaperones, elongation factor Tu (EF-Tu), and flagellin that might act as mediators in the plant-aphid interaction. In addition to providing the first aphid honeydew proteome analysis, we propose to reconsider the importance of this substance, mainly acknowledged to be a waste product, from the aphid ecology perspective. PMID:24086359

  15. Proteomic Analysis of Fetal Ovary Reveals That Ovarian Developmental Potential Is Greater in Meishan Pigs than in Yorkshire Pigs.

    PubMed

    Xu, Mengmeng; Che, Long; Wang, Dingyue; Yang, Zhenguo; Zhang, Pan; Lin, Yan; Fang, Zhengfeng; Che, Lianqiang; Li, Jian; Chen, Daiwen; Wu, De; Xu, Shengyu

    2015-01-01

    Time-dependent expression of functional proteins in fetal ovaries is important to understand the developmental process of the ovary. This study was carried out to enhance our understanding of the developmental process of porcine fetal ovaries and to better address the differences in fetal ovary development of local and foreign pigs. The objective of the present study is to test the expression of key proteins that regulate the growth and development of fetal ovaries in Meishan and Yorkshire porcine breeds by using proteomics technology. Six Meishan and 6 Yorkshire pregnant gilts were used in this experiment. Fetal ovaries were obtained from Yorkshire and Meishan gilts on days 55 and 90 of the gestation period. Using 2D-DIGE (two dimensional-difference in gel electrophoresis) analysis, the results showed that there are about 1551 and 1400 proteins in gilt fetal ovaries on days 55 and 90, respectively of the gestation. Using MALDI TOF-TOF MS analysis, 27 differentially expressed proteins were identified in the fetal ovaries of the 2 breeds on day 55 of gestation, and a total of 18 proteins were identified on day 90 of gestation. These differentially expressed proteins were involved in the regulation of biological processes (cell death, stress response, cytoskeletal proteins) and molecular functions (enzyme regulator activity). We also found that alpha-1-antitrypsin, actin, vimentin, and PP2A proteins promote the formation of primordial follicles in the ovaries of Yorkshire pigs on day 55 of gestation while low expression heat shock proteins and high expression alpha-fetoproteins (AFP) may promote Meishan fetal ovarian follicular development on day 90 of gestation. These findings provide a deeper understanding of how reduced expression of heat shock proteins and increased expression of AFP can significantly reduce the risk of reproductive disease in obese Meishan sows. Our study also shows how these proteins can increase the ovulation rate and may be responsible for

  16. Proteomic Analysis of Fetal Ovary Reveals That Ovarian Developmental Potential Is Greater in Meishan Pigs than in Yorkshire Pigs

    PubMed Central

    Che, Long; Wang, Dingyue; Yang, Zhenguo; Zhang, Pan; Lin, Yan; Fang, Zhengfeng; Che, Lianqiang; Li, Jian; Chen, Daiwen; Wu, De

    2015-01-01

    Time-dependent expression of functional proteins in fetal ovaries is important to understand the developmental process of the ovary. This study was carried out to enhance our understanding of the developmental process of porcine fetal ovaries and to better address the differences in fetal ovary development of local and foreign pigs. The objective of the present study is to test the expression of key proteins that regulate the growth and development of fetal ovaries in Meishan and Yorkshire porcine breeds by using proteomics technology. Six Meishan and 6 Yorkshire pregnant gilts were used in this experiment. Fetal ovaries were obtained from Yorkshire and Meishan gilts on days 55 and 90 of the gestation period. Using 2D-DIGE (two dimensional-difference in gel electrophoresis) analysis, the results showed that there are about 1551 and 1400 proteins in gilt fetal ovaries on days 55 and 90, respectively of the gestation. Using MALDI TOF-TOF MS analysis, 27 differentially expressed proteins were identified in the fetal ovaries of the 2 breeds on day 55 of gestation, and a total of 18 proteins were identified on day 90 of gestation. These differentially expressed proteins were involved in the regulation of biological processes (cell death, stress response, cytoskeletal proteins) and molecular functions (enzyme regulator activity). We also found that alpha-1-antitrypsin, actin, vimentin, and PP2A proteins promote the formation of primordial follicles in the ovaries of Yorkshire pigs on day 55 of gestation while low expression heat shock proteins and high expression alpha-fetoproteins (AFP) may promote Meishan fetal ovarian follicular development on day 90 of gestation. These findings provide a deeper understanding of how reduced expression of heat shock proteins and increased expression of AFP can significantly reduce the risk of reproductive disease in obese Meishan sows. Our study also shows how these proteins can increase the ovulation rate and may be responsible for

  17. Proteomic study identifies proteins involved in brassinosteroid regulation of rice growth.

    PubMed

    Wang, Fengru; Bai, Ming-Yi; Deng, Zhiping; Oses-Prieto, Juan A; Burlingame, Alma L; Lu, Tiegang; Chong, Kang; Wang, Zhi-Yong

    2010-12-01

    Brassinosteroids (BRs) are essential hormones for growth and development of plant. In rice, BRs regulate multiple developmental processes and affect many important traits such as height, leaf angle, fertility and seed filling. We identified brassinosteroid-regulated proteins in rice using proteomic approaches and performed functional analysis of some BR-regulated proteins by overexpression experiments. Using two-dimensional difference gel electrophoresis (2-D DIGE) followed by protein identification by mass spectrometry, we compared proteomic differences in the shoots and roots of the BR-insensitive mutant d61-4 and BR-deficient mutant brd1-3. We identified a large number of proteins differentially expressed in the mutants compared with wild type control. These include a glycine-rich RNA-binding protein (OsGRP1) and a DREPP2 protein, which showed reduced levels in the BR mutants. Overexpression of these two proteins partially suppressed the dwarf phenotype of the Arabidopsis BR-insensitive mutant bri1-5. In contrast to the reduced protein level, the RNA level of OsGRP1 was not significantly affected in the BR mutants or by BR treatment, suggesting BR regulation of OsGRP1 at the posttranslational level. This study identifies many BR-regulated proteins and demonstrates that OsGRP1 functions downstream in the BR signal transduction pathway to promote cell expansion.

  18. Rising CO2 concentration altered wheat grain proteome and flour rheological characteristics.

    PubMed

    Fernando, Nimesha; Panozzo, Joe; Tausz, Michael; Norton, Robert; Fitzgerald, Glenn; Khan, Alamgir; Seneweera, Saman

    2015-03-01

    Wheat cv. H45 was grown under ambient CO2 concentration and Free Air CO2 Enrichment (FACE; e[CO2], ∼550 μmol CO2 mol(-1)). The effect of FACE on wheat grain proteome and associated changes in the flour rheological properties was investigated. A comparative proteomic analysis was performed using 2-D-DIGE followed by MALDI/TOF-MS. Total grain protein concentration was decreased by 9% at e[CO2]. Relative abundance of three high molecular weight glutenin sub units (HMW-GS) were decreased at e[CO2]. In contrast, relative abundance of serpins Z1C and 1-Cys peroxiredoxin was increased at e[CO2]. Elevated [CO2] also decreased the bread volume (by 11%) and dough strength (by 7%) while increased mixing time. However, dough extensibility and dough stability were unchanged at elevated [CO2]. These findings suggest that e[CO2] has a major impact on gluten protein concentration which is associated lower bread quality at e[CO2].

  19. Population proteomics of the European Hake (Merluccius merluccius).

    PubMed

    Gonzalez, Elena G; Krey, Grigorios; Espiñeira, Montserrat; Diez, Amalia; Puyet, Antonio; Bautista, José M

    2010-12-01

    We report the novel use of proteomics to investigate protein variation among populations of the European hake (Merluccius merluccius). The liver and brain extracts of 18 hake (N = 36) captured in the Mediterranean Sea, Cantabrian Sea, and Atlantic Ocean were examined by 2D/DIGE and mass spectrometry. Significant differences in protein expression among populations were revealed by 84 spots obtained in the gels for the liver and 145 spots for the brain. Population groups of samples were defined by multivariate analysis (PCA and hierarchical clustering). According to protein expression levels and the functions of the 55 candidate protein spots identified, which showed significant expression differences, highest population discrimination was rendered by brain proteins involved in cell signaling and metabolism/energy and by liver proteins involved in protein fate. Finally, we present a statistically robust framework to accurately classify individuals according to their population of origin. Thus, purposely identified protein isoforms were found to be competent at discriminating populations. These results suggest the possibility of identifying protein biomarkers related to environmental changes in a nonmodel species such as the hake and pave the way for more extensive research on protein variation among populations of marine fishes.

  20. Proteomic Analysis of Mesenchymal Stem Cells from Normal and Deep Carious Dental Pulp

    PubMed Central

    Gao, Jie; Yan, Wenjuan; Liu, Ying; Xu, Shuaimei; Wu, Buling

    2014-01-01

    Dental pulp stem cells (DPSCs), precursor cells of odontoblasts, are ideal seed cells for tooth tissue engineering and regeneration. Our previous study has demonstrated that stem cells exist in dental pulp with deep caries and are called carious dental pulp stem cells (CDPSCs). The results indicated that CDPSCs had a higher proliferative and stronger osteogenic differentiation potential than DPSCs. However, the molecular mechanisms responsible for the biological differences between DPSCs and CDPSCs are poorly understood. The aim of this study was to define the molecular features of DPSCs and CDPSCs by comparing the proteomic profiles using two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) in combination with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Our results revealed that there were 18 protein spots differentially expressed between DPSCs and CDPSCs in a narrow pH range of 4 to 7. These differently expressed proteins are mostly involved in the regulation of cell proliferation, differentiation, cell cytoskeleton and motility. In addition, our results suggested that CDPSCs had a higher expression of antioxidative proteins that might protect CDPSCs from oxidative stress. This study explores some potential proteins responsible for the biological differences between DPSCs and CDPSCs and expands our understanding on the molecular mechanisms of mineralization of DPSCs in the formation of the dentin-pulp complex. PMID:24809979

  1. Quantitative Proteomic Analysis of the Human Nucleolus.

    PubMed

    Bensaddek, Dalila; Nicolas, Armel; Lamond, Angus I

    2016-01-01

    Recent years have witnessed spectacular progress in the field of mass spectrometry (MS)-based quantitative proteomics, including advances in instrumentation, chromatography, sample preparation methods, and experimental design for multidimensional analyses. It is now possible not only to identify most of the protein components of a cell proteome in a single experiment, but also to describe additional proteome dimensions, such as protein turnover rates, posttranslational modifications, and subcellular localization. Furthermore, by comparing the proteome at different time points, it is possible to create a "time-lapse" view of proteome dynamics. By combining high-throughput quantitative proteomics with detailed subcellular fractionation protocols and data analysis techniques it is also now possible to characterize in detail the proteomes of specific subcellular organelles, providing important insights into cell regulatory mechanisms and physiological responses. In this chapter we present a reliable workflow and protocol for MS-based analysis and quantitation of the proteome of nucleoli isolated from human cells. The protocol presented is based on a SILAC analysis of human MCF10A-Src-ER cells with analysis performed on a Q-Exactive Plus Orbitrap MS instrument (Thermo Fisher Scientific). The subsequent chapter describes how to process the resulting raw MS files from this experiment using MaxQuant software and data analysis procedures to evaluate the nucleolar proteome using customized R scripts. PMID:27576725

  2. Proteomic analysis of halotolerant proteins under high and low salt stress in Dunaliella salina using two-dimensional differential in-gel electrophoresis

    PubMed Central

    Jia, Yan-Long; Chen, Hui; Zhang, Chong; Gao, Li-Jie; Wang, Xi-Cheng; Qiu, Le-Le; Wu, Jun-Fang

    2016-01-01

    Abstract Dunaliella salina, a single-celled marine alga with extreme salt tolerance, is an important model organism for studying fundamental extremophile survival mechanisms and their potential practical applications. In this study, two-dimensional differential in-gel electrophoresis (2D-DIGE) was used to investigate the expression of halotolerant proteins under high (3 M NaCl) and low (0.75 M NaCl) salt concentrations. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and bioinformatics were used to identify and characterize the differences among proteins. 2D-DIGE analysis revealed 141 protein spots that were significantly differentially expressed between the two salinities. Twenty-four differentially expressed protein spots were successfully identified by MALDI-TOF/TOF MS, including proteins in the following important categories: molecular chaperones, proteins involved in photosynthesis, proteins involved in respiration and proteins involved in amino acid synthesis. Expression levels of these proteins changed in response to the stress conditions, which suggests that they may be involved in the maintenance of intracellular osmotic pressure, cellular stress responses, physiological changes in metabolism, continuation of photosynthetic activity and other aspects of salt stress. The findings of this study enhance our understanding of the function and mechanisms of various proteins in salt stress. PMID:27192131

  3. Proteomic analysis of halotolerant proteins under high and low salt stress in Dunaliella salina using two-dimensional differential in-gel electrophoresis.

    PubMed

    Jia, Yan-Long; Chen, Hui; Zhang, Chong; Gao, Li-Jie; Wang, Xi-Cheng; Qiu, Le-Le; Wu, Jun-Fang

    2016-05-13

    Dunaliella salina, a single-celled marine alga with extreme salt tolerance, is an important model organism for studying fundamental extremophile survival mechanisms and their potential practical applications. In this study, two-dimensional differential in-gel electrophoresis (2D-DIGE) was used to investigate the expression of halotolerant proteins under high (3 M NaCl) and low (0.75 M NaCl) salt concentrations. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and bioinformatics were used to identify and characterize the differences among proteins. 2D-DIGE analysis revealed 141 protein spots that were significantly differentially expressed between the two salinities. Twenty-four differentially expressed protein spots were successfully identified by MALDI-TOF/TOF MS, including proteins in the following important categories: molecular chaperones, proteins involved in photosynthesis, proteins involved in respiration and proteins involved in amino acid synthesis. Expression levels of these proteins changed in response to the stress conditions, which suggests that they may be involved in the maintenance of intracellular osmotic pressure, cellular stress responses, physiological changes in metabolism, continuation of photosynthetic activity and other aspects of salt stress. The findings of this study enhance our understanding of the function and mechanisms of various proteins in salt stress. PMID:27192131

  4. Proteomic analysis of halotolerant proteins under high and low salt stress in Dunaliella salina using two-dimensional differential in-gel electrophoresis.

    PubMed

    Jia, Yan-Long; Chen, Hui; Zhang, Chong; Gao, Li-Jie; Wang, Xi-Cheng; Qiu, Le-Le; Wu, Jun-Fang

    2016-05-13

    Dunaliella salina, a single-celled marine alga with extreme salt tolerance, is an important model organism for studying fundamental extremophile survival mechanisms and their potential practical applications. In this study, two-dimensional differential in-gel electrophoresis (2D-DIGE) was used to investigate the expression of halotolerant proteins under high (3 M NaCl) and low (0.75 M NaCl) salt concentrations. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and bioinformatics were used to identify and characterize the differences among proteins. 2D-DIGE analysis revealed 141 protein spots that were significantly differentially expressed between the two salinities. Twenty-four differentially expressed protein spots were successfully identified by MALDI-TOF/TOF MS, including proteins in the following important categories: molecular chaperones, proteins involved in photosynthesis, proteins involved in respiration and proteins involved in amino acid synthesis. Expression levels of these proteins changed in response to the stress conditions, which suggests that they may be involved in the maintenance of intracellular osmotic pressure, cellular stress responses, physiological changes in metabolism, continuation of photosynthetic activity and other aspects of salt stress. The findings of this study enhance our understanding of the function and mechanisms of various proteins in salt stress.

  5. Proteomic study of 'Moncada' mandarin buds from on- versus off-crop trees.

    PubMed

    Muñoz-Fambuena, Natalia; Mesejo, Carlos; Reig, Carmina; Agustí, Manuel; Tárraga, Susana; Lisón, Purificación; Iglesias, Domingo J; Primo-Millo, Eduardo; González-Mas, M Carmen

    2013-12-01

    A proteomic analysis of buds from mandarin trees with contrasting fruit load (on- and off-crop trees) was carried out during the onset of low-temperature induction. The aim of the study was to find out more about the molecular mechanism relating to alternate bearing in Citrus and its relationship with flowering. The 'Moncada' variety (Clementine 'Oroval'x'Kara' mandarin), displaying remarkable behaviour in alternate production, was used in this study. From 2D DIGE gel, 192 spots were isolated: 97 showed increased expression in the off-crop buds as compared to the on-crop buds, while 95 exhibited enhanced expression in the on-crop buds versus the off-crop buds. These spots were identified by MALDI-MS or LC-MS-MS. The largest groups of proteins up-expressed in the off-crop buds were the proteins involved in carbohydrate and amino acid metabolism, and the proteins expressed in response to stimuli such as reactive oxygen species. The largest groups of proteins up-expressed in the on-crop buds were related to primary metabolism, oxidative stress and defence responses. Depending on their function, some of these proteins can stimulate the flowering, such as fructose-bisphosphate aldolase or leucine-rich repeat transmembrane protein kinase, while others can inhibit it, such as cytochrome c oxidase subunit II. Twenty-two other proteins with unknown functions were up-expressed in the on- or off-crop buds.

  6. Bioinformatic analysis of proteomics data

    PubMed Central

    2014-01-01

    Most biochemical reactions in a cell are regulated by highly specialized proteins, which are the prime mediators of the cellular phenotype. Therefore the identification, quantitation and characterization of all proteins in a cell are of utmost importance to understand the molecular processes that mediate cellular physiology. With the advent of robust and reliable mass spectrometers that are able to analyze complex protein mixtures within a reasonable timeframe, the systematic analysis of all proteins in a cell becomes feasible. Besides the ongoing improvements of analytical hardware, standardized methods to analyze and study all proteins have to be developed that allow the generation of testable new hypothesis based on the enormous pre-existing amount of biological information. Here we discuss current strategies on how to gather, filter and analyze proteomic data sates using available software packages. PMID:25033288

  7. Proteomic analysis of Chinese hamster ovary cells.

    PubMed

    Baycin-Hizal, Deniz; Tabb, David L; Chaerkady, Raghothama; Chen, Lily; Lewis, Nathan E; Nagarajan, Harish; Sarkaria, Vishaldeep; Kumar, Amit; Wolozny, Daniel; Colao, Joe; Jacobson, Elena; Tian, Yuan; O'Meally, Robert N; Krag, Sharon S; Cole, Robert N; Palsson, Bernhard O; Zhang, Hui; Betenbaugh, Michael

    2012-11-01

    To complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO cells including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multidimensional liquid chromatography, and solid phase extraction of glycopeptides (SPEG). From the 120 different mass spectrometry analyses generating 682,097 MS/MS spectra, 93,548 unique peptide sequences were identified with at most 0.02 false discovery rate (FDR). A total of 6164 grouped proteins were identified from both glycoproteome and proteome analysis, representing an 8-fold increase in the number of proteins currently identified in the CHO proteome. Furthermore, this is the first proteomic study done using the CHO genome exclusively, which provides for more accurate identification of proteins. From this analysis, the CHO codon frequency was determined and found to be distinct from humans, which will facilitate expression of human proteins in CHO cells. Analysis of the combined proteomic and mRNA data sets indicated the enrichment of a number of pathways including protein processing and apoptosis but depletion of proteins involved in steroid hormone and glycosphingolipid metabolism. Five-hundred four of the detected proteins included N-acetylation modifications, and 1292 different proteins were observed to be N-glycosylated. This first large-scale proteomic analysis will enhance the knowledge base about CHO capabilities for recombinant expression and provide information useful in cell engineering efforts aimed at modifying CHO cellular functions. PMID:22971049

  8. Proteome analysis of dormancy-released seeds of Fraxinus mandshurica Rupr. in response to re-dehydration under different conditions.

    PubMed

    Zhang, Peng; Liu, Di; Shen, Hailong; Li, Yuhua; Nie, Yuzhe

    2015-03-02

    Desiccation tolerance is the ability of orthodox seeds to achieve equilibrium with atmospheric relative humidity and to survive in this state. Understanding how orthodox seeds respond to dehydration is important for improving quality and long-term storage of seeds under low temperature and drought stress conditions. Long-term storage of seeds is an artificial situation, because in most natural situations a seed that has been shed may not remain in a desiccated state for very long, and if dormant it may undergo repeated cycles of hydration. Different types of seeds are differentially sensitive to desiccation and this directly affects long-term storage. For these reasons, many researchers are investigating loss of desiccation tolerance during orthodox seed development to understand how it is acquired. In this study, the orthodox seed proteome response of Fraxinus mandshurica Rupr. to dehydration (to a relative water content of 10%, which mimics seed dehydration) was investigated under four different conditions viz. 20 °C; 20 °C with silica gel; 1 °C; and 1 °C after pretreatment with Ca2+. Proteins from seeds dehydrated under different conditions were extracted and separated by two-dimensional difference gel electrophoresis (2D-DIGE). A total of 2919 protein spots were detected, and high-resolution 2D-DIGE indicated there were 27 differentially expressed. Seven of these were identified using MALDI TOF/TOF mass spectrometry. Inferences from bioinformatics annotations of these proteins established the possible involvement of detoxifying enzymes, transport proteins, and nucleotide metabolism enzymes in response to dehydration. Of the seven differentially abundant proteins, the amounts of six were down-regulated and one was up-regulated. Also, a putative acyl-coenzyme A oxidase of the glyoxylate cycle increased in abundance. In particular, the presence of kinesin-1, a protein important for regulation and cargo interaction, was up-regulated in seeds exposed to low

  9. Proteome analysis of dormancy-released seeds of Fraxinus mandshurica Rupr. in response to re-dehydration under different conditions.

    PubMed

    Zhang, Peng; Liu, Di; Shen, Hailong; Li, Yuhua; Nie, Yuzhe

    2015-01-01

    Desiccation tolerance is the ability of orthodox seeds to achieve equilibrium with atmospheric relative humidity and to survive in this state. Understanding how orthodox seeds respond to dehydration is important for improving quality and long-term storage of seeds under low temperature and drought stress conditions. Long-term storage of seeds is an artificial situation, because in most natural situations a seed that has been shed may not remain in a desiccated state for very long, and if dormant it may undergo repeated cycles of hydration. Different types of seeds are differentially sensitive to desiccation and this directly affects long-term storage. For these reasons, many researchers are investigating loss of desiccation tolerance during orthodox seed development to understand how it is acquired. In this study, the orthodox seed proteome response of Fraxinus mandshurica Rupr. to dehydration (to a relative water content of 10%, which mimics seed dehydration) was investigated under four different conditions viz. 20 °C; 20 °C with silica gel; 1 °C; and 1 °C after pretreatment with Ca2+. Proteins from seeds dehydrated under different conditions were extracted and separated by two-dimensional difference gel electrophoresis (2D-DIGE). A total of 2919 protein spots were detected, and high-resolution 2D-DIGE indicated there were 27 differentially expressed. Seven of these were identified using MALDI TOF/TOF mass spectrometry. Inferences from bioinformatics annotations of these proteins established the possible involvement of detoxifying enzymes, transport proteins, and nucleotide metabolism enzymes in response to dehydration. Of the seven differentially abundant proteins, the amounts of six were down-regulated and one was up-regulated. Also, a putative acyl-coenzyme A oxidase of the glyoxylate cycle increased in abundance. In particular, the presence of kinesin-1, a protein important for regulation and cargo interaction, was up-regulated in seeds exposed to low

  10. The MMACHC proteome: hallmarks of functional cobalamin deficiency in humans.

    PubMed

    Hannibal, Luciana; DiBello, Patricia M; Yu, Michelle; Miller, Abby; Wang, Sihe; Willard, Belinda; Rosenblatt, David S; Jacobsen, Donald W

    2011-07-01

    Cobalamin (Cbl, B(12)) is an essential micronutrient required to fulfill the enzymatic reactions of cytosolic methylcobalamin-dependent methionine synthase and mitochondrial adenosylcobalamin-dependent methylmalonyl-CoA mutase. Mutations in the MMACHC gene (cblC complementation group) disrupt processing of the upper-axial ligand of newly internalized cobalamins, leading to functional deficiency of the vitamin. Patients with cblC disease present with both hyperhomocysteinemia and methylmalonic acidemia, cognitive dysfunction, and megaloblastic anemia. In the present study we show that cultured skin fibroblasts from cblC patients export increased levels of both homocysteine and methylmalonic acid compared to control skin fibroblasts, and that they also have decreased levels of total intracellular folates. This is consistent with the clinical phenotype of functional cobalamin deficiency in vivo. The protein changes that accompany human functional Cbl deficiency are unknown. The proteome of control and cblC fibroblasts was quantitatively examined by two dimensional difference in-gel electrophoresis (2D-DIGE) and liquid chromatography-electrospray ionization-mass spectrometry (LC/ESI/MS). Major changes were observed in the expression levels of proteins involved in cytoskeleton organization and assembly, the neurological system and cell signaling. Pathway analysis of the differentially expressed proteins demonstrated strong associations with neurological disorders, muscular and skeletal disorders, and cardiovascular diseases in the cblC mutant cell lines. Supplementation of the cell cultures with hydroxocobalamin did not restore the cblC proteome to the patterns of expression observed in control cells. These results concur with the observed phenotype of patients with the cblC disorder and their sometimes poor response to treatment with hydroxocobalamin. Our findings could be valuable for designing alternative therapies to alleviate the clinical manifestation of the cbl

  11. Development-Specific Differences in the Proteomics of Angiostrongylus cantonensis

    PubMed Central

    Yao, Li-Li; Song, Zeng-Mei; Li, Xing-Pan; Hua, Qian-Qian; Li, Qiang; Xia, Chao-Ming

    2013-01-01

    Angiostrongyliasis is an emerging communicable disease. Several different hosts are required to complete the life cycle of Angiostrongylus cantonensis. However, we lack a complete understanding of variability of proteins across different developmental stages and their contribution to parasite survival and progression. In this study, we extracted soluble proteins from various stages of the A. cantonensis life cycle [female adults, male adults, the fifth-stage female larvae (FL5), the fifth-stage male larvae (ML5) and third-stage larvae (L3)], separated those proteins using two-dimensional difference gel electrophoresis (2D-DIGE) at pH 4–7, and analyzed the gel images using DeCyder 7.0 software. This proteomic analysis produced a total of 183 different dominant protein spots. Thirty-seven protein spots were found to have high confidence scores (>95%) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Comparative proteomic analyses revealed that 29 spots represented cytoskeleton-associated proteins and functional proteins. Eight spots were unnamed proteins. Twelve protein spots that were matched to the EST of different-stage larvae of A. cantonensis were identified. Two genes and the internal control 18s were chosen for quantitative real-time PCR (qPCR) and the qPCR results were consistent with those of the DIGE studies. These findings will provide a new basis for understanding the characteristics of growth and development of A. cantonensis and the host–parasite relationship. They may also assist searches for candidate proteins suitable for use in diagnostic assays and as drug targets for the control of eosinophilic meningitis caused by A. cantonensis. PMID:24204717

  12. Proteomic differences between hepatocellular carcinoma and nontumorous liver tissue investigated by a combined gel-based and label-free quantitative proteomics study.

    PubMed

    Megger, Dominik A; Bracht, Thilo; Kohl, Michael; Ahrens, Maike; Naboulsi, Wael; Weber, Frank; Hoffmann, Andreas-Claudius; Stephan, Christian; Kuhlmann, Katja; Eisenacher, Martin; Schlaak, Jörg F; Baba, Hideo A; Meyer, Helmut E; Sitek, Barbara

    2013-07-01

    Proteomics-based clinical studies have been shown to be promising strategies for the discovery of novel biomarkers of a particular disease. Here, we present a study of hepatocellular carcinoma (HCC) that combines complementary two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography (LC-MS)-based approaches of quantitative proteomics. In our proteomic experiments, we analyzed a set of 14 samples (7 × HCC versus 7 × nontumorous liver tissue) with both techniques. Thereby we identified 573 proteins that were differentially expressed between the experimental groups. Among these, only 51 differentially expressed proteins were identified irrespective of the applied approach. Using Western blotting and immunohistochemical analysis the regulation patterns of six selected proteins from the study overlap (inorganic pyrophosphatase 1 (PPA1), tumor necrosis factor type 1 receptor-associated protein 1 (TRAP1), betaine-homocysteine S-methyltransferase 1 (BHMT)) were successfully verified within the same sample set. In addition, the up-regulations of selected proteins from the complements of both approaches (major vault protein (MVP), gelsolin (GSN), chloride intracellular channel protein 1 (CLIC1)) were also reproducible. Within a second independent verification set (n = 33) the altered protein expression levels of major vault protein and betaine-homocysteine S-methyltransferase were further confirmed by Western blots quantitatively analyzed via densitometry. For the other candidates slight but nonsignificant trends were detectable in this independent cohort. Based on these results we assume that major vault protein and betaine-homocysteine S-methyltransferase have the potential to act as diagnostic HCC biomarker candidates that are worth to be followed in further validation studies.

  13. Liver proteomic response to hypertriglyceridemia in human-apolipoprotein C-III transgenic mice at cellular and mitochondrial compartment levels

    PubMed Central

    2014-01-01

    Background Hypertriglyceridemia (HTG) is defined as a triglyceride (TG) plasma level exceeding 150 mg/dl and is tightly associated with atherosclerosis, metabolic syndrome, obesity, diabetes and acute pancreatitis. The present study was undertaken to investigate the mitochondrial, sub-mitochondrial and cellular proteomic impact of hypertriglyceridemia in the hepatocytes of hypertriglyceridemic transgenic mice (overexpressing the human apolipoproteinC-III). Methods Quantitative proteomics (2D-DIGE) analysis was carried out on both “low-expressor” (LE) and “high-expressor” (HE) mice, respectively exhibiting moderate and severe HTG, to characterize the effect of the TG plasma level on the proteomic response. Results The mitoproteome analysis has revealed a large-scale phenomenon in transgenic mice, i.e. a general down-regulation of matricial proteins and up-regulation of inner membrane proteins. These data also demonstrate that the magnitude of proteomic changes strongly depends on the TG plasma level. Our different analyses indicate that, in HE mice, the capacity of several metabolic pathways is altered to promote the availability of acetyl-CoA, glycerol-3-phosphate, ATP and NADPH for TG de novo biosynthesis. The up-regulation of several cytosolic ROS detoxifying enzymes has also been observed, suggesting that the cytoplasm of HTG mice is subjected to oxidative stress. Moreover, our results suggest that iron over-accumulation takes place in the cytosol of HE mice hepatocytes and may contribute to enhance oxidative stress and to promote cellular proliferation. Conclusions These results indicate that the metabolic response to HTG in human apolipoprotein C-III overexpressing mice may support a high TG production rate and that the cytosol of hepatocytes is subjected to an important oxidative stress, probably as a result of FFA over-accumulation, iron overload and enhanced activity of some ROS-producing catabolic enzymes. PMID:25047818

  14. Networks in proteomics analysis of cancer.

    PubMed

    Goh, Wilson Wen Bin; Wong, Limsoon

    2013-12-01

    Proteomics provides direct biological information on proteins but is still a limited platform. Borrowing from genomics, its cancer-specific applications can be broadly categorized as (1) pure diagnostics, (2) biomarkers, (3) identification of root causes and (4) identification of cancer-specific network rewirings. Biological networks capture complex relationships between proteins and provide an appropriate means of contextualization. While playing significantly larger roles, especially in 1 and 3, progress in proteomics-specific network-based methods is lagging as compared to genomics. Rapid hardware advances and improvements in proteomic identification and quantification have given rise to much better quality data alongside advent of new network-based analysis methods. However, a tighter integration between analytics and hardware is still essential for network analysis to play more significant roles in proteomics analysis.

  15. Proteomics

    SciTech Connect

    Hixson, Kim K.; Lopez-Ferrer, Daniel; Robinson, Errol W.; Pasa-Tolic, Ljiljana

    2010-02-01

    Proteomics aims to characterize the spatial distribution and temporal dynamics of proteins in biological systems, the protein response to environmental stimuli, and the differences in protein states between diseased and control biological systems. Mass spectrometry (MS) plays a crucial role in enabling the analysis of proteomes and typically is the method of choice for identifying proteins present in biological systems. Peptide (and consequently protein) identifications are made by comparing measured masses to calculated values obtained from genome data. Several methodologies based on MS have been developed for the analysis of proteomes. The complexity of the biological systems requires that the proteome be separated prior to analysis. Both gel based and liquid chromatography based separations have proven very useful in this regard. Typically, separated proteins are analyzed with MS either intact (top-down proteomics) or are digested into peptides (bottom-up) prior to MS analysis. Additionally, several procedures, with and without stable isotopic labeling, have been introduced to facilitate protein quantitation (e.g. characterize changes in protein abundances between given biological states).

  16. Differential proteomic profile of spermatogenic and Sertoli cells from peri-pubertal testes of three different bovine breeds

    PubMed Central

    Tripathi, Utkarsh K.; Aslam, Muhammad K. M.; Pandey, Shashank; Nayak, Samiksha; Chhillar, Shivani; Srinivasan, A.; Mohanty, T. K.; Kadam, Prashant H.; Chauhan, M. S.; Yadav, Savita; Kumaresan, Arumugam

    2014-01-01

    Sub-fertility is one of the most common problems observed in crossbred males, but the etiology remains unknown in most of the cases. Although proteomic differences in the spermatozoa and seminal plasma between breeds have been investigated, the possible differences at the sperm precursor cells and supporting/nourishing cells have not been studied. The present study reports the differential proteomic profile of spermatogenic and Sertoli cells in crossbred and purebred bulls. Testis was removed by unilateral castration of 12 peri-pubertal bulls (10 months age), four each from crossbred (Holstein Friesian × Tharparkar), exotic purebred [Holstein Friesian (HF)] and indigenous purebred [Tharparkar (TP)] bulls. Spermatogenic and Sertoli cells were isolated and subjected to proteomic analysis. Protein extracts from the Sertoli and spermatogenic cells of each breed were analyzed with 2-dimensional difference gel electrophoresis (2D-DIGE) and analyzed with Decyder™ software. Compared to HF, 26 protein spots were over expressed and 14 protein spots were under expressed in spermatogenic cells of crossbred bulls. Similarly, 7 protein spots were over expressed and 15 protein spots were under expressed in the spermatogenic cells of TP bulls compared to that of crossbred bulls. Out of 12 selected protein spots identified through mass spectrometry, Phosphatidyl ethanolamine binding protein was found to be over expressed in the spermatogenic cells of crossbred bulls compared to TP bulls. The protein, gamma actin was found to be over expressed in the Sertoli cells of HF bulls, whereas Speedy Protein-A was found to be over expressed in Sertoli cells of crossbred bulls. It may be concluded that certain proteomic level differences exist in sperm precursor cells and nourishing cells between breeds, which might be associated with differences in the fertility among these breeds. PMID:25364731

  17. Relationship of proteomic variation and toxin synthesis in the dinoflagellate Alexandrium tamarense CI01 under phosphorus and inorganic nitrogen limitation.

    PubMed

    Jiang, Xi-Wen; Wang, Jing; Gao, Yue; Chan, Leo Lai; Lam, Paul Kwan Sing; Gu, Ji-Dong

    2015-10-01

    Paralytic shellfish toxins (PSTs) are originated from cyanobacteria and dinoflagellates, including Alexandrium tamarense, the common dinoflagellate species. In this study, a toxic dinoflagellate strain of A. tamarense CI01 was selected for studying the PSTs' concentration and the related protein variation during the whole cell cycle under different nutrient conditions. High-performance liquid chromatography, 2-D DIGE and Western blotting were used collectively for protein profiling and identification. Results showed that the toxin content was suppressed under nitrogen limiting condition, but enhanced in phosphorous limiting medium. Based on the results of proteomics analysis, 7 proteins were discovered to be related to the PSTs biosynthesis of A. tamarense CI01, including S-adenosylhomocysteine hydrolase, ornithine cyclodeaminase, argininosuccinate synthase, methyluridine methyltransferase cystine ABC transporter, phosphoserine phosphatase, argininosuccinate synthase and acyl-CoA dehydrogenase, which corresponds to the metabolism of the methionine, cysteine, ornithine, arginine and proline. Moreover, some photosynthesis relating proteins also increased their expression during PST synthesis period in A. tamarense CI01, such as phosphoenolpyruvate carboxylase, chloroplast phosphoglycerate kinase, peridinin-chlorophyll α-binding protein, Mg(2+) transporter protein and chloroplast phosphoglycerate kinase. The above findings are in support of our hypothesis that these proteins are involved in toxin biosynthesis of A. tamarense CI01, but cause-and-effect mechanisms need to be investigated in further studies.

  18. Relationship of proteomic variation and toxin synthesis in the dinoflagellate Alexandrium tamarense CI01 under phosphorus and inorganic nitrogen limitation.

    PubMed

    Jiang, Xi-Wen; Wang, Jing; Gao, Yue; Chan, Leo Lai; Lam, Paul Kwan Sing; Gu, Ji-Dong

    2015-10-01

    Paralytic shellfish toxins (PSTs) are originated from cyanobacteria and dinoflagellates, including Alexandrium tamarense, the common dinoflagellate species. In this study, a toxic dinoflagellate strain of A. tamarense CI01 was selected for studying the PSTs' concentration and the related protein variation during the whole cell cycle under different nutrient conditions. High-performance liquid chromatography, 2-D DIGE and Western blotting were used collectively for protein profiling and identification. Results showed that the toxin content was suppressed under nitrogen limiting condition, but enhanced in phosphorous limiting medium. Based on the results of proteomics analysis, 7 proteins were discovered to be related to the PSTs biosynthesis of A. tamarense CI01, including S-adenosylhomocysteine hydrolase, ornithine cyclodeaminase, argininosuccinate synthase, methyluridine methyltransferase cystine ABC transporter, phosphoserine phosphatase, argininosuccinate synthase and acyl-CoA dehydrogenase, which corresponds to the metabolism of the methionine, cysteine, ornithine, arginine and proline. Moreover, some photosynthesis relating proteins also increased their expression during PST synthesis period in A. tamarense CI01, such as phosphoenolpyruvate carboxylase, chloroplast phosphoglycerate kinase, peridinin-chlorophyll α-binding protein, Mg(2+) transporter protein and chloroplast phosphoglycerate kinase. The above findings are in support of our hypothesis that these proteins are involved in toxin biosynthesis of A. tamarense CI01, but cause-and-effect mechanisms need to be investigated in further studies. PMID:26239440

  19. Proteomics Research in Schizophrenia

    PubMed Central

    Davalieva, Katarina; Maleva Kostovska, Ivana; Dwork, Andrew J.

    2016-01-01

    Despite intense scientific efforts, the neuropathology and pathophysiology of schizophrenia are poorly understood. Proteomic studies, by testing large numbers of proteins for associations with disease, may contribute to the understanding of the molecular mechanisms of schizophrenia. They may also indicate the types and locations of cells most likely to harbor pathological alterations. Investigations using proteomic approaches have already provided much information on quantitative and qualitative protein patterns in postmortem brain tissue, peripheral tissues and body fluids. Different proteomic technologies such as 2-D PAGE, 2-D DIGE, SELDI-TOF, shotgun proteomics with label-based (ICAT), and label-free (MSE) quantification have been applied to the study of schizophrenia for the past 15 years. This review summarizes the results, mostly from brain but also from other tissues and bodily fluids, of proteomics studies in schizophrenia. Emphasis is given to proteomics platforms, varying sources of material, proposed candidate biomarkers emerging from comparative proteomics studies, and the specificity of the putative markers in terms of other mental illnesses. We also compare proteins altered in schizophrenia with reports of protein or mRNA sequences that are relatively enriched in specific cell types. While proteomic studies of schizophrenia find abnormalities in the expression of many proteins that are not cell type-specific, there appears to be a disproportionate representation of proteins whose synthesis and localization are highly enriched in one or more brain cell type compared with other types of brain cells. Two of the three proteins most commonly altered in schizophrenia are aldolase C and glial fibrillary acidic protein, astrocytic proteins with entirely different functions, but the studies are approximately evenly divided with regard to the direction of the differences and the concordance or discordance between the two proteins. Alterations of common myelin

  20. Integrated Analysis of Transcriptomic and Proteomic Data

    PubMed Central

    Haider, Saad; Pal, Ranadip

    2013-01-01

    Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area. PMID:24082820

  1. Differential proteomic analysis of midguts from Nosema ceranae-infected honeybees reveals manipulation of key host functions.

    PubMed

    Vidau, Cyril; Panek, Johan; Texier, Catherine; Biron, David G; Belzunces, Luc P; Le Gall, Morgane; Broussard, Cédric; Delbac, Frédéric; El Alaoui, Hicham

    2014-09-01

    Many invasive pathogens effectively bypass the insect defenses to ensure the completion of their life cycle. Among those, an invasive microsporidian species, Nosema ceranae, can cause nosemosis in honeybees. N. ceranae was first described in the Asian honeybee Apis cerana and is suspected to be involved in Western honeybee (Apis mellifera) declines worldwide. The midgut of honeybees is the first barrier against N. ceranae attacks. To bring proteomics data on honeybee/N. ceranae crosstalk and more precisely to decipher the worker honeybee midgut response after an oral inoculation of N. ceranae (10days post-infection), we used 2D-DIGE (2-Dimensional Differential In-Gel Electrophoresis) combined with mass spectrometry. Forty-five protein spots produced by the infected worker honeybee group were shown to be differentially expressed when compared to the uninfected group; 14 were subsequently identified by mass spectrometry. N. ceranae mainly caused a modulation of proteins involved in three key host biological functions: (i) energy production, (ii) innate immunity (reactive oxygen stress) and (iii) protein regulation. The modulation of these host biological functions suggests that N. ceranae creates a zone of "metabolic habitat modification" in the honeybee midgut favoring its development by enhancing availability of nutrients and reducing the worker honeybee defense.

  2. Proteomic Analysis of Hepatic Tissue of Cyprinus carpio L. Exposed to Cyanobacterial Blooms in Lake Taihu, China

    PubMed Central

    Jiang, Jinlin; Wang, Xiaorong; Shan, Zhengjun; Yang, Liuyan; Zhou, Junying; Bu, Yuanqin

    2014-01-01

    With the rapid development of industry and agriculture and associated pollution, the cyanobacterial blooms in Lake Taihu have become a major threat to aquatic wildlife and human health. In this study, the ecotoxicological effects of cyanobacterial blooms on cage-cultured carp (Cyprinus carpio L.) in Meiliang Bay of Lake Taihu were investigated. Microcystins (MCs), major cyanobacterial toxins, have been detected in carp cultured at different experimental sites of Meiliang Bay. We observed that the accumulation of MCs in carp was closely associated with several environmental factors, including temperature, pH value, and density of cyanobacterial blooms. The proteomic profile of carp liver exposed to cyanobacterial blooms was analyzed using two-dimensional difference in-gel electrophoresis (2D-DIGE) and mass spectrometry. The toxic effects of cyanobacterial blooms on carp liver were similar to changes caused by MCs. MCs were transported into liver cells and induced the excessive production of reactive oxygen species (ROS). MCs and ROS inhibited protein phosphatase and aldehyde dehydrogenase (ALDH), directly or indirectly resulting in oxidative stress and disruption of the cytoskeleton. These effects further interfered with metabolic pathways in the liver through the regulation of series of related proteins. The results of this study indicated that cyanobacterial blooms pose a major threat to aquatic wildlife in Meiliang Bay in Lake Taihu. These results provided evidence of the molecular mechanisms underlying liver damage in carp exposed to cyanobacterial blooms. PMID:24558380

  3. A systematic analysis of the effects of increasing degrees of serum immunodepletion in terms of depth of coverage and other key aspects in top-down and bottom-up proteomic analyses

    PubMed Central

    Smith, Matthew P Welberry; Wood, Steven L; Zougman, Alexandre; Ho, Jenny T C; Peng, Jianhe; Jackson, David; Cairns, David A; Lewington, Andrew J P; Selby, Peter J; Banks, Rosamonde E

    2011-01-01

    Immunodepletion of clinical fluids to overcome the dominance by a few very abundant proteins has been explored but studies are few, commonly examining only limited aspects with one analytical platform. We have systematically compared immunodepletion of 6, 14, or 20 proteins using serum from renal transplant patients, analysing reproducibility, depth of coverage, efficiency, and specificity using 2-D DIGE (‘top-down’) and LC-MS/MS (‘bottom-up’). A progressive increase in protein number (≥2 unique peptides) was found from 159 in unfractionated serum to 301 following 20 protein depletion using a relatively high-throughput 1-D-LC-MS/MS approach, including known biomarkers and moderate–lower abundance proteins such as NGAL and cytokine/growth factor receptors. On the contrary, readout by 2-D DIGE demonstrated good reproducibility of immunodepletion, but additional proteins seen tended to be isoforms of existing proteins. Depletion of 14 or 20 proteins followed by LC-MS/MS showed excellent reproducibility of proteins detected and a significant overlap between columns. Using label-free analysis, greater run-to-run variability was seen with the Prot20 column compared with the MARS14 column (median %CVs of 30.9 versus 18.2%, respectively) and a corresponding wider precision profile for the Prot20. These results illustrate the potential of immunodepletion followed by 1-D nano-LC-LTQ Orbitrap Velos analysis in a moderate through-put biomarker discovery process. PMID:21548096

  4. Proteomic analysis of protective effects of polysaccharides from Salvia miltiorrhiza against immunological liver injury in mice.

    PubMed

    Sun, Xue-Gang; Fu, Xiu-Qiong; Cai, Hong-Bing; Liu, Qiang; Li, Chun-Hua; Liu, Ya-Wei; Li, Ying-Jia; Liu, Zhi-Feng; Song, Yu-Hong; Lv, Zhi-Ping

    2011-07-01

    This study was designed to investigate mechanisms of the protective effects of Salvia miltiorrhiza polysaccharide (SMPS) against lipopolysaccharide (LPS)-induced immunological liver injury (ILI) in Bacille Calmette-Guérin (BCG)-primed mice. Two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis showed that three proteins are down-regulated and six proteins are up-regulated by SMPS. SMPS reduces the degree of liver injury by up-regulating the enzymes of the citric acid cycle, namely malate dehydrogenase (MDH) and 2-oxoglutarate dehydrogenase complex. LPS significantly increases nuclear factor kappa B (NF-κB) activation, inducible nitric oxide synthase (iNOS) expression and MDA level in BCG primed mice liver, whereas SMPS treatment protects against the immunological liver injury through inhibition of the NF-κB activation by up-regulation of PRDX6 and the subsequent attenuation of lipid peroxidation, iNOS expression and inflammation.

  5. Empirical Bayes Analysis of Quantitative Proteomics Experiments

    PubMed Central

    Margolin, Adam A.; Ong, Shao-En; Schenone, Monica; Gould, Robert; Schreiber, Stuart L.; Carr, Steven A.; Golub, Todd R.

    2009-01-01

    Background Advances in mass spectrometry-based proteomics have enabled the incorporation of proteomic data into systems approaches to biology. However, development of analytical methods has lagged behind. Here we describe an empirical Bayes framework for quantitative proteomics data analysis. The method provides a statistical description of each experiment, including the number of proteins that differ in abundance between 2 samples, the experiment's statistical power to detect them, and the false-positive probability of each protein. Methodology/Principal Findings We analyzed 2 types of mass spectrometric experiments. First, we showed that the method identified the protein targets of small-molecules in affinity purification experiments with high precision. Second, we re-analyzed a mass spectrometric data set designed to identify proteins regulated by microRNAs. Our results were supported by sequence analysis of the 3′ UTR regions of predicted target genes, and we found that the previously reported conclusion that a large fraction of the proteome is regulated by microRNAs was not supported by our statistical analysis of the data. Conclusions/Significance Our results highlight the importance of rigorous statistical analysis of proteomic data, and the method described here provides a statistical framework to robustly and reliably interpret such data. PMID:19829701

  6. Proteomic analysis of human glioblastoma cell lines differently resistant to a nitric oxide releasing agent.

    PubMed

    Leone, Roberta; Giussani, Paola; De Palma, Sara; Fania, Chiara; Capitanio, Daniele; Vasso, Michele; Brioschi, Loredana; Riboni, Laura; Viani, Paola; Gelfi, Cecilia

    2015-06-01

    Glioblastoma multiforme is the most aggressive astrocytoma characterized by the development of resistant cells to various cytotoxic stimuli. Nitric oxide (NO) is able to overcome tumor resistance in PTEN mutated rat C6 glioma cells due to its ability to inhibit cell growth by influencing the intracellular distribution of ceramide. The aim of this study is to monitor the effects of NO donor PAPANONOate on ceramide trafficking in human glioma cell lines, CCF-STTG1 (PTEN-mutated, p53-wt) and T98G (PTEN-harboring, p53-mutated), together with the assessment of their differential molecular signature by 2D-DIGE and MALDI mass spectrometry. In the CCF-STTG1 cell line, the results indicate that treatment with PAPANONOate decreased cell proliferation (<50%) and intracellular trafficking of ceramide, assessed by BODIPY-C5Cer, while these events were not observed in the T98G cell line. Proteomic results suggest that CCF-STTG1 cells are characterized by an increased expression of proteins involved in NO-associated ER stress (i.e. protein disulfide-isomerase A3, calreticulin, 78 kDa glucose-regulated protein), which could compromise ceramide delivery from ER to Golgi, leading to ceramide accumulation in ER and partial growth arrest. Conversely, T98G cell lines, resistant to NO exposure, are characterized by increased levels of cytosolic antioxidant proteins (i.e. glutathione-S-transferase P, peroxiredoxin 1), which might buffer intracellular NO. By providing differential ceramide distribution after NO exposure and differential protein expression of two high grade glioma cell lines, this study highlights specific proteins as possible markers for tumor aggressiveness. This study demonstrates that, in two different high grade glioma cell lines, NO exposure results in a different ceramide distribution and protein expression. Furthermore, this study highlights specific proteins as possible markers for tumor aggressiveness. PMID:25797839

  7. Proteomic analysis of pancreatic intraepithelial neoplasia and pancreatic carcinoma in rat models

    PubMed Central

    Wang, Lei; Liu, Hai-Lin; Li, Ya; Yuan, Ping

    2011-01-01

    AIM: To detect the proteomic variabilities of pancreatic intraepithelial neoplasia (PanIN) and pancreatic carcinoma (PC) induced by 7,12-dimethylbenzanthracene (DMBA) in rat models and to identify potential biomarkers. METHODS: Sixty adult male Sprague Dawley rats were randomized into three groups. The rats had DMBA implanted into their pancreas for one (n = 20) or two months (n = 20) or assigned to the normal group (n = 20). The rats were killed after one or two months, and were evaluated histopathologically. Three tissue samples from each group of rats with either normal pancreas, PanIN (PanIN-2) or PC were examined by 2D-DIGE. The different expression spot features were analyzed by matrix-assisted laser desorption/ionization-time of flight/time of flight (MALDI-TOF/TOF) tandem mass spectrometry. The expression of enolase 1, a differentially expressed protein, was identified by immunohistochemistry. RESULTS: There was significant difference in the proportions of neoplastic changes between the 1- and 2-mogroups (P = 0.0488). There was an increase in the frequency of adenocarcinomas in the 2-mo group compared with the 1-mo group (P = 0.0309). No neoplastic changes were observed in any of the animals in the normal group. Enolase 1, pancreatic ELA3B, necdin, Hbp23, CHD3, hnRNP A2/B1, Rap80, and Gnb2l1 were up-regulated in the PanIN and PC tissues, and CEL, TPT1, NME2, PCK2, an unnamed protein product, and glycine C-acetyltransferase were down-regulated in the PanIN and PC tissues. The immunohistochemical results showed that enolase 1 expression was up-regulated in the pancreatic cancer tissues of rats and humans. CONCLUSION: The pancreatic protein expression changes induced by DMBA suggest potential molecular targets for the early diagnosis and treatment of PC. PMID:21472101

  8. Pathway and network analysis in proteomics.

    PubMed

    Wu, Xiaogang; Hasan, Mohammad Al; Chen, Jake Yue

    2014-12-01

    Proteomics is inherently a systems science that studies not only measured protein and their expressions in a cell, but also the interplay of proteins, protein complexes, signaling pathways, and network modules. There is a rapid accumulation of Proteomics data in recent years. However, Proteomics data are highly variable, with results sensitive to data preparation methods, sample condition, instrument types, and analytical methods. To address the challenge in Proteomics data analysis, we review current tools being developed to incorporate biological function and network topological information. We categorize these tools into four types: tools with basic functional information and little topological features (e.g., GO category analysis), tools with rich functional information and little topological features (e.g., GSEA), tools with basic functional information and rich topological features (e.g., Cytoscape), and tools with rich functional information and rich topological features (e.g., PathwayExpress). We first review the potential application of these tools to Proteomics; then we review tools that can achieve automated learning of pathway modules and features, and tools that help perform integrated network visual analytics.

  9. Pathway and Network Analysis in Proteomics

    PubMed Central

    Wu, Xiaogang; Hasan, Mohammad Al; Chen, Jake Yue

    2014-01-01

    Proteomics is inherently a systems science that studies not only measured protein and their expressions in a cell, but also the interplay of proteins, protein complexes, signaling pathways, and network modules. There is a rapid accumulation of Proteomics data in recent years. However, Proteomics data are highly variable, with results being sensitive to data preparation methods, sample condition, instrument types, and analytical method. To address this challenge in Proteomics data analysis, we review common approaches developed to incorporate biological function and network topological information. We categorize existing tools into four categories: tools with basic functional information and little topological features (e.g., GO category analysis), tools with rich functional information and little topological features (e.g., GSEA), tools with basic functional information and rich topological features (e.g., Cytoscape), and tools with rich functional information and rich topological features (e.g., PathwayExpress). We review the general application potential of these tools to Proteomics. In addition, we also review tools that can achieve automated learning of pathway modules and features, and tools that help perform integrated network visual analytics. PMID:24911777

  10. Two-dimensional proteome reference map of Prototheca zopfii revealed reduced metabolism and enhanced signal transduction as adaptation to an infectious life style.

    PubMed

    Murugaiyan, Jayaseelan; Weise, Christoph; von Bergen, Martin; Roesler, Uwe

    2013-09-01

    Biochemical, serological, and genetic analyses have identified two genotypes of Prototheca zopfii, a unicellular microalga belonging to the family Chlorellaceae. The P. zopfii genotype 1, abundantly present in cow barns and environment, remains nonpathogenic, while P. zopfii genotype 2 has been isolated from cows with bovine mastitis. The present study was carried out to identify the protein expression level difference between the pathogenic and nonpathogenic strains of P. zopfii. A total of 782 protein spots were observed on the 2D fluorescence difference gel electrophoresis (2D DIGE) gels among which 63 and 44 proteins were identified to be overexpressed in genotypes 1 and 2, respectively. The limited number of protein entries specific for Prototheca in public repositories resulted mainly in the identification of proteins described in other algae, microorganisms, or plants. Gene ontology (GO) analysis indicated reduced carbohydrate metabolism in genotype 1, while genotype 2 displayed enhanced DNA binding, kinase activity, and signal transduction. These effects point to metabolic and signaling adaptations in the pathogenic strain and provide insights into the evolution of otherwise highly similar strains. All MS data have been deposited in the ProteomeXchange with identifier PXD000126. PMID:23852777

  11. Methods for Proteomic Analysis of Transcription Factors

    PubMed Central

    Jiang, Daifeng; Jarrett, Harry W.; Haskins, William E.

    2009-01-01

    Investigation of the transcription factor (TF) proteome presents challenges including the large number of low abundance and post-translationally modified proteins involved. Specialized purification and analysis methods have been developed over the last decades which facilitate the study of the TF proteome and these are reviewed here. Generally applicable proteomics methods that have been successfully applied are also discussed. TFs are selectively purified by affinity techniques using the DNA response element (RE) as the basis for highly specific binding, and several agents have been discovered that either enhance binding or diminish non-specific binding. One such affinity method called “trapping” enables purification of TFs bound to nM concentrations and recovery of TF complexes in a highly purified state. The electrophoretic mobility shift assay (EMSA) is the most important assay of TFs because it provides both measures of the affinity and amount of the TF present. Southwestern (SW) blotting and DNA-protein crosslinking (DPC) allow in vitro estimates of DNA-binding-protein mass, while chromatin immunoprecipitation (ChIP) allows confirmation of promoter binding in vivo. Two-dimensional gel electrophoresis methods (2-DE), and 3-DE methods which combines EMSA with 2-DE, allow further resolution of TFs. The synergy of highly selective purification and analytical strategies has led to an explosion of knowledge about the TF proteome and the proteomes of other DNA- and RNA-binding proteins. PMID:19726046

  12. Complementary Proteomic Analysis of Protein Complexes

    PubMed Central

    Greco, Todd M.; Miteva, Yana; Conlon, Frank L.; Cristea, Ileana M.

    2013-01-01

    Proteomic characterization of protein complexes leverages the versatile platform of liquid chromatography-tandem mass spectrometry to elucidate molecular and cellular signaling processes underlying the dynamic regulation of macromolecular assemblies. Here, we describe a complementary proteomic approach optimized for immunoisolated protein complexes. As the relative complexity, abundance, and physiochemical properties of proteins can vary significantly between samples, we have provided (1) complementary sample preparation workflows, (2) detailed steps for HPLC and mass spectrometric method development, and (3) a bioinformatic workflow that provides confident peptide/protein identification paired with unbiased functional gene ontology analysis. This protocol can also be extended for characterization of larger complexity samples from whole cell or tissue Xenopus proteomes. PMID:22956100

  13. Proteomics Analysis of Bladder Cancer Exosomes*

    PubMed Central

    Welton, Joanne L.; Khanna, Sanjay; Giles, Peter J.; Brennan, Paul; Brewis, Ian A.; Staffurth, John; Mason, Malcolm D.; Clayton, Aled

    2010-01-01

    Exosomes are nanometer-sized vesicles, secreted by various cell types, present in biological fluids that are particularly rich in membrane proteins. Ex vivo analysis of exosomes may provide biomarker discovery platforms and form non-invasive tools for disease diagnosis and monitoring. These vesicles have never before been studied in the context of bladder cancer, a major malignancy of the urological tract. We present the first proteomics analysis of bladder cancer cell exosomes. Using ultracentrifugation on a sucrose cushion, exosomes were highly purified from cultured HT1376 bladder cancer cells and verified as low in contaminants by Western blotting and flow cytometry of exosome-coated beads. Solubilization in a buffer containing SDS and DTT was essential for achieving proteomics analysis using an LC-MALDI-TOF/TOF MS approach. We report 353 high quality identifications with 72 proteins not previously identified by other human exosome proteomics studies. Overrepresentation analysis to compare this data set with previous exosome proteomics studies (using the ExoCarta database) revealed that the proteome was consistent with that of various exosomes with particular overlap with exosomes of carcinoma origin. Interrogating the Gene Ontology database highlighted a strong association of this proteome with carcinoma of bladder and other sites. The data also highlighted how homology among human leukocyte antigen haplotypes may confound MASCOT designation of major histocompatability complex Class I nomenclature, requiring data from PCR-based human leukocyte antigen haplotyping to clarify anomalous identifications. Validation of 18 MS protein identifications (including basigin, galectin-3, trophoblast glycoprotein (5T4), and others) was performed by a combination of Western blotting, flotation on linear sucrose gradients, and flow cytometry, confirming their exosomal expression. Some were confirmed positive on urinary exosomes from a bladder cancer patient. In summary, the

  14. Reproducible ion-current-based approach for 24-plex comparison of the tissue proteomes of hibernating versus normal myocardium in swine models.

