Science.gov

Sample records for 2d6 cyp2d6 enzyme

  1. Evaluation of CYP2D6 enzyme activity using a Dextromethorphan Breath Test in Women Receiving Adjuvant Tamoxifen

    PubMed Central

    Safgren, Stephanie L.; Suman, Vera J.; Kosel, Matthew L.; Gilbert, Judith A; Buhrow, Sarah A.; Black, John L.; Northfelt, Donald W.; Modak, Anil S.; Rosen, David; Ingle, James N.; Ames, Matthew M.; Reid, Joel M.; Goetz, Matthew P.

    2015-01-01

    Background In tamoxifen-treated patients, breast cancer recurrence differs according to CYP2D6 genotype and endoxifen steady state concentrations (Endx Css). The 13Cdextromethorphan breath test (DM-BT), labeled with 13C at the O-CH3 moiety, measures CYP2D6 enzyme activity. We sought to examine the ability of the DM-BT to identify known CYP2D6 genotypic poor metabolizers and examine the correlation between DMBT and Endx Css. Methods DM-BT and tamoxifen pharmacokinetics were obtained at baseline (b), 3 month (3m) and 6 months (6m) following tamoxifen initiation. Potent CYP2D6 inhibitors were prohibited. The correlation between bDM-BT with CYP2D6 genotype and Endx Css was determined. The association between bDM-BT (where values ≤0.9 is an indicator of poor in vivo CYP2D6 metabolism) and Endx Css (using values ≤ 11.2 known to be associated with poorer recurrence free survival) was explored. Results 91 patients were enrolled and 77 were eligible. CYP2D6 genotype was positively correlated with b, 3m and 6m DMBT (r ranging from 0.457-0. 60 p < 0.001). Both CYP2D6 genotype (r = 0.47; 0.56, p <.0001), and bDM-BT (r=0.60; 0.54; p<.001) were associated with 3m and 6m Endx Css respectively. Seven of 9 patients (78%) with low (≤11.2 nM) 3m Endx Css also had low DM-BT (≤0.9) including 2/2 CYP2D6 PM/PM and 5/5 IM/PM. In contrast, 1 of 48 pts (2%) with a low DM-BT had Endx Css > 11.2 nM. Conclusions In patients not taking potent CYP2D6 inhibitors, DM-BT was associated with CYP2D6 genotype and 3m and 6 m Endx Css but did not provide better discrimination of Endx Css compared to CYP2D6 genotype alone. Further studies are needed to identify additional factors which alter Endx Css. PMID:25714002

  2. Functional characterization of CYP2D6 enhancer polymorphisms

    PubMed Central

    Wang, Danxin; Papp, Audrey C.; Sun, Xiaochun

    2015-01-01

    CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. PMID:25381333

  3. Autoantibodies against CYP2D6 and other drug-metabolizing enzymes in autoimmune hepatitis type 2.

    PubMed

    Mizutani, Takaharu; Shinoda, Masakazu; Tanaka, Yuta; Kuno, Takuya; Hattori, Asuka; Usui, Toru; Kuno, Nayumi; Osaka, Takashi

    2005-01-01

    Autoimmune hepatitis (AIH) is a disease of unknown etiology, characterized by liver-related autoantibodies. Autoimmune hepatitis is subdivided into two major types: AIH type 1 is characterized by the detection of ANA, SMA, ANCA, anti-ASGP-R, and anti-SLA/LP. Autoimmune hepatitis type 2 is characterized to be mainly related with drug-metabolizing enzymes as autoantigens, such as anti-LKM (liver-kidney microsomal antigen)-1 against CYP2D6, anti-LKM-2 against CYP2C9-tienilic acid, anti-LKM-3 against UGT1A, and anti-LC1 (liver cytosol antigen)-1 and anti-APS (autoimmune polyglandular syndrome type-1) against CYP1A2, CYP2A6, and others. Anti-LKM-1 sera inhibited CYP2D6 activity in vitro but did not inhibit cellular drug metabolism in vivo. CYP2D6 is the major target autoantigen of LKM-1 and expressed on plasma membrane (PM) of hepatocytes, suggesting a pathogenic role for anti-LKM-1 in liver injury as a trigger. Anti-CYP1A2 was observed in dihydralazine-induced hepatitis, and radiolabeled CYP1A2 disappeared from the PM with a half-life of less than 30 min, whereas microsomal CYP1A2 was stably radiolabeled for several hours. Main antigenic epitopes on CYP2D6 are aa 193-212, aa 257-269, and aa 321-351; and D263 is essential. The third epitope is located on the surface of the protein CYP2D6 and displays a hydrophobic patch that is situated between an aromatic residue (W316) and histidine (H326). Some drugs such as anticonvulsants (phenobarbital, phenytoin, and carbamazepine) and halothane are suggested to induce hepatitis with anti-CYP3A and anti-CYP2E1, respectively. Autoantibodies against CYP11A1, CYP17, and/or CYP21 involved in the synthesis of steroid hormones are also detected in patients with adrenal failure, gonadal failure, and/or Addison disease.

  4. CYP2D6*36 gene arrangements within the cyp2d6 locus: association of CYP2D6*36 with poor metabolizer status.

    PubMed

    Gaedigk, Andrea; Bradford, L Dianne; Alander, Sarah W; Leeder, J Steven

    2006-04-01

    Unexplained cases of CYP2D6 genotype/phenotype discordance continue to be discovered. In previous studies, several African Americans with a poor metabolizer phenotype carried the reduced function CYP2D6*10 allele in combination with a nonfunctional allele. We pursued the possibility that these alleles harbor either a known sequence variation (i.e., CYP2D6*36 carrying a gene conversion in exon 9 along the CYP2D6*10-defining 100C>T single-nucleotide polymorphism) or novel sequences variation(s). Discordant cases were evaluated by long-range polymerase chain reaction (PCR) to test for gene rearrangement events, and a 6.6-kilobase pair PCR product encompassing the CYP2D6 gene was cloned and entirely sequenced. Thereafter, allele frequencies were determined in different study populations comprising whites, African Americans, and Asians. Analyses covering the CYP2D7 to 2D6 gene region established that CYP2D6*36 did not only exist as a gene duplication (CYP2D6*36x2) or in tandem with *10 (CYP2D6*36+*10), as previously reported, but also by itself. This "single" CYP2D6*36 allele was found in nine African Americans and one Asian, but was absent in the whites tested. Ultimately, the presence of CYP2D6*36 resolved genotype/phenotype discordance in three cases. We also discovered an exon 9 conversion-positive CYP2D6*4 gene in a duplication arrangement (CYP2D6*4Nx2) and a CYP2D6*4 allele lacking 100C>T (CYP2D6*4M) in two white subjects. The discovery of an allele that carries only one CYP2D6*36 gene copy provides unequivocal evidence that both CYP2D6*36 and *36x2 are associated with a poor metabolizer phenotype. Given a combined frequency of between 0.5 and 3% in African Americans and Asians, genotyping for CYP2D6*36 should improve the accuracy of genotype-based phenotype prediction in these populations.

  5. Inhibitory effects of phytochemicals on metabolic capabilities of CYP2D6*1 and CYP2D6*10 using cell-based models in vitro

    PubMed Central

    Qu, Qiang; Qu, Jian; Han, Lu; Zhan, Min; Wu, Lan-xiang; Zhang, Yi-wen; Zhang, Wei; Zhou, Hong-hao

    2014-01-01

    Aim: Herbal products have been widely used, and the safety of herb-drug interactions has aroused intensive concerns. This study aimed to investigate the effects of phytochemicals on the catalytic activities of human CYP2D6*1 and CYP2D6*10 in vitro. Methods: HepG2 cells were stably transfected with CYP2D6*1 and CYP2D6*10 expression vectors. The metabolic kinetics of the enzymes was studied using HPLC and fluorimetry. Results: HepG2-CYP2D6*1 and HepG2-CYP2D6*10 cell lines were successfully constructed. Among the 63 phytochemicals screened, 6 compounds, including coptisine sulfate, bilobalide, schizandrin B, luteolin, schizandrin A and puerarin, at 100 μmol/L inhibited CYP2D6*1- and CYP2D6*10-mediated O-demethylation of a coumarin compound AMMC by more than 50%. Furthermore, the inhibition by these compounds was dose-dependent. Eadie-Hofstee plots demonstrated that these compounds competitively inhibited CYP2D6*1 and CYP2D6*10. However, their Ki values for CYP2D6*1 and CYP2D6*10 were very close, suggesting that genotype-dependent herb-drug inhibition was similar between the two variants. Conclusion: Six phytochemicals inhibit CYP2D6*1 and CYP2D6*10-mediated catalytic activities in a dose-dependent manner in vitro. Thus herbal products containing these phytochemicals may inhibit the in vivo metabolism of co-administered drugs whose primary route of elimination is CYP2D6. PMID:24786236

  6. CYP2D6 Genetic Polymorphisms and Phenotypes in Different Ethnicities of Malaysian Breast Cancer Patients.

    PubMed

    Chin, Fee Wai; Chan, Soon Choy; Abdul Rahman, Sabariah; Noor Akmal, Sharifah; Rosli, Rozita

    2016-01-01

    The cytochrome P450, family 2, subfamily D, polypeptide 6 (CYP2D6) is an enzyme that is predominantly involved in the metabolism of tamoxifen. Genetic polymorphisms of the CYP2D6 gene may contribute to inter-individual variability in tamoxifen metabolism, which leads to the differences in clinical response to tamoxifen among breast cancer patients. In Malaysia, the knowledge on CYP2D6 genetic polymorphisms as well as metabolizer status in Malaysian breast cancer patients remains unknown. Hence, this study aimed to comprehensively identify CYP2D6 genetic polymorphisms among 80 Malaysian breast cancer patients. The genetic polymorphisms of all the 9 exons of CYP2D6 gene were identified using high-resolution melting analysis and confirmed by DNA sequencing. Seven CYP2D6 alleles consisting of CYP2D6*1, CYP2D6*2, CYP2D6*4, CYP2D6*10, CYP2D6*39, CYP2D6*49, and CYP2D6*75 were identified in this study. Among these alleles, CYP2D6*10 is the most common allele in both Malaysian Malay (54.8%) and Chinese (71.4%) breast cancer patients, whereas CYP2D6*4 in Malaysian Indian (28.6%) breast cancer patients. In relation to CYP2D6 genotype, CYP2D6*10/*10 is more frequently observed in both Malaysian Malay (28.9%) and Chinese (57.1%) breast cancer patients, whereas CYP2D6*4/*10 is more frequently observed in Malaysian Indian (42.8%) breast cancer patients. In terms of CYP2D6 phenotype, 61.5% of Malaysian Malay breast cancer patients are predicted as extensive metabolizers in which they are most likely to respond well to tamoxifen therapy. However, 57.1% of Chinese as well as Indian breast cancer patients are predicted as intermediate metabolizers and they are less likely to gain optimal benefit from the tamoxifen therapy. This is the first report of CYP2D6 genetic polymorphisms and phenotypes in Malaysian breast cancer patients for different ethnicities. These data may aid clinicians in selecting an optimal drug therapy for Malaysian breast cancer patients, hence improve the

  7. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice

    PubMed Central

    Pan, Xian

    2015-01-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter. PMID:25943116

  8. CYP2D6: novel genomic structures and alleles

    PubMed Central

    Kramer, Whitney E.; Walker, Denise L.; O’Kane, Dennis J.; Mrazek, David A.; Fisher, Pamela K.; Dukek, Brian A.; Bruflat, Jamie K.; Black, John L.

    2010-01-01

    Objective CYP2D6 is a polymorphic gene. It has been observed to be deleted, to be duplicated and to undergo recombination events involving the CYP2D7 pseudogene and surrounding sequences. The objective of this study was to discover the genomic structure of CYP2D6 recombinants that interfere with clinical genotyping platforms that are available today. Methods Clinical samples containing rare homozygous CYP2D6 alleles, ambiguous readouts, and those with duplication signals and two different alleles were analyzed by long-range PCR amplification of individual genes, PCR fragment analysis, allele-specific primer extension assay, and DNA sequencing to characterize alleles and genomic structure. Results Novel alleles, genomic structures, and the DNA sequence of these structures are described. Interestingly, in 49 of 50 DNA samples that had CYP2D6 gene duplications or multiplications where two alleles were detected, the chromosome containing the duplication or multiplication had identical tandem alleles. Conclusion Several new CYP2D6 alleles and genomic structures are described which will be useful for CYP2D6 genotyping. The findings suggest that the recombination events responsible for CYP2D6 duplications and multiplications are because of mechanisms other than interchromosomal crossover during meiosis. PMID:19741566

  9. Nomenclature for human CYP2D6 alleles.

    PubMed

    Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M

    1996-06-01

    To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658

  10. Prevalence of CYP2D6*2, CYP2D6*4, CYP2D6*10, and CYP3A5*3 in Thai breast cancer patients undergoing tamoxifen treatment

    PubMed Central

    Charoenchokthavee, Wanaporn; Panomvana, Duangchit; Sriuranpong, Virote; Areepium, Nutthada

    2016-01-01

    Background Tamoxifen (TAM) is used in breast cancer treatment, but interindividual variabilities in TAM-metabolizing enzymes exist and have been linked to single nucleotide polymorphisms in the respective encoding genes. The different alleles and genotypes of these genes have been presented for Caucasians and Asians. This study aimed to explore the prevalence of the incomplete functional alleles and genotypes of the CYP2D6 and CYP3A5 genes in Thai breast cancer patients undergoing TAM treatment. Patients and methods In total, 134 Thai breast cancer patients were randomly invited to join the Thai Tamoxifen Project. Their blood samples were collected and extracted for individual DNA. The alleles and genotypes were determined by real-time polymerase chain reaction with TaqMan® Drug Metabolism Genotyping Assays. Results The patients were aged from 27.0 years to 82.0 years with a body mass index range from 15.4 to 40.0, with the majority (103/134) in the early stage (stages 0–II) of breast cancer. The median duration of TAM administration was 17.2 months (interquartile range 16.1 months). Most (53%) of the patients were premenopausal with an estrogen receptor (ER) and progesterone receptor (PR) status of ER+/PR+ (71.7%), ER+/PR− (26.9%), ER−/PR+ (0.7%), and ER−/PR− (0.7%). The allele frequencies of CYP2D6*1, CYP2D6*2, CYP2D6*4, CYP2D6*10, CYP3A5*1, and CYP3A5*3 were 72.9%, 3.2%, 1.1%, 22.8%, 37.3%, and 62.7%, respectively, while the genotype frequencies of CYP2D6*1/*1, CYP2D6*1/*2, CYP2D6*2/*2, CYP2D6*4/*4, CYP2D6*1/*10, CYP2D6*2/*10, CYP2D6*4/*10, CYP2D6*10/*10, CYP3A5*1/*1, CYP3A5*1/*3, and CYP3A5*3/*3 were 9.7%, 2.2%, 3.7%, 1.5%, 15.7%, 9.7%, 3.7%, 53.7%, 13.4%, 47.8%, and 38.8%, respectively. Conclusion The majority (97.8%) of Thai breast cancer patients undergoing TAM treatment carry at least one incomplete functional allele, including 20.9% of the patients who carry only incomplete functional alleles for both the CYP2D6 and CYP3A5 genes. This research

  11. Impact of CYP2D6 polymorphisms on clinical efficacy and tolerability of metoprolol tartrate.

    PubMed

    Hamadeh, I S; Langaee, T Y; Dwivedi, R; Garcia, S; Burkley, B M; Skaar, T C; Chapman, A B; Gums, J G; Turner, S T; Gong, Y; Cooper-DeHoff, R M; Johnson, J A

    2014-08-01

    Metoprolol is a selective β-1 adrenergic receptor blocker that undergoes extensive metabolism by the polymorphic enzyme cytochrome P450 2D6 (CYP2D6). Our objective was to investigate the influence of CYP2D6 polymorphisms on the efficacy and tolerability of metoprolol tartrate. Two hundred and eighty-one participants with uncomplicated hypertension received 50 mg of metoprolol twice daily followed by response-guided titration to 100 mg twice daily. Phenotypes were assigned based on results of CYP2D6 genotyping and copy number variation assays. Clinical response to metoprolol and adverse effect rates were analyzed in relation to CYP2D6 phenotypes using appropriate statistical tests. Heart rate response differed significantly by CYP2D6 phenotype (P < 0.0001), with poor and intermediate metabolizers showing greater reduction. However, blood pressure response and adverse effect rates were not significantly different by CYP2D6 phenotype. Other than a significant difference in heart rate response, CYP2D6 polymorphisms were not determinants of variability in metoprolol response or tolerability.

  12. Potential role of CYP2D6 in the central nervous system

    PubMed Central

    Cheng, Jie; Zhen, Yueying; Miksys, Sharon; Beyoğlu, Diren; Krausz, Kristopher W.; Tyndale, Rachel F.; Yu, Aiming; Idle, Jeffrey R.; Gonzalez, Frank J.

    2013-01-01

    Cytochrome P450 2D6 (CYP2D6) is a pivotal enzyme responsible for a major human drug oxidation polymorphism in human populations. Distribution of CYP2D6 in brain and its role in serotonin metabolism suggest this CYP2D6 may have a function in central nervous system. To establish an efficient and accurate platform for the study of CYP2D6 in vivo, a transgenic human CYP2D6 (Tg-2D6) model was generated by transgenesis in wild-type C57BL/6 (WT) mice using a P1 phage artificial chromosome clone containing the complete human CYP2D locus, including CYP2D6 gene and 5’- and 3’- flanking sequences. Human CYP2D6 was expressed not only in the liver, but also in brain. The abundance of serotonin and 5-hydroxyindoleacetic acid in brain of Tg-2D6 is higher than in WT mice either basal levels or after harmaline induction. Metabolomics of brain homogenate and cerebrospinal fluid revealed a significant up-regulation of l-carnitine, acetyl-l-carnitine, pantothenic acid, dCDP, anandamide, N-acetylglucosaminylamine, and a down-regulation of stearoyl-l-carnitine in Tg-2D6 mice compared with WT mice. Anxiety tests indicate Tg-2D6 mice have a higher capability to adapt to anxiety. Overall, these findings indicate that the Tg-2D6 mouse model may serve as a valuable in vivo tool to determine CYP2D6-involved neurophysiological metabolism and function. PMID:23614566

  13. MDMA, methamphetamine, and CYP2D6 pharmacogenetics: what is clinically relevant?

    PubMed

    de la Torre, Rafael; Yubero-Lahoz, Samanta; Pardo-Lozano, Ricardo; Farré, Magí

    2012-01-01

    In vitro human studies show that the metabolism of most amphetamine-like psychostimulants is regulated by the polymorphic cytochrome P450 isozyme CYP2D6. Two compounds, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA), were selected as archetypes to discuss the translation and clinical significance of in vitro to in vivo findings. Both compounds were chosen based on their differential interaction with CYP2D6 and their high abuse prevalence in society. Methamphetamine behaves as both a weak substrate and competitive inhibitor of CYP2D6, while MDMA acts as a high affinity substrate and potent mechanism-based inhibitor (MBI) of the enzyme. The MBI behavior of MDMA on CYP2D6 implies that subjects, irrespective of their genotype/phenotype, are phenocopied to the poor metabolizer (PM) phenotype. The fraction of metabolic clearance regulated by CYP2D6 for both drugs is substantially lower than expected from in vitro studies. Other isoenzymes of cytochrome P450 and a relevant contribution of renal excretion play a part in their clearance. These facts tune down the potential contribution of CYP2D6 polymorphism in the clinical outcomes of both substances. Globally, the clinical relevance of CYP2D6 polymorphism is lower than that predicted by in vitro studies. PMID:23162568

  14. Distribution of CYP2D6 alleles and phenotypes in the Brazilian population.

    PubMed

    Friedrich, Deise C; Genro, Júlia P; Sortica, Vinicius A; Suarez-Kurtz, Guilherme; de Moraes, Maria Elizabete; Pena, Sergio D J; dos Santos, Andrea K Ribeiro; Romano-Silva, Marco A; Hutz, Mara H

    2014-01-01

    The CYP2D6 enzyme is one of the most important members of the cytochrome P450 superfamily. This enzyme metabolizes approximately 25% of currently prescribed medications. The CYP2D6 gene presents a high allele heterogeneity that determines great inter-individual variation. The aim of this study was to evaluate the variability of CYP2D6 alleles, genotypes and predicted phenotypes in Brazilians. Eleven single nucleotide polymorphisms and CYP2D6 duplications/multiplications were genotyped by TaqMan assays in 1020 individuals from North, Northeast, South, and Southeast Brazil. Eighteen CYP2D6 alleles were identified in the Brazilian population. The CYP2D6*1 and CYP2D6*2 alleles were the most frequent and widely distributed in different geographical regions of Brazil. The highest number of CYPD6 alleles observed was six and the frequency of individuals with more than two copies ranged from 6.3% (in Southern Brazil) to 10.2% (Northern Brazil). The analysis of molecular variance showed that CYP2D6 is homogeneously distributed across different Brazilian regions and most of the differences can be attributed to inter-individual differences. The most frequent predicted metabolic status was EM (83.5%). Overall 2.5% and 3.7% of Brazilians were PMs and UMs respectively. Genomic ancestry proportions differ only in the prevalence of intermediate metabolizers. The IM predicted phenotype is associated with a higher proportion of African ancestry and a lower proportion of European ancestry in Brazilians. PM and UM classes did not vary among regions and/or ancestry proportions therefore unique CYP2D6 testing guidelines for Brazilians are possible and could potentially avoid ineffective or adverse events outcomes due to drug prescriptions. PMID:25329392

  15. Distribution of CYP2D6 alleles and phenotypes in the Brazilian population.

    PubMed

    Friedrich, Deise C; Genro, Júlia P; Sortica, Vinicius A; Suarez-Kurtz, Guilherme; de Moraes, Maria Elizabete; Pena, Sergio D J; dos Santos, Andrea K Ribeiro; Romano-Silva, Marco A; Hutz, Mara H

    2014-01-01

    The CYP2D6 enzyme is one of the most important members of the cytochrome P450 superfamily. This enzyme metabolizes approximately 25% of currently prescribed medications. The CYP2D6 gene presents a high allele heterogeneity that determines great inter-individual variation. The aim of this study was to evaluate the variability of CYP2D6 alleles, genotypes and predicted phenotypes in Brazilians. Eleven single nucleotide polymorphisms and CYP2D6 duplications/multiplications were genotyped by TaqMan assays in 1020 individuals from North, Northeast, South, and Southeast Brazil. Eighteen CYP2D6 alleles were identified in the Brazilian population. The CYP2D6*1 and CYP2D6*2 alleles were the most frequent and widely distributed in different geographical regions of Brazil. The highest number of CYPD6 alleles observed was six and the frequency of individuals with more than two copies ranged from 6.3% (in Southern Brazil) to 10.2% (Northern Brazil). The analysis of molecular variance showed that CYP2D6 is homogeneously distributed across different Brazilian regions and most of the differences can be attributed to inter-individual differences. The most frequent predicted metabolic status was EM (83.5%). Overall 2.5% and 3.7% of Brazilians were PMs and UMs respectively. Genomic ancestry proportions differ only in the prevalence of intermediate metabolizers. The IM predicted phenotype is associated with a higher proportion of African ancestry and a lower proportion of European ancestry in Brazilians. PM and UM classes did not vary among regions and/or ancestry proportions therefore unique CYP2D6 testing guidelines for Brazilians are possible and could potentially avoid ineffective or adverse events outcomes due to drug prescriptions.

  16. Distribution of CYP2D6 Alleles and Phenotypes in the Brazilian Population

    PubMed Central

    Sortica, Vinicius A.; Suarez-Kurtz, Guilherme; de Moraes, Maria Elizabete; Pena, Sergio D. J.; dos Santos, Ândrea K. Ribeiro; Romano-Silva, Marco A.; Hutz, Mara H.

    2014-01-01

    Abstract The CYP2D6 enzyme is one of the most important members of the cytochrome P450 superfamily. This enzyme metabolizes approximately 25% of currently prescribed medications. The CYP2D6 gene presents a high allele heterogeneity that determines great inter-individual variation. The aim of this study was to evaluate the variability of CYP2D6 alleles, genotypes and predicted phenotypes in Brazilians. Eleven single nucleotide polymorphisms and CYP2D6 duplications/multiplications were genotyped by TaqMan assays in 1020 individuals from North, Northeast, South, and Southeast Brazil. Eighteen CYP2D6 alleles were identified in the Brazilian population. The CYP2D6*1 and CYP2D6*2 alleles were the most frequent and widely distributed in different geographical regions of Brazil. The highest number of CYPD6 alleles observed was six and the frequency of individuals with more than two copies ranged from 6.3% (in Southern Brazil) to 10.2% (Northern Brazil). The analysis of molecular variance showed that CYP2D6 is homogeneously distributed across different Brazilian regions and most of the differences can be attributed to inter-individual differences. The most frequent predicted metabolic status was EM (83.5%). Overall 2.5% and 3.7% of Brazilians were PMs and UMs respectively. Genomic ancestry proportions differ only in the prevalence of intermediate metabolizers. The IM predicted phenotype is associated with a higher proportion of African ancestry and a lower proportion of European ancestry in Brazilians. PM and UM classes did not vary among regions and/or ancestry proportions therefore unique CYP2D6 testing guidelines for Brazilians are possible and could potentially avoid ineffective or adverse events outcomes due to drug prescriptions. PMID:25329392

  17. Effect of CYP2D6 genetic polymorphism on the metabolism of citalopram in vitro.

    PubMed

    Hu, Xiao-Xia; Yuan, Ling-Jing; Fang, Ping; Mao, Yong-Hui; Zhan, Yun-Yun; Li, Xiang-Yu; Dai, Da-Peng; Cai, Jian-Ping; Hu, Guo-Xin

    2016-04-01

    Genetic polymorphisms of CYP2D6 significantly influence the efficacy and safety of some drugs, which might cause adverse effects and therapeutic failure. We aimed at investigating the role of CYP2D6 in the metabolism of citalopram and identifying the effect of 24 CYP2D6 allelic variants we found in Chinese Han population on the metabolism of citalopram in vitro. These CYP2D6 variants expressed by insect cells system were incubated with 10-1000 μM citalopram for 30 min at 37 °C and the reaction was terminated by cooling to -80 °C immediately. Citalopram and its metabolites were analyzed by high-performance liquid chromatography (HPLC). The intrinsic clearance (Vmax/Km) values of the variants toward citalopram metabolites were significantly altered, 38-129% for demethylcitalopram and 13-138% for citalopram N-oxide when compared with CYP2D6*1. Most of the tested rare alleles exhibited significantly decreased values due to increased Km and/or decreased Vmax values. We conclude that recombinant system could be used to investigate the enzymes involved in drug metabolism and these findings suggest that more attention should be paid to subjects carrying these CYP2D6 alleles when administering citalopram in the clinic. PMID:27016952

  18. Inhibition of human cytochrome P450 2D6 (CYP2D6) by methadone.

    PubMed Central

    Wu, D; Otton, S V; Sproule, B A; Busto, U; Inaba, T; Kalow, W; Sellers, E M

    1993-01-01

    1. In microsomes prepared from three human livers, methadone competitively inhibited the O-demethylation of dextromethorphan, a marker substrate for CYP2D6. The apparent Ki value of methadone ranged from 2.5 to 5 microM. 2. Two hundred and fifty-two (252) white Caucasians, including 210 unrelated healthy volunteers and 42 opiate abusers undergoing treatment with methadone were phenotyped using dextromethorphan as the marker drug. Although the frequency of poor metabolizers was similar in both groups, the extensive metabolizers among the opiate abusers tended to have higher O-demethylation metabolic ratios and to excrete less of the dose as dextromethorphan metabolites than control extensive metabolizer subjects. These data suggest inhibition of CYP2D6 by methadone in vivo as well. 3. Because methadone is widely used in the treatment of opiate abuse, inhibition of CYP2D6 activity in these patients might contribute to exaggerated response or unexpected toxicity from drugs that are substrates of this enzyme. PMID:8448065

  19. CYP2D6 allele distribution in Macedonians, Albanians and Romanies in the Republic of Macedonia

    PubMed Central

    Kuzmanovska, M; Dimishkovska, M; Maleva Kostovska, I; Noveski, P; Sukarova Stefanovska, E

    2015-01-01

    Abstract Cytochrome P450 2D6 (CYP2D6) is an enzyme of great importance for the metabolism of clinically used drugs. More than 100 variants of the CYP2D6 gene have been identified so far. The aim of this study was to investigate the allele distribution of CYP2D6 gene variants in 100 individuals of each of the Macedonian, Albanian and Romany population, by genotyping using long range polymerase chain reaction (PCR) and a multiplex single base extension method. The most frequent variants and almost equally distributed in the three groups were the fully functional alleles *1 and *2. The most common non functional allele in all groups was *4 that was found in 22.5% of the Albanians. The most common allele with decreased activity was *41 which was found in 23.0% of the Romany ethnic group, in 11.0% of the Macedonians and in 10.5% of the Albanians. Seven percent of the Albanians, 6.0% of the Romani and 4.0% of the Macedonians were poor metabolizers, while 5.0% of the Macedonians, 1.0% of Albanians and 1.0% of the Romanies were ultrarapid metabolizers. We concluded that the CYP2D6 gene locus is highly heterogeneous in these groups and that the prevalence of the CYP2D6 allele variants and genotypes in the Republic of Macedonia is in accordance with that of other European populations.

  20. Genetic mechanisms for duplication and multiduplication of the human CYP2D6 gene and methods for detection of duplicated CYP2D6 genes.

    PubMed

    Lundqvist, E; Johansson, I; Ingelman-Sundberg, M

    1999-01-21

    The polymorphic CYP2D6 gene determines the rates at which several different classes of clinically important drugs are metabolized in vivo. A specific phenotype whereby a subject metabolizes drugs very rapidly (ultrarapid metabolizer, UM) has been shown to be caused by the presence of multiple active CYP2D6 genes on one allele. Hitherto, individuals with 1, 2, 3, 4, 5, or 13 CYP2D6 genes in tandem have been described for various ethnic groups. In the present investigation, we present results from restriction mapping of the CYP2D loci of individuals with two or more consecutive CYP2D6 genes, along with sequence analysis of this gene (CYP2D6*2). Our results indicate that alleles with duplicated or multiduplicated genes have occurred through unequal crossover at a specific breakpoint in the 3'-flanking region of the CYP2D6*2B allele with a specific repetitive sequence. In contrast, alleles with 13 copies of the gene are proposed to have been formed by unequal segregation and extrachromosomal replication of the acentric DNA. We present a rapid and efficient PCR-based allele-specific method for the detection of duplicated, multiduplicated, or amplified CYP2D6 genes.

  1. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  2. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  3. Genetic polymorphisms of CYP2D6 oxidation in patients with systemic lupus erythematosus

    PubMed Central

    Skrętkowicz, Jadwiga; Barańska, Małgorzata; Kaczorowska, Anna; Rychlik-Sych, Mariola

    2011-01-01

    Introduction Systemic lupus erythematosus (SLE) is a complex, multifactor autoimmune disease. The studies on aetiopathogenesis of autoimmune diseases focus on the impact the genetically conditioned impairment of xenobiotic metabolism may exert. The knowledge of oxidation polymorphism in the course of SLE may be helpful in choosing more efficient and safer therapy. We determined whether there was an association between susceptibility to SLE and particularly to CYP2D6 genotypes. Material and methods The study was carried out in 60 patients with SLE and 129 healthy volunteers and all the subjects were of Polish origin. The samples were analysed for two major defective alles for CYP2D6CYP2D6*3 and CYP2D6*4 and one wild -type allele CYP2D6*1-by the polymerase chain reaction fragment length polymorphism (PCR-RFLP) metod with DNA extracted from peripheral blood. Results No statistically significant differences in the incidence of CYP2D6 genotypes between the studied groups were found (p = 0.615). Risk (OR) of SLE development was 1.03 for the carriers of CYP2D6*3 allele and 1.48 for the subjects with CYP2D6*4 allele; but it was not statistically significant. Conclusions Increased occurrence of mutant alleles of the CYP2D6 gene in SLE patients and the calculated OR values could suggest the effect of these mutations on increased SLE development. PMID:22291833

  4. Comparison of Paeoniflorin and Albiflorin on Human CYP3A4 and CYP2D6

    PubMed Central

    Gao, Li-Na; Zhang, Ye; Cui, Yuan-Lu; Akinyi, Olunga Mary

    2015-01-01

    Peony (Paeonia lactiflora Pall-) is a plant medicine and a functional food ingredient with wide application for more than 2000 years. It can be coadministrated with many other drugs, composed of traditional Chinese medicine compound such as shaoyao-gancao decoction. In order to explore the efficacy and safety of peony, effects of paeoniflorin and albiflorin (the principal components of peony) on cytochrome P450 (CYP) 3A4 and CYP2D6 were analyzed in human hepatoma HepG2 cells and evaluated from the level of recombinant CYP enzymes in vitro. The findings indicated that albiflorin possessed stronger regulation on the mRNA expression of CYP3A4 and CYP2D6 than paeoniflorin. For the protein level of CYP3A4, albiflorin showed significant induction or inhibition with the concentration increasing from 10−7 M to 10−5 M, but no remarkable variation was observed in paeoniflorin-treated group. Enzyme activity assay implied that both paeoniflorin and albiflorin could regulate CYP3A4 and CYP2D6 with varying degrees. The results showed that albiflorin should be given more attention because it may play a vital role on the overall efficacy of peony. The whole behavior of both paeoniflorin and albiflorin should be focused on ensuring the rationality and effectiveness of clinical application. PMID:26089940

  5. CYP2D6 variation, behaviour and psychopathology: implications for pharmacogenomics-guided clinical trials

    PubMed Central

    Peñas-LLedó, Eva M; LLerena, Adrián

    2014-01-01

    Individual and population differences in polymorphic cytochrome P450 enzyme function have been known for decades. The biological significance of these differences has now been deciphered with regard to drug metabolism, action and toxicity as well as disposition of endogenous substrates, including neuroactive compounds. While the cytochrome P450 enzymes occur abundantly in the liver, they are expressed in most tissues of the body, albeit in varying amounts, including the brain. The latter location of cytochrome P450s is highly pertinent for susceptibility to neuropsychiatric diseases, not to mention local drug metabolism at the site of psychotropic drug action in the brain. In the current era of personality medicine with companion theranostics (i.e. the fusion of therapeutics with diagnostics), this article underscores that such versatile biological roles of cytochrome P450s offer multiple points of entry for personalized medicine and rational therapeutics. We focus our discussion on CYP2D6, one of the most intensively researched drug and endogenous compound metabolism pathways, with a view to relevance for, and optimization of, pharmacogenomic-guided clinical trials. Working on the premise that CYP2D6 is related to human behaviour and certain personality traits such as serotonin and dopamine system function, we further suggest that the motivation of healthy volunteers to participate in clinical trials may in part be influenced by an under-or over-representation of certain CYP2D6 metabolic groups. PMID:24033670

  6. Comparison of Paeoniflorin and Albiflorin on Human CYP3A4 and CYP2D6.

    PubMed

    Gao, Li-Na; Zhang, Ye; Cui, Yuan-Lu; Akinyi, Olunga Mary

    2015-01-01

    Peony (Paeonia lactiflora Pall-) is a plant medicine and a functional food ingredient with wide application for more than 2000 years. It can be coadministrated with many other drugs, composed of traditional Chinese medicine compound such as shaoyao-gancao decoction. In order to explore the efficacy and safety of peony, effects of paeoniflorin and albiflorin (the principal components of peony) on cytochrome P450 (CYP) 3A4 and CYP2D6 were analyzed in human hepatoma HepG2 cells and evaluated from the level of recombinant CYP enzymes in vitro. The findings indicated that albiflorin possessed stronger regulation on the mRNA expression of CYP3A4 and CYP2D6 than paeoniflorin. For the protein level of CYP3A4, albiflorin showed significant induction or inhibition with the concentration increasing from 10(-7) M to 10(-5) M, but no remarkable variation was observed in paeoniflorin-treated group. Enzyme activity assay implied that both paeoniflorin and albiflorin could regulate CYP3A4 and CYP2D6 with varying degrees. The results showed that albiflorin should be given more attention because it may play a vital role on the overall efficacy of peony. The whole behavior of both paeoniflorin and albiflorin should be focused on ensuring the rationality and effectiveness of clinical application. PMID:26089940

  7. Investigation of CYP2D6 Gene Polymorphisms in Turkish Population

    PubMed Central

    Taskin, Bayram; Percin, Ferda E.; Ergun, Mehmet Ali

    2016-01-01

    Pharmacogenetics is interested in the variable response to drugs depending on the genetic constitution of an individual. Depending on the genetic variation in individuals known as polymorphism; leads to differences in the types of proteins, enzymes or receptors that play a role in the elimination of drugs. Investigation of the correlation between the genotype with phenotype changes in drug metabolism is among the most important topics of today. CYP2D6 gene polymorphisms show clinical efficiency in the use of especially antidepressants, neuroleptics, antiarrhythmic, antihypertensive, beta blocker, and morphine derivatives. Poor metabolizers have been shown to demonstrate adverse drug reactions to these drugs. The plasma concentrations tend to increase inducing side effects after using a standard dose in poor metabolizers. The ratio of poor metabolizers in Caucasians is 5–10%, whereas 3.4–3.8% of the Turkish population. The allele frequencies of CYP2D6 *2, *3, *4 and *10 were found in 35%, 6%, 10% and 26% respectively in 200 healthy controls. The ratio of poor metabolizers in our population revealed as 1%. Genotyping of CYP2D6 is very important for determining a better genotype-phenotype relation.