    PubMed

    Qu, Jun; Young, Rebeccah; Page, Brian J; Shen, Xiaomeng; Tata, Nazneen; Li, Jun; Duan, Xiaotao; Fallavollita, James A; Canty, John M

    2014-05-01

    Hibernating myocardium is an adaptive response to repetitive myocardial ischemia that is clinically common, but the mechanism of adaptation is poorly understood. Here we compared the proteomes of hibernating versus normal myocardium in a porcine model with 24 biological replicates. Using the ion-current-based proteomic strategy optimized in this study to expand upon previous proteomic work, we identified differentially expressed proteins in new molecular pathways of cardiovascular interest. The methodological strategy includes efficient extraction with detergent cocktail; precipitation/digestion procedure with high, quantitative peptide recovery; reproducible nano-LC/MS analysis on a long, heated column packed with small particles; and quantification based on ion-current peak areas. Under the optimized conditions, high efficiency and reproducibility were achieved for each step, which enabled a reliable comparison of 24 the myocardial samples. To achieve confident discovery of differentially regulated proteins in hibernating myocardium, we used highly stringent criteria to define "quantifiable proteins". These included the filtering criteria of low peptide FDR and S/N > 10 for peptide ion currents, and each protein was quantified independently from ≥2 distinct peptides. For a broad methodological validation, the quantitative results were compared with a parallel, well-validated 2D-DIGE analysis of the same model. Excellent agreement between the two orthogonal methods was observed (R = 0.74), and the ion-current-based method quantified almost one order of magnitude more proteins. In hibernating myocardium, 225 significantly altered proteins were discovered with a low false-discovery rate (∼3%). These proteins are involved in biological processes including metabolism, apoptosis, stress response, contraction, cytoskeleton, transcription, and translation. This provides compelling evidence that hibernating myocardium adapts to chronic ischemia. The major metabolic

  15. Proteomic analysis of human hepatoma cells expressing methionine adenosyltransferase I/III: Characterization of DDX3X as a target of S-adenosylmethionine.

    PubMed

    Schröder, Paul C; Fernández-Irigoyen, Joaquín; Bigaud, Emilie; Serna, Antonio; Renández-Alcoceba, Rubén; Lu, Shelly C; Mato, José M; Prieto, Jesús; Corrales, Fernando J

    2012-06-01

    Methionine adenosyltransferase I/III (MATI/III) synthesizes S-adenosylmethionine (SAM) in quiescent hepatocytes. Its activity is compromised in most liver diseases including liver cancer. Since SAM is a driver of hepatocytes fate we have studied the effect of re-expressing MAT1A in hepatoma Huh7 cells using proteomics. MAT1A expression leads to SAM levels close to those found in quiescent hepatocytes and induced apoptosis. Normalization of intracellular SAM induced alteration of 128 proteins identified by 2D-DIGE and gel-free methods, accounting for deregulation of central cellular functions including apoptosis, cell proliferation and survival. Human Dead-box protein 3 (DDX3X), a RNA helicase regulating RNA splicing, export, transcription and translation was down-regulated upon MAT1A expression. Our data support the regulation of DDX3X levels by SAM in a concentration and time dependent manner. Consistently, DDX3X arises as a primary target of SAM and a principal intermediate of its antitumoral effect. Based on the parallelism between SAM and DDX3X along the progression of liver disorders, and the results reported here, it is tempting to suggest that reduced SAM in the liver may lead to DDX3X up-regulation contributing to the pathogenic process and that replenishment of SAM might prove to have beneficial effects, at least in part by reducing DDX3X levels. This article is part of a Special Issue entitled: Proteomics: The clinical link.

  16. Global Proteome Analysis of Leptospira interrogans

    PubMed Central

    2009-01-01

    Comparative global proteome analyses were performed on Leptospira interrogans serovar Copenhageni grown under conventional in vitro conditions and those mimicking in vivo conditions (iron limitation and serum presence). Proteomic analyses were conducted using iTRAQ and LC-ESI-tandem mass spectrometry complemented with two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. A total of 563 proteins were identified in this study. Altered expression of 65 proteins, including upregulation of the L. interrogans virulence factor Loa22 and 5 novel proteins with homology to virulence factors found in other pathogens, was observed between the comparative conditions. Immunoblot analyses confirmed upregulation of 5 of the known or putative virulence factors in L. interrogans exposed to the in vivo-like environmental conditions. Further, ELISA analyses using serum from patients with leptospirosis and immunofluorescence studies performed on liver sections derived from L. interrogans-infected hamsters verified expression of all but one of the identified proteins during infection. These studies, which represent the first documented comparative global proteome analysis of Leptospira, demonstrated proteome alterations under conditions that mimic in vivo infection and allowed for the identification of novel putative L. interrogans virulence factors. PMID:19663501

  17. Comparative proteomic analysis of Aedes aegypti larval midgut after intoxication with Cry11Aa toxin from Bacillus thuringiensis.

    PubMed

    Cancino-Rodezno, Angeles; Lozano, Luis; Oppert, Cris; Castro, Julieta I; Lanz-Mendoza, Humberto; Encarnación, Sergio; Evans, Amy E; Gill, Sarjeet S; Soberón, Mario; Jurat-Fuentes, Juan L; Bravo, Alejandra

    2012-01-01

    Cry toxins produced by Bacillus thuringiensis bacteria are environmentally safe alternatives to control insect pests. They are pore-forming toxins that specifically affect cell permeability and cellular integrity of insect-midgut cells. In this work we analyzed the defensive response of Aedes aegypti larva to Cry11Aa toxin intoxication by proteomic and functional genomic analyses. Two dimensional differential in-gel electrophoresis (2D-DIGE) was utilized to analyze proteomic differences among A. aegypti larvae intoxicated with different doses of Cry11Aa toxin compared to a buffer treatment. Spots with significant differential expression (p<0.05) were then identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), revealing 18 up-regulated and seven down-regulated proteins. The most abundant subcategories of differentially expressed proteins were proteins involved in protein turnover and folding, energy production, and cytoskeleton maintenance. We selected three candidate proteins based on their differential expression as representatives of the different functional categories to perform gene silencing by RNA interference and analyze their functional role. The heat shock protein HSP90 was selected from the proteins involved in protein turnover and chaperones; actin, was selected as representative of the cytoskeleton protein group, and ATP synthase subunit beta was selected from the group of proteins involved in energy production. When we affected the expression of ATP synthase subunit beta and actin by silencing with RNAi the larvae became hypersensitive to toxin action. In addition, we found that mosquito larvae displayed a resistant phenotype when the heat shock protein was silenced. These results provide insight into the molecular components influencing the defense to Cry toxin intoxication and facilitate further studies on the roles of identified genes. PMID:22615881

  18. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance.

    PubMed

    Wu, Chongde; Zhang, Juan; Chen, Wei; Wang, Miao; Du, Guocheng; Chen, Jian

    2012-01-01

    Lactobacillus casei has traditionally been recognized as a probiotic and frequently used as an adjunct culture in fermented dairy products, where acid stress is an environmental condition commonly encountered. In the present study, we carried out a comparative physiological and proteomic study to investigate lactic-acid-induced alterations in Lactobacillus casei Zhang (WT) and its acid-resistant mutant. Analysis of the physiological data showed that the mutant exhibited 33.8% higher glucose phosphoenolpyruvate:sugar phosphotransferase system activity and lower glycolytic pH compared with the WT under acidic conditions. In addition, significant differences were detected in both cells during acid stress between intracellular physiological state, including intracellular pH, H(+)-ATPase activity, and intracellular ATP pool. Comparison of the proteomic data based on 2D-DIGE and i-TRAQ indicated that acid stress invoked a global change in both strains. The mutant protected the cells against acid damage by regulating the expression of key proteins involved in cellular metabolism, DNA replication, RNA synthesis, translation, and some chaperones. Proteome results were validated by Lactobacillus casei displaying higher intracellular aspartate and arginine levels, and the survival at pH 3.3 was improved 1.36- and 2.10-fold by the addition of 50-mM aspartate and arginine, respectively. To our knowledge, this is the first demonstration that aspartate may be involved in acid tolerance in Lactobacillus casei. Results presented here may help us understand acid resistance mechanisms and help formulate new strategies to enhance the industrial applications of this species. PMID:22159611

  19. Proteomic Analysis of Hair Follicles

    NASA Astrophysics Data System (ADS)

    Ishioka, Noriaki; Terada, Masahiro; Yamada, Shin; Seki, Masaya; Takahashi, Rika; Majima, Hideyuki J.; Higashibata, Akira; Mukai, Chiaki

    2013-02-01

    Hair root cells actively divide in a hair follicle, and they sensitively reflect physical conditions. By analyzing the human hair, we can know stress levels on the human body and metabolic conditions caused by microgravity environment and cosmic radiation. The Japan Aerospace Exploration Agency (JAXA) has initiated a human research study to investigate the effects of long-term space flight on gene expression and mineral metabolism by analyzing hair samples of astronauts who stayed in the International Space Station (ISS) for 6 months. During long-term flights, the physiological effects on astronauts include muscle atrophy and bone calcium loss. Furthermore, radiation and psychological effects are important issue to consider. Therefore, an understanding of the effects of the space environment is important for developing countermeasures against the effects experienced by astronauts. In this experiment, we identify functionally important target proteins that integrate transcriptome, mineral metabolism and proteome profiles from human hair. To compare the protein expression data with the gene expression data from hair roots, we developed the protein processing method. We extracted the protein from five strands of hair using ISOGEN reagents. Then, these extracted proteins were analyzed by LC-MS/MS. These collected profiles will give us useful physiological information to examine the effect of space flight.

  20. Proteomic analysis and discovery using affinity proteomics and mass spectrometry.

    PubMed

    Olsson, Niclas; Wingren, Christer; Mattsson, Mikael; James, Peter; O'Connell, David; Nilsson, Fredrik; Cahill, Dolores J; Borrebaeck, Carl A K

    2011-10-01

    Antibody-based microarrays are a rapidly evolving affinity-proteomic methodology that recently has shown great promise in clinical applications. The resolution of these proteomic analyses is, however, directly related to the number of data-points, i.e. antibodies, included on the array. Currently, this is a key bottleneck because of limited availability of numerous highly characterized antibodies. Here, we present a conceptually new method, denoted global proteome survey, opening up the possibility to probe any proteome in a species-independent manner while still using a limited set of antibodies. We use context-independent-motif-specific antibodies directed against short amino acid motifs, where each motif is present in up to a few hundred different proteins. First, the digested proteome is exposed to these antibodies, whereby motif-containing peptides are enriched, which then are detected and identified by mass spectrometry. In this study, we profiled extracts from human colon tissue, yeast cells lysate, and mouse liver tissue to demonstrate proof-of-concept.

  1. Glycocapture-based proteomics for secretome analysis.

    PubMed

    Lai, Zon W; Nice, Edouard C; Schilling, Oliver

    2013-02-01

    Protein glycosylation represents the most abundant extracellular posttranslational modification in multicellular organisms. These glycoproteins unequivocally comprise the major biomolecules involved in extracellular processes, such as growth factors, signaling proteins for cellular communication, enzymes, and proteases for on- and off-site processing. It is now known that altered protein glycosylation is a hallmark event in many different pathologies. Glycoproteins are found mostly in the so-called secretome, which comprises classically and nonclassically secreted proteins and protein fragments that are released from the cell surface through ectodomain shedding. Due to biological complexity and technical difficulty, comparably few studies have taken an in-depth investigation of cellular secretomes using system-wide approaches. The cellular secretomes are considered to be a valuable source of therapeutic targets and novel biomarkers. It is not surprising that many existing biomarkers, including biomarkers for breast, ovarian, prostate, and colorectal cancers are glycoproteins. Focused analysis of secreted glycoproteins could thus provide valuable information for early disease diagnosis, and surveillance. Furthermore, since most secreted proteins are glycosylated and glycosylation predominantly targets secreted proteins, the glycan/sugar moiety itself can be used as a chemical "handle" for the targeted analysis of cellular secretomes, thereby reducing sample complexity and allowing detection of low abundance proteins in proteomic workflows. This review will focus on various glycoprotein enrichment strategies that facilitate proteomics-based technologies for the quantitative analysis of cell secretomes and cell surface proteomes.

  2. Effects of cadmium exposure on the gill proteome of Cottus gobio: modulatory effects of prior thermal acclimation.

    PubMed

    Dorts, Jennifer; Kestemont, Patrick; Thézenas, Marie-Laetitia; Raes, Martine; Silvestre, Frédéric

    2014-09-01

    Temperature and trace metals are common environmental stressors, and their importance is increasing due to global climate change and anthropogenic pollution. The aim of the present study was to investigate whether acclimation to elevated temperature affects the response of the European bullhead (Cottus gobio) to subsequent cadmium (Cd) exposure by using enzymatic and proteomic approaches. Fish acclimated to 15 (standard temperature), 18 or 21 °C for 28 days were exposed to 1mg Cd/L for 4 days at the respective acclimation temperature. First, exposure to Cd significantly decreased the activity of the lactate dehydrogenase (LDH) in gills of fish acclimated to 15 or 18 °C. However, an acclimation to 21 °C suppressed the inhibitory effect of Cd. Second, using a proteomic analysis by 2D-DIGE, we observed that thermal acclimation was the first parameter affecting the protein expression profile in gills of C. gobio, while subsequent Cd exposure seemed to attenuate this temperature effect. Moreover, our results showed opposite effects of these two environmental stressors at protein expression level. From the 52 protein spots displaying significant interaction effects of temperature and Cd exposure, a total of 28 different proteins were identified using nano LC-MS/MS and the Peptide and Protein Prophet algorithms of Scaffold software. The identified differentially expressed proteins can be categorized into diverse functional classes, related to protein turnover, folding and chaperoning, metabolic process, ion transport, cell signaling and cytoskeleton. Within a same functional class, we further reported that several proteins displayed reverse responses following sequential exposure to heat and Cd. This work provides insights into the molecular pathways potentially involved in heat acclimation process and the interactive effects of temperature and Cd stress in ectothermic vertebrates.

  3. Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing

    PubMed Central

    Lendeckel, Derik; Eymann, Christine; Emicke, Philipp; Daeschlein, Georg; Darm, Katrin; O'Neil, Serena; Beule, Achim G.; von Woedtke, Thomas; Völker, Uwe; Weltmann, Klaus-Dieter; Jünger, Michael; Hosemann, Werner; Scharf, Christian

    2015-01-01

    Background. The worldwide increasing number of patients suffering from nonhealing wounds requires the development of new safe strategies for wound repair. Recent studies suggest the possibility of nonthermal (cold) plasma application for the acceleration of wound closure. Methods. An in vitro wound healing model with upper airway S9 epithelial cells was established to determine the macroscopically optimal dosage of tissue-tolerable plasma (TTP) for wound regeneration, while a 2D-difference gel electrophoresis (2D-DIGE) approach was used to quantify the proteomic changes in a hypothesis-free manner and to evaluate the balance of beneficial and adverse effects due to TTP application. Results. Plasma doses from 30 s up to 360 s were tested in relation to wound closure after 24 h, 48 h, 72 h, 96 h, and 120 h, in which lower doses (30, 60, and 120 s) resulted in dose-dependent improved wound healing rate compared to untreated cells. Thereby, the 120 s dose caused significantly the best wound healing properties after 96 and 120 h. The proteome analysis combined with IPA revealed that a lot of affected stress adaptation responses are linked to oxidative stress response emphasizing oxidative stress as a possible key event in the regeneration process of epithelial cells as well as in the adaptation to plasma exposure. Further cellular and molecular functions like proliferation and apoptosis were significantly up- or downregulated by all TTP treatments but mostly by the 120 s dose. Conclusions. For the first time, we were able to show plasma effects on cellular adaptation of upper airway epithelial S9 cells improving wound healing. This is of particular interest for plasma application, for example, in the surgery field of otorhinolaryngology or internal medicine. PMID:26539504

  4. Purification of specific loci for proteomic analysis

    PubMed Central

    Byrum, Stephanie D.; Taverna, Sean D.; Tackett, Alan J.

    2015-01-01

    Purification of small, native chromatin sections for proteomic identification of specifically bound proteins and histone posttranslational modifications is a powerful approach for studying mechanisms of chromosome metabolism. We detail a Chromatin Affinity Purification with Mass Spectrometry (ChAP-MS) approach for affinity purification of ~1 kb sections of chromatin for targeted proteomic analysis. This approach utilizes quantitative, high resolution mass spectrometry to categorize proteins and histone posttranslational modifications co-enriching with the given chromatin section as either “specific” to the targeted chromatin or “non-specific” contamination. In this way, the ChAP-MS approach can help define and re-define mechanisms of chromatin-templated activities. PMID:25311124

  5. Proteomic identification of alpha-2-HS-glycoprotein as a plasma biomarker of hypopharyngeal squamous cell carcinoma.

    PubMed

    Tian, Wen-Dong; Li, Jun-Zheng; Hu, Shui-Wang; Peng, Xiao-Wei; Li, Gang; Liu, Xiong; Chen, Huai-Hong; Xu, Xia; Li, Xiang-Ping

    2015-01-01

    Hypopharyngeal squamous cell carcinoma (HSCC) has very poor prognosis compared with other head and neck squamous cell carcinomas. Late-stage diagnosis of HSCC increases mortality. Therefore, more effective biomarkers for early diagnosis of HSCC are necessary. Unfortunately, appropriate biomarkers for clinical diagnosis and prognosis have not been identified yet. However, recent progresses in quantitative proteomics have offered opportunities to identify plasma proteins as biomarkers for HSCC. In the present study, plasma samples were analyzed by two-dimensional differential gel electrophoresis (2D-DIGE), and differentially expressed proteins were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS). A total of 26 proteins representing 12 unique gene products were identified. The up-regulation proteins were alpha-2-HS-glycoprotein (AHSG), complement C4-B, haptoglobin, C-reactive protein, and ceruloplasmin, whereas the down-regulation proteins were serum albumin, angiotensinogen, alpha-1-antichymotrypsin, Ig gamma-3 chain C region, fibrinogen gamma chain, apolipoprotein A-I, and Ig kappa chain C region. Among all the differentially expressed proteins, AHSG was validated by western blot and ELISA. The results were consistent with the data from 2D-DIGE, further suggesting that AHSG may be employed as a potential biomarker for the early diagnosis of HSCC. In summary, this study was the first to use 2D-DIGE and MALDI-TOF/TOF platform to identify the potential plasma biomarkers for HSCC. The plasma AHSG showed great potential for HSCC screening. PMID:26464644

  6. Proteomic identification of alpha-2-HS-glycoprotein as a plasma biomarker of hypopharyngeal squamous cell carcinoma

    PubMed Central

    Tian, Wen-Dong; Li, Jun-Zheng; Hu, Shui-Wang; Peng, Xiao-Wei; Li, Gang; Liu, Xiong; Chen, Huai-Hong; Xu, Xia; Li, Xiang-Ping

    2015-01-01

    Hypopharyngeal squamous cell carcinoma (HSCC) has very poor prognosis compared with other head and neck squamous cell carcinomas. Late-stage diagnosis of HSCC increases mortality. Therefore, more effective biomarkers for early diagnosis of HSCC are necessary. Unfortunately, appropriate biomarkers for clinical diagnosis and prognosis have not been identified yet. However, recent progresses in quantitative proteomics have offered opportunities to identify plasma proteins as biomarkers for HSCC. In the present study, plasma samples were analyzed by two-dimensional differential gel electrophoresis (2D-DIGE), and differentially expressed proteins were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS). A total of 26 proteins representing 12 unique gene products were identified. The up-regulation proteins were alpha-2-HS-glycoprotein (AHSG), complement C4-B, haptoglobin, C-reactive protein, and ceruloplasmin, whereas the down-regulation proteins were serum albumin, angiotensinogen, alpha-1-antichymotrypsin, Ig gamma-3 chain C region, fibrinogen gamma chain, apolipoprotein A-I, and Ig kappa chain C region. Among all the differentially expressed proteins, AHSG was validated by western blot and ELISA. The results were consistent with the data from 2D-DIGE, further suggesting that AHSG may be employed as a potential biomarker for the early diagnosis of HSCC. In summary, this study was the first to use 2D-DIGE and MALDI-TOF/TOF platform to identify the potential plasma biomarkers for HSCC. The plasma AHSG showed great potential for HSCC screening. PMID:26464644

  7. Proteomic analysis of SETD6 interacting proteins

    PubMed Central

    Cohn, Ofir; Chen, Ayelet; Feldman, Michal; Levy, Dan

    2016-01-01

    SETD6 (SET-domain-containing protein 6) is a mono-methyltransferase that has been shown to methylate RelA and H2AZ. Using a proteomic approach we recently identified several new SETD6 substrates. To identify novel SETD6 interacting proteins, SETD6 was immunoprecipitated (IP) from Human erythromyeloblastoid leukemia K562 cells. SETD6 binding proteins were subjected to mass-spectrometry analysis resulting in 115 new SETD6 binding candidates. STRING database was used to map the SETD6 interactome network. Network enrichment analysis of biological processes with Gene Ontology (GO) database, identified three major groups; metabolic processes, muscle contraction and protein folding. PMID:26937450

  8. Data from proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis.

    PubMed

    Yang, Yongxin; Zheng, Nan; Zhao, Xiaowei; Zhang, Yangdong; Han, Rongwei; Ma, Lu; Zhao, Shengguo; Li, Songli; Guo, Tongjun; Wang, Jiaqi

    2015-06-01

    Milk fat globules memebrane (MFGM)-enriched proteomes from Holstein, Jersey, yak, buffalo, goat, camel, horse, and human were extracted and identified by an iTRAQ quantification proteomic approach. Proteomes data were analyzed by bioinformatic and multivariate statistical analysis and used to present the characteristic traits of the MFGM proteins among the studied mammals. The data of this study are also related to the research article "Proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis" in the Journal of Proteomics [1]. PMID:26217709

  9. Characterization of the Mouse Brain Proteome Using Global Proteomic Analysis Complemented with Cysteinyl-Peptide Enrichment

    PubMed Central

    Wang, Haixing; Qian, Wei-Jun; Chin, Mark H.; Petyuk, Vladislav A.; Barry, Richard C.; Liu, Tao; Gritsenko, Marina A.; Mottaz, Heather M.; Moore, Ronald J.; Camp, David G.; Khan, Arshad H.; Smith, Desmond J.; Smith, Richard D.

    2007-01-01

    Given the growing interest in applying genomic and proteomic approaches for studying the mammalian brain using mouse models, we hereby present a global proteomic approach for analyzing brain tissue and for the first time a comprehensive characterization of the whole mouse brain proteome. Preparation of the whole brain sample incorporated a highly efficient cysteinyl-peptide enrichment (CPE) technique to complement a global enzymatic digestion method. Both the global and the cysteinyl-enriched peptide samples were analyzed by SCX fractionation coupled with reversed phase LC-MS/MS analysis. A total of 48,328 different peptides were confidently identified (>98% confidence level), covering 7792 non-redundant proteins (∼34% of the predicted mouse proteome). 1564 and 1859 proteins were identified exclusively from the cysteinyl-peptide and the global peptide samples, respectively, corresponding to 25% and 31% improvements in proteome coverage compared to analysis of only the global peptide or cysteinyl-peptide samples. The identified proteins provide a broad representation of the mouse proteome with little bias evident due to protein pI, molecular weight, and/or cellular localization. Approximately 26% of the identified proteins with gene ontology (GO) annotations were membrane proteins, with 1447 proteins predicted to have transmembrane domains, and many of the membrane proteins were found to be involved in transport and cell signaling. The MS/MS spectrum count information for the identified proteins was used to provide a measure of relative protein abundances. The mouse brain peptide/protein database generated from this study represents the most comprehensive proteome coverage for the mammalian brain to date, and the basis for future quantitative brain proteomic studies using mouse models. The proteomic approach presented here may have broad applications for rapid proteomic analyses of various mouse models of human brain diseases. PMID:16457602

  10. Analysis of temperature-mediated changes in the wine yeast Saccharomyces bayanus var uvarum. An oenological study of how the protein content influences wine quality.

    PubMed

    Muñoz-Bernal, Eugenia; Deery, Michael J; Rodríguez, María Esther; Cantoral, Jesús M; Howard, Julie; Feret, Renata; Natera, Ramón; Lilley, Kathryn S; Fernández-Acero, Francisco Javier

    2016-02-01

    Saccharomyces bayanus var. uvarum plays an important role in the fermentation of red wine from the D.O. Ribera del Duero. This is due to the special organoleptic taste that this yeast gives the wines and their ability to ferment at low temperature. To determine the molecular factors involved in the fermentation process at low temperature, a differential proteomic approach was performed by using 2D-DIGE, comparing, qualitatively and quantitatively, the profiles obtained at 13 and 25°C. A total of 152 protein spots were identified. We detected proteins upregulated at 13°C that were shown to be related to temperature stress, the production of aromatic compounds involved in the metabolism of amino acids, and the production of fusel alcohols and their derivatives, each of which is directly related to the quality of the wines. To check the temperature effects, an aromatic analysis by GC-MS was performed. The proteomic and "aromatomic" results are discussed in relation to the oenological properties of S. bayanus var. uvarum. PMID:26621492

  11. Transcriptomic and Proteomic Profiling of Anabaena sp. Strain 90 under Inorganic Phosphorus Stress.

    PubMed

    Teikari, Jonna; Österholm, Julia; Kopf, Matthias; Battchikova, Natalia; Wahlsten, Matti; Aro, Eva-Mari; Hess, Wolfgang R; Sivonen, Kaarina

    2015-08-01

    Inorganic phosphorus (Pi) is one of the main growth-limiting factors of diazotrophic cyanobacteria. Due to human activity, the availability of Pi has increased in water bodies, resulting in eutrophication and the formation of massive cyanobacterial blooms. In this study, we examined the molecular responses of the cyanobacterium Anabaena sp. strain 90 to phosphorus deprivation, aiming at the identification of candidate genes to monitor the Pi status in cyanobacteria. Furthermore, this study increased the basic understanding of how phosphorus affects diazotrophic and bloom-forming cyanobacteria as a major growth-limiting factor. Based on RNA sequencing data, we identified 246 differentially expressed genes after phosphorus starvation and 823 differentially expressed genes after prolonged Pi limitation, most of them related to central metabolism and cellular growth. The transcripts of the genes related to phosphorus transport and assimilation (pho regulon) were most upregulated during phosphorus depletion. One of the most increased transcripts encodes a giant protein of 1,869 amino acid residues, which contains, among others, a phytase-like domain. Our findings predict its crucial role in phosphorus starvation, but future studies are still needed. Using two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found 43 proteins that were differentially expressed after prolonged phosphorus stress. However, correlation analysis unraveled an association only to some extent between the transcriptomic and proteomic abundances. Based on the present results, we suggest that the method used for monitoring the Pi status in cyanobacterial bloom should contain wider combinations of pho regulon genes (e.g., PstABCS transport systems) in addition to the commonly used alkaline phosphatase gene alone.

  12. Transcriptomic and Proteomic Profiling of Anabaena sp. Strain 90 under Inorganic Phosphorus Stress

    PubMed Central

    Teikari, Jonna; Österholm, Julia; Kopf, Matthias; Battchikova, Natalia; Wahlsten, Matti; Aro, Eva-Mari; Hess, Wolfgang R.

    2015-01-01

    Inorganic phosphorus (Pi) is one of the main growth-limiting factors of diazotrophic cyanobacteria. Due to human activity, the availability of Pi has increased in water bodies, resulting in eutrophication and the formation of massive cyanobacterial blooms. In this study, we examined the molecular responses of the cyanobacterium Anabaena sp. strain 90 to phosphorus deprivation, aiming at the identification of candidate genes to monitor the Pi status in cyanobacteria. Furthermore, this study increased the basic understanding of how phosphorus affects diazotrophic and bloom-forming cyanobacteria as a major growth-limiting factor. Based on RNA sequencing data, we identified 246 differentially expressed genes after phosphorus starvation and 823 differentially expressed genes after prolonged Pi limitation, most of them related to central metabolism and cellular growth. The transcripts of the genes related to phosphorus transport and assimilation (pho regulon) were most upregulated during phosphorus depletion. One of the most increased transcripts encodes a giant protein of 1,869 amino acid residues, which contains, among others, a phytase-like domain. Our findings predict its crucial role in phosphorus starvation, but future studies are still needed. Using two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found 43 proteins that were differentially expressed after prolonged phosphorus stress. However, correlation analysis unraveled an association only to some extent between the transcriptomic and proteomic abundances. Based on the present results, we suggest that the method used for monitoring the Pi status in cyanobacterial bloom should contain wider combinations of pho regulon genes (e.g., PstABCS transport systems) in addition to the commonly used alkaline phosphatase gene alone. PMID:26025890

  13. Subcellular proteomic analysis of host-pathogen interactions using human monocytes exposed to Yersinia pestis and Yersinia pseudotuberculosis

    SciTech Connect

    Zhang, C G; Gonzales, A D; Choi, M W; Chromy, B A; Fitch, J P; McCutchen-Maloney, S L

    2004-05-20

    Yersinia pestis, the etiological agent of plague, is of concern to human health both from an infectious disease and a civilian biodefense perspective. While Y. pestis and Y. pseudotuberculosis share more than 90% DNA homology, they have significantly different clinical manifestations. Plague is often fatal if untreated, yet Y. pseudotuberculosis causes severe intestinal distress and is rarely fatal. A better understanding of host response to these closely related pathogens may help explain the different mechanisms of virulence and pathogenesis that result in such different clinical outcomes. The aim of this study was to characterize host protein expression changes in human monocyte-like U937 cells after exposure to Y. pestis and Y. pseudotuberculosis. In order to gain global proteomic coverage of host response, proteins from cytoplasmic, nuclear and membrane fractions of host cells were studied by 2-dimensional differential gel electrophoresis (2-D DIGE) and relative protein expression differences were quantitated. Differentially expressed proteins, with at least 1.5 fold expression changes and p values of 0.01 or less, were identified by MALDI-MS or LC/MS/MS. With these criteria, differential expression was detected in 16 human proteins after Y. pestis exposure and 13 human proteins after Y. pseudotuberculosis exposure, of which only two of the differentially expressed proteins identified were shared between the two exposures. Proteins identified in this study are reported to be involved in a wide spectrum of cellular functions and host defense mechanisms including apoptosis, cytoskeletal rearrangement, protein synthesis and degradation, DNA replication and transcription, metabolism, protein folding, and cell signaling. Notably, the differential expression patterns observed can distinguish the two pathogen exposures from each other and from unexposed host cells. The functions of the differentially expressed proteins identified provide insight on the different

  14. Advances in urinary proteome analysis and biomarker discovery.

    PubMed

    Fliser, Danilo; Novak, Jan; Thongboonkerd, Visith; Argilés, Angel; Jankowski, Vera; Girolami, Mark A; Jankowski, Joachim; Mischak, Harald

    2007-04-01

    Noninvasive diagnosis of kidney diseases and assessment of the prognosis are still challenges in clinical nephrology. Definition of biomarkers on the basis of proteome analysis, especially of the urine, has advanced recently and may provide new tools to solve those challenges. This article highlights the most promising technological approaches toward deciphering the human proteome and applications of the knowledge in clinical nephrology, with emphasis on the urinary proteome. The data in the current literature indicate that although a thorough investigation of the entire urinary proteome is still a distant goal, clinical applications are already available. Progress in the analysis of human proteome in health and disease will depend more on the standardization of data and availability of suitable bioinformatics and software solutions than on new technological advances. It is predicted that proteomics will play an important role in clinical nephrology in the very near future and that this progress will require interactive dialogue and collaboration between clinicians and analytical specialists.

  15. Proteomic Analysis of Alzheimer’s Disease Cerebrospinal Fluid from Neuropathologically Diagnosed Subjects

    PubMed Central

    Maarouf, Chera L.; Andacht, Tracy M.; Kokjohn, Tyler A.; Castaño, Eduardo M.; Sue, Lucia I.; Beach, Thomas G.; Roher, Alex E.

    2010-01-01

    A crucial need exists for reliable Alzheimer’s disease (AD) diagnostic and prognostic tests. Given its intimate communication with the brain, the cerebrospinal fluid (CSF) has been surveyed intensively for reliable AD biomarkers. The heterogeneity of AD pathology and the unavoidable difficulties associated with the clinical diagnosis and differentiation of this dementia from other pathologies have confounded biomarker studies in antemortem CSF samples. Using postmortem ventricular CSF (V-CSF) pools, two-dimensional difference gel electrophoresis (2D DIGE) analyses revealed a set of proteins that showed significant differences between neuropathologically-diagnosed AD and elderly non-demented controls (NDC), as well as subjects with non-AD dementias. The 2D DIGE system identified a set of 21 different protein biomarkers. This panel of proteins probably reflects fundamental pathological changes that are divergent from both normal aging and non-AD dementias. PMID:19689240

  16. Quantitative Proteomics Analysis of Leukemia Cells.

    PubMed

    Halbach, Sebastian; Dengjel, Jörn; Brummer, Tilman

    2016-01-01

    Chronic myeloid leukemia (CML) is driven by the oncogenic fusion kinase Bcr-Abl, which organizes its own signaling network with various proteins. These proteins, their interactions, and their role in relevant signaling pathways can be analyzed by quantitative mass spectrometry (MS) approaches in various models systems, e.g., in cell culture models. In this chapter, we describe in detail immunoprecipitations and quantitative proteomics analysis using stable isotope labeling by amino acids in cell culture (SILAC) of components of the Bcr-Abl signaling pathway in the human CML cell line K562. PMID:27581145

  17. Proteome Analysis of Human Aqueous Humor

    PubMed Central

    Chowdhury, Uttio Roy; Madden, Benjamin J.; Charlesworth, Mary Christine

    2010-01-01

    Purpose. Human aqueous humor (hAH) provides nutrition and immunity within the anterior chamber of the eye. Characterization of the protein composition of hAH will identify molecules involved in maintaining a homeostatic environment for anterior segment tissues. The present study was conducted to analyze the proteome of hAH. Methods. hAH samples obtained during elective cataract surgery were divided into three matched groups and immunodepleted of albumin, IgG, IgA, haploglobin, antitrypsin, and transferrin. Reduced and denatured proteins (20 μg) from each group were separated by gel electrophoresis. Thirty-three gel slices were excised from each of three gel lanes (n = 99), digested with trypsin, and subjected to nanoflow liquid chromatography electrospray ionization tandem mass spectrometry (nano-LC-ESI-MS/MS). The protein component of hAH was also analyzed by antibody-based protein arrays, and selected proteins were quantified. Results. A total of 676 proteins were identified in hAH. Of the 355 proteins identified by nano-LC-ESI-MS/MS, 206 were found in all three groups. Most of the proteins identified by nano-LC-ESI-MS/MS had catalytic, enzymatic, and structural properties. Using antibody-based protein arrays, 328 cytokines, chemokines, and receptors were identified. Most of the quantified proteins had concentrations that ranged between 0.1 and 2.5 ng/mL. Ten proteins were identified by both nano-LC-ESI-MS/MS and antibody protein arrays. Conclusions. Proteomic analysis of hAH identified 676 nonredundant proteins. More than 80% of these proteins are novel identifications. The elucidation of the aqueous proteome will establish a foundation for protein function analysis and identification of differentially expressed markers associated with diseases of the anterior segment. PMID:20463327

  18. Proteomic Responses of Switchgrass and Prairie Cordgrass to Senescence.

    PubMed

    Paudel, Bimal; Das, Aayudh; Tran, Michaellong; Boe, Arvid; Palmer, Nathan A; Sarath, Gautam; Gonzalez-Hernandez, Jose L; Rushton, Paul J; Rohila, Jai S

    2016-01-01

    Senescence in biofuel grasses is a critical issue because early senescence decreases potential biomass production by limiting aerial growth and development. 2-Dimensional, differential in-gel electrophoresis (2D-DIGE) followed by mass spectrometry of selected protein spots was used to evaluate differences between leaf proteomes of early (ES)- and late- senescing (LS) genotypes of Prairie cordgrass (ES/LS PCG) and switchgrass (ES/LS SG), just before and after senescence was initiated. Analysis of the manually filtered and statistically evaluated data indicated that 69 proteins were significantly differentially abundant across all comparisons, and a majority (41%) were associated with photosynthetic processes as determined by gene ontology analysis. Ten proteins were found in common between PCG and SG, and nine and 18 proteins were unique to PCG and SG respectively. Five of the 10 differentially abundant spots common to both species were increased in abundance, and five were decreased in abundance. Leaf proteomes of the LS genotypes of both grasses analyzed before senescence contained significantly higher abundances of a 14-3-3 like protein and a glutathione-S-transferase protein when compared to the ES genotypes, suggesting differential cellular metabolism in the LS vs. the ES genotypes. The higher abundance of 14-3-3 like proteins may be one factor that impacts the senescence process in both LS PCG and LS SG. Aconitase dehydratase was found in greater abundance in all four genotypes after the onset of senescence, consistent with literature reports from genetic and transcriptomic studies. A Rab protein of the Ras family of G proteins and an s-adenosylmethionine synthase were more abundant in ES PCG when compared with the LS PCG. In contrast, several proteins associated with photosynthesis and carbon assimilation were detected in greater abundance in LS PCG when compared to ES PCG, suggesting that a loss of these proteins potentially contributed to the ES phenotype

  19. Proteomic Responses of Switchgrass and Prairie Cordgrass to Senescence

    PubMed Central

    Paudel, Bimal; Das, Aayudh; Tran, Michaellong; Boe, Arvid; Palmer, Nathan A.; Sarath, Gautam; Gonzalez-Hernandez, Jose L.; Rushton, Paul J.; Rohila, Jai S.

    2016-01-01

    Senescence in biofuel grasses is a critical issue because early senescence decreases potential biomass production by limiting aerial growth and development. 2-Dimensional, differential in-gel electrophoresis (2D-DIGE) followed by mass spectrometry of selected protein spots was used to evaluate differences between leaf proteomes of early (ES)- and late- senescing (LS) genotypes of Prairie cordgrass (ES/LS PCG) and switchgrass (ES/LS SG), just before and after senescence was initiated. Analysis of the manually filtered and statistically evaluated data indicated that 69 proteins were significantly differentially abundant across all comparisons, and a majority (41%) were associated with photosynthetic processes as determined by gene ontology analysis. Ten proteins were found in common between PCG and SG, and nine and 18 proteins were unique to PCG and SG respectively. Five of the 10 differentially abundant spots common to both species were increased in abundance, and five were decreased in abundance. Leaf proteomes of the LS genotypes of both grasses analyzed before senescence contained significantly higher abundances of a 14-3-3 like protein and a glutathione-S-transferase protein when compared to the ES genotypes, suggesting differential cellular metabolism in the LS vs. the ES genotypes. The higher abundance of 14-3-3 like proteins may be one factor that impacts the senescence process in both LS PCG and LS SG. Aconitase dehydratase was found in greater abundance in all four genotypes after the onset of senescence, consistent with literature reports from genetic and transcriptomic studies. A Rab protein of the Ras family of G proteins and an s-adenosylmethionine synthase were more abundant in ES PCG when compared with the LS PCG. In contrast, several proteins associated with photosynthesis and carbon assimilation were detected in greater abundance in LS PCG when compared to ES PCG, suggesting that a loss of these proteins potentially contributed to the ES phenotype

  20. Proteomic analysis of apricot fruit during ripening.

    PubMed

    D'Ambrosio, Chiara; Arena, Simona; Rocco, Mariapina; Verrillo, Francesca; Novi, Gianfranco; Viscosi, Vincenzo; Marra, Mauro; Scaloni, Andrea

    2013-01-14

    Ripening of climacteric fruits involves a complex network of biochemical and metabolic changes that make them palatable and rich in nutritional and health-beneficial compounds. Since fruit maturation has a profound impact on human nutrition, it has been recently the object of increasing research activity by holistic approaches, especially on model species. Here we report on the original proteomic characterization of ripening in apricot, a widely cultivated species of temperate zones appreciated for its taste and aromas, whose cultivation is yet hampered by specific limitations. Fruits of Prunus armeniaca cv. Vesuviana were harvested at three ripening stages and proteins extracted and resolved by 1D and 2D electrophoresis. Whole lanes from 1D gels were subjected to shot-gun analysis that identified 245 gene products, showing preliminary qualitative differences between maturation stages. In parallel, differential analysis of 2D proteomic maps highlighted 106 spots as differentially represented among variably ripen fruits. Most of these were further identified by means of MALDI-TOF-PMF and nanoLC-ESI-LIT-MS/MS as enzymes involved in main biochemical processes influencing metabolic/structural changes occurring during maturation, i.e. organic acids, carbohydrates and energy metabolism, ethylene biosynthesis, cell wall restructuring and stress response, or as protein species linkable to peculiar fruit organoleptic characteristics. In addition to originally present preliminary information on the main biochemical changes that characterize apricot ripening, this study also provides indications for future marker-assisted selection breeding programs aimed to ameliorate fruit quality.

  1. Proteome analysis in the assessment of ageing.

    PubMed

    Nkuipou-Kenfack, Esther; Koeck, Thomas; Mischak, Harald; Pich, Andreas; Schanstra, Joost P; Zürbig, Petra; Schumacher, Björn

    2014-11-01

    Based on demographic trends, the societies in many developed countries are facing an increasing number and proportion of people over the age of 65. The raise in elderly populations along with improved health-care will be concomitant with an increased prevalence of ageing-associated chronic conditions like cardiovascular, renal, and respiratory diseases, arthritis, dementia, and diabetes mellitus. This is expected to pose unprecedented challenges both for individuals and societies and their health care systems. An ultimate goal of ageing research is therefore the understanding of physiological ageing and the achievement of 'healthy' ageing by decreasing age-related pathologies. However, on a molecular level, ageing is a complex multi-mechanistic process whose contributing factors may vary individually, partly overlap with pathological alterations, and are often poorly understood. Proteome analysis potentially allows modelling of these multifactorial processes. This review summarises recent proteomic research on age-related changes identified in animal models and human studies. We combined this information with pathway analysis to identify molecular mechanisms associated with ageing. We identified some molecular pathways that are affected in most or even all organs and others that are organ-specific. However, appropriately powered studies are needed to confirm these findings based in in silico evaluation. PMID:25257180

  2. Proteomics and the Analysis of Proteomic Data: 2013 Overview of Current Protein-Profiling Technologies

    PubMed Central

    Bruce, Can; Stone, Kathryn; Gulcicek, Erol; Williams, Kenneth

    2013-01-01

    Mass spectrometry has become a major tool in the study of proteomes. The analysis of proteolytic peptides and their fragment ions by this technique enables the identification and quantitation of the precursor proteins in a mixture. However, deducing chemical structures and then protein sequences from mass-to-charge ratios is a challenging computational task. Software tools incorporating powerful algorithms and statistical methods improved our ability to process the large quantities of proteomics data. Repositories of spectral data make both data analysis and experimental design more efficient. New approaches in quantitative and statistical proteomics make possible a greater coverage of the proteome, the identification of more post-translational modifications and a greater sensitivity in the quantitation of targeted proteins. PMID:23504934

  3. Proteomics analysis in lung cancer: challenges and opportunities.

    PubMed

    Kikuchi, Takefumi; Carbone, David P

    2007-01-01

    Recent technological developments in proteomic analysis are bringing us new insights into the molecular classification of tumours. Although proteomic analysis in cancer profiling is still under development both in terms of the instruments used and the data analytical tools, this method has great potential advantages for the analysis of biospecimens of many types. Direct measurement of abnormally expressed or modified proteins in the tumour tissue and/or patient blood may be an effective approach for discovering new biomarkers. Proteomics has the significant advantage of being able to discern not only changes in expression levels but also in post-translational modifications. Thus, the proteomics approach to protein profiling and biomarker discovery uncovers biomarkers from a different viewpoint than microarray analysis. This review summarizes the range of proteomics technologies employed for cancer profiling, and how they have been used to derive new classification models for human lung cancer.

  4. Proteomics analysis of human nonalcoholic fatty liver.

    PubMed

    Rodriguez-Suarez, Eva; Mato, Jose M; Elortza, Felix

    2012-01-01

    Nonalcoholic fatty liver disease (NAFLD) is being increasingly recognized as a major cause of liver-related morbidity and mortality. Given the increasing prevalence of obesity in western countries, NAFLD has become an important public health problem. The principal aim of this study was to find differences in protein expression between patients with NAFLD and healthy controls. Changes in protein expression of liver samples from controls, nonalcoholic steatosis, and nonalcoholic steatohepatitis (NASH) subjects were analyzed by two-dimensional differential in-gel electrophoresis (DIGE). With this proteomic technique, hundreds of proteins can be analyzed simultaneously and their relative abundance can be calculated. Proteins showing significant changes (ratio ≥ 1.5, p < 0.05) were identified by MALDI TOF/TOF mass spectrometry. Western blot of tissue homogenates was then used as a complementary method to validate protein expression changes observed by DIGE. With the aim to have a noninvasive approach to detect changes produced in NAFLD-affected liver, validated proteins were further tested in serum samples of different cohorts of patients. Following this approach, we identified two candidate markers CPS1 and GRP78 that were differentially expressed between control, steatosis, and NASH. This proteomics approach demonstrates that DIGE combined with MALDI TOF/TOF and Western blot analysis of tissue and serum samples is a useful approach to identify candidate markers associated with NAFLD.

  5. FunRich proteomics software analysis, let the fun begin!

    PubMed

    Benito-Martin, Alberto; Peinado, Héctor

    2015-08-01

    Protein MS analysis is the preferred method for unbiased protein identification. It is normally applied to a large number of both small-scale and high-throughput studies. However, user-friendly computational tools for protein analysis are still needed. In this issue, Mathivanan and colleagues (Proteomics 2015, 15, 2597-2601) report the development of FunRich software, an open-access software that facilitates the analysis of proteomics data, providing tools for functional enrichment and interaction network analysis of genes and proteins. FunRich is a reinterpretation of proteomic software, a standalone tool combining ease of use with customizable databases, free access, and graphical representations.

  6. Troglitazone-induced hepatic mitochondrial proteome expression dynamics in heterozygous Sod2{sup +/-} mice: Two-stage oxidative injury

    SciTech Connect

    Lee, Y.H. |; Chung, Maxey C.M. | Lin Qingsong; Boelsterli, Urs A. ||

    2008-08-15

    The determinants of susceptibility to troglitazone-induced idiosyncratic liver injury have not yet been determined; however, troglitazone has been shown to target mitochondria and induce mitochondria-mediated hepatocellular injury in vitro. The aim of this study was to use a systems approach to analyze the dynamics of mitochondrial changes at the proteome level and more clearly define the mechanisms and time course of troglitazone hepatotoxicity by using a previously characterized mouse model that is highly sensitized to troglitazone hepatotoxicity. Mice heterozygous in mitochondrial superoxide dismutase-2 (Sod2{sup +/-}) were injected intraperitoneally with troglitazone (30 mg/kg/day) or vehicle daily for 2 or 4 weeks. Hepatic mitochondria were isolated, purified, and subjected to two-dimensional difference gel electrophoresis (2D-DIGE). We found that among the {approx} 1500 resolved hepatic mitochondrial proteins, 70 exhibited significantly altered abundance after troglitazone treatment. MALDI-TOF/TOF MS/MS analysis revealed that early changes (2 weeks) included increased levels of heat shock protein family members (mortalin, HSP7C), Lon protease, and catalase, indicating induction of a mitochondrial stress response. In contrast, after 4 weeks, a number of critical proteins including ATP synthase {beta}-subunit, aconitase-2, and catalase exhibited decreased abundance, and total protein carbonyls were significantly increased, suggesting uncompensated oxidative damage. Aconitase-2 (ACO2) was decreased at both time points, making this protein a potential sensitive and early biomarker for mitochondrial oxidant stress. These results show that, in this murine model of underlying clinically silent mitochondrial stress, superimposed troglitazone induces a two-stage response: an initial adaptive response, followed by a toxic response involving oxidant injury to mitochondrial proteins.

  7. Identification of Metal Reductases using Proteomic Analysis

    SciTech Connect

    Lipton, Mary

    2006-06-01

    Central to the NABIR goal to develop the scientific basis for in situ remediation of radioactive contaminants is the fundamental understanding of microorganisms with dissimilatory metal reducing activity. In order to effectively exploit these bacteria, it is necessary to know which enzymes and pathways are involved. Additionally, it would be advantageous to understand the similarities and differences of these pathways across different bacteria for effective deployment in bioremediation, as well as to identify new microbes capable of such activities. Most approaches to identify these enzymes or enzyme complexes rely on biochemical purification to homogeneity with subsequent Nterminal sequencing of digested peptides. However, loss of activity before achieving purity often necessitates repetition of the entire process. Newly developed proteomics capabilities at PNNL allow for the identification of many proteins from a single sample through mass spectrometry analysis.

  8. Proteomic analysis of mature Lagenaria siceraria seed.

    PubMed

    Kumari, Neha; Tajmul, Md; Yadav, Savita

    2015-04-01

    Lagenaria siceraria (bottle gourd) class belongs to Magnoliopsida family curcurbitaceae that is a traditionally used medicinal plant. Fruit of this plant are widely used as a therapeutic vegetable in various diseases, all over the Asia and Africa. Various parts of this plant like fruit, seed, leaf and root are used as alternative medicine. In the present study, primarily, we have focused on proteomic analysis of L. siceraria seed using phenol extraction method for protein isolation. Twenty-four colloidal coomassie blue stained protein spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) after resolving on two-dimensional gel electrophoresis. Out of 24 identified protein spots, four were grouped as unidentified proteins which clearly suggest that less work has been done in the direction of plant seed proteomics. These proteins have been found to implicate in various functions such as biosynthesis of plant cell wall polysaccharides and glycoproteins, serine/threonine kinase activity, plant disease resistance and transferase activity against insects by means of insecticidal and larval growth inhibitory, anti-HIV, antihelmintic and antimicrobial properties. By Blast2GO annotation analysis, amongst the identified proteins of L. siceraria, molecular function for majority of proteins has indispensable role in catalytic activity, few in binding activity and antioxidant activity; it is mostly distributed in cell, organelle, membrane and macromolecular complex. Most of them involved in biological process such as metabolic process, cellular process, response to stimulus, single organism process, signalling, biological recognition, cellular component organization or biogenesis and localization. PMID:25672325

  9. A bioinformatics perspective on proteomics: data storage, analysis, and integration.

    PubMed

    Kremer, Andreas; Schneider, Reinhard; Terstappen, Georg C

    2005-01-01

    The field of proteomics is advancing rapidly as a result of powerful new technologies and proteomics experiments yield a vast and increasing amount of information. Data regarding protein occurrence, abundance, identity, sequence, structure, properties, and interactions need to be stored. Currently, a common standard has not yet been established and open access to results is needed for further development of robust analysis algorithms. Databases for proteomics will evolve from pure storage into knowledge resources, providing a repository for information (meta-data) which is mainly not stored in simple flat files. This review will shed light on recent steps towards the generation of a common standard in proteomics data storage and integration, but is not meant to be a comprehensive overview of all available databases and tools in the proteomics community.

  10. Global Proteome Analysis of Leptospira interrogans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative global proteome analyses were performed on Leptospira interrogans serovar Copenhageni grown under conventional in vitro conditions and those mimicking in vivo conditions (iron limitation and serum presence). Proteomic analyses were conducted using iTRAQ and LC-ESI-tandem mass spectrometr...

  11. Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana

    PubMed Central

    Mattei, Benedetta; Spinelli, Francesco; Pontiggia, Daniela; De Lorenzo, Giulia

    2016-01-01

    Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity. PMID:27532006

  12. Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana.

    PubMed

    Mattei, Benedetta; Spinelli, Francesco; Pontiggia, Daniela; De Lorenzo, Giulia

    2016-01-01

    Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity. PMID:27532006

  13. Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana.

    PubMed

    Mattei, Benedetta; Spinelli, Francesco; Pontiggia, Daniela; De Lorenzo, Giulia

    2016-01-01

    Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity.

  14. Full-length protein extraction protocols and gel-based downstream applications in formalin-fixed tissue proteomics.

    PubMed

    Tanca, Alessandro; Uzzau, Sergio; Addis, Maria Filippa

    2015-01-01

    Archival formalin-fixed, paraffin-embedded (FFPE) tissue repositories and their associated clinical information can represent a valuable resource for tissue proteomics. In order to make these tissues available for protein biomarker discovery and validation studies, dedicated sample preparation procedures overcoming the intermolecular cross-links introduced by formalin need to be implemented. This chapter describes a full-length protein extraction protocol optimized for downstream gel-based proteomics applications. Using the procedures detailed here, SDS-PAGE, western immunoblotting, GeLC-MS/MS, 2D-PAGE, and 2D-DIGE can be carried out on FFPE tissues. Technical tips, critical aspects, and drawbacks of the method are presented and discussed.

  15. Micro-proteomics with iterative data analysis: Proteome analysis in C. elegans at the single worm level.

    PubMed

    Bensaddek, Dalila; Narayan, Vikram; Nicolas, Armel; Murillo, Alejandro Brenes; Gartner, Anton; Kenyon, Cynthia J; Lamond, Angus I

    2016-02-01

    Proteomics studies typically analyze proteins at a population level, using extracts prepared from tens of thousands to millions of cells. The resulting measurements correspond to average values across the cell population and can mask considerable variation in protein expression and function between individual cells or organisms. Here, we report the development of micro-proteomics for the analysis of Caenorhabditis elegans, a eukaryote composed of 959 somatic cells and ∼1500 germ cells, measuring the worm proteome at a single organism level to a depth of ∼3000 proteins. This includes detection of proteins across a wide dynamic range of expression levels (>6 orders of magnitude), including many chromatin-associated factors involved in chromosome structure and gene regulation. We apply the micro-proteomics workflow to measure the global proteome response to heat-shock in individual nematodes. This shows variation between individual animals in the magnitude of proteome response following heat-shock, including variable induction of heat-shock proteins. The micro-proteomics pipeline thus facilitates the investigation of stochastic variation in protein expression between individuals within an isogenic population of C. elegans. All data described in this study are available online via the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd), an open access, searchable database resource. PMID:26552604

  16. Micro‐proteomics with iterative data analysis: Proteome analysis in C. elegans at the single worm level

    PubMed Central

    Bensaddek, Dalila; Narayan, Vikram; Nicolas, Armel; Brenes Murillo, Alejandro; Gartner, Anton; Kenyon, Cynthia J.

    2016-01-01

    Proteomics studies typically analyze proteins at a population level, using extracts prepared from tens of thousands to millions of cells. The resulting measurements correspond to average values across the cell population and can mask considerable variation in protein expression and function between individual cells or organisms. Here, we report the development of micro‐proteomics for the analysis of Caenorhabditis elegans, a eukaryote composed of 959 somatic cells and ∼1500 germ cells, measuring the worm proteome at a single organism level to a depth of ∼3000 proteins. This includes detection of proteins across a wide dynamic range of expression levels (>6 orders of magnitude), including many chromatin‐associated factors involved in chromosome structure and gene regulation. We apply the micro‐proteomics workflow to measure the global proteome response to heat‐shock in individual nematodes. This shows variation between individual animals in the magnitude of proteome response following heat‐shock, including variable induction of heat‐shock proteins. The micro‐proteomics pipeline thus facilitates the investigation of stochastic variation in protein expression between individuals within an isogenic population of C. elegans. All data described in this study are available online via the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd), an open access, searchable database resource. PMID:26552604

  17. Micro-proteomics with iterative data analysis: Proteome analysis in C. elegans at the single worm level.

    PubMed

    Bensaddek, Dalila; Narayan, Vikram; Nicolas, Armel; Murillo, Alejandro Brenes; Gartner, Anton; Kenyon, Cynthia J; Lamond, Angus I

    2016-02-01

    Proteomics studies typically analyze proteins at a population level, using extracts prepared from tens of thousands to millions of cells. The resulting measurements correspond to average values across the cell population and can mask considerable variation in protein expression and function between individual cells or organisms. Here, we report the development of micro-proteomics for the analysis of Caenorhabditis elegans, a eukaryote composed of 959 somatic cells and ∼1500 germ cells, measuring the worm proteome at a single organism level to a depth of ∼3000 proteins. This includes detection of proteins across a wide dynamic range of expression levels (>6 orders of magnitude), including many chromatin-associated factors involved in chromosome structure and gene regulation. We apply the micro-proteomics workflow to measure the global proteome response to heat-shock in individual nematodes. This shows variation between individual animals in the magnitude of proteome response following heat-shock, including variable induction of heat-shock proteins. The micro-proteomics pipeline thus facilitates the investigation of stochastic variation in protein expression between individuals within an isogenic population of C. elegans. All data described in this study are available online via the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd), an open access, searchable database resource.

  18. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii.

    PubMed

    Gérin, Stéphanie; Leprince, Pierre; Sluse, Francis E; Franck, Fabrice; Mathy, Grégory

    2016-01-01

    Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate), and inorganic nitrogen concentrations (nitrate and ammonium) in the culture medium. Statistical design of experiments (DOE) enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE). Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays) into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle, and protein metabolism). The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon, and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview of the

  19. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii.

    PubMed

    Gérin, Stéphanie; Leprince, Pierre; Sluse, Francis E; Franck, Fabrice; Mathy, Grégory

    2016-01-01

    Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate), and inorganic nitrogen concentrations (nitrate and ammonium) in the culture medium. Statistical design of experiments (DOE) enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE). Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays) into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle, and protein metabolism). The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon, and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview of the

  20. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii

    PubMed Central

    Gérin, Stéphanie; Leprince, Pierre; Sluse, Francis E.; Franck, Fabrice; Mathy, Grégory

    2016-01-01

    Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate), and inorganic nitrogen concentrations (nitrate and ammonium) in the culture medium. Statistical design of experiments (DOE) enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE). Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays) into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle, and protein metabolism). The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon, and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview of the

  1. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.

    PubMed

    Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774

  2. Proteome-Wide Analysis and Diel Proteomic Profiling of the Cyanobacterium Arthrospira platensis PCC 8005

    PubMed Central

    Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774

  3. Analysis of soybean seed proteins using proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This editorial elaborates on investigations consisting of different proteomics technologies and their application to biological sciences. In addition, different classes of soybean seed proteins are discussed. This information will be useful to scientists in obtaining a greater understanding of the...

  4. Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium

    SciTech Connect

    Ellis, Matthew; Gillette, Michael; Carr, Steven A.; Paulovich, Amanda G.; Smith, Richard D.; Rodland, Karin D.; Townsend, Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel

    2013-10-03

    The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verifi cation using targeted mass spectrometry methods.

  5. Nanobiocatalysis for protein digestion in proteomic analysis

    SciTech Connect

    Kim, Jungbae; Kim, Byoung Chan; Lopez-Ferrer, Daniel; Petritis, Konstantinos; Smith, Richard D.

    2010-02-01

    The process of protein digestion is a critical step for successful protein identification in the bottom-up proteomic analysis. To substitute the present practice of in-solution protein digestion, which is long, tedious, and difficult to automate, a lot of efforts have been dedicated for the development of a rapid, recyclable and automated digestion system. Recent advances of nanobiocatalytic approaches have improved the performance of protein digestion by using various nanomaterials such as nanoporous materials, magnetic nanoparticles, and polymer nanofibers. Especially, the unprecedented success of trypsin stabilization in the form of trypsin-coated nanofibers, showing no activity decrease under repeated uses for one year and retaining good resistance to proteolysis, has demonstrated its great potential to be employed in the development of automated, high-throughput, and on-line digestion systems. This review discusses recent developments of nanobiocatalytic approaches for the improved performance of protein digestion in speed, detection sensitivity, recyclability, and trypsin stability. In addition, we also introduce the protein digestions under unconventional energy inputs for protein denaturation and the development of microfluidic enzyme reactors that can benefit from recent successes of these nanobiocatalytic approaches.

  6. Proteomic Analysis of the Schistosoma mansoni Miracidium.

    PubMed

    Wang, Tianfang; Zhao, Min; Rotgans, Bronwyn A; Strong, April; Liang, Di; Ni, Guoying; Limpanont, Yanin; Ramasoota, Pongrama; McManus, Donald P; Cummins, Scott F

    2016-01-01

    Despite extensive control efforts, schistosomiasis continues to be a major public health problem in developing nations in the tropics and sub-tropics. The miracidium, along with the cercaria, both of which are water-borne and free-living, are the only two stages in the life-cycle of Schistosoma mansoni which are involved in host invasion. Miracidia penetrate intermediate host snails and develop into sporocysts, which lead to cercariae that can infect humans. Infection of the snail host by the miracidium represents an ideal point at which to interrupt the parasite's life-cycle. This research focuses on an analysis of the miracidium proteome, including those proteins that are secreted. We have identified a repertoire of proteins in the S. mansoni miracidium at 2 hours post-hatch, including proteases, venom allergen-like proteins, receptors and HSP70, which might play roles in snail-parasite interplay. Proteins involved in energy production and conservation were prevalent, as were proteins predicted to be associated with defence. This study also provides a strong foundation for further understanding the roles that neurohormones play in host-seeking by schistosomes, with the potential for development of novel anthelmintics that interfere with its various life-cycle stages. PMID:26799066

  7. Proteomic analysis of bovine skeletal muscle hypertrophy.

    PubMed

    Bouley, Julien; Meunier, Bruno; Chambon, Christophe; De Smet, Stefaan; Hocquette, Jean François; Picard, Brigitte

    2005-02-01

    Myostatin plays a major role in muscle growth and development and animals with disruption of this gene display marked increases in muscle mass. Little is known about muscle physiological adaptations in relation to this muscle hypertrophy. To provide a more comprehensive view, we analyzed bovine muscles from control, heterozygote and homozygote young Belgian blue bulls for myostatin deletion, which results in a normal level of inactive myostatin. Heterozygote and homozygote animals were characterized by a higher proportion of fast-twitch glycolytic fibers in Semitendinosus muscle. Differential proteomic analysis of this muscle was performed using two-dimensional gel electrophoresis followed by mass spectrometry. Thirteen proteins, corresponding to 28 protein spots, were significantly altered in response to the myostatin deletion. The observed changes in protein expression are consistent with an increased fast muscle phenotype, suggesting that myostatin negatively controls mainly fast-twitch glycolytic fiber number. Finally, we demonstrated that differential mRNA splicing of fast troponin T is altered by the loss of myostatin function. The structure of mutually exclusive exon 16 appears predominantly expressed in muscles from heterozygote and homozygote animals. This suggests a role for exon 16 of fast troponin T in the physiological adaptation of the fast muscle phenotype.

  8. Proteomic Analysis of the Schistosoma mansoni Miracidium

    PubMed Central

    Wang, Tianfang; Zhao, Min; Rotgans, Bronwyn A.; Strong, April; Liang, Di; Ni, Guoying; Limpanont, Yanin; Ramasoota, Pongrama; McManus, Donald P.; Cummins, Scott F.

    2016-01-01

    Despite extensive control efforts, schistosomiasis continues to be a major public health problem in developing nations in the tropics and sub-tropics. The miracidium, along with the cercaria, both of which are water-borne and free-living, are the only two stages in the life-cycle of Schistosoma mansoni which are involved in host invasion. Miracidia penetrate intermediate host snails and develop into sporocysts, which lead to cercariae that can infect humans. Infection of the snail host by the miracidium represents an ideal point at which to interrupt the parasite’s life-cycle. This research focuses on an analysis of the miracidium proteome, including those proteins that are secreted. We have identified a repertoire of proteins in the S. mansoni miracidium at 2 hours post-hatch, including proteases, venom allergen-like proteins, receptors and HSP70, which might play roles in snail-parasite interplay. Proteins involved in energy production and conservation were prevalent, as were proteins predicted to be associated with defence. This study also provides a strong foundation for further understanding the roles that neurohormones play in host-seeking by schistosomes, with the potential for development of novel anthelmintics that interfere with its various life-cycle stages. PMID:26799066

  9. Current advances in proteomic analysis of (fatty) liver.

    PubMed

    Molette, C; Théron, L; Marty-Gasset, N; Fernandez, X; Rémignon, H

    2012-07-19

    In this review, an overview on proteomic studies conducted in livers of farm animals is conducted with a special focus on liver steatosis in waterfowl. Several studies had interest in understanding liver metabolism in dairy cows under various conditions (e.g. fasting) or the evolution of liver proteome during embryonic phases or growing periods in chicken. Those studies provide interesting results leading to a better understanding of the liver metabolism. Liver steatosis development in waterfowl represents a special case and a focus on proteomic studies conducted in these birds will be done. Indeed, recent studies aimed at resolving protein evolution during overfeeding in duck. Proteomic analysis combining two complementary approaches (2-dimensional electrophoresis gels and shot gun strategy) in order to better understand the mechanisms underlying the variability of cooking yield of fatty liver will be presented.

  10. A Straightforward and Highly Efficient Precipitation/On-pellet Digestion Procedure Coupled to a Long Gradient Nano-LC Separation and Orbitrap Mass Spectrometry for Label-free Expression Profiling of the Swine Heart Mitochondrial Proteome

    PubMed Central

    Duan, Xiaotao; Young, Rebecca; Straubinger, Robert M.; Page, Brian J.; Cao, Jin; Wang, Hao; Yu, Haoying; Canty, John M.; Qu, Jun

    2009-01-01

    mitochondrial proteomes of myocardium from healthy animals vs. those with hibernating myocardium. Each experimental group consisted of a relatively large number of animals (n=10), and samples were analyzed in random order to minimize quantitative false-positives. Using this approach, 904 proteins were identified and quantified with high confidence, and those mitochondrial proteins that were altered significantly between groups were compared with the results of a parallel 2D-DIGE analysis. The sample preparation and analytical strategy developed here represents an advancement that can be adapted to analyze other tissue proteomes. PMID:19290621

  11. Proteomic analyses of age related changes in A.BY/SnJ mouse hearts

    PubMed Central

    2013-01-01

    Background A.BY/SnJ mice are used to study pathological alterations in the heart due to enteroviral infections. Since age is a well-known factor influencing the susceptibility of mice to infection, response to stress and manifestation of cardiovascular diseases, the myocardial proteome of A.BY/SnJ mice aged 1 and 4 months was comparatively studied using two dimensional-differential in-gel electrophoresis (2D-DIGE) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Results Complementary analyses by 2D-DIGE and gel-free LC-MS/MS revealed 96 distinct proteins displaying age associated alterations in their levels. Proteins related to protein transport, and transport chain, lipid metabolism and fatty acid transport showed significant changes in 4 months old mouse hearts compared to juvenile hearts. Proteins involved in lipid metabolism and transport were identified at significantly higher levels in older mice and dysregulation of proteins of the respiratory transport chain were observed. Conclusion The current proteomics study discloses age dependent changes occurring in the hearts already in young mice of the strain A.BY/SnJ. Besides alterations in protein transport, we provide evidence that a decrease of ATP synthase in murine hearts starts already in the first months of life, leading to well-known low expression levels manifested in old mice thereby raising the possibility of reduced energy supply. In the first few months of murine life this seems to be compensated by an increased lipid metabolism. The functional alterations described should be considered during experimental setups in disease related studies. PMID:23816347

  12. An automated proteomic data analysis workflow for mass spectrometry

    PubMed Central

    2009-01-01

    Background Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic analyses generate huge datasets which need to be integrated and quantitatively analyzed. The Sequest™ search algorithm is a commonly used algorithm for identifying peptides and proteins from two dimensional liquid chromatography electrospray ionization tandem mass spectrometry (2-D LC ESI MS2) data. A number of proteomic pipelines that facilitate high throughput 'post data acquisition analysis' are described in the literature. However, these pipelines need to be updated to accommodate the rapidly evolving data analysis methods. Here, we describe a proteomic data analysis pipeline that specifically addresses two main issues pertinent to protein identification and differential expression analysis: 1) estimation of the probability of peptide and protein identifications and 2) non-parametric statistics for protein differential expression analysis. Our proteomic analysis workflow analyzes replicate datasets from a single experimental paradigm to generate a list of identified proteins with their probabilities and significant changes in protein expression using parametric and non-parametric statistics. Results The input for our workflow is Bioworks™ 3.2 Sequest (or a later version, including cluster) output in XML format. We use a decoy database approach to assign probability to peptide identifications. The user has the option to select "quality thresholds" on peptide identifications based on the P value. We also estimate probability for protein identification. Proteins identified with peptides at a user-specified threshold value from biological experiments are grouped as either control or treatment for further analysis in ProtQuant. ProtQuant utilizes a parametric (ANOVA) method, for calculating differences in protein expression based on the quantitative measure ΣXcorr. Alternatively Prot

  13. Preprocessing and Analysis of LC-MS-Based Proteomic Data.

    PubMed

    Tsai, Tsung-Heng; Wang, Minkun; Ressom, Habtom W

    2016-01-01

    Liquid chromatography coupled with mass spectrometry (LC-MS) has been widely used for profiling protein expression levels. This chapter is focused on LC-MS data preprocessing, which is a crucial step in the analysis of LC-MS based proteomics. We provide a high-level overview, highlight associated challenges, and present a step-by-step example for analysis of data from LC-MS based untargeted proteomic study. Furthermore, key procedures and relevant issues with the subsequent analysis by multiple reaction monitoring (MRM) are discussed.

  14. Combined Transcriptome and Proteome Analysis of Bifidobacterium animalis subsp. lactis BB-12 Grown on Xylo-Oligosaccharides and a Model of Their Utilization▿ †

    PubMed Central

    Gilad, Ofir; Jacobsen, Susanne; Stuer-Lauridsen, Birgitte; Pedersen, Martin Bastian; Garrigues, Christel; Svensson, Birte

    2010-01-01

    Recent studies have demonstrated that xylo-oligosaccharides (XOS), which are classified as emerging prebiotics, selectively enhance the growth of bifidobacteria in general and of Bifidobacterium animalis subsp. lactis strains in particular. To elucidate the metabolism of XOS in the well-documented and widely used probiotic strain B. animalis subsp. lactis BB-12, a combined proteomic and transcriptomic approach was applied, involving DNA microarrays, real-time quantitative PCR (qPCR), and two-dimensional difference gel electrophoresis (2D-DIGE) analyses of samples obtained from cultures grown on either XOS or glucose. The analyses show that 9 of the 10 genes that encode proteins predicted to play a role in XOS catabolism (i.e., XOS-degrading and -metabolizing enzymes, transport proteins, and a regulatory protein) were induced by XOS at the transcriptional level, and the proteins encoded by three of these (β-d-xylosidase, sugar-binding protein, and xylose isomerase) showed higher abundance on XOS. Based on the obtained results, a model for the catabolism of XOS in BB-12 is suggested, according to which the strain utilizes an ABC (ATP-binding cassette) transport system (probably for oligosaccharides) to bind XOS on the cell surface and transport them into the cell. XOS are then degraded intracellularly through the action of xylanases and xylosidases to d-xylose, which is subsequently metabolized by the d-fructose-6-P shunt. The findings obtained in this study may have implications for the design of a synbiotic application containing BB-12 and the XOS used in the present study. PMID:20851982

  15. Shotgun Proteomic Analysis of Arabidopsis thaliana Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two shotgun tandem mass spectrometry proteomics approaches, Multidimensional Protein Identification Technology (MudPIT) and 1D-Gel-LC-MS/MS, were used to identify Arabidopsis thaliana leaf proteins. These methods utilize different protein/peptide separation strategies. Detergents not compatible wit...

  16. Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development.

    PubMed

    Fu, Qiang; Huang, Yulin; Wang, Zhiqiang; Chen, Fumei; Huang, Delun; Lu, Yangqing; Liang, Xianwei; Zhang, Ming

    2016-01-01

    Follicular fluid (FF) accumulates in the antrum of the ovarian follicle and provides the microenvironment for oocyte development. FF plays an important role in follicle growth and oocyte maturation. The FF provides a unique window to investigate the processes occurring during buffalo follicular development. The observed low quality of buffalo oocytes may arise from the poor follicular microenvironment. Investigating proteins found in buffalo FF (BFF) should provide insight into follicular development processes and provide further understanding of intra-follicular maturation and oocytes quality. Here, a proteomic-based approach was used to analyze the proteome of BFF. SDS-PAGE separation combined with mass spectrometry was used to generate the proteomic dataset. In total, 363 proteins were identified and classified by Gene Ontology terms. The proteins were assigned to 153 pathways, including signaling pathways. To evaluate difference in proteins expressed between BFF with different follicle size (small, <4 mm; and large, >8 mm), a quantitative proteomic analysis based on multi-dimensional liquid chromatography pre-fractionation tandem Orbitrap mass spectrometry identification was performed. Eleven differentially expressed proteins (six downregulated and five upregulated in large BFF) were identified and assigned to a variety of functional processes, including serine protease inhibition, oxidation protection and the complement cascade system. Three differentially expressed proteins, Vimentin, Peroxiredoxin-1 and SERPIND1, were verified by Western blotting, consistent with the quantitative proteomics results. Our datasets offers new information about proteins present in BFF and should facilitate the development of new biomarkers. These differentially expressed proteins illuminate the size-dependent protein changes in follicle microenvironment. PMID:27136540

  17. Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development

    PubMed Central

    Fu, Qiang; Huang, Yulin; Wang, Zhiqiang; Chen, Fumei; Huang, Delun; Lu, Yangqing; Liang, Xianwei; Zhang, Ming

    2016-01-01

    Follicular fluid (FF) accumulates in the antrum of the ovarian follicle and provides the microenvironment for oocyte development. FF plays an important role in follicle growth and oocyte maturation. The FF provides a unique window to investigate the processes occurring during buffalo follicular development. The observed low quality of buffalo oocytes may arise from the poor follicular microenvironment. Investigating proteins found in buffalo FF (BFF) should provide insight into follicular development processes and provide further understanding of intra-follicular maturation and oocytes quality. Here, a proteomic-based approach was used to analyze the proteome of BFF. SDS-PAGE separation combined with mass spectrometry was used to generate the proteomic dataset. In total, 363 proteins were identified and classified by Gene Ontology terms. The proteins were assigned to 153 pathways, including signaling pathways. To evaluate difference in proteins expressed between BFF with different follicle size (small, <4 mm; and large, >8 mm), a quantitative proteomic analysis based on multi-dimensional liquid chromatography pre-fractionation tandem Orbitrap mass spectrometry identification was performed. Eleven differentially expressed proteins (six downregulated and five upregulated in large BFF) were identified and assigned to a variety of functional processes, including serine protease inhibition, oxidation protection and the complement cascade system. Three differentially expressed proteins, Vimentin, Peroxiredoxin-1 and SERPIND1, were verified by Western blotting, consistent with the quantitative proteomics results. Our datasets offers new information about proteins present in BFF and should facilitate the development of new biomarkers. These differentially expressed proteins illuminate the size-dependent protein changes in follicle microenvironment. PMID:27136540

  18. Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development.

    PubMed

    Fu, Qiang; Huang, Yulin; Wang, Zhiqiang; Chen, Fumei; Huang, Delun; Lu, Yangqing; Liang, Xianwei; Zhang, Ming

    2016-01-01

    Follicular fluid (FF) accumulates in the antrum of the ovarian follicle and provides the microenvironment for oocyte development. FF plays an important role in follicle growth and oocyte maturation. The FF provides a unique window to investigate the processes occurring during buffalo follicular development. The observed low quality of buffalo oocytes may arise from the poor follicular microenvironment. Investigating proteins found in buffalo FF (BFF) should provide insight into follicular development processes and provide further understanding of intra-follicular maturation and oocytes quality. Here, a proteomic-based approach was used to analyze the proteome of BFF. SDS-PAGE separation combined with mass spectrometry was used to generate the proteomic dataset. In total, 363 proteins were identified and classified by Gene Ontology terms. The proteins were assigned to 153 pathways, including signaling pathways. To evaluate difference in proteins expressed between BFF with different follicle size (small, <4 mm; and large, >8 mm), a quantitative proteomic analysis based on multi-dimensional liquid chromatography pre-fractionation tandem Orbitrap mass spectrometry identification was performed. Eleven differentially expressed proteins (six downregulated and five upregulated in large BFF) were identified and assigned to a variety of functional processes, including serine protease inhibition, oxidation protection and the complement cascade system. Three differentially expressed proteins, Vimentin, Peroxiredoxin-1 and SERPIND1, were verified by Western blotting, consistent with the quantitative proteomics results. Our datasets offers new information about proteins present in BFF and should facilitate the development of new biomarkers. These differentially expressed proteins illuminate the size-dependent protein changes in follicle microenvironment.

  19. PROTEOMIC ANALYSIS OF HUMAN BRONCHOALVEOLAR LAVAGE FLUID AFTER SUBSGEMENTAL EXPOSURE

    PubMed Central

    Foster, Matthew W.; Will Thompson, J.; Que, Loretta G.; Yang, Ivana V.; Schwartz, David A.; Arthur Moseley, M.; Marshall, Harvey E.

    2013-01-01

    The analysis of airway fluid, as sampled by bronchoalveolar lavage (BAL), provides a minimally invasive route to interrogate lung biology in health and disease. Here, we used immunodepletion, coupled with gel- and label-free LC-MS/MS, for quantitation of the BAL fluid (BALF) proteome in samples recovered from human subjects following bronchoscopic instillation of saline, lipopolysaccharide (LPS) or house dust mite antigen into three distinct lung subsegments. Among more than 200 unique proteins quantified across nine samples, neutrophil granule-derived and acute phase proteins were most highly enriched in the LPS-exposed lobes. Of these, peptidoglycan response protein 1 was validated and confirmed as a novel marker of neutrophilic inflammation. Compared to a prior transcriptomic analysis of airway cells in this same cohort, the BALF proteome revealed a novel set of response factors. Independent of exposure, the enrichment of tracheal-expressed proteins in right lower lung lobes suggests a potential for constitutive intralobar variability in the BALF proteome; sampling of multiple lung subsegments also appears to aid in the identification of protein signatures that differentiate individuals at baseline. Collectively, this proof-of-concept study validates a robust workflow for BALF proteomics and demonstrates the complementary nature of proteomic and genomic techniques for investigating airway (patho)physiology. PMID:23550723

  20. Large-scale proteomic analysis of membrane proteins.

    PubMed

    Ahram, Mamoun; Springer, David L

    2004-10-01

    Proteomic analysis of membrane proteins is a promising approach for the identification of novel drug targets and/or disease biomarkers. Despite notable technological developments, obstacles related to extraction and solublization of membrane proteins are encountered. A critical discussion of the different preparative methods of membrane proteins is offered in relation to downstream proteomic applications, mainly gel-based analyses and mass spectrometry. Frequently, unknown proteins are identified by high-throughput profiling of membrane proteins. In search for novel membrane proteins, analysis of protein sequences using computational tools is performed to predict the presence of transmembrane domains. This review also presents these bioinformatic tools with the human proteome as a case study. Along with technological innovations, advancements in the areas of sample preparation and computational prediction of membrane proteins will lead to exciting discoveries.

  1. Global analysis of Brucella melitensis proteomes.

    PubMed

    Mujer, Cesar V; Wagner, Mary Ann; Eschenbrenner, Michel; Horn, Troy; Kraycer, Jo Ann; Redkar, Rajendra; Hagius, Sue; Elzer, Philip; Delvecchio, Vito G

    2002-10-01

    Brucella melitensis is a facultative, intracellular, gram-negative cocco-bacillus that causes Malta fever in humans and brucellosis in animals. There are at least six species in the genus, and the disease is classified as zoonotic because several species infect humans. Using 2-D gel electrophoresis and mass spectrometry, we have initiated (i) a comprehensive mapping and identification of all the expressed proteins of B. melitensis virulent strain 16M, and (ii) a comparative study of its proteome with the attentuated vaccinal strain Rev 1. Comprehensive proteome maps of all six Brucella species will be generated in order to obtain vital information for vaccine development, identification of pathogenicity islands, and establishment of host specificity and evolutionary relatedness.

  2. Comparative study of transgenic and non-transgenic maize (Zea mays) flours commercialized in Brazil, focussing on proteomic analyses.

    PubMed

    Vidal, Nádia; Barbosa, Herbert; Jacob, Silvana; Arruda, Marco

    2015-08-01

    Genetically modified foods are a major concern around the world due to the lack of information concerning their safety and health effects. This work evaluates differences, at the proteomic level, between two types of crop samples: transgenic (MON810 event with the Cry1Ab gene, which confers resistance to insects) and non-transgenic maize flour commercialized in Brazil. The 2-D DIGE technique revealed 99 differentially expressed spots, which were collected in 2-D PAGE gels and identified via mass spectrometry (nESI-QTOF MS/MS). The abundance of protein differences between the transgenic and non-transgenic samples could arise from genetic modification or as a result of an environmental influence pertaining to the commercial sample. The major functional category of proteins identified was related to disease/defense and, although differences were observed between samples, no toxins or allergenic proteins were found.

  3. Dog Tear Film Proteome In-Depth Analysis

    PubMed Central

    Winiarczyk, Mateusz; Winiarczyk, Dagmara; Banach, Tomasz; Adaszek, Lukasz; Madany, Jacek; Mackiewicz, Jerzy; Pietras-Ozga, Dorota; Winiarczyk, Stanislaw

    2015-01-01

    In this study, mass spectrometry was used to explore the canine tear proteome. Tear samples were obtained from six healthy dogs, and one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (1D SDS-PAGE) was used as a first step to separate intact proteins into 17 bands. Each fraction was then trypsin digested and analysed by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS) to characterize the protein components in each fraction. In total, 125 tear proteins were identified, with MCA (Major Canine Allergen), Serum albumin, UPF0557 protein C10orf119 homolog, Collagen alpha-2(I) chain, Tyrosine -protein kinase Fer, Keratine type II cytoskeletal, Beta-crystallin B2, Interleukin-6 and Desmin occuring as the most confident ones with the highest scores. The results showed that the proteomic strategy used in this study was successful in the analysis of the dog tear proteome. To the best of our knowledge, this study is the first to report the comprehensive proteome profile of tears from healthy dogs by 1D SDS PAGE and MALDI-TOF. Data are available via ProteomeXchange with identifier PXD003124. PMID:26701646

  4. Proteomic analysis of propiconazole responses in mouse liver: comparison of genomic and proteomic profiles.

    PubMed

    Ortiz, Pedro A; Bruno, Maribel E; Moore, Tanya; Nesnow, Stephen; Winnik, Witold; Ge, Yue

    2010-03-01

    We have performed for the first time a comprehensive profiling of changes in protein expression of soluble proteins in livers from mice treated with the mouse liver tumorigen, propiconazole, to uncover the pathways and networks altered by this fungicide. Utilizing two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), we identified 62 proteins that were altered. Several of these protein changes detected by 2-DE/MS were verified by Western blot analyses. These differentially expressed proteins were mapped using Ingenuity Pathway Analyses (IPA) canonical pathways and IPA tox lists. Forty-four pathways/lists were identified. IPA was also used to create networks of interacting protein clusters. The protein-generated IPA canonical pathways and IPA tox lists were compared to those pathways and lists previously generated from genomic analyses from livers of mice treated with propiconazole under the same experimental conditions. There was a significant overlap in the specific pathways and lists generated from the proteomic and the genomic data with 27 pathways common to both proteomic and genomic analyses. However, there were also 17 pathways/lists identified only by proteomics analysis and 21 pathways/lists only identified by genomic analysis. The protein network analysis produced interacting subnetworks centered around hepatocyte nuclear factor 4 alpha (HNF4 alpha), MYC, proteasome subunit type 4 alpha, and glutathione S-transferase (GST). The HNF4 alpha network hub was also identified by genomic analysis. Five GST isoforms were identified by proteomic analysis and GSTs were present in 10 of the 44 protein-based pathways/lists. Hepatic GST activities were compared between mice treated with propiconazole and 2 additional conazoles and higher GST activities were found to be associated with the tumorigenic conazoles. Overall, this comparative proteomic and genomic study has revealed a series of alterations in livers induced by propiconazole: nuclear receptor

  5. Methods for Pseudopodia Purification and Proteomic Analysis

    SciTech Connect

    Wang, Yingchun; Ding, Shi-Jian; Wang, Wei; Yang, Feng; Jacobs, Jon M.; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

    2007-08-21

    Directional cell migration (chemotaxis) plays a central role in a wide spectrum of physiological and pathological processes, including embryo development, wounding healing, immunity, and cancer metastasis (1, 2). The process of chemotaxis is characterized by the sustained migration of cells in the direction of an increasing concentration of chemoattractant and/or ECM protein. Upon sensing the chemoattractant cells response with localized amplification of signals on the side facing the gradient (3-7). The spatial signal propagation facilitates reorganization of the actin-myosin cytoskeleton leading to extension of a dominant pseudopodium (PD) only in the direction of chemoattractant (7-10). While it is clear that localized signaling is critical for pseudopodium formation and chemotaxis, the molecular mechanisms that mediate this response remain poorly defined. To investigate mechanisms of pseudopodia formation, we recently described a novel approach to separate the PD and cell body (CB) compartments for large scale proteomic and phosphoproteomic analyses using chambers equipped with microporous filters (Fig. 1) (3, 7, 11). This in vitro system recapitulates physiological events associates with pseudopodial protrusion through small openings in the ECM and the vessel wall during immune cell intravasation and cancer cell metastasis (12, 13). The model system has been used to reveal important signaling pathways and novel proteins that mediate cell migration. This model, combined with the state-of-the-art proteomics and phosphoproteomics technology, will provide an effective approach to systematically analyze the proteins that differentially localized or phosphorylated in the front and the back of polarized migrating cells. In the following sections, we will describe in detail the protocols used to purify the PD and CB compartments for large-scale proteomic and phosphoproteomic analyses using mass spectrometry.

  6. The Revolution and Evolution of Shotgun Proteomics for Large-Scale Proteome Analysis

    PubMed Central

    Yates, John R.

    2013-01-01

    Mass spectrometry has evolved at an exponential rate over the last 100 years. Innovations in the development of mass spectrometers have created powerful instruments capable of analyzing a wide range of targets, from rare atoms and molecules to very large molecules such as a proteins, protein complexes and DNA. These performance gains have been driven by sustaining innovations, punctuated by the occasional disruptive innovation. The use of mass spectrometry for proteome analysis was driven by disruptive innovations that created a capability for large-scale analysis of proteins and modifications. PMID:23294060

  7. Proteome analysis of chick embryonic cerebrospinal fluid.

    PubMed

    Parada, Carolina; Gato, Angel; Aparicio, Mariano; Bueno, David

    2006-01-01

    During early stages of embryo development, the brain cavity is filled with embryonic cerebrospinal fluid (E-CSF), a complex fluid containing different protein fractions that contributes to the regulation of the survival, proliferation and neurogenesis of the neuroectodermal stem cells. Using 2-DE, protein sequencing and database searches, we identified and analyzed the proteome of the E-CSF from chick embryos (Gallus gallus). We identified 26 different gene products, including proteins related to the extracellular matrix, proteins associated with the regulation of osmotic pressure and metal transport, proteins related to cell survival, MAP kinase activators, proteins involved in the transport of retinol and vitamin D, antioxidant and antimicrobial proteins, intracellular proteins and some unknown proteins. Most of these gene products are involved in the regulation of developmental processes during embryogenesis in systems other than E-CSF. Interestingly, 14 of them are also present in adult human CSF proteome, and it has been reported that they are altered in the CSF of patients suffering neurodegenerative diseases and/or neurological disorders. Understanding these molecules and the mechanisms they control during embryonic neurogenesis is a key contribution to the general understanding of CNS development, and may also contribute to greater knowledge of these human diseases. PMID:16287170

  8. Proteomics and Phosphoproteomics Analysis of Human Lens Fiber Cell Membranes

    PubMed Central

    Wang, Zhen; Han, Jun; David, Larry L.; Schey, Kevin L.

    2013-01-01

    Purpose. The human lens fiber cell insoluble membrane fraction contains important membrane proteins, cytoskeletal proteins, and cytosolic proteins that are strongly associated with the membrane. The purpose of this study was to characterize the lens fiber cell membrane proteome and phosphoproteome from human lenses. Methods. HPLC-mass spectrometry–based multidimensional protein identification technology (MudPIT), without or with phosphopeptide enrichment, was applied to study the proteome and phosphoproteome of lens fiber cell membranes, respectively. Results. In total, 951 proteins were identified, including 379 integral membrane and membrane-associated proteins. Enriched gene categories and pathways based on the proteomic analysis include carbohydrate metabolism (glycolysis/gluconeogenesis, pentose phosphate pathway, pyruvate metabolism), proteasome, cell-cell signaling and communication (GTP binding, gap junction, focal adhesion), glutathione metabolism, and actin regulation. The combination of TiO2 phosphopeptide enrichment and MudPIT analysis revealed 855 phosphorylation sites on 271 proteins, including 455 phosphorylation sites that have not been previously identified. PKA, PKC, CKII, p38MAPK, and RSK are predicted as the major kinases for phosphorylation on the sites identified in the human lens membrane fraction. Conclusions. The results presented herein significantly expand the characterized proteome and phosphoproteome of the human lens fiber cell and provide a valuable reference for future research in studies of lens development and disease. PMID:23349431

  9. Proteomics Analysis of the Causative Agent of Typhoid Fever

    SciTech Connect

    Ansong, Charles; Yoon, Hyunjin; Norbeck, Angela D.; Gustin, Jean K.; McDermott, Jason E.; Mottaz, Heather M.; Rue, Joanne; Adkins, Joshua N.; Heffron, Fred; Smith, Richard D.

    2008-02-01

    Typhoid fever is a potentially fatal disease caused by the bacterial pathogen Salmonella enterica serovar Typhi (S. typhi). S. typhi infection is a complex process that involves numerous bacterially-encoded virulence determinants, and these are thought to confer both stringent human host specificity and a high mortality rate. In the present study we used a liquid chromatography-mass spectrometry (LC-MS) based proteomics strategy to investigate the proteome of logarithmic, stationary phase, and low pH/low magnesium (MgM) S. typhi cultures. This represents the first large scale comprehensive characterization of the S. typhi proteome. Our analysis identified a total of 2066 S. typhi proteins. In an effort to identify putative S. typhi-specific virulence factors, we then compared our S. typhi results to those obtained in a previously published study of the S. typhimurium proteome under similar conditions (Adkins J.N. et al (2006) Mol Cell Prot). Comparative proteomic analysis of S. typhi (strain Ty2) and S. typhimurium (strains LT2 and 14028) revealed a subset of highly expressed proteins unique to S. typhi that were exclusively detected under conditions that mimic the infective state in macrophage cells. These proteins included CdtB, HlyE, and a conserved protein encoded by t1476. The differential expression of selected proteins was confirmed by Western blot analysis. Taken together with the current literature, our observations suggest that this subset of proteins may play a role in S. typhi pathogenesis and human host specificity. In addition, we observed products of the biotin (bio) operon displayed a higher abundance in the more virulent strains S. typhi-Ty2 and S. typhimurium-14028 compared to the virulence attenuated S. typhimurium strain LT2, suggesting bio proteins may contribute to Salmonella pathogenesis.

  10. Proteomic analysis of a eukaryotic cilium.

    PubMed

    Pazour, Gregory J; Agrin, Nathan; Leszyk, John; Witman, George B

    2005-07-01

    Cilia and flagella are widespread cell organelles that have been highly conserved throughout evolution and play important roles in motility, sensory perception, and the life cycles of eukaryotes ranging from protists to humans. Despite the ubiquity and importance of these organelles, their composition is not well known. Here we use mass spectrometry to identify proteins in purified flagella from the green alga Chlamydomonas reinhardtii. 360 proteins were identified with high confidence, and 292 more with moderate confidence. 97 out of 101 previously known flagellar proteins were found, indicating that this is a very complete dataset. The flagellar proteome is rich in motor and signal transduction components, and contains numerous proteins with homologues associated with diseases such as cystic kidney disease, male sterility, and hydrocephalus in humans and model vertebrates. The flagellum also contains many proteins that are conserved in humans but have not been previously characterized in any organism. The results indicate that flagella are far more complex than previously estimated.

  11. Comparative proteomic analysis of four Bacillus clausii strains: proteomic expression signature distinguishes protein profile of the strains.

    PubMed

    Lippolis, Rosa; Gnoni, Antonio; Abbrescia, Anna; Panelli, Damiano; Maiorano, Stefania; Paternoster, Maria Stefania; Sardanelli, Anna Maria; Papa, Sergio; Gaballo, Antonio

    2011-11-18

    A comparative proteomic approach, using two dimensional gel electrophoresis and mass spectrometry, has been developed to compare and elucidate the differences among the cellular proteomes of four closely related isogenic O/C, SIN, N/R and T, B. clausii strains during both exponential and stationary phases of growth. Image analysis of the electropherograms reveals a high degree of concordance among the four proteomes, some proteins result, however, differently expressed. The proteins spots exhibiting high different expression level were identified, by mass-spectrometry analysis, as alcohol dehydrogenase (ADHA, EC1.2.1.3; ABC0046 isoform) aldehyde dehydrogenase (DHAS, EC 1.2.1.3; ABC0047 isoform) and flagellin-protein of B. clausii KSM-k16. The different expression levels of the two dehydrogenases were confirmed by quantitative RT-PCR and dehydrogenases enzymatic activity. The different patterns of protein expression can be considered as cell proteome signatures of the different strains. PMID:21810490

  12. Proteomic Analysis of Anticancer TCMs Targeted at Mitochondria

    PubMed Central

    Wang, Yang; Yu, Ru-Yuan; He, Qing-Yu

    2015-01-01

    Traditional Chinese medicine (TCM) is a rich resource of anticancer drugs. Increasing bioactive natural compounds extracted from TCMs are known to exert significant antitumor effects, but the action mechanisms of TCMs are far from clear. Proteomics, a powerful platform to comprehensively profile drug-regulated proteins, has been widely applied to the mechanistic investigation of TCMs and the identification of drug targets. In this paper, we discuss several bioactive TCM products including terpenoids, flavonoids, and glycosides that were extensively investigated by proteomics to illustrate their antitumor mechanisms in various cancers. Interestingly, many of these natural compounds isolated from TCMs mostly exert their tumor-suppressing functions by specifically targeting mitochondria in cancer cells. These TCM components induce the loss of mitochondrial membrane potential, the release of cytochrome c, and the accumulation of ROS, initiating apoptosis cascade signaling. Proteomics provides systematic views that help to understand the molecular mechanisms of the TCM in tumor cells; it bears the inherent limitations in uncovering the drug-protein interactions, however. Subcellular fractionation may be coupled with proteomics to capture and identify target proteins in mitochondria-enriched lysates. Furthermore, translating mRNA analysis, a new technology profiling the drug-regulated genes in translatome level, may be integrated into the systematic investigation, revealing global information valuable for understanding the action mechanism of TCMs. PMID:26568766

  13. Mature adipocyte proteome reveals differentially altered protein abundances between lean, overweight and morbidly obese human subjects.

    PubMed

    Benabdelkamel, Hicham; Masood, Afshan; Almidani, Ghaith M; Alsadhan, Abdulmajeed A; Bassas, Abdulelah F; Duncan, Mark W; Alfadda, Assim A

    2015-02-01

    Overweight (OW) and obese individuals are considered to be graded parts of the scale having increasing weight as a common feature. They may not, however, be part of the same continuum and may differ metabolically. In this study we applied an untargeted proteomic approach to compare protein abundances in mature adipocytes derived from the subcutaneous adipose tissue of overweight and morbidly obese female subjects to those of lean age matched controls. Mature adipocytes were isolated from liposuction samples of abdominal subcutaneous adipose tissue collected from both lean (L; n = 7, 23.3 ± 0.4 kg/m(2); mean BMI ± SD), overweight (OW; n = 8, 27.9 ± 0.6 kg/m(2); mean BMI ± SD) and morbidly obese (MOB; n = 7, 44.8 ± 3.8 kg/m(2); mean BMI ± SD) individuals. Total protein extracts were then compared by two-dimensional difference in gel electrophoresis (2D DIGE). One hundred and ten differentially expressed protein spots (i.e., fitting the statistical criteria ANOVA test, p < 0.05; fold-change ≥1.5) were detected, and of these, 89 were identified by MALDI-TOF mass spectrometry. Of these, 66 protein spots were common to both groups whereas 23 were unique to the MOB group. Significant differences were evident in the abundances of key proteins involved in glucose and lipid metabolism, energy regulation, cytoskeletal structure and redox control signaling pathways. Differences in the abundance of some chaperones were also evident. The differentially abundant proteins were investigated using Ingenuity Pathway Analysis (IPA) to establish their associations with known biological functions. The network identified in the OW group with the highest score relates to-: cell-to-cell signaling and interaction; in contrast, in the MOB group the major interacting pathways are associated with lipid metabolism, small molecule biochemistry and cancer. The differences in abundance of the differentially regulated proteins were validated by

  14. Data from quantitative label free proteomics analysis of rat spleen.

    PubMed

    Dudekula, Khadar; Le Bihan, Thierry

    2016-09-01

    The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides). A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis. PMID:27358910

  15. Proteome Analysis of Ground State Pluripotency

    PubMed Central

    Taleahmad, Sara; Mirzaei, Mehdi; Parker, Lindsay M.; Hassani, Seyedeh-Nafiseh; Mollamohammadi, Sepideh; Sharifi-Zarchi, Ali; Haynes, Paul A.; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2015-01-01

    The differentiation potential of pluripotent embryonic stem cells (ESCs) can be manipulated via serum and medium conditions for direct cellular development or to maintain a naïve ground state. The self-renewal state of ESCs can thus be induced by adding inhibitors of mitogen activated protein kinase (MAPK) and glycogen synthase kinase-3 (Gsk3), known as 2 inhibitors (2i) treatment. We have used a shotgun proteomics approach to investigate differences in protein expressions between 2i- and serum-grown mESCs. The results indicated that 164 proteins were significantly upregulated and 107 proteins downregulated in 2i-grown cells compared to serum. Protein pathways in 2i-grown cells with the highest enrichment were associated with glycolysis and gluconeogenesis. Protein pathways related to organ development were downregulated in 2i-grown cells. In serum-grown ESCs, protein pathways involved in integrin and focal adhesion, and signaling proteins involved in the actin cytoskeleton regulation were enriched. We observed a number of nuclear proteins which were mostly involved in self-renewal maintenance and were expressed at higher levels in 2i compared to serum - Dnmt1, Map2k1, Parp1, Xpo4, Eif3g, Smarca4/Brg1 and Smarcc1/Baf155. Collectively, the results provided an insight into the key protein pathways used by ESCs in the ground state or metastable conditions through 2i or serum culture medium, respectively. PMID:26671762

  16. Proteome Analysis of Poplar Seed Vigor

    PubMed Central

    Zhang, Hong; Wang, Wei-Qing; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Seed vigor is a complex property that determines the seed’s potential for rapid uniform emergence and subsequent growth. However, the mechanism for change in seed vigor is poorly understood. The seeds of poplar (Populus × Canadensis Moench), which are short-lived, were stored at 30°C and 75±5% relative humidity for different periods of time (0–90 days) to obtain different vigor seeds (from 95 to 0% germination). With decreasing seed vigor, the temperature range of seed germination became narrower; the respiration rate of the seeds decreased markedly, while the relative electrolyte leakage increased markedly, both levelling off after 45 days. A total of 81 protein spots showed a significant change in abundance (≥ 1.5-fold, P < 0.05) when comparing the proteomes among seeds with different vigor. Of the identified 65 proteins, most belonged to the groups involved in metabolism (23%), protein synthesis and destination (22%), energy (18%), cell defense and rescue (17%), and storage protein (15%). These proteins accounted for 95% of all the identified proteins. During seed aging, 53 and 6 identified proteins consistently increased and decreased in abundance, respectively, and they were associated with metabolism (22%), protein synthesis and destination (22%), energy (19%), cell defense and rescue (19%), storage proteins (15%), and cell growth and structure (3%). These data show that the decrease in seed vigor (aging) is an energy-dependent process, which requires protein synthesis and degradation as well as cellular defense and rescue. PMID:26172265

  17. Proteomic analysis of murine testes lipid droplets

    PubMed Central

    Wang, Weiyi; Wei, Suning; Li, Linghai; Su, Xueying; Du, Congkuo; Li, Fengjuan; Geng, Bin; Liu, Pingsheng; Xu, Guoheng

    2015-01-01

    Testicular Leydig cells contain abundant cytoplasmic lipid droplets (LDs) as a cholesteryl-ester store for releasing cholesterols as the precursor substrate for testosterone biosynthesis. Here, we identified the protein composition of testicular LDs purified from adult mice by using mass spectrometry and immunodetection. Among 337 proteins identified, 144 were previously detected in LD proteomes; 44 were confirmed by microscopy. Testicular LDs contained multiple Rab GTPases, chaperones, and proteins involved in glucuronidation, ubiquination and transport, many known to modulate LD formation and LD-related cellular functions. In particular, testicular LDs contained many members of both the perilipin family and classical lipase/esterase superfamily assembled predominately in adipocyte LDs. Thus, testicular LDs might be regulated similar to adipocyte LDs. Remarkably, testicular LDs contained a large number of classical enzymes for biosynthesis and metabolism of cholesterol and hormonal steroids, so steroidogenic reactions might occur on testicular LDs or the steroidogenic enzymes and products could be transferred through testicular LDs. These characteristics differ from the LDs in most other types of cells, so testicular LDs could be an active organelle functionally involved in steroidogenesis. PMID:26159641

  18. Analysis of proteome dynamics in mice by isotopic labeling.

    PubMed

    Price, John C; Ghaemmaghami, Sina

    2014-01-01

    Recent advances in mass spectrometry and in vivo isotopic labeling have enabled proteome-wide analyses of protein turnover in complex organisms. Here, we describe a protocol for analyzing protein turnover rates in mouse tissues by comprehensive (15)N labeling. The procedure involves the complete isotopic labeling of blue green algae (Spirulina platensis) with (15)N and utilizing it as a source of dietary nitrogen for mice. We outline a detailed protocol for in-house production of (15)N-labeled algae, labeling of mice, and analysis of isotope incorporation kinetics by mass spectrometry. The methodology can be adapted to analyze proteome dynamics in most murine tissues and may be particularly useful in the analysis of proteostatic disruptions in mouse models of disease. PMID:24791984

  19. Statistics in experimental design, preprocessing, and analysis of proteomics data.

    PubMed

    Jung, Klaus

    2011-01-01

    High-throughput experiments in proteomics, such as 2-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), yield usually high-dimensional data sets of expression values for hundreds or thousands of proteins which are, however, observed on only a relatively small number of biological samples. Statistical methods for the planning and analysis of experiments are important to avoid false conclusions and to receive tenable results. In this chapter, the most frequent experimental designs for proteomics experiments are illustrated. In particular, focus is put on studies for the detection of differentially regulated proteins. Furthermore, issues of sample size planning, statistical analysis of expression levels as well as methods for data preprocessing are covered.

  20. Proteomic analysis of acetylation in thermophilic Geobacillus kaustophilus.

    PubMed

    Lee, Dong-Woo; Kim, Dooil; Lee, Yong-Jik; Kim, Jung-Ae; Choi, Ji Young; Kang, Sunghyun; Pan, Jae-Gu

    2013-08-01

    Recent analysis of prokaryotic N(ε)-lysine-acetylated proteins highlights the posttranslational regulation of a broad spectrum of cellular proteins. However, the exact role of acetylation remains unclear due to a lack of acetylated proteome data in prokaryotes. Here, we present the N(ε)-lysine-acetylated proteome of gram-positive thermophilic Geobacillus kaustophilus. Affinity enrichment using acetyl-lysine-specific antibodies followed by LC-MS/MS analysis revealed 253 acetylated peptides representing 114 proteins. These acetylated proteins include not only common orthologs from mesophilic Bacillus counterparts, but also unique G. kaustophilus proteins, indicating that lysine acetylation is pronounced in thermophilic bacteria. These data complement current knowledge of the bacterial acetylproteome and provide an expanded platform for better understanding of the function of acetylation in cellular metabolism.

  1. Purification and proteomic analysis of liver membrane skeletons.

    PubMed

    He, Jintang; Liu, Yashu; Wang, Qingsong; Ji, Jianguo

    2012-01-01

    The detergent-resistant membrane skeletons play a critical role in cell shaping and signaling. The focus of the methods described in this chapter is first on the preparation of membrane skeletons from liver by multistep sucrose density gradient centrifugation, and then on the analysis of the protein components of membrane skeletons using proteomics techniques. Two proteomic analysis strategies are described. In the first strategy, membrane skeleton proteins are separated by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. In the other strategy, proteins are separated by SDS-PAGE and identified by liquid chromatography-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The methods facilitate the understanding of the structure of membrane skeletons.

  2. Lens culinaris Medik. seed proteome: analysis to identify landrace markers.

    PubMed

    Ialicicco, Manuela; Viscosi, Vincenzo; Arena, Simona; Scaloni, Andrea; Trupiano, Dalila; Rocco, Mariapina; Chiatante, Donato; Scippa, Gabriella S

    2012-12-01

    Unlike modern cultivars selected for their growth performances in specific environmental conditions, local landraces have a high genetic variability that is an important resource for plant breeding. Consequent to their high adaptation to different environmental conditions, these landraces may have evolved adaptive gene complexes To promote the survival of endangered lentil landraces, we previously investigated the genetic relationship between two ancient landraces cultivated in the Molise region (Capracotta and Conca Casale, south-central Italy) and widely spread commercial varieties using an integrated approach consisting of morphological, DNA and protein characterization. In the present study, we used a proteomic approach to compare the mature seed proteomes of the Capracotta and Conca Casale lentil landraces. Multivariate analysis of 145 differentially expressed protein spots demonstrated that 52 proteins are required to discriminate among the two landraces. Therefore, these 52 proteins can be considered "landrace markers". The results of this study show that the combination of proteomics and multivariate analysis can be used to identify physiological and/or environmental markers, and is thus a powerful tool that complements the analysis of biodiversity in plant ecotypes.

  3. A Combined Metabolomic and Proteomic Analysis of Gestational Diabetes Mellitus.

    PubMed

    Hajduk, Joanna; Klupczynska, Agnieszka; Dereziński, Paweł; Matysiak, Jan; Kokot, Piotr; Nowak, Dorota M; Gajęcka, Marzena; Nowak-Markwitz, Ewa; Kokot, Zenon J

    2015-12-16

    The aim of this pilot study was to apply a novel combined metabolomic and proteomic approach in analysis of gestational diabetes mellitus. The investigation was performed with plasma samples derived from pregnant women with diagnosed gestational diabetes mellitus (n = 18) and a matched control group (n = 13). The mass spectrometry-based analyses allowed to determine 42 free amino acids and low molecular-weight peptide profiles. Different expressions of several peptides and altered amino acid profiles were observed in the analyzed groups. The combination of proteomic and metabolomic data allowed obtaining the model with a high discriminatory power, where amino acids ethanolamine, L-citrulline, L-asparagine, and peptide ions with m/z 1488.59; 4111.89 and 2913.15 had the highest contribution to the model. The sensitivity (94.44%) and specificity (84.62%), as well as the total group membership classification value (90.32%) calculated from the post hoc classification matrix of a joint model were the highest when compared with a single analysis of either amino acid levels or peptide ion intensities. The obtained results indicated a high potential of integration of proteomic and metabolomics analysis regardless the sample size. This promising approach together with clinical evaluation of the subjects can also be used in the study of other diseases.

  4. Plastid Proteomic Analysis in Tomato Fruit Development

    PubMed Central

    Kondo, Takanori; Dohra, Hideo; Ito, Yumihiko; Kiriiwa, Yoshikazu; Hayashi, Marina; Kamiya, Shiori; Kato, Masaya; Fujiwara, Masayuki; Fukao, Yoichiro; Kobayashi, Megumi; Nagata, Noriko; Motohashi, Reiko

    2015-01-01

    To better understand the mechanism of plastid differentiation from chloroplast to chromoplast, we examined proteome and plastid changes over four distinct developmental stages of ‘Micro-Tom’ fruit. Additionally, to discover more about the relationship between fruit color and plastid differentiation, we also analyzed and compared ‘Micro-Tom’ results with those from two other varieties, ‘Black’ and ‘White Beauty’. We confirmed that proteins related to photosynthesis remain through the orange maturity stage of ‘Micro-Tom’, and also learned that thylakoids no longer exist at this stage. These results suggest that at a minimum there are changes in plastid morphology occurring before all related proteins change. We also compared ‘Micro-Tom’ fruits with ‘Black’ and ‘White Beauty’ using two-dimensional gel electrophoresis. We found a decrease of CHRC (plastid-lipid-associated protein) and HrBP1 (harpin binding protein-1) in the ‘Black’ and ‘White Beauty’ varieties. CHRC is involved in carotenoid accumulation and stabilization. HrBP1 in Arabidopsis has a sequence similar to proteins in the PAP/fibrillin family. These proteins have characteristics and functions similar to lipocalin, an example of which is the transport of hydrophobic molecules. We detected spots of TIL (temperature-induced lipocalin) in 2D-PAGE results, however the number of spots and their isoelectric points differed between ‘Micro-Tom’ and ‘Black’/‘White Beauty’. Lipocalin has various functions including those related to environmental stress response, apoptosis induction, membrane formation and fixation, regulation of immune response, cell growth, and metabolism adjustment. Lipocalin related proteins such as TIL and HrBP1 could be related to the accumulation of carotenoids, fruit color and the differentiation of chromoplast. PMID:26371478

  5. Proteomic analysis of a matrix stone: a case report.

    PubMed

    Canales, Benjamin K; Anderson, Lorraine; Higgins, LeeAnn; Frethem, Chris; Ressler, Alice; Kim, Il Won; Monga, Manoj

    2009-12-01

    Matrix stones are radiolucent bodies that present as soft muco-proteinaceous material within the renal collecting system. Following wide-angle X-ray diffraction (XRD) and scanning electron microscopy (SEM), we homogenized a surgically removed matrix stone, extracted and purified protein, and analyzed samples using tandem mass spectrometry for proteomic composition. Resulting spectra were searched using ProteinPilot 2.0, and identified proteins were reported with >95% confidence. Primary XRD mineral analysis was a biological apatite, and SEM revealed fibrous, net-like laminations containing bacterial, cellular, and crystalline material. Of the 33 unique proteins identified, 90% have not been previously reported within matrix stones and over 70% may be considered inflammatory or defensive in nature. Characterization of other matrix stone proteomes, in particular from non-infectious populations, may yield insights into the pathogenesis of this rare stone as well as the mineralogical process that occurs within crystalline calculi.

  6. Proteomics-Driven Analysis of Ovine Whey Colostrum

    PubMed Central

    Scumaci, Domenica; Trimboli, Francesca; Dell’Aquila, Ludovica; Concolino, Antonio; Pappaianni, Giusi; Tammè, Laura; Vignola, Giorgio; Luciani, Alessia; Morelli, Daniela; Cuda, Giovanni; Boari, Andrea; Britti, Domenico

    2015-01-01

    The aim of this study was to shed light in to the complexity of the ovine colostrum proteome, with a specific focus on the low abundance proteins. The ovine colostrum is characterized by a few dominating proteins, as the immunoglobulins, but it also contains less represented protein species, equally important for the correct development of neonates. Ovine colostrum, collected immediately after lambing, was separated by 1D SDS-PAGE. Proteins bands were digested with trypsin and the resulting peptides were analyzed by LC-MS/MS. On the basis of the Swiss-Prot database, a total of 343 unique proteins were identified. To our knowledge, this study represents the most comprehensive analysis of ovine colostrum proteome. PMID:25643159

  7. Proteome analysis of Pueraria mirifica tubers collected in different seasons.

    PubMed

    Jungsukcharoen, Jutarmas; Chokchaichamnankit, Daranee; Srisomsap, Chantragan; Cherdshewasart, Wichai; Sangvanich, Polkit

    2016-06-01

    Pueraria mirifica-derived tuberous powder has been long-term consumed in Thailand as female hormone-replacement traditional remedies. The protein profiles of tubers collected in different seasons were evaluated. Phenol extraction, 2D-PAGE, and mass spectrometry were employed for tuberous proteome analysis. Out of the 322 proteins detected, over 59% were functionally classified as being involved in metabolism. The rest proteins were involved in defense, protein synthesis, cell structure, transportation, stress, storage, and also unidentified function. The proteins were found to be differentially expressed with respect to harvest season. Importantly, chalcone isomerase, isoflavone synthase, cytochrome p450, UDP-glycosyltransferase, and isoflavone reductase, which are all involved in the biosynthesis pathway of bioactive isoflavonoids, were most abundantly expressed in the summer-collected tubers. This is the first report on the proteomic patterns in P. mirifica tubers in relevant with seasonal variation. The study enlights the understanding of variance isoflavonoid production in P. mirifica tubers. PMID:26940377

  8. Proteomic analysis of human osteoprogenitor response to disordered nanotopography

    PubMed Central

    Kantawong, Fahsai; Burchmore, Richard; Gadegaard, Nikolaj; Oreffo, Richard O. C.; Dalby, Matthew J.

    2009-01-01

    Previous studies have shown that microgroove-initiated contact guidance can induce bone formation in osteoprogenitor cells (OPGs) and produce changes in the cell proteome. For proteomic analysis, differential in-gel electrophoresis (DIGE) can be used as a powerful diagnostic method to provide comparable data between the proteomic profiles of cells cultured in different conditions. This study focuses on the response of OPGs to a novel nanoscale pit topography with osteoinductive properties compared with planar controls. Disordered near-square nanopits with 120 nm diameter and 100 nm depth with an average 300 nm centre-to-centre spacing (300 nm spaced pits in square pattern, but with ±50 nm disorder) were fabricated on 1×1 cm2 polycaprolactone sheets. Human OPGs were seeded onto the test materials. DIGE analysis revealed changes in the expression of a number of distinct proteins, including upregulation of actin isoforms, beta-galectin1, vimentin and procollagen-proline, 2-oxoglutarate 4-dioxygenase and prolyl 4-hydroxylase. Downregulation of enolase, caldesmon, zyxin, GRASP55, Hsp70 (BiP/GRP78), RNH1, cathepsin D and Hsp27 was also observed. The differences in cell morphology and mineralization are also reported using histochemical techniques. PMID:19068473

  9. Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources.