  8. Clinical Utility and Economic Impact of CYP2D6 Genotyping.

    PubMed

    Reynolds, Kristen K; McNally, Beth A; Linder, Mark W

    2016-09-01

    Pharmacogenetics examines an individual's genetic makeup to help predict the safety and efficacy of medications. Practical application optimizes treatment selection to decrease the failure rate of medications and improve clinical outcomes. Lack of efficacy is costly due to adverse drug reactions and increased hospital stays. Cytochrome P450 2D6 (CYP2D6) metabolizes roughly 25% of all drugs. Detecting variants that cause altered CYP2D6 enzymatic activity identifies patients at risk of adverse drug reactions or therapeutic failure with standard dosages of medications metabolized by CYP2D6. This article discusses the clinical application of pharmacogenetics to improve care and decrease costs. PMID:27514466

  9. Lack of association between schizophrenia and the CYP2D6 gene polymorphisms

    SciTech Connect

    Pirmohamed, M.; Wild, M.J.; Kitteringham, N.R.

    1996-04-09

    Approximately 5-10% of the Caucasian population lack the P450 isoform, CYP2D6. This polymorphism may be of importance in determining individual susceptibility to Parkinson`s disease. In this journal, Daniels et al. recently reported a negative association between the CYP2D6 gene locus and schizophrenia, a disease characterized by dopamine overactivity. It is important to exclude such an association because CYP2D6 is expressed in the brain and it is involved in dopamine catabolism. Between 1992 and 1993, we also performed a study similar to that, and reached the same conclusion. 7 refs., 1 tab.

  10. Relationship between genotype for the cytochrome P450 CYP2D6 and susceptibility to ankylosing spondylitis and rheumatoid arthritis.

    PubMed Central

    Beyeler, C; Armstrong, M; Bird, H A; Idle, J R; Daly, A K

    1996-01-01

    OBJECTIVES--To determine whether particular genotypes for the cytochrome P450 enzyme CYP2D6, a polymorphic enzyme, are associated with susceptibility to ankylosing spondylitis (AS) and rheumatoid arthritis (RA), or linked with any specific clinical or familial features of the two conditions. METHODS--CYP2D6 genotypes were determined in 54 patients with AS, 53 patients with RA, and 662 healthy controls. Leucocyte DNA was analysed for the presence of mutations by restriction fragment length polymorphism analysis with the restriction enzyme Xbal and by two separate polymerase chain reaction assays. RESULTS--On the basis of odds ratio (OR), individuals with two inactive CYP2D6 alleles were more susceptible to AS than controls (OR 2.71, 95% confidence interval (CI) 1.04 to 7.08), with a stronger effect for the CYP2D6B allele (OR 4.11, 95% CI 1.54 to 11.0). No significant differences in the distribution of overall genotypes and allele frequencies were observed between RA and controls. No significant relationships were found between the skeletal, extraskeletal or familial features of AS or RA (iritis, psoriasis, inflammatory enteropathy and rheumatoid nodules, kerato-conjunctivitis sicca, pleuritis, rheumatoid and antinuclear factors) and the overall genotype. CONCLUSIONS--Our findings suggest a modest association between homozygosity for inactive CYP2D6 alleles, particularly CYP2D6B alleles, and susceptibility to AS. However, our results fail to demonstrate a genetic link between CYP2D6 genotype and RA. PMID:8572738

  11. Aloe vera juice: IC₅₀ and dual mechanistic inhibition of CYP3A4 and CYP2D6.

    PubMed

    Djuv, Ane; Nilsen, Odd Georg

    2012-03-01

    The aim of this study was to evaluate the inhibitory potency (IC₅₀ values) of ethanol extracts of two commercially available aloe vera juice (AVJ) products, on CYP3A4 and CYP2D6 activities in vitro and to determine if such inhibitions could be mechanism-based. Recombinant human CYP3A4 and CYP2D6 enzymes were used and the activities were expressed by the metabolism of testosterone and dextromethorphan with ketoconazole and quinidine as positive inhibitor controls, respectively. The formed metabolites were quantified by validated HPLC techniques. Time- and NADPH- dependent inhibition assays were performed to evaluate a possible mechanism-based inhibition. One of the AVJ extracts showed about twice the inhibitory potency towards both CYP enzymes over the other with IC₅₀ values of 8.35 ± 0.72 and 12.5 ± 2.1 mg/mL for CYP3A4 and CYP2D6, respectively. The AVJ was found to exert both CYP mediated and non-CYP mediated inhibition of both CYP3A4 and CYP2D6. This dual mechanistic inhibition, however, seems to be governed by different mechanisms for CYP3A4 and CYP2D6. Estimated IC₅₀ inhibition values indicate no major interference of AVJ with drug metabolism in man, but the dual mechanistic inhibition of both enzymes might be of clinical significance.

  12. Pharmacogenetics and breast cancer endocrine therapy: CYP2D6 as a predictive factor for tamoxifen metabolism and drug response?

    PubMed Central

    Stearns, Vered; Rae, James M.

    2011-01-01

    The identification of genetic polymorphisms that influence the efficacy and safety of therapies for breast cancer may allow future treatments to be individualised based not only on tumour characteristics but also on host genetics. Genetic factors that affect the metabolism, efficacy and safety of tamoxifen, one of the most common drugs used for the treatment and prevention of breast cancer, have received particular attention. Cytochrome P450 2D6 (CYP2D6) is crucial in the metabolism of tamoxifen to its active metabolite endoxifen. Women with genetic variants of CYP2D6 or who take drugs that inhibit the enzyme have low endoxifen plasma concentrations and may show reduced benefits to tamoxifen treatment. CYP2D6 polymorphisms and variants in other candidate genes may also influence secondary benefits and side effects of tamoxifen. Here, we summarise data suggesting that CYP2D6 status may be an important predictor of the benefits of tamoxifen to an individual; in addition, we briefly discuss the role of variants in other candidate genes. Whether CYP2D6 status should be determined prior to initiating tamoxifen therapy is currently under debate and may be appropriate only for select women who are candidates for tamoxifen alone but for whom alternative standard options are available. PMID:19019258

  13. CYP2D6 polymorphism and mental and personality disorders in suicide attempters.

    PubMed

    Blasco-Fontecilla, Hilario; Peñas-Lledó, Eva; Vaquero-Lorenzo, Concepción; Dorado, Pedro; Saiz-Ruiz, Jerónimo; Llerena, Adrián; Baca-García, Enrique

    2014-12-01

    Prior studies on the association between the CYP2D6 polymorphism and suicide did not explore whether mental and personality disorders mediate this association. The main objective of the present study was to test an association between CYP2D6 polymorphism and mental and personality disorders among suicide attempters. The MINI and the DSM-IV version of the International Personality Disorder Examination Screening Questionnaire were used to diagnose mental and personality disorders, respectively, in 342 suicide attempters. Suicide attempters were divided into four groups according to their number of CYP2D6 active genes (zero, one, and two or more). Differences in mental and personality disorders across the four groups were measured using linear-by-linear association, chi square-test, and 95% confidence intervals. Suicide attempters carrying two or more active CYP2D6 genes were more likely to be diagnosed with at least one personality disorder than those with one or zero CYP2D6 active genes.

  14. CYP2D6 Genotyping and Tamoxifen: An Unfinished Story in the Quest for Personalized Medicine

    PubMed Central

    de Souza, Jonas A.; Olopade, Olufunmilayo I.

    2011-01-01

    The philosophy behind personalized medicine is that each patient has a unique biologic profile that should guide the choice of therapy, resulting in an improved treatment outcome, ideally with reduced toxicity. Thus, there has been increasing interest in identifying genetic variations that are predictive of a drug’s efficacy or toxicity. Although it is one of the most effective drugs for treating breast cancer, tamoxifen is not effective in all estrogen receptor (ER)-positive breast cancer patients, and it is frequently associated with side effects, such as hot flashes. Relative resistance to tamoxifen treatment may be a result, in part, from impaired drug activation by cytochrome P450 2D6 (CYP2D6). Indeed, recent studies have identified allelic variations in CYP2D6 to be an important determinant of tamoxifen’s activity (and toxicity). This article will summarize the current information regarding the influence of the major genotypes and CYP2D6 inhibitors on tamoxifen metabolism, with a focus on its clinical utility and the current level of evidence for CYP2D6 genotyping of patients who are candidates for tamoxifen treatment. PMID:21421116

  15. Future Trends in the Pharmacogenomics of Brain Disorders and Dementia: Influence of APOE and CYP2D6 Variants

    PubMed Central

    Cacabelos, Ramón; Fernández-Novoa, Lucía; Martínez-Bouza, Rocío; McKay, Adam; Carril, Juan C.; Lombardi, Valter; Corzo, Lola; Carrera, Iván; Tellado, Iván; Nebril, Laura; Alcaraz, Margarita; Rodríguez, Susana; Casas, Ángela; Couceiro, Verónica; Álvarez, Antón

    2010-01-01

    About 80% of functional genes in the human genome are expressed in the brain and over 1,200 different genes have been associated with the pathogenesis of CNS disorders and dementia. Pharmacogenetic studies of psychotropic drug response have focused on determining the relationship between variations in specific candidate genes and the positive and adverse effects of drug treatment. Approximately, 18% of neuroleptics are substrates of CYP1A2 enzymes, 40% of CYP2D6, and 23% of CYP3A4; 24% of antidepressants are substrates of CYP1A2 enzymes, 5% of CYP2B6, 38% of CYP2C19, 85% of CYP2D6, and 38% of CYP3A4; 7% of benzodiazepines are substrates of CYP2C19 enzymes, 20% of CYP2D6, and 95% of CYP3A4. 10-20% of Western populations are defective in genes of the CYP superfamily; and the pharmacogenomic response of psychotropic drugs also depends on genetic variants associated with dementia. Prospective studies with anti-dementia drugs or with multifactorial strategies have revealed that the therapeutic response to conventional drugs in Alzheimer’s disease is genotype-specific. The disease-modifying effects (cognitive performance, biomarker modification) of therapeutic intervention are APOE-dependent, with APOE-4 carriers acting as the worst responders (APOE-3/3 > APOE-3/4 > APOE-4/4). APOE-CYP2D6 interactions also influence the therapeutic outcome in patients with dementia.

  16. Combination Analysis in Genetic Polymorphisms of Drug-Metabolizing Enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A5 in the Japanese Population

    PubMed Central

    Ota, Tomoko; Kamada, Yuka; Hayashida, Mariko; Iwao-Koizumi, Kyoko; Murata, Shigenori; Kinoshita, Kenji

    2015-01-01

    The Cytochrome P450 is the major enzyme involved in drug metabolism. CYP enzymes are responsible for the metabolism of most clinically used drugs. Individual variability in CYP activity is one important factor that contributes to drug therapy failure. We have developed a new straightforward TaqMan PCR genotyping assay to investigate the prevalence of the most common allelic variants of polymorphic CYP enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A5 in the Japanese population. Moreover, we focused on the combination of each genotype for clinical treatment. The genotype analysis identified a total of 139 out of 483 genotype combinations of five genes in the 1,003 Japanese subjects. According to our results, most of subjects seemed to require dose modification during clinical treatment. In the near future, modifications should be considered based on the individual patient genotype of each treatment. PMID:25552922

  17. Genomics of Dementia: APOE- and CYP2D6-Related Pharmacogenetics

    PubMed Central

    Cacabelos, Ramón; Martínez, Rocío; Fernández-Novoa, Lucía; Carril, Juan C.; Lombardi, Valter; Carrera, Iván; Corzo, Lola; Tellado, Iván; Leszek, Jerzy; McKay, Adam; Takeda, Masatoshi

    2012-01-01

    Dementia is a major problem of health in developed societies. Alzheimer's disease (AD), vascular dementia, and mixed dementia account for over 90% of the most prevalent forms of dementia. Both genetic and environmental factors are determinant for the phenotypic expression of dementia. AD is a complex disorder in which many different gene clusters may be involved. Most genes screened to date belong to different proteomic and metabolomic pathways potentially affecting AD pathogenesis. The ε4 variant of the APOE gene seems to be a major risk factor for both degenerative and vascular dementia. Metabolic factors, cerebrovascular disorders, and epigenetic phenomena also contribute to neurodegeneration. Five categories of genes are mainly involved in pharmacogenomics: genes associated with disease pathogenesis, genes associated with the mechanism of action of a particular drug, genes associated with phase I and phase II metabolic reactions, genes associated with transporters, and pleiotropic genes and/or genes associated with concomitant pathologies. The APOE and CYP2D6 genes have been extensively studied in AD. The therapeutic response to conventional drugs in patients with AD is genotype specific, with CYP2D6-PMs, CYP2D6-UMs, and APOE-4/4 carriers acting as the worst responders. APOE and CYP2D6 may cooperate, as pleiotropic genes, in the metabolism of drugs and hepatic function. The introduction of pharmacogenetic procedures into AD pharmacological treatment may help to optimize therapeutics. PMID:22482072

  18. Evaluation of a [13C]-Dextromethorphan Breath Test to Assess CYP2D6 Phenotype

    PubMed Central

    Leeder, J. Steven; Pearce, Robin E.; Gaedigk, Andrea; Modak, Anil; Rosen, David I.

    2016-01-01

    A [13C]-dextromethorphan ([13C]-DM) breath test was evaluated to assess its feasibility as a rapid, phenotyping assay for CYP2D6 activity. [13C]-DM (0.5 mg/kg) was administered orally with water or potassium bicarbonate-sodium bicarbonate to 30 adult Caucasian volunteers (n = 1 each): CYP2D6 poor metabolizers (2 null alleles; PM-0) and extensive metabolizers with 1 (EM-1) or 2 functional alleles (EM-2). CYP2D6 phenotype was determined by 13CO2 enrichment measured by infrared spectrometry (delta-over-baseline [DOB] value) in expired breath samples collected before and up to 240 minutes after [13C]-DM ingestion and by 4-hour urinary metabolite ratio. The PM-0 group was readily distinguishable from either EM group by both the breath test and urinary metabolite ratio. Using a single point determination of phenotype at 40 minutes and defining PMs as subjects with a DOB ≤ 0.5, the sensitivity of the method was 100%; specificity was 95% with 95% accuracy and resulted in the misclassification of 1 EM-1 individual as a PM. Modification of the initial protocol (timing of potassium bicarbonate-sodium bicarbonate administration relative to dose) yielded comparable results, but there was a tendency toward increased DOB values. Although further development is required, these studies suggest that the [13C]-DM breath test offers promise as a rapid, minimally invasive phenotyping assay for CYP2D6 activity. PMID:18728242

  19. Clinical inhibition of CYP2D6-catalysed metabolism by the antianginal agent perhexiline

    PubMed Central

    Davies, Benjamin J L; Coller, Janet K; James, Heather M; Gillis, David; Somogyi, Andrew A; Horowitz, John D; Morris, Raymond G; Sallustio, Benedetta C

    2004-01-01

    Aims Perhexiline is an antianginal agent that displays both saturable and polymorphic metabolism via CYP2D6. The aim of this study was to determine whether perhexiline produces clinically significant inhibition of CYP2D6-catalysed metabolism in angina patients. Methods The effects of perhexiline on CYP2D6-catalysed metabolism were investigated by comparing urinary total dextrorphan/dextromethorphan metabolic ratios following a single dose of dextromethorphan (16.4 mg) in eight matched control patients not taking perhexiline and 24 patients taking perhexiline. All of the patients taking perhexiline had blood drawn for CYP2D6 genotyping as well as to measure plasma perhexiline and cis-OH-perhexiline concentrations. Results Median (range) dextrorphan/dextromethorphan metabolic ratios were significantly higher (P < 0.0001) in control patients, 271.1 (40.3–686.1), compared with perhexiline-treated patients, 5.0 (0.3–107.9). In the perhexiline-treated group 10/24 patients had metabolic ratios consistent with poor metabolizer phenotypes; however, none was a genotypic poor metabolizer. Interestingly, 89% of patients who had phenocopied to poor metabolizers had only one functional CYP2D6 gene. There was a significant negative linear correlation between the log of the dextrorphan/dextromethorphan metabolic ratio and plasma perhexiline concentrations (r2 = 0.69, P < 0.0001). Compared with patients with at least two functional CYP2D6 genes, those with one functional gene were on similar perhexiline dosage regimens but had significantly higher plasma perhexiline concentrations, 0.73 (0.21–1.00) vs. 0.36 (0.04–0.69) mg l−1 (P = 0.04), lower cis-OH-perhexiline/perhexiline ratios, 2.85 (0.35–6.10) vs. 6.51 (1.84–11.67) (P = 0.03), and lower dextrorphan/dextromethorphan metabolic ratios, 2.51 (0.33–39.56) vs. 11.80 (2.90–36.93) (P = 0.005). Conclusions Perhexiline significantly inhibits CYP2D6-catalysed metabolism in angina patients. The plasma cis

  20. The potential for CYP2D6 inhibition screening using a novel scintillation proximity assay-based approach.

    PubMed

    Delaporte, E; Slaughter, D E; Egan, M A; Gatto, G J; Santos, A; Shelley, J; Price, E; Howells, L; Dean, D C; Rodrigues, A D

    2001-08-01

    High throughput inhibition screens for human cytochrome P450s (CYPs) are being used in preclinical drug metabolism to support drug discovery programs. The versatility of scintillation proximity assay (SPA) technology has enabled the development of a homogeneous high throughput assay for cytochrome P450 2D6 (CYP2D6) inhibition screen using [O-methyl-(14)C]dextromethorphan as substrate. The basis of the assay was the trapping of the O-demethylation product, [(14)C]HCHO, on SPA beads. Enzyme kinetics parameters V(max) and apparent K(m), determined using pooled human liver microsomes and microsomes from baculovirus cells coexpressing human CYP2D6 and NADPH-cytochrome P450 reductase, were 245 pmol [(14)C]HCHO/min/mg protein and 11 microM, and 27 pmol [(14)C]HCHO/min/pmol and 1.6 microM, respectively. In incubations containing either pooled microsomes or recombinant CYP2D6, [(14)C]dextromethorphan O-demethylase activity was inhibited in the presence of quinidine (IC(50) = 1.0 microM and 20 nM, respectively). By comparison, inhibitors selective for other CYP isoforms were relatively weak (IC(50) > 25 microM). In agreement, a selective CYP2D6 inhibitory monoclonal antibody caused greater than 90% inhibition of [(14)C]dextromethorphan O-demethylase activity in human liver microsomes, whereas CYP2C9/19- and CYP3A4/5-selective antibodies elicited a minimal inhibitory effect. SPA-based [(14)C]dextromethorphan O-demethylase activity was also shown to correlate (r(2) = 0.6) with dextromethorphan O-demethylase measured by high-performance liquid chromatography in a bank of human liver microsomes (N = 15 different organ donors). In a series of known CYP2D6 inhibitors/substrates, the SPA-based assay resolved potent inhibitors (IC(50) < 2 microM) from weak inhibitors (IC(50) >or= 20 microM). It is concluded that the SPA-based assay described herein is suitable for CYP2D6 inhibition screening using either native human liver microsomes or cDNA-expressed CYP2D6. PMID:11689122

  1. Relationship between Genotypes Sult1a2 and Cyp2d6 and Tamoxifen Metabolism in Breast Cancer Patients

    PubMed Central

    Fernández-Santander, Ana; Gaibar, María; Novillo, Apolonia; Romero-Lorca, Alicia; Rubio, Margarita; Chicharro, Luis Miguel; Tejerina, Armando; Bandrés, Fernando

    2013-01-01

    Tamoxifen is a pro-drug widely used in breast cancer patients to prevent tumor recurrence. Prior work has revealed a role of cytochrome and sulfotransferase enzymes in tamoxifen metabolism. In this descriptive study, correlations were examined between concentrations of tamoxifen metabolites and genotypes for CYP2D6, CYP3A4, CYP3A5, SULT1A1, SULT1A2 and SULT1E1 in 135 patients with estrogen receptor-positive breast cancer. Patients were genotyped using the Roche-AmpliChip® CYP450 Test, and Real-Time and conventional PCR-RFLP. Plasma tamoxifen, 4-hydroxy-tamoxifen, N-desmethyl-tamoxifen, endoxifen and tamoxifen-N-oxide were isolated and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Significantly higher endoxifen levels were detected in patients with the wt/wt CYP2D6 compared to the v/v CYP2D6 genotype (p<0.001). No differences were detected in the remaining tamoxifen metabolites among CYP2D6 genotypes. Patients featuring the SULT1A2*2 and SULT1A2*3 alleles showed significantly higher plasma levels of 4-hydroxy-tamoxifen and endoxifen (p = 0.025 and p = 0.006, respectively), as likely substrates of the SULT1A2 enzyme. Our observations indicate that besides the CYP2D6 genotype leading to tamoxifen conversion to potent hydroxylated metabolites in a manner consistent with a gene-dose effect, SULT1A2 also seems to play a role in maintaining optimal levels of both 4-hydroxy-tamoxifen and endoxifen. PMID:23922954

  2. The CYP2D6 extensive metabolizer genotype is associated with increased risk for bladder cancer.

    PubMed

    Abdel-Rahman, S Z; Anwar, W A; Abdel-Aal, W E; Ghoneim, M A; Au, W W

    1997-10-28

    Inheritance of certain polymorphic metabolizing genes is associated with the development of a number of environmental cancers and may also influence the clinicopathological tumor outcome. We have investigated the association between the inheritance of the polymorphic cytochrome P-450 2D6 (CYP2D6) gene and the development of transitional and squamous cell carcinomas (TCC and SCC) of the bladder in 37 Egyptian cancer patients and 27 matched controls. Genotypic analysis using the polymerase chain reaction (PCR) and the restriction fragment length polymorphism (RFLP) assays revealed that the CYP2D6 extensive metabolizer genotype (CYP2D6*1A) is over represented in bladder cancer patients compared to controls (79 versus 44%, respectively) and is significantly associated with increased risk for bladder cancer (odds ratio (OR) = 4.5, 95% confidence limit (CL) = 1.3-15.7, P = 0.006). Our results also indicate that individuals who have inherited this genotype are more likely to develop TCC (OR = 5.9, 95% CL = 1.4-27.9, P = 0.006) rather than SCC (OR = 3.1, 95% CL = 0.7-15.9; P = 0.09). When the relative risk associated with this genotype was estimated among subjects who were smokers or schistosoma infected, the same tendency towards the development of TCC was observed. These data suggest that the predisposing CYP2D6 gene may not only increase the risk for bladder cancer among Egyptians, but may also influence the clinicopathological tumor outcome. PMID:18372530

  3. Practical interpretation of CYP2D6 haplotypes: Comparison and integration of automated and expert calling.

    PubMed

    Ruaño, Gualberto; Kocherla, Mohan; Graydon, James S; Holford, Theodore R; Makowski, Gregory S; Goethe, John W

    2016-05-01

    We describe a population genetic approach to compare samples interpreted with expert calling (EC) versus automated calling (AC) for CYP2D6 haplotyping. The analysis represents 4812 haplotype calls based on signal data generated by the Luminex xMap analyzers from 2406 patients referred to a high-complexity molecular diagnostics laboratory for CYP450 testing. DNA was extracted from buccal swabs. We compared the results of expert calls (EC) and automated calls (AC) with regard to haplotype number and frequency. The ratio of EC to AC was 1:3. Haplotype frequencies from EC and AC samples were convergent across haplotypes, and their distribution was not statistically different between the groups. Most duplications required EC, as only expansions with homozygous or hemizygous haplotypes could be automatedly called. High-complexity laboratories can offer equivalent interpretation to automated calling for non-expanded CYP2D6 loci, and superior interpretation for duplications. We have validated scientific expert calling specified by scoring rules as standard operating procedure integrated with an automated calling algorithm. The integration of EC with AC is a practical strategy for CYP2D6 clinical haplotyping.

  4. Prevalence of the CYP2D6*10 (C100T), *4 (G1846A), and *14 (G1758A) alleles among Iranians of different ethnicities.

    PubMed

    Bagheri, Ali; Kamalidehghan, Behnam; Haghshenas, Maryam; Azadfar, Parisa; Akbari, Leila; Sangtarash, Mohammad Hossein; Vejdandoust, Faramarz; Ahmadipour, Fatemeh; Meng, Goh Yong; Houshmand, Massoud

    2015-01-01

    The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatment. Here, we compared the prevalence of the CYP2D6*10, *4, and 14* alleles in an Iranian population of different ethnicities with those of other populations. Allele and genotype frequency distributions of CYP2D6*10 variants and predicted phenotypes including extensive metabolizers, intermediate metabolizers, and poor metabolizers were analysed in blood samples of 300 unrelated healthy individuals in an Iranian population using polymerase chain reaction (PCR)-restriction fragment length polymorphism, PCR-single-strand conformation polymorphism, and direct genomic DNA sequencing. The CYP2D6*4 (G1846A) and *14 (G1758A) allelic frequencies were not detected in different ethnicities, demonstrating the absence of a significant contribution of these alleles in Iranian populations. However, the T/T, C/T, and C/C genotype frequencies of the CYP2D6*10 allele were significantly different (P<0.01) in all Iranian ethnic groups. Additionally, the frequency of the homozygous T/T variant of the CYP2D6*10 allele was significantly high in the Lure (P<0.017) and low in the Kurd (P<0.002) ethnicities. The frequency of the T/T variant of the CYP2D6*10 allele in central Iran was the highest (P<0.001), while the south of Iran had the lowest frequency (P<0.001). The frequency of the C/T variant of the CYP2D6*10 allele was significantly a bit high (P<0.001) in females compare to males, while the frequencies of the T/T variant in females is similar to males, which are 24.4% and 24.3%, respectively. In contrast to absence of the CYP2D6*4 (G1846A) and *14 (G1758A) alleles in Iranian populations of different ethnicities, the prediction of the CYP2D6*10 allele is required in drug research and routine treatment, where the information would be helpful for clinicians to optimize therapy or identify persons at risk of adverse drug reactions before

  5. Insights into drug metabolism by cytochromes P450 from modelling studies of CYP2D6-drug interactions.

    PubMed

    Maréchal, J-D; Kemp, C A; Roberts, G C K; Paine, M J I; Wolf, C R; Sutcliffe, M J

    2008-03-01

    The cytochromes P450 (CYPs) comprise a vast superfamily of enzymes found in virtually all life forms. In mammals, xenobiotic metabolizing CYPs provide crucial protection from the effects of exposure to a wide variety of chemicals, including environmental toxins and therapeutic drugs. Ideally, the information on the possible metabolism by CYPs required during drug development would be obtained from crystal structures of all the CYPs of interest. For some years only crystal structures of distantly related bacterial CYPs were available and homology modelling techniques were used to bridge the gap and produce structural models of human CYPs, and thereby obtain useful functional information. A significant step forward in the reliability of these models came seven years ago with the first crystal structure of a mammalian CYP, rabbit CYP2C5, followed by the structures of six human enzymes, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6 and CYP3A4, and a second rabbit enzyme, CYP2B4. In this review we describe as a case study the evolution of a CYP2D6 model, leading to the validation of the model as an in silico tool for predicting binding and metabolism. This work has led directly to the successful design of CYP2D6 mutants with novel activity-including creating a testosterone hydroxylase, converting quinidine from inhibitor to substrate, creating a diclofenac hydroxylase and creating a dextromethorphan O-demethylase. Our modelling-derived hypothesis-driven integrated interdisciplinary studies have given key insight into the molecular determinants of CYP2D6 and other important drug metabolizing enzymes. PMID:18026129

  6. Sequencing CYP2D6 for the detection of poor-metabolizers in post-mortem blood samples with tramadol.

    PubMed

    Fonseca, Suzana; Amorim, António; Costa, Heloísa Afonso; Franco, João; Porto, Maria João; Santos, Jorge Costa; Dias, Mário

    2016-08-01

    Tramadol concentrations and analgesic effect are dependent on the CYP2D6 enzymatic activity. It is well known that some genetic polymorphisms are responsible for the variability in the expression of this enzyme and in the individual drug response. The detection of allelic variants described as non-functional can be useful to explain some circumstances of death in the study of post-mortem cases with tramadol. A Sanger sequencing methodology was developed for the detection of genetic variants that cause absent or reduced CYP2D6 activity, such as *3, *4, *6, *8, *10 and *12 alleles. This methodology, as well as the GC/MS method for the detection and quantification of tramadol and its main metabolites in blood samples was fully validated in accordance with international guidelines. Both methodologies were successfully applied to 100 post-mortem blood samples and the relation between toxicological and genetic results evaluated. Tramadol metabolism, expressed as its metabolites concentration ratio (N-desmethyltramadol/O-desmethyltramadol), has been shown to be correlated with the poor-metabolizer phenotype based on genetic characterization. It was also demonstrated the importance of enzyme inhibitors identification in toxicological analysis. According to our knowledge, this is the first study where a CYP2D6 sequencing methodology is validated and applied to post-mortem samples, in Portugal. The developed methodology allows the data collection of post-mortem cases, which is of primordial importance to enhance the application of these genetic tools to forensic toxicology and pathology.

  7. Effect of Curcuma longa on CYP2D6- and CYP3A4-mediated metabolism of dextromethorphan in human liver microsomes and healthy human subjects.

    PubMed

    Al-Jenoobi, Fahad Ibrahim; Al-Thukair, Areej A; Alam, Mohd Aftab; Abbas, Fawkeya A; Al-Mohizea, Abdullah M; Alkharfy, Khalid M; Al-Suwayeh, Saleh A

    2015-03-01

    Effect of Curcuma longa rhizome powder and its ethanolic extract on CYP2D6 and CYP3A4 metabolic activity was investigated in vitro using human liver microsomes and clinically in healthy human subjects. Dextromethorphan (DEX) was used as common probe for CYP2D6 and CYP3A4 enzymes. Metabolic activity of CYP2D6 and CYP3A4 was evaluated through in vitro study; where microsomes were incubated with NADPH in presence and absence of Curcuma extract. In clinical study phase-I, six healthy human subjects received a single dose (30 mg) of DEX syrup, and in phase-II DEX syrup was administered with Curcuma powder. The enzyme CYP2D6 and CYP3A4 mediated O- and N-demethylation of dextromethorphan into dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. Curcuma extract significantly inhibited the formation of DOR and 3-MM, in a dose-dependent and linear fashion. The 100 μg/ml dose of curcuma extract produced highest inhibition, which was about 70 % for DOR and 80 % for 3-MM. Curcuma significantly increases the urine metabolic ratio of DEX/DOR but the change in DEX/3-MM ratio was statistically insignificant. Present findings suggested that curcuma significantly inhibits the activity of CYP2D6 in in vitro as well as in vivo; which indicates that curcuma has potential to interact with CYP2D6 substrates.

  8. National Prociency Testing Result of CYP2D6*10 Genotyping for Adjuvant Tamoxifen Therapy in China.

    PubMed

    Lin, Guigao; Zhang, Kuo; Yi, Lang; Han, Yanxi; Xie, Jiehong; Li, Jinming

    2016-01-01

    Tamoxifen has been successfully used for treating breast cancer and preventing cancer recurrence. Cytochrome P450 2D6 (CYP2D6) plays a key role in the process of metabolizing tamoxifen to its active moiety, endoxifen. Patients with variants of the CYP2D6 gene may not receive the full benefit of tamoxifen treatment. The CYP2D6*10 variant (the most common variant in Asians) was analyzed to optimize the prescription of tamoxifen in China. To ensure referring clinicians have accurate information for genotype-guided tamoxifen treatment, the Chinese National Center for Clinical Laboratories (NCCL) organized a national proficiency testing (PT) to evaluate the performance of laboratories providing CYP2D6*10 genotyping. Ten genomic DNA samples with CYP2D6 wild-type or CYP2D6*10 variants were validated by PCR-sequencing and sent to 28 participant laboratories. The genotyping results and pharmacogenomic test reports were submitted and evaluated by NCCL experts. Additional information regarding the number of samples tested, the accreditation/certification status, and detecting technology was also requested. Thirty-one data sets were received, with a corresponding analytical sensitivity of 98.2% (548/558 challenges; 95% confidence interval: 96.7-99.1%) and an analytic specificity of 96.5% (675/682; 95% confidence interval: 97.9-99.5%). Overall, 25/28 participants correctly identified CYP2D6*10 status in 10 samples; however, two laboratories made serious genotyping errors. Most of the essential information was included in the 20 submitted CYP2D6*10 test reports. The majority of Chinese laboratories are reliable for detecting the CYP2D6*10 variant; however, several issues revealed in this study underline the importance of PT schemes in continued external assessment and provision of guidelines. PMID:27603206

  9. National Prociency Testing Result of CYP2D6*10 Genotyping for Adjuvant Tamoxifen Therapy in China.

    PubMed

    Lin, Guigao; Zhang, Kuo; Yi, Lang; Han, Yanxi; Xie, Jiehong; Li, Jinming

    2016-01-01

    Tamoxifen has been successfully used for treating breast cancer and preventing cancer recurrence. Cytochrome P450 2D6 (CYP2D6) plays a key role in the process of metabolizing tamoxifen to its active moiety, endoxifen. Patients with variants of the CYP2D6 gene may not receive the full benefit of tamoxifen treatment. The CYP2D6*10 variant (the most common variant in Asians) was analyzed to optimize the prescription of tamoxifen in China. To ensure referring clinicians have accurate information for genotype-guided tamoxifen treatment, the Chinese National Center for Clinical Laboratories (NCCL) organized a national proficiency testing (PT) to evaluate the performance of laboratories providing CYP2D6*10 genotyping. Ten genomic DNA samples with CYP2D6 wild-type or CYP2D6*10 variants were validated by PCR-sequencing and sent to 28 participant laboratories. The genotyping results and pharmacogenomic test reports were submitted and evaluated by NCCL experts. Additional information regarding the number of samples tested, the accreditation/certification status, and detecting technology was also requested. Thirty-one data sets were received, with a corresponding analytical sensitivity of 98.2% (548/558 challenges; 95% confidence interval: 96.7-99.1%) and an analytic specificity of 96.5% (675/682; 95% confidence interval: 97.9-99.5%). Overall, 25/28 participants correctly identified CYP2D6*10 status in 10 samples; however, two laboratories made serious genotyping errors. Most of the essential information was included in the 20 submitted CYP2D6*10 test reports. The majority of Chinese laboratories are reliable for detecting the CYP2D6*10 variant; however, several issues revealed in this study underline the importance of PT schemes in continued external assessment and provision of guidelines.

  10. National Prociency Testing Result of CYP2D6*10 Genotyping for Adjuvant Tamoxifen Therapy in China

    PubMed Central

    Lin, Guigao; Zhang, Kuo; Yi, Lang; Han, Yanxi; Xie, Jiehong; Li, Jinming

    2016-01-01

    Tamoxifen has been successfully used for treating breast cancer and preventing cancer recurrence. Cytochrome P450 2D6 (CYP2D6) plays a key role in the process of metabolizing tamoxifen to its active moiety, endoxifen. Patients with variants of the CYP2D6 gene may not receive the full benefit of tamoxifen treatment. The CYP2D6*10 variant (the most common variant in Asians) was analyzed to optimize the prescription of tamoxifen in China. To ensure referring clinicians have accurate information for genotype-guided tamoxifen treatment, the Chinese National Center for Clinical Laboratories (NCCL) organized a national proficiency testing (PT) to evaluate the performance of laboratories providing CYP2D6*10 genotyping. Ten genomic DNA samples with CYP2D6 wild-type or CYP2D6*10 variants were validated by PCR-sequencing and sent to 28 participant laboratories. The genotyping results and pharmacogenomic test reports were submitted and evaluated by NCCL experts. Additional information regarding the number of samples tested, the accreditation/certification status, and detecting technology was also requested. Thirty-one data sets were received, with a corresponding analytical sensitivity of 98.2% (548/558 challenges; 95% confidence interval: 96.7–99.1%) and an analytic specificity of 96.5% (675/682; 95% confidence interval: 97.9–99.5%). Overall, 25/28 participants correctly identified CYP2D6*10 status in 10 samples; however, two laboratories made serious genotyping errors. Most of the essential information was included in the 20 submitted CYP2D6*10 test reports. The majority of Chinese laboratories are reliable for detecting the CYP2D6*10 variant; however, several issues revealed in this study underline the importance of PT schemes in continued external assessment and provision of guidelines. PMID:27603206

  11. Comprehensive CYP2D6 genotype and adherence affect outcome in breast cancer patients treated with tamoxifen monotherapy.

    PubMed

    Thompson, Alastair M; Johnson, Andrea; Quinlan, Philip; Hillman, Grantland; Fontecha, Marcel; Bray, Susan E; Purdie, Colin A; Jordan, Lee B; Ferraldeschi, Roberta; Latif, Ayshe; Hadfield, Kirsten D; Clarke, Robert B; Ashcroft, Linda; Evans, D Gareth; Howell, Anthony; Nikoloff, Michele; Lawrence, Jeffrey; Newman, William G

    2011-01-01

    The association between CYP2D6 genotype and outcome in breast cancer patients treated with adjuvant tamoxifen remains controversial. We assessed the influence of comprehensive versus limited CYP2D6 genotype in the context of tamoxifen adherence and co-medication in a large cohort of 618 patients. Genotyping of 33 CYP2D6 alleles used two archival cohorts from tamoxifen-treated women with invasive breast cancer (Dundee, n = 391; Manchester, n = 227). Estimates for recurrence-free survival (RFS) were calculated based on inferred CYP2D6 phenotypes using Kaplan-Meier and Cox proportional hazard models, adjusted for nodal status and tumour size. Patients with at least one reduced function CYP2D6 allele (60%) or no functional alleles (6%) had a non-significant trend for worse RFS: hazard ratio (HR) 1.52 (CI 0.98-2.36, P = 0.06). For post-menopausal women on tamoxifen monotherapy, the HR for recurrence in patients with reduced functional alleles was 1.96 (CI 1.05-3.66, P = 0.036). However, RFS analysis limited to four common CYP2D6 allelic variants was no longer significant (P = 0.39). The effect of CYP2D6 genotype was increased by adjusting for adherence to tamoxifen therapy, but not significantly changed when adjusted for co-administration of potent inhibitors of CYP2D6. Comprehensive genotyping of CYP2D6 and adherence to tamoxifen therapy may be useful to identify breast cancer patients most likely to benefit from adjuvant tamoxifen.

  12. CYP2D6 and CYP2A6 biotransform dietary tyrosol into hydroxytyrosol.

    PubMed

    Rodríguez-Morató, Jose; Robledo, Patricia; Tanner, Julie-Anne; Boronat, Anna; Pérez-Mañá, Clara; Oliver Chen, C-Y; Tyndale, Rachel F; de la Torre, Rafael

    2017-02-15

    The dietary phenol tyrosol has been reported to be endogenously transformed into hydroxytyrosol, a potent antioxidant with multiple health benefits. In this work, we evaluated whether tyrosine hydroxylase (TH) and cytochrome P450s (CYPs) catalyzed this process. To assess TH involvement, Wistar rats were treated with α-methyl-L-tyrosine and tyrosol. Tyrosol was converted into hydroxytyrosol whilst α-methyl-L-tyrosine did not inhibit the biotransformation. The role of CYP was assessed in human liver microsomes (HLM) and tyrosol-to-hydroxytyrosol conversion was observed. Screening with selective enzymatic CYP inhibitors identified CYP2A6 as the major isoform involved in this process. Studies with baculosomes further demonstrated that CYP2D6 and CYP3A4 could transform tyrosol into hydroxytyrosol. Experiments using human genotyped livers showed an interindividual variability in hydroxytyrosol formation and supported findings that CYP2D6 and CYP2A6 mediated this reaction. The dietary health benefits of tyrosol-containing foods remain to be evaluated in light of CYP pharmacogenetics. PMID:27664690

  13. Determination of CYP2D6 *3, *4, and *10 frequency in women with breast cancer in São Luís, Brazil, and its association with prognostic factors and disease-free survival

    PubMed Central

    Martins, D.M.F.; Vidal, F.C.B.; Souza, R.D.M.; Brusaca, S.A.; Brito, L.M.O.

    2014-01-01

    The CYP2D6 enzyme is crucial for the metabolism of tamoxifen. The CYP2D6 gene is highly polymorphic, and individuals can be extensive, intermediate, or poor tamoxifen metabolizers. The aim of this study was to determine the frequencies of the CYP2D6 *3, *4, and *10 alleles in women with breast cancer who were treated with tamoxifen and analyze the association of enzyme activity with prognostic factors and disease-free survival. We observed a high frequency of CYP2D6 *10, with an allelic frequency of 0.14 (14.4%). The *3 allele was not present in the studied population, and *4 had an allelic frequency of 0.13 (13.8%). We conclude that patients with reduced CYP2D6 activity did not present worse tumor characteristics or decreased disease-free survival than women with normal enzyme activity, as the difference was not statistically significant. We also observed a high frequency of CYP2D6 *10, which had not been previously described in this specific population. This study is the first in north-northeastern Brazil that aimed to contribute to the knowledge of the Brazilian regional profile for CYP2D6 polymorphisms and their phenotypes. These findings add to the knowledge of the distribution of different polymorphic CYP2D6 alleles and the potential role of CYP2D6 genotyping in clinical practice prior to choosing therapeutic protocols. PMID:25296365

  14. New aQTL SNPs for the CYP2D6 Identified by a Novel Mediation Analysis of Genome-Wide SNP Arrays, Gene Expression Arrays, and CYP2D6 Activity

    PubMed Central

    Wang, Zhiping; Boustani, Malaz; Liu, Yunlong; Skaar, Todd; Li, Lang

    2013-01-01

    Background. The genome-wide association studies (GWAS) have been successful during the last few years. A key challenge is that the interpretation of the results is not straightforward, especially for transacting SNPs. Integration of transcriptome data into GWAS may provide clues elucidating the mechanisms by which a genetic variant leads to a disease. Methods. Here, we developed a novel mediation analysis approach to identify new expression quantitative trait loci (eQTL) driving CYP2D6 activity by combining genotype, gene expression, and enzyme activity data. Results. 389,573 and 1,214,416 SNP-transcript-CYP2D6 activity trios are found strongly associated (P < 10−5, FDR = 16.6% and 11.7%) for two different genotype platforms, namely, Affymetrix and Illumina, respectively. The majority of eQTLs are trans-SNPs. A single polymorphism leads to widespread downstream changes in the expression of distant genes by affecting major regulators or transcription factors (TFs), which would be visible as an eQTL hotspot and can lead to large and consistent biological effects. Overlapped eQTL hotspots with the mediators lead to the discovery of 64 TFs. Conclusions. Our mediation analysis is a powerful approach in identifying the trans-QTL-phenotype associations. It improves our understanding of the functional genetic variations for the liver metabolism mechanisms. PMID:24232670

  15. Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes.

    PubMed

    Madlensky, L; Natarajan, L; Tchu, S; Pu, M; Mortimer, J; Flatt, S W; Nikoloff, D M; Hillman, G; Fontecha, M R; Lawrence, H J; Parker, B A; Wu, A H B; Pierce, J P

    2011-05-01

    We explored whether breast cancer outcomes are associated with endoxifen and other metabolites of tamoxifen and examined potential correlates of endoxifen concentration levels in serum including cytochrome P450 2D6 (CYP2D6) metabolizer phenotype and body mass index (BMI). Concentration levels of tamoxifen, endoxifen, 4-hydroxytamoxifen (4OH-tamoxifen), and N-desmethyltamoxifen (ND-tamoxifen) were measured from samples taken from 1,370 patients with estrogen receptor (ER)-positive breast cancer who were participating in the Women's Healthy Eating and Living (WHEL) Study. We tested these concentration levels for possible associations with breast cancer outcomes and found that breast cancer outcomes were not associated with the concentration levels of tamoxifen, 4-hydroxytamoxifen, and ND-tamoxifen. For endoxifen, a threshold was identified, with women in the upper four quintiles of endoxifen concentration appearing to have a 26% lower recurrence rate than women in the bottom quintile (hazard ratio (HR) = 0.74; 95% confidence interval (CI), (0.55-1.00)). The predictors of this higher-risk bottom quintile were poor/intermediate metabolizer genotype, higher BMI, and lower tamoxifen concentrations as compared with the mean for the cohort as a whole. This study suggests that there is a minimal concentration threshold above which endoxifen is effective against the recurrence of breast cancer and that ~80% of tamoxifen takers attain this threshold. PMID:21430657

  16. Analysis of genetic variations in CYP2C9, CYP2C19, CYP2D6 and CYP3A5 genes using oligonucleotide microarray

    PubMed Central

    Dong, Yuanyuan; Xiao, Huasheng; Wang, Qi; Zhang, Chunxiu; Liu, Xiuming; Yao, Na; Sheng, Haihui; Li, Haiyan

    2015-01-01

    The cytochrome P450 enzymes play a critical role in the metabolism of many commonly prescribed drugs. Among them, the most important enzymes are highly polymorphic CYP2C9, CYP2C19, CYP2D6 and CYP3A5, which are responsible for about 40% of the metabolism of clinical used drugs. Here we developed a novel CYP450 oligonucleotide microarray that allow for detection of 32 known variations of CYP genes from a single multiplex reaction, including 19 polymorphisms of CYP2D6 gene, 8 polymorphisms of CYP2C9 gene, 4 polymorphisms of CYP2C19 gene and 1 polymorphism of CYP3A5 gene. 229 genomic DNA samples from unrelated Han subjects were analyzed. The microarray results showed to have high call rate and accuracy according to concordance with genotypes identified by independent bidirectional sequencing. Furthermore, we found that the major CYP2C9, CYP2C19, CYP2D6 and CYP3A5 alleles in Chinese Han population were CYP2C9*3 (allelic frequency of 10.7%), CYP2C9*2 (20.31%), CYP2C19*2 (5.68%), CYP2D6*10 (58.52%), CYP2D6*2 (13.76) and CYP3A5*3 (70.69%). With flexible DNA preparation, the microarray can significantly facilitates the process of detecting genetics variations in CYP2C9, CYP2C19, CYP2D6 and CYP3A5 gene and provide safe and effective therapy for individual patients. PMID:26770516

  17. CYP2D6 P34S Polymorphism and Outcomes of Escitalopram Treatment in Koreans with Major Depression

    PubMed Central

    Han, Kyu-Man; Chang, Hun Soo; Choi, In-Kwang; Ham, Byung-Joo

    2013-01-01

    Objective Cytochrome P450 (CYP) enzymatic activity, which is influenced by CYP genetic polymorphism, is known to affect the inter-individual variation in the efficacy and tolerability of antidepressants in major depressive disorder (MDD). Escitalopram is metabolized by CYP2D6, and recent studies have reported a correlation between clinical outcomes and CYP2D6 genetic polymorphism. The purpose of this study was to determine the relationship between the CYP2D6 P34S polymorphism (C188T, rs1065852) and the efficacy of escitalopram treatment in Korean patients with MDD. Methods A total of 94 patients diagnosed with MDD were recruited for the study and their symptoms were evaluated using the 21-item Hamilton Depression Rating scale (HAMD-21). The association between the CYP2D6 P34S polymorphism and the clinical outcomes (remission and response) was investigated after 1, 2, 4, 8, and 12 weeks of escitalopram treatment using multiple logistic regression analysis and χ2 test. Results The proportion of P allele carriers (PP, PS) in remission status was greater than that of S allele homozygotes (SS) after 8 and 12 weeks of escitalopram treatment. Similarly, P allele carriers exhibited a greater treatment response after 8 and 12 weeks of escitalopram treatment than S allele homozygotes. Conclusion Our results suggest that the P allele of the CYP2D6 P34S polymorphism is a favorable factor in escitalopram treatment for MDD, and that the CYP2D6 P34S polymorphism may be a good genetic marker for predicting escitalopram treatment outcomes. PMID:24302953

  18. Tamoxifen Metabolite Concentrations, CYP2D6 Genotype and Breast Cancer Outcomes

    PubMed Central

    Madlensky, Lisa; Natarajan, Loki; Tchu, Simone; Pu, Minya; Mortimer, Joanne; Flatt, Shirley W.; Nikoloff, D. Michele; Hillman, Grantland; Fontecha, Marcel R.; Lawrence, H. Jeffrey; Parker, Barbara A.; Wu, Alan H.B.; Pierce, John P.

    2011-01-01

    We explored whether breast cancer outcomes are associated with endoxifen and other metabolites of tamoxifen, and to examine potential correlates of endoxifen concentrations including CYP2D6 metabolizer phenotype and body mass index (BMI). Tamoxifen, endoxifen, 4-hydroxytamoxifen and N-desmethyltamoxifen concentrations were measured from 1370 estrogen receptor positive breast cancer patients participating in the Women’s Healthy Eating and Living (WHEL) Study, and tested for associations with breast cancer outcomes. Breast cancer outcomes were not associated with tamoxifen, 4-hydroxytamoxifen or N-desmethyltamoxifen concentrations. For endoxifen, a threshold was identified suggesting that women in the upper four quintiles of endoxifen had a 26% lower recurrence rate than women in the bottom quintile. (HR=0.74; 95% CI, [0.55, 1.00]). Predictors of membership in this higher risk bottom quintile were poor/intermediate metabolizer genotype, higher BMI, and low tamoxifen concentrations. This study suggests a minimal threshold at which endoxifen is effective against breast cancer recurrence, which 80% of tamoxifen-takers achieve. PMID:21430657

  19. Guanfu base A, an antiarrhythmic alkaloid of Aconitum coreanum, Is a CYP2D6 inhibitor of human, monkey, and dog isoforms.

    PubMed

    Sun, Jianguo; Peng, Ying; Wu, Hui; Zhang, Xueyuan; Zhong, Yunxi; Xiao, Yanan; Zhang, Fengyi; Qi, Huanhuan; Shang, Lili; Zhu, Jianping; Sun, Yue; Liu, Ke; Liu, Jinghan; A, Jiye; Ho, Rodney J Y; Wang, Guangji

    2015-05-01

    Guanfu base A (GFA) is a novel heterocyclic antiarrhythmic drug isolated from Aconitum coreanum (Lèvl.) rapaics and is currently in a phase IV clinical trial in China. However, no study has investigated the influence of GFA on cytochrome P450 (P450) drug metabolism. We characterized the potency and specificity of GFA CYP2D inhibition based on dextromethorphan O-demethylation, a CYP2D6 probe substrate of activity in human, mouse, rat, dog, and monkey liver microsomes. In addition, (+)-bufuralol 1'-hydroxylation was used as a CYP2D6 probe for the recombinant form (rCYP2D6), 2D1 (rCYP2D1), and 2D2 (rCYP2D2) activities. Results show that GFA is a potent noncompetitive inhibitor of CYP2D6, with inhibition constant Ki = 1.20 ± 0.33 μM in human liver microsomes (HLMs) and Ki = 0.37 ± 0.16 μM for the human recombinant form (rCYP2D6). GFA is also a potent competitive inhibitor of CYP2D in monkey (Ki = 0.38 ± 0.12 μM) and dog (Ki = 2.4 ± 1.3 μM) microsomes. However, GFA has no inhibitory activity on mouse or rat CYP2Ds. GFA did not exhibit any inhibition activity on human recombinant CYP1A2, 2A6, 2C8, 2C19, 3A4, or 3A5, but showed slight inhibition of 2B6 and 2E1. Preincubation of HLMs and rCYP2D6 resulted in the inactivation of the enzyme, which was attenuated by GFA or quinidine. Beagle dogs treated intravenously with dextromethorphan (2 mg/ml) after pretreatment with GFA injection showed reduced CYP2D metabolic activity, with the Cmax of dextrorphan being one-third that of the saline-treated group and area under the plasma concentration-time curve half that of the saline-treated group. This study suggests that GFA is a specific CYP2D6 inhibitor that might play a role in CYP2D6 medicated drug-drug interaction.

  20. Investigation of CYP3A4 and CYP2D6 Interactions of Withania somnifera and Centella asiatica in Human Liver Microsomes.

    PubMed

    Savai, Jay; Varghese, Alice; Pandita, Nancy; Chintamaneni, Meena

    2015-05-01

    Withania somnifera is commonly used as a rejuvenator, whereas Centella asiatica is well known for its anxiolytic and nootropic effects. The present study aims at investigating the effect of crude extracts and principal phytoconstituents of both the medicinal plants with CYP3A4 and CYP2D6 enzyme activity in human liver microsomes (HLM). Phytoconstituents were quantified in the crude extracts of both the medicinal plants using reverse phase HPLC. Crude extracts and phytoconstituents of W. somnifera showed no significant interaction with both CYP3A4 and CYP2D6 enzymes in HLM. Of the crude extracts of C. asiatica screened in vitro, methanolic extract showed potent noncompetitive inhibition of only CYP3A4 enzyme (Ki-64.36 ± 1.82 µg/mL), whereas ethanol solution extract showed potent noncompetitive inhibition of only CYP2D6 enzyme (Ki-36.3 ± 0.44 µg/mL). The flavonoids, quercetin, and kaempferol showed potent (IC50 values less than 100 μM) inhibition of CYP3A4 activity, whereas quercetin alone showed potent inhibition of CYP2D6 activity in HLM. Because methanolic extract of C. asiatica showed a relatively high percentage content of quercetin and kaempferol than ethanol solution extract, the inhibitory effect of methanolic extract on CYP3A4 enzyme activity could be attributed to the flavonoids. Thus, co-administration of the alcoholic extracts of C. asiatica with drugs that are substrates of CYP3A4 and CYP2D6 enzymes may lead to undesirable herb-drug interactions in humans.

  1. Effects of 22 novel CYP2D6 variants found in Chinese population on the metabolism of dapoxetine

    PubMed Central

    Xu, Ren-ai; Gu, Er-min; Zhou, Quan; Yuan, Lingjing; Hu, Xiaoxia; Cai, Jianping; Hu, Guoxin

    2016-01-01

    Background CYP2D6 is one of the most important members of the cytochrome P450 superfamily. Its genetic polymorphism significantly influences the efficacy and safety of some drugs, which might cause adverse effects and therapeutic failure. Methods and results The aim of this research was mainly to explore the catalytic activities of 22 newly reported CYP2D6 isoforms (2D6*87, *88, *89, *90, *91, *92, *93, *94, *95, *96,*97, *98, *R25Q, F164L, E215K, F219S, V327M, D336N, V342M, R344Q, R440C, R497C) on dapoxetine in vitro. The research was designed with an appropriate incubation system in test tubes and carried out in the constant temperature water. Through detecting its two metabolites desmethyldapoxetine and dapoxetine-N-oxide, the available data were obtained to explain the influence of CYP2D6 polymorphism on the substrate drug dapoxetine. As a result, the intrinsic clearance (Vmax/Km) values of most variants were significantly altered when compared with the counterpart of CYP2D6*1, with most of these variants exhibiting either reduced Vmax and/or increased Km values. For dapoxetine demethylation pathway (which produces desmethyldapoxetine), 2D6*89 and E215K exhibited no markedly decreased relative clearance of 92.81% and 97.70%, respectively. The relative clearance of rest 20 variants exhibited decrease in different levels, ranging from 20.44% to 90.90%. For the dapoxetine oxidation pathway (which produces dapoxetine-N-oxide), the relative clearance values of three variants, 2D6*90, *94, and V342M, exhibited no markedly increased relative clearance of 106.17%, 107.78%, and 109.98%, respectively; the rest 19 variants exhibited significantly decreased levels ranging from 27.56% to 84.64%. In addition, the kinetic parameters of two CYP2D6 variants (2D6*92 and 2D6*96) could not be detected, due to the defect of the CYP2D6 gene. Conclusion As the first report of all aforementioned alleles for dapoxetine metabolism, these data may help in the clinical assessment of the

  2. Molecular study of weight gain related to atypical antipsychotics: clinical implications of the CYP2D6 genotype.

    PubMed

    Nussbaum, Laura Alexandra; Dumitraşcu, Victor; Tudor, Anca; Grădinaru, Raluca; Andreescu, Nicoleta; Puiu, Maria

    2014-01-01

    Atypical antipsychotics, especially some of them, influence cellular lipogenesis, being associated with metabolic side effects including weight gain. Due to the increasing use of atypical antipsychotics in children and adolescents, their metabolic and endocrine adverse effects are of particular concern especially within this pediatric population that appears to be at greater risk. Genetic factors with a possible influence on atypical antipsychotics adverse effects include CYP2D6 polymorphisms. Our study, performed in 2009-2014, with a two-year enrolment period during which we recruited children and adolescents with a diagnosis of schizophrenia or bipolar disorder on treatment with the antipsychotics (Risperidone, Aripiprazole or Olanzapine), included 81 patients, aged between 9 and 20 years, median age being 15.74 years. The gender percentage was 54% girls/46% boys. The CYP2D6 genotyping was performed after enrolment of the last patient. Based on the CYP2D6 genotype, three activity groups were identified and compared and we found that the patients with wt/*4 genotype, intermediary metabolizer (carrier of one functional and one non-functional allele) have significantly higher weight gain values than the patients who did not exhibit allele *4. The CYP2D6 genotype in children and adolescents with schizophrenia and bipolar disorder, proved to be a good predictor for the response to atypical antipsychotics and the side effects registered. The significant correlations between the CYP2D6 polymorphisms and the weight gain/BMI (body mass index) increase, as major side effects induced by antipsychotics proved the fact that the pharmacogenetic screening is needed in the future clinical practice, allowing for individualized, tailored treatment, especially for at-risk individuals. PMID:25329115

  3. CYP2D6 Metabolism and Patient Outcome in the Austrian Breast and Colorectal Cancer Study Group Trial (ABCSG) 8

    PubMed Central

    Goetz, Matthew P.; Suman, Vera J.; Hoskin, Tanya L.; Gnant, Michael; Filipits, Martin; Safgren, Stephanie L.; Kuffel, Mary; Jakesz, Raimund; Rudas, Margaretha; Greil, Richard; Dietze, Otto; Lang, Alois; Offner, Felix; Reynolds, Carol A.; Weinshilboum, Richard M.; Ames, Matthew M.; Ingle, James N.

    2012-01-01

    Background Controversy exists regarding CYP2D6 genotype and tamoxifen efficacy. Methods A matched case-control study was conducted utilizing the Austrian Breast and Colorectal Cancer Study Group Trial 8 that randomized post-menopausal women with estrogen receptor positive breast cancer to tamoxifen for 5 years (Arm A) or tamoxifen for 2 years followed by anastrozole for 3 years (Arm B). Cases had disease recurrence, contralateral breast cancer, second non-breast cancer, or died. For each case, controls were identified from the same treatment arm of similar age, surgery/radiation, and TNM stage. Genotyping was performed for alleles associated with no (PM; *3, *4, *6); reduced (IM; *10, and *41); and extensive (EM: absence of these alleles) CYP2D6 metabolism. Findings The common CYP2D6 *4 allele was in Hardy Weinberg Equilibrium. In Arm A during the first 5 years of therapy, women with 2 poor alleles (PM/PM: OR=2.45, 95% CI: 1.05–5.73, p=0.04) and women with one poor allele (PM/IM or PM/EM: OR=1.67, 95% CI: 0.95–2.93, p=0.07) had a higher likelihood of an event than women with two extensive alleles (EM/EM). In years 3–5 when patients remained on tamoxifen (Arm A) or switched to anastrozole (Arm B), PM/PM tended towards a higher likelihood of a disease event relative to EM/EM (OR= 2.40, 95% CI: 0.86–6.66, p=0.09) among women on Arm A but not among women on Arm B (OR= 0.28; 95% CI: 0.03–2.30). Conclusion In ABCSG8, the negative effects of reduced CYP2D6 metabolism were observed only during the period of tamoxifen administration, and not after switching to anastrozole. PMID:23213055

  4. Population pharmacokinetic approach to evaluate the effect of CYP2D6, CYP3A, ABCB1, POR and NR1I2 genotypes on donepezil clearance

    PubMed Central

    Noetzli, Muriel; Guidi, Monia; Ebbing, Karsten; Eyer, Stephan; Wilhelm, Laurence; Michon, Agnès; Thomazic, Valérie; Stancu, Ioana; Alnawaqil, Abdel-Messieh; Bula, Christophe; Zumbach, Serge; Gaillard, Michel; Giannakopoulos, Panteleimon; von Gunten, Armin; Csajka, Chantal; Eap, Chin B

    2014-01-01

    Aims A large interindividual variability in plasma concentrations has been reported in patients treated with donepezil, the most frequently prescribed antidementia drug. We aimed to evaluate clinical and genetic factors influencing donepezil disposition in a patient population recruited from a naturalistic setting. Methods A population pharmacokinetic study was performed including data from 129 older patients treated with donepezil. The patients were genotyped for common polymorphisms in the metabolic enzymes CYP2D6 and CYP3A, in the electron transferring protein POR and the nuclear factor NR1I2 involved in CYP activity and expression, and in the drug transporter ABCB1. Results The average donepezil clearance was 7.3 l h−1 with a 30% interindividual variability. Gender markedly influenced donepezil clearance (P < 0.01). Functional alleles of CYP2D6 were identified as unique significant genetic covariate for donepezil clearance (P < 0.01), with poor metabolizers and ultrarapid metabolizers demonstrating, respectively, a 32% slower and a 67% faster donepezil elimination compared with extensive metabolizers. Conclusion The pharmacokinetic parameters of donepezil were well described by the developed population model. Functional alleles of CYP2D6 significantly contributed to the variability in donepezil disposition in the patient population and should be further investigated in the context of individual dose optimization to improve clinical outcome and tolerability of the treatment. PMID:24433464

  5. Stereoselective metabolism of donepezil and steady-state plasma concentrations of S-donepezil based on CYP2D6 polymorphisms in the therapeutic responses of Han Chinese patients with Alzheimer's disease.

    PubMed

    Lu, Jin; Wan, Lili; Zhong, Yuan; Yu, Qi; Han, Yonglong; Chen, Pengguo; Wang, Beiyun; Li, Wei; Miao, Ya; Guo, Cheng

    2015-11-01

    The therapeutic response rates of patients to donepezil vary from 20% to 60%, one of the reasons is their genetic differences in donepezil-metabolizing enzymes, which directly influence liver metabolism. However, the mechanism of donepezil metabolism and that of its enantiomers is unknown. This study evaluated CYP2D6 polymorphisms to elucidate the stereoselective metabolism of donepezil and to confirm the association between the steady-state plasma concentrations of the pharmaco-effective S-donepezil and the therapeutic responses of Han Chinese patients with Alzheimer's disease. The in vitro study of the stereoselective metabolism demonstrated that CYP2D6 is the predominant P450 enzyme that metabolizes donepezil and that different CYP2D6 alleles differentially affect donepezil enantiomers metabolism. A total of 77 Han Chinese patients with Alzheimer's disease were recruited to confirm these results, by measuring their steady-state plasma concentrations of S-donepezil. The related CYP2D6 genes were genotyped. Plasma concentrations of S-donepezil (based on CYP2D6 polymorphisms) were significantly associated with therapeutic responses. This finding suggests that plasma concentrations of S-donepezil influence therapeutic outcomes following treatment with donepezil in Han Chinese patients with Alzheimer's disease. Therefore, determining a patient's steady-state plasma concentration of S-donepezil in combination with their CYP2D6 genotype might be useful for clinically monitoring the therapeutic efficacy of donepezil.

  6. Influence of Cytochrome P450, Family 2, Subfamily D, Polypeptide 6 (CYP2D6) polymorphisms on pain sensitivity and clinical response to weak opioid analgesics.

    PubMed

    Zahari, Zalina; Ismail, Rusli

    2014-01-01

      CYP2D6 polymorphisms show large geographical and interethnic differences. Variations in CYP2D6 activity may impact upon a patient's pain level and may contribute to interindividual variations in the response to opioids. This paper reviews the evidence on how CYP2D6 polymorphisms might influence pain sensitivity and clinical response to codeine and tramadol. For example, it is shown that (1) CYP2D6 poor metabolizers (PMs) may be less efficient at synthesizing endogenous morphine compared with other metabolizers. In contrast, ultra-rapid metabolizers (UMs) may be more efficient than other metabolizers at synthesizing endogenous morphine, thus strengthening endogenous pain modulation. Additionally, for codeine and tramadol that are bioactivated by CYP2D6, PMs may undergo no metabolite formation, leading to inadequate analgesia. Conversely, UMs may experience quicker analgesic effects but be prone to higher mu-opioid-related toxicity. The literature suggested the potential usefulness of the determination of CYP2D6 polymorphisms in elucidating serious adverse events and in preventing subsequent inappropriate selection or doses of codeine and tramadol. Notably, even though many studies investigated a possible role of the CYP2D6 polymorphisms on pain sensitivity, pharmacokinetics and pharmacodynamics of these drugs, the results of analgesia and adverse effects are conflicting. More studies are required to demonstrate genetically determined unresponsiveness and risk of developing serious adverse events for patients with pain and these should involve larger numbers of patients in different population types. PMID:23759977

  7. Influence of Cytochrome P450, Family 2, Subfamily D, Polypeptide 6 (CYP2D6) polymorphisms on pain sensitivity and clinical response to weak opioid analgesics.

    PubMed

    Zahari, Zalina; Ismail, Rusli

    2014-01-01

      CYP2D6 polymorphisms show large geographical and interethnic differences. Variations in CYP2D6 activity may impact upon a patient's pain level and may contribute to interindividual variations in the response to opioids. This paper reviews the evidence on how CYP2D6 polymorphisms might influence pain sensitivity and clinical response to codeine and tramadol. For example, it is shown that (1) CYP2D6 poor metabolizers (PMs) may be less efficient at synthesizing endogenous morphine compared with other metabolizers. In contrast, ultra-rapid metabolizers (UMs) may be more efficient than other metabolizers at synthesizing endogenous morphine, thus strengthening endogenous pain modulation. Additionally, for codeine and tramadol that are bioactivated by CYP2D6, PMs may undergo no metabolite formation, leading to inadequate analgesia. Conversely, UMs may experience quicker analgesic effects but be prone to higher mu-opioid-related toxicity. The literature suggested the potential usefulness of the determination of CYP2D6 polymorphisms in elucidating serious adverse events and in preventing subsequent inappropriate selection or doses of codeine and tramadol. Notably, even though many studies investigated a possible role of the CYP2D6 polymorphisms on pain sensitivity, pharmacokinetics and pharmacodynamics of these drugs, the results of analgesia and adverse effects are conflicting. More studies are required to demonstrate genetically determined unresponsiveness and risk of developing serious adverse events for patients with pain and these should involve larger numbers of patients in different population types.

  8. Mechanism-based inhibition of human liver microsomal cytochrome P450 2D6 (CYP2D6) by alkamides of Piper nigrum.

    PubMed

    Subehan; Usia, Tepy; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2006-05-01

    Nineteen alkamides isolated from Piper nigrum L. were tested for their mechanism-based inhibition on human liver microsomal dextromethorphan O-demethylation activity, a prototype marker for cytochrome P450 2D6 (CYP2D6). All compounds increased their inhibitory activity with increasing preincubation time. Among them, 15 and 17 showed more than 50 % decrease of the CYP2D6 residual activity after 20 min preincubation. Further investigations on 15 and 17 showed that the characteristic time- and concentration-dependent inhibition, which required a catalytic step with NADPH, was not protected by nucleophiles, and was decreased by the presence of a competitive inhibitor. The kinetic parameters for inactivation (kinact and KI) were 0.028 min-1 and 0.23 microM for 15 and 0.064 min-1 and 0.71 microM for 17, respectively, which were stronger than the known mechanism-based inhibitor, paroxetine (a positive control). Thus, 15 and 17 are potent mechanism-based inhibitors of CYP2D6.