    PubMed

    Zhao, Shaohui; Zhao, Xinrui; Zou, Huijun; Fu, Jianwei; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2014-04-14

    In cultures containing multiple sources of nitrogen, Saccharomyces cerevisiae exhibits a sequential use of nitrogen sources through a mechanism known as nitrogen catabolite repression (NCR). To identify proteins differentially expressed due to NCR, proteomic analysis of S. cerevisiae S288C under different nitrogen source conditions was performed using two-dimensional gel electrophoresis (2-DE), revealing 169 candidate protein spots. Among these 169 protein spots, 121 were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF). The identified proteins were closely associated with four main biological processes through Gene Ontology (GO) categorical analysis. The identification of the potential proteins and cellular processes related to NCR offer a global overview of changes elicited by different nitrogen sources, providing clues into how yeast adapt to different nutritional conditions. Moreover, by comparing our proteomic data with corresponding mRNA data, proteins regulated at the transcriptional and post-transcriptional level could be distinguished. Biological significance In S. cerevisiae, different nitrogen sources provide different growth characteristics and generate different metabolites. The nitrogen catabolite repression (NCR) process plays an important role for S. cerevisiae in the ordinal utilization of different nitrogen sources. NCR process can result in significant shift of global metabolic networks. Previous works on NCR primarily focused on transcriptomic level. The results obtained in this study provided a global atlas of the proteome changes triggered by different nitrogen sources and would facilitate the understanding of mechanisms for how yeast could adapt to different nutritional conditions.

  10. Analysis of Mass Spectrometry Data for Nucleolar Proteomics Experiments.

    PubMed

    Nicolas, Armel; Bensaddek, Dalila; Lamond, Angus I

    2016-01-01

    With recent advances in experiment design, sample preparation, separation and instruments, mass spectrometry (MS)-based quantitative proteomics is becoming increasingly more popular. This has the potential to usher a new revolution in biology, in which the protein complement of cell populations can be described not only with increasing coverage, but also in all of its dimensions with unprecedented precision. Indeed, while earlier proteomics studies aimed solely at identifying as many as possible of the proteins present in the sample, newer, so-called Next Generation Proteomics studies add to this the aim of determining and quantifying the protein variants present in the sample, their mutual associations within complexes, their posttranslational modifications, their variation across the cell-cycle or in response to stimuli or perturbations, and their subcellular distribution. This has the potential to make MS proteomics much more useful for researchers, but will also mean that researchers with no background in MS will increasingly be confronted with the less-than trivial challenges of preparing samples for MS analysis, then processing and interpreting the results. In Chapter 20 , we described a workflow for isolating the protein contents of a specific SILAC-labeled organelle sample (the nucleolus) and processing it into peptides suitable for bottom-up MS analysis. Here, we complete this workflow by describing how to use the freely available MaxQuant software to convert the spectra stored in the Raw files into peptide- and protein-level information. We also briefly describe how to visualize the data using the free R scripting language.

  11. Analysis of Mass Spectrometry Data for Nucleolar Proteomics Experiments.

    PubMed

    Nicolas, Armel; Bensaddek, Dalila; Lamond, Angus I

    2016-01-01

    With recent advances in experiment design, sample preparation, separation and instruments, mass spectrometry (MS)-based quantitative proteomics is becoming increasingly more popular. This has the potential to usher a new revolution in biology, in which the protein complement of cell populations can be described not only with increasing coverage, but also in all of its dimensions with unprecedented precision. Indeed, while earlier proteomics studies aimed solely at identifying as many as possible of the proteins present in the sample, newer, so-called Next Generation Proteomics studies add to this the aim of determining and quantifying the protein variants present in the sample, their mutual associations within complexes, their posttranslational modifications, their variation across the cell-cycle or in response to stimuli or perturbations, and their subcellular distribution. This has the potential to make MS proteomics much more useful for researchers, but will also mean that researchers with no background in MS will increasingly be confronted with the less-than trivial challenges of preparing samples for MS analysis, then processing and interpreting the results. In Chapter 20 , we described a workflow for isolating the protein contents of a specific SILAC-labeled organelle sample (the nucleolus) and processing it into peptides suitable for bottom-up MS analysis. Here, we complete this workflow by describing how to use the freely available MaxQuant software to convert the spectra stored in the Raw files into peptide- and protein-level information. We also briefly describe how to visualize the data using the free R scripting language. PMID:27576726

  12. Proteomics Mapping of Cord Blood Identifies Haptoglobin “Switch-On” Pattern as Biomarker of Early-Onset Neonatal Sepsis in Preterm Newborns

    PubMed Central

    Buhimschi, Catalin S.; Bhandari, Vineet; Dulay, Antonette T.; Nayeri, Unzila A.; Abdel-Razeq, Sonya S.; Pettker, Christian M.; Thung, Stephen; Zhao, Guomao; Han, Yiping W.; Bizzarro, Matthew; Buhimschi, Irina A.

    2011-01-01

    Background Intra-amniotic infection and/or inflammation (IAI) are important causes of preterm birth and early-onset neonatal sepsis (EONS). A prompt and accurate diagnosis of EONS is critical for improved neonatal outcomes. We sought to explore the cord blood proteome and identify biomarkers and functional protein networks characterizing EONS in preterm newborns. Methodology/Principal Findings We studied a prospective cohort of 180 premature newborns delivered May 2004-September 2009. A proteomics discovery phase employing two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry identified 19 differentially-expressed proteins in cord blood of newborns with culture-confirmed EONS (n = 3) versus GA-matched controls (n = 3). Ontological classifications of the proteins included transfer/carrier, immunity/defense, protease/extracellular matrix. The 1st-level external validation conducted in the remaining 174 samples confirmed elevated haptoglobin and haptoglobin-related protein immunoreactivity (Hp&HpRP) in newborns with EONS (presumed and culture-confirmed) independent of GA at birth and birthweight (P<0.001). Western blot concurred in determining that EONS babies had conspicuous Hp&HpRP bands in cord blood (“switch-on pattern”) as opposed to non-EONS newborns who had near-absent “switch-off pattern” (P<0.001). Fetal Hp phenotype independently impacted Hp&HpRP. A Bayesian latent-class analysis (LCA) was further used for unbiased classification of all 180 cases based on probability of “antenatal IAI exposure” as latent variable. This was then subjected to 2nd-level validation against indicators of adverse short-term neonatal outcome. The optimal LCA algorithm combined Hp&HpRP switch pattern (most input), interleukin-6 and neonatal hematological indices yielding two non-overlapping newborn clusters with low (≤20%) versus high (≥70%) probability of IAI exposure. This approach reclassified ∼30% of clinical EONS diagnoses

  13. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance.

    PubMed

    Lindahl, Marika; Mata-Cabana, Alejandro; Kieselbach, Thomas

    2011-06-15

    Ten years ago, proteomics techniques designed for large-scale investigations of redox-sensitive proteins started to emerge. The proteomes, defined as sets of proteins containing reactive cysteines that undergo oxidative post-translational modifications, have had a particular impact on research concerning the redox regulation of cellular processes. These proteomes, which are hereafter termed "disulfide proteomes," have been studied in nearly all kingdoms of life, including animals, plants, fungi, and bacteria. Disulfide proteomics has been applied to the identification of proteins modified by reactive oxygen and nitrogen species under stress conditions. Other studies involving disulfide proteomics have addressed the functions of thioredoxins and glutaredoxins. Hence, there is a steadily growing number of proteins containing reactive cysteines, which are probable targets for redox regulation. The disulfide proteomes have provided evidence that entire pathways, such as glycolysis, the tricarboxylic acid cycle, and the Calvin-Benson cycle, are controlled by mechanisms involving changes in the cysteine redox state of each enzyme implicated. Synthesis and degradation of proteins are processes highly represented in disulfide proteomes and additional biochemical data have established some mechanisms for their redox regulation. Thus, combined with biochemistry and genetics, disulfide proteomics has a significant potential to contribute to new discoveries on redox regulation and signaling.

  14. Organellar proteomics: analysis of pancreatic zymogen granule membranes.

    PubMed

    Chen, Xuequn; Walker, Angela K; Strahler, John R; Simon, Eric S; Tomanicek-Volk, Sarah L; Nelson, Bradley B; Hurley, Mary C; Ernst, Stephen A; Williams, John A; Andrews, Philip C

    2006-02-01

    The zymogen granule (ZG) is the specialized organelle in pancreatic acinar cells for digestive enzyme storage and regulated secretion and has been a model for studying secretory granule functions. In an initial effort to comprehensively understand the functions of this organelle, we conducted a proteomic study to identify proteins from highly purified ZG membranes. By combining two-dimensional gel electrophoresis and two-dimensional LC with tandem mass spectrometry, 101 proteins were identified from purified ZG membranes including 28 known ZG proteins and 73 previously unknown proteins, including SNAP29, Rab27B, Rab11A, Rab6, Rap1, and myosin Vc. Moreover several hypothetical proteins were identified that represent potential novel proteins. The ZG localization of nine of these proteins was further confirmed by immunocytochemistry. To distinguish intrinsic membrane proteins from soluble and peripheral membrane proteins, a quantitative proteomic strategy was used to measure the enrichment of intrinsic membrane proteins through the purification process. The iTRAQ ratios correlated well with known or Transmembrane Hidden Markov Model-predicted soluble or membrane proteins. By combining subcellular fractionation with high resolution separation and comprehensive identification of proteins, we have begun to elucidate zymogen granule functions through proteomic and subsequent functional analysis of its membrane components.

  15. Proteomic analysis of antigens from Leishmania infantum promastigotes.

    PubMed

    Dea-Ayuela, María Auxiliadora; Rama-Iñiguez, Sara; Bolás-Fernández, Francisco

    2006-07-01

    Leishmaniasis is a zoonotic disease caused by the species of the genus Leishmania, flagellated protozoa that multiply inside mammalian macrophages and are transmitted by the bite of the sandfly. The disease is widespread and due to the lack of fully effective treatment and vaccination the search for new drugs and immune targets is needed. Proteomics seems to be a suitable strategy because the annotated sequenced genome of L. major is available. Here, we present a high-resolution proteome for L. infantum promastigotes comprising of around 700 spots. Western blot with rabbit hyperimmune serum raised against L. infantum promastiogote extracts and further analysis by MALDI-TOF and MALDI-TOF/TOF MS allowed the identification of various relevant functional antigenic proteins. Major antigenic proteins were identified as propionil carboxilasa, ATPase beta subunit, transketolase, proteasome subunit, succinyl-diaminopimelate desuccinylase, a probable tubulin alpha chain, the full-size heat shock protein 70, and several proteins of unknown function. In addition, one enzyme from the ergosterol biosynthesis pathway (adrenodoxin reductase) and the structural paraflagellar rod protein 3 (PAR3) were found among non-antigenic proteins. This study corroborates the usefulness of proteomics in identifying new proteins with crucial biological functions in Leishmania parasites. PMID:16791830

  16. Quantitative Proteomic Approaches for Analysis of Protein S-Nitrosylation.

    PubMed

    Qu, Zhe; Greenlief, C Michael; Gu, Zezong

    2016-01-01

    S-Nitrosylation is a redox-based post-translational modification of a protein in response to nitric oxide (NO) signaling, and it participates in a variety of processes in diverse biological systems. The significance of this type of protein modification in health and diseases is increasingly recognized. In the central nervous system, aberrant S-nitrosylation, due to excessive NO production, is known to cause protein misfolding, mitochondrial dysfunction, transcriptional dysregulation, and neuronal death. This leads to an altered physiological state and consequently contributes to pathogenesis of neurodegenerative disorders. To date, much effort has been made to understand the mechanisms underlying protein S-nitrosylation, and several approaches have been developed to unveil S-nitrosylated proteins from different organisms. Interest in determining the dynamic changes of protein S-nitrosylation under different physiological and pathophysiological conditions has underscored the need for the development of quantitative proteomic approaches. Currently, both gel-based and gel-free mass spectrometry-based quantitative methods are widely used, and they each have advantages and disadvantages but may also be used together to produce complementary data. This review evaluates current available quantitative proteomic techniques for the analysis of protein S-nitrosylation and highlights recent advances, with emphasis on applications in neurodegenerative diseases. An important goal is to provide a comprehensive guide of feasible quantitative proteomic methodologies for examining protein S-nitrosylation in research to yield insights into disease mechanisms, diagnostic biomarkers, and drug discovery.

  17. Comprehensive proteomics analysis of glycosomes from Leishmania donovani.

    PubMed

    Jamdhade, Mahendra D; Pawar, Harsh; Chavan, Sandip; Sathe, Gajanan; Umasankar, P K; Mahale, Kiran N; Dixit, Tanwi; Madugundu, Anil K; Prasad, T S Keshava; Gowda, Harsha; Pandey, Akhilesh; Patole, Milind S

    2015-03-01

    Leishmania donovani is a kinetoplastid protozoan that causes a severe and fatal disease kala-azar, or visceral leishmaniasis. L. donovani infects human host after the phlebotomine sandfly takes a blood meal and resides within the phagolysosome of infected macrophages. Previous studies on host-parasite interactions have not focused on Leishmania organelles and the role that they play in the survival of this parasite within macrophages. Leishmania possess glycosomes that are unique and specialized subcellular microbody organelles. Glycosomes are known to harbor most peroxisomal enzymes and, in addition, they also possess nine glycolytic enzymes. In the present study, we have carried out proteomic profiling using high resolution mass spectrometry of a sucrose density gradient-enriched glycosomal fraction isolated from L. donovani promastigotes. This study resulted in the identification of 4022 unique peptides, leading to the identification of 1355 unique proteins from a preparation enriched in L. donovani glycosomes. Based on protein annotation, 566 (41.8%) were identified as hypothetical proteins with no known function. A majority of the identified proteins are involved in metabolic processes such as carbohydrate, lipid, and nucleic acid metabolism. Our present proteomic analysis is the most comprehensive study to date to map the proteome of L. donovani glycosomes. PMID:25748437

  18. Comprehensive Proteomics Analysis of Glycosomes from Leishmania donovani

    PubMed Central

    Jamdhade, Mahendra D.; Pawar, Harsh; Chavan, Sandip; Sathe, Gajanan; Umasankar, P.K.; Mahale, Kiran N.; Dixit, Tanwi; Madugundu, Anil K.; Prasad, T.S. Keshava; Gowda, Harsha

    2015-01-01

    Abstract Leishmania donovani is a kinetoplastid protozoan that causes a severe and fatal disease kala-azar, or visceral leishmaniasis. L. donovani infects human host after the phlebotomine sandfly takes a blood meal and resides within the phagolysosome of infected macrophages. Previous studies on host–parasite interactions have not focused on Leishmania organelles and the role that they play in the survival of this parasite within macrophages. Leishmania possess glycosomes that are unique and specialized subcellular microbody organelles. Glycosomes are known to harbor most peroxisomal enzymes and, in addition, they also possess nine glycolytic enzymes. In the present study, we have carried out proteomic profiling using high resolution mass spectrometry of a sucrose density gradient-enriched glycosomal fraction isolated from L. donovani promastigotes. This study resulted in the identification of 4022 unique peptides, leading to the identification of 1355 unique proteins from a preparation enriched in L. donovani glycosomes. Based on protein annotation, 566 (41.8%) were identified as hypothetical proteins with no known function. A majority of the identified proteins are involved in metabolic processes such as carbohydrate, lipid, and nucleic acid metabolism. Our present proteomic analysis is the most comprehensive study to date to map the proteome of L. donovani glycosomes. PMID:25748437

  19. A Systematic Analysis of a Deep Mouse Epididymal Sperm Proteome

    SciTech Connect

    Chauvin, Theodore; Xie, Fang; Liu, Tao; Nicora, Carrie D.; Yang, Feng; Camp, David G.; Smith, Richard D.; Roberts, Kenneth P.

    2012-12-21

    Spermatozoa are highly specialized cells that, when mature, are capable of navigating the female reproductive tract and fertilizing an oocyte. The sperm cell is thought to be largely quiescent in terms of transcriptional and translational activity. As a result, once it has left the male reproductive tract, the sperm cell is essentially operating with a static population of proteins. It is therefore theoretically possible to understand the protein networks contained in a sperm cell and to deduce its cellular function capabilities. To this end we have performed a proteomic analysis of mouse sperm isolated from the cauda epididymis and have confidently identified 2,850 proteins, which is the most comprehensive sperm proteome for any species reported to date. These proteins comprise many complete cellular pathways, including those for energy production via glycolysis, β-oxidation and oxidative phosphorylation, protein folding and transport, and cell signaling systems. This proteome should prove a useful tool for assembly and testing of protein networks important for sperm function.

  20. Integrative Analysis of the Mitochondrial Proteome in Yeast

    SciTech Connect

    Prokisch, Holger; Scharfe, Curt M.; Camp, David G.; Xiao, Wenzhong; David, Lior; Andreoli, Christophe; Monroe, Matthew E.; Moore, Ronald J.; Gritsenko, Marina A.; Kozany, Christian; Hixson, Kim K.; Mottaz, Heather M.; Zischka, Hans; Ueffing, Marius; Herman, Zelek S.; Davis, Ronald W.; Meitinger, Thomas; Oefner, Peter; Smith, Richard D.; Steinmetz, Lars M.

    2004-06-30

    In this study yeast mitochondria were used as a model system to apply, evaluate, and integrate different genomic approaches to define the proteins of an organelle. Liquid chromatography mass spectrometry applied to purified mitochondria identified 546 proteins. By expression analysis and comparison to other proteome studies, we demonstrate that the proteomic approach identifies primarily highly abundant proteins. By expanding our evaluation to other types of genomic approaches, including systematic deletion phenotype screening, expression profiling, subcellular localization studies, protein interaction analyses, and computational predictions, we show that an integration of approaches moves beyond the limitations of any single approach. We report the success of each approach by benchmarking it against a reference set of known mitochondrial proteins, and predict approximately 700 proteins associated with the mitochondrial organelle from the integration of 22 datasets. We show that a combination of complementary approaches like deletion phenotype screening and mass spectrometry can identify over 75% of the known mitochondrial proteome. These findings have implications for choosing optimal genome-wide approaches for the study of other cellular systems, including organelles and pathways in various species. Furthermore, our systematic identification of genes involved in mitochondrial function and biogenesis in yeast expands the candidates genes available for mapping Mendelian and complex mitochondrial disorders in humans.

  1. Proteomic Analysis of the Soybean Symbiosome Identifies New Symbiotic Proteins*

    PubMed Central

    Clarke, Victoria C.; Loughlin, Patrick C.; Gavrin, Aleksandr; Chen, Chi; Brear, Ella M.; Day, David A.; Smith, Penelope M.C.

    2015-01-01

    Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis. PMID

  2. Proteomic and bioinformatic analysis of membrane proteome in type 2 diabetic mouse liver.

    PubMed

    Kim, Gun-Hwa; Park, Edmond Changkyun; Yun, Sung-Ho; Hong, Yeonhee; Lee, Dong-Gyu; Shin, Eun-Young; Jung, Jongsun; Kim, Young Hwan; Lee, Kyung-Bok; Jang, Ik-Soon; Lee, Zee-Won; Chung, Young-Ho; Choi, Jong-Soon; Cheong, Chaejoon; Kim, Soohyun; Kim, Seung Il

    2013-04-01

    Type 2 diabetes mellitus (T2DM) is the most prevalent and serious metabolic disease affecting people worldwide. T2DM results from insulin resistance of the liver, muscle, and adipose tissue. In this study, we used proteomic and bioinformatic methodologies to identify novel hepatic membrane proteins that are related to the development of hepatic insulin resistance, steatosis, and T2DM. Using FT-ICR MS, we identified 95 significantly differentially expressed proteins in the membrane fraction of normal and T2DM db/db mouse liver. These proteins are primarily involved in energy metabolism pathways, molecular transport, and cellular signaling, and many of them have not previously been reported in diabetic studies. Bioinformatic analysis revealed that 16 proteins may be related to the regulation of insulin signaling in the liver. In addition, six proteins are associated with energy stress-induced, nine proteins with inflammatory stress-induced, and 14 proteins with endoplasmic reticulum stress-induced hepatic insulin resistance. Moreover, we identified 19 proteins that may regulate hepatic insulin resistance in a c-Jun amino-terminal kinase-dependent manner. In addition, three proteins, 14-3-3 protein beta (YWHAB), Slc2a4 (GLUT4), and Dlg4 (PSD-95), are discovered by comprehensive bioinformatic analysis, which have correlations with several proteins identified by proteomics approach. The newly identified proteins in T2DM should provide additional insight into the development and pathophysiology of hepatic steatosis and insulin resistance, and they may serve as useful diagnostic markers and/or therapeutic targets for these diseases.

  3. Urinary proteome analysis of irritable bowel syndrome (IBS) symptom subgroups

    PubMed Central

    Goo, Young Ah; Cain, Kevin; Jarrett, Monica; Smith, Lynne; Voss, Joachim; Tolentino, Ernie; Tsuji, Joyce; Tsai, Yihsuan S.; Panchaud, Alexandre; Goodlett, David R.; Shulman, Robert J.; Heitkemper, Margaret

    2013-01-01

    Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder characterized by chronic abdominal pain associated with alterations in bowel function. Given the heterogeneity of the symptoms, multiple pathophysiologic factors are suspected to play a role. We classified women with IBS into four subgroups based on distinct symptom profiles. In-depth shotgun proteomic analysis was carried out to profile the urinary proteomes to identify possible proteins associated with these subgroups. First void urine samples with urine creatinine level ≥ 100 mg/dL were used after excluding samples that tested positive for blood. Urine from ten subjects representing each symptom subgroup was pooled for proteomic analysis. The urine proteome was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a data-independent method known as Precursor Acquisition Independent From Ion Count (PAcIFIC) that allowed extended detectable dynamic range. Differences in protein quantities were determined by peptide spectral counting followed by validation of select proteins with ELISA or a targeted single reaction monitoring (LC-SRM/MS) approach. Four IBS symptom subgroups were selected: 1) Constipation, 2) Diarrhea + Low Pain, 3) Diarrhea + High Pain, and 4) High Pain + High Pychological Distress. A fifth group consisted of Healthy Control subjects. From comparisons of quantitative spectral counting data among the symptom subgroups and controls, a total of 18 proteins that showed quantitative differences in relative abundance and possible physiological relevance to IBS were selected for further investigation. Three of the 18 proteins were chosen for validation by either ELISA or SRM. An elevated expression of gelsolin (GSN) was associated with the high pain groups. Trefoil Factor 3 (TFF3) levels were higher in IBS groups compared to controls. In this study the IBS patients subclassified by predominant symptoms showed differences in urine proteome levels. Proteins

  4. Proteomic Characterization of Yersinia pestis Virulence

    SciTech Connect

    Chromy, B; Murphy, G; Gonzales, A; Fitch, J P; McCutchen-Maloney, S L

    2005-01-05

    Yersinia pestis, the etiological agent of plague, functions via the Type III secretion mechanism whereby virulence factors are induced upon interactions with a mammalian host. Here, the Y. pestis proteome was studied by two-dimensional differential gel electrophoresis (2-D DIGE) under physiologically relevant growth conditions mimicking the calcium concentrations and temperatures that the pathogen would encounter in the flea vector and upon interaction with the mammalian host. Over 4100 individual protein spots were detected of which hundreds were differentially expressed in the entire comparative experiment. A total of 43 proteins that were differentially expressed between the vector and host growth conditions were identified by mass spectrometry. Expected differences in expression were observed for several known virulence factors including catalase-peroxidase (KatY), murine toxin (Ymt), plasminogen activator (Pla), and F1 capsule antigen (Caf1), as well as putative virulence factors. Chaperone proteins and signaling molecules hypothesized to be involved in virulence due to their role in Type III secretion were also identified. Other differentially expressed proteins not previously reported to contribute to virulence are candidates for more detailed mechanistic studies, representing potential new virulence determinants. For example, several sugar metabolism proteins were differentially regulated in response to lower calcium and higher temperature, suggesting these proteins, while not directly connected to virulence, either represent a metabolic switch for survival in the host environment or may facilitate production of virulence factors. Results presented here contribute to a more thorough understanding of the virulence mechanism of Y. pestis through proteomic characterization of the pathogen under induced virulence.

  5. Proteomic analysis of hyperadhesive Candida glabrata clinical isolates reveals a core wall proteome and differential incorporation of adhesins.

    PubMed

    Gómez-Molero, Emilia; de Boer, Albert D; Dekker, Henk L; Moreno-Martínez, Ana; Kraneveld, Eef A; Ichsan; Chauhan, Neeraj; Weig, Michael; de Soet, Johannes J; de Koster, Chris G; Bader, Oliver; de Groot, Piet W J

    2015-12-01

    Attachment to human host tissues or abiotic medical devices is a key step in the development of infections by Candida glabrata. The genome of this pathogenic yeast codes for a large number of adhesins, but proteomic work using reference strains has shown incorporation of only few adhesins in the cell wall. By making inventories of the wall proteomes of hyperadhesive clinical isolates and reference strain CBS138 using mass spectrometry, we describe the cell wall proteome of C. glabrata and tested the hypothesis that hyperadhesive isolates display differential incorporation of adhesins. Two clinical strains (PEU382 and PEU427) were selected, which both were hyperadhesive to polystyrene and showed high surface hydrophobicity. Cell wall proteome analysis under biofilm-forming conditions identified a core proteome of about 20 proteins present in all C. glabrata strains. In addition, 12 adhesin-like wall proteins were identified in the hyperadherent strains, including six novel adhesins (Awp8-13) of which only Awp12 was also present in CBS138. We conclude that the hyperadhesive capacity of these two clinical C. glabrata isolates is correlated with increased and differential incorporation of cell wall adhesins. Future studies should elucidate the role of the identified proteins in the establishment of C. glabrata infections. PMID:26546455

  6. A secretomics analysis reveals major differences in the macrophage responses towards different types of carbon nanotubes.

    PubMed

    Palomäki, Jaana; Sund, Jukka; Vippola, Minnamari; Kinaret, Pia; Greco, Dario; Savolainen, Kai; Puustinen, Anne; Alenius, Harri

    2015-01-01

    Certain types of carbon nanotubes (CNT) can evoke inflammation, fibrosis and mesothelioma in vivo, raising concerns about their potential health effects. It has been recently postulated that NLRP3 inflammasome activation is important in the CNT-induced toxicity. However, more comprehensive studies of the protein secretion induced by CNT can provide new information about their possible pathogenic mechanisms. Here, we studied protein secretion from human macrophages with a proteomic approach in an unbiased way. Human monocyte-derived macrophages (MDM) were exposed to tangled or rigid, long multi-walled CNT (MWCNT) or crocidolite asbestos for 6 h. The growth media was concentrated and secreted proteins were analyzed using 2D-DIGE and DeCyder software. Subsequently, significantly up- or down-regulated protein spots were in-gel digested and identified with an LC-MS/MS approach. Bioinformatics analysis was performed to reveal the different patterns of protein secretion induced by these materials. The results show that both long rigid MWCNT and asbestos elicited ample and highly similar protein secretion. In contrast, exposure to long tangled MWCNT induced weaker protein secretion with a more distinct profile. Secretion of lysosomal proteins followed the exposure to all materials, suggesting lysosomal damage. However, only long rigid MWCNT was associated with apoptosis. This analysis suggests that the CNT toxicity in human MDM is mediated via vigorous secretion of inflammation-related proteins and apoptosis. This study provides new insights into the mechanisms of toxicity of high aspect ratio nanomaterials and indicates that not all types of CNT are as hazardous as asbestos fibers.

  7. Quantitative proteomic analysis of drug-induced changes in mycobacteria.

    PubMed

    Hughes, Minerva A; Silva, Jeffrey C; Geromanos, Scott J; Townsend, Craig A

    2006-01-01

    A new approach for qualitative and quantitative proteomic analysis using capillary liquid chromatography and mass spectrometry to study the protein expression response in mycobacteria following isoniazid treatment is discussed. In keeping with known effects on the fatty acid synthase II pathway, proteins encoded by the kas operon (AcpM, KasA, KasB, Accd6) were significantly overexpressed, as were those involved in iron metabolism and cell division suggesting a complex interplay of metabolic events leading to cell death. PMID:16396495

  8. Proteome analysis of the triton-insoluble erythrocyte membrane skeleton.

    PubMed

    Basu, Avik; Harper, Sandra; Pesciotta, Esther N; Speicher, Kaye D; Chakrabarti, Abhijit; Speicher, David W

    2015-10-14

    Erythrocyte shape and membrane integrity is imparted by the membrane skeleton, which can be isolated as a Triton X-100 insoluble structure that retains the biconcave shape of intact erythrocytes, indicating isolation of essentially intact membrane skeletons. These erythrocyte "Triton Skeletons" have been studied morphologically and biochemically, but unbiased proteome analysis of this substructure of the membrane has not been reported. In this study, different extraction buffers and in-depth proteome analyses were used to more fully define the protein composition of this functionally critical macromolecular complex. As expected, the major, well-characterized membrane skeleton proteins and their associated membrane anchors were recovered in good yield. But surprisingly, a substantial number of additional proteins that are not considered in erythrocyte membrane skeleton models were recovered in high yields, including myosin-9, lipid raft proteins (stomatin, flotillin1 and 2), multiple chaperone proteins (HSPs, protein disulfide isomerase and calnexin), and several other proteins. These results show that the membrane skeleton is substantially more complex than previous biochemical studies indicated, and it apparently has localized regions with unique protein compositions and functions. This comprehensive catalog of the membrane skeleton should lead to new insights into erythrocyte membrane biology and pathogenic mutations that perturb membrane stability. Biological significance Current models of erythrocyte membranes describe fairly simple homogenous structures that are incomplete. Proteome analysis of the erythrocyte membrane skeleton shows that it is quite complex and includes a substantial number of proteins whose roles and locations in the membrane are not well defined. Further elucidation of interactions involving these proteins and definition of microdomains in the membrane that contain these proteins should yield novel insights into how the membrane skeleton

  9. Proteome analysis of the triton-insoluble erythrocyte membrane skeleton.

    PubMed

    Basu, Avik; Harper, Sandra; Pesciotta, Esther N; Speicher, Kaye D; Chakrabarti, Abhijit; Speicher, David W

    2015-10-14

    Erythrocyte shape and membrane integrity is imparted by the membrane skeleton, which can be isolated as a Triton X-100 insoluble structure that retains the biconcave shape of intact erythrocytes, indicating isolation of essentially intact membrane skeletons. These erythrocyte "Triton Skeletons" have been studied morphologically and biochemically, but unbiased proteome analysis of this substructure of the membrane has not been reported. In this study, different extraction buffers and in-depth proteome analyses were used to more fully define the protein composition of this functionally critical macromolecular complex. As expected, the major, well-characterized membrane skeleton proteins and their associated membrane anchors were recovered in good yield. But surprisingly, a substantial number of additional proteins that are not considered in erythrocyte membrane skeleton models were recovered in high yields, including myosin-9, lipid raft proteins (stomatin, flotillin1 and 2), multiple chaperone proteins (HSPs, protein disulfide isomerase and calnexin), and several other proteins. These results show that the membrane skeleton is substantially more complex than previous biochemical studies indicated, and it apparently has localized regions with unique protein compositions and functions. This comprehensive catalog of the membrane skeleton should lead to new insights into erythrocyte membrane biology and pathogenic mutations that perturb membrane stability. Biological significance Current models of erythrocyte membranes describe fairly simple homogenous structures that are incomplete. Proteome analysis of the erythrocyte membrane skeleton shows that it is quite complex and includes a substantial number of proteins whose roles and locations in the membrane are not well defined. Further elucidation of interactions involving these proteins and definition of microdomains in the membrane that contain these proteins should yield novel insights into how the membrane skeleton

  10. Proteomic Analysis of Cytoskeleton Proteins in Fish.

    PubMed

    Gotesman, Michael; Menanteau-Ledouble, Simon; El-Matbouli, Mansour

    2016-01-01

    In this chapter, we describe laboratory protocols for rearing fish and a simple and efficient method of extracting and identifying pathogen and host proteins that may be involved in entry and replication of commercially important fish viruses. We have used the common carp (Cyprinus carpio L.) and goldfish (Cyprinus auratus) as a model system for studies of proteins involved in viral entry and replication. The chapter describes detailed protocols for maintenance of carp, cell culture, antibody purification of proteins, and use of electrospray-ionization mass spectrometry analysis to screen and identify cytoskeleton and other proteins that may be involved in viral infection and propagation in fish. PMID:26498797

  11. Quantitative proteomic analysis of intact plastids.

    PubMed

    Shiraya, Takeshi; Kaneko, Kentaro; Mitsui, Toshiaki

    2014-01-01

    Plastids are specialized cell organelles in plant cells that are differentiated into various forms including chloroplasts, chromoplasts, and amyloplasts, and fulfill important functions in maintaining the overall cell metabolism and sensing environmental factors such as sunlight. It is therefore important to grasp the mechanisms of differentiation and functional changes of plastids in order to enhance the understanding of vegetality. In this chapter, details of a method for the extraction of intact plastids that makes analysis possible while maintaining the plastid functions are provided; in addition, a quantitative shotgun method for analyzing the composition and changes in the content of proteins in plastids as a result of environmental impacts is described. PMID:24136541

  12. Quantitative proteomic analysis of intact plastids.

    PubMed

    Shiraya, Takeshi; Kaneko, Kentaro; Mitsui, Toshiaki

    2014-01-01

    Plastids are specialized cell organelles in plant cells that are differentiated into various forms including chloroplasts, chromoplasts, and amyloplasts, and fulfill important functions in maintaining the overall cell metabolism and sensing environmental factors such as sunlight. It is therefore important to grasp the mechanisms of differentiation and functional changes of plastids in order to enhance the understanding of vegetality. In this chapter, details of a method for the extraction of intact plastids that makes analysis possible while maintaining the plastid functions are provided; in addition, a quantitative shotgun method for analyzing the composition and changes in the content of proteins in plastids as a result of environmental impacts is described.

  13. Liquid MALDI MS Analysis of Complex Peptide and Proteome Samples.

    PubMed

    Wiangnon, Kanjana; Cramer, Rainer

    2016-09-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) is well-known to be a powerful technique for the analysis of biological samples. By using glycerol-based liquid support matrices (LSMs) instead of conventional MALDI matrices the power of this technique can be extended further. In this study, we exploited LSMs for the identification of complex samples, that is, the Lactobacillus proteome and a bovine serum albumin (BSA) digest. Liquid and solid MALDI samples were manually and robotically prepared by coupling a nanoflow high-performance liquid chromatography (nanoHPLC) system to an automated MALDI sample spotting device. MS and MS/MS data were successfully acquired at the femtomole level using TOF/TOF as well as Q-TOF instrumentation and used for protein identification searching sequence databases. For the BSA digest analysis, liquid MALDI samples resulted in peptide mass fingerprints, which led to a higher confidence in protein identification compared with solid (crystalline) MALDI samples; however, postsource decay (PSD) MS/MS analysis of both the proteome of Lactobacillus plantarum WCFS1 cells and BSA digest showed that further optimization of the formation and detection of peptide fragment ions is still needed for liquid MALDI samples, as the MS/MS ion search score was lower than that for the solid MALDI samples, reflecting the poorer quality of the liquid MALDI-PSD spectra, which can be attributed to the differences in PSD parameters and their optimization that is currently achievable. PMID:27418427

  14. Identification and proteomic analysis of osteoblast-derived exosomes.

    PubMed

    Ge, Min; Ke, Ronghu; Cai, Tianyi; Yang, Junyi; Mu, Xiongzheng

    2015-11-01

    Exosomes are nanometer-sized vesicles with the function of intercellular communication, and they are released by various cell types. To reveal the knowledge about the exosomes from osteoblast, and explore the potential functions of osteogenesis, we isolated microvesicles from supernatants of mouse Mc3t3 by ultracentrifugation, characterized exosomes by electron microscopy and immunoblotting and presented the protein profile by proteomic analysis. The result demonstrated that microvesicles were between 30 and 100 nm in diameter, round shape with cup-like concavity and expressed exosomal marker tumor susceptibility gene (TSG) 101 and flotillin (Flot) 1. We identified a total number of 1069 proteins among which 786 proteins overlap with ExoCarta database. Gene Oncology analysis indicated that exosomes mostly derived from plasma membrane and mainly involved in protein localization and intracellular signaling. The Ingenuity Pathway Analysis showed pathways are mostly involved in exosome biogenesis, formation, uptake and osteogenesis. Among the pathways, eukaryotic initiation factor 2 pathways played an important role in osteogenesis. Our study identified osteoblast-derived exosomes, unveiled the content of them, presented potential osteogenesis-related proteins and pathways and provided a rich proteomics data resource that will be valuable for further studies of the functions of individual proteins in bone diseases. PMID:26420226

  15. Identification and proteomic analysis of osteoblast-derived exosomes.

    PubMed

    Ge, Min; Ke, Ronghu; Cai, Tianyi; Yang, Junyi; Mu, Xiongzheng

    2015-11-01

    Exosomes are nanometer-sized vesicles with the function of intercellular communication, and they are released by various cell types. To reveal the knowledge about the exosomes from osteoblast, and explore the potential functions of osteogenesis, we isolated microvesicles from supernatants of mouse Mc3t3 by ultracentrifugation, characterized exosomes by electron microscopy and immunoblotting and presented the protein profile by proteomic analysis. The result demonstrated that microvesicles were between 30 and 100 nm in diameter, round shape with cup-like concavity and expressed exosomal marker tumor susceptibility gene (TSG) 101 and flotillin (Flot) 1. We identified a total number of 1069 proteins among which 786 proteins overlap with ExoCarta database. Gene Oncology analysis indicated that exosomes mostly derived from plasma membrane and mainly involved in protein localization and intracellular signaling. The Ingenuity Pathway Analysis showed pathways are mostly involved in exosome biogenesis, formation, uptake and osteogenesis. Among the pathways, eukaryotic initiation factor 2 pathways played an important role in osteogenesis. Our study identified osteoblast-derived exosomes, unveiled the content of them, presented potential osteogenesis-related proteins and pathways and provided a rich proteomics data resource that will be valuable for further studies of the functions of individual proteins in bone diseases.

  16. Liquid MALDI MS Analysis of Complex Peptide and Proteome Samples.

    PubMed

    Wiangnon, Kanjana; Cramer, Rainer

    2016-09-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) is well-known to be a powerful technique for the analysis of biological samples. By using glycerol-based liquid support matrices (LSMs) instead of conventional MALDI matrices the power of this technique can be extended further. In this study, we exploited LSMs for the identification of complex samples, that is, the Lactobacillus proteome and a bovine serum albumin (BSA) digest. Liquid and solid MALDI samples were manually and robotically prepared by coupling a nanoflow high-performance liquid chromatography (nanoHPLC) system to an automated MALDI sample spotting device. MS and MS/MS data were successfully acquired at the femtomole level using TOF/TOF as well as Q-TOF instrumentation and used for protein identification searching sequence databases. For the BSA digest analysis, liquid MALDI samples resulted in peptide mass fingerprints, which led to a higher confidence in protein identification compared with solid (crystalline) MALDI samples; however, postsource decay (PSD) MS/MS analysis of both the proteome of Lactobacillus plantarum WCFS1 cells and BSA digest showed that further optimization of the formation and detection of peptide fragment ions is still needed for liquid MALDI samples, as the MS/MS ion search score was lower than that for the solid MALDI samples, reflecting the poorer quality of the liquid MALDI-PSD spectra, which can be attributed to the differences in PSD parameters and their optimization that is currently achievable.

  17. Analysis of the Arabidopsis Mitochondrial Proteome1

    PubMed Central

    Millar, A. Harvey; Sweetlove, Lee J.; Giegé, Philippe; Leaver, Christopher J.

    2001-01-01

    The complete set of nuclear genes that encode proteins targeted to mitochondria in plants is currently undefined and thus the full range of mitochondrial functions in plants is unknown. Analysis of two-dimensional gel separations of Arabidopsis cell culture mitochondrial protein revealed approximately 100 abundant proteins and 250 low-abundance proteins. Comparison of subfractions of mitochondrial protein on two-dimensional gels provided information on the soluble, membrane, or integral membrane locations of this protein set. A total of 170 protein spots were excised, trypsin-digested, and matrix-assisted laser desorption ionization/time of flight mass spectrometry spectra obtained. Using this dataset, 91 of the proteins were identified by searching translated Arabidopsis genomic databases. Of this set, 81 have defined functions based on sequence comparison. These functions include respiratory electron transport, tricarboxylic acid cycle metabolism, amino acid metabolism, protein import, processing, and assembly, transcription, membrane transport, and antioxidant defense. A total of 10 spectra were matched to Arabidopsis putative open reading frames for which no specific function has been determined. A total of 64 spectra did not match to an identified open reading frame. Analysis of full-length putative protein sequences using bioinformatic tools to predict subcellular targeting (TargetP, Psort, and MitoProt) revealed significant variation in predictions, and also a lack of mitochondrial targeting prediction for several characterized mitochondrial proteins. PMID:11743115

  18. Comprehensive proteomic analysis of the human spliceosome

    NASA Astrophysics Data System (ADS)

    Zhou, Zhaolan; Licklider, Lawrence J.; Gygi, Steven P.; Reed, Robin

    2002-09-01

    The precise excision of introns from pre-messenger RNA is performed by the spliceosome, a macromolecular machine containing five small nuclear RNAs and numerous proteins. Much has been learned about the protein components of the spliceosome from analysis of individual purified small nuclear ribonucleoproteins and salt-stable spliceosome `core' particles. However, the complete set of proteins that constitutes intact functional spliceosomes has yet to be identified. Here we use maltose-binding protein affinity chromatography to isolate spliceosomes in highly purified and functional form. Using nanoscale microcapillary liquid chromatography tandem mass spectrometry, we identify ~145 distinct spliceosomal proteins, making the spliceosome the most complex cellular machine so far characterized. Our spliceosomes comprise all previously known splicing factors and 58 newly identified components. The spliceosome contains at least 30 proteins with known or putative roles in gene expression steps other than splicing. This complexity may be required not only for splicing multi-intronic metazoan pre-messenger RNAs, but also for mediating the extensive coupling between splicing and other steps in gene expression.

  19. Genome and Proteome Analysis of Industrial Fungi

    SciTech Connect

    Baker, Scott E.; Wend, Christopher F.; Martinez, Antonio D.; Magnuson, Jon K.; Panisko, Ellen A.; Dai, Ziyu; Bruno, Kenneth S.; Anderson, Kevin K.; Monroe, Matthew E.; Daly, Don S.; Lasure, Linda L.

    2007-09-06

    In order to decrease dependence on petroleum, the United States Department of Energy (USDOE) Office of the Biomass Program (OBP) is investing in research and development to enable its vision of the biorefinery. The biorefinery will decrease the use of petroleum through conversion of biomass such as crops or agricultural waste into fuels and products. How do fungi fit into the biorefinery? Analysis of the “Top Ten” study indicates that nine of the top twelve chemical building blocks are currently produced or may potentially be produced by fungal fermentation processes. However, a significant barrier to the use of bio-based products is the economic feasibility – fuels and products must be price-competitive with those derived from petroleum. An obvious way to decrease the costs of biobased products from fungi is to make fermentation strains more productive and processes more efficient. Traditional strain improvement programs typically span a time scale measured in decades and process development done through the use of batch cultures is extremely labor intensive.

  20. Proteomic Analysis of Vitreous Humor in Retinal Vein Occlusion

    PubMed Central

    Reich, Michael; Dacheva, Ivanka; Nobl, Matthias; Siwy, Justyna; Schanstra, Joost P.; Mullen, William; Koch, Frank H. J.; Kopitz, Jürgen; Kretz, Florian T. A.; Auffarth, Gerd U.; Koss, Michael J.

    2016-01-01

    Purpose To analyze the protein profile of human vitreous of untreated patients with retinal vein occlusion (RVO). Methods Sixty-eight vitreous humor (VH) samples (44 from patients with treatment naïve RVO, 24 controls with idiopathic floaters) were analyzed in this clinical-experimental study using capillary electrophoresis coupled to mass spectrometer and tandem mass spectrometry. To define potential candidate protein markers of RVO, proteomic analysis was performed on RVO patients (n = 30) and compared with controls (n = 16). To determine validity of potential biomarker candidates in RVO, receiver operating characteristic (ROC) was performed by using proteome data of independent RVO (n = 14) and control samples (n = 8). Results Ninety-four different proteins (736 tryptic peptides) could be identified. Sixteen proteins were found to be significant when comparing RVO and control samples (P = 1.43E-05 to 4.48E-02). Five proteins (Clusterin, Complement C3, Ig lambda-like polypeptide 5 (IGLL5), Opticin and Vitronectin), remained significant after using correction for multiple testing. These five proteins were also detected significant when comparing subgroups of RVO (central RVO, hemi-central RVO, branch RVO) to controls. Using independent samples ROC-Area under the curve was determined proving the validity of the results: Clusterin 0.884, Complement C3 0.955, IGLL5 1.000, Opticin 0.741, Vitronectin 0.786. In addition, validation through ELISA measurements was performed. Conclusion The results of the study reveal that the proteomic composition of VH differed significantly between the patients with RVO and the controls. The proteins identified may serve as potential biomarkers for pathogenesis induced by RVO. PMID:27362861

  1. Quantitative proteomic analysis of cold-responsive proteins in rice.

    PubMed

    Neilson, Karlie A; Mariani, Michael; Haynes, Paul A

    2011-05-01

    Rice is susceptible to cold stress and with a future of climatic instability we will be unable to produce enough rice to satisfy increasing demand. A thorough understanding of the molecular responses to thermal stress is imperative for engineering cultivars, which have greater resistance to low temperature stress. In this study we investigated the proteomic response of rice seedlings to 48, 72 and 96 h of cold stress at 12-14°C. The use of both label-free and iTRAQ approaches in the analysis of global protein expression enabled us to assess the complementarity of the two techniques for use in plant proteomics. The approaches yielded a similar biological response to cold stress despite a disparity in proteins identified. The label-free approach identified 236 cold-responsive proteins compared to 85 in iTRAQ results, with only 24 proteins in common. Functional analysis revealed differential expression of proteins involved in transport, photosynthesis, generation of precursor metabolites and energy; and, more specifically, histones and vitamin B biosynthetic proteins were observed to be affected by cold stress. PMID:21433000

  2. Analysis of proteins and proteomes by mass spectrometry.

    PubMed

    Mann, M; Hendrickson, R C; Pandey, A

    2001-01-01

    A decade after the discovery of electrospray and matrix-assisted laser desorption ionization (MALDI), methods that finally allowed gentle ionization of large biomolecules, mass spectrometry has become a powerful tool in protein analysis and the key technology in the emerging field of proteomics. The success of mass spectrometry is driven both by innovative instrumentation designs, especially those operating on the time-of-flight or ion-trapping principles, and by large-scale biochemical strategies, which use mass spectrometry to detect the isolated proteins. Any human protein can now be identified directly from genome databases on the basis of minimal data derived by mass spectrometry. As has already happened in genomics, increased automation of sample handling, analysis, and the interpretation of results will generate an avalanche of qualitative and quantitative proteomic data. Protein-protein interactions can be analyzed directly by precipitation of a tagged bait followed by mass spectrometric identification of its binding partners. By these and similar strategies, entire protein complexes, signaling pathways, and whole organelles are being characterized. Posttranslational modifications remain difficult to analyze but are starting to yield to generic strategies.

  3. Proteomics Analysis of the Zebrafish Skeletal Extracellular Matrix

    PubMed Central

    Kessels, Maurijn Y.; Huitema, Leonie F. A.; Boeren, Sjef; Kranenbarg, Sander; Schulte-Merker, Stefan; van Leeuwen, Johan L.; de Vries, Sacco C.

    2014-01-01

    The extracellular matrix of the immature and mature skeleton is key to the development and function of the skeletal system. Notwithstanding its importance, it has been technically challenging to obtain a comprehensive picture of the changes in skeletal composition throughout the development of bone and cartilage. In this study, we analyzed the extracellular protein composition of the zebrafish skeleton using a mass spectrometry-based approach, resulting in the identification of 262 extracellular proteins, including most of the bone and cartilage specific proteins previously reported in mammalian species. By comparing these extracellular proteins at larval, juvenile, and adult developmental stages, 123 proteins were found that differed significantly in abundance during development. Proteins with a reported function in bone formation increased in abundance during zebrafish development, while analysis of the cartilage matrix revealed major compositional changes during development. The protein list includes ligands and inhibitors of various signaling pathways implicated in skeletogenesis such as the Int/Wingless as well as the insulin-like growth factor signaling pathways. This first proteomic analysis of zebrafish skeletal development reveals that the zebrafish skeleton is comparable with the skeleton of other vertebrate species including mammals. In addition, our study reveals 6 novel proteins that have never been related to vertebrate skeletogenesis and shows a surprisingly large number of differences in the cartilage and bone proteome between the head, axis and caudal fin regions. Our study provides the first systematic assessment of bone and cartilage protein composition in an entire vertebrate at different stages of development. PMID:24608635

  4. Proteomic analysis of seminal fluid from men exhibiting oxidative stress

    PubMed Central

    2013-01-01

    Background Seminal plasma serves as a natural reservoir of antioxidants. It helps to remove excessive formation of reactive oxygen species (ROS) and consequently, reduce oxidative stress. Proteomic profiling of seminal plasma proteins is important to understand the molecular mechanisms underlying oxidative stress and sperm dysfunction in infertile men. Methods This prospective study consisted of 52 subjects: 32 infertile men and 20 healthy donors. Once semen and oxidative stress parameters were assessed (ROS, antioxidant concentration and DNA damage), the subjects were categorized into ROS positive (ROS+) or ROS negative (ROS-). Seminal plasma from each group was pooled and subjected to proteomics analysis. In-solution digestion and protein identification with liquid chromatography tandem mass spectrometry (LC-MS/MS), followed by bioinformatics analyses was used to identify and characterize potential biomarker proteins. Results A total of 14 proteins were identified in this analysis with 7 of these common and unique proteins were identified in both the ROS+ and ROS- groups through MASCOT and SEQUEST analyses, respectively. Prolactin-induced protein was found to be more abundantly present in men with increased levels of ROS. Gene ontology annotations showed extracellular distribution of proteins with a major role in antioxidative activity and regulatory processes. Conclusions We have identified proteins that help protect against oxidative stress and are uniquely present in the seminal plasma of the ROS- men. Men exhibiting high levels of ROS in their seminal ejaculate are likely to exhibit proteins that are either downregulated or oxidatively modified, and these could potentially contribute to male infertility. PMID:24004880

  5. Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell

    PubMed Central

    Wang, Xin-xing; Bao, Lin-fei; Fan, Mei-hua; Li, Xiao-min; Wu, Chang-wen; Xia, Shu-wei

    2015-01-01

    Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs) pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment. PMID:26218932

  6. Proteomic analysis of naturally-sourced biological scaffolds.

    PubMed

    Li, Qiyao; Uygun, Basak E; Geerts, Sharon; Ozer, Sinan; Scalf, Mark; Gilpin, Sarah E; Ott, Harald C; Yarmush, Martin L; Smith, Lloyd M; Welham, Nathan V; Frey, Brian L

    2016-01-01

    A key challenge to the clinical implementation of decellularized scaffold-based tissue engineering lies in understanding the process of removing cells and immunogenic material from a donor tissue/organ while maintaining the biochemical and biophysical properties of the scaffold that will promote growth of newly seeded cells. Current criteria for evaluating whole organ decellularization are primarily based on nucleic acids, as they are easy to quantify and have been directly correlated to adverse host responses. However, numerous proteins cause immunogenic responses and thus should be measured directly to further understand and quantify the efficacy of decellularization. In addition, there has been increasing appreciation for the role of the various protein components of the extracellular matrix (ECM) in directing cell growth and regulating organ function. We performed in-depth proteomic analysis on four types of biological scaffolds and identified a large number of both remnant cellular and ECM proteins. Measurements of individual protein abundances during the decellularization process revealed significant removal of numerous cellular proteins, but preservation of most structural matrix proteins. The observation that decellularized scaffolds still contain many cellular proteins, although at decreased abundance, indicates that elimination of DNA does not assure adequate removal of all cellular material. Thus, proteomic analysis provides crucial characterization of the decellularization process to create biological scaffolds for future tissue/organ replacement therapies.

  7. Proteomic analysis of fetal programming-related obesity markers.

    PubMed

    Lee, Ji Hye; Yoo, Jae Young; You, Young-Ah; Kwon, Woo-Sung; Lee, Sang Mi; Pang, Myung-Geol; Kim, Young Ju

    2015-08-01

    The objectives of this study were to analyze fetal programming in rat brain using proteomic analysis and to identify fetal programming-related obesity markers. Sprague-Dawley rats were divided into four feeding groups: (i) the Ad Libitum (AdLib)/AdLib group was given a normal diet during pregnancy and the lactation period; (ii) the AdLib/maternal food restriction group (FR) was subjected to 50% FR during the lactation period; (iii) the FR/AdLib group was subjected to 50% FR during pregnancy; and (iv) the FR/FR group was subjected to 50% FR during pregnancy and the lactation period. Offspring from each group were sacrificed at 3 weeks of age and whole brains were dissected. To obtain a maximum number of protein markers related to obesity, 2DE and Pathway Studio bioinformatics analysis were performed. The identities of the markers among the selected and candidate proteins were confirmed by Western blotting and immunohistochemistry. Proteomic and bioinformatics analyses revealed that expression of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) and Secernin 1 (SCRN1) were significantly different in the FR/AdLib group compared with the AdLib/AdLib group for both male and female offspring. These findings suggest that UCHL1 and SCRN1 may be used as fetal programming-related obesity markers.

  8. Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell.

    PubMed

    Gao, Peng; Liao, Zhi; Wang, Xin-Xing; Bao, Lin-Fei; Fan, Mei-Hua; Li, Xiao-Min; Wu, Chang-Wen; Xia, Shu-Wei

    2015-01-01

    Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs) pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment.

  9. Overview of software options for processing, analysis and interpretation of mass spectrometric proteomic data.

    PubMed

    Haga, Steve W; Wu, Hui-Fen

    2014-10-01

    Recently, the interests in proteomics have been intensively increased, and the proteomic methods have been widely applied to many problems in cell biology. If the age of 1990s is considered to be a decade of genomics, we can claim that the following years of the new century is a decade of proteomics. The rapid evolution of proteomics has continued through these years, with a series of innovations in separation techniques and the core technologies of two-dimensional gel electrophoresis and MS. Both technologies are fueled by automation and high throughput computation for profiling of proteins from biological systems. As Patterson ever mentioned, 'data analysis is the Achilles heel of proteomics and our ability to generate data now outstrips our ability to analyze it'. The development of automatic and high throughput technologies for rapid identification of proteins is essential for large-scale proteome projects and automatic protein identification and characterization is essential for high throughput proteomics. This review provides a snap shot of the tools and applications that are available for mass spectrometric high throughput biocomputation. The review starts with a brief introduction of proteomics and MS. Computational tools that can be employed at various stages of analysis are presented, including that for data processing, identification, quantification, and the understanding of the biological functions of individual proteins and their dynamic interactions. The challenges of computation software development and its future trends in MS-based proteomics have also been speculated.

  10. Overview of software options for processing, analysis and interpretation of mass spectrometric proteomic data.

    PubMed

    Haga, Steve W; Wu, Hui-Fen

    2014-10-01

    Recently, the interests in proteomics have been intensively increased, and the proteomic methods have been widely applied to many problems in cell biology. If the age of 1990s is considered to be a decade of genomics, we can claim that the following years of the new century is a decade of proteomics. The rapid evolution of proteomics has continued through these years, with a series of innovations in separation techniques and the core technologies of two-dimensional gel electrophoresis and MS. Both technologies are fueled by automation and high throughput computation for profiling of proteins from biological systems. As Patterson ever mentioned, 'data analysis is the Achilles heel of proteomics and our ability to generate data now outstrips our ability to analyze it'. The development of automatic and high throughput technologies for rapid identification of proteins is essential for large-scale proteome projects and automatic protein identification and characterization is essential for high throughput proteomics. This review provides a snap shot of the tools and applications that are available for mass spectrometric high throughput biocomputation. The review starts with a brief introduction of proteomics and MS. Computational tools that can be employed at various stages of analysis are presented, including that for data processing, identification, quantification, and the understanding of the biological functions of individual proteins and their dynamic interactions. The challenges of computation software development and its future trends in MS-based proteomics have also been speculated. PMID:25303385

  11. Toward improving the proteomic analysis of formalin-fixed, paraffin-embedded tissue.

    PubMed

    Fowler, Carol B; O'Leary, Timothy J; Mason, Jeffrey T

    2013-08-01

    Archival formalin-fixed, paraffin-embedded (FFPE) tissue and their associated diagnostic records represent an invaluable source of retrospective proteomic information on diseases for which the clinical outcome and response to treatment are known. However, analysis of archival FFPE tissues by high-throughput proteomic methods has been hindered by the adverse effects of formaldehyde fixation and subsequent tissue histology. This review examines recent methodological advances for extracting proteins from FFPE tissue suitable for proteomic analysis. These methods, based largely upon heat-induced antigen retrieval techniques borrowed from immunohistochemistry, allow at least a qualitative analysis of the proteome of FFPE archival tissues. The authors also discuss recent advances in the proteomic analysis of FFPE tissue; including liquid-chromatography tandem mass spectrometry, reverse phase protein microarrays and imaging mass spectrometry.

  12. Proteomic Analysis of Pachytene Spermatocytes of Sterile Hybrid Male Mice.

    PubMed

    Wang, Lu; Guo, Yueshuai; Liu, Wenjing; Zhao, Weidong; Song, Gendi; Zhou, Tao; Huang, Hefeng; Guo, Xuejiang; Sun, Fei

    2016-09-01

    Incompatibilities in interspecific hybrids, such as reduced hybrid fertility and lethality, are common features resulting from reproductive isolation that lead to speciation. Subspecies crosses of house mice produce offspring in which one sex is infertile or absent, yet the molecular mechanisms of hybrid sterility are poorly understood. In this study, we observed extensive asynapsis of chromosomes and disturbance of the sex body in pachytene spermatocytes of sterile F1 males (PWK/Ph female × C57BL/6J male). We report the high-confidence identification of 4005 proteins in the pachytene spermatocytes of fertile F1 males (PWK/Ph male × C57BL/6J female) and sterile F1 males (PWK/Ph female × C57BL/6J male), of which 215 were upregulated and 381 were downregulated. Bioinformatics analysis of the proteome led to the identification of 43 and 59 proteins known to be essential for male meiosis and spermatogenesis in mice, respectively. Characterization of the proteome of pachytene spermatocytes associated with hybrid male sterility provides an inventory of proteins that is useful for understanding meiosis and the mechanisms of hybrid male infertility.