  9. The role of CYP2D6 and TaqI A polymorphisms in malignant neuroleptic syndrome: two case reports with three episodes.

    PubMed

    Zivković, Maja; Mihaljević-Peles, Alma; Sagud, Marina; Silić, Ante; Mihanović, Mate

    2010-03-01

    Malignant neuroleptic syndrome (MNS) is a serious and potentially fatal side-effect of neuroleptic treatment. Beside antipsychotic drugs, other psychotropic drugs such as antidepressants and lithium carbonate can cause this life threatening side-effect. Underlying mechanism of this side-effect is still unknown and debated. So far some risk factors have been identified, with clinical observations and recent pharmacogenetic research suggesting (with inconsistent findings) correlation between genetic mechanisms and predisposition to MNS. Polymorphisms of CYP2D6 enzyme through which most psychotropic drugs are metabolized and TaqIA DRD2 which is target for antipsychotic drugs could be the link between pharmacogenetic factors and potential for development of MNS. In this paper we present two case reports with clinical presentation of three consecutive MNS. One patient developed MNS while he was taking combination of drugs: first time haloperidol, promazine and fluphenazine, second time fluphenazine and perazine and third time clozapine, promazine and valproic acid consecutively. The other patient developed MNS while taking following combination of drugs: first time haloperidol and lithium carbonate, second time risperidone and third time clozapine consecutively. Pharmacogenetic analysis for CYP2D6 and TaqI A DRD2 polymorphisms for both patients was done. Genotypisation of CYP2D6*1*3*4*5*6 in both patients showed no evidence of poor metabolizer phenotype. On the other hand, first patient was heterozygous for CYP2D6*4 (genotype *1/*4). CYP2D6 polymorphisms could have clinical significance because may lead to toxicity and unwanted side-effects in standard usual antipsychotic dose ranges. Analysis Taql A DRD2 polymorphism for first patient showed that he is heterozygous for A1 allele (genotype A1A2) which is commonly associated with predisposition to MNS. According to our literature three consecutive MNS are rarely described, and incidence of MNS generally is too low to

  10. Physiologically Based Pharmacokinetic Predictions of Tramadol Exposure Throughout Pediatric Life: an Analysis of the Different Clearance Contributors with Emphasis on CYP2D6 Maturation.

    PubMed

    T'jollyn, Huybrecht; Snoeys, Jan; Vermeulen, An; Michelet, Robin; Cuyckens, Filip; Mannens, Geert; Van Peer, Achiel; Annaert, Pieter; Allegaert, Karel; Van Bocxlaer, Jan; Boussery, Koen

    2015-11-01

    This paper focuses on the retrospective evaluation of physiologically based pharmacokinetic (PBPK) techniques used to mechanistically predict clearance throughout pediatric life. An intravenous tramadol retrograde PBPK model was set up in Simcyp® using adult clearance values, qualified for CYP2D6, CYP3A4, CYP2B6, and renal contributions. Subsequently, the model was evaluated for mechanistic prediction of total, CYP2D6-related, and renal clearance predictions in very early life. In two in vitro pediatric human liver microsomal (HLM) batches (1 and 3 months), O-desmethyltramadol and N-desmethyltramadol formation rates were compared with CYP2D6 and CYP3A4 activity, respectively. O-desmethyltramadol formation was mediated only by CYP2D6, while N-desmethyltramadol was mediated in part by CYP3A4. Additionally, the clearance maturation of the PBPK model predictions was compared to two in vivo maturation models (Hill and exponential) based on plasma concentration data, and to clearance estimations from a WinNonlin® fit of plasma concentration and urinary excretion data. Maturation of renal and CYP2D6 clearance is captured well in the PBPK model predictions, but total tramadol clearance is underpredicted. The most pronounced underprediction of total and CYP2D6-mediated clearance was observed in the age range of 2-13 years. In conclusion, the PBPK technique showed to be a powerful mechanistic tool capable of predicting maturation of CYP2D6 and renal tramadol clearance in early infancy, although some underprediction occurs between 2 and 13 years for total and CYP2D6-mediated tramadol clearance. PMID:26209290

  11. Systematic and quantitative assessment of the effect of chronic kidney disease on CYP2D6 and CYP3A4/5

    PubMed Central

    Yoshida, K; Sun, B; Zhang, L; Zhao, P; Abernethy, DR; Nolin, TD; Rostami‐Hodjegan, A; Zineh, I

    2016-01-01

    Recent reviews suggest that chronic kidney disease (CKD) can affect the pharmacokinetics of nonrenally eliminated drugs, but the impact of CKD on individual elimination pathways has not been systematically evaluated. In this study we developed a comprehensive dataset of the effect of CKD on the pharmacokinetics of CYP2D6‐ and CYP3A4/5‐metabolized drugs. Drugs for evaluation were selected based on clinical drug–drug interaction (CYP3A4/5 and CYP2D6) and pharmacogenetic (CYP2D6) studies. Information from dedicated CKD studies was available for 13 and 18 of the CYP2D6 and CYP3A4/5 model drugs, respectively. Analysis of these data suggested that CYP2D6‐mediated clearance is generally decreased in parallel with the severity of CKD. There was no apparent relationship between the severity of CKD and CYP3A4/5‐mediated clearance. The observed elimination‐route dependency in CKD effects between CYP2D6 and CYP3A4/5 may inform the need to conduct clinical CKD studies with nonrenally eliminated drugs for optimal use of drugs in patients with CKD. PMID:26800425

  12. Mutation frequencies of the cytochrome CYP2D6 gene in Parkinson disease patients and in families

    SciTech Connect

    Lucotte, G.; Turpin, J.C.; Gerard, N.

    1996-07-26

    The frequencies of five mutations of the debrisoquine 4-hydroxylase (CYP2D6) gene (mutations D6-A, B, C, D, and T), corresponding to poor metabolizer (PM) phenotypes, were determined by restriction fragment length polymorphism (RFLP) and polymerase chain reaction (PCR) in 47 patients with Parkinson disease, and compared with the findings in 47 healthy controls. These mutant alleles were about twice as frequent among patients as in controls, with an approximate relative risk ratio of 2.12 (95% confidence interval, 1.41-2.62). There seem to be no significant differences in frequencies of mutant genotypes in patients among gender and modalities of response with levodopa therapy; but frequency of the mutations was slightly enhanced after age-at-onset of 60 years. Mutations D6-B, D, and T were detected in 7 patients belonging to 10 Parkinson pedigrees. 25 refs., 1 fig., 2 tabs.

  13. Pharmacokinetic interactions between monoamine oxidase A inhibitor harmaline and 5-methoxy-N,N-dimethyltryptamine, and the impact of CYP2D6 status.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Mager, Donald E; Yu, Ai-Ming

    2013-05-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT or street name "5-MEO") is a newer designer drug belonging to a group of naturally occurring indolealkylamines. Our recent study has demonstrated that coadministration of monoamine oxidase A (MAO-A) inhibitor harmaline (5 mg/kg) increases systemic exposure to 5-MeO-DMT (2 mg/kg) and active metabolite bufotenine. This study is aimed at delineating harmaline and 5-MeO-DMT pharmacokinetic (PK) interactions at multiple dose levels, as well as the impact of CYP2D6 that affects harmaline PK and determines 5-MeO-DMT O-demethylation to produce bufotenine. Our data revealed that inhibition of MAO-A-mediated metabolic elimination by harmaline (2, 5, and 15 mg/kg) led to a sharp increase in systemic and cerebral exposure to 5-MeO-DMT (2 and 10 mg/kg) at all dose combinations. A more pronounced effect on 5-MeO-DMT PK was associated with greater exposure to harmaline in wild-type mice than CYP2D6-humanized (Tg-CYP2D6) mice. Harmaline (5 mg/kg) also increased blood and brain bufotenine concentrations that were generally higher in Tg-CYP2D6 mice. Surprisingly, greater harmaline dose (15 mg/kg) reduced bufotenine levels. The in vivo inhibitory effect of harmaline on CYP2D6-catalyzed bufotenine formation was confirmed by in vitro study using purified CYP2D6. Given these findings, a unified PK model including the inhibition of MAO-A- and CYP2D6-catalyzed 5-MeO-DMT metabolism by harmaline was developed to describe blood harmaline, 5-MeO-DMT, and bufotenine PK profiles in both wild-type and Tg-CYP2D6 mouse models. This PK model may be further employed to predict harmaline and 5-MeO-DMT PK interactions at various doses, define the impact of CYP2D6 status, and drive harmaline-5-MeO-DMT pharmacodynamics.

  14. CYP2D6 function moderates the pharmacokinetics and pharmacodynamics of 3,4-methylene-dioxymethamphetamine in a controlled study in healthy individuals.

    PubMed

    Schmid, Yasmin; Vizeli, Patrick; Hysek, Cédric M; Prestin, Katharina; Meyer Zu Schwabedissen, Henriette E; Liechti, Matthias E

    2016-08-01

    The role of genetic polymorphisms in cytochrome (CYP) 2D6 involved in the metabolism of 3,4-methylene-dioxymethamphetamine (MDMA, ecstasy) is unclear. Effects of genetic variants in CYP2D6 on the pharmacokinetics and pharmacodynamic effects of MDMA were characterized in 139 healthy individuals (70 men, 69 women) in a pooled analysis of eight double-blind, placebo-controlled crossover studies. In CYP2D6 poor metabolizers, the maximum concentrations (Cmax) of MDMA and its active metabolite 3,4-methylene-dioxyamphetamine were +15 and +50% higher, respectively, compared with extensive metabolizers and the Cmax of the inactive metabolite 4-hydroxy-3-methoxymethamphetamine was 50-70% lower. Blood pressure and subjective drug effects increased more rapidly after MDMA administration in poor metabolizers than in extensive metabolizers. In conclusion, the disposition of MDMA and its effects in humans are altered by polymorphic CYP2D6 activity, but the effects are small because of the autoinhibition of CYP2D6. PMID:27253829

  15. CYP2D6 function moderates the pharmacokinetics and pharmacodynamics of 3,4-methylene-dioxymethamphetamine in a controlled study in healthy individuals

    PubMed Central

    Schmid, Yasmin; Vizeli, Patrick; Hysek, Cédric M.; Prestin, Katharina; Meyer zu Schwabedissen, Henriette E.

    2016-01-01

    The role of genetic polymorphisms in cytochrome (CYP) 2D6 involved in the metabolism of 3,4-methylene-dioxymethamphetamine (MDMA, ecstasy) is unclear. Effects of genetic variants in CYP2D6 on the pharmacokinetics and pharmacodynamic effects of MDMA were characterized in 139 healthy individuals (70 men, 69 women) in a pooled analysis of eight double-blind, placebo-controlled crossover studies. In CYP2D6 poor metabolizers, the maximum concentrations (Cmax) of MDMA and its active metabolite 3,4-methylene-dioxyamphetamine were +15 and +50% higher, respectively, compared with extensive metabolizers and the Cmax of the inactive metabolite 4-hydroxy-3-methoxymethamphetamine was 50–70% lower. Blood pressure and subjective drug effects increased more rapidly after MDMA administration in poor metabolizers than in extensive metabolizers. In conclusion, the disposition of MDMA and its effects in humans are altered by polymorphic CYP2D6 activity, but the effects are small because of the autoinhibition of CYP2D6. PMID:27253829

  16. The correlation between CYP2D6 isoenzyme activity and haloperidol efficacy and safety profile in patients with alcohol addiction during the exacerbation of the addiction

    PubMed Central

    Sychev, Dmitry Alekseevich; Zastrozhin, Mikhail Sergeevich; Smirnov, Valery Valerieevich; Grishina, Elena Anatolievna; Savchenko, Ludmila Mikhailovna; Bryun, Evgeny Alekseevich

    2016-01-01

    Background Today, it is proved that isoenzymes CYP2D6 and CYP3A4 are involved in metabolism of haloperidol. In our previous investigation, we found a medium correlation between the efficacy and safety of haloperidol and the activity of CYP3A4 in patients with alcohol abuse. Objective The aim of this study was to evaluate the correlation between the activity of CYP2D6 and the efficacy and safety of haloperidol in patients with diagnosed alcohol abuse. Methods The study involved 70 men (average age: 40.83±9.92 years) with alcohol addiction. A series of psychometric scales were used in the research. The activity of CYP2D6 was evaluated by high-performance liquid chromatography with mass spectrometry using the ratio of 6-hydroxy-1,2,3,4-tetrahydro-beta-carboline to pinoline. Genotyping of CYP2D6 (1846G>A) was performed using real-time polymerase chain reaction. Results According to results of correlation analysis, statistically significant values of Spearman correlation coefficient (rs) between the activity of CYP2D6 and the difference of points in psychometric scale were obtained in patients receiving haloperidol in injection form (Sheehan Clinical Anxiety Rating Scale =−0.721 [P<0.001] and Udvald for Kliniske Undersogelser Side Effect Rating Scale =0.692 [P<0.001]) and in those receiving haloperidol in tablet form (Covi Anxiety Scale =−0.851 [P<0.001] and Udvald for Kliniske Undersogelser Side Effect Rating Scale =0.797 [P<0.001]). Conclusion This study demonstrated the correlations between the activity of CYP2D6 isozyme and the efficacy and safety of haloperidol in patients with alcohol addiction. PMID:27695358

  17. The correlation between CYP2D6 isoenzyme activity and haloperidol efficacy and safety profile in patients with alcohol addiction during the exacerbation of the addiction

    PubMed Central

    Sychev, Dmitry Alekseevich; Zastrozhin, Mikhail Sergeevich; Smirnov, Valery Valerieevich; Grishina, Elena Anatolievna; Savchenko, Ludmila Mikhailovna; Bryun, Evgeny Alekseevich

    2016-01-01

    Background Today, it is proved that isoenzymes CYP2D6 and CYP3A4 are involved in metabolism of haloperidol. In our previous investigation, we found a medium correlation between the efficacy and safety of haloperidol and the activity of CYP3A4 in patients with alcohol abuse. Objective The aim of this study was to evaluate the correlation between the activity of CYP2D6 and the efficacy and safety of haloperidol in patients with diagnosed alcohol abuse. Methods The study involved 70 men (average age: 40.83±9.92 years) with alcohol addiction. A series of psychometric scales were used in the research. The activity of CYP2D6 was evaluated by high-performance liquid chromatography with mass spectrometry using the ratio of 6-hydroxy-1,2,3,4-tetrahydro-beta-carboline to pinoline. Genotyping of CYP2D6 (1846G>A) was performed using real-time polymerase chain reaction. Results According to results of correlation analysis, statistically significant values of Spearman correlation coefficient (rs) between the activity of CYP2D6 and the difference of points in psychometric scale were obtained in patients receiving haloperidol in injection form (Sheehan Clinical Anxiety Rating Scale =−0.721 [P<0.001] and Udvald for Kliniske Undersogelser Side Effect Rating Scale =0.692 [P<0.001]) and in those receiving haloperidol in tablet form (Covi Anxiety Scale =−0.851 [P<0.001] and Udvald for Kliniske Undersogelser Side Effect Rating Scale =0.797 [P<0.001]). Conclusion This study demonstrated the correlations between the activity of CYP2D6 isozyme and the efficacy and safety of haloperidol in patients with alcohol addiction.

  18. An assessment of drug-drug interactions: the effect of desvenlafaxine and duloxetine on the pharmacokinetics of the CYP2D6 probe desipramine in healthy subjects.

    PubMed

    Patroneva, Albena; Connolly, Sandra M; Fatato, Penny; Pedersen, Ron; Jiang, Qin; Paul, Jeffrey; Guico-Pabia, Christine; Isler, Jennifer A; Burczynski, Michael E; Nichols, Alice I

    2008-12-01

    A number of antidepressants inhibit the activity of the cytochrome P450 2D6 enzyme system, which can lead to drug-drug interactions. Based on its metabolic profile, desvenlafaxine, administered as desvenlafaxine succinate, a new serotonin-norepinephrine reuptake inhibitor, is not expected to have an impact on activity of CYP2D6. This single-center, randomized, open-label, four-period, crossover study was undertaken to evaluate the effect of multiple doses of desvenlafaxine (100 mg/day, twice the recommended therapeutic dose for major depressive disorder in the United States) and duloxetine (30 mg b.i.d.) on the pharmacokinetics (PK) of a single dose of desipramine (50 mg). A single dose of desipramine was given first to assess its PK. Desvenlafaxine or duloxetine was then administered, in a crossover design, so that steady-state levels were achieved; a single dose of desipramine was then coadministered. The geometric least-square mean ratios (coadministration versus desipramine alone) for area under the plasma concentration versus time curve (AUC) and peak plasma concentrations (C(max)) of desipramine and 2-hydroxydesipramine were compared using analysis of variance. Relative to desipramine alone, increases in AUC and C(max) of desipramine associated with duloxetine administration (122 and 63%, respectively) were significantly greater than those associated with desvenlafaxine (22 and 19%, respectively; P < 0.001). Duloxetine coadministered with desipramine was also associated with a decrease in 2-hydroxydesipramine C(max) that was significant compared with the small increase seen with desvenlafaxine and desipramine (-24 versus 9%; P < 0.001); the difference between changes in 2-hydroxydesipramine AUC did not reach statistical significance (P = 0.054). Overall, desvenlafaxine had a minimal impact on the PK of desipramine compared with duloxetine, suggesting a lower risk for CYP2D6-mediated drug interactions.

  19. In vitro inhibition of the cytochrome P450 (CYP450) system by the antiplatelet drug ticlopidine: potent effect on CYP2C19 and CYP2D6

    PubMed Central

    Ko, Jae Wook; Desta, Zeruesenay; Soukhova, Nadia V; Tracy, Timothy; Flockhart, David A

    2000-01-01

    Aims To examine the potency of ticlopidine (TCL) as an inhibitor of cytochrome P450s (CYP450s) in vitro using human liver microsomes (HLMs) and recombinant human CYP450s. Methods Isoform-specific substrate probes of CYP1A2, 2C19, 2C9, 2D6, 2E1 and 3A4 were incubated in HLMs or recombinant CYPs with or without TCL. Preliminary data were generated to simulate an appropriate range of substrate and inhibitor concentrations to construct Dixon plots. In order to estimate accurately inhibition constants (Ki values) of TCL and determine the type of inhibition, data from experiments with three different HLMs for each isoform were fitted to relevant nonlinear regression enzyme inhibition models by WinNonlin. Results TCL was a potent, competitive inhibitor of CYP2C19 (Ki = 1.2 ± 0.5 µm) and of CYP2D6 (Ki = 3.4 ± 0.3 µm). These Ki values fell within the therapeutic steady-state plasma concentrations of TCL (1–3 µm). TCL was also a moderate inhibitor of CYP1A2 (Ki = 49 ± 19 µm) and a weak inhibitor of CYP2C9 (Ki > 75 µm), but its effect on the activities of CYP2E1 (Ki = 584 ± 48 µm) and CYP3A (> 1000 µm) was marginal. Conclusions TCL appears to be a broad-spectrum inhibitor of the CYP isoforms, but clinically significant adverse drug interactions are most likely with drugs that are substrates of CYP2C19 or CYP2D6. PMID:10759690

  20. Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population.

    PubMed

    Scordo, Maria Gabriella; Caputi, Achille P; D'Arrigo, Concetta; Fava, Giuseppina; Spina, Edoardo

    2004-08-01

    The polymorphic cytochrome P450 isoenzymes (CYPs) 2C9, 2C19 and 2D6 metabolise many important drugs, as well as other xenobiotics. Their polymorphism gives rise to important interindividual and interethnic variability in the metabolism and disposition of several therapeutic agents and may cause differences in the clinical response to these drugs. In this study, we determined the genotype profile of a random Italian population in order to compare the CYP2C9, CYP2C19 and CYP2D6 allele frequencies among Italians with previous findings in other Caucasian populations. Frequencies for the major CYP2C9, CYP2C19 and CYP2D6 mutated alleles and genotypes have been evaluated in 360 unrelated healthy Italian volunteers (210 males and 150 females, aged 19-52 years). Genotyping has been carried out on peripheral leukocytes DNA by molecular biology techniques (PCR, RFLP, long-PCR). CYP2C9, CYP2C19 and CYP2D6 allele and genotype frequencies resulted in equilibrium with the Hardy-Weinberg equation. One hundred and fourteen subjects (31.7%) carried one and 23 subjects (6.4%) carried two CYP2C9 mutated alleles. Sixty-eight (18.9%) volunteers were found to be heterozygous and six (1.7%) homozygous for the CYP2C19*2, while no CYP2C19*3 was detected in the evaluated population. Volunteers could be divided into four CYP2D6 genotypes groups: 192 subjects (53.3%) with no mutated alleles (homozygous extensive metabolisers, EM), 126 (35.0%) with one mutated allele (heterozygous EM), 12 (3.4%) with two mutated alleles (poor metabolisers, PM) and 30 (8.3%) with extracopies of a functional gene (ultrarapid metabolisers, UM). Frequencies of both CYP2C9 and CYP2C19 allelic variants, as well as CYP2D6 detrimental alleles, in Italian subjects were similar to those of other Caucasian populations. Conversely, the prevalence of CYP2D6 gene duplication among Italians resulted very high, confirming the higher frequency of CYP2D6 UM in the Mediterranean area compared to Northern Europe. PMID:15177309

  1. CYP2D6 and UGT2B7 Genotype and Risk of Recurrence in Tamoxifen-Treated Breast Cancer Patients

    PubMed Central

    Drury, Suzy; Hayes, Daniel F.; Stearns, Vered; Thibert, Jacklyn N.; Haynes, Ben P.; Salter, Janine; Sestak, Ivana; Cuzick, Jack; Dowsett, Mitch

    2012-01-01

    Background Adjuvant tamoxifen therapy substantially decreases the risk of recurrence and mortality in women with hormone (estrogen and/or progesterone) receptor–positive breast cancer. Previous studies have suggested that metabolic conversion of tamoxifen to endoxifen by cytochrome P450 2D6 (CYP2D6) is required for patient benefit from tamoxifen therapy. Methods Tumor specimens from a subset of postmenopausal patients with hormone receptor–positive early-stage (stages I, II, and IIIA) breast cancer, who were enrolled in the randomized double-blind Arimidex, Tamoxifen, Alone or in Combination (ATAC) clinical trial, were genotyped for variants in CYP2D6 (N = 1203 patients: anastrozole [trade name: Arimidex] group, n = 615 patients; tamoxifen group, n = 588 patients) and UDP-glucuronosyltransferase-2B7 (UGT2B7), whose gene product inactivates endoxifen (N = 1209 patients; anastrozole group, n = 606 patients; tamoxifen group, n = 603 patients). Genotyping was performed using polymerase chain reaction–based TaqMan assays. Based on the genotypes for CYP2D6, patients were classified as poor metabolizer (PM), intermediate metabolizer (IM), or extensive metabolizer (EM) phenotypes. We evaluated the association of CYP2D6 and UGT2B7 genotype with distant recurrence (primary endpoint) and any recurrence (secondary endpoint) by estimating the hazard ratios (HRs) and corresponding 95% confidence intervals (CIs) using Cox proportional hazards models. All statistical tests were two-sided. Results After a median follow-up of 10 years, no statistically significant associations were observed between CYP2D6 genotype and recurrence in tamoxifen-treated patients (PM vs EM: HR for distant recurrence = 1.25, 95% CI = 0.55 to 3.15, P = .64; HR for any recurrence = 0.99, 95% CI = 0.48 to 2.08, P = .99). A near-null association was observed between UGT2B7 genotype and recurrence in tamoxifen-treated patients. No associations were observed between CYP2D6 and UGT2B7 genotypes and

  2. Role of Pharmacogenetics in Improving the Safety of Psychiatric Care by Predicting the Potential Risks of Mania in CYP2D6 Poor Metabolizers Diagnosed With Bipolar Disorder

    PubMed Central

    Sánchez-Iglesias, Santiago; García-Solaesa, Virginia; García-Berrocal, Belén; Sanchez-Martín, Almudena; Lorenzo-Romo, Carolina; Martín-Pinto, Tomás; Gaedigk, Andrea; González-Buitrago, José Manuel; Isidoro-García, María

    2016-01-01

    Abstract One of the main concerns in psychiatric care is safety related to drug management. Pharmacogenetics provides an important tool to assess causes that may have contributed the adverse events during psychiatric therapy. This study illustrates the potential of pharmacogenetics to identify those patients for which pharmacogenetic-guided therapy could be appropriate. It aimed to investigate CYP2D6 genotype in our psychiatric population to assess the value of introducing pharmacogenetics as a primary improvement for predicting side effects. A broad series of 224 psychiatric patients comprising psychotic disorders, depressive disturbances, bipolar disorders, and anxiety disorders was included. The patients were genotyped with the AmpliChip CYP450 Test to analyzing 33 allelic variants of the CYP2D6 gene. All bipolar patients with poor metabolizer status showed maniac switching when CYP2D6 substrates such as selective serotonin reuptake inhibitors were prescribed. No specific patterns were identified for adverse events for other disorders. We propose to utilize pharmacogenetic testing as an intervention to aid in the identification of patients who are at risk of developing affective switching in bipolar disorder treated with selective serotonin reuptake inhibitors, CYP2D6 substrates, and inhibitors. PMID:26871771

  3. Role of Pharmacogenetics in Improving the Safety of Psychiatric Care by Predicting the Potential Risks of Mania in CYP2D6 Poor Metabolizers Diagnosed With Bipolar Disorder.

    PubMed

    Sánchez-Iglesias, Santiago; García-Solaesa, Virginia; García-Berrocal, Belén; Sanchez-Martín, Almudena; Lorenzo-Romo, Carolina; Martín-Pinto, Tomás; Gaedigk, Andrea; González-Buitrago, José Manuel; Isidoro-García, María

    2016-02-01

    One of the main concerns in psychiatric care is safety related to drug management. Pharmacogenetics provides an important tool to assess causes that may have contributed the adverse events during psychiatric therapy. This study illustrates the potential of pharmacogenetics to identify those patients for which pharmacogenetic-guided therapy could be appropriate. It aimed to investigate CYP2D6 genotype in our psychiatric population to assess the value of introducing pharmacogenetics as a primary improvement for predicting side effects.A broad series of 224 psychiatric patients comprising psychotic disorders, depressive disturbances, bipolar disorders, and anxiety disorders was included. The patients were genotyped with the AmpliChip CYP450 Test to analyzing 33 allelic variants of the CYP2D6 gene.All bipolar patients with poor metabolizer status showed maniac switching when CYP2D6 substrates such as selective serotonin reuptake inhibitors were prescribed. No specific patterns were identified for adverse events for other disorders.We propose to utilize pharmacogenetic testing as an intervention to aid in the identification of patients who are at risk of developing affective switching in bipolar disorder treated with selective serotonin reuptake inhibitors, CYP2D6 substrates, and inhibitors.

  4. Prediction of tamoxifen outcome by genetic variation of CYP2D6 in post-menopausal women with early breast cancer.

    PubMed

    Brauch, Hiltrud; Schwab, Matthias

    2014-04-01

    The question of whether genetic polymorphisms of CYP2D6 can affect treatment outcome in patients with early post-menopausal oestrogen receptor (ER)-positive breast cancer has been a matter of debate over the past few years. In this article we revisit the hypothesis of CYP2D6 being a potential tamoxifen outcome predictor and provide detailed insight into the ongoing controversy that prevented the CYP2D6 marker from being accepted by the scientific and clinical community. We summarize the available pharmacokinetic, pharmacodynamic and pharmacogenetic evidence and resolve the controversy based on the recognized methodological and statistical issues. The cumulative evidence suggests that genotyping for CYP2D6 is clinically relevant in post-menopausal women. This is important, because the clarification of this issue has the potential to resolve a clinical management question that is relevant to hundreds of thousands of women diagnosed with ER-positive breast cancer each year, who should not be denied effective endocrine therapy.

  5. Prediction of tamoxifen outcome by genetic variation of CYP2D6 in post-menopausal women with early breast cancer.

    PubMed

    Brauch, Hiltrud; Schwab, Matthias

    2014-04-01

    The question of whether genetic polymorphisms of CYP2D6 can affect treatment outcome in patients with early post-menopausal oestrogen receptor (ER)-positive breast cancer has been a matter of debate over the past few years. In this article we revisit the hypothesis of CYP2D6 being a potential tamoxifen outcome predictor and provide detailed insight into the ongoing controversy that prevented the CYP2D6 marker from being accepted by the scientific and clinical community. We summarize the available pharmacokinetic, pharmacodynamic and pharmacogenetic evidence and resolve the controversy based on the recognized methodological and statistical issues. The cumulative evidence suggests that genotyping for CYP2D6 is clinically relevant in post-menopausal women. This is important, because the clarification of this issue has the potential to resolve a clinical management question that is relevant to hundreds of thousands of women diagnosed with ER-positive breast cancer each year, who should not be denied effective endocrine therapy. PMID:24033728

  6. The extent and determinants of changes in CYP2D6 and CYP1A2 activities with therapeutic doses of sertraline.

    PubMed

    Ozdemir, V; Naranjo, C A; Herrmann, N; Shulman, R W; Sellers, E M; Reed, K; Kalow, W

    1998-02-01

    The extent of changes in CYP2D6 and CYP1A2 activities with higher therapeutic dosages (>50 mg/day) of sertraline is not well established in vivo. This study assessed the extent and determinants of changes in CYP2D6 and CYP1A2 isozyme activities after treatment with clinically relevant doses of sertraline. Patients and healthy volunteers aged 19 to 85 years (N = 21) were treated with sertraline for 5 to 55 days. The dosage of sertraline ranged from 25 to 150 mg/day (93.5+/-26.4 mg/day; mean +/- SD). All subjects had an extensive metabolizer phenotype for CYP2D6 and received a single oral dose of dextromethorphan (30 mg) and caffeine (100 mg) before and after sertraline treatment. The log O-demethylation ratio (ODMR) of dextromethorphan and the caffeine metabolic ratio (CMR) in overnight urine were used as in vivo indices of the CYP2D6 and CYP1A2 isozyme activities, respectively. Concurrent medications and lifestyle habits (e.g., smoking and diet) were monitored during the study. Baseline log ODMR (-2.33+/-0.45) but not CMR (5.1+/-1.9) (mean +/- SD) significantly changed after sertraline treatment (-2.19+/-0.62; 4.5+/-1.6, respectively) (p: ODMR = 0.04, CMR = 0.10). There was no significant effect of age, dose, duration of treatment, gender, sertraline and/or desmethylsertraline plasma concentration, subject type (patient or volunteer), and weight on the extent of changes in log ODMR or CMR (p > 0.05). In conclusion, sertraline treatment at a mean daily dosage of 94.0 mg did not significantly change CYP1A2 activity and resulted in a modest inhibition of CYP2D6 activity.

  7. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides

    SciTech Connect

    Singh, Satyender; Kumar, Vivek; Vashisht, Kapil; Singh, Priyanka; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Rai, Arvind

    2011-11-15

    Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activity toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p < 0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37 {+-} 2.15 vs. 6.24 {+-} 1.37 tail% DNA, p < 0.001). Further, the workers with CYP2D6*3 PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p < 0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. -- Highlights: Black-Right-Pointing-Pointer Role of CYP1A1, CYP3A5, CYP2C, CYP2D6 and PON1 genotypes on DNA damage. Black-Right-Pointing-Pointer Workers exposed to some OPs demonstrated increased DNA damage. Black-Right-Pointing-Pointer CYP2D6 *3 PM and PON1 (Q192R and L55M) genotypes are associated with DNA damage. Black-Right-Pointing-Pointer Concomitant presence of certain CYP2D6 and PON1 genotypes can increase DNA damage.

  8. Effects of polymorphisms in CYP2D6 and ABC transporters and side effects induced by gefitinib on the pharmacokinetics of the gefitinib metabolite, O-desmethyl gefitinib.

    PubMed

    Kobayashi, Hiroyuki; Sato, Kazuhiro; Niioka, Takenori; Takeda, Masahide; Okuda, Yuji; Asano, Mariko; Ito, Hiroshi; Miura, Masatomo

    2016-06-01

    We investigated the effects of polymorphisms in CYP2D6, ABCB1, and ABCG2 and the side effects induced by gefitinib on the pharmacokinetics of O-desmethyl gefitinib, the active metabolite of gefitinib. On day 14 after beginning therapy with gefitinib, plasma concentrations of gefitinib and O-desmethyl gefitinib were measured. Patients were grouped into three groups according to their combination of CYP2D6 alleles: homozygous extensive metabolisers (EMs; *1/*1, *1/*2, and *2/*2; n = 13), heterozygous EMs (*1/*5, *2/*5, *1/*10, and *2/*10; n = 18), and intermediate metabolisers (IMs; *5/*10 and *10/*10; n = 5). The median AUC0-24 of O-desmethyl gefitinib in CYP2D6 IMs was 1460 ng h/mL, whereas that in homozygous EMs was 12,523 ng h/mL (P = 0.021 in univariate analysis). The median AUC ratio of O-desmethyl gefitinib to gefitinib differed among homozygous EMs, heterozygous EMs, and IMs at a ratio of 1.41:0.86:0.24 (P = 0.030). On the other hand, there were no significant differences in the AUC0-24 of O-desmethyl gefitinib between ABCB1 and ABCG2 genotypes. In a multivariate analysis, CYP2D6 homozygous EMs (P = 0.012) were predictive for a higher AUC0-24 of O-desmethyl gefitinib. The side effects of diarrhoea, skin rash, and hepatotoxicity induced by gefitinib were unrelated to the AUC0-24 of O-desmethyl gefitinib. CYP2D6 polymorphisms were associated with the formation of O-desmethyl gefitinib from gefitinib. In CYP2D6 homozygous EMs, the plasma concentrations of O-desmethyl gefitinib were higher over 24 h after taking gefitinib than those of the parent compound; however, side effects induced by gefitinib were unrelated to O-desmethyl gefitinib exposure.

  9. Distribution of CYP2D6 and CYP2C19 Polymorphisms Associated with Poor Metabolizer Phenotype in Five Amerindian Groups and Western Mestizos from Mexico

    PubMed Central

    Salazar-Flores, Joel; Torres-Reyes, Luis A.; Martínez-Cortés, Gabriela; Rubi-Castellanos, Rodrigo; Sosa-Macías, Martha; Muñoz-Valle, José F.; González-González, César; Ramírez, Angélica; Román, Raquel; Méndez, José L.; Barrera, Andrés; Torres, Alfredo; Medina, Rafael

    2012-01-01

    Background: The distribution of polymorphisms in the CYP2D6 and CYP2C19 genes allows inferring the potential risk for specific adverse drug reactions and lack of therapeutic effects in humans. This variability shows differences among human populations. The aim of this study was to analyze single-nucleotide polymorphisms related to a poor metabolizer (PM) phenotype in nonpreviously studied Amerindian groups and Mestizos (general admixed population) from Mexico. Methods: We detected by SNaPshot® different polymorphisms located in CYP2D6 (*3, *4, *6, *7, and *8) and CYP2C19 (*2, *3, *4 and *5) in western Mestizos (n=145) and five Amerindian groups from Mexico: Tarahumaras from the North (n=88); Purépechas from the Center (n=101); and Tojolabales (n=68), Tzotziles (n=88), and Tzeltales (n=20) from the Southeast. Genotypes were observed by capillary electrophoresis. The genetic relationships among these populations were estimated based on these genes. Results and Discussion: The wild-type allele (*1) of both genes was predominant in the Mexican populations studied. The most widely observed alleles were CYP2C19*2 (range, 0%–31%) and CYP2D6*4 (range, 1.2%–7.3%), whereas CYP2D6*3 was exclusively detected in Mestizos. Conversely, CYP2C19*4 and *5, as well as CYP2D6*3, *6, *7, and *8, were not observed in the majority of the Mexican populations. The Tarahumaras presented a high frequency of the allele CYP2C19*2 (31%) and of homozygotes *2/*2 (10.7%), which represent a high frequency of potentially PM phenotypes in this Amerindian group. The genetic distances showed high differentiation of Tarahumaras (principally for CYP2C19 gene). In general, a relative proximity was observed between most of the Amerindian, Mexican-Mestizo, and Latin-American populations. Conclusion: In general, the wild-type allele (*1) predominates in Mexican populations, outlining a relatively homogeneous distribution for CYP2C19 and CYP2D6. The exception is the Tarahumara group that displays a

  10. No association between schizophrenia and polymorphisms within the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT)

    SciTech Connect

    Daniels, J.; Williams, J.; Asherson, P.; McGuffin, P.; Owen, M.