  13. Proteomic Analysis Provides Insights on Venom Processing in Conus textile

    PubMed Central

    Tayo, Lemmuel L.; Lu, Bingwen; Cruz, Lourdes J.; Yates, John R.

    2010-01-01

    Conus species of marine snails deliver a potent collection of toxins from the venom duct via a long proboscis attached to a harpoon tooth. Conotoxins are known to possess powerful neurological effects and some have been developed for therapeutic uses. Using mass-spectrometry based proteomics, qualitative and quantitative differences in conotoxin components were found in the proximal, central and distal sections of the C. textile venom duct suggesting specialization of duct sections for biosynthesis of particular conotoxins. Reversed phase HPLC followed by Orbitrap mass spectrometry and data analysis using SEQUEST and ProLuCID identified 31 conotoxin sequences and 25 post-translational modification (PTM) variants with King-Kong 2 peptide being the most abundant. Several previously unreported variants of known conopeptides and were found and this is the first time that HyVal is reported for a disulfide rich Conus peptide. Differential expression along the venom duct, production of PTM variants, alternative proteolytic cleavage sites, and venom processing enroute to the proboscis all appear to contribute to enriching the combinatorial pool of conopeptides and producing the appropriate formulation for a particular hunting situation. The complimentary tools of mass spectrometry-based proteomics and molecular biology can greatly accelerate the discovery of Conus peptides and provide insights on envenomation and other biological strategies of cone snails. PMID:20334424

  14. Proteomic analysis of mouse hypothalamus under simulated microgravity.

    PubMed

    Sarkar, Poonam; Sarkar, Shubhashish; Ramesh, Vani; Kim, Helen; Barnes, Stephen; Kulkarni, Anil; Hall, Joseph C; Wilson, Bobby L; Thomas, Renard L; Pellis, Neal R; Ramesh, Govindarajan T

    2008-11-01

    Exposure to altered microgravity during space travel induces changes in the brain and these are reflected in many of the physical behavior seen in the astronauts. The vulnerability of the brain to microgravity stress has been reviewed and reported. Identifying microgravity-induced changes in the brain proteome may aid in understanding the impact of the microgravity environment on brain function. In our previous study we have reported changes in specific proteins under simulated microgravity in the hippocampus using proteomics approach. In the present study the profiling of the hypothalamus region in the brain was studied as a step towards exploring the effect of microgravity in this region of the brain. Hypothalamus is the critical region in the brain that strictly controls the pituitary gland that in turn is responsible for the secretion of important hormones. Here we report a 2-dimensional gel electrophoretic analysis of the mouse hypothalamus in response to simulated microgravity. Lowered glutathione and differences in abundance expression of seven proteins were detected in the hypothalamus of mice exposed to microgravity. These changes included decreased superoxide dismutase-2 (SOD-2) and increased malate dehydrogenase and peroxiredoxin-6, reflecting reduction of the antioxidant system in the hypothalamus. Taken together the results reported here indicate that oxidative imbalance occurred in the hypothalamus in response to simulated microgravity.

  15. Proteomic Analysis of Proton Beam Irradiated Human Melanoma Cells

    PubMed Central

    Kedracka-Krok, Sylwia; Jankowska, Urszula; Elas, Martyna; Sowa, Urszula; Swakon, Jan; Cierniak, Agnieszka; Olko, Pawel; Romanowska-Dixon, Bozena; Urbanska, Krystyna

    2014-01-01

    Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma. PMID:24392146

  16. Comparative proteomic analysis of floral color variegation in peach.

    PubMed

    Zhou, Yong; Wu, Xinxin; Zhang, Zhen; Gao, Zhihong

    2015-09-01

    Variegation in flower is a special trait in ornamental peach (Prunus persica L.). To investigate the mechanism of color variegation, we used a combination of two dimensional gel electrophoresis and mass spectrometry to explore the proteomic profiles between variegated flower (VF) and red flower (RF) buds of the peach cultivar 'Sahong Tao'. More than 500 highly reproducible protein spots (P < 0.05) were detected and 72 protein spots showed a greater than two-fold difference in their values. We identified 70 proteins that may play roles in petal coloration. The mRNA levels of the corresponding genes were detected using quantitative RT-PCR. The results show that most of the proteins are involved in energy and metabolism, which provide energy and substrates. We found that LDOX, WD40, ACC, and PPO II are related to the pigment biosynthetic pathway. The activity of PPO enzyme was further validated and showed the higher with significant differences in RF compared with the VF ones. Moreover, the four UCH proteins are involved in protein fate and may be important in post-translational modifications in peach flowers. Our study is the first comparative proteomic analysis of floral variegation and will contribute to further investigations into the molecular mechanism of flower petal coloration in ornamental peach.

  17. Proteomic analysis of ofloxacin-mono resistant Mycobacterium tuberculosis isolates.

    PubMed

    Lata, Manju; Sharma, Divakar; Deo, Nirmala; Tiwari, Pramod Kumar; Bisht, Deepa; Venkatesan, Krishnamurthy

    2015-09-01

    Drug resistance particularly, multi drug resistance tuberculosis (MDR-TB) has emerged as a major problem in the chemotherapy of tuberculosis. Ofloxacin (OFX) has been used as second-line drug against MDR-TB. The principal target of the OFX is DNA gyrase encoded by gyrA and gyrB genes. Many explanations have been proposed for drug resistance to OFX but still some mechanisms are unknown. As proteins manifest most of the biological processes, these are attractive targets for developing drugs and diagnostics/therapeutics. We examined the OFX resistant Mycobacterium tuberculosis isolates by proteomic approach (2DE-MALDI-TOF-MS) and bioinformatic tools under OFX induced conditions. Our study showed fourteen proteins (Rv0685, Rv0363c, Rv2744c, Rv3803c, Rv2534c, Rv2140c, Rv1475c, Rv0440, Rv2245, Rv1436, Rv3551, Rv0148, Rv2882c and Rv0733) with increased intensities in OFX resistant and OFX induced as compared to susceptible isolates. Bioinformatic analysis of hypothetical proteins (Rv2744c, Rv2140c, Rv3551 and Rv0148) revealed the presence of conserved motifs and domains. Molecular docking showed proper interaction of OFX with residues of conserved motifs. These proteins might be involved in the OFX modulation/neutralization and act as novel resistance mechanisms as well as potential for diagnostics and drug targets against OFX resistance. This article is part of a Special Issue entitled: Proteomics in India.

  18. Predictive sequence analysis of the Candidatus Liberibacter asiaticus proteome.

    PubMed

    Cong, Qian; Kinch, Lisa N; Kim, Bong-Hyun; Grishin, Nick V

    2012-01-01

    Candidatus Liberibacter asiaticus (Ca. L. asiaticus) is a parasitic gram-negative bacterium that is closely associated with Huanglongbing (HLB), a worldwide citrus disease. Given the difficulty in culturing the bacterium and thus in its experimental characterization, computational analyses of the whole Ca. L. asiaticus proteome can provide much needed insights into the mechanisms of the disease and guide the development of treatment strategies. In this study, we applied state-of-the-art sequence analysis tools to every Ca. L. asiaticus protein. Our results are available as a public website at http://prodata.swmed.edu/liberibacter_asiaticus/. In particular, we manually curated the results to predict the subcellular localization, spatial structure and function of all Ca. L. asiaticus proteins (http://prodata.swmed.edu/liberibacter_asiaticus/curated/). This extensive information should facilitate the study of Ca. L. asiaticus proteome function and its relationship to disease. Pilot studies based on the information from our website have revealed several potential virulence factors, discussed herein. PMID:22815919

  19. Predictive Sequence Analysis of the Candidatus Liberibacter asiaticus Proteome

    PubMed Central

    Cong, Qian; Kinch, Lisa N.; Kim, Bong-Hyun; Grishin, Nick V.

    2012-01-01

    Candidatus Liberibacter asiaticus (Ca. L. asiaticus) is a parasitic Gram-negative bacterium that is closely associated with Huanglongbing (HLB), a worldwide citrus disease. Given the difficulty in culturing the bacterium and thus in its experimental characterization, computational analyses of the whole Ca. L. asiaticus proteome can provide much needed insights into the mechanisms of the disease and guide the development of treatment strategies. In this study, we applied state-of-the-art sequence analysis tools to every Ca. L. asiaticus protein. Our results are available as a public website at http://prodata.swmed.edu/liberibacter_asiaticus/. In particular, we manually curated the results to predict the subcellular localization, spatial structure and function of all Ca. L. asiaticus proteins (http://prodata.swmed.edu/liberibacter_asiaticus/curated/). This extensive information should facilitate the study of Ca. L. asiaticus proteome function and its relationship to disease. Pilot studies based on the information from our website have revealed several potential virulence factors, discussed herein. PMID:22815919

  20. Proteome analysis of bell pepper (Capsicum annuum L.) chromoplasts.

    PubMed

    Siddique, Muhammad Asim; Grossmann, Jonas; Gruissem, Wilhelm; Baginsky, Sacha

    2006-12-01

    We report a comprehensive proteome analysis of chromoplasts from bell pepper (Capsicum annuum L.). The combination of a novel strategy for database-independent detection of proteins from tandem mass spectrometry (MS/MS) data with standard database searches allowed us to identify 151 proteins with a high level of confidence. These include several well-known plastid proteins but also novel proteins that were not previously reported from other plastid proteome studies. The majority of the identified proteins are active in plastid carbohydrate and amino acid metabolism. Among the most abundant individual proteins are capsanthin/capsorubin synthase and fibrillin, which are involved in the synthesis and storage of carotenoids that accumulate to high levels in chromoplasts. The relative abundances of the identified chromoplast proteins differ remarkably compared with their abundances in other plastid types, suggesting a chromoplast-specific metabolic network. Our results provide an overview of the major metabolic pathways active in chromoplasts and extend existing knowledge about prevalent metabolic activities of different plastid types.

  1. Proteomic analysis of the schistosome tegument and its surface membranes.

    PubMed

    Braschi, Simon; Borges, William Castro; Wilson, R Alan

    2006-09-01

    The tegument surface of the adult schistosome, bounded by a normal plasma membrane overlain by a secreted membranocalyx, holds the key to understanding how schistosomes evade host immune responses. Recent advances in mass spectrometry (MS), and the sequencing of the Schistosoma mansoni transcriptome/genome, have facilitated schistosome proteomics. We detached the tegument from the worm body and enriched its surface membranes by differential extraction, before subjecting the preparation to liquid chromatography-based proteomics to identify its constituents. The most exposed proteins on live worms were labelled with impearmeant biotinylation reagents, and we also developed methods to isolate the membranocalyx for analysis. We identified transporters for sugars, amino acids, inorganic ions and water, which confirm the importance of the tegument plasma membrane in nutrient acquisition and solute balance. Enzymes, including phosphohydrolases, esterases and carbonic anhydrase were located with their catalytic domains external to the plasma membrane, while five tetraspanins, annexin and dysferlin were implicated in membrane architecture. In contrast, few parasite proteins could be assigned to the membranocalyx but mouse immune response proteins, including three immunoglobulins and two complement factors, were detected, plus host membrane proteins such as CD44, integrin and a complement regulatory protein, testifying to the acquisitive properties of the secreted bilayer. PMID:17308771

  2. A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration

    PubMed Central

    Petersen, Hendrik O.; Höger, Stefanie K.; Looso, Mario; Lengfeld, Tobias; Kuhn, Anne; Warnken, Uwe; Nishimiya-Fujisawa, Chiemi; Schnölzer, Martina; Krüger, Marcus; Özbek, Suat; Simakov, Oleg; Holstein, Thomas W.

    2015-01-01

    The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration. PMID:25841488

  3. Label-free proteomic analysis of breast cancer molecular subtypes.

    PubMed

    Panis, Carolina; Pizzatti, Luciana; Herrera, Ana Cristina; Corrêa, Stephany; Binato, Renata; Abdelhay, Eliana

    2014-11-01

    To better characterize the cellular pathways involved in breast cancer molecular subtypes, we performed a proteomic study using a label-free LC-MS strategy for determining the proteomic profile of Luminal A, Luminal-HER2, HER2-positive, and triple-negative (TN) breast tumors compared with healthy mammary tissue. This comparison aimed to identify the aberrant processes specific for each subtype and might help to refine our understanding regarding breast cancer biology. Our results address important molecular features (both specific and commonly shared) that explain the biological behavior of each subtype. Changes in proteins related to cytoskeletal organization were found in all tumor subtypes, indicating that breast tumors are under constant structural modifications to invade and metastasize. We also found changes in cell-adhesion processes in all molecular subtypes, corroborating that invasiveness is a common property of breast cancer cells. Luminal-HER2 and HER2 tumors also presented altered cell cycle regulation, as shown by the several DNA repair-related proteins. An altered immune response was also found as a common process in the Luminal A, Luminal-HER2, and TN subtypes, and complement was the most important pathway. Analysis of the TN subtype revealed blood coagulation as the most relevant biological process.

  4. Quantitative proteome and transcriptome analysis of the archaeon Thermoplasma acidophilum cultured under aerobic and anaerobic conditions.

    PubMed

    Sun, Na; Pan, Cuiping; Nickell, Stephan; Mann, Matthias; Baumeister, Wolfgang; Nagy, István

    2010-09-01

    A comparative proteome and transcriptome analysis of Thermoplasma acidophilum cultured under aerobic and anaerobic conditions has been performed. One-thousand twenty-five proteins were identified covering 88% of the cytosolic proteome. Using a label-free quantitation method, we found that approximately one-quarter of the identified proteome (263 proteins) were significantly induced (>2 fold) under anaerobic conditions. Thirty-nine macromolecular complexes were identified, of which 28 were quantified and 15 were regulated under anaerobiosis. In parallel, a whole genome cDNA microarray analysis was performed showing that the expression levels of 445 genes were influenced by the absence of oxygen. Interestingly, more than 40% of the membrane protein-encoding genes (145 out of 335 ORFs) were up- or down-regulated at the mRNA level. Many of these proteins are functionally associated with extracellular protein or peptide degradation or ion and amino acid transport. Comparison of the transcriptome and proteome showed only a weak positive correlation between mRNA and protein expression changes, which is indicative of extensive post-transcriptional regulatory mechanisms in T. acidophilum. Integration of transcriptomics and proteomics data generated hypotheses for physiological adaptations of the cells to anaerobiosis, and the quantitative proteomics data together with quantitative analysis of protein complexes provide a platform for correlation of MS-based proteomics studies with cryo-electron tomography-based visual proteomics approaches.

  5. Proteomic analysis of liver in rats chronically exposed to fluoride.

    PubMed

    Pereira, Heloísa Aparecida Barbosa da Silva; Leite, Aline de Lima; Charone, Senda; Lobo, Janete Gualiume Vaz Madureira; Cestari, Tania Mary; Peres-Buzalaf, Camila; Buzalaf, Marília Afonso Rabelo

    2013-01-01

    Fluoride (F) is a potent anti-cariogenic element, but when ingestion is excessive, systemic toxicity may be observed. This can occur as acute or chronic responses, depending on both the amount of F and the time of exposure. The present study identified the profile of protein expression possibly associated with F-induced chronic hepatotoxicity. Weanling male Wistar rats (three-weeks old) were divided into three groups and treated with drinking water containing 0, 5 or 50 mg/L F for 60 days (n=6/group). At this time point, serum and livers were collected for F analysis, which was done using the ion-sensitive electrode, after hexamethyldisiloxane-facilitated diffusion. Livers were also submitted to histological and proteomic analyses (2D-PAGE followed by LC-MS/MS). Western blotting was done for confirmation of the proteomic data A dose-response was observed in serum F levels. In the livers, F levels were significantly increased in the 50 mg/L F group compared to groups treated with 0 and 5 mg/L F. Liver morphometric analysis did not reveal alterations in the cellular structures and lipid droplets were present in all groups. Proteomic quantitative intensity analysis detected 33, 44, and 29 spots differentially expressed in the comparisons between control vs. 5 mg/L F, control vs. 50 mg/L F, and 5 mg/L vs. 50 mg/L F, respectively. From these, 92 proteins were successfully identified. In addition, 18, 1, and 5 protein spots were shown to be exclusive in control, 5, and 50 mg/L F, respectively. Most of proteins were related to metabolic process and pronounced alterations were seen for the high-F level group. In F-treated rats, changes in the apolipoprotein E (ApoE) and GRP-78 expression may account for the F-induced toxicity in the liver. This can contribute to understanding the molecular mechanisms underlying hepatoxicity induced by F, by indicating key-proteins that should be better addressed in future studies.

  6. Proteomics Analysis Reveals Overlapping Functions of Clustered Protocadherins*

    PubMed Central

    Han, Meng-Hsuan; Lin, Chengyi; Meng, Shuxia; Wang, Xiaozhong

    2010-01-01

    The three tandem-arrayed protocadherin (Pcdh) gene clusters, namely Pcdh-α, Pcdh-β, and Pcdh-γ, play important roles in the development of the vertebrate central nervous system. To gain insight into the molecular action of PCDHs, we performed a systematic proteomics analysis of PCDH-γ-associated protein complexes. We identified a list of 154 non-redundant proteins in the PCDH-γ complexes. This list includes nearly 30 members of clustered Pcdh-α, -β, and -γ families as core components of the complexes and additionally over 120 putative PCDH-associated proteins. We validated a selected subset of PCDH-γ-associated proteins using specific antibodies. Analysis of the identities of PCDH-associated proteins showed that the majority of them overlap with the proteomic profile of postsynaptic density preparations. Further analysis of membrane protein complexes revealed that several validated PCDH-γ-associated proteins exhibit reduced levels in Pcdh-γ-deficient brain tissues. Therefore, PCDH-γs are required for the integrity of the complexes. However, the size of the overall complexes and the abundance of many other proteins remained unchanged, raising a possibility that PCDH-αs and PCDH-βs might compensate for PCDH-γ function in complex formation. As a test of this idea, RNA interference knockdown of both PCDH-αs and PCDH-γs showed that PCDHs have redundant functions in regulating neuronal survival in the chicken spinal cord. Taken together, our data provide evidence that clustered PCDHs coexist in large protein complexes and have overlapping functions during vertebrate neural development. PMID:19843561

  7. Integration of Proteomics and Transcriptomics Data Sets for the Analysis of a Lymphoma B-Cell Line in the Context of the Chromosome-Centric Human Proteome Project.

    PubMed

    Díez, Paula; Droste, Conrad; Dégano, Rosa M; González-Muñoz, María; Ibarrola, Nieves; Pérez-Andrés, Martín; Garin-Muga, Alba; Segura, Víctor; Marko-Varga, Gyorgy; LaBaer, Joshua; Orfao, Alberto; Corrales, Fernando J; De Las Rivas, Javier; Fuentes, Manuel

    2015-09-01

    A comprehensive study of the molecular active landscape of human cells can be undertaken to integrate two different but complementary perspectives: transcriptomics, and proteomics. After the genome era, proteomics has emerged as a powerful tool to simultaneously identify and characterize the compendium of thousands of different proteins active in a cell. Thus, the Chromosome-centric Human Proteome Project (C-HPP) is promoting a full characterization of the human proteome combining high-throughput proteomics with the data derived from genome-wide expression profiling of protein-coding genes. Here we present a full proteomic profiling of a human lymphoma B-cell line (Ramos) performed using a nanoUPLC-LTQ-Orbitrap Velos proteomic platform, combined to an in-depth transcriptomic profiling of the same cell type. Data are available via ProteomeXchange with identifier PXD001933. Integration of the proteomic and transcriptomic data sets revealed a 94% overlap in the proteins identified by both -omics approaches. Moreover, functional enrichment analysis of the proteomic profiles showed an enrichment of several functions directly related to the biological and morphological characteristics of B-cells. In turn, about 30% of all protein-coding genes present in the whole human genome were identified as being expressed by the Ramos cells (stable average of 30% genes along all the chromosomes), revealing the size of the protein expression-set present in one specific human cell type. Additionally, the identification of missing proteins in our data sets has been reported, highlighting the power of the approach. Also, a comparison between neXtProt and UniProt database searches has been performed. In summary, our transcriptomic and proteomic experimental profiling provided a high coverage report of the expressed proteome from a human lymphoma B-cell type with a clear insight into the biological processes that characterized these cells. In this way, we demonstrated the usefulness of

  8. Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic.

    PubMed

    Celebioglu, Hasan Ufuk; Ejby, Morten; Majumder, Avishek; Købler, Carsten; Goh, Yong Jun; Thorsen, Kristian; Schmidt, Bjarne; O'Flaherty, Sarah; Abou Hachem, Maher; Lahtinen, Sampo J; Jacobsen, Susanne; Klaenhammer, Todd R; Brix, Susanne; Mølhave, Kristian; Svensson, Birte

    2016-05-01

    Whole cell and surface proteomes were analyzed together with adhesive properties of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) grown on the emerging prebiotic raffinose, exemplifying a synbiotic. Adhesion of NCFM to mucin and intestinal HT-29 cells increased three-fold after culture with raffinose versus glucose, as also visualized by scanning electron microscopy. Comparative proteomics using 2D-DIGE showed 43 unique proteins to change in relative abundance in whole cell lysates from NCFM grown on raffinose compared to glucose. Furthermore, 14 unique proteins in 18 spots of the surface subproteome underwent changes identified by differential 2DE, including elongation factor G, thermostable pullulanase, and phosphate starvation inducible stress-related protein increasing in a range of +2.1 - +4.7 fold. By contrast five known moonlighting proteins decreased in relative abundance by up to -2.4 fold. Enzymes involved in raffinose catabolism were elevated in the whole cell proteome; α-galactosidase (+13.9 fold); sucrose phosphorylase (+5.4 fold) together with metabolic enzymes from the Leloir pathway for galactose utilization and the glycolysis; β-galactosidase (+5.7 fold); galactose (+2.9/+3.1 fold) and fructose (+2.8 fold) kinases. The insights at the molecular and cellular levels contributed to the understanding of the interplay of a synbiotic composed of NCFM and raffinose with the host. PMID:26959526

  9. Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic.

    PubMed

    Celebioglu, Hasan Ufuk; Ejby, Morten; Majumder, Avishek; Købler, Carsten; Goh, Yong Jun; Thorsen, Kristian; Schmidt, Bjarne; O'Flaherty, Sarah; Abou Hachem, Maher; Lahtinen, Sampo J; Jacobsen, Susanne; Klaenhammer, Todd R; Brix, Susanne; Mølhave, Kristian; Svensson, Birte

    2016-05-01

    Whole cell and surface proteomes were analyzed together with adhesive properties of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) grown on the emerging prebiotic raffinose, exemplifying a synbiotic. Adhesion of NCFM to mucin and intestinal HT-29 cells increased three-fold after culture with raffinose versus glucose, as also visualized by scanning electron microscopy. Comparative proteomics using 2D-DIGE showed 43 unique proteins to change in relative abundance in whole cell lysates from NCFM grown on raffinose compared to glucose. Furthermore, 14 unique proteins in 18 spots of the surface subproteome underwent changes identified by differential 2DE, including elongation factor G, thermostable pullulanase, and phosphate starvation inducible stress-related protein increasing in a range of +2.1 - +4.7 fold. By contrast five known moonlighting proteins decreased in relative abundance by up to -2.4 fold. Enzymes involved in raffinose catabolism were elevated in the whole cell proteome; α-galactosidase (+13.9 fold); sucrose phosphorylase (+5.4 fold) together with metabolic enzymes from the Leloir pathway for galactose utilization and the glycolysis; β-galactosidase (+5.7 fold); galactose (+2.9/+3.1 fold) and fructose (+2.8 fold) kinases. The insights at the molecular and cellular levels contributed to the understanding of the interplay of a synbiotic composed of NCFM and raffinose with the host.

  10. The Proteome Response to Amyloid Protein Expression In Vivo

    PubMed Central

    Gomes, Ricardo A.; Franco, Catarina; Da Costa, Gonçalo; Planchon, Sébastien; Renaut, Jenny; Ribeiro, Raquel M.; Pinto, Francisco; Silva, Marta Sousa; Coelho, Ana Varela; Freire, Ana Ponces; Cordeiro, Carlos

    2012-01-01

    Protein misfolding disorders such as Alzheimer, Parkinson and transthyretin amyloidosis are characterized by the formation of protein amyloid deposits. Although the nature and location of the aggregated proteins varies between different diseases, they all share similar molecular pathways of protein unfolding, aggregation and amyloid deposition. Most effects of these proteins are likely to occur at the proteome level, a virtually unexplored reality. To investigate the effects of an amyloid protein expression on the cellular proteome, we created a yeast expression system using human transthyretin (TTR) as a model amyloidogenic protein. We used Saccharomyces cerevisiae, a living test tube, to express native TTR (non-amyloidogenic) and the amyloidogenic TTR variant L55P, the later forming aggregates when expressed in yeast. Differential proteome changes were quantitatively analyzed by 2D-differential in gel electrophoresis (2D-DIGE). We show that the expression of the amyloidogenic TTR-L55P causes a metabolic shift towards energy production, increased superoxide dismutase expression as well as of several molecular chaperones involved in protein refolding. Among these chaperones, members of the HSP70 family and the peptidyl-prolyl-cis-trans isomerase (PPIase) were identified. The latter is highly relevant considering that it was previously found to be a TTR interacting partner in the plasma of ATTR patients but not in healthy or asymptomatic subjects. The small ubiquitin-like modifier (SUMO) expression is also increased. Our findings suggest that refolding and degradation pathways are activated, causing an increased demand of energetic resources, thus the metabolic shift. Additionally, oxidative stress appears to be a consequence of the amyloidogenic process, posing an enhanced threat to cell survival. PMID:23185553

  11. Proteomic analysis of mare follicular fluid during late follicle development

    PubMed Central

    2011-01-01

    Background Follicular fluid accumulates into the antrum of follicle from the early stage of follicle development. Studies on its components may contribute to a better understanding of the mechanisms underlying follicular development and oocyte quality. With this objective, we performed a proteomic analysis of mare follicular fluid. First, we hypothesized that proteins in follicular fluid may differ from those in the serum, and also may change during follicle development. Second, we used four different approaches of Immunodepletion and one enrichment method, in order to overcome the masking effect of high-abundance proteins present in the follicular fluid, and to identify those present in lower abundance. Finally, we compared our results with previous studies performed in mono-ovulant (human) and poly-ovulant (porcine and canine) species in an attempt to identify common and/or species-specific proteins. Methods Follicular fluid samples were collected from ovaries at three different stages of follicle development (early dominant, late dominant and preovulatory). Blood samples were also collected at each time. The proteomic analysis was carried out on crude, depleted and enriched follicular fluid by 2D-PAGE, 1D-PAGE and mass spectrometry. Results Total of 459 protein spots were visualized by 2D-PAGE of crude mare follicular fluid, with no difference among the three physiological stages. Thirty proteins were observed as differentially expressed between serum and follicular fluid. Enrichment method was found to be the most powerful method for detection and identification of low-abundance proteins from follicular fluid. Actually, we were able to identify 18 proteins in the crude follicular fluid, and as many as 113 in the enriched follicular fluid. Inhibins and a few other proteins involved in reproduction could only be identified after enrichment of follicular fluid, demonstrating the power of the method used. The comparison of proteins found in mare follicular fluid

  12. proBAMsuite, a Bioinformatics Framework for Genome-Based Representation and Analysis of Proteomics Data*

    PubMed Central

    Wang, Xiaojing; Slebos, Robbert J. C.; Chambers, Matthew C.; Tabb, David L.; Liebler, Daniel C.; Zhang, Bing

    2016-01-01

    To facilitate genome-based representation and analysis of proteomics data, we developed a new bioinformatics framework, proBAMsuite, in which a central component is the protein BAM (proBAM) file format for organizing peptide spectrum matches (PSMs)1 within the context of the genome. proBAMsuite also includes two R packages, proBAMr and proBAMtools, for generating and analyzing proBAM files, respectively. Applying proBAMsuite to three recently published proteomics datasets, we demonstrated its utility in facilitating efficient genome-based sharing, interpretation, and integration of proteomics data. First, the interpretation of proteomics data is significantly enhanced with the rich genomic annotation information. Second, PSMs can be easily reannotated using user-specified gene annotation schemes and assembled into both protein and gene identifications. Third, using the genome as a common reference, proBAMsuite facilitates seamless proteomics and proteogenomics data integration. Finally, proBAM files can be readily visualized in genome browsers and thus bring proteomics data analysis to a general audience beyond the proteomics community. Results from this study establish proBAMsuite as a useful bioinformatics framework for proteomics and proteogenomics research. PMID:26657539

  13. Proteomic analysis of pancreas derived from adult cloned pig

    SciTech Connect

    Chae, Jung-Il; Cho, Young Keun; Cho, Seong-Keun; Kim, Jin-Hoi; Han, Yong-Mahn; Koo, Deog-Bon Lee, Kyung-Kwang

    2008-02-08

    The potential medical applications of animal cloning include xenotransplantation, but the complex molecular cascades that control porcine organ development are not fully understood. Still, it has become apparent that organs derived from cloned pigs may be suitable for transplantation into humans. In this study, we examined the pancreas of an adult cloned pig developed through somatic cell nuclear transfer (SCNT) using two-dimensional electrophoresis (2-DE) and Western blotting. Proteomic analysis revealed 69 differentially regulated proteins, including such apoptosis-related species as annexins, lamins, and heat shock proteins, which were unanimously upregulated in the SCNT sample. Among the downregulated proteins in SCNT pancreas were peroxiredoxins and catalase. Western blot results indicate that several antioxidant enzymes and the anti-apoptotic protein were downregulated in SCNT pancreas, whereas several caspases were upregulated. Together, these data suggest that the accumulation of reactive oxygen species (ROS) in the pancreas of an adult cloned pig leads to apoptosis.

  14. Proteomics analysis of adult testis from Bombyx mori.

    PubMed

    Zhang, Yan; Dong, Zhaoming; Gu, Peiming; Zhang, Weiwei; Wang, Dandan; Guo, Xiaomeng; Zhao, Ping; Xia, Qingyou

    2014-10-01

    The development of the testis involves a large number of tissue-specific proteins, possibly because the sperms in it are the most divergent of all cell types. In this study, LC-MS/MS was employed to investigate the protein compositions of the adult testis of silkworm. A total of 14,431 peptides were identified in the adult testis of Bombyx mori, which were matched to 2292 proteins. Thirty-two HSPs constitute a group of most abundant proteins in the adult testis, suggesting that they are critical for the development, differentiation, and survival of germ cells. Other proteins in this analysis were also involved in testis-specific processes mainly including sperm motility, meiosis, germ cell development, and spermatogenesis. The data have been deposited to the ProteomeXchange with identifier PXD000909 (http://proteomecentral.proteomexchange.org/dataset/PXD000909). PMID:25044914

  15. Proteomic analysis of two Trypanosoma cruzi zymodeme 3 strains.

    PubMed

    Kikuchi, Simone A; Sodré, Cátia L; Kalume, Dário E; Elias, Camila G R; Santos, André L S; de Nazaré Soeiro, Maria; Meuser, Marcus; Chapeaurouge, Alex; Perales, Jonas; Fernandes, Octavio

    2010-12-01

    Two Trypanosoma cruzi Z3 strains, designated as 3663 and 4167, were previously isolated from insect vectors captured in the Brazilian Amazon region. These strains exhibited different infection patterns in Vero, C6/36, RAW 264.7 and HEp-2 cell lineages, in which 3663 trypomastigote form was much less infective than 4167 ones. A proteomic approach was applied to investigate the differences in the global patterns of protein expression in these two Z3 strains. Two-dimensional (2D) protein maps were generated and certain spots were identified by mass spectrometry (MS). Our analyses revealed a significant difference in the expression profile of different proteins between strains 3663 and 4167. Among them, cruzipain, an important regulator of infectivity. This data was corroborated by flow cytometry analysis using anti-cruzipain antibody. This difference could contribute to the infectivity profiles observed for each strain by in vitro assay using different cell lines.

  16. Comprehensive proteomics analysis of autophagy-deficient mouse liver.

    PubMed

    Matsumoto, Naomi; Ezaki, Junji; Komatsu, Masaaki; Takahashi, Katsuyuki; Mineki, Reiko; Taka, Hikari; Kikkawa, Mika; Fujimura, Tsutomu; Takeda-Ezaki, Mitsue; Ueno, Takashi; Tanaka, Keiji; Kominami, Eiki

    2008-04-11

    Autophagy is a bulk protein degradation system for the entire organelles and cytoplasmic proteins. Previously, we have shown the liver dysfunction by autophagy deficiency. To examine the pathological effect of autophagy deficiency, we examined protein composition and their levels in autophagy-deficient liver by the proteomic analysis. While impaired autophagy led to an increase in total protein mass, the protein composition was largely unchanged, consistent with non-selective proteins/organelles degradation of autophagy. However, a series of oxidative stress-inducible proteins, including glutathione S-transferase families, protein disulfide isomerase and glucose-regulated proteins were specifically increased in autophagy-deficient liver, probably due to enhanced gene expression, which is induced by accumulation of Nrf2 in the nuclei of mutant hepatocytes. Our results suggest that autophagy deficiency causes oxidative stress, and such stress might be the main cause of liver injury in autophagy-deficient liver.

  17. Proteomics enhances evolutionary and functional analysis of reproductive proteins.

    PubMed

    Findlay, Geoffrey D; Swanson, Willie J

    2010-01-01

    Reproductive proteins maintain species-specific barriers to fertilization, affect the outcome of sperm competition, mediate reproductive conflicts between the sexes, and potentially contribute to the formation of new species. However, the specific proteins and molecular mechanisms that underlie these processes are understood in only a handful of cases. Advances in genomic and proteomic technologies enable the identification of large suites of reproductive proteins, making it possible to dissect reproductive phenotypes at the molecular level. We first review these technological advances and describe how reproductive proteins are identified in diverse animal taxa. We then discuss the dynamic evolution of reproductive proteins and the potential selective forces that act on them. Finally, we describe molecular and genomic tools for functional analysis and detail how evolutionary data may be used to make predictions about interactions among reproductive proteins.

  18. Coupling protein complex analysis to peptide based proteomics.

    PubMed

    Gao, Qiang; Madian, Ashraf G; Liu, Xiuping; Adamec, Jiri; Regnier, Fred E

    2010-12-01

    Proteolysis is a central component of most proteomics methods. Unfortunately much of the information relating to the structural diversity of proteins is lost during digestion. This paper describes a method in which the native proteome of yeast was subjected to preliminary fractionation by size exclusion chromatography (SEC) prior to trypsin digestion of SEC fractions and reversed phase chromatography-mass spectral analysis to identify tryptic peptides thus generated. Through this approach proteins associated with other proteins in high molecular mass complexes were recognized and identified. A focus of this work was on the identification of Hub proteins that associate with multiple interaction partners. A critical component of this strategy is to choose methods and conditions that maximize retention of native structure during the various stages of analysis prior to proteolysis, especially during cell lysis. Maximum survival of protein complexes during lysis was obtained with the French press and bead-beater methods of cell disruption at approximately pH 8 with 200 mM NaCl in the lysis buffer. Structure retention was favored by higher ionic strength, suggesting that hydrophobic effects are important in maintaining the structure of protein complexes. Recovery of protein complexes declined substantially with storage at any temperature, but storage at -20°C was best when low temperature storage was necessary. Slightly lower recovery was obtained with storage at -80°C while lowest recovery was achieved at 4°C. It was concluded that initial fractionation of native proteins in cell lysates by SEC prior to RPC-MS/MS of tryptic digests can be used to recognize and identify proteins in complexes along with their interaction partners in known protein complexes.

  19. Optimized protein extraction methods for proteomic analysis of Rhizoctonia solani.

    PubMed

    Lakshman, Dilip K; Natarajan, Savithiry S; Lakshman, Sukla; Garrett, Wesley M; Dhar, Arun K

    2008-01-01

    Rhizoctonia solani (Teleomorph: Thanatephorus cucumeris, T. praticola) is a basidiomycetous fungus and a major cause of root diseases of economically important plants. Various isolates of this fungus are also beneficially associated with orchids, may serve as biocontrol agents or remain as saprophytes with roles in decaying and recycling of soil organic matter. R. solani displays several hyphal anastomosis groups (AG) with distinct host and pathogenic specializations. Even though there are reports on the physiological and histological basis of Rhizoctonia-host interactions, very little is known about the molecular biology and control of gene expression early during infection by this pathogen. Proteamic technologies are powerful tools for examining alterations in protein profiles. To aid studies on its biology and host pathogen interactions, a two-dimensional (2-D) gel-based global proteomic study has been initiated. To develop an optimized protein extraction protocol for R. solani, we compared two previously reported protein extraction protocols for 2-D gel analysis of R. solani (AG-4) isolate Rs23. Both TCA-acetone precipitation and phosphate solubilization before TCA-acetone precipitation worked well for R. solani protein extraction, although selective enrichment of some proteins was noted with either method. About 450 spots could be detected with the densitiometric tracing of Coomassie blue-stained 2-D PAGE gels covering pH 4-7 and 6.5-205 kDa. Selected protein spots were subjected to mass spectrometric analysis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Eleven protein spots were positively identified based on peptide mass fingerprinting match with fungal proteins in public databases with the Mascot search engine. These results testify to the suitability of the two optimized protein extraction protocols for 2-D proteomic studies of R. solani.

  20. Analysis of the SUMO2 Proteome during HSV-1 Infection

    PubMed Central

    Groslambert, Marine; Glass, Mandy; Orr, Anne; Hay, Ronald T.; Everett, Roger D.

    2015-01-01

    Covalent linkage to members of the small ubiquitin-like (SUMO) family of proteins is an important mechanism by which the functions of many cellular proteins are regulated. Sumoylation has roles in the control of protein stability, activity and localization, and is involved in the regulation of transcription, gene expression, chromatin structure, nuclear transport and RNA metabolism. Sumoylation is also linked, both positively and negatively, with the replication of many different viruses both in terms of modification of viral proteins and modulation of sumoylated cellular proteins that influence the efficiency of infection. One prominent example of the latter is the widespread reduction in the levels of cellular sumoylated species induced by herpes simplex virus type 1 (HSV-1) ubiquitin ligase ICP0. This activity correlates with relief from intrinsic immunity antiviral defence mechanisms. Previous work has shown that ICP0 is selective in substrate choice, with some sumoylated proteins such the promyelocytic leukemia protein PML being extremely sensitive, while RanGAP is completely resistant. Here we present a comprehensive proteomic analysis of changes in the cellular SUMO2 proteome during HSV-1 infection. Amongst the 877 potentially sumoylated species detected, we identified 124 whose abundance was decreased by a factor of 3 or more by the virus, several of which were validated by western blot and expression analysis. We found many previously undescribed substrates of ICP0 whose degradation occurs by a range of mechanisms, influenced or not by sumoylation and/or the SUMO2 interaction motif within ICP0. Many of these proteins are known or are predicted to be involved in the regulation of transcription, chromatin assembly or modification. These results present novel insights into mechanisms and host cell proteins that might influence the efficiency of HSV-1 infection. PMID:26200910

  1. Proteomic analysis of arabidopsis seed germination and priming.

    PubMed

    Gallardo, K; Job, C; Groot, S P; Puype, M; Demol, H; Vandekerckhove, J; Job, D

    2001-06-01

    To better understand seed germination, a complex developmental process, we developed a proteome analysis of the model plant Arabidopsis for which complete genome sequence is now available. Among about 1,300 total seed proteins resolved in two-dimensional gels, changes in the abundance (up- and down-regulation) of 74 proteins were observed during germination sensu stricto (i.e. prior to radicle emergence) and the radicle protrusion step. This approach was also used to analyze protein changes occurring during industrial seed pretreatments such as priming that accelerate seed germination and improve seedling uniformity. Several proteins were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry. Some of them had previously been shown to play a role during germination and/or priming in several plant species, a finding that underlines the usefulness of using Arabidopsis as a model system for molecular analysis of seed quality. Furthermore, the present study, carried out at the protein level, validates previous results obtained at the level of gene expression (e.g. from quantitation of differentially expressed mRNAs or analyses of promoter/reporter constructs). Finally, this approach revealed new proteins associated with the different phases of seed germination and priming. Some of them are involved either in the imbibition process of the seeds (such as an actin isoform or a WD-40 repeat protein) or in the seed dehydration process (e.g. cytosolic glyceraldehyde-3-phosphate dehydrogenase). These facts highlight the power of proteomics to unravel specific features of complex developmental processes such as germination and to detect protein markers that can be used to characterize seed vigor of commercial seed lots and to develop and monitor priming treatments.

  2. Primary metabolism in Lactobacillus sakei food isolates by proteomic analysis

    PubMed Central

    2010-01-01

    Background Lactobacillus sakei is an important food-associated lactic acid bacterium commonly used as starter culture for industrial meat fermentation, and with great potential as a biopreservative in meat and fish products. Understanding the metabolic mechanisms underlying the growth performance of a strain to be used for food fermentations is important for obtaining high-quality and safe products. Proteomic analysis was used to study the primary metabolism in ten food isolates after growth on glucose and ribose, the main sugars available for L. sakei in meat and fish. Results Proteins, the expression of which varied depending on the carbon source were identified, such as a ribokinase and a D-ribose pyranase directly involved in ribose catabolism, and enzymes involved in the phosphoketolase and glycolytic pathways. Expression of enzymes involved in pyruvate and glycerol/glycerolipid metabolism were also affected by the change of carbon source. Interestingly, a commercial starter culture and a protective culture strain down-regulated the glycolytic pathway more efficiently than the rest of the strains when grown on ribose. The overall two-dimensional gel electrophoresis (2-DE) protein expression pattern was similar for the different strains, though distinct differences were seen between the two subspecies (sakei and carnosus), and a variation of about 20% in the number of spots in the 2-DE gels was observed between strains. A strain isolated from fermented fish showed a higher expression of stress related proteins growing on both carbon sources. Conclusions It is obvious from the data obtained in this study that the proteomic approach efficiently identifies differentially expressed proteins caused by the change of carbon source. Despite the basic similarity in the strains metabolic routes when they ferment glucose and ribose, there were also interesting differences. From the application point of view, an understanding of regulatory mechanisms, actions of catabolic

  3. Proteomic analysis of pollination-induced corolla senescence in petunia.

    PubMed

    Bai, Shuangyi; Willard, Belinda; Chapin, Laura J; Kinter, Michael T; Francis, David M; Stead, Anthony D; Jones, Michelle L

    2010-02-01

    Senescence represents the last phase of petal development during which macromolecules and organelles are degraded and nutrients are recycled to developing tissues. To understand better the post-transcriptional changes regulating petal senescence, a proteomic approach was used to profile protein changes during the senescence of Petuniaxhybrida 'Mitchell Diploid' corollas. Total soluble proteins were extracted from unpollinated petunia corollas at 0, 24, 48, and 72 h after flower opening and at 24, 48, and 72 h after pollination. Two-dimensional gel electrophoresis (2-DE) was used to identify proteins that were differentially expressed in non-senescing (unpollinated) and senescing (pollinated) corollas, and image analysis was used to determine which proteins were up- or down-regulated by the experimentally determined cut-off of 2.1-fold for P <0.05. One hundred and thirty-three differentially expressed protein spots were selected for sequencing. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the identity of these proteins. Searching translated EST databases and the NCBI non-redundant protein database, it was possible to assign a putative identification to greater than 90% of these proteins. Many of the senescence up-regulated proteins were putatively involved in defence and stress responses or macromolecule catabolism. Some proteins, not previously characterized during flower senescence, were identified, including an orthologue of the tomato abscisic acid stress ripening protein 4 (ASR4). Gene expression patterns did not always correlate with protein expression, confirming that both proteomic and genomic approaches will be required to obtain a detailed understanding of the regulation of petal senescence.

  4. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    SciTech Connect

    Zimmer, Jennifer S.; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.

    2006-01-20

    Proteomics, and the larger field of systems biology, have recently demonstrated utility in both the understanding of cellular processes on the molecular level and the identification of potential biomarkers of various disease states. The large amount of data generated by utilizing high mass accuracy mass spectrometry for high-throughput proteomics analyses presents a challenge in data processing, analysis and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics analysis and the accompanying data processing tools that have been developed in order to interpret and display the large volumes of data produced.

  5. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chromoplasts are unique plastids that accumulate massive amounts of carotenoids. To gain a general and comparative characterization of chromoplast proteins, we performed proteomic analysis of chromoplasts from six carotenoid-rich crops: watermelon, tomato, carrot, orange cauliflower, red papaya, and...

  6. Pathway analysis of kidney cancer using proteomics and metabolic profiling

    PubMed Central

    Perroud, Bertrand; Lee, Jinoo; Valkova, Nelly; Dhirapong, Amy; Lin, Pei-Yin; Fiehn, Oliver; Kültz, Dietmar; Weiss, Robert H

    2006-01-01

    Background Renal cell carcinoma (RCC) is the sixth leading cause of cancer death and is responsible for 11,000 deaths per year in the US. Approximately one-third of patients present with disease which is already metastatic and for which there is currently no adequate treatment, and no biofluid screening tests exist for RCC. In this study, we have undertaken a comprehensive proteomic analysis and subsequently a pathway and network approach to identify biological processes involved in clear cell RCC (ccRCC). We have used these data to investigate urinary markers of RCC which could be applied to high-risk patients, or to those being followed for recurrence, for early diagnosis and treatment, thereby substantially reducing mortality of this disease. Results Using 2-dimensional electrophoresis and mass spectrometric analysis, we identified 31 proteins which were differentially expressed with a high degree of significance in ccRCC as compared to adjacent non-malignant tissue, and we confirmed some of these by immunoblotting, immunohistochemistry, and comparison to published transcriptomic data. When evaluated by several pathway and biological process analysis programs, these proteins are demonstrated to be involved with a high degree of confidence (p values < 2.0 E-05) in glycolysis, propanoate metabolism, pyruvate metabolism, urea cycle and arginine/proline metabolism, as well as in the non-metabolic p53 and FAS pathways. In a pilot study using random urine samples from both ccRCC and control patients, we performed metabolic profiling and found that only sorbitol, a component of an alternative glycolysis pathway, is significantly elevated at 5.4-fold in RCC patients as compared to controls. Conclusion Extensive pathway and network analysis allowed for the discovery of highly significant pathways from a set of clear cell RCC samples. Knowledge of activation of these processes will lead to novel assays identifying their proteomic and/or metabolomic signatures in biofluids

  7. Proteomic analysis of symbiosome membranes in Cnidaria-dinoflagellate endosymbiosis.

    PubMed

    Peng, Shao-En; Wang, Yu-Bao; Wang, Li-Hsueh; Chen, Wan-Nan Uang; Lu, Chi-Yu; Fang, Lee-Shing; Chen, Chii-Shiarng

    2010-03-01

    Symbiosomes are specific intracellular membrane-bound vacuoles containing microalgae in a mutualistic Cnidaria (host)-dinoflagellate (symbiont) association. The symbiosome membrane is originally derived from host plasma membranes during phagocytosis of the symbiont; however, its molecular components and functions are not clear. In order to investigate the protein components of the symbiosome membranes, homogenous symbiosomes were isolated from the sea anemone Aiptasia pulchella and their purities and membrane intactness examined by Western blot analysis for host contaminants and microscopic analysis using various fluorescent probes, respectively. Pure and intact symbiosomes were then subjected to biotinylation by a cell impermeant agent (Biotin-XX sulfosuccinimidyl ester) to label membrane surface proteins. The biotinylated proteins, both Triton X-100 soluble and insoluble fractions, were subjected to 2-D SDS-PAGE and identified by MS using an LC-nano-ESI-MS/MS. A total of 17 proteins were identified. Based on their different subcellular origins and functional categories, it indicates that symbiosome membranes serve as the interface for interaction between host and symbiont by fulfilling several crucial cellular functions such as those of membrane receptors/cell recognition, cytoskeletal remodeling, ATP synthesis/proton homeostasis, transporters, stress responses/chaperones, and anti-apoptosis. The results of proteomic analysis not only indicate the molecular identity of the symbiosome membrane, but also provide insight into the possible role of symbiosome membranes during the endosymbiotic association. PMID:20049864

  8. Proteomic analysis of symbiosome membranes in Cnidaria-dinoflagellate endosymbiosis.

    PubMed

    Peng, Shao-En; Wang, Yu-Bao; Wang, Li-Hsueh; Chen, Wan-Nan Uang; Lu, Chi-Yu; Fang, Lee-Shing; Chen, Chii-Shiarng

    2010-03-01

    Symbiosomes are specific intracellular membrane-bound vacuoles containing microalgae in a mutualistic Cnidaria (host)-dinoflagellate (symbiont) association. The symbiosome membrane is originally derived from host plasma membranes during phagocytosis of the symbiont; however, its molecular components and functions are not clear. In order to investigate the protein components of the symbiosome membranes, homogenous symbiosomes were isolated from the sea anemone Aiptasia pulchella and their purities and membrane intactness examined by Western blot analysis for host contaminants and microscopic analysis using various fluorescent probes, respectively. Pure and intact symbiosomes were then subjected to biotinylation by a cell impermeant agent (Biotin-XX sulfosuccinimidyl ester) to label membrane surface proteins. The biotinylated proteins, both Triton X-100 soluble and insoluble fractions, were subjected to 2-D SDS-PAGE and identified by MS using an LC-nano-ESI-MS/MS. A total of 17 proteins were identified. Based on their different subcellular origins and functional categories, it indicates that symbiosome membranes serve as the interface for interaction between host and symbiont by fulfilling several crucial cellular functions such as those of membrane receptors/cell recognition, cytoskeletal remodeling, ATP synthesis/proton homeostasis, transporters, stress responses/chaperones, and anti-apoptosis. The results of proteomic analysis not only indicate the molecular identity of the symbiosome membrane, but also provide insight into the possible role of symbiosome membranes during the endosymbiotic association.

  9. Proteomic analysis of RCL2 paraffin-embedded tissues.

    PubMed

    Bellet, V; Boissière, F; Bibeau, F; Desmetz, C; Berthe, M L; Rochaix, P; Maudelonde, T; Mangè, A; Solassol, J

    2008-10-01

    Histopathological diagnosis in most of the world's hospitals is based upon formalin-fixed and paraffin-embedded (FFPE) tissues. Although this standard fixation and embedding procedure keeps the tissue in excellent form for morphological and immunohistological analysis, FFPE is inappropriate for nucleic acids and protein studies. We investigated the potential value of RCL2, a new non-toxic fixative, for sparing proteins preserved in paraffin-embedded tissues. Normal colonic mucosa tissue was fixed in RCL2 prior to paraffin embedding (RCL2P), and then processed for quality and quantity of protein conservation, as compared to frozen and FFPE tissues using complementary proteomic analysis approaches. Using 4 different protein extraction protocols, RCL2P tissue consistently showed the highest protein yield. Similar protein patterns were observed with RCL2P and frozen tissues using mono and bi-dimensional electrophoresis. Moreover, membrane, cytoplasmic and nuclear proteins, as well as phosphorylated proteins, were successfully detected using western-blot. Furthermore, protein patterns observed by mass spectrometry analysis after laser-captured microdissection were found to be identical for frozen and RCL2-fixed tissues. At last, immunohistochemistry using various antibodies showed comparable results between both tissue storage methods. We concluded that RCL2 has great potential for performing both morphological and molecular analyses on the same archival paraffin-embedded tissue sample, and can be a new method for investigating protein biomarkers.

  10. Proteomic analysis of RCL2 paraffin-embedded tissues

    PubMed Central

    Bellet, V; Boissière, F; Bibeau, F; Desmetz, C; Berthe, M L; Rochaix, P; Maudelonde, T; Mangè, A; Solassol, J

    2008-01-01

    Histopathological diagnosis in most of the world's hospitals is based upon formalin-fixed and paraffin-embedded (FFPE) tissues. Although this standard fixation and embedding procedure keeps the tissue in excellent form for morphological and immunohistological analysis, FFPE is inappropriate for nucleic acids and protein studies. We investigated the potential value of RCL2, a new non-toxic fixative, for sparing proteins preserved in paraffin-embedded tissues. Normal colonic mucosa tissue was fixed in RCL2 prior to paraffin embedding (RCL2P), and then processed for quality and quantity of protein conservation, as compared to frozen and FFPE tissues using complementary proteomic analysis approaches. Using 4 different protein extraction protocols, RCL2P tissue consistently showed the highest protein yield. Similar protein patterns were observed with RCL2P and frozen tissues using mono and bi-dimensional electrophoresis. Moreover, membrane, cytoplasmic and nuclear proteins, as well as phosphorylated proteins, were successfully detected using western-blot. Furthermore, protein patterns observed by mass spectrometry analysis after laser-captured microdissection were found to be identical for frozen and RCL2-fixed tissues. At last, immunohistochemistry using various antibodies showed comparable results between both tissue storage methods. We concluded that RCL2 has great potential for performing both morphological and molecular analyses on the same archival paraffin-embedded tissue sample, and can be a new method for investigating protein biomarkers. PMID:19012729

  11. Insights into immune responses in oral cancer through proteomic analysis of saliva and salivary extracellular vesicles

    PubMed Central

    Winck, Flavia V.; Prado Ribeiro, Ana Carolina; Ramos Domingues, Romênia; Ling, Liu Yi; Riaño-Pachón, Diego Mauricio; Rivera, César; Brandão, Thaís Bianca; Gouvea, Adriele Ferreira; Santos-Silva, Alan Roger; Coletta, Ricardo D.; Paes Leme, Adriana F.

    2015-01-01

    The development and progression of oral cavity squamous cell carcinoma (OSCC) involves complex cellular mechanisms that contribute to the low five-year survival rate of approximately 20% among diagnosed patients. However, the biological processes essential to tumor progression are not completely understood. Therefore, detecting alterations in the salivary proteome may assist in elucidating the cellular mechanisms modulated in OSCC and improve the clinical prognosis of the disease. The proteome of whole saliva and salivary extracellular vesicles (EVs) from patients with OSCC and healthy individuals were analyzed by LC-MS/MS and label-free protein quantification. Proteome data analysis was performed using statistical, machine learning and feature selection methods with additional functional annotation. Biological processes related to immune responses, peptidase inhibitor activity, iron coordination and protease binding were overrepresented in the group of differentially expressed proteins. Proteins related to the inflammatory system, transport of metals and cellular growth and proliferation were identified in the proteome of salivary EVs. The proteomics data were robust and could classify OSCC with 90% accuracy. The saliva proteome analysis revealed that immune processes are related to the presence of OSCC and indicate that proteomics data can contribute to determining OSCC prognosis. PMID:26538482

  12. Evaluation of sample extraction methods for proteomics analysis of green algae Chlorella vulgaris.

    PubMed

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-05-01

    Many protein extraction methods have been developed for plant proteome analysis but information is limited on the optimal protein extraction method from algae species. This study evaluated four protein extraction methods, i.e. direct lysis buffer method, TCA-acetone method, phenol method, and phenol/TCA-acetone method, using green algae Chlorella vulgaris for proteome analysis. The data presented showed that phenol/TCA-acetone method was superior to the other three tested methods with regards to shotgun proteomics. Proteins identified using shotgun proteomics were validated using sequential window acquisition of all theoretical fragment-ion spectra (SWATH) technique. Additionally, SWATH provides protein quantitation information from different methods and protein abundance using different protein extraction methods was evaluated. These results highlight the importance of green algae protein extraction method for subsequent MS analysis and identification.

  13. Global Analysis of Protein Activities Using Proteome Chips

    NASA Astrophysics Data System (ADS)

    Zhu, Heng; Bilgin, Metin; Bangham, Rhonda; Hall, David; Casamayor, Antonio; Bertone, Paul; Lan, Ning; Jansen, Ronald; Bidlingmaier, Scott; Houfek, Thomas; Mitchell, Tom; Miller, Perry; Dean, Ralph A.; Gerstein, Mark; Snyder, Michael

    2001-09-01

    To facilitate studies of the yeast proteome, we cloned 5800 open reading frames and overexpressed and purified their corresponding proteins. The proteins were printed onto slides at high spatial density to form a yeast proteome microarray and screened for their ability to interact with proteins and phospholipids. We identified many new calmodulin- and phospholipid-interacting proteins; a common potential binding motif was identified for many of the calmodulin-binding proteins. Thus, microarrays of an entire eukaryotic proteome can be prepared and screened for diverse biochemical activities. The microarrays can also be used to screen protein-drug interactions and to detect posttranslational modifications.

  14. Isolation, Proteomic Analysis, and Microscopy Confirmation of the Liver Nuclear Envelope Proteome.

    PubMed

    Korfali, Nadia; Florens, Laurence; Schirmer, Eric C

    2016-01-01

    Nuclei can be relatively easily extracted from homogenized liver due to the softness of the tissue and crudely separated from other cellular organelles by low-speed centrifugation due to the comparatively large size of nuclei. However, further purification is complicated by nuclear envelope continuity with the endoplasmic reticulum, invaginations containing mitochondria, and connections to the cytoskeleton. Subsequent purification to nuclear envelopes is additionally confounded by connections of inner nuclear membrane proteins to chromatin. For these reasons, it is necessary to confirm proteomic identification of nuclear envelope proteins by testing targeting of individual proteins. The proteomic identification of nuclear envelope fractions is affected by the tendencies of transmembrane proteins to have extreme isoelectric points, strongly hydrophobic peptides, posttranslational modifications, and a propensity to aggregate, thus making proteolysis inefficient. To circumvent these problems, we have developed a MudPIT approach that uses multiple extractions and sequential proteolysis to increase identifications. Here we describe methods for isolating nuclear envelopes, determining their proteome by MudPIT, and confirming their targeting to the nuclear periphery by microscopy.

  15. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    PubMed Central

    Zimmer, Jennifer S.D.; Monroe, Matthew E.; Qian, Wei-Jun; Smith, Richard D.