    1995-02-27

    It has been suggested that the cytochrome P450 mono-oxygenase, debrisoquine 4-hydroxylase, is involved in the catabolism and processing of neurotransmitters subsequent to their reuptake into target cells. It is also thought to be related to the dopamine transporter that acts to take released dopamine back up into presynaptic terminals. The present study used the association approach to test the hypothesis that mutations in the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT) confer susceptibility to schizophrenia. There were no differences in allele or genotype frequencies between patients and controls in the mutations causing the poor metaboliser phenotype in CYP2D6. In addition there was no association found between schizophrenia and a 48 bp repeat within the 3{prime} untranslated region of DAT. 18 refs., 2 tabs.

  11. Pharmacogenetics in American Indian Populations: Analysis of CYP2D6, CYP3A4, CYP3A5, and CYP2C9 in the Confederated Salish and Kootenai Tribes

    PubMed Central

    Fohner, Alison; Muzquiz, LeeAnna I.; Austin, Melissa A.; Gaedigk, Andrea; Gordon, Adam; Thornton, Timothy; Rieder, Mark J.; Pershouse, Mark A.; Putnam, Elizabeth A.; Howlett, Kevin; Beatty, Patrick; Thummel, Kenneth E.; Woodahl, Erica L.

    2014-01-01

    Objectives Cytochrome P450 enzymes play a dominant role in drug elimination and variation in these genes is a major source of interindividual differences in drug response. Little is known, however, about pharmacogenetic variation in American Indian and Alaska Native (AI/AN) populations. We have developed a partnership with the Confederated Salish and Kootenai Tribes (CSKT) in northwestern Montana to address this knowledge gap. Methods We resequenced CYP2D6 in 187 CSKT subjects and CYP3A4, CYP3A5, and CYP2C9 in 94 CSKT subjects. Results We identified 67 variants in CYP2D6, 15 in CYP3A4, 10 in CYP3A5, and 41 in CYP2C9. The most common CYP2D6 alleles were CYP2D6*4 and *41 (20.86 and 11.23%, respectively). CYP2D6*3, *5, *6, *9, *10, *17, *28, *33, *35, *49, *1xN, *2xN, and *4xN frequencies were less than 2%. CYP3A5*3, CYP3A4*1G, and *1B were detected with frequencies of 92.47, 26.81, and 2.20%, respectively. Allelic variation in CYP2C9 was low: CYP2C9*2 (5.17%) and *3 (2.69%). In general, allele frequencies in CYP2D6, CYP2C9 and CYP3A5 were similar to those observed in European Americans. There was, however, a marked divergence in CYP3A4 for the CYP3A4*1G allele. We also observed low levels of linkage between CYP3A4*1G and CYP3A5*1 in the CSKT. The combination of nonfunctional CYP3A5*3 and putative reduced function CYP3A4*1G alleles may predict diminished clearance of CYP3A substrates. Conclusions These results highlight the importance of conducting pharmacogenomic research in AI/AN populations and demonstrate that extrapolation from other populations is not appropriate. This information could help to optimize drug therapy for the CSKT population. PMID:23778323

  12. CYP2D6*4 Allele Polymorphism Increases the Risk of Parkinson’s Disease: Evidence from Meta-Analysis

    PubMed Central

    Chen, Siyuan; Xie, Yantong; Peng, Qiliu; He, Yu; Deng, Yan; Wang, Jian; Xie, Li; Zeng, Jie; Li, Shan; Qin, Xue

    2013-01-01

    Background Many epidemiological studies have been conducted to explore the association between a single CYP2D6 gene polymorphism and Parkinson’s disease (PD) susceptibility. However, the results remain controversial. Objectives To clarify the effects of a single CYP2D6 gene polymorphism on the risk of PD, a meta-analysis of all available studies relating to CYP2D6*4 polymorphism and the risk of PD was conducted. Methods A comprehensive literature search of PubMed, EMBASE, and the China National Knowledge Infrastructure (CNKI) up to September 1, 2013 was conducted. Data were extracted by two independent authors and pooled odds ratio (OR) with 95% confidence interval (CI) were calculated. Meta-regression, Galbraith plots, subgroup analysis, sensitivity analysis, and publication bias analysis were also performed. Results Twenty-two separate comparisons consisting of 2,629 patients and 3,601 controls were included in our meta-analysis. The pooled analyses showed a significant association between CYP2D6*4G/A polymorphism and PD risk in all of the comparisons (A vs. G allele: OR = 1.28, 95% CI = 1.14–1.43, P = 0.001; AA vs. GG: OR = 1.43, 95% CI = 1.06–1.93, P = 0.018; AG vs. GG: OR = 1.22, 95% CI = 1.06–1.40, P = 0.006; AG+AA vs. GG: OR = 1.26, 95% CI = 1.10–1.44, P = 0.001; AA vs. AG+GG: OR = 1.37, 95% CI = 1.02–1.83, P = 0.036). In subgroup analysis stratified by ethnicity, significant associations were also demonstrated in Caucasians but not in Asians. No significant association was found in subgroup analysis stratified by age of onset or disease form. Conclusions We concluded that the CYP2D6*4G/A polymorphism denotes an increased genetic susceptibility to PD in the overall population, especially in Caucasians. Further large and well-designed studies are needed to confirm this association. PMID:24376807

  13. Molecular dynamics of CYP2D6 polymorphisms in the absence and presence of a mechanism-based inactivator reveals changes in local flexibility and dominant substrate access channels.

    PubMed

    de Waal, Parker W; Sunden, Kyle F; Furge, Laura Lowe

    2014-01-01

    Cytochrome P450 enzymes (CYPs) represent an important enzyme superfamily involved in metabolism of many endogenous and exogenous small molecules. CYP2D6 is responsible for ∼ 15% of CYP-mediated drug metabolism and exhibits large phenotypic diversity within CYPs with over 100 different allelic variants. Many of these variants lead to functional changes in enzyme activity and substrate selectivity. Herein, a molecular dynamics comparative analysis of four different variants of CYP2D6 was performed. The comparative analysis included simulations with and without SCH 66712, a ligand that is also a mechanism-based inactivator, in order to investigate the possible structural basis of CYP2D6 inactivation. Analysis of protein stability highlighted significantly altered flexibility in both proximal and distal residues from the variant residues. In the absence of SCH 66712, *34, *17-2, and *17-3 displayed more flexibility than *1, and *53 displayed more rigidity. SCH 66712 binding reversed flexibility in *17-2 and *17-3, through *53 remained largely rigid. Throughout simulations with docked SCH 66712, ligand orientation within the heme-binding pocket was consistent with previously identified sites of metabolism and measured binding energies. Subsequent tunnel analysis of substrate access, egress, and solvent channels displayed varied bottle-neck radii. Taken together, our results indicate that SCH 66712 should inactivate these allelic variants, although varied flexibility and substrate binding-pocket accessibility may alter its interaction abilities. PMID:25286176

  14. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides.

    PubMed

    Singh, Satyender; Kumar, Vivek; Vashisht, Kapil; Singh, Priyanka; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Rai, Arvind

    2011-11-15

    Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activity toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p<0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37±2.15 vs. 6.24±1.37 tail% DNA, p<0.001). Further, the workers with CYP2D6*3PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p<0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions.

  15. Utilizing Structures of CYP2D6 and BACE1 Complexes To Reduce Risk of Drug–Drug Interactions with a Novel Series of Centrally Efficacious BACE1 Inhibitors

    PubMed Central

    2016-01-01

    In recent years, the first generation of β-secretase (BACE1) inhibitors advanced into clinical development for the treatment of Alzheimer’s disease (AD). However, the alignment of drug-like properties and selectivity remains a major challenge. Herein, we describe the discovery of a novel class of potent, low clearance, CNS penetrant BACE1 inhibitors represented by thioamidine 5. Further profiling suggested that a high fraction of the metabolism (>95%) was due to CYP2D6, increasing the potential risk for victim-based drug–drug interactions (DDI) and variable exposure in the clinic due to the polymorphic nature of this enzyme. To guide future design, we solved crystal structures of CYP2D6 complexes with substrate 5 and its corresponding metabolic product pyrazole 6, which provided insight into the binding mode and movements between substrate/inhibitor complexes. Guided by the BACE1 and CYP2D6 crystal structures, we designed and synthesized analogues with reduced risk for DDI, central efficacy, and improved hERG therapeutic margins. PMID:25781223

  16. Genetic polymorphisms of CYP2D6*10 and the effectiveness of combined tamoxifen citrate and testosterone undecanoate treatment in infertile men with idiopathic oligozoospermia*

    PubMed Central

    Tang, Kai-fa; Zhao, Yi-li; Ding, Shang-shu; Wu, Qi-fei; Wang, Xing-yang; Shi, Jia-qi; Sun, Fa; Xing, Jun-ping

    2015-01-01

    Tamoxifen citrate, as the first line of treatment for infertile men with idiopathic oligozoospermia, was proposed by the World Health Organization (WHO), and testosterone undecanoate has shown benefits in semen values. Our objective was to assess the effectiveness of treatment with tamoxifen citrate and testosterone undecanoate in infertile men with idiopathic oligozoospermia, and whether the results would be affected by polymorphisms of CYP2D6*10. A total of 230 infertile men and 147 controls were included in the study. Patients were treated with tamoxifen citrate and testosterone undecanoate. Sex hormone, sperm parameters, and incidence of spontaneous pregnancy were detected. There were no significant differences between the control and patient groups with respect to CYP2D6*10 genotype frequencies (P>0.05). The follicle-stimulation hormone (FSH), luteinizing hormone (LH), and testosterone (T) levels were raised, and sperm concentration and motility were increased at 3 months and became significant at 6 months, and they were higher in the wild-type allele (C/C) than in the heterozygous variant allele (C/T) or homozygous variant allele (T/T) subgroups (P<0.05). In addition, the percentage of normal morphology was raised at 6 months, and represented the highest percentage in the C/C subgroup (P<0.05). The incidence of spontaneous pregnancy in the C/C subgroup was higher than that in the C/T or T/T subgroups (P<0.01). This study showed that the CYP2D6*10 variant genotype demonstrated worse clinical effects in infertile men with idiopathic oligozoospermia. PMID:25743120

  17. Effects of strong CYP2D6 and 3A4 inhibitors, paroxetine and ketoconazole, on the pharmacokinetics and cardiovascular safety of tamsulosin

    PubMed Central

    Troost, Joachim; Tatami, Shinji; Tsuda, Yasuhiro; Mattheus, Michaela; Mehlburger, Ludwig; Wein, Martina; Michel, Martin C

    2011-01-01

    AIM To determine the effect of the strong CYP2D6 inhibitor paroxetine and strong CYP3A4 inhibitor ketoconazole on the pharmacokinetics and safety (orthostatic challenge) of tamsulosin. METHODS Two open-label, randomized, two-way crossover studies were conducted in healthy male volunteers (extensive CYP2D6 metabolizers). RESULTS Co-administration of multiple oral doses of 20 mg paroxetine once daily with a single oral dose of the 0.4 mg tamsulosin HCl capsule increased the adjusted geometric mean (gMean) values of Cmax and AUC(0,∞) of tamsulosin by factors of 1.34 (90% CI 1.21, 1.49) and 1.64 (90% CI 1.44, 1.85), respectively, and increased the terminal half-life (t1/2) of tamsulosin HCl from 11.4 h to 15.3 h. Co-administration of multiple oral doses of 400 mg ketoconazole once dailywith a single oral dose of the 0.4 mg tamsulosin increased the gMean values of Cmax and AUC(0,∞) of tamsulosin by a factor of 2.20 (90% CI 1.96, 2.45) and 2.80 (90% CI 2.56, 3.07), respectively. The terminal half-life was slightly increased from 10.5 h to 11.8 h. These pharmacokinetic changes were not accompanied by clinically significant alterations of haemodynamic responses during orthostatic stress testing. CONCLUSION The exposure to tamsulosin is increased upon co-administration of strong CYP2D6 inhibitors and even more so of strong 3A4 inhibitors, but neither PK alteration was accompanied by clinically significant haemodynamic changes during orthostatic stress testing. PMID:21496064

  18. Comparative inhibitory potential of selected dietary bioactive polyphenols, phytosterols on CYP3A4 and CYP2D6 with fluorometric high-throughput screening.

    PubMed

    Vijayakumar, Thangavel Mahalingam; Kumar, Ramasamy Mohan; Agrawal, Aruna; Dubey, Govind Prasad; Ilango, Kaliappan

    2015-07-01

    Cytochrome P450 (CYP450) inhibition by the bioactive molecules of dietary supplements or herbal products leading to greater potential for toxicity of co-administered drugs. The present study was aimed to compare the inhibitory potential of selected common dietary bioactive molecules (Gallic acid, Ellagic acid, β-Sitosterol, Stigmasterol, Quercetin and Rutin) on CYP3A4 and CYP2D6 to assess safety through its inhibitory potency and to predict interaction potential with co-administered drugs. CYP450-CO complex assay was carried out for all the selected dietary bioactive molecules in isolated rat microsomes. CYP450 concentration of the rat liver microsome was found to be 0.474 nmol/mg protein, quercetin in DMSO has shown maximum inhibition on CYP450 (51.02 ± 1.24 %) but less when compared with positive control (79.02 ± 1.61 %). In high throughput fluorometric assay, IC50 value of quercetin (49.08 ± 1.02-54.36 ± 0.85 μg/ml) and gallic acid (78.46 ± 1.32-83.84 ± 1.06 μg/ml) was lower than other bioactive compounds on CYP3A4 and CYP2D6 respectively but it was higher than positive controls (06.28 ± 1.76-07.74 ± 1.32 μg/ml). In comparison of in vitro inhibitory potential on CYP3A4 and CYP2D6, consumption of food or herbal or dietary supplements containing quercetin and gallic acid without any limitation should be carefully considered when narrow therapeutic drugs are administered together. PMID:26139922

  19. [CYP2D6, CYP3A5, and CYP3A4 gene polymorphism in Russian, Tatar, and Bashkir populations].

    PubMed

    Mustafina, O E; Tuktarova, I A; Karimov, D D; Somova, R sh; Nasibullin, T R

    2015-01-01

    The allele and genotype frequency distribution at polymorphic loci rs3892097 (184G>A) of CYP2D6 gene, rs776746 (6986A>G) of the CYP3A5 gene and rs2740574 (-392A>G) of the CYP3A4 gene in Russians, Tatars, and Bashkirs was examined. Samples were taken from residents of Bashkortostan Republic (1240 men and women aged from 20 to 109 years and consisted of 443 Russians, 517 Tatars, and 280 Bashkirs). Allele identification was conducted using PCR-RFLP or PCR with TaqMan probes. The "nonfunctional" allele rs3892097*A of the CYP2D6 gene was detected in populations of Russians, Tatars, and Bashkirs in 17.2, 9.5, and 7.1% cases, respectively. The rs776746*G allele of the CYP3A5 gene encoding the CYP3A5 isoenzyme with decreased activity was revealed with a frequency of 94.6% in populations of Russians, 94.3% in the Tatar population, and 91.5% in the Bashkir population. The share of the minor allele rs2740574*G of the CYP3A4 was 4.0% in populations of Russians, 0.5% in the Tatar population, and 0.9% in the Bashkir population. It has been previously shown that the rs3892097*A, rs776746*G, and rs2740574*G allele frequencies vary significantly in different world populations. Since allele variants of CYP2D6, CYP3A5, and CYP3A4 genes can play essential role in interindividual and in interethnic differences in the metabolism of many therapeutic agents, the obtained results could be used in the prognosis of pharmacotherapy efficacy in populations of Russians, Tatars, and Bashkirs.

  20. Association of CYP2D6*10 (c.100C>T) polymorphisms with clinical outcome of breast cancer after tamoxifen adjuvant endocrine therapy in Chinese population.

    PubMed

    Lei, Lei; Wang, Xian; Wu, Xiao-Dan; Wang, Zeng; Chen, Zhan-Hong; Zheng, Ya-Bin; Wang, Xiao-Jia

    2016-01-01

    Tamoxifen is the most widely used adjuvant endocrine therapy for breast cancer. However, the pharmacogenetic effect of CYP2D6 on its efficacy remains unclear. Therefore, this study aimed to evaluate the association of CYP2D6*10 (c.100C>T) polymorphisms with clinical outcome in Chinese breast cancer patients. A total of 72 tamoxifen-treated early breast cancer patients were included in this study. CYP2D6*10 (c.100C>T) polymorphisms (C/C: wild type; T/T: homozygous mutant genotype T; C/T: heterozygote genotype C) were detected by pyrosequencing. The plasma concentrations of tamoxifen and its two major active metabolites were determined by liquid chromatography tandem mass spectrometry (LC-MS). Disease-free survival (DFS) and overall survival (OS) were assessed by Kaplan-Meier analysis, while the Cox proportional hazards model was used in multivariate tests for prognostic significance. We found that T/T carrier showed the lowest serum concentration of endoxifen as compared to C/C and C/T carriers (p<0.01). In the subgroup of patients below 40 years of age, T/T carriers appeared to have the shortest DFS and OS as compared to other genotype carriers (p<0.01). When genotypes (C/C, C/T and T/T carriers) and other clinical characteristics were adjusted, tumor size (>2 cm) and grades were independent prognostic factors for DFS but not OS (tumor size >2 cm: HR: 3.870, 95% CI: 1.045-14.330, P = 0.043; tumor grades: HR: 2.230, 95% CI: 1.090-4.562, P = 0.028). In conclusion, the T/T genotype is a negative prognostic factor in young breast cancer patients using tamoxifen. Tumor size (>2 cm) and grades are independent prognostic factors for DFS, when genotype of CYP2D6*10 (c.100C>T) is adjusted. PMID:27648149

  1. Association of CYP2D6*10 (c.100C>T) polymorphisms with clinical outcome of breast cancer after tamoxifen adjuvant endocrine therapy in Chinese population

    PubMed Central

    Lei, Lei; Wang, Xian; Wu, Xiao-dan; Wang, Zeng; Chen, Zhan-hong; Zheng, Ya-bin; Wang, Xiao-jia

    2016-01-01

    Tamoxifen is the most widely used adjuvant endocrine therapy for breast cancer. However, the pharmacogenetic effect of CYP2D6 on its efficacy remains unclear. Therefore, this study aimed to evaluate the association of CYP2D6*10 (c.100C>T) polymorphisms with clinical outcome in Chinese breast cancer patients. A total of 72 tamoxifen-treated early breast cancer patients were included in this study. CYP2D6*10 (c.100C>T) polymorphisms (C/C: wild type; T/T: homozygous mutant genotype T; C/T: heterozygote genotype C) were detected by pyrosequencing. The plasma concentrations of tamoxifen and its two major active metabolites were determined by liquid chromatography tandem mass spectrometry (LC-MS). Disease-free survival (DFS) and overall survival (OS) were assessed by Kaplan-Meier analysis, while the Cox proportional hazards model was used in multivariate tests for prognostic significance. We found that T/T carrier showed the lowest serum concentration of endoxifen as compared to C/C and C/T carriers (p<0.01). In the subgroup of patients below 40 years of age, T/T carriers appeared to have the shortest DFS and OS as compared to other genotype carriers (p<0.01). When genotypes (C/C, C/T and T/T carriers) and other clinical characteristics were adjusted, tumor size (>2 cm) and grades were independent prognostic factors for DFS but not OS (tumor size >2 cm: HR: 3.870, 95% CI: 1.045-14.330, P = 0.043; tumor grades: HR: 2.230, 95% CI: 1.090-4.562, P = 0.028). In conclusion, the T/T genotype is a negative prognostic factor in young breast cancer patients using tamoxifen. Tumor size (>2 cm) and grades are independent prognostic factors for DFS, when genotype of CYP2D6*10 (c.100C>T) is adjusted. PMID:27648149

  2. Association of CYP2D6*10 (c.100C>T) polymorphisms with clinical outcome of breast cancer after tamoxifen adjuvant endocrine therapy in Chinese population

    PubMed Central

    Lei, Lei; Wang, Xian; Wu, Xiao-dan; Wang, Zeng; Chen, Zhan-hong; Zheng, Ya-bin; Wang, Xiao-jia

    2016-01-01

    Tamoxifen is the most widely used adjuvant endocrine therapy for breast cancer. However, the pharmacogenetic effect of CYP2D6 on its efficacy remains unclear. Therefore, this study aimed to evaluate the association of CYP2D6*10 (c.100C>T) polymorphisms with clinical outcome in Chinese breast cancer patients. A total of 72 tamoxifen-treated early breast cancer patients were included in this study. CYP2D6*10 (c.100C>T) polymorphisms (C/C: wild type; T/T: homozygous mutant genotype T; C/T: heterozygote genotype C) were detected by pyrosequencing. The plasma concentrations of tamoxifen and its two major active metabolites were determined by liquid chromatography tandem mass spectrometry (LC-MS). Disease-free survival (DFS) and overall survival (OS) were assessed by Kaplan-Meier analysis, while the Cox proportional hazards model was used in multivariate tests for prognostic significance. We found that T/T carrier showed the lowest serum concentration of endoxifen as compared to C/C and C/T carriers (p<0.01). In the subgroup of patients below 40 years of age, T/T carriers appeared to have the shortest DFS and OS as compared to other genotype carriers (p<0.01). When genotypes (C/C, C/T and T/T carriers) and other clinical characteristics were adjusted, tumor size (>2 cm) and grades were independent prognostic factors for DFS but not OS (tumor size >2 cm: HR: 3.870, 95% CI: 1.045-14.330, P = 0.043; tumor grades: HR: 2.230, 95% CI: 1.090-4.562, P = 0.028). In conclusion, the T/T genotype is a negative prognostic factor in young breast cancer patients using tamoxifen. Tumor size (>2 cm) and grades are independent prognostic factors for DFS, when genotype of CYP2D6*10 (c.100C>T) is adjusted.

  3. Cytochrome P450 (CYP2D6) Genotype is Associated with Elevated Systolic Blood Pressure in Preterm Infants Following NICU Discharge

    PubMed Central

    Dagle, John M; Fisher, Tyler J; Haynes, Susan E; Berends, Susan K; Brophy, Patrick D; Morriss, Frank H; Murray, Jeffrey C

    2011-01-01

    Objective To determine genetic and clinical risk factors associated with elevated systolic blood pressure (ESBP) in preterm infants following discharge. Study design A convenience cohort of infants <32 weeks gestational age was followed after discharge; we retrospectively identified a subgroup of subjects with ESBP (SBP > 90th percentile for term infants). Genetic testing identified alleles associated with ESBP. Multivariable logistic regression analysis was performed for the outcome ESBP with clinical characteristics and genotype as independent variables. Results Predictors of ESBP were: CYP2D6 (rs28360521) CC genotype (OR 2.92; 95% CI 1.48, 5.79), adjusted for outpatient oxygen therapy (OR 4.53, 95%CI 2.23, 8.81) and history of urinary tract infection (OR 4.68, 95% CI 1.47, 14.86). Maximum SBP was modeled by multivariable linear regression analysis: Maximum SBP = 84.8 mmHg + 6.8 mmHg (if CYP2D6 CC genotype) + 6.8 mmHg (if discharged on supplemental oxygen) + 4.4 mmHg (if received inpatient glucocorticoids) (p=0.0002). Conclusion ESBP is common among preterm infants with residual lung disease following NICU discharge. This study reveals clinical factors associated with ESBP, identifies a candidate gene for further testing, and supports the recommendation that BP be monitored sooner than at age 3 years as suggested for term infants. PMID:21353244

  4. Progression of cervical intraepithelial neoplasia to cervical cancer: interactions of cytochrome P450 CYP2D6 EM and glutathione s-transferase GSTM1 null genotypes and cigarette smoking.

    PubMed Central

    Warwick, A. P.; Redman, C. W.; Jones, P. W.; Fryer, A. A.; Gilford, J.; Alldersea, J.; Strange, R. C.

    1994-01-01

    The factors that determine progression of cervical intraepithelial neoplasia (CIN) to squamous cell carcinoma (SCC) are unknown. Cigarette smoking is an independent risk factor for cervical neoplasia, suggesting that polymorphism at detoxicating enzyme loci such as cytochrome P450 CYP2D6 and glutathione S-transferase GSTM1 may determine susceptibility to these cancers. We have studied the frequencies of genotypes at these loci in women suffering low-grade CIN, high-grade CIN and SCC. A non-cancer control group was provided by women with normal cervical histology suffering menorrhagia. Comparison of the frequency distributions of the CYP2D6 PM, HET and EM genotypes (G-->A transition at intron 3/exon 4 and base pair deletion in exon 5) revealed no significant differences between the menorrhagia and SCC groups. Frequency distributions in the menorrhagia group, however, were significantly different (P < 0.04) from those in the low- and high-grade CIN groups. Thus, the proportion of EM was significantly larger (P < 0.03) and of HET generally lower. We found that the frequency of GSTM1 null in the menorrhagia and case groups was not significantly different. Interactive effects of enzyme genotypes with cigarette smoking were studied by comparing the multinomial frequency distributions of CYP2D6 EM/GSTM1 null/smoking over mutually exclusive categories. These showed no significant differences between the menorrhagia group and SCC or low-grade CIN groups. The frequency distribution in high-grade CIN, however, was significantly different to that in the menorrhagia group and in both SCC and low-grade CIN groups. This study was identified, for the first time, an inherited characteristic in women with high-grade CIN who appear to be at reduced risk of SCC. Thus, women with CYP2D6 EM who smoke have increased susceptibility to high-grade CIN but are less likely to progress to SCC, possibly because they effectively detoxify an unidentified chemical involved in mediating disease

  5. Modeling chemical interaction profiles: I. Spectral data-activity relationship and structure-activity relationship models for inhibitors and non-inhibitors of cytochrome P450 CYP3A4 and CYP2D6 isozymes.

    PubMed

    McPhail, Brooks; Tie, Yunfeng; Hong, Huixiao; Pearce, Bruce A; Schnackenberg, Laura K; Ge, Weigong; Valerio, Luis G; Fuscoe, James C; Tong, Weida; Buzatu, Dan A; Wilkes, Jon G; Fowler, Bruce A; Demchuk, Eugene; Beger, Richard D

    2012-03-15

    An interagency collaboration was established to model chemical interactions that may cause adverse health effects when an exposure to a mixture of chemicals occurs. Many of these chemicals--drugs, pesticides, and environmental pollutants--interact at the level of metabolic biotransformations mediated by cytochrome P450 (CYP) enzymes. In the present work, spectral data-activity relationship (SDAR) and structure-activity relationship (SAR) approaches were used to develop machine-learning classifiers of inhibitors and non-inhibitors of the CYP3A4 and CYP2D6 isozymes. The models were built upon 602 reference pharmaceutical compounds whose interactions have been deduced from clinical data, and 100 additional chemicals that were used to evaluate model performance in an external validation (EV) test. SDAR is an innovative modeling approach that relies on discriminant analysis applied to binned nuclear magnetic resonance (NMR) spectral descriptors. In the present work, both 1D ¹³C and 1D ¹⁵N-NMR spectra were used together in a novel implementation of the SDAR technique. It was found that increasing the binning size of 1D ¹³C-NMR and ¹⁵N-NMR spectra caused an increase in the tenfold cross-validation (CV) performance in terms of both the rate of correct classification and sensitivity. The results of SDAR modeling were verified using SAR. For SAR modeling, a decision forest approach involving from 6 to 17 Mold2 descriptors in a tree was used. Average rates of correct classification of SDAR and SAR models in a hundred CV tests were 60% and 61% for CYP3A4, and 62% and 70% for CYP2D6, respectively. The rates of correct classification of SDAR and SAR models in the EV test were 73% and 86% for CYP3A4, and 76% and 90% for CYP2D6, respectively. Thus, both SDAR and SAR methods demonstrated a comparable performance in modeling a large set of structurally diverse data. Based on unique NMR structural descriptors, the new SDAR modeling method complements the existing SAR

  6. Impact of fraction unbound, CYP3A, and CYP2D6 in vivo activities, and other potential covariates to the clearance of tramadol enantiomers in patients with neuropathic pain.

    PubMed

    de Moraes, Natália V; Lauretti, Gabriela R; Coelho, Eduardo B; Godoy, Ana Leonor P C; Neves, Daniel V; Lanchote, Vera L

    2016-04-01

    The pharmacokinetics of tramadol is characterized by a large interindividual variability, which is partially attributed to polymorphic CYP2D6 metabolism. The contribution of CYP3A, CYP2B6, fraction unbound, and other potential covariates remains unknown. This study aimed to investigate the contribution of in vivo activities of cytochrome P450 (CYP) 2D6 and 3A as well as other potential covariates (CYP2B6 genotype to the SNP g.15631G>T, fraction unbound, age, body weight, creatinine clearance) to the enantioselective pharmacokinetics of tramadol. Thirty patients with neuropathic pain and phenotyped as CYP2D6 extensive metabolizers were treated with a single oral dose of 100 mg tramadol. Multiple linear regressions were performed to determine the contribution of CYP activities and other potential covariates to the clearance of tramadol enantiomers. The apparent total clearances were 44.9 (19.1-102-2) L/h and 55.2 (14.8-126.0) L/h for (+)- and (-)-tramadol, respectively [data presented as median (minimum-maximum)]. Between 79 and 83% of the overall variation in apparent clearance of tramadol enantiomers was explained by fraction unbound, CYP2D6, and CYP3A in vivo activities and body weight. Fraction unbound explained 47 and 41% of the variation in clearance of (+)-tramadol and (-)-tramadol, respectively. Individually, CYP2D6 and CYP3A activities were shown to have moderate contribution on clearance of tramadol enantiomers (11-16% and 11-18%, respectively). In conclusion, factors affecting fraction unbound of drugs (such as hyperglycemia or co-administration of drugs highly bound to plasma proteins) should be monitored, because this parameter dominates the elimination of tramadol enantiomers.

  7. Contribution of the activities of CYP3A, CYP2D6, CYP1A2 and other potential covariates to the disposition of methadone in patients undergoing methadone maintenance treatment

    PubMed Central

    Shiran, Mohammad-Reza; Lennard, Martin S; Iqbal, Mohammad-Zafar; Lagundoye, Oldwale; Seivewright, Nicholas; Tucker, Geoffrey T; Rostami-Hodjegan, Amin

    2009-01-01

    AIMS To investigate the influence of different cytochrome P450 (CYP) activities and other potential covariates on the disposition of methadone in patients on methadone maintenance therapy (MMT). METHODS Eighty-eight patients (58 male; 21–55 years; 84 White) on MMT were studied. CYP2D6 activity [3 h plasma metabolic ratio of dextromethorphan (DEX) to dextrorphan (DOR)] was determined in 44 patients (29 male; 24–55 years), CYP1A2 activity (salivary caffeine elimination half-life) in 44 patients (21 male; 24–55 years) and CYP3A activity (oral clearance of midazolam) in 49 patients (33 male; 23–55 years). Data on all three CYPs were obtained from 32 subjects. Total plasma concentrations of (RS)-methadone and total and unbound plasma concentrations of both enantiomers were measured by LC/MS. Population pharmacokinetics and subsequent multiple regression analysis were used to calculate methadone oral clearance and to identify its covariates. RESULTS Between 61 and 68% of the overall variation in total plasma trough concentrations of (RS)-, (R)- and (S)-methadone was explained by methadone dose, duration of addiction before starting MMT, CYP3A activity and illicit morphine use. CYP3A activity explained 22, 16, 15 and 23% of the variation in unbound (R)-, unbound (S)-, total (RS)- and total (S)-methadone clearances, respectively. Neither CYP2D6 nor CYP1A2 activity was related to methadone disposition. CONCLUSIONS CYP3A activity has a modest influence on methadone disposition. Inhibitors and inducers of this enzyme should be monitored in patients taking methadone. PMID:19133059

  8. Influence of the CYP2D6 Isoenzyme in Patients Treated with Venlafaxine for Major Depressive Disorder: Clinical and Economic Consequences

    PubMed Central

    Sicras-Mainar, Antoni; Guijarro, Pablo; Armada, Beatriz; Blanca-Tamayo, Milagrosa; Navarro-Artieda, Ruth

    2014-01-01

    Background Antidepressant drugs are the mainstay of drug therapy for sustained remission of symptoms. However, the clinical results are not encouraging. This lack of response could be due, among other causes, to factors that alter the metabolism of the antidepressant drug. Objective: to evaluate the impact of concomitant administration of CYP2D6 inhibitors or substrates on the efficacy, tolerability and costs of patients treated with venlafaxine for major depressive disorder in clinical practice. Methods We designed an observational study using the medical records of outpatients. Subjects aged ≥18 years who started taking venlafaxine during 2008–2010 were included. Three study groups were considered: no combinations (reference), venlafaxine-substrate, and venlafaxine-inhibitor. The follow-up period was 12 months. The main variables were: demographic data, comorbidity, remission (Hamilton <7), response to treatment, adverse events and costs. The statistical analysis included logistic regression models and ANCOVA, with p values <0.05 considered significant. Results A total of 1,115 subjects were recruited. The mean age was 61.7 years and 75.1% were female. Approximately 33.3% (95% CI: 30.5 to 36.1) were receiving some kind of drug combination (venlafaxine-substrate: 23.0%, and venlafaxine-inhibitor: 10.3%). Compared with the venlafaxine-substrate and venlafaxine-inhibitor groups, patients not taking concomitant drugs had a better response to therapy (49.1% vs. 39.9% and 34.3%, p<0.01), greater remission of symptoms (59.9% vs. 50.2% and 43.8%, p<0.001), fewer adverse events (1.9% vs. 7.0% and 6.1%, p<0.05) and a lower mean adjusted cost (€2,881.7 vs. €4,963.3 and €7,389.1, p<0.001), respectively. All cost components showed these differences. Conclusions The patients treated with venlafaxine alone showed a better response to anti-depressant treatment, greater remission of symptoms, a lower incidence of adverse events and lower healthcare costs. PMID:25369508

  9. Effects of Panax notoginseng saponins on the activities of CYP1A2, CYP2C9, CYP2D6 and CYP3A4 in rats in vivo.

    PubMed

    Liu, Rui; Qin, Mengnan; Hang, Pengzhou; Liu, Yan; Zhang, Zhiren; Liu, Gaofeng

    2012-08-01

    The aim of this study was to assess the influence of the Panax notoginseng saponins (PNS) on the activities of the drug-metabolizing enzymes cytochrome P450 (CYP450) 1A2, 2 C9, 2D6 and 3A4 in rats. The activities of CYP1A2, 2 C9, 2D6 and 3A4 were measured using specific probe drugs. After pretreatment for 1 week with PNS or physiological saline (control group), probe drugs caffeine (10 mg/kg; CYP1A2 activity), tolbutamide (15 mg/kg; CYP2C9 activity), metoprolol (20 mg/kg; CYP2D6 activity) and dapsone (10 mg/kg; CYP3A4 activity) were administered to rats by intraperitoneal injection. The blood was then collected at different times for ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) analysis. The data showed that PNS exhibited an induction effect on CYP1A2 by decreasing caffeine C(max) (36.3%, p < 0.01) and AUC(0-∞) (22.77%, p < 0.05) and increasing CL/F (27.03%, p < 0.05) compared with those of the control group. Western blot analysis was used to detect the effect of PNS on the protein level of CYP1A2, and the results showed that PNS could upregulate the protein expression of CYP1A2. However, no significant changes in CYP2C9, 2D6 or 3A4 activities were observed. In conclusion, the results indicate that PNS could induce CYP1A2, which may affect the disposition of medicines primarily dependent on the CYP1A2 pathway. Our work may be the basis of related herb-drug interactions in the clinic.