    2007-01-01

    Proteomics has recently demonstrated utility in understanding cellular processes on the molecular level as a component of systems biology approaches and for identifying potential biomarkers of various disease states. The large amount of data generated by utilizing high efficiency (e.g., chromatographic) separations coupled to high mass accuracy mass spectrometry for high-throughput proteomics analyses presents challenges related to data processing, analysis, and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics approaches and the accompanying data processing tools that have been developed to display and interpret the large volumes of data being produced. PMID:16429408

  16. Proteomic analysis of nasal epithelial cells from cystic fibrosis patients.

    PubMed

    Jeanson, Ludovic; Guerrera, Ida Chiara; Papon, Jean-François; Chhuon, Cerina; Zadigue, Patricia; Prulière-Escabasse, Virginie; Amselem, Serge; Escudier, Estelle; Coste, André; Edelman, Aleksander

    2014-01-01

    The pathophysiology of cystic fibrosis (CF) lung disease remains incompletely understood. New explanations for the pathogenesis of CF lung disease may be discovered by studying the patterns of protein expression in cultured human nasal epithelial cells (HNEC). To that aim, we compared the level of protein expressions in primary cultures of HNEC from nasal polyps secondary to CF (CFNP, n = 4), primary nasal polyps (NP, n = 8) and control mucosa (CTRL, n = 4) using isobaric tag for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography (LC)-MS-MS. The analysis of the data revealed 42 deregulated protein expressions in CFNP compared to NP and CTRL, suggesting that these alterations are related to CF. Overall, AmiGo analysis highlighted six major pathways important for cell functions that seem to be impaired: metabolism, G protein process, inflammation and oxidative stress response, protein folding, proteolysis and structural proteins. Among them, glucose and fatty acid metabolic pathways could be impaired in CF with nine deregulated proteins. Our proteomic study provides a reproducible set of differentially expressed proteins in airway epithelial cells from CF patients and reveals many novel deregulated proteins that could lead to further studies aiming to clarify the involvement of such proteins in CF pathophysiology.

  17. Comparative proteomic analysis of ductal and lobular invasive breast carcinoma.

    PubMed

    Oliveira, N C S; Gomig, T H B; Milioli, H H; Cordeiro, F; Costa, G G; Urban, C A; Lima, R S; Cavalli, I J; Ribeiro, E M S F

    2016-04-04

    Breast cancer is the second most common cancer worldwide and the first among women. Invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are the two major histological subtypes, and the clinical and molecular differences between them justify the search for new markers to distinguish them. As proteomic analysis allows for a powerful and analytical approach to identify potential biomarkers, we performed a comparative analysis of IDC and ILC samples by using two-dimensional electrophoresis and mass spectrometry. Twenty-three spots were identified corresponding to 10 proteins differentially expressed between the two subtypes. ACTB, ACTG, TPM3, TBA1A, TBA1B, VIME, TPIS, PDIA3, PDIA6, and VTDB were upregulated in ductal carcinoma compared to in lobular carcinoma samples. Overall, these 10 proteins have a key role in oncogenesis. Their specific functions and relevance in cancer initiation and progression are further discussed in this study. The identified peptides represent promising biomarkers for the differentiation of ductal and lobular breast cancer subtypes, and for future interventions based on tailored therapy.

  18. Comparative proteomic analysis of ductal and lobular invasive breast carcinoma.

    PubMed

    Oliveira, N C S; Gomig, T H B; Milioli, H H; Cordeiro, F; Costa, G G; Urban, C A; Lima, R S; Cavalli, I J; Ribeiro, E M S F

    2016-01-01

    Breast cancer is the second most common cancer worldwide and the first among women. Invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are the two major histological subtypes, and the clinical and molecular differences between them justify the search for new markers to distinguish them. As proteomic analysis allows for a powerful and analytical approach to identify potential biomarkers, we performed a comparative analysis of IDC and ILC samples by using two-dimensional electrophoresis and mass spectrometry. Twenty-three spots were identified corresponding to 10 proteins differentially expressed between the two subtypes. ACTB, ACTG, TPM3, TBA1A, TBA1B, VIME, TPIS, PDIA3, PDIA6, and VTDB were upregulated in ductal carcinoma compared to in lobular carcinoma samples. Overall, these 10 proteins have a key role in oncogenesis. Their specific functions and relevance in cancer initiation and progression are further discussed in this study. The identified peptides represent promising biomarkers for the differentiation of ductal and lobular breast cancer subtypes, and for future interventions based on tailored therapy. PMID:27173185

  19. Proteomic Analysis of Chikungunya Virus Infected Microgial Cells

    PubMed Central

    Abere, Bizunesh; Wikan, Nitwara; Ubol, Sukathida; Auewarakul, Prasert; Paemanee, Atchara; Kittisenachai, Suthathip; Roytrakul, Sittiruk; Smith, Duncan R.

    2012-01-01

    Chikungunya virus (CHIKV) is a recently re-emerged public health problem in many countries bordering the Indian Ocean and elsewhere. Chikungunya fever is a relatively self limiting febrile disease, but the consequences of chikungunya fever can include a long lasting, debilitating arthralgia, and occasional neurological involvement has been reported. Macrophages have been implicated as an important cell target of CHIKV with regards to both their role as an immune mediator, as well evidence pointing to long term viral persistence in these cells. Microglial cells are the resident brain macrophages, and so this study sought to define the proteomic changes in a human microglial cell line (CHME-5) in response to CHIKV infection. GeLC-MS/MS analysis of CHIKV infected and mock infected cells identified some 1455 individual proteins, of which 90 proteins, belonging to diverse cellular pathways, were significantly down regulated at a significance level of p<0.01. Analysis of the protein profile in response to infection did not support a global inhibition of either normal or IRES-mediated translation, but was consistent with the targeting of specific cellular pathways including those regulating innate antiviral mechanisms. PMID:22514668

  20. Integrated proteomic and genomic analysis of colorectal cancer

    Cancer.gov

    Investigators who analyzed 95 human colorectal tumor samples have determined how gene alterations identified in previous analyses of the same samples are expressed at the protein level. The integration of proteomic and genomic data, or proteogenomics, pro

  1. Proteomics analysis of bodily fluids in pancreatic cancer.

    PubMed

    Pan, Sheng; Brentnall, Teresa A; Chen, Ru

    2015-08-01

    Proteomics study of pancreatic cancer using bodily fluids emphasizes biomarker discovery and clinical application, presenting unique prospect and challenges. Depending on the physiological nature of the bodily fluid and its proximity to pancreatic cancer, the proteomes of bodily fluids, such as pancreatic juice, pancreatic cyst fluid, blood, bile, and urine, can be substantially different in terms of protein constitution and the dynamic range of protein concentration. Thus, a comprehensive discovery and specific detection of cancer-associated proteins within these varied fluids is a complex task, requiring rigorous experiment design and a concerted approach. While major challenges still remain, fluid proteomics studies in pancreatic cancer to date have provided a wealth of information in revealing proteome alterations associated with pancreatic cancer in various bodily fluids.

  2. Redox Proteomics in Human Biofluids: Sample Preparation, Separation and Immunochemical Tagging for Analysis of Protein Oxidation.

    PubMed

    Di Domenico, Fabio; Perluigi, Marzia; Butterfield, D Allan

    2016-01-01

    Proteomics offers the simultaneous detection of a large number of proteins in a single experiment and can provide important information regarding crucial aspects of specific proteins, particularly post-translational modifications (PTMs). Investigations of oxidative PTMs are currently performed using focused redox proteomics techniques, which rely on gel electrophoresis separations of intact proteins with the final detection of oxidative PTMs being performed by mass spectrometry (MS) analysis. The application of this technique to human biofluids is being subject of increasing investigation and is expected to provide new insights on the oxidative status of the peripheral proteome in neurological diseases such as Alzheimer's disease, towards purposes of early diagnosis and prognosis. This chapter describes all the experimental steps to perform redox proteomics analysis of cerebrospinal fluid and plasma/serum samples.

  3. MASPECTRAS: a platform for management and analysis of proteomics LC-MS/MS data

    PubMed Central

    Hartler, Jürgen; Thallinger, Gerhard G; Stocker, Gernot; Sturn, Alexander; Burkard, Thomas R; Körner, Erik; Rader, Robert; Schmidt, Andreas; Mechtler, Karl; Trajanoski, Zlatko

    2007-01-01

    Background The advancements of proteomics technologies have led to a rapid increase in the number, size and rate at which datasets are generated. Managing and extracting valuable information from such datasets requires the use of data management platforms and computational approaches. Results We have developed the MAss SPECTRometry Analysis System (MASPECTRAS), a platform for management and analysis of proteomics LC-MS/MS data. MASPECTRAS is based on the Proteome Experimental Data Repository (PEDRo) relational database schema and follows the guidelines of the Proteomics Standards Initiative (PSI). Analysis modules include: 1) import and parsing of the results from the search engines SEQUEST, Mascot, Spectrum Mill, X! Tandem, and OMSSA; 2) peptide validation, 3) clustering of proteins based on Markov Clustering and multiple alignments; and 4) quantification using the Automated Statistical Analysis of Protein Abundance Ratios algorithm (ASAPRatio). The system provides customizable data retrieval and visualization tools, as well as export to PRoteomics IDEntifications public repository (PRIDE). MASPECTRAS is freely available at Conclusion Given the unique features and the flexibility due to the use of standard software technology, our platform represents significant advance and could be of great interest to the proteomics community. PMID:17567892

  4. Comparative proteomic analysis of rice shoots exposed to high arsenate.

    PubMed

    Liu, Yanli; Li, Ming; Han, Chao; Wu, Fengxia; Tu, Bingkun; Yang, Pingfang

    2013-10-01

    Consumption of arsenic contaminated water and cereals is a serious threat to humans all over the world. Rice (Oryza sativa "Nipponbare"), as a main cereal crop, can accumulate arsenic more than 10-fold that of in other cereals. To gain a comprehensive understanding of the response of rice subjected to 100 µM arsenate stress, a comparative proteomic analysis of rice shoots in combination with morphological and biochemical investigations have been performed in this study. The results demonstrated that arsenate suppressed the growth of rice seedlings, destroyed the cellular ultra-structure and changed the homeostasis of reactive oxygen species. Moreover, a total of 38 differentially displayed proteins, which were mainly involved in metabolism, redox and protein-metabolism, were identified. The data suggest the arsenic can inhibit rice growth through negatively affecting chloroplast structure and photosynthesis. In addition, upregulation of the proteins involved in redox and protein metabolism might help the rice to be resistant or tolerant to arsenic toxicity. In general, this study improves our understanding about the rice arsenic responsive mechanism.

  5. A proteomic analysis of seed development in Brassica campestri L.

    PubMed

    Li, Wenlan; Gao, Yi; Xu, Hong; Zhang, Yu; Wang, Jianbo

    2012-01-01

    To gain insights into the protein dynamics during seed development, a proteomic study on the developing Brassica campestri L. seeds with embryos in different embryogenesis stages was carried out. The seed proteins at 10, 16, 20, 25 and 35 DAP (days after pollination), respectively, were separated using two-dimensional gel electrophoresis and identities of 209 spots with altered abundance were determined by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS). These proteins were classified into 16 groups according to their functions. The most abundant proteins were related to primary metabolism, indicating the heavy demand of materials for rapid embryo growth. Besides, the high amount of proteins involved in protein processing and destination indicated importance of protein renewal during seed development. The remaining were those participated in oxidation/detoxification, energy, defense, transcription, protein synthesis, transporter, cell structure, signal transduction, secondary metabolism, transposition, DNA repair, storage and so on. Protein abundance profiles of each functional class were generated and hierarchical cluster analysis established 8 groups of dynamic patterns. Our results revealed novel characters of protein dynamics in seed development in Brassica campestri L. and provided valuable information about the complex process of seed development in plants. PMID:23189193

  6. Dissection of human vitreous body elements for proteomic analysis.

    PubMed

    Skeie, Jessica M; Mahajan, Vinit B

    2011-01-01

    The vitreous is an optically clear, collagenous extracellular matrix that fills the inside of the eye and overlies the retina. (1,2) Abnormal interactions between vitreous substructures and the retina underlie several vitreoretinal diseases, including retinal tear and detachment, macular pucker, macular hole, age-related macular degeneration, vitreomacular traction, proliferative vitreoretinopathy, proliferative diabetic retinopathy, and inherited vitreoretinopathies. (1,2) The molecular composition of the vitreous substructures is not known. Since the vitreous body is transparent with limited surgical access, it has been difficult to study its substructures at the molecular level. We developed a method to separate and preserve these tissues for proteomic and biochemical analysis. The dissection technique in this experimental video shows how to isolate vitreous base, anterior hyaloid, vitreous core, and vitreous cortex from postmortem human eyes. One-dimensional SDS-PAGE analyses of each vitreous component showed that our dissection technique resulted in four unique protein profiles corresponding to each substructure of the human vitreous body. Identification of differentially compartmentalized proteins will reveal candidate molecules underlying various vitreoretinal diseases. PMID:21304469

  7. Proteomics Analysis of Perilymph and Cerebrospinal Fluid in Mouse

    PubMed Central

    Leary Swan, Erin E.; Peppi, Marcello; Chen, Zhiqiang; Green, Karin M.; Evans, James E.; McKenna, Michael J.; Mescher, Mark J.; Kujawa, Sharon G.; Sewell, William F.

    2010-01-01

    Objectives Proteins in perilymph may alter the delivery profile of implantable intracochlear drug delivery systems through biofouling. Knowledge of protein composition will help anticipate interactions with delivered agents. Study Design Analysis of mouse perilymph. Methods Protein composition of perilymph and cerebrospinal fluid (CSF) was analyzed using a capillary liquid chromatography-mass spectrometry-based iTRAQ quantitative proteomics approach. We searched against a mouse subset of the Uniprot FASTA protein database. We sampled perilymph from the apex of the mouse cochlea to minimize CSF contamination. Results More than 50 explicit protein isoforms were identified with very high confidence. iTRAQ reporter ions allowed determination of relative molar amounts of proteins between perilymph and CSF. Protein in perilymph was almost three times more concentrated than in CSF. More than one-third of the proteins in perilymph comprised protease inhibitors, with serpins being the predominant group. Apolipoproteins constituted 16%. Fifteen percent of the proteins were enzymes. Albumin was the most abundant single protein (14%). Proteins with relatively high perilymph/CSF ratios included broad-spectrum protease inhibitors and apolipoproteins. Discussion Some proteins found in perilymph, such as albumin and HMW kininogen, have been implicated in biofouling through adsorption to device materials. The relatively large quantities of apolipoprotein and albumin may serve as a reservoir for acidic and lipophillic drugs. Alpha-2-glycoprotein can bind basic drugs. Conclusions Perilymph is similar in protein composition to CSF, though amounts are 2.8 times higher. Protease inhibitors comprise the largest category of proteins. PMID:19358201

  8. Comparative proteomic analysis in Miscanthus sinensis exposed to antimony stress.

    PubMed

    Xue, Liang; Ren, Huadong; Li, Sheng; Gao, Ming; Shi, Shengqing; Chang, Ermei; Wei, Yuan; Yao, Xiaohua; Jiang, Zeping; Liu, Jianfeng

    2015-06-01

    To explore the molecular basis of Sb tolerance mechanism in plant, a comparative proteomic analysis of both roots and leaves in Miscanthus sinensis has been conducted in combination with physiological and biochemical analyses. M. sinensis seedlings were exposed to different doses of Sb, and both roots and leaves were collected after 3 days of treatment. Two-dimensional gel electrophoresis (2-DE) and image analyses found that 29 protein spots showed 1.5-fold change in abundance in leaves and 19 spots in roots, of which 31 were identified by MALDI-TOF-MS and MALDI-TOF-TOF-MS. Proteins involved in antioxidant defense and stress response generally increased their expression all over the Sb treatments. In addition, proteins relative to transcription, signal transduction, energy metabolism and cell division and cell structure showed a variable expression pattern over Sb concentrations. Overall these findings provide new insights into the probable survival mechanisms by which M. sinensis could be adapting to Sb phytotoxicity.

  9. Proteomic analysis through larval development of Solea senegalensis flatfish.

    PubMed

    Chicano-Gálvez, Eduardo; Asensio, Esther; Cañavate, José Pedro; Alhama, José; López-Barea, Juan

    2015-12-01

    The post-embryonic development of the Senegalese sole, Solea senegalensis, a flatfish of growing interest in fisheries and aquaculture, is associated with drastic morpho-physiological changes during metamorphosis. Although in the last two decades knowledge on sole culture has notably increased, especially in Southern Europe, its progress was restricted due to lack of methods to control reproduction, improve larval quality and increase juvenile disease resistance. A limited knowledge of the physiological, molecular and genetic mechanisms involved is at the base of such limitation. A proteomic study was carried out to explore the molecular events that occur during S. senegalensis ontogenesis. Protein expression changes were monitored in larvae from 5 to 21 dph by combining 2DE and protein identification with de novo MS/MS sequencing. An average of 6177 ± 282 spots was resolved in 2DE gels. Hierarchical cluster analysis of the 705 selected spots grouped them in eight patterns. Thirty-four proteins were identified and assigned biological functions including structure, metabolism highlighting energy metabolism, transport, protein folding, stress response, chromatin organization and regulation of gene expression. These changes provide a sequential description of the molecular events associated with the biochemical and biological transformations that occur during sole larval development.

  10. Proteomic analysis of the potato tuber life cycle.

    PubMed

    Lehesranta, Satu J; Davies, Howard V; Shepherd, Louise V T; Koistinen, Kaisa M; Massat, Nathalie; Nunan, Naoise; McNicol, James W; Kärenlampi, Sirpa O

    2006-11-01

    The tuber of potato (Solanum tuberosum) is commonly used as a model for underground storage organs. In this study, changes in the proteome were followed from tuberization, through tuber development and storage into the sprouting phase. Data interrogation using principal component analysis was able to clearly discriminate between the various stages of the tuber life cycle. Moreover, five well-defined protein expression patterns were found by hierarchical clustering. Altogether 150 proteins showing highly significant differences in abundance between specific stages in the life cycle were highlighted; 59 of these were identified. In addition, 50 proteins with smaller changes in abundance were identified, including several novel proteins. Most noticeably, the development process was characterized by the accumulation of the major storage protein patatin isoforms and enzymes involved in disease and defense reactions. Furthermore, enzymes involved in carbohydrate and energy metabolism and protein processing were associated with development but decreased during tuber maturation. These results represent the first comprehensive picture of many proteins involved in the tuber development and physiology.

  11. Proteome analysis of sugar beet leaves under drought stress.

    PubMed

    Hajheidari, Mohsen; Abdollahian-Noghabi, Mohammad; Askari, Hossein; Heidari, Manzar; Sadeghian, Seyed Y; Ober, Eric S; Salekdeh, Ghasem Hosseini

    2005-03-01

    Drought is one of the major factors limiting the yield of sugar beet (Beta vulgaris L.). The identification of candidate genes for marker-assisted selection (MAS) could greatly improve the efficiency of breeding for increased drought tolerance. Drought-induced changes in the proteome could highlight important genes. Two genotypes of sugar beet (7112 and 7219-P.69) differing in genetic background were cultivated in the field. A line-source sprinkler irrigation system was used to apply irrigated and water deficit treatments beginning at the four-leaf stage. At 157 days after sowing, leaf samples were collected from well-watered and drought-stressed plants for protein extraction and to measure shoot biomass and leaf relative water content. Changes induced in leaf proteins were studied by two-dimensional gel electrophoresis and quantitatively analyzed using image analysis software. Out of more than 500 protein spots reproducibly detected and analyzed, 79 spots showed significant changes under drought. Some proteins showed genotype-specific patterns of up- or downregulation in response to drought. Twenty protein spots were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), leading to identification of Rubisco and 11 other proteins involved in redox regulation, oxidative stress, signal transduction, and chaperone activities. Some of these proteins could contribute a physiological advantage under drought, making them potential targets for MAS. PMID:15712235

  12. Proteomic analysis of strawberry leaves infected with Colletotrichum fragariae.

    PubMed

    Fang, Xianping; Chen, Wenyue; Xin, Ya; Zhang, Hengmu; Yan, Chengqi; Yu, Hong; Liu, Hui; Xiao, Wenfei; Wang, Shuzhen; Zheng, Guizhen; Liu, Hongbo; Jin, Liang; Ma, Huasheng; Ruan, Songlin

    2012-07-16

    Understanding the defense mechanisms used by anthracnose-resistant strawberries against Colletotrichum infection is important for breeding purposes. To characterize cell responses to Colletotrichum infection, proteomes from strawberry seedling leaves that had or had not been infected with Colletotrichum fragariae were characterized at different time points post infection by 2-DE and by MALDI-TOF/TOF MS/MS and database-searching protein identification. Mass spectrometry identified 49 differentially expressed proteins with significant intensity differences (>1.5-fold, p<0.05) in mock- and C. fragariae-infected leaves at least at one time point. Notably, 2-DE analysis revealed that C. fragariae infection increased the expression of well-known and novel pathogen-responsive proteins whose expression patterns tended to correlate with physiological changes in the leaves. Quantitative real-time PCR was used to examine the transcriptional profiles of infected and uninfected strawberry leaves, and western blotting confirmed the induction of β-1,3-glucanase and a low-molecular-weight heat shock protein in response to C. fragariae infection. During the late phase of infection, proteins involved in the Calvin cycle and glycolysis pathway had suppressed expression. The abundance changes, putative functions, and participation in physiological reactions for the identified proteins produce a pathogen-responsive protein network in C. fragariae-infected strawberry leaves. Together, these findings increase our knowledge of pathogen resistance mechanisms, especially those found in non-model plant species. PMID:22634039

  13. A Proteomic Analysis of Seed Development in Brassica campestri L

    PubMed Central

    Li, Wenlan; Gao, Yi; Xu, Hong; Zhang, Yu; Wang, Jianbo

    2012-01-01

    To gain insights into the protein dynamics during seed development, a proteomic study on the developing Brassica campestri L. seeds with embryos in different embryogenesis stages was carried out. The seed proteins at 10, 16, 20, 25 and 35 DAP (days after pollination), respectively, were separated using two-dimensional gel electrophoresis and identities of 209 spots with altered abundance were determined by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS). These proteins were classified into 16 groups according to their functions. The most abundant proteins were related to primary metabolism, indicating the heavy demand of materials for rapid embryo growth. Besides, the high amount of proteins involved in protein processing and destination indicated importance of protein renewal during seed development. The remaining were those participated in oxidation/detoxification, energy, defense, transcription, protein synthesis, transporter, cell structure, signal transduction, secondary metabolism, transposition, DNA repair, storage and so on. Protein abundance profiles of each functional class were generated and hierarchical cluster analysis established 8 groups of dynamic patterns. Our results revealed novel characters of protein dynamics in seed development in Brassica campestri L. and provided valuable information about the complex process of seed development in plants. PMID:23189193

  14. Proteomic analysis of the ventral disc of Giardia lamblia

    PubMed Central

    2012-01-01

    Background Giardia lamblia is a multiflagellated protozoan that inhabits the small intestine of vertebrates, causing giardiasis. To colonize the small intestine, the trophozoites form of the parasite remains attached to intestinal epithelial cells by means of cytoskeletal elements that form a structure known as the ventral disc. Previous studies have shown that the ventral disc is made of tubulin and giardins. Results To obtain further information on the composition of the ventral disc, we developed a new protocol and evaluated the purity of the isolation by transmission electron microscopy. Using 1D- and 2D-PAGE and mass spectrometry, we identified proteins with functions associated with the disc. In addition to finding tubulin and giardin, proteins known to be associated with the ventral disc, we also identified proteins annotated in the Giardia genome, but whose function was previously unknown. Conclusions The isolation of the ventral disc shown in this work, compared to previously published protocols, proved to be more efficient. Proteomic analysis showed the presence of several proteins whose further characterization may help in the elucidation of the mechanisms involved in the attachment of the protozoan to epithelial cells. PMID:22260621

  15. Proteome analysis of the liver in the Chinese fire-bellied newt Cynops orientalis.

    PubMed

    Zang, X Y; Guo, J L; Geng, X F; Li, P F; Sun, J Y; Wang, Q W; Xu, C S

    2016-01-01

    The Chinese fire-bellied newt, Cynops orientalis, belonging to Amphibia, Caudata, Salamandridae is a species endemic to China. The liver, which is an important digestive gland and the largest amphibian organ, has various functions, including detoxification, glycogen storage, protein synthesis, and hormone production. However, the newt liver has rarely been studied at the molecular level. We performed histomorphology and high-throughput proteomic analysis of the Chinese fire-bellied newt liver, using hematoxylin and eosin (H&E) staining and two-dimensional electrophoresis coupled with mass spectrometry. The H&E staining showed that the newt liver nuclei are large and round, are located in the lateral cytoplasm, and contain a large quantity of lipid droplets. Melanins were abundantly present throughout the hepatic parenchyma. The proteome analysis showed a total of 545 proteins detected in the newt liver. Furthermore, a gene ontology analysis suggested that these proteins were associated with metabolism, immune response, cellular homeostasis, etc. Among these, proteins with metabolic functions were found to be the most abundant and highly expressed. This supports the role of the liver as the metabolic center. The proteomic results provide new insights into the aspects of the liver proteomes of the Chinese fire-bellied newt. The identification of a more global liver proteome in the newt may provide a basis for characterizing and comparing the liver proteomes from other amphibian species. PMID:27525932

  16. Comparative analysis of excretory-secretory antigens of Trichinella spiralis and Trichinella britovi muscle larvae by two-dimensional difference gel electrophoresis and immunoblotting

    PubMed Central

    2012-01-01

    Background Trichinellosis is a zoonotic disease in humans caused by Trichinella spp. The present study was undertaken to discover excretory-secretory (E-S) proteins from T. spiralis and T. britovi muscle larvae (ML) that hold promise for species-specific diagnostics. To that end, the purified E-S proteins were analyzed by fluorescent two-dimensional difference gel electrophoresis (2-D DIGE) coupled with protein identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). To search for immunoreactive proteins that are specifically recognized by host antibodies the E-S proteins were subjected to two-dimensional (2-DE) immunoblotting with antisera derived from pigs experimentally infected with T. spiralis or T. britovi. Results According to 2-D DIGE analysis, a total of twenty-two proteins including potentially immunogenic proteins and proteins produced only by one of the two Trichinella species were subjected to LC-MS/MS for protein identification. From these proteins seventeen could be identified, of which many were identified in multiple spots, suggesting that they have undergone post-translational modification, possibly involving glycosylation and/or proteolysis. These proteins included 5'-nucleotidase, serine-type protease/proteinase, and p43 glycoprotein (gp43) as well as 49 kDa E-S protein (p49). Our findings also suggest that some of the commonly identified proteins were post-translationally modified to different extents, which in certain cases seemed to result in species-specific modification. Both commonly and specifically recognized immunoreactive proteins were identified by 2-DE immunoblotting; shared antigens were identified as gp43 and different protease variants, whereas those specific to T. britovi included multiple isoforms of the 5'-nucleotidase. Conclusions Both 2-D DIGE and 2-DE immunoblotting approaches indicate that T. spiralis and T. britovi produce somewhat distinctive antigen profiles, which contain E-S antigens with potential

  17. NitroDIGE analysis reveals inhibition of protein S-nitrosylation by epigallocatechin gallates in lipopolysaccharide-stimulated microglial cells

    PubMed Central

    2014-01-01

    Background Nitric oxide (NO) is a signaling molecule regulating numerous cellular functions in development and disease. In the brain, neuronal injury or neuroinflammation can lead to microglial activation, which induces NO production. NO can react with critical cysteine thiols of target proteins forming S-nitroso-proteins. This modification, known as S-nitrosylation, is an evolutionarily conserved redox-based post-translational modification (PTM) of specific proteins analogous to phosphorylation. In this study, we describe a protocol for analyzing S-nitrosylation of proteins using a gel-based proteomic approach and use it to investigate the modes of action of a botanical compound found in green tea, epigallocatechin-3-gallate (EGCG), on protein S-nitrosylation after microglial activation. Methods/Results To globally and quantitatively analyze NO-induced protein S-nitrosylation, the sensitive gel-based proteomic method, termed NitroDIGE, was developed by combining two-dimensional differential in-gel electrophoresis (2-D DIGE) with the modified biotin switch technique (BST) using fluorescence-tagged CyDye™ thiol reactive agents to label S-nitrosothiols. The NitroDIGE method showed high specificity and sensitivity in detecting S-nitrosylated proteins (SNO-proteins). Using this approach, we identified a subset of SNO-proteins ex vivo by exposing immortalized murine BV-2 microglial cells to a physiological NO donor, or in vivo by exposing BV-2 cells to endotoxin lipopolysaccharides (LPS) to induce a proinflammatory response. Moreover, EGCG was shown to attenuate S-nitrosylation of proteins after LPS-induced activation of microglial cells primarily by modulation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response. Conclusions These results demonstrate that NitroDIGE is an effective proteomic strategy for “top-down” quantitative analysis of protein S-nitrosylation in multi-group samples in response to nitrosative stress due

  18. Proteome analysis of ofloxacin and moxifloxacin induced mycobacterium tuberculosis isolates by proteomic approach.

    PubMed

    Lata, Manju; Sharma, Divakar; Kumar, Bhavnesh; Deo, Nirmala; Tiwari, Pramod Kumar; Bisht, Deepa; Venkatesan, Krishnamurthy

    2015-01-01

    Ofloxacin (OFX) and moxifloxacin (MOX) are the most promising second line drugs for tuberculosis treatment. Although the primary mechanism of action of OFX and MOX is gyrase inhibition, other possible mechanisms cannot be ruled out. Being the functional moiety of cell, the proteins act as primary targets for developing drugs, diagnostics and therapeutics. In this study we have investigated the proteomic changes of Mycobacterium tuberculosis isolates induced by OFX and MOX by applying comparative proteomic approaches based on two-dinensional gel electrophoresis (2DE) along with matrix assisted laser desorption ionisation time of flight mass spectrometry (MALDI TOF/TOF-MS) and bioinformatic tools. The findings are likely to provide new understanding of OFX and MOX mechanisms that might be helpful in exploring new diagnostics and drug targets. Our study explored eleven proteins (Rv2889c, Rv2623, Rv0952, Rv1827, Rv1932, Rv0054, Rv1080c, Rv3418c, Rv3914, Rv1636 and Rv0009) that were overexpressed in the presence of drugs. Among them, Rv2623, Rv1827 and Rv1636 were identified as proteins with unknown function. InterProScan and molecular docking revealed that the conserved domain of hypothetical proteins interact with OFX and MOX which indicate a probable inhibition/modulation of the functioning of these proteins by both drugs, which might be overexpressed to overcome this effect.

  19. High pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis

    SciTech Connect

    Yang, Feng; Shen, Yufeng; Camp, David G.; Smith, Richard D.

    2012-04-01

    Orthogonal high-resolution separations are critical for attaining improved analytical dynamic ranges of proteome measurements. Concatenated high pH reversed phase liquid chromatography affords better separations than the strong cation exchange conventionally applied for two-dimensional shotgun proteomic analysis. For example, concatenated high pH reversed phase liquid chromatography increased identification coverage for peptides (e.g., by 1.8-fold) and proteins (e.g., by 1.6-fold) in shotgun proteomics analyses of a digested human protein sample. Additional advantages of concatenated high pH RPLC include improved protein sequence coverage, simplified sample processing, and reduced sample losses, making this an attractive first dimension separation strategy for two-dimensional proteomics analyses.

  20. Proteomic analysis of lymphoid and haematopoietic neoplasms: there's more than biomarker discovery.

    PubMed

    Zamò, Alberto; Cecconi, Daniela

    2010-01-01

    Lymphoid and haematopoietic neoplasms comprise a broad spectrum of different tumours, classified by the World Health Organization (WHO) on the basis of a combination of morphology, immunophenotypic, genetic and clinical features. Up to date for many of these neoplasms no single feature is regarded as a diagnostic gold standard. The application of proteomics to the study of neoplastic haematological diseases could help in the search for new diagnostic and prognostic markers, as well as in the development of new therapeutic strategies. In this review, we focus on the actual role of proteomics technologies in the study of neoplastic haematology. In particular, we analyse the results obtained in the field of body fluid, cell lines, and tissues proteomics, and discuss the improvement allowed by the new developed proteomic strategies, such as nanofluidic systems, analysis of formalin-fixed tissues, and quantitative high throughput techniques (SILAC, ICAT, iTRAQ).

  1. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags

    PubMed Central

    Lipton, Mary S.; Paša-Tolić, Ljiljana; Anderson, Gordon A.; Anderson, David J.; Auberry, Deanna L.; Battista, John R.; Daly, Michael J.; Fredrickson, Jim; Hixson, Kim K.; Kostandarithes, Heather; Masselon, Christophe; Markillie, Lye Meng; Moore, Ronald J.; Romine, Margaret F.; Shen, Yufeng; Stritmatter, Eric; Tolić, Nikola; Udseth, Harold R.; Venkateswaran, Amudhan; Wong, Kwong-Kwok; Zhao, Rui; Smith, Richard D.

    2002-01-01

    Understanding biological systems and the roles of their constituents is facilitated by the ability to make quantitative, sensitive, and comprehensive measurements of how their proteome changes, e.g., in response to environmental perturbations. To this end, we have developed a high-throughput methodology to characterize an organism's dynamic proteome based on the combination of global enzymatic digestion, high-resolution liquid chromatographic separations, and analysis by Fourier transform ion cyclotron resonance mass spectrometry. The peptides produced serve as accurate mass tags for the proteins and have been used to identify with high confidence >61% of the predicted proteome for the ionizing radiation-resistant bacterium Deinococcus radiodurans. This fraction represents the broadest proteome coverage for any organism to date and includes 715 proteins previously annotated as either hypothetical or conserved hypothetical. PMID:12177431

  2. Proteomic analysis of cerebrospinal fluid in amyotrophic lateral sclerosis

    PubMed Central

    CHEN, YAN; LIU, XIAO-HUI; WU, JIAN-JUN; REN, HUI-MING; WANG, JIAN; DING, ZHENG-TONG; JIANG, YU-PING

    2016-01-01

    The present study used comparative proteomic analysis of cerebrospinal fluid (CSF) in amyotrophic lateral sclerosis (ALS) patients in order to identify proteins that may act as diagnostic biomarkers and indicators of the pathogenesis of ALS. This analysis was performed using isobaric tags for relative and absolute quantitation (iTRAQ) technology, coupled with 2-dimensional liquid chromatography/mass spectrometry. Database for Annotation, Visualization and Integrated Discovery software was utilized for bioinformatic analysis of the data. Following this, western blotting was performed in order to examine the expression of 3 candidate proteins in ALS patients compared with healthy individuals [as a normal control (NC) group] or patients with other neurological disease (OND); these proteins were insulin-like growth factor II (IGF-2), glutamate receptor 4 (GRIA4) and leucine-rich α-2-glycoprotein 1 (LRG1). Clinical data, including gender, age, disease duration and ALS functional rating scale (ALSFRS-R) score, were also collected in the ALS patients. Multiple linear regression analysis was performed between the clinical data and the results of western blot analysis. A total of 248 distinct proteins were identified in the ALS and NC groups, amongst which a significant difference could be identified in 35 proteins; of these, 21 proteins were downregulated and 14 were upregulated. These differentially-expressed proteins were thus revealed to be associated with ALS. The western blot analysis confirmed a proportion of the data attained in the iTRAQ analysis, revealing the differential protein expression of IGF-2 and GRIA4 between the ALS and NC groups. IGF-2 was significantly downregulated in ALS patients (P=0.017) and GRIA4 was significantly upregulated (P=0.016). These results were subsequently validated in the 35-patient ALS and OND groups (P=0.002), but no significant difference was identified in LRG1 expression between these groups. GRIA4 protein expression was higher

  3. Comparative proteome analysis across non-small cell lung cancer cell lines.

    PubMed

    Grundner-Culemann, Kathrin; Dybowski, J Nikolaj; Klammer, Martin; Tebbe, Andreas; Schaab, Christoph; Daub, Henrik

    2016-01-01

    Non-small cell lung cancer (NSCLC) cell lines are widely used model systems to study molecular aspects of lung cancer. Comparative and in-depth proteome expression data across many NSCLC cell lines has not been generated yet, but would be of utility for the investigation of candidate targets and markers in oncogenesis. We employed a SILAC reference approach to perform replicate proteome quantifications across 23 distinct NSCLC cell lines. On average, close to 4000 distinct proteins were identified and quantified per cell line. These included many known targets and diagnostic markers, indicating that our proteome expression data represents a useful resource for NSCLC pre-clinical research. To assess proteome diversity within the NSCLC cell line panel, we performed hierarchical clustering and principal component analysis of proteome expression data. Our results indicate that general proteome diversity among NSCLC cell lines supersedes potential effects common to K-Ras or epidermal growth factor receptor (EGFR) oncoprotein expression. However, we observed partial segregation of EGFR or KRAS mutant cell lines for certain principal components, which reflected biological differences according to gene ontology enrichment analyses. Moreover, statistical analysis revealed several proteins that were significantly overexpressed in KRAS or EGFR mutant cell lines. PMID:26361996

  4. Proteomic analysis of S-nitrosylated proteins in potato plant.

    PubMed

    Kato, Hiroaki; Takemoto, Daigo; Kawakita, Kazuhito

    2013-07-01

    Nitric oxide (NO) has various functions in physiological responses in plants, such as development, hormone signaling and defense. The mechanism of how NO regulates physiological responses has not been well understood. Protein S-nitrosylation, a redox-related modification of cysteine thiol by NO, is known to be one of the important post-translational modifications to regulate activity and interactions of proteins. To elucidate NO function in plants, proteomic analysis of S-nitrosylated proteins in potato (Solanum tuberosum) was performed. Detection and functional analysis of internal S-nitrosylated proteins is technically demanding because of the instability and reversibility of the protein S-nitrosylation. By using a modified biotin switch assay optimized for potato tissues, and nano liquid chromatography combined with mass spectrometry, approximately 80 S-nitrosylated candidate proteins were identified in S-nitrosoglutathione-treated potato leaves and tuber extracts. Identified proteins included redox-related enzymes, defense-related proteins and metabolic enzymes. Some of identified proteins were synthesized in Escherichia coli, and S-nitrosylation of recombinant proteins was confirmed in vitro. Dehydroascorbate reductase 1 (DHAR1, EC 1.8.5.1), one of the identified S-nitrosylated target proteins, showed glutathione-dependent dehydroascorbate-reducing activity. Either point mutation in a target cysteine of S-nitrosylation or treatment with an NO donor, S-nitroso-L-cysteine, significantly reduced the activity of DHAR1, indicating that DHAR1 is negatively regulated by S-nitrosylation of the cysteine residue essential for the enzymatic activity. These results show that the modified method developed in this study can be used to identify proteins regulated by S-nitrosylation in potato tissues.

  5. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line.

    PubMed

    Xu, Wenjing; Lv, Hongjun; Zhao, Mingming; Li, Yongchao; Qi, Yueying; Peng, Zhenying; Xia, Guangmin; Wang, Mengcheng

    2016-01-01

    We previously bred a salt tolerant wheat cv. SR3 with bread wheat cv. JN177 as the parent via asymmetric somatic hybridization, and found that the tolerance is partially attributed to the superior photosynthesis capacity. Here, we compared the proteomes of two cultivars to unravel the basis of superior photosynthesis capacity. In the maps of two dimensional difference gel electrophoresis (2D-DIGE), there were 26 differentially expressed proteins (DEPs), including 18 cultivar-based and 8 stress-responsive ones. 21 of 26 DEPs were identified and classified into four categories, including photosynthesis, photosynthesis system stability, linolenic acid metabolism, and protein synthesis in chloroplast. The chloroplast localization of some DEPs confirmed that the identified DEPs function in the chloroplast. The overexpression of a DEP enhanced salt tolerance in Arabidopsis thaliana. In line with these data, it is concluded that the contribution of chloroplast to high salinity tolerance of wheat cv. SR3 appears to include higher photosynthesis efficiency by promoting system protection and ROS clearance, stronger production of phytohormone JA by enhancing metabolism activity, and modulating the in chloroplast synthesis of proteins. PMID:27562633

  6. Proteomic Alterations in B Lymphocytes of Sensitized Mice in a Model of Chemical-Induced Asthma

    PubMed Central

    De Vooght, Vanessa; Schoofs, Liliane; Nemery, Benoit; Clynen, Elke; Hoet, Peter H. M.

    2015-01-01

    Introduction and Aim The role of B-lymphocytes in chemical-induced asthma is largely unknown. Recent work demonstrated that transferring B lymphocytes from toluene diisocyanate (TDI)-sensitized mice into naïve mice, B cell KO mice and SCID mice, triggered an asthma-like response in these mice after a subsequent TDI-challenge. We applied two-dimensional difference gel electrophoresis (2D-DIGE) to describe the “sensitized signature” of B lymphocytes comparing TDI-sensitized mice with control mice. Results Sixteen proteins were identified that were significantly up- or down-regulated in B lymphocytes of sensitized mice. Particularly differences in the expression of cyclophilin A, cofilin 1 and zinc finger containing CCHC domain protein 11 could be correlated to the function of B lymphocytes as initiators of T lymphocyte independent asthma-like responses. Conclusion This study revealed important alterations in the proteome of sensitized B cells in a mouse model of chemical-induced asthma, which will have an important impact on the B cell function. PMID:26398101

  7. Physiological and proteome study of sunflowers exposed to a polymetallic constraint.

    PubMed

    Printz, Bruno; Sergeant, Kjell; Guignard, Cedric; Renaut, Jenny; Hausman, Jean-Francois

    2013-06-01

    The new energy requirements of the growing world population together with the actual ecological trend of phytoremediation have made challenging the cultivation of energetic crops on nonagricultural lands, such as those contaminated with trace elements. In this study, phenotypical characterization and biochemical analyses were combined to emphasize the global response of young sunflowers (Helianthus annuus L.) grown in hydroponic media contaminated with different Cd, Ni, and Zn concentrations. Leaves and roots of sunflowers reaching the stage "2-extended leaves" and exposed to different trace metal concentrations were harvested and analyzed by 2D-DIGE in order to study in depth the molecular responses of the young plants upon the polymetallic exposure. Proteomics confirmed the observed global reduction in growth and development. If photosynthetic light reactions and carbon metabolism were the most affected in leaves, in roots significant disruptions were observed in proteins involved in respiration, oxidative balance, protein and gene expression, and in the induction of programmed cell death. Elemental analyses of the plantlets indicated a profound impact of the treatment resulting in misbalance in essential micronutrients. Altogether, this study highlights the sensitivity of the sunflower to a polymetallic pollution and indicates that its use as a remediative tool of trace element polluted soils is limited.

  8. Evaluation of proteome alterations induced by cadmium stress in sunflower (Helianthus annuus L.) cultures.

    PubMed

    Lopes Júnior, Cícero Alves; Barbosa, Herbert de Sousa; Moretto Galazzi, Rodrigo; Ferreira Koolen, Hector Henrique; Gozzo, Fábio Cesar; Arruda, Marco Aurélio Zezzi

    2015-09-01

    The present study evaluates, at a proteomic level, changes in protein abundance in sunflower leaves in the absence or presence (at 50 or 700mg) of cadmium (as CdCl2). At the end of the cultivation period (45 days), proteins are extracted from leaves with phenol, separated by two-dimensional difference gel electrophoresis (2-D DIGE), and excised from the gels. The differential protein abundances (for proteins differing by more than 1.8 fold, which corresponds to 90% variation) are characterized using nESI-LC-MS/MS. The protein content decreases by approximately 41% in plants treated with 700mg Cd compared with control plants. By comparing all groups of plants evaluated in this study (Control vs. Cd-lower, Control vs. Cd-higher and Cd-lower vs. Cd-higher), 39 proteins are found differential and 18 accurately identified; the control vs. Cd-higher treatment is that presenting the most differential proteins. From identified proteins, those involved in energy and disease/defense (including stress), are the ribulose bisphosphate carboxylase large chain, transketolase, and heat shock proteins are the most differential abundant proteins. Thus, at the present study, photosynthesis is the main process affected by Cd in sunflowers, although these plants are highly tolerant to Cd.

  9. Tritrophic interactions among Macrosiphum euphorbiae aphids, their host plants and endosymbionts: investigation by a proteomic approach.

    PubMed

    Francis, F; Guillonneau, F; Leprince, P; De Pauw, E; Haubruge, E; Jia, L; Goggin, F L

    2010-06-01

    The Mi-1.2 gene in tomato confers resistance against certain clones of the potato aphid (Macrosiphum euphorbiae). This study used 2D-DIGE coupled with protein identification by MALDI-TOF-MS to compare the proteome patterns of avirulent and semivirulent potato aphids and their bacterial endosymbionts on resistant (Mi-1.2+) and susceptible (Mi-1.2-) tomato lines. Avirulent aphids had low survival on resistant plants, whereas the semivirulent clone could colonize these plants. Eighty-two protein spots showed significant quantitative differences among the four treatment groups, and of these, 48 could be assigned putative identities. Numerous structural proteins and enzymes associated with primary metabolism were more abundant in the semivirulent than in the avirulent aphid clone. Several proteins were also up-regulated in semivirulent aphids when they were transferred from susceptible to resistant plants. Nearly 25% of the differentially regulated proteins originated from aphid endosymbionts and not the aphid itself. Six were assigned to the primary endosymbiont Buchnera aphidicola, and 5 appeared to be derived from a Rickettsia-like secondary symbiont. These results indicate that symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids' host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance.

  10. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line

    PubMed Central

    Xu, Wenjing; Lv, Hongjun; Zhao, Mingming; Li, Yongchao; Qi, Yueying; Peng, Zhenying; Xia, Guangmin; Wang, Mengcheng

    2016-01-01

    We previously bred a salt tolerant wheat cv. SR3 with bread wheat cv. JN177 as the parent via asymmetric somatic hybridization, and found that the tolerance is partially attributed to the superior photosynthesis capacity. Here, we compared the proteomes of two cultivars to unravel the basis of superior photosynthesis capacity. In the maps of two dimensional difference gel electrophoresis (2D-DIGE), there were 26 differentially expressed proteins (DEPs), including 18 cultivar-based and 8 stress-responsive ones. 21 of 26 DEPs were identified and classified into four categories, including photosynthesis, photosynthesis system stability, linolenic acid metabolism, and protein synthesis in chloroplast. The chloroplast localization of some DEPs confirmed that the identified DEPs function in the chloroplast. The overexpression of a DEP enhanced salt tolerance in Arabidopsis thaliana. In line with these data, it is concluded that the contribution of chloroplast to high salinity tolerance of wheat cv. SR3 appears to include higher photosynthesis efficiency by promoting system protection and ROS clearance, stronger production of phytohormone JA by enhancing metabolism activity, and modulating the in chloroplast synthesis of proteins. PMID:27562633

  11. A proteomic approach towards understanding the cross talk between Bacteroides fragilis and Bifidobacterium longum in coculture.

    PubMed

    Rios-Covián, David; Sánchez, Borja; Martínez, Noelia; Cuesta, Isabel; Hernández-Barranco, Ana M; de Los Reyes-Gavilán, Clara G; Gueimonde, Miguel

    2016-07-01

    A better understanding of the interactions among intestinal microbes is needed to decipher the complex cross talk that takes place within the human gut. Bacteroides and Bifidobacterium genera are among the most relevant intestinal bacteria, and it has been previously reported that coculturing of these 2 microorganisms affects their survival. Therefore, coculturing of Bifidobacterium longum NB667 and Bacteroides fragilis DSMZ2151 was performed with the aim of unravelling the mechanisms involved in their interaction. To this end, we applied proteomic (2D-DIGE) analyses, and by chromatographic techniques we quantified the bacterial metabolites produced during coincubation. Coculture stimulated the growth of B. longum, retarding that of B. fragilis, with concomitant changes in the production of some proteins and metabolites of both bacteria. The combined culture promoted upregulation of the bifidobacterial pyruvate kinase and downregulation of the Bacteroides phosphoenolpyruvate carboxykinase - 2 enzymes involved in the catabolism of carbohydrates. Moreover, B. fragilis FKBP-type peptidyl-prolyl cis-trans isomerase, a protein with chaperone-like activity, was found to be overproduced in coculture, suggesting the induction of a stress response in this microorganism. This study provides mechanistic data to deepen our understanding of the interaction between Bacteroides and Bifidobacterium intestinal populations.

  12. Proteomics Analysis of Alfalfa Response to Heat Stress

    PubMed Central

    Li, Weimin; Wei, Zhenwu; Qiao, Zhihong; Wu, Zinian; Cheng, Lixiang; Wang, Yuyang

    2013-01-01

    The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin) seedlings were exposed to 25°C (control) and 40°C (heat stress) in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE), and differentially expressed protein spots were identified by mass spectrometry (MS). Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa. PMID:24324825

  13. Proteomic Analysis of Unbounded Cellular Compartments: Synaptic Clefts.

    PubMed

    Loh, Ken H; Stawski, Philipp S; Draycott, Austin S; Udeshi, Namrata D; Lehrman, Emily K; Wilton, Daniel K; Svinkina, Tanya; Deerinck, Thomas J; Ellisman, Mark H; Stevens, Beth; Carr, Steven A; Ting, Alice Y

    2016-08-25

    Cellular compartments that cannot be biochemically isolated are challenging to characterize. Here we demonstrate the proteomic characterization of the synaptic clefts that exist at both excitatory and inhibitory synapses. Normal brain function relies on the careful balance of these opposing neural connections, and understanding how this balance is achieved relies on knowledge of their protein compositions. Using a spatially restricted enzymatic tagging strategy, we mapped the proteomes of two of the most common excitatory and inhibitory synaptic clefts in living neurons. These proteomes reveal dozens of synaptic candidates and assign numerous known synaptic proteins to a specific cleft type. The molecular differentiation of each cleft allowed us to identify Mdga2 as a potential specificity factor influencing Neuroligin-2's recruitment of presynaptic neurotransmitters at inhibitory synapses. PMID:27565350

  14. Computational Proteomics: High-throughput Analysis for Systems Biology

    SciTech Connect

    Cannon, William R.; Webb-Robertson, Bobbie-Jo M.

    2007-01-03

    High-throughput (HTP) proteomics is a rapidly developing field that offers the global profiling of proteins from a biological system. The HTP technological advances are fueling a revolution in biology, enabling analyses at the scales of entire systems (e.g., whole cells, tumors, or environmental communities). However, simply identifying the proteins in a cell is insufficient for understanding the underlying complexity and operating mechanisms of the overall system. Systems level investigations are relying more and more on computational analyses, especially in the field of proteomics generating large-scale global data.

  15. Comprehensive genome-wide proteomic analysis of human placental tissue for the Chromosome-Centric Human Proteome Project.

    PubMed

    Lee, Hyoung-Joo; Jeong, Seul-Ki; Na, Keun; Lee, Min Jung; Lee, Sun Hee; Lim, Jong-Sun; Cha, Hyun-Jeong; Cho, Jin-Young; Kwon, Ja-Young; Kim, Hoguen; Song, Si Young; Yoo, Jong Shin; Park, Young Mok; Kim, Hail; Hancock, William S; Paik, Young-Ki

    2013-06-01

    As a starting point of the Chromosome-Centric Human Proteome Project (C-HPP), we established strategies of genome-wide proteomic analysis, including protein identification, quantitation of disease-specific proteins, and assessment of post-translational modifications, using paired human placental tissues from healthy and preeclampsia patients. This analysis resulted in identification of 4239 unique proteins with high confidence (two or more unique peptides with a false discovery rate less than 1%), covering 21% of approximately 20, 059 (Ensembl v69, Oct 2012) human proteins, among which 28 proteins exhibited differentially expressed preeclampsia-specific proteins. When these proteins are assigned to all human chromosomes, the pattern of the newly identified placental protein population is proportional to that of the gene count distribution of each chromosome. We also identified 219 unique N-linked glycopeptides, 592 unique phosphopeptides, and 66 chromosome 13-specific proteins. In particular, protein evidence of 14 genes previously known to be specifically up-regulated in human placenta was verified by mass spectrometry. With respect to the functional implication of these proteins, 38 proteins were found to be involved in regulatory factor biosynthesis or the immune system in the placenta, but the molecular mechanism of these proteins during pregnancy warrants further investigation. As far as we know, this work produced the highest number of proteins identified in the placenta and will be useful for annotating and mapping all proteins encoded in the human genome.

  16. Proteomic characterization of peroxisome proliferator-activated receptor-γ (PPARγ) overexpressing or silenced colorectal cancer cells unveils a novel protein network associated with an aggressive phenotype.

    PubMed

    Milone, Maria Rita; Pucci, Biagio; Colangelo, Tommaso; Lombardi, Rita; Iannelli, Federica; Colantuoni, Vittorio; Sabatino, Lina; Budillon, Alfredo

    2016-10-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) is a transcription factor of the nuclear hormone receptor superfamily implicated in a wide range of processes, including tumorigenesis. Its role in colorectal cancer (CRC) is still debated; most reports support that PPARγ reduced expression is associated with poor prognosis. We employed 2-Dimensional Differential InGel Electrophoresis (2-D DIGE) followed by Liquid Chromatography (LC)-tandem Mass Spectrometry (MS/MS) to identify differentially expressed proteins and the molecular pathways underlying PPARγ expression in CRC progression. We identified several differentially expressed proteins in HT29 and HCT116 CRC cells and derived clones either silenced or overexpressing PPARγ, respectively. In Ingenuity Pathway Analysis (IPA) they showed reciprocal relation with PPARγ and a strong relationship with networks linked to cell death, growth and survival. Interestingly, five of the identified proteins, ezrin (EZR), isoform C of prelamin-A/C (LMNA), alpha-enolase (ENOA), prohibitin (PHB) and RuvB-like 2 (RUVBL2) were shared by the two cell models with opposite expression levels, suggesting a possible regulation by PPARγ. mRNA and western blot analysis were undertaken to obtain a technical validation and confirm the expression trend observed by 2-D DIGE data. We associated EZR upregulation with increased cell surface localization in PPARγ-overexpressing cells by flow cytometry and immunofluorescence staining. We also correlated EZR and PPARγ expression in our series of CRC specimens and the expression profiling of all five proteins levels in the publicly available colon cancer genomic data from Oncomine and Cancer Genome Atlas (TCGA) colon adenocarcinoma (COAD) datasets. In summary, we identified a panel of proteins correlated with PPARγ expression that could be associated with CRC unveiling new pathways to be investigated for the selection of novel potential prognostic/predictive biomarkers and/or therapeutic

  17. Proteomic Analysis of Seed Dormancy in Arabidopsis1[W

    PubMed Central

    Chibani, Kamel; Ali-Rachedi, Sonia; Job, Claudette; Job, Dominique; Jullien, Marc; Grappin, Philippe

    2006-01-01

    The mechanisms controlling seed dormancy in Arabidopsis (Arabidopsis thaliana) have been characterized by proteomics using the dormant (D) accession Cvi originating from the Cape Verde Islands. Comparative studies carried out with freshly harvested dormant and after-ripened non-dormant (ND) seeds revealed a specific differential accumulation of 32 proteins. The data suggested that proteins associated with metabolic functions potentially involved in germination can accumulate during after-ripening in the dry state leading to dormancy release. Exogenous application of abscisic acid (ABA) to ND seeds strongly impeded their germination, which physiologically mimicked the behavior of D imbibed seeds. This application resulted in an alteration of the accumulation pattern of 71 proteins. There was a strong down-accumulation of a major part (90%) of these proteins, which were involved mainly in energetic and protein metabolisms. This feature suggested that exogenous ABA triggers proteolytic mechanisms in imbibed seeds. An analysis of de novo protein synthesis by two-dimensional gel electrophoresis in the presence of [35S]-methionine disclosed that exogenous ABA does not impede protein biosynthesis during imbibition. Furthermore, imbibed D seeds proved competent for de novo protein synthesis, demonstrating that impediment of protein translation was not the cause of the observed block of seed germination. However, the two-dimensional protein profiles were markedly different from those obtained with the ND seeds imbibed in ABA. Altogether, the data showed that the mechanisms blocking germination of the ND seeds by ABA application are different from those preventing germination of the D seeds imbibed in basal medium. PMID:17028149

  18. Genomics and proteomics analysis of cultured primary rat hepatocytes.

    PubMed

    Beigel, Juergen; Fella, Kerstin; Kramer, Peter-Juergen; Kroeger, Michaela; Hewitt, Philip

    2008-02-01

    The use of animal models in pharmaceutical research is a costly and sometimes misleading method of generating toxicity data and hence predicting human safety. Therefore, in vitro test systems, such as primary rat hepatocytes, and the developing genomics and proteomics technologies, are playing an increasingly important role in toxicological research. Gene and protein expression analysis were investigated in a time series (up to 5 days) of primary rat hepatocytes cultured on collagen coated dishes. Especially after 24h, a significant down-regulation of many important Phase I and Phase II enzymes (e.g., cytochrome P450's, glutathione-S-transferases, sulfotransferases) involved in xenobiotic metabolism, and antioxidative enzymes (e.g., catalase, superoxide dismutase, glutathione peroxidase) was observed. Acute-phase-response enzymes were frequently up-regulated (e.g., LPS binding protein, alpha-2-macro-globulin, ferritin, serine proteinase inhibitor B, haptoglobin), which is likely to be a result of cellular stress caused by the cell isolation procedure (perfusion) itself. A parallel observation was the increased expression of several structural genes (e.g., beta-actin, alpha-tubulin, vimentin), possibly caused by other proliferating cell types in the culture, such as fibroblasts or alternatively by hepatocyte dedifferentiation. In conclusion, the careful interpretation of data derived from this in vitro system indicates that primary hepatocytes can be successfully used for short-term toxicity studies up to 24h. However, culturing conditions need to be further optimized to reduce the massive changes of gene and protein expression of long-term cultured hepatocytes to allow practical applications as a long-term toxicity test system.