  10. An evaluation of the CYP2D6 and CYP3A4 inhibition potential of metoprolol metabolites and their contribution to drug-drug and drug-herb interaction by LC-ESI/MS/MS.

    PubMed

    Borkar, Roshan M; Bhandi, Murali Mohan; Dubey, Ajay P; Ganga Reddy, V; Komirishetty, Prashanth; Nandekar, Prajwal P; Sangamwar, Abhay T; Kamal, Ahmed; Banerjee, Sanjay K; Srinivas, R

    2016-10-01

    The aim of the present study was to evaluate the contribution of metabolites to drug-drug interaction and drug-herb interaction using the inhibition of CYP2D6 and CYP3A4 by metoprolol (MET) and its metabolites. The peak concentrations of unbound plasma concentration of MET, α-hydroxy metoprolol (HM), O-desmethyl metoprolol (ODM) and N-desisopropyl metoprolol (DIM) were 90.37 ± 2.69, 33.32 ± 1.92, 16.93 ± 1.70 and 7.96 ± 0.94 ng/mL, respectively. The metabolites identified, HM and ODM, had a ratio of metabolic area under the concentration-time curve (AUC) to parent AUC of ≥0.25 when either total or unbound concentration of metabolite was considered. In vitro CYP2D6 and CYP3A4 inhibition by MET, HM and ODM study revealed that MET, HM and ODM were not inhibitors of CYP3A4-catalyzed midazolam metabolism and CYP2D6-catalyzed dextromethorphan metabolism. However, DIM only met the criteria of >10% of the total drug related material and <25% of the parent using unbound concentrations. If CYP inhibition testing is solely based on metabolite exposure, DIM metabolite would probably not be considered. However, the present study has demonstrated that DIM contributes significantly to in vitro drug-drug interaction. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Role of cytochrome P450 2D6 genetic polymorphism in carvedilol hydroxylation in vitro

    PubMed Central

    Wang, Zhe; Wang, Li; Xu, Ren-ai; Zhan, Yun-yun; Huang, Cheng-ke; Dai, Da-peng; Cai, Jian-ping; Hu, Guo-xin

    2016-01-01

    Cytochrome P450 2D6 (CYP2D6) is a highly polymorphic enzyme that catalyzes the metabolism of a great number of therapeutic drugs. Up to now, >100 allelic variants of CYP2D6 have been reported. Recently, we identified 22 novel variants in the Chinese population in these variants. The purpose of this study was to examine the enzymatic activity of the variants toward the CYP2D6 substrate carvedilol in vitro. The CYP2D6 proteins, including CYP2D6.1 (wild type), CYP2D6.2, CYP2D6.10, and 22 other novel CYP2D6 variants, were expressed from insect microsomes and incubated with carvedilol ranging from 1.0 μM to 50 μM at 37°C for 30 minutes. After termination, the carvedilol metabolites were extracted and detected using ultra-performance liquid chromatography tandem mass-spectrometry. Among the 24 CYP2D6 variants, CYP2D6.92 and CYP2D6.96 were catalytically inactive and the remaining 22 variants exhibited significantly decreased intrinsic clearance values (ranging from ~25% to 95%) compared with CYP2D6.1. The present data in vitro suggest that the newly found variants significantly reduced catalytic activities compared with CYP2D6.1. Given that CYP2D6 protein activities could affect carvedilol plasma levels, these findings are greatly relevant to personalized medicine. PMID:27354764

  12. Cytochrome P450 2D6 enzyme neuroprotects against 1-methyl-4-phenylpyridinium toxicity in SH-SY5Y neuronal cells.

    PubMed

    Mann, Amandeep; Tyndale, Rachel F

    2010-04-01

    Cytochrome P450 (CYP) 2D6 is an enzyme that is expressed in liver and brain. It can inactivate neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1,2,3,4-tetrahydroisoquinoline and beta-carbolines. Genetically slow CYP2D6 metabolizers are at higher risk for developing Parkinson's disease, a risk that increases with exposure to pesticides. The goal of this study was to investigate the neuroprotective role of CYP2D6 in an in-vitro neurotoxicity model. SH-SY5Y human neuroblastoma cells express CYP2D6 as determined by western blotting, immunocytochemistry and enzymatic activity. CYP2D6 metabolized 3-[2-(N,N-diethyl-N-methylammonium)ethyl]-7-methoxy-4-methylcoumarin and the CYP2D6-specific inhibitor quinidine (1 microM) blocked 96 +/- 1% of this metabolism, indicating that CYP2D6 is functional in this cell line. Treatment of cells with CYP2D6 inhibitors (quinidine, propanolol, metoprolol or timolol) at varying concentrations significantly increased the neurotoxicity caused by 1-methyl-4-phenylpyridinium (MPP+) at 10 and 25 microM by between 9 +/- 1 and 22 +/- 5% (P < 0.01). We found that CYP3A is also expressed in SH-SY5Y cells and inhibiting CYP3A with ketoconazole significantly increased the cell death caused by 10 and 25 microM of MPP+ by between 8 +/- 1 and 30 +/- 3% (P < 0.001). Inhibiting both CYP2D6 and CYP3A showed an additive effect on MPP+ neurotoxicity. These data further support a possible role for CYP2D6 in neuroprotection from Parkinson's disease-causing neurotoxins, especially in the human brain where expression of CYP2D6 is high in some regions (e.g. substantia nigra). PMID:20345925

  13. Influence of glutathione‐S‐transferase (GSTM1, GSTP1, GSTT1) and cytochrome p450 (CYP1A1, CYP2D6) polymorphisms on numbers of basal cell carcinomas (BCCs) in families with the naevoid basal cell carcinoma syndrome

    PubMed Central

    Yang, X (R); Pfeiffer, R M; Goldstein, A M

    2006-01-01

    Background The naevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant multisystem disorder with variable expression. NBCCS patients have variable susceptibility to development of basal cell carcinoma (BCC). Previous studies have shown that polymorphisms of some metabolic genes encoding the cytochrome p450 (CYP) and glutathione‐S‐transferase (GST) enzymes influenced the numbers of BCCs in sporadic BCC cases. Objective To determine whether allelic variants of these genes contribute to the variation in numbers of BCCs observed in NBCCS families. Methods Genotyping and analysis was carried out in 152 members (69 affected and 83 unaffected) of 13 families with NBCCS for seven polymorphisms in five metabolic genes including CYP1A1, CYP2D6, GSTM1, GSTP1, and GSTT1. Results GSTP1 Val105 and GSTP1 Val114 alleles were significantly associated with fewer BCC numbers (odds ratio (OR)105 = 0.55 (95% confidence interval, 0.35 to 0.88); OR114 = 0.20 (0.05 to 0.88)). The Val105 allele showed a dose dependent effect (ORIle/Val = 0.58 (0.34 to 0.88); ORVal/Val = 0.34 (0.14 to 0.78)). In addition, fewer jaw cysts were observed in carriers of the three p450 polymorphisms (CYP1A1m1, CYP1A1m2, and CYP2D6*4) (ORCYP1A1m1 = 0.27 (0.12 to 0.58); ORCYP1A1m2 = 0.25 (0.08 to 0.78); ORCYP2D6*4 = 0.33 (0.18 to 0.60)). Conclusions Genetic variants might contribute to the variation in numbers of BCCs and jaw cysts observed in NBCCS families. PMID:16582078

  14. Farnesoid X Receptor Agonist Represses Cytochrome P450 2D6 Expression by Upregulating Small Heterodimer Partner.

    PubMed

    Pan, Xian; Lee, Yoon-Kwang; Jeong, Hyunyoung

    2015-07-01

    Cytochrome P450 2D6 (CYP2D6) is a major drug-metabolizing enzyme responsible for eliminating approximately 20% of marketed drugs. Studies have shown that differential transcriptional regulation of CYP2D6 may contribute to large interindividual variability in CYP2D6-mediated drug metabolism. However, the factors governing CYP2D6 transcription are largely unknown. We previously demonstrated small heterodimer partner (SHP) as a novel transcriptional repressor of CYP2D6 expression. SHP is a representative target gene of the farnesoid X receptor (FXR). The objective of this study is to investigate whether an agonist of FXR, 3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole (GW4064), alters CYP2D6 expression and activity. In CYP2D6-humanized transgenic mice, GW4064 decreased hepatic CYP2D6 expression and activity (by 2-fold) while increasing SHP expression (by 2-fold) and SHP recruitment to the CYP2D6 promoter. CYP2D6 repression by GW4064 was abrogated in Shp(-/-);CYP2D6 mice, indicating a critical role of SHP in CYP2D6 regulation by GW4064. Also, GW4064 decreased CYP2D6 expression (by 2-fold) in primary human hepatocytes, suggesting that the results obtained in CYP2D6-humanized transgenic mice can be translated to humans. This proof of concept study provides evidence for CYP2D6 regulation by an inducer of SHP expression, namely, the FXR agonist GW4064.

  15. Farnesoid X Receptor Agonist Represses Cytochrome P450 2D6 Expression by Upregulating Small Heterodimer Partner

    PubMed Central

    Pan, Xian; Lee, Yoon-Kwang

    2015-01-01

    Cytochrome P450 2D6 (CYP2D6) is a major drug-metabolizing enzyme responsible for eliminating approximately 20% of marketed drugs. Studies have shown that differential transcriptional regulation of CYP2D6 may contribute to large interindividual variability in CYP2D6-mediated drug metabolism. However, the factors governing CYP2D6 transcription are largely unknown. We previously demonstrated small heterodimer partner (SHP) as a novel transcriptional repressor of CYP2D6 expression. SHP is a representative target gene of the farnesoid X receptor (FXR). The objective of this study is to investigate whether an agonist of FXR, 3-(2,6-dichlorophenyl)-4-(3′-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole (GW4064), alters CYP2D6 expression and activity. In CYP2D6-humanized transgenic mice, GW4064 decreased hepatic CYP2D6 expression and activity (by 2-fold) while increasing SHP expression (by 2-fold) and SHP recruitment to the CYP2D6 promoter. CYP2D6 repression by GW4064 was abrogated in Shp(−/−);CYP2D6 mice, indicating a critical role of SHP in CYP2D6 regulation by GW4064. Also, GW4064 decreased CYP2D6 expression (by 2-fold) in primary human hepatocytes, suggesting that the results obtained in CYP2D6-humanized transgenic mice can be translated to humans. This proof of concept study provides evidence for CYP2D6 regulation by an inducer of SHP expression, namely, the FXR agonist GW4064. PMID:25926433

  16. Effects of Radix Astragali and Radix Rehmanniae, the components of an anti-diabetic foot ulcer herbal formula, on metabolism of model CYP1A2, CYP2C9, CYP2D6, CYP2E1 and CYP3A4 probe substrates in pooled human liver microsomes and specific CYP isoforms.

    PubMed

    Or, Penelope M Y; Lam, Francis F Y; Kwan, Y W; Cho, C H; Lau, C P; Yu, H; Lin, G; Lau, Clara B S; Fung, K P; Leung, P C; Yeung, John H K

    2012-04-15

    The present study investigated the effects of Radix Astragali (RA) and Radix Rehmanniae (RR), the major components of an anti-diabetic foot ulcer herbal formula (NF3), on the metabolism of model probe substrates of human CYP isoforms, CYP1A2, CYP2C9, CYP2D6, CYP2E1 and CYP3A4, which are important in the metabolism of a variety of xenobiotics. The effects of RA or RR on human CYP1A2 (phenacetin O-deethylase), CYP2C9 (tolbutamide 4-hydroxylase), CYP2D6 (dextromethorphan O-demethylase), CYP2E1 (chlorzoxazone 6-hydroxylase) and CYP3A4 (testosterone 6β-hydroxylase) activities were investigated using pooled human liver microsomes. NF3 competitively inhibited activities of CYP2C9 (IC(50)=0.98mg/ml) and CYP3A4 (IC(50)=0.76mg/ml), with K(i) of 0.67 and 1.0mg/ml, respectively. With specific human CYP2C9 and CYP3A4 isoforms, NF3 competitively inhibited activities of CYP2C9 (IC(50)=0.86mg/ml) and CYP3A4 (IC(50)=0.88mg/ml), with K(i) of 0.57 and 1.6mg/ml, respectively. Studies on RA or RR individually showed that RR was more important in the metabolic interaction with the model CYP probe substrates. RR dose-dependently inhibited the testosterone 6β-hydroxylation (K(i)=0.33mg/ml) while RA showed only minimal metabolic interaction potential with the model CYP probe substrates studied. This study showed that RR and the NF3 formula are metabolized mainly by CYP2C9 and/or CYP3A4, but weakly by CYP1A2, CYP2D6 and CYP2E1. The relatively high K(i) values of NF3 (for CYP2C9 and CYP3A4 metabolism) and RR (for CYP3A4 metabolism) would suggest a low potential for NF3 to cause herb-drug interaction involving these CYP isoforms.

  17. Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)

    ClinicalTrials.gov

    2016-10-24

    Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  18. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6.

    PubMed

    Qiao, Wanqiong; Yang, Yao; Sebra, Robert; Mendiratta, Geetu; Gaedigk, Andrea; Desnick, Robert J; Scott, Stuart A

    2016-03-01

    The cytochrome P450-2D6 (CYP2D6) enzyme metabolizes ∼25% of common medications, yet homologous pseudogenes and copy number variants (CNVs) make interrogating the polymorphic CYP2D6 gene with short-read sequencing challenging. Therefore, we developed a novel long-read, full gene CYP2D6 single molecule real-time (SMRT) sequencing method using the Pacific Biosciences platform. Long-range PCR and CYP2D6 SMRT sequencing of 10 previously genotyped controls identified expected star (*) alleles, but also enabled suballele resolution, diplotype refinement, and discovery of novel alleles. Coupled with an optimized variant-calling pipeline, CYP2D6 SMRT sequencing was highly reproducible as triplicate intra- and inter-run nonreference genotype results were completely concordant. Importantly, targeted SMRT sequencing of upstream and downstream CYP2D6 gene copies characterized the duplicated allele in 15 control samples with CYP2D6 CNVs. The utility of CYP2D6 SMRT sequencing was further underscored by identifying the diplotypes of 14 samples with discordant or unclear CYP2D6 configurations from previous targeted genotyping, which again included suballele resolution, duplicated allele characterization, and discovery of a novel allele and tandem arrangement. Taken together, long-read CYP2D6 SMRT sequencing is an innovative, reproducible, and validated method for full-gene characterization, duplication allele-specific analysis, and novel allele discovery, which will likely improve CYP2D6 metabolizer phenotype prediction for both research and clinical testing applications.

  19. Cytochrome P450 2D6 and 3A4 enzyme inhibition by amine stimulants in dietary supplements.

    PubMed

    Liu, Yitong; Santillo, Michael F

    2016-01-01

    A number of dietary supplements used for weight loss and athletic performance enhancement have been recently shown to contain a variety of stimulants, for which there is a lack of pharmacological and toxicological information. One concern for these emerging compounds is their potential to inhibit metabolic enzymes in the liver such as cytochromes P450 (CYP), which can lead to unexpected interactions among dietary supplements, drugs, and other xenobiotics. In this study, inhibition of human recombinant CYP2D6 and CYP3A4 by 27 amine stimulants associated with dietary supplements and their analogs was evaluated by luminescence assays. The strongest CYP2D6 inhibitors were coclaurine (IC50  = 0.14 ± 0.01 μM) and N-benzylphenethylamine (IC50  = 0.7 ± 0.2 μM), followed by several other relatively strong inhibitors (IC50 , 2-12 μM) including β-methylphenethylamine, N,β-dimethylphenethylamine (phenpromethamine), 1,3-dimethylamylamine (DMAA), N,α-diethylphenethylamine, higenamine (norcoclaurine) and N,N-diethylphenethylamine. Only nine compounds inhibited CYP3A4 by 20-55% at 100 μM. Results of this study illustrate that several amine stimulants associated with dietary supplements inhibit CYP2D6 and CYP3A4 in vitro, and these compounds may participate in adverse drug-dietary supplement interactions in vivo. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Molecular Dynamics Simulations to Investigate the Influences of Amino Acid Mutations on Protein Three-Dimensional Structures of Cytochrome P450 2D6.1, 2, 10, 14A, 51, and 62.

    PubMed

    Fukuyoshi, Shuichi; Kometani, Masaharu; Watanabe, Yurie; Hiratsuka, Masahiro; Yamaotsu, Noriyuki; Hirono, Shuichi; Manabe, Noriyoshi; Takahashi, Ohgi; Oda, Akifumi

    2016-01-01

    Many natural mutants of the drug metabolizing enzyme cytochrome P450 (CYP) 2D6 have been reported. Because the enzymatic activities of many mutants are different from that of the wild type, the genetic polymorphism of CYP2D6 plays an important role in drug metabolism. In this study, the molecular dynamics simulations of the wild type and mutants of CYP2D6, CYP2D6.1, 2, 10, 14A, 51, and 62 were performed, and the predictions of static and dynamic structures within them were conducted. In the mutant CYP2D6.10, 14A, and 61, dynamic properties of the F-G loop, which is one of the components of the active site access channel of CYP2D6, were different from that of the wild type. The F-G loop acted as the "hatch" of the channel, which was closed in those mutants. The structure of CYP2D6.51 was not converged by the simulation, which indicated that the three-dimensional structure of CYP2D6.51 was largely different from that of the wild type. In addition, the intramolecular interaction network of CYP2D6.10, 14A, and 61 was different from that of the wild type, and it is considered that these structural changes are the reason for the decrease or loss of enzymatic activities. On the other hand, the static and dynamic properties of CYP2D6.2, whose activity was normal, were not considerably different from those of the wild type.

  1. Molecular Dynamics Simulations to Investigate the Influences of Amino Acid Mutations on Protein Three-Dimensional Structures of Cytochrome P450 2D6.1, 2, 10, 14A, 51, and 62

    PubMed Central

    Watanabe, Yurie; Hiratsuka, Masahiro; Yamaotsu, Noriyuki; Hirono, Shuichi; Manabe, Noriyoshi; Takahashi, Ohgi; Oda, Akifumi

    2016-01-01

    Many natural mutants of the drug metabolizing enzyme cytochrome P450 (CYP) 2D6 have been reported. Because the enzymatic activities of many mutants are different from that of the wild type, the genetic polymorphism of CYP2D6 plays an important role in drug metabolism. In this study, the molecular dynamics simulations of the wild type and mutants of CYP2D6, CYP2D6.1, 2, 10, 14A, 51, and 62 were performed, and the predictions of static and dynamic structures within them were conducted. In the mutant CYP2D6.10, 14A, and 61, dynamic properties of the F-G loop, which is one of the components of the active site access channel of CYP2D6, were different from that of the wild type. The F-G loop acted as the “hatch” of the channel, which was closed in those mutants. The structure of CYP2D6.51 was not converged by the simulation, which indicated that the three-dimensional structure of CYP2D6.51 was largely different from that of the wild type. In addition, the intramolecular interaction network of CYP2D6.10, 14A, and 61 was different from that of the wild type, and it is considered that these structural changes are the reason for the decrease or loss of enzymatic activities. On the other hand, the static and dynamic properties of CYP2D6.2, whose activity was normal, were not considerably different from those of the wild type. PMID:27046024

  2. Metabolism of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine by Mitochondrion-targeted Cytochrome P450 2D6

    PubMed Central

    Bajpai, Prachi; Sangar, Michelle C.; Singh, Shilpee; Tang, Weigang; Bansal, Seema; Chowdhury, Goutam; Cheng, Qian; Fang, Ji-Kang; Martin, Martha V.; Guengerich, F. Peter; Avadhani, Narayan G.

    2013-01-01

    1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxic side product formed in the chemical synthesis of desmethylprodine opioid analgesic, which induces Parkinson disease. Monoamine oxidase B, present in the mitochondrial outer membrane of glial cells, catalyzes the oxidation of MPTP to the toxic 1-methyl-4-phenylpyridinium ion (MPP+), which then targets the dopaminergic neurons causing neuronal death. Here, we demonstrate that mitochondrion-targeted human cytochrome P450 2D6 (CYP2D6), supported by mitochondrial adrenodoxin and adrenodoxin reductase, can efficiently catalyze the metabolism of MPTP to MPP+, as shown with purified enzymes and also in cells expressing mitochondrial CYP2D6. Neuro-2A cells stably expressing predominantly mitochondrion-targeted CYP2D6 were more sensitive to MPTP-mediated mitochondrial respiratory dysfunction and complex I inhibition than cells expressing predominantly endoplasmic reticulum-targeted CYP2D6. Mitochondrial CYP2D6 expressing Neuro-2A cells produced higher levels of reactive oxygen species and showed abnormal mitochondrial structures. MPTP treatment also induced mitochondrial translocation of an autophagic marker, Parkin, and a mitochondrial fission marker, Drp1, in differentiated neurons expressing mitochondrial CYP2D6. MPTP-mediated toxicity in primary dopaminergic neurons was attenuated by CYP2D6 inhibitor, quinidine, and also partly by monoamine oxidase B inhibitors deprenyl and pargyline. These studies show for the first time that dopaminergic neurons expressing mitochondrial CYP2D6 are fully capable of activating the pro-neurotoxin MPTP and inducing neuronal damage, which is effectively prevented by the CYP2D6 inhibitor quinidine. PMID:23258538

  3. Cytochrome P450 2D6 Activity Predicts Discontinuation of Tamoxifen Therapy in Breast Cancer Patients

    PubMed Central

    Rae, James M.; Sikora, Matthew J.; Henry, N. Lynn; Li, Lang; Kim, Seongho; Oesterreich, Steffi; Skaar, Todd; Nguyen, Anne T.; Desta, Zeruesenay; Storniolo, Anna Maria; Flockhart, David A.; Hayes, Daniel F.; Stearns, Vered

    2009-01-01

    The selective estrogen receptor modulator tamoxifen is routinely used for treatment and prevention of estrogen receptor positive breast cancer. Studies of tamoxifen adherence suggest that over half of patients discontinue treatment before the recommended 5 years. We hypothesized that polymorphisms in CYP2D6, the enzyme responsible for tamoxifen activation, predict for tamoxifen discontinuation. Tamoxifen-treated women (n = 297) were genotyped for CYP2D6 variants and assigned a “score” based on predicted allele activities from 0 (no activity) to 2 (high activity). Correlation between CYP2D6 score and discontinuation rates at 4 months were tested. We observed a strong non-linear correlation between higher CYP2D6 score and increased rates of discontinuation (r2 = 0.935, p = 0.018). These data suggest that presence of active CYP2D6 alleles may predict for higher likelihood of tamoxifen discontinuation. Therefore, patients who may be most likely to benefit from tamoxifen may paradoxically be most likely to discontinue treatment prematurely. PMID:19421167

  4. Binding of bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine to wild-type and F120A mutant cytochrome P450 2D6 studied by resonance Raman spectroscopy

    SciTech Connect

    Bonifacio, Alois . E-mail: zwan@few.vu.nl

    2006-05-12

    Cytochrome P450 2D6 (CYP2D6) is one of the most important drug-metabolizing enzymes in humans. Resonance Raman data, reported for First time for CYP2D6, show that the CYP2D6 heme is found to be in a six-coordinated low-spin state in the absence of substrates, and it is perturbed to different extents by bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine (MDMA). Dextromethorphan and MDMA induce in CYP2D6 a significant amount of five-coordinated high-spin heme species and reduce the polarity of its heme-pocket, whereas bufuralol does not. Spectra of the F120A mutant CYP2D6 suggest that Phe{sup 12} is involved in substrate-binding of dextromethorphan and MDMA, being responsible for the spectral differences observed between these two compounds and bufuralol. These differences could be explained postulating a different substrate mobility for each compound in the CYP2D6 active site, consistently with the role previously suggested for Phe{sup 12} in binding dextromethorphan and MDMA.

  5. Clinical Pharmacogenetics Implementation Consortium Guidelines for Cytochrome P450 2D6 Genotype and Codeine Therapy: 2014 Update

    PubMed Central

    Crews, K R; Gaedigk, A; Dunnenberger, H M; Leeder, J S; Klein, T E; Caudle, K E; Haidar, C E; Shen, D D; Callaghan, J T; Sadhasivam, S; Prows, C A; Kharasch, E D; Skaar, T C

    2014-01-01

    Codeine is bioactivated to morphine, a strong opioid agonist, by the hepatic cytochrome P450 2D6 (CYP2D6); hence, the efficacy and safety of codeine are governed by CYP2D6 activity. Polymorphisms are a major cause of CYP2D6 variability. We summarize evidence from the literature supporting this association and provide therapeutic recommendations for codeine based on CYP2D6 genotype. This document is an update to the 2012 Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP2D6 genotype and codeine therapy. PMID:24458010

  6. Roles of phenylalanine at position 120 and glutamic acid at position 222 in the oxidation of chiral substrates by cytochrome P450 2D6.

    PubMed

    Masuda, Kazufumi; Tamagake, Keietsu; Katsu, Takashi; Torigoe, Fumihiro; Saito, Keita; Hanioka, Nobumitsu; Yamano, Shigeru; Yamamoto, Shigeo; Narimatsu, Shizuo

    2006-02-01

    The roles of Phe-120 and Glu-222 in the oxidation of chiral substrates bunitrolol (BTL) and bufuralol (BF) by CYP2D6 are discussed. Wild-type CYP2D6 (CYP2D6-WT) oxidized BTL to 4-hydroxybunitrolol (4-OH-BTL) with substrate enantioselectivity of (R)-(+)-BTL > (S)-(-)-BTL. The same enzyme converted BF into 1''-hydroxybufuralol with substrate enantioselectivity of (R)-BF > (S)-BF and metabolite diastereoselectivity of (1''R)-OH < (1''S)-OH. The substitution of Phe-120 by alanine markedly increased the apparent K(m) and V(max) values for enantiomeric BTL 4-hydroxylation by CYP2D6. In contrast, the same substitution caused an increase only in V(max) values of (S)-BF 1''-hydroxylation without changing apparent K(m) values, while kinetic parameters (K(m) and V(max) values) for (R)-BF 1''-hydroxylation remained unchanged. Furthermore, the substitution of Glu-222 as well as Glu-216 by alanine remarkably decreased both the apparent K(m) and V(max) values without changing substrate enantioselectivity or metabolite diastereoselectivity. A computer-assisted simulation study using energy minimization and molecular dynamics techniques indicated that the hydrophobic interaction of an aromatic moiety of the substrate with Phe-120 and the ionic interaction of a basic nitrogen atom of the substrate with Glu-222 in combination with Glu-216 play important roles in the binding of BF and BTL by CYP2D6 and the orientation of these substrates in the active-site cavity. This modeling yielded a convincing explanation for the reversal of substrate enantioselectivity in BTL 4-hydroxylation between CYP2D6-WT and CYP2D6-V374M having methionine in place of Val-374, which supports the validity of this modeling.

  7. Metabolism of risperidone to 9-hydroxyrisperidone by human cytochromes P450 2D6 and 3A4.

    PubMed

    Fang, J; Bourin, M; Baker, G B

    1999-02-01

    Risperidone is a relatively new antipsychotic drug that has been reported to improve both the positive and the negative symptoms of schizophrenia and produces relatively few extrapyramidal side effects at low doses. Formation of 9-hydroxyrisperidone, an active metabolite, is the most important metabolic pathway of risperidone in human. In the present study, in vitro metabolism of risperidone (100 microM) was investigated using the recombinant human cytochrome P450 (CYP) enzymes CYP1A1, CYP1A2, CYP2C8, CYP2C9-arg144, CYP2C9-cys144, CYP2C19, CYP2D6, CYP3A4 and CYP3A5 supplemented with an NADPH-generating system. 9-Hydroxyrisperidone was determined by a new HPLC method with an Hypersil CN column and a UV detector. Of these enzymes, CYPs 2D6, 3A4 and 3A5 were found to be the ones capable of metabolising risperidone to 9-hydroxyrisperidone, with activities of 7.5, 0.4 and 0.2 pmol pmol(-1) CYP min(-1), respectively. A correlation study using a panel of human liver microsomes showed that the formation of 9-hydroxyrisperidone is highly correlated with CYP2D6 and 3A activities. Thus, both CYP2D6 and 3A4 are involved in the 9-hydroxylation of risperidone at the concentration of risperidone used in this study. This observation is confirmed by the findings that both quinidine (inhibitor of CYP2D6) and ketoconazole (inhibitor of CYP3A4) can inhibit the formation of 9-hydroxyrisperidone. Furthermore, inducers of CYP can significantly increase the formation of 9-hydroxyrisperidone in rat. The formation of 9-hydroxyrisperidone is highly correlated with testosterone 6beta-hydroxylase activities, suggesting that inducible CYP3A contributes significantly to the metabolism of risperidone in rat.

  8. Surface-enhanced resonance Raman scattering of cytochrome P450-2D6 on coated silver hydrosols.

    PubMed

    Bonifacio, Alois; Keizers, Peter H J; Vermeulen, Nico P E; Commandeur, Jan N M; Gooijer, Cees; van der Zwan, Gert

    2007-02-13

    Surface-enhanced resonance Raman scattering (SERRS) from dilute solutions (down to nanomolar concentrations) of human mono-oxygenase CYP2D6 is observed using aqueous dispersions of Ag nanoparticles (hydrosol) coated with self-assembled monolayers (SAMs) of mercaptoalkanoic acids of two different lengths. From a direct comparison with its resonance Raman spectrum in solution, CYP2D6 appears to fully retain its native structure upon adsorption on coated hydrosol through electrostatic interaction, while a structural change in the active site is observed when uncoated citrate-reduced hydrosol is used. Using SERRS on these biocompatible coated hydrosols, the effects of dextromethorphan on the enzyme's active site can be observed, demonstrating that CYP2D6 ability of binding substrates is preserved. Moreover, by tuning the wavelength of the exciting laser away from the main absorption band of the heme, the vibrational bands of the SAM coating are observed and analyzed to see how the presence of the protein affects the SAM structure.

  9. Comparative aromatic hydroxylation and N-demethylation of MPTP neurotoxin and its analogs, N-methylated {beta}-carboline and isoquinoline alkaloids, by human cytochrome P450 2D6

    SciTech Connect

    Herraiz, Tomas . E-mail: therraiz@ifi.csic.es; Guillen, Hugo; Aran, Vicente J.; Idle, Jeffrey R.; Gonzalez, Frank J.

    2006-11-01

    1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin is a chemical inducer of Parkinson's disease (PD) whereas N-methylated {beta}-carbolines and isoquinolines are naturally occurring analogues of MPTP involved in PD. This research has studied the oxidation of MPTP by human CYP2D6 (CYP2D6*1 and CYP2D6*10 allelic variants) as well as by a mixture of cytochrome P450s-resembling HLM, and the products generated compared with those afforded by human monoamine oxidase (MAO-B). MPTP was efficiently oxidized by CYP2D6 to two main products: MPTP-OH (p-hydroxylation) and PTP (N-demethylation), with turnover numbers of 10.09 min{sup -1} and K {sub m} of 79.36 {+-} 3 {mu}M (formation of MPTP-OH) and 18.95 min{sup -1} and K {sub m} 69.6 {+-} 2.2 {mu}M (PTP). Small amounts of dehydrogenated toxins MPDP{sup +} and MPP{sup +} were also detected. CYP2D6 competed with MAO-B for the oxidation of MPTP. MPTP oxidation by MAO-B to MPDP{sup +} and MPP{sup +} toxins (bioactivation) was up to 3-fold higher than CYP2D6 detoxification to PTP and MPTP-OH. Several N-methylated {beta}-carbolines and isoquinolines were screened for N-demethylation (detoxification) that was not significantly catalyzed by CYP2D6 or the P450s mixture. In contrast, various {beta}-carbolines were efficiently hydroxylated to hydroxy-{beta}-carbolines by CYP2D6. Thus, N(2)-methyl-1,2,3,4-tetrahydro-{beta}-carboline (a close MPTP analog) was highly hydroxylated to 6-hydroxy-N(2)-methyl-1,2,3,4-tetrahydro-{beta}-carboline and a corresponding 7-hydroxy-derivative. Thus, CYP2D6 could participate in the bioactivation and/or detoxification of these neuroactive compounds by an active hydroxylation pathway. The CYP2D6*1 enzymatic variant exhibited much higher metabolism of both MPTP and N(2)-methyl-1,2,3,4-tetrahydro-{beta}-carboline than the CYP2D6*10 variant, highlighting the importance of CYP2D6 polymorphism in the oxidation of these toxins. Altogether, these results suggest that CYP2D6 can play an important role

  10. Recombinant production of human microsomal cytochrome P450 2D6 in the methylotrophic yeast Pichia pastoris.

    PubMed

    Dietrich, Matthias; Grundmann, Lisa; Kurr, Katja; Valinotto, Laura; Saussele, Tanja; Schmid, Rolf D; Lange, Stefan

    2005-11-01

    Microsomal cytochrome P450 monooxygenases of groups 1-3 are mainly expressed in the liver and play a crucial role in phase 1 reactions of xenobiotic metabolism. The cDNAs encoding human CYP2D6 and human NADPH-P450 oxidoreductase (CPR) were transformed into the methylotrophic yeast Pichia pastoris and expressed with control of the methanol-inducible AOX1 promoter. The determined molecular weights of the recombinant CYP2D6 and CPR closely matched the calculated values of 55.8 and 76.6 kDa. CPR activity was detected by conversion of cytochrome c by using isolated microsomes. Nearly all of the recombinant CYP was composed of the active holoenzyme, as confirmed by reduced CO difference spectra, which showed a single peak at 450 nm. Only by coexpression of human CPR and CYP was CYP2D6 activity obtained. Microsomes containing human CPR and CYP2D6 converted different substrates, such as 3-cyano-7-ethoxycoumarin, parathion and dextrometorphan. The kinetic parameters of dextrometorphan conversion closely matched those of CYP2D6 from other recombinant expression systems and human microsomes. The endogenous NADPH-P450 oxidoreductase of Pichia pastoris seems to be incompatible with human CYP2D6, as expression of CYP2D6 without human CPR did not result in any CYP activity. These recombinant strains provide a novel, easy-to-handle and cheap source for the biochemical characterisation of single microsomal cytochromes, as well as their allelic variants.