  19. Proteomic analysis of zebrafish embryos exposed to simulated-microgravity

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Ma, Wenwen; Wang, Wei; Liu, Cong; Sun, Yeqing

    Microgravity can induce a serial of physiological and pathological changes in human body, such as cardiovascular functional disorder, bone loss, muscular atrophy and impaired immune system function, etc. In this research, we focus on the influence of microgravity to vertebrate embryo development. As a powerful model for studying vertebrate development, zebrafish embryos at 8 hpf (hour past fertilization) and 24 hpf were placed into a NASA developed bioreac-tor (RCCS) to simulate microgravity for 64 and 48 hours, respectively. The same number of control embryos from the same parents were placed in a tissue culture dish at the same temper-ature of 28° C. Each experiment was repeated 3 times and analyzed by two-dimensional (2-D) gel electrophoresis. Image analysis of silver stained 2-D gels revealed that 64 from total 292 protein spots showed quantitative and qualitative variations that were significantly (P<0.05) and reproducibly different between simulate-microgravity treatment and the stationary control samples. 4 protein spots with significant expression alteration (P<0.01) were excised from 2-D gels and analyzed by MALDI-TOF/TOF mass spectra primarily. Of these proteins, 3 down-regulated proteins were identified as bectin 2, centrosomal protein of 135kDa and tropomyosin 4, while the up-regulated protein was identified as creatine kinase muscle B. Other protein spots showed significant expression alteration will be identified successively and the corresponding genes expression will also be measured by Q-PCR method at different development stages. The data presented in this study illustrate that zebrafish embryo can be significantly induced by microgravity on the expression of proteins involved in bone and muscle formation. Key Words: Danio rerio; Simulated-microgravity; Proteomics

  20. Transcriptomic and Proteomic Analysis of Arion vulgaris--Proteins for Probably Successful Survival Strategies?

    PubMed

    Bulat, Tanja; Smidak, Roman; Sialana, Fernando J; Jung, Gangsoo; Rattei, Thomas; Bilban, Martin; Sattmann, Helmut; Lubec, Gert; Aradska, Jana

    2016-01-01

    The Spanish slug, Arion vulgaris, is considered one of the hundred most invasive species in Central Europe. The immense and very successful adaptation and spreading of A. vulgaris suggest that it developed highly effective mechanisms to deal with infections and natural predators. Current transcriptomic and proteomic studies on gastropods have been restricted mainly to marine and freshwater gastropods. No transcriptomic or proteomic study on A. vulgaris has been carried out so far, and in the current study, the first transcriptomic database from adult specimen of A. vulgaris is reported. To facilitate and enable proteomics in this non-model organism, a mRNA-derived protein database was constructed for protein identification. A gel-based proteomic approach was used to obtain the first generation of a comprehensive slug mantle proteome. A total of 2128 proteins were unambiguously identified; 48 proteins represent novel proteins with no significant homology in NCBI non-redundant database. Combined transcriptomic and proteomic analysis revealed an extensive repertoire of novel proteins with a role in innate immunity including many associated pattern recognition, effector proteins and cytokine-like proteins. The number and diversity in gene families encoding lectins point to a complex defense system, probably as a result of adaptation to a pathogen-rich environment. These results are providing a fundamental and important resource for subsequent studies on molluscs as well as for putative antimicrobial compounds for drug discovery and biomedical applications. PMID:26986963

  1. Transcriptomic and Proteomic Analysis of Arion vulgaris—Proteins for Probably Successful Survival Strategies?

    PubMed Central

    Bulat, Tanja; Smidak, Roman; Sialana, Fernando J.; Jung, Gangsoo; Rattei, Thomas; Bilban, Martin; Sattmann, Helmut; Lubec, Gert; Aradska, Jana

    2016-01-01

    The Spanish slug, Arion vulgaris, is considered one of the hundred most invasive species in Central Europe. The immense and very successful adaptation and spreading of A. vulgaris suggest that it developed highly effective mechanisms to deal with infections and natural predators. Current transcriptomic and proteomic studies on gastropods have been restricted mainly to marine and freshwater gastropods. No transcriptomic or proteomic study on A. vulgaris has been carried out so far, and in the current study, the first transcriptomic database from adult specimen of A. vulgaris is reported. To facilitate and enable proteomics in this non-model organism, a mRNA-derived protein database was constructed for protein identification. A gel-based proteomic approach was used to obtain the first generation of a comprehensive slug mantle proteome. A total of 2128 proteins were unambiguously identified; 48 proteins represent novel proteins with no significant homology in NCBI non-redundant database. Combined transcriptomic and proteomic analysis revealed an extensive repertoire of novel proteins with a role in innate immunity including many associated pattern recognition, effector proteins and cytokine-like proteins. The number and diversity in gene families encoding lectins point to a complex defense system, probably as a result of adaptation to a pathogen-rich environment. These results are providing a fundamental and important resource for subsequent studies on molluscs as well as for putative antimicrobial compounds for drug discovery and biomedical applications. PMID:26986963

  2. Transcriptomic and Proteomic Analysis of Arion vulgaris--Proteins for Probably Successful Survival Strategies?

    PubMed

    Bulat, Tanja; Smidak, Roman; Sialana, Fernando J; Jung, Gangsoo; Rattei, Thomas; Bilban, Martin; Sattmann, Helmut; Lubec, Gert; Aradska, Jana

    2016-01-01

    The Spanish slug, Arion vulgaris, is considered one of the hundred most invasive species in Central Europe. The immense and very successful adaptation and spreading of A. vulgaris suggest that it developed highly effective mechanisms to deal with infections and natural predators. Current transcriptomic and proteomic studies on gastropods have been restricted mainly to marine and freshwater gastropods. No transcriptomic or proteomic study on A. vulgaris has been carried out so far, and in the current study, the first transcriptomic database from adult specimen of A. vulgaris is reported. To facilitate and enable proteomics in this non-model organism, a mRNA-derived protein database was constructed for protein identification. A gel-based proteomic approach was used to obtain the first generation of a comprehensive slug mantle proteome. A total of 2128 proteins were unambiguously identified; 48 proteins represent novel proteins with no significant homology in NCBI non-redundant database. Combined transcriptomic and proteomic analysis revealed an extensive repertoire of novel proteins with a role in innate immunity including many associated pattern recognition, effector proteins and cytokine-like proteins. The number and diversity in gene families encoding lectins point to a complex defense system, probably as a result of adaptation to a pathogen-rich environment. These results are providing a fundamental and important resource for subsequent studies on molluscs as well as for putative antimicrobial compounds for drug discovery and biomedical applications.

  3. Qualitative and quantitative proteomic analysis of formalin-fixed paraffin-embedded (FFPE) tissue.

    PubMed

    Azimzadeh, Omid; Atkinson, Michael J; Tapio, Soile

    2015-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissue has recently gained interest as an alternative to fresh/frozen tissue for retrospective protein biomarker discovery. However, during the formalin fixation proteins undergo degradation and cross-linking, making conventional protein analysis technologies challenging. Cross-linking is even more challenging when quantitative proteome analysis of FFPE tissue is planned. The use of conventional protein labeling technologies on FFPE tissue has turned out to be problematic as the lysine residue labeling targets are frequently blocked by the formalin treatment. We have established a qualitative and quantitative proteomics analysis technique for FFPE tissues that combines label-free proteomic analysis with optimized protein extraction and separation conditions.

  4. Stressor-induced proteome alterations in zebrafish: a meta-analysis of response patterns.

    PubMed

    Groh, Ksenia J; Suter, Marc J-F

    2015-02-01

    Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action. We suggest that the results of any differential proteomics experiment performed with zebrafish should be interpreted keeping in mind the list of the most frequent responders that we have identified. Similar reservations should apply to any other species where proteome responses are analyzed by global proteomics methods. Careful consideration of the reliability and significance of observed changes is necessary in order not to over

  5. Comparative proteomic analysis on human L-02 liver cells treated with varying concentrations of trichloroethylene.

    PubMed

    Liu, Jianjun; Huang, Haiyan; Xing, Xiumei; Xi, Renrong; Zhuang, Zhixiong; Yuan, Jianhui; Yang, Fan; Zhao, Jin

    2007-03-01

    To determine the differential proteomic expressions in human L-02 liver cells induced by varying concentrations of trichloroethylene (TCE), comparative proteomic analysis was performed on human L-02 liver cells which were treated with varying concentrations of TCE. According to the result of MTT test, we designed four different groups, in which the cells were treated with 0 microM (control group), 3, 10 or 40 microM TCE for 24 h, respectively. Comparative analysis of approximately 800 spots resolved by two-dimensional gel electrophoresis (2DE) in the soluble proteomes of L-02 cells from the four different groups resulted in 10 differential proteins. To identify the differential spots, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) was carried out; if the results from the tool were insufficient, tandem MS (MALDI-TOF-TOF-MS) was then performed. The raw data of peptide mass fingerprints (PMFs) and MS/MS spectra were searched against the IPI human data base for exact matches. Then western blot was employed to verify the result of proteomic analysis, the following result confirmed that the results of proteomic analysis were reliable. These results might provide an insight into the underlying mechanism of TCE intoxication and find biological markers for diagnosis and therapy of TCE-induced diseases.

  6. Quantitative Proteomics Analysis of Camelina sativa Seeds Overexpressing the AGG3 Gene to Identify the Proteomic Basis of Increased Yield and Stress Tolerance.

    PubMed

    Alvarez, Sophie; Roy Choudhury, Swarup; Sivagnanam, Kumaran; Hicks, Leslie M; Pandey, Sona

    2015-06-01

    Camelina sativa, a close relative of Arabidopsis, is an oilseed plant that is emerging as an important biofuel resource. The genome and transcriptome maps of Camelina have become available recently, but its proteome composition remained unexplored. A labeling LC-based quantitative proteomics approach was applied to decipher the Camelina seed proteome, which led to the identification of 1532 proteins. In addition, the effect of overexpression of the Arabidopsis G-protein γ subunit 3 (AGG3) on the Camelina seed proteome was elucidated to identify the proteomic basis of its increased seed size and improved stress tolerance. The comparative analysis showed a significantly higher expression of proteins involved in primary and secondary metabolism, nucleic acid and protein metabolism, and abscisic acid related responses, corroborating the physiological effects of AGG3 overexpression. More importantly, the proteomic data suggested involvement of the AGG3 protein in the regulation of oxidative stress and heavy metal stress tolerance. These observations were confirmed by the physiological and biochemical characterization of AGG3-overexpressing seeds, which exhibit a higher tolerance to exogenous cadmium in a glutathione-dependent manner. The activity of multiple redox-regulating enzymes is higher in seeds expressing enhanced levels of AGG3. Overall, these data provide critical evidence for the role of redox regulation by the AGG3 protein in mediating important seed-related traits.

  7. ProteomeScout: a repository and analysis resource for post-translational modifications and proteins

    PubMed Central

    Matlock, Matthew K.; Holehouse, Alex S.; Naegle, Kristen M.

    2015-01-01

    ProteomeScout (https://proteomescout.wustl.edu) is a resource for the study of proteins and their post-translational modifications (PTMs) consisting of a database of PTMs, a repository for experimental data, an analysis suite for PTM experiments, and a tool for visualizing the relationships between complex protein annotations. The PTM database is a compendium of public PTM data, coupled with user-uploaded experimental data. ProteomeScout provides analysis tools for experimental datasets, including summary views and subset selection, which can identify relationships within subsets of data by testing for statistically significant enrichment of protein annotations. Protein annotations are incorporated in the ProteomeScout database from external resources and include terms such as Gene Ontology annotations, domains, secondary structure and non-synonymous polymorphisms. These annotations are available in the database download, in the analysis tools and in the protein viewer. The protein viewer allows for the simultaneous visualization of annotations in an interactive web graphic, which can be exported in Scalable Vector Graphics (SVG) format. Finally, quantitative data measurements associated with public experiments are also easily viewable within protein records, allowing researchers to see how PTMs change across different contexts. ProteomeScout should prove useful for protein researchers and should benefit the proteomics community by providing a stable repository for PTM experiments. PMID:25414335

  8. Analysis of High Accuracy, Quantitative Proteomics Data in the MaxQB Database*

    PubMed Central

    Schaab, Christoph; Geiger, Tamar; Stoehr, Gabriele; Cox, Juergen; Mann, Matthias

    2012-01-01

    MS-based proteomics generates rapidly increasing amounts of precise and quantitative information. Analysis of individual proteomic experiments has made great strides, but the crucial ability to compare and store information across different proteome measurements still presents many challenges. For example, it has been difficult to avoid contamination of databases with low quality peptide identifications, to control for the inflation in false positive identifications when combining data sets, and to integrate quantitative data. Although, for example, the contamination with low quality identifications has been addressed by joint analysis of deposited raw data in some public repositories, we reasoned that there should be a role for a database specifically designed for high resolution and quantitative data. Here we describe a novel database termed MaxQB that stores and displays collections of large proteomics projects and allows joint analysis and comparison. We demonstrate the analysis tools of MaxQB using proteome data of 11 different human cell lines and 28 mouse tissues. The database-wide false discovery rate is controlled by adjusting the project specific cutoff scores for the combined data sets. The 11 cell line proteomes together identify proteins expressed from more than half of all human genes. For each protein of interest, expression levels estimated by label-free quantification can be visualized across the cell lines. Similarly, the expression rank order and estimated amount of each protein within each proteome are plotted. We used MaxQB to calculate the signal reproducibility of the detected peptides for the same proteins across different proteomes. Spearman rank correlation between peptide intensity and detection probability of identified proteins was greater than 0.8 for 64% of the proteome, whereas a minority of proteins have negative correlation. This information can be used to pinpoint false protein identifications, independently of peptide database

  9. Comparative Proteomic Analysis and IgE Binding Properties of Peanut Seed and Testa (Skin)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate the protein composition and potential allergenicity of peanut testae or skins, proteome analysis was conducted using nanoLC-MS/MS sequencing. Initial amino acid analysis suggested differences in protein compositions between the blanched seed (skins removed) and skin. Phenolic compou...

  10. Sources of Technical Variability in Quantitative LC-MS Proteomics: Human Brain Tissue Sample Analysis.

    SciTech Connect

    Piehowski, Paul D.; Petyuk, Vladislav A.; Orton, Daniel J.; Xie, Fang; Moore, Ronald J.; Ramirez Restrepo, Manuel; Engel, Anzhelika; Lieberman, Andrew P.; Albin, Roger L.; Camp, David G.; Smith, Richard D.; Myers, Amanda J.

    2013-05-03

    To design a robust quantitative proteomics study, an understanding of both the inherent heterogeneity of the biological samples being studied as well as the technical variability of the proteomics methods and platform is needed. Additionally, accurately identifying the technical steps associated with the largest variability would provide valuable information for the improvement and design of future processing pipelines. We present an experimental strategy that allows for a detailed examination of the variability of the quantitative LC-MS proteomics measurements. By replicating analyses at different stages of processing, various technical components can be estimated and their individual contribution to technical variability can be dissected. This design can be easily adapted to other quantitative proteomics pipelines. Herein, we applied this methodology to our label-free workflow for the processing of human brain tissue. For this application, the pipeline was divided into four critical components: Tissue dissection and homogenization (extraction), protein denaturation followed by trypsin digestion and SPE clean-up (digestion), short-term run-to-run instrumental response fluctuation (instrumental variance), and long-term drift of the quantitative response of the LC-MS/MS platform over the 2 week period of continuous analysis (instrumental stability). From this analysis, we found the following contributions to variability: extraction (72%) >> instrumental variance (16%) > instrumental stability (8.4%) > digestion (3.1%). Furthermore, the stability of the platform and its’ suitability for discovery proteomics studies is demonstrated.

  11. Toward defining the anatomo-proteomic puzzle of the human brain: An integrative analysis.

    PubMed

    Fernandez-Irigoyen, Joaquín; Labarga, Alberto; Zabaleta, Aintzane; de Morentin, Xabier Martínez; Perez-Valderrama, Estela; Zelaya, María Victoria; Santamaria, Enrique

    2015-10-01

    The human brain is exceedingly complex, constituted by billions of neurons and trillions of synaptic connections that, in turn, define ∼900 neuroanatomical subdivisions in the adult brain (Hawrylycz et al. An anatomically comprehensive atlas of the human brain transcriptome. Nature 2012, 489, 391-399). The human brain transcriptome has revealed specific regional transcriptional signatures that are regulated in a spatiotemporal manner, increasing the complexity of the structural and molecular organization of this organ (Kang et al. Spatio-temporal transcriptome of the human brain. Nature 2011, 478, 483-489). During the last decade, neuroproteomics has emerged as a powerful approach to profile neural proteomes using shotgun-based MS, providing complementary information about protein content and function at a global level. Here, we revise recent proteome profiling studies performed in human brain, with special emphasis on proteome mapping of anatomical macrostructures, specific subcellular compartments, and cerebrospinal fluid. Moreover, we have performed an integrative functional analysis of the protein compilation derived from these large-scale human brain proteomic studies in order to obtain a comprehensive view of human brain biology. Finally, we also discuss the potential contribution of our meta-analysis to the Chromosome-centric Human Proteome Project initiative.

  12. Proteomic analysis of an unculturable bacterial endosymbiont (Blochmannia) reveals high abundance of chaperonins and biosynthetic enzymes

    PubMed Central

    Fan, Yongliang; Thompson, J. Will; Dubois, Laura G.; Moseley, M. Arthur; Wernegreen, Jennifer J.

    2013-01-01

    Many insect groups have coevolved with bacterial endosymbionts that live within specialized host cells. As a salient example, ants in the tribe Camponotini rely on Blochmannia, an intracellular bacterial mutualist that synthesizes amino acids and recycles nitrogen for the host. We performed a shotgun, label-free, LC/MS/MS quantitative proteomic analysis to investigate the proteome of Blochmannia associated with Camponotus chromaiodes. We identified more than 330 Blochmannia proteins, or 54% coverage of the predicted proteome, as well as 244 Camponotus proteins. Using the average intensity of the top 3 “best flier” peptides along with spiking of a surrogate standard at a known concentration, we estimated the concentration (fmol/μg) of those proteins with confident identification. The estimated dynamic range of Blochmannia protein abundance spanned three orders of magnitude and covered diverse functional categories, with particularly high representation of metabolism, information transfer, and chaperones. GroEL, the most abundant protein, totaled 6% of Blochmannia protein abundance. Biosynthesis of essential amino acids, fatty acids, and nucleotides, and sulfate assimilation had disproportionately high coverage in the proteome, further supporting a nutritional role of the symbiosis. This first quantitative proteomic analysis of an ant endosymbiont illustrates a promising approach to study the functional basis of intimate symbioses. PMID:23205679

  13. Progress in Top-Down Proteomics and the Analysis of Proteoforms

    NASA Astrophysics Data System (ADS)

    Toby, Timothy K.; Fornelli, Luca; Kelleher, Neil L.

    2016-06-01

    From a molecular perspective, enactors of function in biology are intact proteins that can be variably modified at the genetic, transcriptional, or post-translational level. Over the past 30 years, mass spectrometry (MS) has become a powerful method for the analysis of proteomes. Prevailing bottom-up proteomics operates at the level of the peptide, leading to issues with protein inference, connectivity, and incomplete sequence/modification information. Top-down proteomics (TDP), alternatively, applies MS at the proteoform level to analyze intact proteins with diverse sources of intramolecular complexity preserved during analysis. Fortunately, advances in prefractionation workflows, MS instrumentation, and dissociation methods for whole-protein ions have helped TDP emerge as an accessible and potentially disruptive modality with increasingly translational value. In this review, we discuss technical and conceptual advances in TDP, along with the growing power of proteoform-resolved measurements in clinical and translational research.

  14. Proteomic analysis of three gonad types of swamp eel reveals genes differentially expressed during sex reversal

    PubMed Central

    Sheng, Yue; Zhao, Wei; Song, Ying; Li, Zhigang; Luo, Majing; Lei, Quan; Cheng, Hanhua; Zhou, Rongjia

    2015-01-01

    A variety of mechanisms are engaged in sex determination in vertebrates. The teleost fish swamp eel undergoes sex reversal naturally and is an ideal model for vertebrate sexual development. However, the importance of proteome-wide scanning for gonad reversal was not previously determined. We report a 2-D electrophoresis analysis of three gonad types of proteomes during sex reversal. MS/MS analysis revealed a group of differentially expressed proteins during ovary to ovotestis to testis transformation. Cbx3 is up-regulated during gonad reversal and is likely to have a role in spermatogenesis. Rab37 is down-regulated during the reversal and is mainly associated with oogenesis. Both Cbx3 and Rab37 are linked up in a protein network. These datasets in gonadal proteomes provide a new resource for further studies in gonadal development. PMID:25985063

  15. Proteomic analysis uncovers a metabolic phenotype in C. elegans after nhr-40 reduction of function

    SciTech Connect

    Pohludka, Michal; Simeckova, Katerina; Vohanka, Jaroslav; Yilma, Petr; Novak, Petr; Krause, Michael W.; Kostrouchova, Marta; Kostrouch, Zdenek

    2008-09-12

    Caenorhabditis elegans has an unexpectedly large number (284) of genes encoding nuclear hormone receptors, most of which are nematode-specific and are of unknown function. We have exploited comparative two-dimensional chromatography of synchronized cultures of wild type C. elegans larvae and a mutant in nhr-40 to determine if proteomic approaches will provide additional insight into gene function. Chromatofocusing, followed by reversed-phase chromatography and mass spectrometry, identified altered chromatographic patterns for a set of proteins, many of which function in muscle and metabolism. Prompted by the proteomic analysis, we find that the penetrance of the developmental phenotypes in the mutant is enhanced at low temperatures and by food restriction. The combination of our phenotypic and proteomic analysis strongly suggests that NHR-40 provides a link between metabolism and muscle development. Our results highlight the utility of comparative two-dimensional chromatography to provide a relatively rapid method to gain insight into gene function.

  16. Proteomic analysis of latex from the rubber-producing plant Taraxacum brevicorniculatum.

    PubMed

    Wahler, Daniela; Colby, Thomas; Kowalski, Natalie A; Harzen, Anne; Wotzka, Sandra Y; Hillebrand, Andrea; Fischer, Rainer; Helsper, Johannes; Schmidt, Jürgen; Schulze Gronover, Christian; Prüfer, Dirk

    2012-03-01

    Many plants produce latex, a specialized, metabolically active cytoplasm. This is generally regarded as a defensive trait but latex may also possess additional functions. We investigated the role of latex in the dandelion species Taraxacum brevicorniculatum that contains considerable amounts of high-quality natural rubber by carrying out a comprehensive analysis of the latex proteome. We developed reliable protocols for the preparation of protein samples for one-dimensional gel electrophoresis, two-dimensional gel electrophoresis, and subsequent mass spectrometry analysis, which led to 278 unique identifications. A gene ontology classification system based on comparisons with known Arabidopsis thaliana root proteins showed that dandelion proteins involved in lipid metabolism and transport were enriched in the latex proteome, whereas those involved in stress responses were not. We also found that proteins involved in rubber biosynthesis were distributed among different fractions of the latex proteome.

  17. Rapid auxin-mediated changes in the proteome of the epidermal cells in rye coleoptiles: Implications for the initiation of growth

    PubMed Central

    Deng, Z.; Xu, S.; Chalkley, R. J.; Oses-Prieto, J. A.; Burlingame, A. L.; Wang, Z.-Y.; Kutschera, U.

    2011-01-01

    In axial organs of juvenile plants, the phytohormone auxin (indole-3-acetic acid, IAA) rapidly allows cell wall loosening and hence promotes turgor-driven elongation. In this study, we used rye (Secale cereale) coleoptile sections to investigate possible effects of IAA on the proteome of cells. In a first set of experiments, we document that IAA causes organ elongation via promotion of expansion of the rigid outer wall of the outer epidermis. A quantitative comparison of the proteome (membrane-associated proteins), using two-dimensional difference gel electrophoresis (2-D DIGE), revealed that, within 2 h of auxin treatment, at least 16 protein spots were up- or down-regulated by IAA. These proteins were identified using reverse-phase liquid chromatography electrospray tandem mass spectrometry. Four of these proteins were detected in the growth-controlling outer epidermis and were further analysed. One epidermal polypeptide, a small Ras-related GTP-binding protein, was rapidly down-regulated by IAA (after 0.5 h of incubation) by −35% compared to the control. Concomitantly, a subunit of the 26S proteasome was up-regulated by IAA (+30% within 1 h). In addition, this protein displayed IAA-mediated post-translational modification. The implications of these rapid auxin effects with respect to signal transduction and IAA-mediated secretion of glycoproteins (osmiophilic nano-particles) into the growth-controlling outer epidermal wall are discussed. PMID:22117532

  18. Investigating the role of respiration in plant salinity tolerance by analyzing mitochondrial proteomes from wheat and a salinity-tolerant Amphiploid (wheat × Lophopyrum elongatum).

    PubMed

    Jacoby, Richard P; Millar, A Harvey; Taylor, Nicolas L

    2013-11-01

    The effect of salinity on mitochondrial properties was investigated by comparing the reference wheat variety Chinese Spring (CS) to a salt-tolerant amphiploid (AMP). The octoploid AMP genotype was previously generated by combining hexaploid bread wheat (CS) with the diploid wild wheatgrass adapted to salt marshes, Lophopyrum elongatum. Here we used a combination of physiological, biochemical, and proteomic analyses to explore the mitochondrial and respiratory response to salinity in these two genotypes. The AMP showed greater growth tolerance to salinity treatments and altered respiration rate in both roots and shoots. A proteomic workflow of 2D-DIGE and MALDI TOF/TOF mass spectrometry was used to compare the protein composition of isolated mitochondrial samples from roots and shoots of both genotypes, following control or salt treatment. A large set of mitochondrial proteins were identified as responsive to salinity in both genotypes, notably enzymes involved in detoxification of reactive oxygen species. Genotypic differences in mitochondrial composition were also identified, with AMP exhibiting a higher abundance of manganese superoxide dismutase, serine hydroxymethyltransferase, aconitase, malate dehydrogenase, and β-cyanoalanine synthase compared to CS. We present peptide fragmentation spectra derived from some of these AMP-specific protein spots, which could serve as biomarkers to track superior protein variants. PMID:23895732

  19. Current perspectives in proteomic analysis of abiotic stress in Grapevines

    PubMed Central

    George, Iniga S.; Haynes, Paul A.

    2014-01-01

    Grapes are an important crop plant which forms the basis of a globally important industry. Grape and wine production is particularly vulnerable to environmental and climatic fluctuations, which makes it essential for us to develop a greater understanding of the molecular level responses of grape plants to various abiotic stresses. The completion of the initial grape genome sequence in 2007 has led to a significant increase in research on grapes using proteomics approaches. In this article, we discuss some of the current research on abiotic stress in grapevines, in the context of abiotic stress research in other plant species. We also highlight some of the current limitations in grapevine proteomics and identify areas with promising scope for potential future research. PMID:25538720

  20. Comparative Bacterial Proteomics: Analysis of the Core Genome Concept

    PubMed Central

    Callister, Stephen J.; McCue, Lee Ann; Turse, Joshua E.; Monroe, Matthew E.; Auberry, Kenneth J.; Smith, Richard D.; Adkins, Joshua N.; Lipton, Mary S.

    2008-01-01

    While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits. PMID:18253490

  1. Zygocotyle lunata: proteomic analysis of the adult stage.

    PubMed

    Sotillo, Javier; Valero, M Luz; Sánchez del Pino, Manuel M; Fried, Bernard; Esteban, J Guillermo; Marcilla, Antonio; Toledo, Rafael

    2011-06-01

    The somatic extract of Zygocotyle lunata (Trematoda: Paramphistomidae) adults collected from experimentally infected mice was investigated using a proteomic approach to separate and identify tryptic peptides from the somatic extract of Z. lunata adult worms. A shot-gun liquid chromatography/tandem mass spectrometry procedure was used. We used the MASCOT search engine (Matrix-Science) and ProteinPilot software v2.0 (Applied Biosystems) for the database search. A total of 36 proteins were accurately identified from the worms. The largest protein family consisted of metabolic enzymes. Structural, motor and receptor binding proteins and proteins related to oxygen transport were identified in the somatic extract of Z. lunata. This is the first study that attempts to identify the proteome of Z. lunata. However, more work is needed to improve our knowledge of trematodiasis in general and more specifically to have a better understanding about host-parasite relationships in infections with paramphistomes. PMID:21334327

  2. Comparative Analysis of Genomics and Proteomics in Bacillus thuringiensis 4.0718

    PubMed Central

    Rang, Jie; He, Hao; Wang, Ting; Ding, Xuezhi; Zuo, Mingxing; Quan, Meifang; Sun, Yunjun; Yu, Ziquan; Hu, Shengbiao; Xia, Liqiu

    2015-01-01

    Bacillus thuringiensis is a widely used biopesticide that produced various insecticidal active substances during its life cycle. Separation and purification of numerous insecticide active substances have been difficult because of the relatively short half-life of such substances. On the other hand, substances can be synthetized at different times during development, so samples at different stages have to be studied, further complicating the analysis. A dual genomic and proteomic approach would enhance our ability to identify such substances, and particularily using mass spectrometry-based proteomic methods. The comparative analysis for genomic and proteomic data have showed that not all of the products deduced from the annotated genome could be identified among the proteomic data. For instance, genome annotation results showed that 39 coding sequences in the whole genome were related to insect pathogenicity, including five cry genes. However, Cry2Ab, Cry1Ia, Cytotoxin K, Bacteriocin, Exoenzyme C3 and Alveolysin could not be detected in the proteomic data obtained. The sporulation-related proteins were also compared analysis, results showed that the great majority sporulation-related proteins can be detected by mass spectrometry. This analysis revealed Spo0A~P, SigF, SigE(+), SigK(+) and SigG(+), all known to play an important role in the process of spore formation regulatory network, also were displayed in the proteomic data. Through the comparison of the two data sets, it was possible to infer that some genes were silenced or were expressed at very low levels. For instance, found that cry2Ab seems to lack a functional promoter while cry1Ia may not be expressed due to the presence of transposons. With this comparative study a relatively complete database can be constructed and used to transform hereditary material, thereby prompting the high expression of toxic proteins. A theoretical basis is provided for constructing highly virulent engineered bacteria and for

  3. Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system

    PubMed Central

    de Godoy, Lyris MF; Olsen, Jesper V; de Souza, Gustavo A; Li, Guoqing; Mortensen, Peter; Mann, Matthias

    2006-01-01

    Background Mass spectrometry has become a powerful tool for the analysis of large numbers of proteins in complex samples, enabling much of proteomics. Due to various analytical challenges, so far no proteome has been sequenced completely. O'Shea, Weissman and co-workers have recently determined the copy number of yeast proteins, making this proteome an excellent model system to study factors affecting coverage. Results To probe the yeast proteome in depth and determine factors currently preventing complete analysis, we grew yeast cells, extracted proteins and separated them by one-dimensional gel electrophoresis. Peptides resulting from trypsin digestion were analyzed by liquid chromatography mass spectrometry on a linear ion trap-Fourier transform mass spectrometer with very high mass accuracy and sequencing speed. We achieved unambiguous identification of more than 2,000 proteins, including very low abundant ones. Effective dynamic range was limited to about 1,000 and effective sensitivity to about 500 femtomoles, far from the subfemtomole sensitivity possible with single proteins. We used SILAC (stable isotope labeling by amino acids in cell culture) to generate one-to-one pairs of true peptide signals and investigated if sensitivity, sequencing speed or dynamic range were limiting the analysis. Conclusion Advanced mass spectrometry methods can unambiguously identify more than 2,000 proteins in a single proteome. Complex mixture analysis is not limited by sensitivity but by a combination of dynamic range (high abundance peptides preventing sequencing of low abundance ones) and by effective sequencing speed. Substantially increased coverage of the yeast proteome appears feasible with further development in software and instrumentation. PMID:16784548

  4. Microsomal proteomics.

    PubMed

    Wong, Diana M; Adeli, Khosrow

    2009-01-01

    Proteomic profiling of subcellular compartments has many advantages over traditional proteomic approaches using whole cell lysates as it allows for detailed proteome analysis of a specific organelle and corresponding functional characteristics. The microsome is a critical, membranous compartment involved in the synthesis, sorting, and secretion of proteins as well as other metabolic functions. This chapter will describe detailed methods for the isolation of microsomal organelles including the ER, Golgi, and prechylomicron transport vesicle (PCTV), a recently identified vesicular system involved in intestinal lipoprotein assembly and secretion. Particular focus is given to the isolation of microsomes from primary hepatocytes and enterocytes freshly isolated from rodent liver and intestinal tissue, and their proteomic profiling using a combination of two-dimensional gel electrophoresis and mass spectrometry.

  5. Quantitative proteomic analysis of amphotericin B resistance in Leishmania infantum

    PubMed Central

    Brotherton, Marie-Christine; Bourassa, Sylvie; Légaré, Danielle; Poirier, Guy G.; Droit, Arnaud; Ouellette, Marc

    2014-01-01

    Amphotericin B (AmB) in its liposomal form is now considered as either first- or second-line treatment against Leishmania infections in different part of the world. Few cases of AmB resistance have been reported and resistance mechanisms toward AmB are still poorly understood. This paper reports a large-scale comparative proteomic study in the context of AmB resistance. Quantitative proteomics using stable isotope labeling of amino acids in cell culture (SILAC) was used to better characterize cytoplasmic and membrane-enriched (ME) proteomes of the in vitro generated Leishmania infantum AmB resistant mutant AmB1000.1. In total, 97 individual proteins were found as differentially expressed between the mutant and its parental sensitive strain (WT). More than half of these proteins were either metabolic enzymes or involved in transcription or translation processes. Key energetic pathways such as glycolysis and TCA cycle were up-regulated in the mutant. Interestingly, many proteins involved in reactive oxygen species (ROS) scavenging and heat-shock proteins were also up-regulated in the resistant mutant. This work provides a basis for further investigations to understand the roles of proteins differentially expressed in relation with AmB resistance. PMID:25057462

  6. Proteome Analysis of Borrelia burgdorferi Response to Environmental Change

    SciTech Connect

    Angel, Thomas E.; Luft, Benjamin J.; Yang, Xiaohua; Nicora, Carrie D.; Camp, David G.; Jacobs, Jon M.; Smith, Richard D.

    2010-11-02

    We examined global changes in protein expression in the B31 strain of Borrelia burgdorferi, in response to two environmental cues (pH and temperature) chosen for their reported similarity to those encountered at different stages of the organism’s life cycle. Multidimensional nano-liquid chromatographic separations coupled with tandem mass spectrometry were used to examine the array of proteins (i.e., the proteome) of B. burgdorferi for different pH and temperature culture conditions. Changes in pH and temperature elicited in vitro adaptations of this spirochete known to cause Lyme disease and led to alterations in protein expression that are associated with increased microbial pathogenesis. We identified 1031 proteins that represent 59% of the annotated genome of B. burgdorferi and elucidated a core proteome of 414 proteins that were present in all environmental conditions investigated. Observed changes in protein abundances indicated varied replicon usage, as well as proteome functional distributions between the in vitro cell culture conditions. Surprisingly, the pH and temperature conditions that mimicked B. burgdorferi residing in the gut of a fed tick showed a marked reduction in protein diversity. Additionally, the results provide us with leading candidates for exploring how B. burgdorferi adapts to and is able to survive in a wide variety of environmental conditions and lay a foundation for planned in situ studies of B. burgdorferi isolated from the tick midgut and infected animals.

  7. Transgenic, Fluorescent Leishmania mexicana Allow Direct Analysis of the Proteome of Intracellular Amastigotes*S⃞

    PubMed Central

    Paape, Daniel; Lippuner, Christoph; Schmid, Monika; Ackermann, Renate; Barrios-Llerena, Martin E.; Zimny-Arndt, Ursula; Brinkmann, Volker; Arndt, Benjamin; Pleissner, Klaus Peter; Jungblut, Peter R.; Aebischer, Toni

    2008-01-01

    Investigating the proteome of intracellular pathogens is often hampered by inadequate methodologies to purify the pathogen free of host cell material. This has also precluded direct proteome analysis of the intracellular, amastigote form of Leishmania spp., protozoan parasites that cause a spectrum of diseases that affect some 12 million patients worldwide. Here a method is presented that combines classic, isopycnic density centrifugation with fluorescent particle sorting for purification by exploiting transgenic, fluorescent parasites to allow direct proteome analysis of the purified organisms. By this approach the proteome of intracellular Leishmania mexicana amastigotes was compared with that of extracellular promastigotes that are transmitted by insect vectors. In total, 509 different proteins were identified by mass spectrometry and database search. This number corresponds to ∼6% of gene products predicted from the reference genome of Leishmania major. Intracellular amastigotes synthesized significantly more proteins with basic pI and showed a greater abundance of enzymes of fatty acid catabolism, which may reflect their living in acidic habitats and metabolic adaptation to nutrient availability, respectively. Bioinformatics analyses of the genes corresponding to the protein data sets produced clear evidence for skewed codon usage and translational bias in these organisms. Moreover analysis of the subset of genes whose products were more abundant in amastigotes revealed characteristic sequence motifs in 3′-untranslated regions that have been linked to translational control elements. This suggests that proteome data sets may be used to identify regulatory elements in mRNAs. Last but not least, at 6% coverage the proteome identified all vaccine antigens tested to date. Thus, the present data set provides a valuable resource for selection of candidate vaccine antigens. PMID:18474515

  8. Characterisation of the nuclear proteome of a dehydration-sensitive cultivar of chickpea and comparative proteomic analysis with a tolerant cultivar.

    PubMed

    Subba, Pratigya; Kumar, Rajiv; Gayali, Saurabh; Shekhar, Shubhendu; Parveen, Shaista; Pandey, Aarti; Datta, Asis; Chakraborty, Subhra; Chakraborty, Niranjan

    2013-06-01

    Water deficit or dehydration hampers plant growth and development, and shrinks harvest size of major crop species worldwide. Therefore, a better understanding of dehydration response is the key to decipher the regulatory mechanism of better adaptation. In recent years, nuclear proteomics has become an attractive area of research, particularly to study the role of nucleus in stress response. In this study, a proteome of dehydration-sensitive chickpea cultivar (ICCV-2) was generated from nuclei-enriched fractions. The LC-MS/MS analysis led to the identification of 75 differentially expressed proteins presumably associated with different metabolic and regulatory pathways. Nuclear localisation of three candidate proteins was validated by transient expression assay. The ICCV-2 proteome was then compared with that of JG-62, a tolerant cultivar. The differential proteomics and in silico analysis revealed cultivar-specific differential expression of many proteins involved in various cellular functions. The differential tolerance could be attributed to altered expression of many structural proteins and the proteins involved in stress adaptation, notably the ROS catabolising enzymes. Further, a comprehensive comparison on the abiotic stress-responsive nuclear proteome was performed using the datasets published thus far. These findings might expedite the functional determination of the dehydration-responsive proteins and their prioritisation as potential molecular targets for better adaptation.

  9. The use of formalin fixed wax embedded tissue for proteomic analysis.

    PubMed

    Ralton, Lynda D; Murray, Graeme I

    2011-04-01

    The potential of proteomic approaches to elucidate disease pathogenesis and biomarker discovery is increasingly being recognised. These studies are usually based on the use of fresh tissue samples. Problems in obtaining and storing fresh frozen samples, especially either for the investigation of rare diseases or for the study of microscopic disease foci, have led to the investigation of the possible use of formalin fixed wax embedded tissue for proteomic biomarker detection Overcoming problems with protein cross-linking associated with formalin fixation of tissues, especially by using heat-mediated retrieval techniques combined with highly sensitive methods for protein separation and identification are now emerging, giving promise to the use of formalin fixed wax embedded tissues for proteomic analysis. Formalin fixed wax embedded tissues, together with their associated clinical and pathological information outcome may provide significant potential opportunities for proteomics research. Such studies of formalin fixed wax embedded tissue will allow access to already acquired clinical tissue samples which can be readily correlated with clinical, pathological and outcome data. It also provides access to rare types of tissue/diseases that would be either difficult to collect prospectively in a timely manner or are unlikely to be available as fresh samples. The purpose of this review is to provide an overview of the issues associated with the use of formalin fixed wax embedded tissues for proteomics.

  10. Plasma proteomic analysis of active and torpid greater mouse-eared bats (Myotis myotis)

    PubMed Central

    Hecht, Alexander M.; Braun, Beate C.; Krause, Eberhard; Voigt, Christian C.; Greenwood, Alex D.; Czirják, Gábor Á.

    2015-01-01

    Hibernation is a physiological adaptation to overcome extreme environmental conditions. It is characterized by prolonged periods of torpor interrupted by temporary arousals during winter. During torpor, body functions are suppressed and restored rapidly to almost pre-hibernation levels during arousal. Although molecular studies have been performed on hibernating rodents and bears, it is unclear how generalizable the results are among hibernating species with different physiology such as bats. As targeted blood proteomic analysis are lacking in small hibernators, we investigated the general plasma proteomic profile of European Myotis myotis and hibernation associated changes between torpid and active individuals by two-dimensional gel electrophoresis. Results revealed an alternation of proteins involved in transport, fuel switching, innate immunity and blood coagulation between the two physiological states. The results suggest that metabolic changes during hibernation are associated with plasma proteomic changes. Further characterization of the proteomic plasma profile identified transport proteins, coagulation proteins and complement factors and detected a high abundance of alpha-fetoprotein. We were able to establish for the first time a basic myotid bat plasma proteomic profile and further demonstrated a modulated protein expression during torpor in Myotis myotis, indicating both novel physiological pathways in bats in general, and during hibernation in particular. PMID:26586174

  11. Plasma proteomic analysis of active and torpid greater mouse-eared bats (Myotis myotis).

    PubMed

    Hecht, Alexander M; Braun, Beate C; Krause, Eberhard; Voigt, Christian C; Greenwood, Alex D; Czirják, Gábor Á

    2015-11-20

    Hibernation is a physiological adaptation to overcome extreme environmental conditions. It is characterized by prolonged periods of torpor interrupted by temporary arousals during winter. During torpor, body functions are suppressed and restored rapidly to almost pre-hibernation levels during arousal. Although molecular studies have been performed on hibernating rodents and bears, it is unclear how generalizable the results are among hibernating species with different physiology such as bats. As targeted blood proteomic analysis are lacking in small hibernators, we investigated the general plasma proteomic profile of European Myotis myotis and hibernation associated changes between torpid and active individuals by two-dimensional gel electrophoresis. Results revealed an alternation of proteins involved in transport, fuel switching, innate immunity and blood coagulation between the two physiological states. The results suggest that metabolic changes during hibernation are associated with plasma proteomic changes. Further characterization of the proteomic plasma profile identified transport proteins, coagulation proteins and complement factors and detected a high abundance of alpha-fetoprotein. We were able to establish for the first time a basic myotid bat plasma proteomic profile and further demonstrated a modulated protein expression during torpor in Myotis myotis, indicating both novel physiological pathways in bats in general, and during hibernation in particular.

  12. Soil solid phases effects on the proteomic analysis of Cupriavidus metallidurans CH34

    SciTech Connect

    Giagnoni L.; Taghavi S.; Magherini, F.; Landi, L.; van der Lelie, D.; Puglia, M.; Bianchi, L.; Bini, L.; Nannipieri, P.; Renella, G.; Modesti, A.

    2012-05-01

    Cupriavidus metallidurans CH34 is a completely sequenced soil-borne beta-proteobacterium with known genome and proteome. Comparative 2-D electrophoresis and protein mass spectrometry were used to compare the proteome of C. metallidurans CH34 from liquid culture and after incubation for 1, 3, and 12 days in microcosms containing quartz sand, kaolinite, montmorillonite, or an artificial soil. Results showed that proteome from liquid culture was similar to CH34 proteins extracted from sand and kaolinite, whereas the proteins extracted from artificial soil differed significantly and no proteins were detected from C. metallidurans CH34 incubated in the montmorillonite microcosms. Protein recovery decreased on prolonging incubation time in all microcosms. Mass spectrometry identification showed that the trend of lower recovery upon incubation time was independent on the putative function of protein. These results suggest that the soil solid phase influences the protein recovery and soil proteomic analysis and that distinction between protein recovery and protein expression in soil will be a challenging for soil proteomic researchers.

  13. A Pilot Proteomic Analysis of Salivary Biomarkers in Autism Spectrum Disorder.

    PubMed

    Ngounou Wetie, Armand G; Wormwood, Kelly L; Russell, Stefanie; Ryan, Jeanne P; Darie, Costel C; Woods, Alisa G

    2015-06-01

    Autism spectrum disorder (ASD) prevalence is increasing, with current estimates at 1/68-1/50 individuals diagnosed with an ASD. Diagnosis is based on behavioral assessments. Early diagnosis and intervention is known to greatly improve functional outcomes in people with ASD. Diagnosis, treatment monitoring and prognosis of ASD symptoms could be facilitated with biomarkers to complement behavioral assessments. Mass spectrometry (MS) based proteomics may help reveal biomarkers for ASD. In this pilot study, we have analyzed the salivary proteome in individuals with ASD compared to neurotypical control subjects, using MS-based proteomics. Our goal is to optimize methods for salivary proteomic biomarker discovery and to identify initial putative biomarkers in people with ASDs. The salivary proteome is virtually unstudied in ASD, and saliva could provide an easily accessible biomaterial for analysis. Using nano liquid chromatography-tandem mass spectrometry, we found statistically significant differences in several salivary proteins, including elevated prolactin-inducible protein, lactotransferrin, Ig kappa chain C region, Ig gamma-1 chain C region, Ig lambda-2 chain C regions, neutrophil elastase, polymeric immunoglobulin receptor and deleted in malignant brain tumors 1. Our results indicate that this is an effective method for identification of salivary protein biomarkers, support the concept that immune system and gastrointestinal disturbances may be present in individuals with ASDs and point toward the need for larger studies in behaviorally-characterized individuals.

  14. Targets for cystic fibrosis therapy: proteomic analysis and correction of mutant cystic fibrosis transmembrane conductance regulator

    PubMed Central

    Collawn, James F; Fu, Lianwu; Bebok, Zsuzsa

    2010-01-01

    Proteomic analysis has proved to be an important tool for understanding the complex nature of genetic disorders, such as cystic fibrosis (CF), by defining the cellular protein environment (proteome) associated with wild-type and mutant proteins. Proteomic screens identified the proteome of CF transmembrane conductance regulator (CFTR), and provided fundamental information to studies designed for understanding the crucial components of physiological CFTR function. Simultaneously, high-throughput screens for small-molecular correctors of CFTR mutants provided promising candidates for therapy. The majority of CF cases are caused by nucleotide deletions (ΔF508 CFTR; >75%), resulting in CFTR misfolding, or insertion of premature termination codons (~10%), leading to unstable mRNA and reduced levels of truncated dysfunctional CFTR. In this article, we review recent results of proteomic screens, developments in identifying correctors for the most frequent CFTR mutants, and comment on how integration of the knowledge gained from these studies may aid in finding a cure for CF and a number of other genetic disorders. PMID:20653506

  15. A Description of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) Common Data Analysis Pipeline.

    PubMed

    Rudnick, Paul A; Markey, Sanford P; Roth, Jeri; Mirokhin, Yuri; Yan, Xinjian; Tchekhovskoi, Dmitrii V; Edwards, Nathan J; Thangudu, Ratna R; Ketchum, Karen A; Kinsinger, Christopher R; Mesri, Mehdi; Rodriguez, Henry; Stein, Stephen E

    2016-03-01

    The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has produced large proteomics data sets from the mass spectrometric interrogation of tumor samples previously analyzed by The Cancer Genome Atlas (TCGA) program. The availability of the genomic and proteomic data is enabling proteogenomic study for both reference (i.e., contained in major sequence databases) and nonreference markers of cancer. The CPTAC laboratories have focused on colon, breast, and ovarian tissues in the first round of analyses; spectra from these data sets were produced from 2D liquid chromatography-tandem mass spectrometry analyses and represent deep coverage. To reduce the variability introduced by disparate data analysis platforms (e.g., software packages, versions, parameters, sequence databases, etc.), the CPTAC Common Data Analysis Platform (CDAP) was created. The CDAP produces both peptide-spectrum-match (PSM) reports and gene-level reports. The pipeline processes raw mass spectrometry data according to the following: (1) peak-picking and quantitative data extraction, (2) database searching, (3) gene-based protein parsimony, and (4) false-discovery rate-based filtering. The pipeline also produces localization scores for the phosphopeptide enrichment studies using the PhosphoRS program. Quantitative information for each of the data sets is specific to the sample processing, with PSM and protein reports containing the spectrum-level or gene-level ("rolled-up") precursor peak areas and spectral counts for label-free or reporter ion log-ratios for 4plex iTRAQ. The reports are available in simple tab-delimited formats and, for the PSM-reports, in mzIdentML. The goal of the CDAP is to provide standard, uniform reports for all of the CPTAC data to enable comparisons between different samples and cancer types as well as across the major omics fields. PMID:26860878

  16. A Description of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) Common Data Analysis Pipeline.

    PubMed

    Rudnick, Paul A; Markey, Sanford P; Roth, Jeri; Mirokhin, Yuri; Yan, Xinjian; Tchekhovskoi, Dmitrii V; Edwards, Nathan J; Thangudu, Ratna R; Ketchum, Karen A; Kinsinger, Christopher R; Mesri, Mehdi; Rodriguez, Henry; Stein, Stephen E

    2016-03-01

    The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has produced large proteomics data sets from the mass spectrometric interrogation of tumor samples previously analyzed by The Cancer Genome Atlas (TCGA) program. The availability of the genomic and proteomic data is enabling proteogenomic study for both reference (i.e., contained in major sequence databases) and nonreference markers of cancer. The CPTAC laboratories have focused on colon, breast, and ovarian tissues in the first round of analyses; spectra from these data sets were produced from 2D liquid chromatography-tandem mass spectrometry analyses and represent deep coverage. To reduce the variability introduced by disparate data analysis platforms (e.g., software packages, versions, parameters, sequence databases, etc.), the CPTAC Common Data Analysis Platform (CDAP) was created. The CDAP produces both peptide-spectrum-match (PSM) reports and gene-level reports. The pipeline processes raw mass spectrometry data according to the following: (1) peak-picking and quantitative data extraction, (2) database searching, (3) gene-based protein parsimony, and (4) false-discovery rate-based filtering. The pipeline also produces localization scores for the phosphopeptide enrichment studies using the PhosphoRS program. Quantitative information for each of the data sets is specific to the sample processing, with PSM and protein reports containing the spectrum-level or gene-level ("rolled-up") precursor peak areas and spectral counts for label-free or reporter ion log-ratios for 4plex iTRAQ. The reports are available in simple tab-delimited formats and, for the PSM-reports, in mzIdentML. The goal of the CDAP is to provide standard, uniform reports for all of the CPTAC data to enable comparisons between different samples and cancer types as well as across the major omics fields.

  17. Comparative Proteomics Analysis of Two Strains of Neisseria meningitidis Serogroup B and Neisseria lactamica

    PubMed Central

    Sheikhi, Raheleh; Amin, Mansour; Hamidinia, Maryam; Assarehzadegan, Mohammad Ali; Rostami, Soodabeh; Mojtahedi, Zahra

    2015-01-01

    Background: Antigenic similarities between Neisseria lactamica as a commensal species and N. meningitidis serogroup B (NmB) as an important cause of meningitis infection have been considered for the development of an effective vaccine based on their common proteins to prevent life-threatening bacterial meningitis. Objectives: The main aims of this study were to determine whole proteome profiles of N. lactamica strains and to compare them with whole proteome profile of a reference strain of NmB for identification of some of common proteins between the two species. Materials and Methods: We compared the whole proteomic profiles of N. lactamica strains and a reference strain of NmB. Lysates from bacterial strains were resolved by two-dimensional gel electrophoresis (2-DE), followed by Coomassie Brilliant blue staining. Some of the protein spots were excised from the gel and subjected to matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analysis. Results: The analysis of Coomassie-stained gels using ImageMaster 2D Platinum software identified approximately 800 reproducible protein spots in the range of pI 4.5 - 9.5 and Mr of 8 - 100 kDa for each 2-DE gel of the studied bacterial strains. By comparing proteome maps of 2-DE gels, more than 200 common protein spots were recognized between the two species. Forty-eight common protein spots between the studied bacterial strains were identified by MALDI-TOF/TOF-MS. The results indicated that among the protein spots identified by MOLDI-TOF/TOF mass spectrometry, the groups of proteins included cell surface, energy metabolism, amino acid transport and metabolism, coenzyme metabolism, defense, multifunctional cellular processes, DNA, RNA and protein synthesis, ribosomal structure, regulatory functions, replication, transcription, translation, unknown and hypothetical proteins with unknown function. We found that N. lactamica strains have a proteome profile somewhat similar to

  18. Investigating Cellular Responses During Photohydrogen Production by the Marine Microalga Tetraselmis subcordiformis by Quantitative Proteome Analysis.

    PubMed

    Ji, Chaofan; Cao, Xupeng; Liu, Hongwei; Qu, Junge; Yao, Changhong; Zou, Hanfa; Xue, Song

    2015-10-01

    The marine microalga Tetraselmis subcordiformis could photoproduce hydrogen under the regulation of carbonyl cyanide m-chlorophenylhydrazone (CCCP), and a hydrogen production process kinetic analysis was characterized by two peaks, suggesting that two distinct mechanisms might exist in this alga. Therefore, 2D nanoliquid chromatography-tandem mass spectrometry (LC-MS/MS) was introduced to analyze the proteome of samples from different time points. A total of 912 proteins were identified, providing a global view of the cellular responses at the proteomic level. These proteins can be divided into multiple functional groups including stress responses, energy metabolism and redox homeostasis. The quantitative proteomic data provided more details on the electron donors for hydrogen production. During the first stage, photosystem II produced electrons for hydrogen production; during the second stage, metabolites were the major electron donors via nonphotochemical plastoquinone reduction by NADH dehydrogenase. PMID:26234437

  19. Comparative Proteomic Profiling of Divergent Phenotypes for Water Holding Capacity across the Post Mortem Ageing Period in Porcine Muscle Exudate.

    PubMed

    Di Luca, Alessio; Hamill, Ruth M; Mullen, Anne Maria; Slavov, Nikolai; Elia, Giuliano

    2016-01-01

    Two dimensional Difference Gel Electrophoresis (2-D DIGE) and mass spectrometry were applied to investigate the changes in metabolic proteins that occur over a seven day (day 1, 3 and 7) post mortem ageing period in porcine centrifugal exudate from divergent meat quality phenotypes. The objectives of the research were to enhance our understanding of the phenotype (water holding capacity) and search for biomarkers of this economically significant pork quality attribute. Major changes in protein abundance across nine phenotype-by-time conditions were observed. Proteomic patterns were dominated by post mortem ageing timepoint. Using a machine learning algorithm (l1-regularized logistic regression), a model was derived with the ability to discriminate between high drip and low drip phenotypes using a subset of 25 proteins with an accuracy of 63%. Models discriminating between divergent phenotypes with accuracy of 72% and 73% were also derived comparing respectively, high drip plus intermediate phenotype (considered as one phenotype) versus low drip and comparing low drip plus intermediate phenotype (considered as one phenotype) versus high drip. In all comparisons, the general classes of discriminatory proteins identified include metabolic enzymes, stress response, transport and structural proteins. In this research we have enhanced our understanding of the protein related processes underpinning this phenotype and provided strong data to work toward development of protein biomarkers for water holding capacity.

  20. Effects of Clostridium difficile Toxin A on the proteome of colonocytes studied by differential 2D electrophoresis.

    PubMed

    Zeiser, Johannes J; Klodmann, Jennifer; Braun, Hans-Peter; Gerhard, Ralf; Just, Ingo; Pich, Andreas

    2011-12-21

    Clostridium difficile is a spore-forming anaerobic pathogen, commonly associated with severe diarrhea or life-threatening pseudomembraneous colitis. Its main virulence factors are the single-chain, multi-domain toxin A (TcdA) and B (TcdB). Their glucosyltransferase domain selectively inactivates Rho proteins leading to a reorganization of the cytoskeleton. To study exclusively glucosyltransferase-dependent molecular effects of TcdA, human colonic cells (Caco-2) were treated with recombinant wild type TcdA and the glucosyltransferase deficient variant of the toxin, TcdA(gd) for 24h. Changes in the protein pattern of the colonic cells were investigated by 2-D DIGE and LCMS/MS methodology combined with detailed proteome mapping. gdTcdA did not induce any detectable significant changes in the protein pattern. Comparing TcdA-treated cells with a control group revealed seven spots of higher and two of lower intensity (p<0.05). Three proteins are involved in the assembly of the cytoskeleton (β-actin, ezrin, and DPYL2) and four are involved in metabolism and/or oxidative stress response (ubiquitin, DHE3, MCCB, FABPL) and two in regulatory processes (FUBP1, AL1A1). These findings correlate well to known effects of TcdA like the reorganization of the cytoskeleton and stress the importance of Rho protein glucosylation for the pathogenic effects of TcdA. PMID:21890007

  1. Comparative Proteomic Profiling of Divergent Phenotypes for Water Holding Capacity across the Post Mortem Ageing Period in Porcine Muscle Exudate

    PubMed Central

    Di Luca, Alessio; Hamill, Ruth M.; Mullen, Anne Maria; Slavov, Nikolai; Elia, Giuliano

    2016-01-01

    Two dimensional Difference Gel Electrophoresis (2-D DIGE) and mass spectrometry were applied to investigate the changes in metabolic proteins that occur over a seven day (day 1, 3 and 7) post mortem ageing period in porcine centrifugal exudate from divergent meat quality phenotypes. The objectives of the research were to enhance our understanding of the phenotype (water holding capacity) and search for biomarkers of this economically significant pork quality attribute. Major changes in protein abundance across nine phenotype-by-time conditions were observed. Proteomic patterns were dominated by post mortem ageing timepoint. Using a machine learning algorithm (l1-regularized logistic regression), a model was derived with the ability to discriminate between high drip and low drip phenotypes using a subset of 25 proteins with an accuracy of 63%. Models discriminating between divergent phenotypes with accuracy of 72% and 73% were also derived comparing respectively, high drip plus intermediate phenotype (considered as one phenotype) versus low drip and comparing low drip plus intermediate phenotype (considered as one phenotype) versus high drip. In all comparisons, the general classes of discriminatory proteins identified include metabolic enzymes, stress response, transport and structural proteins. In this research we have enhanced our understanding of the protein related processes underpinning this phenotype and provided strong data to work toward development of protein biomarkers for water holding capacity. PMID:26950297

  2. Proteomic Analysis of Differentially Expressed Proteins in Bovine Endometrium with Endometritis

    PubMed Central

    Choe, Changyong; Park, Jeong-Won; Kim, Eun-Suk; Lee, Sung-Gyu; Park, Sun-Young; Lee, Jeong-Soon; Cho, Myung-Je; Kang, Kee Ryeon; Han, Jaehee

    2010-01-01

    Endometritis is one of the primary reasons for reproductive failure. In order to investigate endometritis-associated marker proteins, proteomic analysis was performed on bovine endometrium with endometritis. In bovine endometritis, desmin, α-actin-2, heat-shock protein (HSP) 27, peroxiredoxin-6, luteinizing hormone receptor isoform 1, collectin-43 precursor, deoxyribonuclease-I (DNase-I), and MHC class I heavy chain (MHC-Ih) were up-regulated. In contrast, transferrin, interleukin-2 precursor, hemoglobin β subunit, and potassium channel tetramerisation domain-containing 11 (KCTD11) were down-regulated in comparison to normal endometrium. The proteomic results were validated by semiquantitative-PCR and immunoblot analysis. The mRNA levels of desmin, transferrin, α-actin-2, HSP27, KCTD11, and MHC-Ih were up-regulated by over 1.5-fold, and showed a pattern similar to their proteomic profiles. Desmin and α-actin-2 protein showed positive correlations between proteomic analysis and immunoblot analysis. These results suggest that desmin and α-actin-2 may play important roles in endometritis-related function, and could be useful markers for the diagnosis of bovine endometritis. PMID:20827334

  3. freeQuant: A Mass Spectrometry Label-Free Quantification Software Tool for Complex Proteome Analysis.

    PubMed

    Deng, Ning; Li, Zhenye; Pan, Chao; Duan, Huilong

    2015-01-01

    Study of complex proteome brings forward higher request for the quantification method using mass spectrometry technology. In this paper, we present a mass spectrometry label-free quantification tool for complex proteomes, called freeQuant, which integrated quantification with functional analysis effectively. freeQuant consists of two well-integrated modules: label-free quantification and functional analysis with biomedical knowledge. freeQuant supports label-free quantitative analysis which makes full use of tandem mass spectrometry (MS/MS) spectral count, protein sequence length, shared peptides, and ion intensity. It adopts spectral count for quantitative analysis and builds a new method for shared peptides to accurately evaluate abundance of isoforms. For proteins with low abundance, MS/MS total ion count coupled with spectral count is included to ensure accurate protein quantification. Furthermore, freeQuant supports the large-scale functional annotations for complex proteomes. Mitochondrial proteomes from the mouse heart, the mouse liver, and the human heart were used to evaluate the usability and performance of freeQuant. The evaluation showed that the quantitative algorithms implemented in freeQuant can improve accuracy of quantification with better dynamic range.

  4. Integrated quantitative proteomic and transcriptomic analysis of lung tumor and control tissue: a lung cancer showcase

    PubMed Central

    Huwer, Hanno; Hildebrandt, Andreas; Lenhof, Hans-Peter; Wesse, Tanja; Franke, Andre; Keller, Andreas

    2016-01-01

    Proteomics analysis of paired cancer and control tissue can be applied to investigate pathological processes in tumors. Advancements in data-independent acquisition mass spectrometry allow for highly reproducible quantitative analysis of complex proteomic patterns. Optimized sample preparation workflows enable integrative multi-omics studies from the same tissue specimens. We performed ion mobility enhanced, data-independent acquisition MS to characterize the proteome of 21 lung tumor tissues including adenocarcinoma and squamous cell carcinoma (SCC) as compared to control lung tissues of the same patient each. Transcriptomic data were generated for the same specimens. The quantitative proteomic patterns and mRNA abundances were subsequently analyzed using systems biology approaches. We report a significantly (p = 0.0001) larger repertoire of proteins in cancer tissues. 12 proteins were higher in all tumor tissues as compared to matching control tissues. Three proteins, CAV1, CAV2, and RAGE, were vice versa higher in all controls. We also identified characteristic SCC and adenocarcinoma protein patterns. Principal Component Analysis provided evidence that not only cancer from control tissue but also tissue from adenocarcinoma and SCC can be differentiated. Transcriptomic levels of key proteins measured from the same matched tissue samples correlated with the observed protein patterns. The applied study set-up with paired lung tissue specimens of which different omics are measured, is generally suited for an integrated multi-omics analysis. PMID:26930711

  5. GENOMIC AND PROTEOMIC ANALYSIS OF SURROGATE TISSUES FOR ASSESSING TOXIC EXPOSURES AND DISEASE STATES

    EPA Science Inventory

    Genomic and Proteomic Analysis of Surrogate Tissues for Assessing Toxic Exposures and Disease States
    David J. Dix and John C. Rockett
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, USEPA, ...

  6. Proteome Analysis of the Penicillin Producer Penicillium chrysogenum

    PubMed Central

    Jami, Mohammad-Saeid; Barreiro, Carlos; García-Estrada, Carlos; Martín, Juan-Francisco

    2010-01-01

    Proteomics is a powerful tool to understand the molecular mechanisms causing the production of high penicillin titers by industrial strains of the filamentous fungus Penicillium chrysogenum as the result of strain improvement programs. Penicillin biosynthesis is an excellent model system for many other bioactive microbial metabolites. The recent publication of the P. chrysogenum genome has established the basis to understand the molecular processes underlying penicillin overproduction. We report here the proteome reference map of P. chrysogenum Wisconsin 54-1255 (the genome project reference strain) together with an in-depth study of the changes produced in three different strains of this filamentous fungus during industrial strain improvement. Two-dimensional gel electrophoresis, peptide mass fingerprinting, and tandem mass spectrometry were used for protein identification. Around 1000 spots were visualized by “blue silver” colloidal Coomassie staining in a non-linear pI range from 3 to 10 with high resolution, which allowed the identification of 950 proteins (549 different proteins and isoforms). Comparison among the cytosolic proteomes of the wild-type NRRL 1951, Wisconsin 54-1255 (an improved, moderate penicillin producer), and AS-P-78 (a penicillin high producer) strains indicated that global metabolic reorganizations occurred during the strain improvement program. The main changes observed in the high producer strains were increases of cysteine biosynthesis (a penicillin precursor), enzymes of the pentose phosphate pathway, and stress response proteins together with a reduction in virulence and in the biosynthesis of other secondary metabolites different from penicillin (pigments and isoflavonoids). In the wild-type strain, we identified enzymes to utilize cellulose, sorbitol, and other carbon sources that have been lost in the high penicillin producer strains. Changes in the levels of a few specific proteins correlated well with the improved penicillin

  7. Phyloproteomics: What Phylogenetic Analysis Reveals about Serum Proteomics

    PubMed Central

    Abu-Asab, Mones; Chaouchi, Mohamed; Amri, Hakima

    2008-01-01

    Phyloproteomics is a novel analytical tool that solves the issue of comparability between proteomic analyses, utilizes a total spectrum-parsing algorithm, and produces biologically meaningful classification of specimens. Phyloproteomics employs two algorithms: a new parsing algorithm (UNIPAL) and a phylogenetic algorithm (MIX). By outgroup comparison, the parsing algorithm identifies novel or vanished MS peaks and peaks signifying up or down regulated proteins and scores them as derived or ancestral. The phylogenetic algorithm uses the latter scores to produce a biologically meaningful classification of the specimens. PMID:16944935

  8. Peptide-Centric Proteome Analysis: An Alternative Strategy for the Analysis of Tandem Mass Spectrometry Data

    SciTech Connect

    Ting, Ying S.; Egertson, Jarrett D.; Payne, Samuel H.; Kim, Sangtae; MacLean, Brendan; Kall, Lukas; Aebersold, Ruedi; Smith, Richard D.; Noble, William; MacCoss, Michael

    2015-09-01

    In mass spectrometry-based bottom-up proteomics, data-independent acquisition (DIA) is an emerging technique due to its comprehensive and unbiased sampling of precursor ions. However, current DIA methods use wide precursor isolation windows, resulting in co- fragmentation and complex mixture spectra. Thus, conventional database searching tools that identify peptides by interpreting individual MS/MS spectra are inherently limited in analyzing DIA data. Here we discuss an alternative approach, peptide-centric analysis, which tests directly for the presence and absence of query peptides. We discuss how peptide-centric analysis resolves some limitations of traditional spectrum-centric analysis, and we outline the benefits of peptide-centric analysis in general.

  9. In-depth proteomic analysis of whole testis tissue from the adult rhesus macaque.

    PubMed

    Wang, Jing; Xia, Yankai; Wang, Gaigai; Zhou, Tao; Guo, Yueshuai; Zhang, Chao; An, Xia; Sun, Yujie; Guo, Xuejiang; Zhou, Zuomin; Sha, Jiahao

    2014-06-01

    The rhesus macaque is similar to humans both anatomically and physiologically as a primate, and has therefore been used extensively in medical and biological research, including reproductive physiology. Despite sequencing of the macaque genome, limited postgenomic studies have been performed to date. In studies aimed at characterizing spermatogenesis, we successfully identified 9078 macaque testis proteins corresponding to 8662 genes, using advanced MS and an optimized proteomics platform, indicative of complex protein compositions during macaque spermatogenesis. Immunohistochemistry analysis further revealed the presence of proteins from different types of testicular cells, including Sertoli cells, Leydig cells, and various stages of germ cells. Our data provide expression evidence at protein level of 3010 protein-coding genes in 8662 identified testis genes for the first time. We further identified 421 homologous genes from the proteome already known to be essential for male infertility in mouse. Comparative analysis of the proteome showed high similarity with the published human testis proteome, implying that macaque and human may use similar proteins to regulate spermatogenesis. Our in-depth analysis of macaque spermatogenesis provides a rich resource for further studies, and supports the utility of macaque as a suitable model for the study of human reproduction.

  10. Protein extraction from Ca-alginate encapsulated plant material for comparative proteomic analysis.

    PubMed

    Domżalska, Lucyna; Mikuła, Anna; Rybczyński, Jan J

    2016-10-01

    The extensive use of encapsulation material in biotechnology drove the need to develop analytical techniques for this type of material. This study focuses on the specific problems of protein extraction from Ca-alginate encapsulated plant material. Proteomics is one of the fast-developing analysis categories, specifically for stress resistance and developmental changes in plant material. Sample preparation is a critical step in a two-dimensional gel electrophoresis proteome approach and is essential for good results. The aim was to avoid preliminary manipulations and get good quality material for comparative proteome analysis technique 2DE. The phenol extraction method and the complex method with preliminary TCA precipitation, SDS buffer and phenol phase were compared with respect to the efficiency and quality of the resulting 2DE gel. The most appropriate method turned out to be the TCA/phenol method with the phenol fractioning technique adapted to the gentian cell suspension. It resulted in a high protein concentration and good quality sample that could be analyzed using the standard separation procedures of 2DE and spectrometric identification with high efficiency. The work presented here confirms the possibility of obtaining a sufficient protein sample for effective proteomic analysis from a small number of capsules.

  11. Comparative proteomics analysis of oral cancer cell lines: identification of cancer associated proteins

    PubMed Central

    2014-01-01

    Background A limiting factor in performing proteomics analysis on cancerous cells is the difficulty in obtaining sufficient amounts of starting material. Cell lines can be used as a simplified model system for studying changes that accompany tumorigenesis. This study used two-dimensional gel electrophoresis (2DE) to compare the whole cell proteome of oral cancer cell lines vs normal cells in an attempt to identify cancer associated proteins. Results Three primary cell cultures of normal cells with a limited lifespan without hTERT immortalization have been successfully established. 2DE was used to compare the whole cell proteome of these cells with that of three oral cancer cell lines. Twenty four protein spots were found to have changed in abundance. MALDI TOF/TOF was then used to determine the identity of these proteins. Identified proteins were classified into seven functional categories – structural proteins, enzymes, regulatory proteins, chaperones and others. IPA core analysis predicted that 18 proteins were related to cancer with involvements in hyperplasia, metastasis, invasion, growth and tumorigenesis. The mRNA expressions of two proteins – 14-3-3 protein sigma and Stress-induced-phosphoprotein 1 – were found to correlate with the corresponding proteins’ abundance. Conclusions The outcome of this analysis demonstrated that a comparative study of whole cell proteome of cancer versus normal cell lines can be used to identify cancer associated proteins. PMID:24422745

  12. Proteomic Analysis of Rat Hippocampus under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Li, Yujuan; Zhang, Yongqian; Liu, Yahui; Deng, Yulin

    It has been found that microgravity may lead to impairments in cognitive functions performed by CNS. However, the exact mechanism of effects of microgravity on the learning and memory function in animal nervous system is not elucidated yet. Brain function is mainly mediated by membrane proteins and their dysfunction causes degeneration of the learning and memory. To induce simulated microgravity, the rat tail suspension model was established. Comparative O (18) labeling quantitative proteomic strategy was applied to detect the differentially expressed proteins in rat brain hippocampus. The proteins in membrane fraction from rat hippocampus were digested by trypsin and then the peptides were separated by off-gel for the first dimension with 24 wells device encompassing the pH range of 3 - 10. An off-gel fraction was subjected into LC-ESI-QTOF in triplicate. Preliminary results showed that nearly 77% of the peptides identified were specific to one fraction. 676 proteins were identified among which 108 proteins were found differentially expressed under simulated microgravity. Using the KOBAS server, many enriched pathways, such as metabolic pathway, synaptic vesicle cycle, endocytosis, calcium signaling pathway, and SNAREs pathway were identified. Furthermore, it has been found that neurotransmitter released by Ca (2+) -triggered synaptic vesicles fusion may play key role in neural function. Rab 3A might inhibit the membrane fusion and neurotransmitter release. The protein alteration of the synaptic vesicle cycle may further explain the effects of microgravity on learning and memory function in rats. Key words: Microgravity; proteomics; synaptic vesicle; O (18) ({}) -labeling

  13. Proteome analysis of mitochondrial outer membrane from Neurospora crassa

    SciTech Connect

    Schmitt, Simone; Prokisch, Holger; Schlunk, Tilman; Camp, David G.; Ahting, Uwe; Waizenegger, Thomas; Scharfe, Curt M.; Meitinger, Thomas; Imhof, Axel; Neupert, Walter; Oefner, Peter J.; Rapaport, Doron

    2006-01-01

    The mitochondrial outer membrane mediates numerous interactions between the metabolic and genetic systems of mitochondria and the rest of the eukaryotic cell. We performed a proteomic study to discover novel functions of components of the mitochondrial outer membrane. Proteins of highly pure outer membrane vesicles (OMV) from Neurospora crassa were identified by a combination of liquid chromatography tandem mass spectrometry of tryptic peptide digests and gel electrophoresis of solubilized OMV proteins, followed by their identification using MALDI-MS peptide fingerprinting. Among the 30 proteins found in at least three of four separate analyses were 23 proteins with known functions in the outer membrane. These included components of the import machinery (the TOM and TOB complexes), a pore-forming component (Porin), and proteins that control fusion and fission of the organelle. In addition, proteins playing a role in various biosynthetic pathways, whose intracellular location had not been established previously, could be localized to the mitochondrial outer membrane. Thus, the proteome of the outer membrane can help in identifying new mitochondria-related functions.

  14. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions.

    PubMed

    Pham, Trong Khoa; Chong, Poh Kuan; Gan, Chee Sian; Wright, Phillip C

    2006-12-01

    Saccharomyces cerevisiae KAY446 was utilized for ethanol production, with glucose concentrations ranging from 120 g/L (normal) to 300 g/L (high). Although grown in a high glucose environment, S. cerevisiae still retained the ability to produce ethanol with a high degree of glucose utilization. iTRAQ-mediated shotgun proteomics was applied to identify relative expression change of proteins under the different glucose conditions. A total of 413 proteins were identified from three replicate, independent LC-MS/MS runs. Unsurprisingly, many proteins in the glycolysis/gluconeogenesis pathway showed significant changes in expression level. Twenty five proteins involved in amino acid metabolism decreased their expression, while the expressions of 12 heat-shock related proteins were also identified. Under high glucose conditions, ethanol was produced as a major product. However, the assimilation of glucose as well as a number of byproducts was also enhanced. Therefore, to optimize the ethanol production under very high gravity conditions, a number of pathways will need to be deactivated, while still maintaining the correct cellular redox or osmotic state. Proteomics is demonstrated here as a tool to aid in this forward metabolic engineering.

  15. Proteomic analysis of the flooding tolerance mechanism in mutant soybean.

    PubMed

    Komatsu, Setsuko; Nanjo, Yohei; Nishimura, Minoru

    2013-02-21

    Flooding stress of soybean is a serious problem because it reduces growth; however, flooding-tolerant cultivars have not been identified. To analyze the flooding tolerance mechanism of soybean, the flooding-tolerant mutant was isolated and analyzed using a proteomic technique. Flooding-tolerance tests were repeated five times using gamma-ray irradiated soybeans, whose root growth (M6 stage) was not suppressed even under flooding stress. Two-day-old wild-type and mutant plants were subjected to flooding stress for 2days, and proteins were identified using a gel-based proteomic technique. In wild-type under flooding stress, levels of proteins related to development, protein synthesis/degradation, secondary metabolism, and the cell wall changed; however, these proteins did not markedly differ in the mutant. In contrast, an increased number of fermentation-related proteins were identified in the mutant under flooding stress. The root tips of mutant plants were not affected by flooding stress, even though the wild-type plants had damaged root. Alcohol dehydrogenase activity in the mutant increased at an early stage of flooding stress compared with that of the wild-type. Taken together, these results suggest that activation of the fermentation system in the early stages of flooding may be an important factor for the acquisition of flooding tolerance in soybean.

  16. Proteomic analysis of conidia germination in Colletotrichum acutatum.

    PubMed

    El-Akhal, Mohamed Rabie; Colby, Thomas; Cantoral, Jesús M; Harzen, Anne; Schmidt, Jürgen; Fernández-Acero, Francisco Javier

    2013-04-01

    Colletotrichum acutatum is an important phytopathogenic fungus causing anthracnose in commercially important fruit crops, such as strawberry. The conidia produced by the fungus are survival structures which play a key role in host infection and fungal propagation. Despite its relevance to the fungal life cycle, conidial biology has not been extensively investigated. Here, we provide the first proteomic description of the conidial germination in C. acutatum by comparing the proteomic profiles of ungerminated and germinated conidia. Using two-dimensional electrophoresis combined with MALDI-TOF/TOF mass spectrometry, we have identified 365 proteins in 354 spots, which represent 245 unique proteins, including some proteins with key functions in pathogenesis. All these proteins have been classified according to their molecular function and their involvement in biological processes, including cellular energy production, oxidative metabolism, stress, fatty acid synthesis, protein synthesis, and folding. This report constitutes the first comprehensive study of protein expression during the early stage of the C. acutatum conidial germination. It advances our understanding of the molecular mechanisms involved in the conidial germination process, and provides a useful basis for the further characterization of proteins involved in fungal biology and fungus life cycles. PMID:23371377

  17. Isolation and Proteomics Analysis of Barley Centromeric Chromatin Using PICh.

    PubMed

    Zeng, Zixian; Jiang, Jiming

    2016-06-01

    Identification of proteins that are directly or indirectly associated with a specific DNA sequence is often an important goal in molecular biology research. Proteomics of isolated chromatin fragments (PICh) is a technique used to isolate chromatin that contains homologous DNA sequence to a specific nucleic acid probe. All proteins directly and indirectly associated with the DNA sequences that hybridize to the probe are then identified by proteomics.1 We used the PICh technique to isolate chromatin associated with the centromeres of barley (Hordeum vulgare) by using a 2'-deoxy-2'fluoro-ribonucleotides (2'-F RNA) probe that is homologous to the AGGGAG satellite DNA specific to barley centromeres. Proteins associated with the barley centromeric chromatin were then isolated and identified by mass spectrometry. Both alpha-cenH3 and beta-cenH3, the two centromeric histone H3 variants associated with barley centromeres, were positively identified. Interestingly, several different H2A and H2B variants were recovered in the PIChed chromatin. The limitations and future potential of PICh in plant chromatin research are discussed. PMID:27142171

  18. Proteomics based compositional analysis of complex cellulase-hemicellulase mixtures

    SciTech Connect

    Chundawat, Shishir P.; Lipton, Mary S.; Purvine, Samuel O.; Uppugundla, Nirmal; Gao, Dahai; Balan, Venkatesh; Dale, Bruce E.

    2011-10-07

    Efficient deconstruction of cellulosic biomass to fermentable sugars for fuel and chemical production is accomplished by a complex mixture of cellulases, hemicellulases and accessory enzymes (e.g., >50 extracellular proteins). Cellulolytic enzyme mixtures, produced industrially mostly using fungi like Trichoderma reesei, are poorly characterized in terms of their protein composition and its correlation to hydrolytic activity on cellulosic biomass. The secretomes of commercial glycosyl hydrolase producing microbes was explored using a proteomics approach with high-throughput quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Here, we show that proteomics based spectral counting approach is a reasonably accurate and rapid analytical technique that can be used to determine protein composition of complex glycosyl hydrolase mixtures that also correlates with the specific activity of individual enzymes present within the mixture. For example, a strong linear correlation was seen between Avicelase activity and total cellobiohydrolase content. Reliable, quantitative and cheaper analytical methods that provide insight into the cellulosic biomass degrading fungal and bacterial secretomes would lead to further improvements towards commercialization of plant biomass derived fuels and chemicals.

  19. Proteomic analysis of peptides tagged with dimedone and related probes”

    PubMed Central

    Martínez-Acedo, Pablo; Gupta, Vinayak; Carroll, Kate S.

    2014-01-01

    Owing to its labile nature, a new role for cysteine sulfenic acid (-SOH) modification has emerged. This oxidative modification modulates protein function by acting as a redox switch during cellular signaling. The identification of proteins that undergo this modification represents a methodological challenge, and its resolution remains a matter of current interest. The development of strategies to chemically modify cysteinyl-containing peptides for LC-MS/MS analysis has increased significantly within the past decade. The method of choice to selectively label sulfenic acid is based on the use of dimedone or its derivatives. For these chemical probes to be effective on a proteome-wide level, their reactivity toward -SOH must be high to ensure reaction completion. In addition, the presence of an adduct should not interfere with electrospray ionization, the efficiency of induced dissociation in MS/MS experiments, or with identification of Cys-modified peptides by automated database searching algorithms. Herein, we employ a targeted proteomics approach to study the electrospray ionization and fragmentation effects of different –SOH specific probes, and compared them to commonly used alkylating agents. We then extend our study to a whole proteome extract using shotgun proteomic approaches. These experiments enable us to demonstrate that dimedone adducts do not interfere with electrospray by suppressing the ionization nor impedes product ion assignment by automated search engines, which detect a + 138 Da increase from unmodified peptides. Collectively, these results suggest dimedone can be a powerful tool to identify sulfenic acid modifications by high-throughput shotgun proteomics of a whole proteome. PMID:24719340

  20. Characterization of the mouse pancreatic islet proteome and comparative analysis with other mouse tissues

    SciTech Connect

    Petyuk, Vladislav A.; Qian, Weijun; Hinault, Charlotte; Gritsenko, Marina A.; Singhal, Mudita; Monroe, Matthew E.; Camp, David G.; Kulkarni, Rohit N.; Smith, Richard D.

    2008-08-01

    The pancreatic islets of Langerhans and insulin-producing beta cells in particular play a central role in the maintenance of glucose homeostasis and the islet dysfunction is associated with the pathogenesis of both type 1 and type 2 diabetes mellitus. To contribute to the understanding of the biology of the pancreatic islets we applied proteomic techniques based on liquid chromatography coupled with mass spectrometry. Here as an initial step we present the first comprehensive proteomic characterization of pancreas islets of the mouse, the commonly used animal model for diabetes research. Two-dimensional SCX LC/RP LC-MS/MS has been applied to characterize of the mouse islet proteome, resulting in the confident identification of 17,350 different tryptic peptides covering 2,612 proteins with at least two unique peptide identifications per protein. The dataset also allowed identification of a number of post-translational modifications including several modifications relevant to oxidative stress and phosphorylation. While many of the identified phosphorylation sites corroborates with previous known sites, the oxidative modifications observed on cysteinyl residues potentially reveal novel information related to the role of oxidation stress in islet functions. Comparative analysis of the islet proteome database with 15 available proteomic datasets from other mouse tissues and cells revealed a set of 68 proteins uniquely detected only in the pancreatic islets. Besides proteins with known functions, like islet secreted peptide hormones, this unique set contains a number of proteins with yet unknown functions. The resulting peptide and protein database will be available at ncrr.pnl.gov web site of the NCRR proteomic center (ncrr.pnl.gov).

  1. Proteomic responses of switchgrass and prairie cordgrass to senescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Senescence in biofuel grasses is a critical issue because early senescence decreases potential biomass production by limiting aerial growth and development. 2-Dimensional,differential in-gel electrophoresis (2D-DIGE) followed by mass spectrometry of selected protein spots was used to evaluate differ...

  2. Proteomic analysis of formalin-fixed paraffin embedded tissue by MALDI imaging mass spectrometry

    PubMed Central

    Casadonte, Rita; Caprioli, Richard M

    2012-01-01

    Archived formalin-fixed paraffin-embedded (FFPE) tissue collections represent a valuable informational resource for proteomic studies. Multiple FFPE core biopsies can be assembled in a single block to form tissue microarrays (TMAs). We describe a protocol for analyzing protein in FFPE -TMAs using matrix-assisted laser desorption/ionization (MAL DI) imaging mass spectrometry (IMS). The workflow incorporates an antigen retrieval step following deparaffinization, in situ trypsin digestion, matrix application and then mass spectrometry signal acquisition. The direct analysis of FFPE -TMA tissue using IMS allows direct analysis of multiple tissue samples in a single experiment without extraction and purification of proteins. The advantages of high speed and throughput, easy sample handling and excellent reproducibility make this technology a favorable approach for the proteomic analysis of clinical research cohorts with large sample numbers. For example, TMA analysis of 300 FFPE cores would typically require 6 h of total time through data acquisition, not including data analysis. PMID:22011652

  3. Plasma proteome analysis of patients with type 1 diabetes with diabetic nephropathy

    PubMed Central

    2010-01-01

    Background As part of a clinical proteomics program focused on diabetes and its complications we are looking for new and better protein biomarkers for diabetic nephropathy. The search for new and better biomarkers for diabetic nephropathy has, with a few exceptions, previously focused on either hypothesis-driven studies or urinary based investigations. To date only two studies have investigated the proteome of blood in search for new biomarkers, and these studies were conducted in sera from patients with type 2 diabetes. This is the first reported in depth proteomic study where plasma from type 1 diabetic patients was investigated with the goal of finding improved candidate biomarkers to predict diabetic nephropathy. In order to reach lower concentration proteins in plasma a pre-fractionation step, either hexapeptide bead-based libraries or anion exchange chromatography, was performed prior to surface enhanced laser desorption/ionization time-of-flight mass spectrometry analysis. Results Proteomic analysis of plasma from a cross-sectional cohort of 123 type 1 diabetic patients previously diagnosed as normoalbuminuric, microalbuminuric or macroalbuminuric, gave rise to 290 peaks clusters of which 16 were selected as the most promising biomarker candidates based on statistical performance, including independent component analysis. Four of the peaks that were discovered have been identified as transthyretin, apolipoprotein A1, apolipoprotein C1 and cystatin C. Several yet unidentified proteins discovered by this novel approach appear to have more potential as biomarkers for diabetic nephropathy. Conclusion These results demonstrate the capacity of proteomic analysis of plasma, by confirming the presence of known biomarkers as well as revealing new biomarkers for diabetic nephropathy in plasma in type 1 diabetic patients. PMID:20205888

  4. Large-scale and high-confidence proteomic analysis of human seminal plasma

    PubMed Central

    Pilch, Bartosz; Mann, Matthias

    2006-01-01

    Background The development of mass spectrometric (MS) techniques now allows the investigation of very complex protein mixtures ranging from subcellular structures to tissues. Body fluids are also popular targets of proteomic analysis because of their potential for biomarker discovery. Seminal plasma has not yet received much attention from the proteomics community but its characterization could provide a future reference for virtually all studies involving human sperm. The fluid is essential for the survival of spermatozoa and their successful journey through the female reproductive tract. Results Here we report the high-confidence identification of 923 proteins in seminal fluid from a single individual. Fourier transform MS enabled parts per million mass accuracy, and two consecutive stages of MS fragmentation allowed confident identification of proteins even by single peptides. Analysis with GoMiner annotated two-thirds of the seminal fluid proteome and revealed a large number of extracellular proteins including many proteases. Other proteins originated from male accessory glands and have important roles in spermatozoan survival. Conclusion This high-confidence characterization of seminal plasma content provides an inventory of proteins with potential roles in fertilization. When combined with quantitative proteomics methodologies, it should be useful for studies of fertilization, male infertility, and prostatic and testicular cancers. PMID:16709260

  5. Comparative proteome analysis of the hippocampus implicates chromosome 6q in schizophrenia.

    PubMed

    Edgar, P F; Douglas, J E; Cooper, G J; Dean, B; Kydd, R; Faull, R L

    2000-01-01

    Comparative brain proteome analysis is a new strategy to discover proteins and therefore genes whose altered expression may underlie schizophrenia. This strategy does not require an a priori theory of the pathogenesis or the mode of inheritance of schizophrenia. Using proteome analysis we previously compared the hippocampal proteome, that is, those proteins expressed by the hippocampal genome, of seven schizophrenic individuals with the hippocampal proteome of seven control individuals, matched for age and post mortem delay.1 We found 18 proteins that were significantly altered in concentration in the schizophrenic hippocampus (P < 0.05), when compared to control tissue. One of these proteins was characterised, by N-terminal sequencing, as diazepam binding inhibitor whose gene maps to 6q12-q21. Here we characterise a further three of the 18 proteins as: manganese superoxide dismutase, 6q25.3, T-complex protein 1, 6q25.3-q26 and collapsin response mediator protein 2, 8p21. That three of these four characterised proteins should map to the long arm of the same chromosome is significant (P < 0.002) and suggests the importance of chromosome 6q in schizophrenia. These results indicate that antioxidant defence is altered in the schizophrenic hippocampus and suggest that segregation distortion, of schizophrenia susceptibility genes, may be a possible causative factor in the high incidence of schizophrenia. Molecular Psychiatry (2000) 5, 85-90.

  6. GProX, a user-friendly platform for bioinformatics analysis and visualization of quantitative proteomics data.

    PubMed

    Rigbolt, Kristoffer T G; Vanselow, Jens T; Blagoev, Blagoy

    2011-08-01

    Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)(1). The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net.

  7. Comparative Proteomics Analysis of Placenta from Pregnant Women with Intrahepatic Cholestasis of Pregnancy

    PubMed Central

    Zhang, Ting; Guo, Yueshuai; Guo, Xuejiang; Zhou, Tao; Chen, Daozhen; Xiang, Jingying; Zhou, Zuomin

    2013-01-01

    Introduction Intrahepatic cholestasis of pregnancy (ICP) usually occurs in the third trimester and associated with increased risks in fetal complications. Currently, the exact cause of this disease is unknown. In this study we aim to investigate the potential proteins in placenta, which may participate in the molecular mechanisms of ICP-related fetal complications using iTRAQ-based proteomics approach. Methods The iTRAQ analysis combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to separate differentially expressed placental proteins from 4 pregnant women with ICP and 4 healthy pregnant women. Bioinformatics analysis was used to find the relative processes that these differentially expressed proteins were involved in. Three apoptosis related proteins ERp29, PRDX6 and MPO that resulted from iTRAQ-based proteomics were further verified in placenta by Western blotting and immunohistochemistry. Placental apoptosis was also detected by TUNEL assay. Results Proteomics results showed there were 38 differentially expressed proteins from pregnant women with ICP and healthy pregnant women, 29 were upregulated and 9 were downregulated in placenta from pregnant women with ICP. Bioinformatics analysis showed most of the identified proteins was functionally related to specific cell processes, including apoptosis, oxidative stress, lipid metabolism. The expression levels of ERp29, PRDX6 and MPO were consistent with the proteomics data. The apoptosis index in placenta from ICP patients was significantly increased. Conclusion This preliminary work provides a better understanding of the proteomic alterations of placenta from pregnant women with ICP and may provide us some new insights into the pathophysiology and potential novel treatment targets for ICP. PMID:24391750

  8. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza.

    PubMed

    Tada, Yuichi; Kashimura, Takaaki

    2009-03-01

    To identify key proteins in the regulation of salt tolerance in the mangrove plant Bruguiera gymnorhiza, proteome analysis of samples grown under conditions of salt stress was performed. Comparative two-dimensional electrophoresis revealed that two, three and one protein were differentially expressed in the main root, lateral root and leaf, respectively, in response to salt stress. Among these, three proteins were identified by internal peptide sequence analysis: fructose-1,6-bisphosphate (FBP) aldolase and a novel protein in the main root, and osmotin in the lateral root. These results suggest that FBP aldolase and osmotin play roles in salt tolerance mechanisms common to both glycophytes and mangrove plants. Osmotin was abundant at early time points following salt treatment and seems to play a role in initial osmotic adaptation in lateral roots of B. gymnorhiza under salt stress, but does not contribute towards adaptation to prolonged or continuous exposure to salt stress. The amounts of these proteins were not correlated with those of the respective mRNAs, as determined by microarray analysis. A novel salt-responsive protein, not previously detected by expressed sequence tag analysis or transcriptome analysis, was also identified in this proteomic approach, and may provide insight into the salt tolerance mechanism of the mangrove plant. This is the first report of proteome analysis with detailed analysis of main and lateral roots of mangrove plants under salt stress conditions. PMID:19131358

  9. Proteomic tools for the analysis of transient interactions between metalloproteins.

    PubMed

    Martínez-Fábregas, Jonathan; Rubio, Silvia; Díaz-Quintana, Antonio; Díaz-Moreno, Irene; De la Rosa, Miguel Á

    2011-05-01

    Metalloproteins play major roles in cell metabolism and signalling pathways. In many cases, they show moonlighting behaviour, acting in different processes, depending on the physiological state of the cell. To understand these multitasking proteins, we need to discover the partners with which they carry out such novel functions. Although many technological and methodological tools have recently been reported for the detection of protein interactions, specific approaches to studying the interactions involving metalloproteins are not yet well developed. The task is even more challenging for metalloproteins, because they often form short-lived complexes that are difficult to detect. In this review, we gather the different proteomic techniques and biointeractomic tools reported in the literature. All of them have shown their applicability to the study of transient and weak protein-protein interactions, and are therefore suitable for metalloprotein interactions.

  10. Application of Differential Proteomic Analysis to Authenticate Ophiocordyceps sinensis.

    PubMed

    Zhang, Shiwei; Lai, Xintian; Li, Bifang; Wu, Cong; Wang, Shifeng; Chen, Xuejian; Huang, Jingmin; Yang, Guowu

    2016-03-01

    Ophiocordyceps sinensis (Berk.) Sacc. is one of the most well-known fungi in traditional Chinese medicine and is attracting attention because of its nutritious and medicinal properties. The present study aimed to produce a proteomic map to identify common O. sinensis proteins. The caterpillar body and stroma of O. sinensis collected from five locations and four fungal specimens of similar appearance were examined by two-dimensional electrophoresis (2-DE). Five proteins were identified using MALDI-TOF--TOF/MS, and the 2-DE identification pattern was provided. OCS_04585 and β-lactamase domain-containing protein, the two abundant and characteristic proteins, were separated and purified using liquid-phase isoelectric focusing. The products were high-quality materials that can be used for future protein-function studies and immunoassay development. PMID:26660081

  11. Extraction of intracellular protein from Glaciozyma antarctica for proteomics analysis

    NASA Astrophysics Data System (ADS)

    Faizura, S. Nor; Farahayu, K.; Faizal, A. B. Mohd; Asmahani, A. A. S.; Amir, R.; Nazalan, N.; Diba, A. B. Farah; Muhammad, M. Nor; Munir, A. M. Abdul

    2013-11-01

    Two preparation methods of crude extracts of psychrophilic yeast Glaciozyma antarctica were compared in order to obtain a good recovery of intracellular proteins. Extraction with mechanical procedures using sonication was found to be more effective for obtaining good yield compare to alkaline treatment method. The procedure is simple, rapid, and produce better yield. A total of 52 proteins were identified by combining both extraction methods. Most of the proteins identified in this study involves in the metabolic process including glycolysis pathway, pentose phosphate pathway, pyruyate decarboxylation and also urea cyle. Several chaperons were identified including probable cpr1-cyclophilin (peptidylprolyl isomerase), macrolide-binding protein fkbp12 and heat shock proteins which were postulate to accelerate proper protein folding. Characteristic of the fundamental cellular processes inferred from the expressed-proteome highlight the evolutionary and functional complexity existing in this domain of life.

  12. Biomechanical and proteomic analysis of INF- β-treated astrocytes

    NASA Astrophysics Data System (ADS)

    Vergara, Daniele; Martignago, Roberta; Leporatti, Stefano; Bonsegna, Stefania; Maruccio, Giuseppe; De Nuccio, Franco; Santino, Angelo; Cingolani, Roberto; Nicolardi, Giuseppe; Maffia, Michele; Rinaldi, Ross

    2009-11-01

    Astrocytes have a key role in the pathogenesis of several diseases including multiple sclerosis and were proposed as the designed target for immunotherapy. In this study we used atomic force microscopy (AFM) and proteomics methods to analyse and correlate the modifications induced in the viscoleastic properties of astrocytes to the changes induced in protein expression after interferon- β (IFN-β) treatment. Our results indicated that IFN-β treatment resulted in a significant decrease in the Young's modulus, a measure of cell elasticity, in comparison with control cells. The molecular mechanisms that trigger these changes were investigated by 2DE (two-dimensional electrophoresis) and confocal analyses and confirmed by western blotting. Altered proteins were found to be involved in cytoskeleton organization and other important physiological processes.

  13. Proteomic analysis of Taenia solium metacestode excretion-secretion proteins.

    PubMed

    Victor, Bjorn; Kanobana, Kirezi; Gabriël, Sarah; Polman, Katja; Deckers, Nynke; Dorny, Pierre; Deelder, André M; Palmblad, Magnus

    2012-06-01

    The metacestode larval stage of Taenia solium is the causal agent of a zoonotic disease called cysticercosis. The disease has an important impact on pork trade (due to porcine cysticercosis) and public health (due to human neurocysticercosis). In order to improve the current diagnostic tools and to get a better understanding of the interaction between T. solium metacestodes and their host, there is a need for more information about the proteins that are released by the parasite. In this study, we used protein sequences from different helminths, 1DE, reversed-phase LC, and MS/MS to analyze the excretion-secretion proteins produced by T. solium metacestodes from infected pigs. This is the first report of the T. solium metacestode excretion-secretion proteome. We report 76 proteins including 27 already described T. solium proteins, 17 host proteins and 32 proteins likely to be of T. solium origin, but identified using sequences from other helminths.

  14. Quantitative proteomic analysis of Dunaliella salina upon acute arsenate exposure.

    PubMed

    Ge, Ying; Ning, Zhibin; Wang, Ya; Zheng, Yanheng; Zhang, Chunhua; Figeys, Daniel

    2016-02-01

    Dunaliella salina is resistant to arsenic (As) and can accumulate a large amount of this highly toxic metalloid in cells. To study the mechanisms of As tolerance, a label-free, LC-MS/MS-based proteomic approach was applied for the first time to identify and quantify differentially expressed proteins from D. salina exposed to 11.2 mg L(-1) arsenate (As(V)) for 72 h. The intracellular As content reached 19.8 mg kg(-1), leading to a significant increase of lipid peroxidation in cells and a 7.4% growth reduction of this microalga. Sixty-five proteins were differentially expressed (p < 0.05), with 45 significantly induced and 20 declined. These proteins were involved in energy metabolism, protein synthesis and folding, ROS scavenging and defense, phosphate transport and membrane trafficking, and amino acid synthesis. Taken together, this study provides novel insights on the As(V) detoxification in D. salina.

  15. Effects of Bacterial Inactivation Methods on Downstream Proteomic Analysis

    SciTech Connect

    Lin, Andy; Merkley, Eric D.; Clowers, Brian H.; Hutchison, Janine R.; Kreuzer, Helen W.

    2015-05-01

    Inactivation of pathogenic microbial samples is often necessary for the protection of researchers and to comply with local and federal regulations. By its nature, biological inactivation causes changes to microbial samples, potentially affecting observed experimental results. While inactivation induced damage to materials such as DNA has been evaluated, the effect of various inactivation strategies on proteomic data, to our knowledge, has not been discussed. To this end, we inactivated samples of Yersinia pestis and Escherichia coli by autoclave, ethanol, or irradiation treatment to determine how inactivation changes liquid chromatography tandem mass spectrometry data quality as well as apparent protein content of cells. Proteomic datasets obtained from aliquots of samples inactivated by different methods were highly similar, with Pearson correlation coefficients ranging from 0.822 to 0.985 and 0.816 to 0.985 for E. coli and Y. pestis, respectively, suggesting that inactivation had only slight impacts on the set of proteins identified. In addition, spectral quality metrics such as distributions of various database search algorithm scores remained constant across inactivation methods, indicating that inactivation does not appreciably degrade spectral quality. Though overall changes resulting from inactivation were small, there were detectable trends. For example, one-sided Fischer exact tests determined that periplasmic proteins decrease in observed abundance after sample inactivation by autoclaving (α = 1.71x10-2 for E. coli, α = 4.97x10-4 for Y. pestis) and irradiation (α = 9.43x10-7 for E. coli, α = 1.21x10-5 for Y. pestis) when compared to controls that were not inactivated. Based on our data, if sample inactivation is necessary, we recommend inactivation with ethanol treatment with secondary preference given to irradiation.

  16. Proteomic Analysis of the Cyst Stage of Entamoeba histolytica

    PubMed Central

    Ali, Ibne Karim M.; Haque, Rashidul; Siddique, Abdullah; Kabir, Mamun; Sherman, Nicholas E.; Gray, Sean A.; Cangelosi, Gerard A.; Petri, William A.

    2012-01-01

    Background The category B agent of bioterrorism, Entamoeba histolytica has a two-stage life cycle: an infective cyst stage, and an invasive trophozoite stage. Due to our inability to effectively induce encystation in vitro, our knowledge about the cyst form remains limited. This also hampers our ability to develop cyst-specific diagnostic tools. Aims Three main aims were (i) to identify E. histolytica proteins in cyst samples, (ii) to enrich our knowledge about the cyst stage, and (iii) to identify candidate proteins to develop cyst-specific diagnostic tools. Methods Cysts were purified from the stool of infected individuals using Percoll (gradient) purification. A highly sensitive LC-MS/MS mass spectrometer (Orbitrap) was used to identify cyst proteins. Results A total of 417 non-redundant E. histolytica proteins were identified including 195 proteins that were never detected in trophozoite-derived proteomes or expressed sequence tag (EST) datasets, consistent with cyst specificity. Cyst-wall specific glycoproteins Jacob, Jessie and chitinase were positively identified. Antibodies produced against Jacob identified cysts in fecal specimens and have potential utility as a diagnostic reagent. Several protein kinases, small GTPase signaling molecules, DNA repair proteins, epigenetic regulators, and surface associated proteins were also identified. Proteins we identified are likely to be among the most abundant in excreted cysts, and therefore show promise as diagnostic targets. Major Conclusions The proteome data generated here are a first for naturally-occurring E. histolytica cysts, and they provide important insights into the infectious cyst form. Additionally, numerous unique candidate proteins were identified which will aid the development of new diagnostic tools for identification of E. histolytica cysts. PMID:22590659

  17. Effects of bacterial inactivation methods on downstream proteomic analysis.

    PubMed

    Lin, Andy; Merkley, Eric D; Clowers, Brian H; Hutchison, Janine R; Kreuzer, Helen W

    2015-05-01

    Inactivation of pathogenic microbial samples is often necessary for the protection of researchers and to comply with local and federal regulations. By its nature, biological inactivation causes changes to microbial samples, potentially affecting observed experimental results. While inactivation-induced damage to materials such as DNA has been evaluated, the effect of various inactivation strategies on proteomic data, to our knowledge, has not been discussed. To this end, we inactivated samples of Yersinia pestis and Escherichia coli by autoclave, ethanol, or irradiation treatment to determine how inactivation changes liquid chromatography-tandem mass spectrometry data quality as well as apparent protein content of cells. Proteomic datasets obtained from aliquots of samples inactivated by different methods were highly similar, with Pearson correlation coefficients ranging from 0.822 to 0.985 and 0.816 to 0.985 for E. coli and Y. pestis, respectively, suggesting that inactivation had only slight impacts on the set of proteins identified. In addition, spectral quality metrics such as distributions of various database search algorithm scores remained constant across inactivation methods, indicating that inactivation does not appreciably degrade spectral quality. Though overall changes resulting from inactivation were small, there were detectable trends. For example, one-sided Fischer exact tests determined that periplasmic proteins decrease in observed abundance after sample inactivation by autoclaving (α=1.71×10(-2) for E. coli, α=4.97×10(-4) for Y. pestis) and irradiation (α=9.43×10(-7) for E. coli, α=1.21×10(-5) for Y. pestis) when compared to controls that were not inactivated. Based on our data, if sample inactivation is necessary, we recommend inactivation with ethanol treatment with secondary preference given to irradiation. PMID:25620019

  18. Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications

    SciTech Connect

    Nie, Lei; Wu, Gang; Culley, David E.; Scholten, Johannes C.; Zhang, Weiwen

    2007-04-01

    Recent advances in high-throughput technologies enable quantitative monitoring of the abundance of various biological molecules and allow determination of their variation between biological states on a genomic scale. Two popular platforms areDNA microarrays to measure messenger RNA transcript levels, and gel-free proteomic analyses to determine protein abundance. Obviously, no single approach can fully unravel the complexities of fundamental biology and it is equally clear that integrative analysis of multiple levels of gene expression would be valuable in this endeavor. However, most integrative transcriptomic and proteomic studies have thus far either failed to find a correlation or have only observed a weak correlation. It is evident that this failure is not biologically based, but rather is related the inadequacy of available statistical tools to compensate for biases in the data collection methodologies. To address this issue, attempts have recently been made to systematically investigate the correlation patterns between transcriptomic and proteomic datasets, and to develop more sophisticated statistical tools to improve the chances of capturing a relationship. The goal of these investigations is to enhance our understanding of the relationship between transcriptome and proteome data so that integrative analyses may be utilized to reveal new biological insights that are not accessible through one dimensional datasets. In this review, we outline some of the challenges associated with integrative analyses and present some preliminary solutions based on progress being made in recent years. In addition, some new applications of integrated transcriptomic and proteomic analysis to the investigation of post-transcriptional regulation will also be discussed.

  19. Quantitative Proteomic Analysis of the Hfq-Regulon in Sinorhizobium meliloti 2011

    PubMed Central

    Sobrero, Patricio; Schlüter, Jan-Philip; Lanner, Ulrike; Schlosser, Andreas; Becker, Anke; Valverde, Claudio

    2012-01-01

    Riboregulation stands for RNA-based control of gene expression. In bacteria, small non-coding RNAs (sRNAs) are a major class of riboregulatory elements, most of which act at the post-transcriptional level by base-pairing target mRNA genes. The RNA chaperone Hfq facilitates antisense interactions between target mRNAs and regulatory sRNAs, thus influencing mRNA stability and/or translation rate. In the α-proteobacterium Sinorhizobium meliloti strain 2011, the identification and detection of multiple sRNAs genes and the broadly pleitropic phenotype associated to the absence of a functional Hfq protein both support the existence of riboregulatory circuits controlling gene expression to ensure the fitness of this bacterium in both free living and symbiotic conditions. In order to identify target mRNAs subject to Hfq-dependent riboregulation, we have compared the proteome of an hfq mutant and the wild type S. meliloti by quantitative proteomics following protein labelling with 15N. Among 2139 univocally identified proteins, a total of 195 proteins showed a differential abundance between the Hfq mutant and the wild type strain; 65 proteins accumulated ≥2-fold whereas 130 were downregulated (≤0.5-fold) in the absence of Hfq. This profound proteomic impact implies a major role for Hfq on regulation of diverse physiological processes in S. meliloti, from transport of small molecules to homeostasis of iron and nitrogen. Changes in the cellular levels of proteins involved in transport of nucleotides, peptides and amino acids, and in iron homeostasis, were confirmed with phenotypic assays. These results represent the first quantitative proteomic analysis in S. meliloti. The comparative analysis of the hfq mutant proteome allowed identification of novel strongly Hfq-regulated genes in S. meliloti. PMID:23119037

  20. A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck].

    PubMed

    Zeng, Yunliu; Pan, Zhiyong; Ding, Yuduan; Zhu, Andan; Cao, Hongbo; Xu, Qiang; Deng, Xiuxin

    2011-11-01

    Here, a comprehensive proteomic analysis of the chromoplasts purified from sweet orange using Nycodenz density gradient centrifugation is reported. A GeLC-MS/MS shotgun approach was used to identify the proteins of pooled chromoplast samples. A total of 493 proteins were identified from purified chromoplasts, of which 418 are putative plastid proteins based on in silico sequence homology and functional analyses. Based on the predicted functions of these identified plastid proteins, a large proportion (∼60%) of the chromoplast proteome of sweet orange is constituted by proteins involved in carbohydrate metabolism, amino acid/protein synthesis, and secondary metabolism. Of note, HDS (hydroxymethylbutenyl 4-diphosphate synthase), PAP (plastid-lipid-associated protein), and psHSPs (plastid small heat shock proteins) involved in the synthesis or storage of carotenoid and stress response are among the most abundant proteins identified. A comparison of chromoplast proteomes between sweet orange and tomato suggested a high level of conservation in a broad range of metabolic pathways. However, the citrus chromoplast was characterized by more extensive carotenoid synthesis, extensive amino acid synthesis without nitrogen assimilation, and evidence for lipid metabolism concerning jasmonic acid synthesis. In conclusion, this study provides an insight into the major metabolic pathways as well as some unique characteristics of the sweet orange chromoplasts at the whole proteome level. PMID:21841170

  1. Global proteomic analysis of two tick-borne emerging zoonotic agents: Anaplasma phagocytophilum and Ehrlichia chaffeensis

    SciTech Connect

    Lin, Mingqun ..; Kikuchi, Takane; Brewer, Heather M.; Norbeck, Angela D.; Rikihisa, Yasuko

    2011-02-17

    Anaplasma phagocytophilum and Ehrlichia chaffeensis are obligatory intracellular {alpha}-proteobacteria that infect human leukocytes and cause potentially fatal emerging zoonoses. In the present study, we determined global protein expression profiles of these bacteria cultured in the human promyelocytic leukemia cell line, HL-60. Mass spectrometric (MS) analyses identified a total of 1,212 A. phagocytophilum and 1,021 E. chaffeensis proteins, representing 89.3 and 92.3% of the predicted bacterial proteomes, respectively. Nearly all bacterial proteins ({approx}99%) with known functions were expressed, whereas only approximately 80% of hypothetical proteins were detected in infected human cells. Quantitative MS/MS analyses indicated that highly expressed proteins in both bacteria included chaperones, enzymes involved in biosynthesis and metabolism, and outer membrane proteins, such as A. phagocytophilum P44 and E. chaffeensis P28/OMP-1. Among 113 A. phagocytophilum p44 paralogous genes, 110 of them were expressed and 88 of them were encoded by pseudogenes. In addition, bacterial infection of HL-60 cells up-regulated the expression of human proteins involved mostly in cytoskeleton components, vesicular trafficking, cell signaling, and energy metabolism, but down regulated some pattern recognition receptors involved in innate immunity. Our proteomics data represent a comprehensive analysis of A. phagocytophilum and E. chaffeensis proteomes, and provide a quantitative view of human host protein expression profiles regulated by bacterial infection. The availability of these proteomic data will provide new insights into biology and pathogenesis of these obligatory intracellular pathogens.

  2. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    PubMed

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J; Kim, Jae-Yean

    2015-08-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  3. Proteome Analysis of Cytoplasmatic and Plastidic β-Carotene Lipid Droplets in Dunaliella bardawil1[OPEN

    PubMed Central

    Davidi, Lital; Levin, Yishai; Ben-Dor, Shifra; Pick, Uri

    2015-01-01

    The halotolerant green alga Dunaliella bardawil is unique in that it accumulates under stress two types of lipid droplets: cytoplasmatic lipid droplets (CLD) and β-carotene-rich (βC) plastoglobuli. Recently, we isolated and analyzed the lipid and pigment compositions of these lipid droplets. Here, we describe their proteome analysis. A contamination filter and an enrichment filter were utilized to define core proteins. A proteome database of Dunaliella salina/D. bardawil was constructed to aid the identification of lipid droplet proteins. A total of 124 and 42 core proteins were identified in βC-plastoglobuli and CLD, respectively, with only eight common proteins. Dunaliella spp. CLD resemble cytoplasmic droplets from Chlamydomonas reinhardtii and contain major lipid droplet-associated protein and enzymes involved in lipid and sterol metabolism. The βC-plastoglobuli proteome resembles the C. reinhardtii eyespot and Arabidopsis (Arabidopsis thaliana) plastoglobule proteomes and contains carotene-globule-associated protein, plastid-lipid-associated protein-fibrillins, SOUL heme-binding proteins, phytyl ester synthases, β-carotene biosynthesis enzymes, and proteins involved in membrane remodeling/lipid droplet biogenesis: VESICLE-INDUCING PLASTID PROTEIN1, synaptotagmin, and the eyespot assembly proteins EYE3 and SOUL3. Based on these and previous results, we propose models for the biogenesis of βC-plastoglobuli and the biosynthesis of β-carotene within βC-plastoglobuli and hypothesize that βC-plastoglobuli evolved from eyespot lipid droplets. PMID:25404729

  4. Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose

    SciTech Connect

    Sivagnanam, Kumaran; Raghavan, Vijaya G. S.; Shah, Manesh B; Hettich, Robert {Bob} L; Verberkmoes, Nathan C; Lefsrud, Mark G

    2011-01-01

    Background: Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetonebutanol- ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and xylose to understand the functional mechanisms of C. acetobutylicum proteins involved in butanol production. Results: We identified 894 different proteins in C. acetobutylicum from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS) method. This includes 717 proteins from glucose and 826 proteins from the xylose substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates. Conclusion: Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of C. acetobutylicum ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report.

  5. Detailed proteome analysis of growing cells of the planctomycete Rhodopirellula baltica SH1T.

    PubMed

    Hieu, Cao Xuan; Voigt, Birgit; Albrecht, Dirk; Becher, Dörte; Lombardot, Thierry; Glöckner, Frank Oliver; Amann, Rudolf; Hecker, Michael; Schweder, Thomas

    2008-04-01

    Rhodopirellula baltica SH1(T), which was isolated from the water column of the Kieler Bight, a bay in the southwestern Baltic Sea, is a marine aerobic, heterotrophic representative of the ubiquitous bacterial phylum Planctomycetes. We analyzed the R. baltica proteome by applying different preanalytical protein as well as peptide separation techniques (1-D and 2-DE, HPLC separation) prior to MS. That way, we could identify a total of 1115 nonredundant proteins from the intracellular proteome and from different cell wall protein fractions. With the contribution of 709 novel proteins resulting from this study, the current comprehensive R. baltica proteomic dataset consists of 1267 unique proteins (accounting for 17.3% of the total putative protein-coding ORFs), including 261 proteins with a predicted signal peptide. The identified proteins were functionally categorized using Clusters of Orthologous Groups (COGs), and their potential cellular locations were predicted by bioinformatic tools. A unique protein family that contains several YTV domains and is rich in cysteine and proline was found to be a component of the R. baltica proteinaceous cell wall. Based on this comprehensive proteome analysis a global schema of the major metabolic pathways of growing R. baltica cells was deduced. PMID:18340632

  6. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    PubMed Central

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  7. Evaluation of proteomic search engines for the analysis of histone modifications.

    PubMed

    Yuan, Zuo-Fei; Lin, Shu; Molden, Rosalynn C; Garcia, Benjamin A

    2014-10-01

    Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118.

  8. Comprehensive human urine standards for comparability and standardization in clinical proteome analysis

    PubMed Central

    Mischak, Harald; Kolch, Walter; Aivaliotis, Michalis; Bouyssié, David; Court, Magali; Dihazi, Hassan; Dihazi, Gry H.; Franke, Julia; Garin, Jérôme; Gonzalez de Peredo, Anne; Iphöfer, Alexander; Jänsch, Lothar; Lacroix, Chrystelle; Makridakis, Manousos; Masselon, Christophe; Metzger, Jochen; Monsarrat, Bernard; Mrug, Michal; Norling, Martin; Novak, Jan; Pich, Andreas; Pitt, Andrew; Bongcam-Rudloff, Erik; Siwy, Justyna; Suzuki, Hitoshi; Thongboonkerd, Visith; Wang, Li-Shun; Zoidakis, Jérôme; Zürbig, Petra; Schanstra, Joost P.; Vlahou, Antonia

    2011-01-01

    Purpose Urine proteomics is emerging as a powerful tool for biomarker discovery. The purpose of this study is the development of a well characterized “real life” sample that can be used as reference standard in urine clinical proteomics studies. Experimental design We report on the generation of male and female urine samples that are extensively characterized by different platforms and methods (CE-MS, LC-MS, LC-MS/MS, GeLC-MS, and 2DE-MS) for their proteome and peptidome. In several cases analysis involved a definition of the actual biochemical entities, i.e. proteins/peptides associated with molecular mass and detected posttranslational modifications and the relative abundance of these compounds. Results The combination of different technologies allowed coverage of a wide mass range revealing the advantages and complementarities of the different technologies. Application of these samples in “inter-laboratory” and “inter-platform” data comparison is also demonstrated. Conclusions and Clinical Relevance These well characterized urine samples are freely available upon request to enable data comparison especially in the context of biomarker discovery and validation studies. It is also expected that they will provide the basis for the comprehensive characterization of the urinary proteome. PMID:21137064

  9. Proteomic analysis of pRb loss highlights a signature of decreased mitochondrial oxidative phosphorylation.

    Pu