  11. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma.

    PubMed

    Mürdter, T E; Schroth, W; Bacchus-Gerybadze, L; Winter, S; Heinkele, G; Simon, W; Fasching, P A; Fehm, T; Eichelbaum, M; Schwab, M; Brauch, H

    2011-05-01

    The therapeutic effect of tamoxifen depends on active metabolites, e.g., cytochrome P450 2D6 (CYP2D6) mediated formation of endoxifen. To test for additional relationships, 236 breast cancer patients were genotyped for CYP2D6, CYP2C9, CYP2B6, CYP2C19, CYP3A5, UGT1A4, UGT2B7, and UGT2B15; also, plasma concentrations of tamoxifen and 22 of its metabolites, including the (E)-, (Z)-, 3-, and 4'-hydroxymetabolites as well as their glucuronides, were quantified using liquid chromatography-tandem mass spectrometry (MS). The activity levels of the metabolites were measured using an estrogen response element reporter assay; the strongest estrogen receptor inhibition was found for (Z)-endoxifen and (Z)-4-hydroxytamoxifen (inhibitory concentration 50 (IC50) 3 and 7 nmol/l, respectively). CYP2D6 genotypes explained 39 and 9% of the variability of steady-state concentrations of (Z)-endoxifen and (Z)-4-hydroxytamoxifen, respectively. Among the poor metabolizers, 93% had (Z)-endoxifen levels below IC90 values, underscoring the role of CYP2D6 deficiency in compromised tamoxifen bioactivation. For other enzymes tested, carriers of reduced-function CYP2C9 (*2, *3) alleles had lower plasma concentrations of active metabolites (P < 0.004), pointing to the role of additional pathways.

  12. Inhibitory effect of mitragynine on human cytochrome P450 enzyme activities

    PubMed Central

    Hanapi, N. A.; Ismail, S.; Mansor, S. M.

    2013-01-01

    Context: To date, many findings reveal that most of the modern drugs have the ability to interact with herbal drugs. Aims: This study was conducted to determine the inhibitory effects of mitragynine on cytochrome P450 2C9, 2D6 and 3A4 activities. Methods and Material: The in vitro study was conducted using a high-throughput luminescence assay. Statistical Analysis: Statistical analysis was conducted using one-way ANOVA and Dunnett's test with P < 0.05 vs. control. The IC50 values were calculated using the GraphPad Prism® 5 (Version 5.01, GraphPad Software, Inc., USA). Results: Assessment using recombinant enzymes showed that mitragynine gave the strongest inhibitory effect on CYP2D6 with an IC50 value of 0.45±0.33 mM, followed by CYP2C9 and CYP3A4 with IC50 values of 9.70±4.80 and 41.32±6.74 μM respectively. Positive inhibitors appropriate for CYP2C9, CYP2D6, and CYP3A4 which are sulfaphenazole, quinidine and ketoconazole were used respectively. Vmax values of CYP2C9, CYP2D6 and CYP3A4 were 0.0005, 0.01155 and 0.0137 μM luciferin formed/pmol/min respectively. Km values of CYP2C9, CYP2D6, and CYP3A4 were 32.65, 56.01, and 103.30 μM respectively. Mitragynine noncompetitively inhibits CYP2C9 and CYP2D6 activities with the Ki values of 61.48 and 12.86 μM respectively. On the other hand, mitragynine inhibits CYP3A4 competitively with a Ki value of 379.18 μM. Conclusions: The findings of this study reveal that mitragynine might inhibit cytochrome P450 enzyme activities, specifically CYP2D6. Therefore, administration of mitragynine together with herbal or modern drugs which follow the same metabolic pathway may contribute to herb-drug interactions. PMID:24174816

  13. The cytochrome P450 2D6*10 genetic polymorphism alters postoperative analgesia

    PubMed Central

    Wei, Xiao-Bin; Xiao, Xi; Han, Zhou-Xin; Lin, Dan-Qin; Yu, Ping

    2015-01-01

    The present study was aimed to investigate the effects of the cytochrome P450 (CYP) 2D6*10 genetic polymorphism on postoperative patient-controlled morphine usage. A total of 114 patients were selected, and 102 patients completed the study. Polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) was used to determine the CYP2D6*10 genotype, and patients were categorized into three groups according to CYP2D6 genotype: heterozygous (m/w), wild-type homozygous (w/w), and mutant homozygous (m/m). Total morphine usage and visual analogue score (VAS) were determined 72 hours after the operation and compared across the three genotype groups. Statistical methods used to analyze results were the χ2 test, analysis of variance, and multiple linear regression analysis; P<0.05 was considered to be statistically significant. The cumulative use of morphine in the m/w group was significantly higher than that in the m/m group between T0.5 and T4h (P<0.05). There were no significant differences in the loading dose of morphine or VAS among the different genotypes within 72 hours of operation. Patients carrying the CYP2D6*10 m/w genotype required higher doses of morphine at T0.5~T4h compared to the m/m group, and therefore received a higher cumulative dose of morphine post-operation. This phenomenon may be due to a decreased ability to synthesize endogenous opioid peptide. PMID:25932231

  14. The effects of desvenlafaxine and paroxetine on the pharmacokinetics of the cytochrome P450 2D6 substrate desipramine in healthy adults.

    PubMed

    Nichols, Alice I; Fatato, Penny; Shenouda, Magdy; Paul, Jeffrey; Isler, Jennifer A; Pedersen, Ronald D; Jiang, Qin; Ahmed, Saeeduddin; Patroneva, Albena

    2009-02-01

    The potential for cytochrome P450 (CYP) 2D6 substrates to interact with desvenlafaxine (administered as desvenlafaxine succinate) and paroxetine was evaluated. In an open-label, crossover study, 20 healthy volunteers (aged 21-50) were randomized to 2 series of 9 days each of desvenlafaxine (100 mg/d) or paroxetine (20 mg/d), separated by a 5-day washout. The CYP2D6 substrate desipramine (50 mg) was administered alone on day 1 and coadministered on day 6 of dosing with either desvenlafaxine or paroxetine. CYP2D6 genotype was determined at baseline. Based on least squares geometric mean ratios between reference (desipramine alone) and test treatments, desvenlafaxine produced minor increases in desipramine area under the plasma concentration versus time curve (AUC; 36%) and peak plasma concentration (C(max); 30%) (vs paroxetine: 419%, 90%, respectively; both P < .001). Desvenlafaxine produced little change in 2-hydroxydesipramine AUC (16% increase) and C(max) (0%) versus paroxetine (18% and 82% decreases, respectively; P = .008, P < .001, respectively), indicating that desvenlafaxine, especially at the recommended therapeutic dose of 50 mg/d for major depressive disorder in the United States, has little potential to interact with CYP2D6 substrates.

  15. Inhibition of human cytochrome P450 enzymes by the natural hepatotoxin safrole.

    PubMed

    Ueng, Yune-Fang; Hsieh, Chih-Hang; Don, Ming-Jaw

    2005-05-01

    The hepatotoxin, safrole is a methylenedioxy phenyl compound, found in sassafras oil and certain other essential oils. Recombinant cytochrome P450 (CYP, P450) and human liver microsomes were studied to investigate the selective inhibitory effects of safrole on human P450 enzymes and the mechanisms of action. Using Escherichia coli-expressed human P450, our results demonstrated that safrole was a non-selective inhibitor of CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP3A4 in the IC(50) order CYP2E1 < CYP1A2 < CYP2A6 < CYP3A4 < CYP2D6. Safrole strongly inhibited CYP1A2, CYP2A6, and CYP2E1 activities with IC(50) values less than 20 microM. Safrole caused competitive, non-competitive, and non-competitive inhibition of CYP1A2, CYP2A6 and CYP2E1 activities, respectively. The inhibitor constants were in the order CYP1A2 < CYP2E1 < CYP2A6. In human liver microsomes, 50 microM safrole strongly inhibited 7-ethoxyresorufin O-deethylation, coumarin hydroxylation, and chlorzoxazone hydroxylation activities. These results revealed that safrole was a potent inhibitor of human CYP1A2, CYP2A6, and CYP2E1. With relatively less potency, CYP2D6 and CYP3A4 were also inhibited.

  16. Impact of Cytochrome P450 2D6 Function on the Chiral Blood Plasma Pharmacokinetics of 3,4-Methylenedioxymethamphetamine (MDMA) and Its Phase I and II Metabolites in Humans.

    PubMed

    Steuer, Andrea E; Schmidhauser, Corina; Tingelhoff, Eva H; Schmid, Yasmin; Rickli, Anna; Kraemer, Thomas; Liechti, Matthias E

    2016-01-01

    3,4-methylenedioxymethamphetamine (MDMA; ecstasy) metabolism is known to be stereoselective, with preference for S-stereoisomers. Its major metabolic step involves CYP2D6-catalyzed demethylenation to 3,4-dihydroxymethamphetamine (DHMA), followed by methylation and conjugation. Alterations in CYP2D6 genotype and/or phenotype have been associated with higher toxicity. Therefore, the impact of CYP2D6 function on the plasma pharmacokinetics of MDMA and its phase I and II metabolites was tested by comparing extensive metabolizers (EMs), intermediate metabolizers (IMs), and EMs that were pretreated with bupropion as a metabolic inhibitor in a controlled MDMA administration study. Blood plasma samples were collected from 16 healthy participants (13 EMs and three IMs) up to 24 h after MDMA administration in a double-blind, placebo-controlled, four-period, cross-over design, with subjects receiving 1 week placebo or bupropion pretreatment followed by a single placebo or MDMA (125 mg) dose. Bupropion pretreatment increased the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from 0 to 24 h (AUC24) of R-MDMA (9% and 25%, respectively) and S-MDMA (16% and 38%, respectively). Bupropion reduced the Cmax and AUC24 of the CYP2D6-dependently formed metabolite stereoisomers of DHMA 3-sulfate, DHMA 4-sulfate, and 4-hydroxy-3-methoxymethamphetamine (HMMA sulfate and HMMA glucuronide) by approximately 40%. The changes that were observed in IMs were generally comparable to bupropion-pretreated EMs. Although changes in stereoselectivity based on CYP2D6 activity were observed, these likely have low clinical relevance. Bupropion and hydroxybupropion stereoisomer pharmacokinetics were unaltered by MDMA co-administration. The present data might aid further interpretations of toxicity based on CYP2D6-dependent MDMA metabolism. PMID:26967321

  17. Impact of Cytochrome P450 2D6 Function on the Chiral Blood Plasma Pharmacokinetics of 3,4-Methylenedioxymethamphetamine (MDMA) and Its Phase I and II Metabolites in Humans

    PubMed Central

    Steuer, Andrea E.; Schmidhauser, Corina; Tingelhoff, Eva H.; Schmid, Yasmin; Rickli, Anna; Kraemer, Thomas; Liechti, Matthias E.

    2016-01-01

    3,4-methylenedioxymethamphetamine (MDMA; ecstasy) metabolism is known to be stereoselective, with preference for S-stereoisomers. Its major metabolic step involves CYP2D6-catalyzed demethylenation to 3,4-dihydroxymethamphetamine (DHMA), followed by methylation and conjugation. Alterations in CYP2D6 genotype and/or phenotype have been associated with higher toxicity. Therefore, the impact of CYP2D6 function on the plasma pharmacokinetics of MDMA and its phase I and II metabolites was tested by comparing extensive metabolizers (EMs), intermediate metabolizers (IMs), and EMs that were pretreated with bupropion as a metabolic inhibitor in a controlled MDMA administration study. Blood plasma samples were collected from 16 healthy participants (13 EMs and three IMs) up to 24 h after MDMA administration in a double-blind, placebo-controlled, four-period, cross-over design, with subjects receiving 1 week placebo or bupropion pretreatment followed by a single placebo or MDMA (125 mg) dose. Bupropion pretreatment increased the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from 0 to 24 h (AUC24) of R-MDMA (9% and 25%, respectively) and S-MDMA (16% and 38%, respectively). Bupropion reduced the Cmax and AUC24 of the CYP2D6-dependently formed metabolite stereoisomers of DHMA 3-sulfate, DHMA 4-sulfate, and 4-hydroxy-3-methoxymethamphetamine (HMMA sulfate and HMMA glucuronide) by approximately 40%. The changes that were observed in IMs were generally comparable to bupropion-pretreated EMs. Although changes in stereoselectivity based on CYP2D6 activity were observed, these likely have low clinical relevance. Bupropion and hydroxybupropion stereoisomer pharmacokinetics were unaltered by MDMA co-administration. The present data might aid further interpretations of toxicity based on CYP2D6-dependent MDMA metabolism. PMID:26967321

  18. Evaluation of the effects of Mitragyna speciosa alkaloid extract on cytochrome P450 enzymes using a high throughput assay.

    PubMed

    Kong, Wai Mun; Chik, Zamri; Ramachandra, Murali; Subramaniam, Umarani; Aziddin, Raja Elina Raja; Mohamed, Zahurin

    2011-01-01

    The extract from Mitragyna speciosa has been widely used as an opium substitute, mainly due to its morphine-like pharmacological effects. This study investigated the effects of M. speciosa alkaloid extract (MSE) on human recombinant cytochrome P450 (CYP) enzyme activities using a modified Crespi method. As compared with the liquid chromatography-mass spectrometry method, this method has shown to be a fast and cost-effective way to perform CYP inhibition studies. The results indicated that MSE has the most potent inhibitory effect on CYP3A4 and CYP2D6, with apparent half-maximal inhibitory concentration (IC(50)) values of 0.78 µg/mL and 0.636 µg/mL, respectively. In addition, moderate inhibition was observed for CYP1A2, with an IC(50) of 39 µg/mL, and weak inhibition was detected for CYP2C19. The IC(50) of CYP2C19 could not be determined, however, because inhibition was <50%. Competitive inhibition was found for the MSE-treated CYP2D6 inhibition assay, whereas non-competitive inhibition was shown in inhibition assays using CYP3A4, CYP1A2 and CYP2C19. Quinidine (CYP2D6), ketoconazole (CYP3A4), tranylcypromine (CYP2C19) and furafylline (CYP1A2) were ACCESSused as positive controls throughout the experiments. This study shows that MSE may contribute to an herb-drug interaction if administered concomitantly with drugs that are substrates for CYP3A4, CYP2D6 and CYP1A2. PMID:21876481

  19. Drug & Gene Interaction Risk Analysis With & Without Genetic Testing Among Patients Undergoing MTM

    ClinicalTrials.gov

    2016-09-20

    Cytochrome P450 CYP2D6 Enzyme Deficiency; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Extensive Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Cytochrome P450 CYP2C9 Enzyme Deficiency; Cytochrome P450 CYP2C19 Enzyme Deficiency; Drug Metabolism, Poor, CYP2D6-RELATED; Drug Metabolism, Poor, CYP2C19-RELATED; CYP2D6 Polymorphism

  20. Impact of metabolizing enzymes on drug response of endocrine therapy in breast cancer.

    PubMed

    Saladores, Pilar H; Precht, Jana C; Schroth, Werner; Brauch, Hiltrud; Schwab, Matthias

    2013-05-01

    Estrogen-receptor positive breast cancer accounts for 75% of diagnosed breast cancers worldwide. There are currently two major options for adjuvant treatment: tamoxifen and aromatase inhibitors. Variability in metabolizing enzymes determines their pharmacokinetic profile, possibly affecting treatment response. Therefore, prediction of therapy outcome based on genotypes would enable a more personalized medicine approach, providing optimal therapy for each patient. In this review, the authors will discuss the current evidence on the most important metabolizing enzymes in endocrine therapy, with a special focus on CYP2D6 and its role in tamoxifen metabolism.

  1. Pungent ginger components modulates human cytochrome P450 enzymes in vitro

    PubMed Central

    Li, Mian; Chen, Pei-zhan; Yue, Qing-xi; Li, Jing-quan; Chu, Rui-ai; Zhang, Wei; Wang, Hui

    2013-01-01

    Aim: Ginger rhizome is used worldwide as a spicy flavor agent. This study was designed to explore the potential effects of pungent ginger components, 6-, 8-, and 10-gingerol, on human cytochrome P450 (CYP450) enzymes that are responsible for the metabolism of many prescription drugs. Methods: The activities of human CYP2C9, CYP2C19, CYP2D6, and CYP3A4 were analyzed using Vivid P450 assay kits. The mRNA expression of CYP3A4 in human hepatocellular carcinoma cell line HepG2 was measured using quantitative real-time PCR assay. Results: All three gingerols potently inhibited CYP2C9 activity, exerted moderate inhibition on CYP2C19 and CYP3A4, and weak inhibion on CYP2D6. 8-Gingerol was the most potent in inhibition of P450 enzymes with IC50 values of 6.8, 12.5, 8.7, and 42.7 μmol/L for CYP2C9, CYP2C19, CYP3A4, and CYP2D6, respectively. By comparing the effects of gingerols on CYP3A4 with three different fluorescent substrate probes, it was demonstrated that the inhibition of gingerols on CYP3A4 had no substrate-dependence. In HepG2 cells, 8-gingerol and 10-gingerol inhibited, but 6-gingerol induced mRNA expression of CYP3A4. Conclusion: 6-, 8-, and 10-gingerol suppress human cytochrome P450 activity, while 8- and 10-gingerol inhibit CYP3A4 expression. The results may have an implication for the use of ginger or ginger products when combined with therapeutic drugs that are metabolized by cytochrome P450 enzymes. PMID:23770984

  2. Effect of crude extract of Eugenia jambolana Lam. on human cytochrome P450 enzymes.

    PubMed

    Chinni, Santhivardhan; Dubala, Anil; Kosaraju, Jayasankar; Khatwal, Rizwan Basha; Satish Kumar, M N; Kannan, Elango

    2014-11-01

    The fruit of Eugenia jambolana Lam. is very popular for its anti-diabetic property. Previous studies on the crude extract of E. jambolana (EJE) have successfully explored the scientific basis for some of its traditional medicinal uses. Considering its wide use and consumption as a seasonal fruit, the present study investigates the ability of E. jambolana to interact with cytochrome P450 enzymes. The standardized EJE was incubated with pooled human liver microsomes to assess the CYP2C9-, CYP2D6-, and CYP3A4-mediated metabolism of diclofenac, dextromethorphan, and testosterone, respectively. The metabolites formed after the enzymatic reactions were quantified by high performance liquid chromatography. EJE showed differential effect on cytochrome P450 activities with an order of inhibitory potential as CYP2C9 > CYP3A4 > CYP2D6 having IC50 of 76.69, 359.02, and 493.05 µg/mL, respectively. The selectivity of EJE for CYP2C9 rather than CYP3A4 and CYP2D6 led to perform the enzyme kinetics to explicate the mechanism underlying the inhibition of CYP2C9-mediated diclofenac 4'-hydroxylation. EJE was notably potent in inhibiting the reaction in a non-competitive manner with Ki of 84.85 ± 5.27 µg/mL. The results revealed the CYP2C9 inhibitory potential of EJE with lower Ki value suggesting that EJE should be examined for its potential pharmacokinetic and pharmacodynamic interactions when concomitantly administered with other drugs. PMID:24590863

  3. Evaluation of the impact of Flos Daturae on rat hepatic cytochrome P450 enzymes by cocktail probe drugs.

    PubMed

    Geng, Peiwu; Wang, Shuanghu; Wang, Chunjie; Chen, Jianmiao; Zhang, Lijing; Yang, Suping; Wen, Congcong; Zhou, Yunfang; Zhang, Meiling

    2015-01-01

    Flos Daturae, known as "baimantuoluo" or "yangjinhua" in China, has been used for centuries in Traditional Chinese Medicine for the treatment of asthma, convulsions, pain, and rheumatism. To investigate the influences of Flos Daturae on the activities of rat CYP450 enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2B6, CYP2D6 and CYP3A4) using cocktail probe drugs in vivo. A cocktail solution at a dose of 5 mL/kg, which contained phenacetin (10 mg/kg), tolbutamide (1 mg/kg), omeprazole (10 mg/kg), bupropion (10 mg/kg), metoprolol (10 mg/kg) and testosterone (10 mg/kg), was intragastric administered to rats treated with a single low or high dose of Flos Daturae decotion for 7days. Blood samples collected at a series of time-points in plasma were determined by UPLC-MS/MS. The corresponding pharmacokinetic parameters were calculated by the software of DAS 3.0. The results from the present in vivo study showed that Flos Daturae induce the activity of CYP2D6 enzyme with the decreased Cmax, AUC(0-∞) (P < 0.05) and the increased CL (P < 0.05). However, there were no significant differences of other probe drugs in plasma concentration and pharmacokinetic parameters. There were no significant effects on rat CYP1A2, CYP3A4, CYP2B6, CYP2C9 and CYP2C19 by Flos Daturae. Therefore, the resulting data suggested that caution was needed when Flos Daturae was co-administered with CYP2D6 substrates, which may result in treatment failure and herb-drug interactions. PMID:26885208

  4. In vitro inhibition and induction of human cytochrome P450 enzymes by mirabegron, a potent and selective β3-adrenoceptor agonist.

    PubMed

    Takusagawa, Shin; Miyashita, Aiji; Iwatsubo, Takafumi; Usui, Takashi

    2012-12-01

    The potential for mirabegron, a β(3)-adrenoceptor agonist for the treatment of overactive bladder, to cause drug-drug interactions via inhibition or induction of cytochrome P450 (CYP) enzymes was investigated in vitro. Mirabegron was shown to be a time-dependent inhibitor of CYP2D6 in the presence of NADPH as the IC(50) value in human liver microsomes decreased from 13 to 4.3 μM after 30-min pre-incubation. Further evaluation indicated that mirabegron may act partly as an irreversible or quasi-irreversible metabolism-dependent inhibitor of CYP2D6. Therefore, the potential of mirabegron to inhibit the metabolism of CYP2D6 substrates in vivo cannot be excluded. Mirabegron was predicted not to cause clinically significant metabolic drug-drug interactions via inhibition of CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2E1, or CYP3A4/5 because the IC(50) values for these enzymes both with and without pre-incubation were >100 μM (370 times maximum human plasma concentration [C(max)]). Whereas positive controls (100 µM omeprazole and 10 µM rifampin) caused the anticipated CYP induction, the highest concentration of mirabegron (10 µM; 37 times plasma C(max)) had minimal effect on CYP1A2 and CYP3A4/5 activity, and CYP1A2 and CYP3A4 mRNA levels in freshly isolated human hepatocytes, suggesting that mirabegron is not an inducer of these enzymes.

  5. Correlation of CpG Island Methylation of the Cytochrome P450 2E1/2D6 Genes with Liver Injury Induced by Anti-Tuberculosis Drugs: A Nested Case-Control Study

    PubMed Central

    Zhang, Jinling; Zhu, Xuebin; Li, Yuhong; Zhu, Lingyan; Li, Shiming; Zheng, Guoying; Ren, Qi; Xiao, Yonghong; Feng, Fumin

    2016-01-01

    This study investigated the role of CpG island methylation of the CYP2E1 and CYP2D6 genes in liver injury induced by anti-TB drugs from an epigenetic perspective in a Chinese cohort. A 1:1 matched nested case-control study design was applied. Pulmonary tuberculosis (TB) patients, who underwent standard anti-TB therapy and developed liver injury were defined as cases, while those who did not develop liver injury were defined as control. The two groups were matched in terms of sex, treatment regimen, and age. In 114 pairs of cases, CpG island methylation levels of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of anti-TB drug-induced liver injury (ADLI), with odds ratio (OR) values of 2.429 and 3.500, respectively (p < 0.01). Moreover, through multivariate logistic regression analysis, CpG island methylation of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of ADLI, with adjusted OR values of 4.390 (95% confidence interval (CI): 1.982–9.724) and 9.193 (95% CI: 3.624–25.888), respectively (p < 0.001). These results suggest that aberrantly elevated methylation of CpG islands of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA may increase the risk of ADLI in Chinese TB patients. PMID:27490558

  6. Rough Set Theory as an Interpretable Method for Predicting the Inhibition of Cytochrome P450 1A2 and 2D6.

    PubMed

    Burton, Julien; Petit, Joachim; Danloy, Emeric; Maggiora, Gerald M; Vercauteren, Daniel P

    2013-07-01

    Early prediction of ADME properties such as the cytochrome P450 (CYP) mediated drug-drug interactions is an important challenge in the drug discovery area. In this study, we propose to couple an original data mining approach based on Rough Set Theory (RST) to a structural description of molecules. The latter was achieved by using two types of structural keys: (1) the MACCS keys and (2) a set of five in-house fingerprints based on properties of the electron density distributions of chemical groups. The compounds considered are involved in the inhibition of CYP1A2 and CYP2D6. RST allowed the extraction of rules further used as classifiers to predict the inhibitory profile of an independent set of molecules. The results reached prediction accuracies of 90.6 and 88.2 % for CYP1A2 and CYP2D6, respectively. In addition, these classifiers were analyzed to determine which structural fragments were most used for building the rules, revealing relationships between the occurrence of particular molecular fragments and CYP inhibition. The results assessed RST as a suitable tool to build strongly predictive models and infer structure-activity rules associated with potency.

  7. Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study.

    PubMed

    Chow, H-H Sherry; Garland, Linda L; Hsu, Chiu-Hsieh; Vining, Donna R; Chew, Wade M; Miller, Jessica A; Perloff, Marjorie; Crowell, James A; Alberts, David S

    2010-09-01

    Resveratrol has been shown to exhibit cancer-preventive activities in preclinical studies. We conducted a clinical study to determine the effect of pharmacologic doses of resveratrol on drug- and carcinogen-metabolizing enzymes. Forty-two healthy volunteers underwent baseline assessment of cytochrome P450 (CYP) and phase II detoxification enzymes. CYP1A2, CYP2D6, CYP2C9, and CYP3A4 enzyme activities were measured by the metabolism of caffeine, dextromethorphan, losartan, and buspirone, respectively. Blood lymphocyte glutathione S-transferase (GST) activity and GST-pi level and serum total and direct bilirubin, a surrogate for UDP-glucuronosyl transferase (UGT) 1A1 activity, were measured to assess phase II enzymes. After the baseline evaluation, study participants took 1 g of resveratrol once daily for 4 weeks. Enzyme assessment was repeated upon intervention completion. Resveratrol intervention was found to inhibit the phenotypic indices of CYP3A4, CYP2D6, and CYP2C9 and to induce the phenotypic index of 1A2. Overall, GST and UGT1A1 activities were minimally affected by the intervention, although an induction of GST-pi level and UGT1A1 activity was observed in individuals with low baseline enzyme level/activity. We conclude that resveratrol can modulate enzyme systems involved in carcinogen activation and detoxification, which may be one mechanism by which resveratrol inhibits carcinogenesis. However, pharmacologic doses of resveratrol could potentially lead to increased adverse drug reactions or altered drug efficacy due to inhibition or induction of certain CYPs. Further clinical development of resveratrol for cancer prevention should consider evaluation of lower doses of resveratrol to minimize adverse metabolic drug interactions. PMID:20716633

  8. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver

    PubMed Central

    Yang, Xia; Zhang, Bin; Molony, Cliona; Chudin, Eugene; Hao, Ke; Zhu, Jun; Gaedigk, Andrea; Suver, Christine; Zhong, Hua; Leeder, J. Steven; Guengerich, F. Peter; Strom, Stephen C.; Schuetz, Erin; Rushmore, Thomas H.; Ulrich, Roger G.; Slatter, J. Greg; Schadt, Eric E.; Kasarskis, Andrew; Lum, Pek Yee

    2010-01-01

    Liver cytochrome P450s (P450s) play critical roles in drug metabolism, toxicology, and metabolic processes. Despite rapid progress in the understanding of these enzymes, a systematic investigation of the full spectrum of functionality of individual P450s, the interrelationship or networks connecting them, and the genetic control of each gene/enzyme is lacking. To this end, we genotyped, expression-profiled, and measured P450 activities of 466 human liver samples and applied a systems biology approach via the integration of genetics, gene expression, and enzyme activity measurements. We found that most P450s were positively correlated among themselves and were highly correlated with known regulators as well as thousands of other genes enriched for pathways relevant to the metabolism of drugs, fatty acids, amino acids, and steroids. Genome-wide association analyses between genetic polymorphisms and P450 expression or enzyme activities revealed sets of SNPs associated with P450 traits, and suggested the existence of both cis-regulation of P450 expression (especially for CYP2D6) and more complex trans-regulation of P450 activity. Several novel SNPs associated with CYP2D6 expression and enzyme activity were validated in an independent human cohort. By constructing a weighted coexpression network and a Bayesian regulatory network, we defined the human liver transcriptional network structure, uncovered subnetworks representative of the P450 regulatory system, and identified novel candidate regulatory genes, namely, EHHADH, SLC10A1, and AKR1D1. The P450 subnetworks were then validated using gene signatures responsive to ligands of known P450 regulators in mouse and rat. This systematic survey provides a comprehensive view of the functionality, genetic control, and interactions of P450s. PMID:20538623

  9. Bioactive components of Glycyrrhiza uralensis mediate drug functions and properties through regulation of CYP450 enzymes.

    PubMed

    Chen, Hao; Zhang, Xiaomei; Feng, Yifan; Rui, Wen; Shi, Zhongfeng; Wu, Lirong

    2014-09-01

    Glycyrrhiza uralensis (G. uralensis) is a common medicinal plant that has mainly been used to modulate the pharmaceutical activity of herbal medicines. Although G. uralensis has been shown to affect the expression and activity of the key metabolic enzyme cytochrome P450 (CYP450), the detailed mechanism of this process has yet to be elucidated. The present study aimed to elucidate the effects of bioactive components of G. uralensis on different isoforms of CYP450 and determine the ability of these components to modulate drug properties. In the present study, mRNA levels of CYP1A2, CYP2D6, CYP2E1, and CYP3A4 were investigated by quantitative polymerase chain reaction (qPCR) in HepG2 cells following treatment with the major bioactive compounds of G. uralensis. The activity of CYP450 enzymes was investigated in human liver microsomes using the cocktail probe drug method, and the metabolites of specific probes were detected by UPLC‑MS/MS. The effects of G. uralensis on CYP450 were assessed using bioinformatics network analysis. Several compounds from G. uralensis had various effects on the expression and activity of multiple CYP450 isoforms. The majority of the compounds analysed the inhibited expression of CYP2D6 and CYP3A4. Several CYP isoforms were differentially modulated depending on the specific compound and dose tested. In conclusion, the present study suggested that G. uralensis influenced the expression and activity of CYP450 enzymes. Therefore, caution should be taken when G. uralensis is co‑administered with drugs that are known to be metabolized by CYP450. This study contributed to the knowledge of the mechanisms by which this medicinal plant, commonly known as licorice, modulates drug efficacy.

  10. Eletriptan metabolism by human hepatic CYP450 enzymes and transport by human P-glycoprotein.

    PubMed

    Evans, David C; O'Connor, Desmond; Lake, Brian G; Evers, Raymond; Allen, Christopher; Hargreaves, Richard

    2003-07-01

    "Reaction phenotyping" studies were performed with eletriptan (ETT) to determine its propensity to interact with coadministered medications. Its ability to serve as a substrate for human P-glycoprotein (P-gp) was also investigated since a central mechanism of action has been proposed for this "triptan" class of drug. In studies with a characterized bank of human liver microsome preparations, a good correlation (r2 = 0.932) was obtained between formation of N-desmethyl eletriptan (DETT) and CYP3A4-catalyzed testosterone 6 beta-hydroxylation. DETT was selected to be monitored in our studies since it represents a significant ETT metabolite in humans, circulating at concentrations 10 to 20% of those observed for parent drug. ETT was metabolized to DETT by recombinant CYP2D6 (rCYP2D6) and rCYP3A4, and to a lesser extent by rCYP2C9 and rCYP2C19. The metabolism of ETT to DETT in human liver microsomes was markedly inhibited by troleandomycin, erythromycin, miconazole, and an inhibitory antibody to CYP3A4, but not by inhibitors of other major P450 enzymes. ETT had little inhibitory effect on any of the P450 enzymes investigated. ETT was determined to be a good substrate for human P-gp in vitro. In bidirectional transport studies across LLC-MDR1 and LLC-Mdr1a cell monolayers, ETT had a BA/AB transport ratio in the range 9 to 11. This finding had significance in vivo since brain exposure to ETT was reduced 40-fold in Mdr1a+/+ relative to Mdr1a-/- mice. ETT metabolism to DETT is therefore catalyzed primarily by CYP3A4, and plasma concentrations are expected to be increased when coadministered with inhibitors of CYP3A4 and P-gp activity. PMID:12814962

  11. Pharmacogenetic profile of xenobiotic enzyme metabolism in survivors of the Spanish toxic oil syndrome.

    PubMed Central

    Ladona, M G; Izquierdo-Martinez, M; Posada de la Paz, M P; de la Torre, R; Ampurdanés, C; Segura, J; Sanz, E J

    2001-01-01

    In 1981, the Spanish toxic oil syndrome (TOS) affected more than 20,000 people, and over 300 deaths were registered. Assessment of genetic polymorphisms on xenobiotic metabolism would indicate the potential metabolic capacity of the victims at the time of the disaster. Thus, impaired metabolic pathways may have contributed to the clearance of the toxicant(s) leading to a low detoxification or accumulation of toxic metabolites contributing to the disease. We conducted a matched case-control study using 72 cases (54 females, 18 males) registered in the Official Census of Affected Patients maintained by the Spanish government. Controls were nonaffected siblings (n =72) living in the same household in 1981 and nonaffected nonrelatives (n = 70) living in the neighborhood at that time, with no ties to TOS. Genotype analyses were performed to assess the metabolic capacity of phase I [cytochrome P450 1A1 (CYP1A1), CYP2D6] and phase II [arylamine N-acetyltransferase-2 (NAT2), GSTM1 (glutathione S-transferase M1) and GSTT1] enzyme polymorphisms. The degree of association of the five metabolic pathways was estimated by calculating their odds ratios (ORs) using conditional logistic regression analysis. In the final model, cases compared with siblings (72 pairs) showed no differences either in CYP2D6 or CYP1A1 polymorphisms, or in conjugation enzyme polymorphisms, whereas cases compared with the unrelated controls (70 pairs) showed an increase in NAT2 defective alleles [OR = 6.96, 95% confidence interval (CI), 1.46-33.20] adjusted by age and sex. Glutathione transferase genetic polymorphisms (GSTM1, GSTT1) showed no association with cases compared with their siblings or unrelated controls. These findings suggest a possible role of impaired acetylation mediating susceptibility in TOS. PMID:11335185

  12. The Effect of Yokukansan, a Traditional Herbal Preparation Used for the Behavioral and Psychological Symptoms of Dementia, on the Drug-Metabolizing Enzyme Activities in Healthy Male Volunteers.

    PubMed

    Soraoka, Hiromi; Oniki, Kentaro; Matsuda, Kazuki; Ono, Tatsumasa; Taharazako, Kosuke; Uchiyashiki, Yoshihiro; Kamihashi, Ryoko; Kita, Ayana; Takashima, Ayaka; Nakagawa, Kazuko; Yasui-Furukori, Norio; Kadowaki, Daisuke; Miyata, Keishi; Saruwatari, Junji

    2016-01-01

    The concomitant use of herb and prescription medications is increasing globally. Herb-drug interactions are therefore a clinically important problem. Yokukansan (YKS), a Japanese traditional herbal medicine, is one of the most frequently used herbal medicines. It is effective for treating the behavioral and psychological symptoms of dementia. We investigated the potential effects of YKS on drug-metabolizing enzyme activities in humans. An open-label repeat-dose study was conducted in 26 healthy Japanese male volunteers (age: 22.7±2.3 years) with no history of smoking. An 8-h urine sample was collected after a 150-mg dose of caffeine and a 30-mg dose of dextromethorphan before and after the administration of YKS (2.5 g, twice a day for 1 week). The activities of cytochrome P450 (CYP) 1A2, CYP2D6, CYP3A, xanthine oxidase (XO) and N-acetyltransferase 2 (NAT2) were assessed based on the urinary metabolic indices of caffeine and dextromethorphan, and the urinary excretion ratio of 6β-hydroxycortisol to cortisol. There were no statistically significant differences in the activities of the examined enzymes before or after the 7-d administration of YKS. Although further studies assessing the influence of YKS on the pharmacokinetics and pharmacodynamics of the substrates of the drug-metabolizing enzymes are needed to verify the present results, YKS is unlikely that a pharmacokinetic interaction will occur with concomitantly administered medications that are predominantly metabolized by the CYP1A2, CYP2D6, CYP3A, XO and NAT2. PMID:27582327

  13. The Effect of Yokukansan, a Traditional Herbal Preparation Used for the Behavioral and Psychological Symptoms of Dementia, on the Drug-Metabolizing Enzyme Activities in Healthy Male Volunteers.

    PubMed

    Soraoka, Hiromi; Oniki, Kentaro; Matsuda, Kazuki; Ono, Tatsumasa; Taharazako, Kosuke; Uchiyashiki, Yoshihiro; Kamihashi, Ryoko; Kita, Ayana; Takashima, Ayaka; Nakagawa, Kazuko; Yasui-Furukori, Norio; Kadowaki, Daisuke; Miyata, Keishi; Saruwatari, Junji

    2016-01-01

    The concomitant use of herb and prescription medications is increasing globally. Herb-drug interactions are therefore a clinically important problem. Yokukansan (YKS), a Japanese traditional herbal medicine, is one of the most frequently used herbal medicines. It is effective for treating the behavioral and psychological symptoms of dementia. We investigated the potential effects of YKS on drug-metabolizing enzyme activities in humans. An open-label repeat-dose study was conducted in 26 healthy Japanese male volunteers (age: 22.7±2.3 years) with no history of smoking. An 8-h urine sample was collected after a 150-mg dose of caffeine and a 30-mg dose of dextromethorphan before and after the administration of YKS (2.5 g, twice a day for 1 week). The activities of cytochrome P450 (CYP) 1A2, CYP2D6, CYP3A, xanthine oxidase (XO) and N-acetyltransferase 2 (NAT2) were assessed based on the urinary metabolic indices of caffeine and dextromethorphan, and the urinary excretion ratio of 6β-hydroxycortisol to cortisol. There were no statistically significant differences in the activities of the examined enzymes before or after the 7-d administration of YKS. Although further studies assessing the influence of YKS on the pharmacokinetics and pharmacodynamics of the substrates of the drug-metabolizing enzymes are needed to verify the present results, YKS is unlikely that a pharmacokinetic interaction will occur with concomitantly administered medications that are predominantly metabolized by the CYP1A2, CYP2D6, CYP3A, XO and NAT2.

  14. Effects of methoxychlor and 2,2-bis ( p -hydroxyphenyl)-1,1,1-trichloroethane on cytochrome P450 enzyme activities in human and rat livers.

    PubMed

    Chen, Bingbing; Pan, Peipei; Wang, Li; Chen, Menchun; Dong, Yaoyao; Ge, Ren-Shan; Hu, Guo-Xin

    2015-01-01

    Cytochrome P450 (CYP) enzymes are involved in the metabolism of endogenous and exogenous compounds. Human and rat liver microsomes were used to investigate the inhibitory effects of methoxychlor (MXC) and its metabolite 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE) on the activities of corresponding human and rat CYPs. Probe drugs were used to test the inhibitory effects of MXC and HPTE on human and rat CYPs. The results showed that MXC and HPTE inhibited both human CYP2C9 and rat liver CYP2C11 activity, with half-maximal inhibitory concentration (IC50) values of 15.47 ± 0.36 (MXC) and 8.87 ± 0.53 μmol/l (HPTE) for human CYP2C9, and of 22.45 ± 1.48 (MXC) and 24.63 ± 1.35 μmol/l (HPTE) for rat CYP2C11. MXC and HPTE had no effects on human CYP2C19 activity but inhibited rat CYP2C6 activity with IC50 values of 14.84 ± 0.04 (MXC) and 8.72 ± 0.25 μmol/l (HPTE). With regard to human CYP2D6 and rat CYP2D2 activity, only HPTE potently inhibited human CYP2D6 activity, with an IC50 value of 16.56 ± 0.69 μmol/l. Both chemicals had no effect on human CYP3A4 and rat CYP3A1 activity. In summary, MXC and HPTE are potent inhibitors of some human and rat CYPs.

  15. Systematic Functional Study of Cytochrome P450 2D6 Promoter Polymorphisms in the Chinese Han Population

    PubMed Central

    Gong, Xueli; Liu, Yichen; Zhang, Xiaoqing; Wei, Zhiyun; Huo, Ran; Shen, Lu; He, Lin; Qin, Shengying

    2013-01-01

    The promoter polymorphisms of drug-metabolizing genes can lead to interindividual differences in gene expression, which may result in adverse drug effects and therapeutic failure. Based on the database of CYP2D6 gene polymorphisms in the Chinese Han population established by our group, we functionally characterized the single nucleotide polymorphisms (SNPs) of the promoter region and corresponding haplotypes in this population. Using site-directed mutagenesis, all the five SNPs identified and ten haplotypes with a frequency equal to or greater than 0.01 in the population were constructed on a luciferase reporter system. Dual luciferase reporter systems were used to analyze regulatory activity. The activity produced by Haplo3(−2183G>A, −1775A>G, −1589G>C, −1431C>T, −1000G>A, −678A>G), Haplo8(−2065G>A, −2058T>G, −1775A>G, −1589G>C, −1235G>A, −678A>G) and MU3(−498C>A) was 0.7−, 0.7−, 1.2− times respectively compared with the wild type in human hepatoma cell lines(p<0.05). These findings might be useful for optimizing pharmacotherapy and the design of personalized medicine. PMID:23469064

  16. YouScript IMPACT Registry

    ClinicalTrials.gov

    2015-09-10

    Adverse Drug Events; Adverse Drug Reactions; Drug Interaction Potentiation; Drug Metabolism, Poor, CYP2D6-RELATED; Drug Metabolism, Poor, CYP2C19-RELATED; Cytochrome P450 Enzyme Deficiency; Cytochrome P450 CYP2D6 Enzyme Deficiency; Cytochrome P450 CYP2C9 Enzyme Deficiency; Cytochrome P450 CYP2C19 Enzyme Deficiency; Cytochrome P450 CYP3A Enzyme Deficiency; Poor Metabolizer Due to Cytochrome P450 CYP2C9 Variant; Poor Metabolizer Due to Cytochrome P450 CYP2C19 Variant; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  17. Pharmacogenetic Testing Among Home Health Patients

    ClinicalTrials.gov

    2016-09-20

    Adverse Drug Events; Adverse Drug Reactions; Drug Interaction Potentiation; Drug Metabolism, Poor, CYP2D6-RELATED; Drug Metabolism, Poor, CYP2C19-RELATED; Cytochrome P450 Enzyme Deficiency; Cytochrome P450 CYP2D6 Enzyme Deficiency; Cytochrome P450 CYP2C9 Enzyme Deficiency; Cytochrome P450 CYP2C19 Enzyme Deficiency; Cytochrome P450 CYP3A Enzyme Deficiency; Poor Metabolizer Due to Cytochrome P450 CYP2C9 Variant; Poor Metabolizer Due to Cytochrome p450 CYP2C19 Variant; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  18. A High-Throughput (HTS) Assay for Enzyme Reaction Phenotyping in Human Recombinant P450 Enzymes Using LC-MS/MS.

    PubMed

    Li, Xiaofeng; Suhar, Tom; Glass, Lateca; Rajaraman, Ganesh

    2014-03-03

    Enzyme reaction phenotyping is employed extensively during the early stages of drug discovery to identify the enzymes responsible for the metabolism of new chemical entities (NCEs). Early identification of metabolic pathways facilitates prediction of potential drug-drug interactions associated with enzyme polymorphism, induction, or inhibition, and aids in the design of clinical trials. Incubation of NCEs with human recombinant enzymes is a popular method for such work because of the specificity, simplicity, and high-throughput nature of this approach for phenotyping studies. The availability of a relative abundance factor and calculated intersystem extrapolation factor for the expressed recombinant enzymes facilitates easy scaling of in vitro data, enabling in vitro-in vivo extrapolation. Described in this unit is a high-throughput screen for identifying enzymes involved in the metabolism of NCEs. Emphasis is placed on the analysis of the human recombinant enzymes CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2B6, and CYP3A4, including the calculation of the intrinsic clearance for each.

  19. Inhibition of human P450 enzymes by natural extracts used in traditional medicine.

    PubMed

    Rodeiro, Idania; Donato, María T; Jimenez, Nuria; Garrido, Gabino; Molina-Torres, Jorge; Menendez, Roberto; Castell, José V; Gómez-Lechón, María J

    2009-02-01

    Different medicinal plants are widely used in Cuba and Mexico to treat several disorders. This paper reports in vitro inhibitory effects on the P450 system of herbal products commonly used by people in Cuba and Mexico in traditional medicine for decades. Experiments were conducted in human liver microsomes. The catalytic activities of CYP1A1/2, 2D6, and 3A4 were measured using specific probe substrates. The Heliopsis longipes extract exhibited a concentration-dependent inhibition of the three enzymes, and similar effects were produced by affinin (an alkamide isolated from the H. longipes extract) and two catalytically reduced alkamides. Mangifera indica L. and Thalassia testudinum extracts, two natural polyphenol-rich extracts, diminished CYP1A1/2 and 3A4 activities, but not the CYP2D6 activity. These results suggest that these herbs inhibit the major human P450 enzymes involved in drug metabolism and could induce potential herbal-drug interactions.

  20. CYP450 Enzyme-Mediated Metabolism of TCAS and Its Inhibitory and Induced Effects on Metabolized Enzymes in Vitro.

    PubMed

    Shen, Guolin; Wang, Cheng; Zhou, Lili; Li, Lei; Chen, Huiming; Yu, Wenlian; Li, Haishan

    2015-09-02

    In this study, we investigated the enzymes catalyzing the phase I metabolism of thiacalixarene (TCAS) based on in vitro system including cDNA-expressed P450 enzymes, human liver microsomes plus inhibitors and monoclonal antibodies. In addition, the inhibitory potential of TCAS on major CYP450 drug metabolizing enzymes (CYP1A2, CYP2C9, CYP2B6, CYP2D6 and CYP3A4) was assessed. The results showed that CYP1A2 and CYP2C9 mediated TCAS hydroxylation. IC50 values for TCAS in rat and human liver microsomes were greater than 50 µM, and it demonstrated a weak inhibition of rat and human CYP450 enzymes. Finally, sandwiched hepatocytes were used to evaluate the induction of CYP1A and CYP3A to define the function of TCAS in vivo. The results showed that incubation of TCAS at different concentrations for 72 h failed to induce CYP1A and CYP3A. However, incubation of the cells with 50 and 100 µM TCAS caused a profound decrease in the activities of CYP1A and CYP3A, which was probably due to cytotoxic effects, suggesting that exposure to TCAS might be a health concern.

  1. CYP450 Enzyme-Mediated Metabolism of TCAS and Its Inhibitory and Induced Effects on Metabolized Enzymes in Vitro

    PubMed Central

    Shen, Guolin; Wang, Cheng; Zhou, Lili; Li, Lei; Chen, Huiming; Yu, Wenlian; Li, Haishan

    2015-01-01

    In this study, we investigated the enzymes catalyzing the phaseⅠmetabolism of thiacalixarene (TCAS) based on in vitro system including cDNA-expressed P450 enzymes, human liver microsomes plus inhibitors and monoclonal antibodies. In addition, the inhibitory potential of TCAS on major CYP450 drug metabolizing enzymes (CYP1A2, CYP2C9, CYP2B6, CYP2D6 and CYP3A4) was assessed. The results showed that CYP1A2 and CYP2C9 mediated TCAS hydroxylation. IC50 values for TCAS in rat and human liver microsomes were greater than 50 µM, and it demonstrated a weak inhibition of rat and human CYP450 enzymes. Finally, sandwiched hepatocytes were used to evaluate the induction of CYP1A and CYP3A to define the function of TCAS in vivo. The results showed that incubation of TCAS at different concentrations for 72 h failed to induce CYP1A and CYP3A. However, incubation of the cells with 50 and 100 µM TCAS caused a profound decrease in the activities of CYP1A and CYP3A, which was probably due to cytotoxic effects, suggesting that exposure to TCAS might be a health concern. PMID:26404338

  2. Inhibitory effects of kale ingestion on metabolism by cytochrome P450 enzymes in rats.

    PubMed

    Yamasaki, Izumi; Yamada, Masayoshi; Uotsu, Nobuo; Teramoto, Sachiyuki; Takayanagi, Risa; Yamada, Yasuhiko

    2012-01-01

    Kale (Brassica oleracea L. var acephala DC) is a leafy green vegetable belonging to the cabbage family (Brassicaceae) that contains a large amount of health-promoting phytochemicals. There are any reports about the effects of kale ingestion on the chemoprevention function and mechanism, but the interactions between kale and drugs have not been researched. We investigated the effects of kale intake on cytochrome P450 (CYP) metabolism by using cocktail probe drugs, including midazolam (for CYP3A4), caffeine (for CYP1A2), dextromethorphan (for CYP2D6), tolbutamide (for CYP2C9), omeprazole (for CYP2C19), and chlorzoxazone (for CYP2E1). Cocktail drugs were administered into rats treated with kale and cabbage (2000 mg/kg) for a week. The results showed that kale intake induced a significant increase in plasma levels and the AUC of midazolam, caffeine, and dextromethorphan. In addition, the plasma concentration and AUC of omeprazole tended to increase. Additionally, no almost differences in the mRNA expression levels of CYP enzymes in the liver were observed. In conclusion, kale ingestion was considered to have an inhibitory effect on the activities of CYP3A4, 1A2, 2D6, and 2C19 for a reason competitive inhibition than inhibitory changes in the mRNA expressions.

  3. Pharmacokinetic assessment of a five-probe cocktail for CYPs 1A2, 2C9, 2C19, 2D6 and 3A

    PubMed Central

    Turpault, Sandrine; Brian, William; Van Horn, Robert; Santoni, Alix; Poitiers, Franck; Donazzolo, Yves; Boulenc, Xavier

    2009-01-01

    AIMS To assess the pharmacokinetics (PK) of selective substrates of CYP1A2 (caffeine), CYP2C9 (S-warfarin), CYP2C19 (omeprazole), CYP2D6 (metoprolol) and CYP3A (midazolam) when administered orally and concurrently as a cocktail relative to the drugs administered alone. METHODS This was an open-label, single-dose, randomized, six-treatment six-period six-sequence William's design study with a wash-out of 7 or 14 days. Thirty healthy male subjects received 100 mg caffeine, 100 mg metoprolol, 0.03 mg kg−1 midazolam, 20 mg omeprazole and 10 mg warfarin individually and in combination (cocktail). Poor metabolizers of CYP2C9, 2C19 and 2D6 were excluded. Plasma samples were obtained up to 48 h for caffeine, metoprolol and omeprazole, 12 h for midazolam, 312 h for warfarin and the cocktail. Three different validated liquid chromatography tandem mass spectrometry methods were used. Noncompartmental PK parameters were calculated. Log-transformed Cmax, AUClast and AUC for each analyte were analysed with a linear mixed effects model with fixed term for treatment, sequence and period, and random term for subject within sequence. Point estimates (90% CI) for treatment ratios (individual/cocktail) were computed for each analyte Cmax, AUClast and AUC. RESULTS There was no PK interaction between the probe drugs when administered in combination as a cocktail, relative to the probes administered alone, as the 90% CI of the PK parameters was within the prespecified bioequivalence limits of 0.80, 1.25. CONCLUSION The lack of interaction between probes indicates that this cocktail could be used to evaluate the potential for multiple drug–drug interactions in vivo. PMID:20002088

  4. Simultaneous Screening of Activities of Five Cytochrome P450 and Four Uridine 5'-Diphospho-glucuronosyltransferase Enzymes in Human Liver Microsomes Using Cocktail Incubation and Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Lee, Boram; Ji, Hyeon-Kyeong; Lee, Taeho; Liu, Kwang-Hyeon

    2015-07-01

    Cytochrome P450 (P450) and uridine 5'-diphospho-glucuronosyltransferase (UGT) are major metabolizing enzymes in the biotransformation of most drugs. Altered P450 and UGT activities are a potential cause of adverse drug-drug interaction. A method for the simultaneous evaluation of the activities of five P450s (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A) and four UGTs (UGT1A1, UGT1A4, UGT1A9, and UGT2B7) was developed using in vitro cocktail incubation and tandem mass spectrometry. The nine probe substrates used in this assay were phenacetin (CYP1A2), diclofenac (CYP2C9), S-mephenytoin (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), 7-ethyl-10-hydroxy-camptothecin (SN-38) (UGT1A1), trifluoperazine (UGT1A4), mycophenolic acid (UGT1A9), and naloxone (UGT2B7). This new method involves incubation of two cocktail doses and single cassette analysis. The two cocktail doses and the concentration of each probe substrate in vitro were determined to minimize mutual drug interactions among substrates. Cocktail A comprised phenacetin, diclofenac, S-mephenytoin, dextromethorphan, and midazolam, whereas cocktail B comprised SN-38, trifluoperazine, mycophenolic acid, and naloxone. In the incubation study of these cocktails, the reaction mixtures were pooled and simultaneously analyzed using liquid chromatography-tandem mass spectrometry. The method was validated by comparing inhibition data obtained from the incubation of each probe substrate alone with data from the cocktail method. The IC50 values obtained in both cocktail and individual incubations were in agreement with values previously reported in the literature. This cocktail method offers a rapid and robust way to simultaneously evaluate phase I and II enzyme inhibition profiles of many new chemical entities. This new method will also be useful in the drug discovery process and for advancing the mechanistic understanding of drug interactions. PMID:25904760

  5. In vitro metabolism of α7 neuronal nicotinic receptor agonist AZD0328 and enzyme identification for its N-oxide metabolite.

    PubMed

    Zhou, Diansong; Zhang, Minli; Ye, Xiaomei; Gu, Chungang; Piser, Timothy M; Lanoue, Bernard A; Schock, Sara A; Cheng, Yi-Fang; Grimm, Scott W

    2011-03-01

    1. AZD0328 was pharmacologically characterized as a α7 neuronal nicotinic receptor agonist intended for treatment of Alzheimer's disease. In vitro AZD0328 cross species metabolite profile and enzyme identification for its N-oxide metabolite were evaluated in this study. 2. AZD0328 was very stable in the human hepatocyte incubation, whereas extensively metabolized in rat, dog and guinea pig hepatocyte incubations. The N-oxidation metabolite (M6) was the only metabolite detected in human hepatocyte incubations, and it also appeared to be the major in vitro metabolic pathway in a number of preclinical species. In addition, N-glucuronide metabolite of AZD0328 was observed in human liver microsomes. 3. Other metabolic pathways in the preclinical species include hydroxylation in azabicyclo octane or furopyridine part of the molecule. Pyridine N-methylation of AZD0328 (M2) was identified as a dog specific metabolite, not observed in human or other preclinical species. 4. Multiple enzymes including CYP2D6, CYP3A4/5, FMO1 and FMO3 catalyzed AZD0328 metabolism. The potential for AZD0328 to be inhibited clinically by co-administered drugs or genetic polymorphism is relative low. PMID:21226652

  6. Structure-Activity Relationship and Substrate-Dependent Phenomena in Effects of Ginsenosides on Activities of Drug-Metabolizing P450 Enzymes

    PubMed Central

    Hao, Miao; Zhao, Yuqing; Chen, Peizhan; Huang, He; Liu, Hong; Jiang, Hualiang; Zhang, Ruiwen; Wang, Hui

    2008-01-01

    Ginseng, a traditional herbal medicine, may interact with several co-administered drugs in clinical settings, and ginsenosides, the major active components of ginseng, may be responsible for these ginseng-drug interactions (GDIs). Results from previous studies on ginsenosides' effects on human drug-metabolizing P450 enzymes are inconsistent and confusing. Herein, we first evaluated the inhibitory effects of fifteen ginsenosides and sapogenins on human CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 enzymes by using commercially available fluorescent probes. The structure-activity relationship of their effects on the P450s was also explored and a pharmacophore model was established for CYP3A4. Moreover, substrate-dependent phenomena were found in ginsenosides' effects on CYP3A4 when another fluorescent probe was used, and were further confirmed in tests with conventional drug probes and human liver microsomes. These substrate-dependent effects of the ginsenosides may provide an explanation for the inconsistent results obtained in previous GDI reports. PMID:18628990

  7. Effects of capsaicin and dihydrocapsaicin on human and rat liver microsomal CYP450 enzyme activities in vitro and in vivo.

    PubMed

    Zhang, Qing-Hao; Hu, Jin-Ping; Wang, Bao-Lian; Li, Yan

    2012-01-01

    Capsaicin and dihydrocapsaicin, the two most abundant members of capsaicinoids in chili peppers, are widely used as food additives and for other purposes. In this study, we examined the inhibitory potentials of capsaicin and dihydrocapsaicin against CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4/5 activities in human liver microsomes. The effects of these two capsaicinoids on CYP450 enzymes were also evaluated in vivo in rats. The results demonstrated that capsaicin and dihydrocapsaicin moderately inhibited five isozymes (IC₅₀) values ranging from 4.4 to 61.8 μM), with the exception of CYP2E1 (IC₅₀ > 200 μM). Both capsaicinoids exhibited competitive, mixed, and noncompetitive inhibition on these isozymes (K (i) = 3.1 ± 0.5 - 78.6 ± 8.4 μM). Time-dependent inhibition of CYP3A4/5 by capsaicin was found. After multiple administrations of capsaicin and dihydrocapsaicin (1, 4, and 10 mg/kg) to rats, chlorzoxazone 6-hydroxylase activity and the expression of CYP2E1 were increased in liver microsomes. Our findings indicated that the possibility of food-drug interactions mediated by capsaicin and dihydrocapsaicin could not be excluded, and provided the useful information for evaluating the anticarcinogenic potentials of these two capsaicinoids. PMID:22375877

  8. Clinically relevant genetic variants of drug-metabolizing enzyme and transporter genes detected in Thai children and adolescents with autism spectrum disorder

    PubMed Central

    Medhasi, Sadeep; Pasomsub, Ekawat; Vanwong, Natchaya; Ngamsamut, Nattawat; Puangpetch, Apichaya; Chamnanphon, Montri; Hongkaew, Yaowaluck; Limsila, Penkhae; Pinthong, Darawan; Sukasem, Chonlaphat

    2016-01-01

    Single-nucleotide polymorphisms (SNPs) among drug-metabolizing enzymes and transporters (DMETs) influence the pharmacokinetic profile of drugs and exhibit intra- and interethnic variations in drug response in terms of efficacy and safety profile. The main objective of this study was to assess the frequency of allelic variants of drug absorption, distribution, metabolism, and elimination-related genes in Thai children and adolescents with autism spectrum disorder. Blood samples were drawn from 119 patients, and DNA was extracted. Genotyping was performed using the DMET Plus microarray platform. The allele frequencies of the DMET markers were generated using the DMET Console software. Thereafter, the genetic variations of significant DMET genes were assessed. The frequencies of SNPs across the genes coding for DMETs were determined. After filtering the SNPs, 489 of the 1,931 SNPs passed quality control. Many clinically relevant SNPs, including CYP2C19*2, CYP2D6*10, CYP3A5*3, and SLCO1B1*5, were found to have frequencies similar to those in the Chinese population. These data are important for further research to investigate the interpatient variability in pharmacokinetics and pharmacodynamics of drugs in clinical practice. PMID:27110117

  9. Inhibition of human cytochrome P450 enzymes by licochalcone A, a naturally occurring constituent of licorice.

    PubMed

    He, Wei; Wu, Jing-Jing; Ning, Jing; Hou, Jie; Xin, Hong; He, Yu-Qi; Ge, Guang-Bo; Xu, Wei

    2015-10-01

    Licochalcone A (LCA) is a major bioactive compound in traditional Chinese herbal liquorice that possesses multiple pharmacological activities. However, the effects of the potential herb-drug interactions (HDIs) between LCA and therapeutic drugs on the inhibition of human cytochrome P450 (CYP) enzymes remain unclear. In the present study, the inhibitory effects of LCA on seven major human CYP isoforms, including CYP1A2, 2D6, 2E1, 2C19, 2C8, 2C9 and 3A4, were investigated in human liver microsomes (HLMs). The results demonstrated that LCA significantly inhibited the activities of CYP1A2, 2C19, 2C8, 2C9 and 3A4 and exhibited weak inhibitory effects on CYP2E1 and CYP2D6. Dixon and Lineweaver-Burk plots revealed that the inhibition types of LCA against CYP1A2, 2C9, 2C19 and 2C8 were best fit as mixed-type inhibitions, while LCA was a competitive inhibitor towards CYP3A4. The inhibition kinetic parameters (K(i)) were calculated to be 1.02 μM, 0.17 μM, 3.89 μM 0.89 μM, and 2.29 μM, for CYP1A2, 2C9, 2C19, 2C8, and 3A4, respectively. Furthermore, the areas under the plasma concentration-time curves (AUCs) of several drugs that are primarily metabolized by CYPs were estimated to increase by 2-398% in the presence of LCA, which suggested that LCA exhibited high HDI potentials via CYP inhibition. These data are significant for the clinical applications of LCA-containing herbs.

  10. Cytochrome P450 dependent metabolism of the new designer drug 1-(3-trifluoromethylphenyl)piperazine (TFMPP). In vivo studies in Wistar and Dark Agouti rats as well as in vitro studies in human liver microsomes.

    PubMed

    Staack, Roland F; Paul, Liane D; Springer, Dietmar; Kraemer, Thomas; Maurer, Hans H

    2004-01-15

    1-(3-Trifluoromethylphenyl)piperazine (TFMPP) is a designer drug with serotonergic properties. Previous studies with male Wistar rats (WI) had shown, that TFMPP was metabolized mainly by aromatic hydroxylation. In the current study, it was examined whether this reaction may be catalyzed by cytochrome P450 (CYP)2D6 by comparing TFMPP vs. hydroxy TFMPP ratios in urine from female Dark Agouti rats, a model of the human CYP2D6 poor metabolizer phenotype (PM), male Dark Agouti rats, an intermediate model, and WI, a model of the human CYP2D6 extensive metabolizer phenotype. Furthermore, the human hepatic CYPs involved in TFMPP hydroxylation were identified using cDNA-expressed CYPs and human liver microsomes. Finally, TFMPP plasma levels in the above mentioned rats were compared. The urine studies suggested that TFMPP hydroxylation might be catalyzed by CYP2D6 in humans. Studies using human CYPs showed that CYP1A2, CYP2D6 and CYP3A4 catalyzed TFMPP hydroxylation, with CYP2D6 being the most important enzyme accounting for about 81% of the net intrinsic clearance, calculated using the relative activity factor approach. The hydroxylation was significantly inhibited by quinidine (77%) and metabolite formation in poor metabolizer genotype human liver microsomes was significantly lower (63%) compared to pooled human liver microsomes. Analysis of the plasma samples showed that female Dark Agouti rats exhibited significantly higher TFMPP plasma levels compared to those of male Dark Agouti rats and WI. Furthermore, pretreatment of WI with the CYP2D inhibitor quinine resulted in significantly higher TFMPP plasma levels. In conclusion, the presented data give hints for possible differences in pharmacokinetics in human PM and human CYP2D6 extensive metabolizer phenotype subjects relevant for risk assessment.

  11. Use of Human Plasma Samples to Identify Circulating Drug Metabolites that Inhibit Cytochrome P450 Enzymes.

    PubMed

    Eng, Heather; Obach, R Scott

    2016-08-01

    Drug interactions elicited through inhibition of cytochrome P450 (P450) enzymes are important in pharmacotherapy. Recently, greater attention has been focused on not only parent drugs inhibiting P450 enzymes but also on possible inhibition of these enzymes by circulating metabolites. In this report, an ex vivo method whereby the potential for circulating metabolites to be inhibitors of P450 enzymes is described. To test this method, seven drugs and their known plasma metabolites were added to control human plasma at concentrations previously reported to occur in humans after administration of the parent drug. A volume of plasma for each drug based on the known inhibitory potency and time-averaged concentration of the parent drug was extracted and fractionated by high-pressure liquid chromatography-mass spectrometry, and the fractions were tested for inhibition of six human P450 enzyme activities (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4). Observation of inhibition in fractions that correspond to the retention times of metabolites indicates that the metabolite has the potential to contribute to P450 inhibition in vivo. Using this approach, norfluoxetine, hydroxyitraconazole, desmethyldiltiazem, desacetyldiltiazem, desethylamiodarone, hydroxybupropion, erythro-dihydrobupropion, and threo-dihydrobupropion were identified as circulating metabolites that inhibit P450 activities at a similar or greater extent as the parent drug. A decision tree is presented outlining how this method can be used to determine when a deeper investigation of the P450 inhibition properties of a drug metabolite is warranted. PMID:27271369

  12. CYP2D60 and Clinical Response to Atomoxetine in Children and Adolescents with ADHD

    ERIC Educational Resources Information Center

    Michelson, David; Read, Holly A.; Ruff, Dustin D.; Witcher, Jennifer; Zhang, Shuyu; McCracken, James

    2007-01-01

    Background: Atomoxetine, a selective norepinephrine reuptake inhibitor effective in the treatment of attention-deficit/hyperactivity disorder (ADHD), is metabolized through the cytochrome P-450 2D6 (CYP2D6) enzyme pathway, which is genetically polymorphic in humans. Variations in plasma atomoxetine exposures can occur because of genetic variation…

  13. The effect of enzyme inhibition on the metabolism and activation of tacrine by human liver microsomes.

    PubMed Central

    Spaldin, V; Madden, S; Pool, W F; Woolf, T F; Park, B K

    1994-01-01

    1. Tacrine (1,2,3,4-tetrahydro-9-aminoacridine-hydrochloride: THA) underwent metabolism in vitro by a panel (n = 12) of human liver microsomes genotyped for CYP2D6, in the presence of NADPH, to both protein-reactive and stable metabolites. 2. There was considerable variation in the extent of THA metabolism amongst human livers. Protein-reactive metabolite formation showed a 10-fold variation (0.6 +/- 0.1%-5.2 +/- 0.8% of incubated radioactivity mg-1 protein) whilst stable metabolites showed a 3-fold variation (24.3 +/- 1.7%-78.6 +/- 2.6% of incubated radioactivity). 3. Using cytochrome P450 isoform specific inhibitors CYP1A2 was identified as the major enzyme involved in all routes of THA metabolism. 4. There was a high correlation between aromatic and alicyclic hydroxylation (r = 0.92, P < 0.0001) consistent with these biotransformations being catalysed by the same enzymes. 5. Enoxacin (ENOX), cimetidine (CIM) and chloroquine (CQ) inhibited THA metabolism by a preferential decrease in the bioactivation to protein-reactive, and hence potentially toxic, species. The inhibitory potency of ENOX and CIM was increased significantly upon pre-incubation with microsomes and NADPH. 6. Covalent binding correlated with 7-OH-THA formation before (r = 0.792, P < 0.0001) and after (r = 0.73, P < 0.0001) inhibition by CIM, consistent with a two-step mechanism in the formation of protein-reactive metabolite(s) via a 7-OH intermediate. 7. The use of enzyme inhibitors may provide a useful tool for examining the relationship between the metabolism and toxicity of THA in vivo. PMID:7946932

  14. High levels of autoantibodies against drug-metabolizing enzymes in SLA/LP-positive AIH-1 sera.

    PubMed

    Shinoda, Masakazu; Tanaka, Yuta; Kuno, Takuya; Matsufuji, Tamiko; Matsufuji, Senya; Murakami, Yasuko; Mizutani, Takaharu

    2004-01-01

    Autoimmune hepatitis type 1 (AIH-1) is characterized by the detection of smooth muscle autoantibodies, antinuclear antibodies and antineutrophil cytoplasmic autoantibodies, and AIH-2 is characterized by the presence of autoantibodies against LKM, which contain drug-metabolizing enzymes. In this study, we measured the levels of drug-metabolizing enzymes in AIH-1 patients (ANA-positive). We exhaustively investigated the level of autoantibodies against major CYPs and UDP-glucuronosyltransferases of typical phase II drug-metabolizing enzymes, a transporter (MDR1), and NADPH-cytochrome P450 reductase in 4 patients with AIH-1 and 6 controls, as a case report. Two (Patients 3 and 4) of the AIH patients exhibited high levels of autoantibodies, while two (Patients 1 and 2) of the patients and the controls did not. The levels of autoantibodies against CYP2C19, CYP2D6, CYP2E1, UGT1A6 and human liver microsomes in Patients 3 and 4 sera were over 2(3) times the levels in Patient 1, Patient 2 and the control sera. Meanwhile, the levels of autoantibodies against CYP1A2, CYP2A6, CYP2C9, UGT2B7, MDR1 and NADPH-cytochrome P450 reductase were 2-2(2) higher in Patients 3 and 4 than in the other subjects. We found that the pattern of elevation in the Patient 3 serum was not parallel with that in Patient 4. Thus, we found high levels of autoantibodies against drug-metabolizing enzymes in AIH-1 patients.

  15. Effects of Seijo-bofu-to, a traditional Japanese herbal medicine containing furanocoumarin derivatives, on the drug-metabolizing enzyme activities in healthy male volunteers.

    PubMed

    Saruwatari, Junji; Takashima, Ayaka; Yoshida, Kousuke; Soraoka, Hiromi; Ding, Tong-Bin; Uchiyashiki, Yoshihiro; Tsuda, Yoshiyuki; Imamura, Motoki; Oniki, Kentaro; Miyata, Keishi; Nakagawa, Kazuko

    2014-10-01

    Seijo-bofu-to, a traditional medicine used to treat acne in Asian countries, contains twelve herbal components, including Angelica dahurica root, a source of furanocoumarin derivatives. In this study, we investigated potential herb-drug interactions of seijo-bofu-to in healthy male volunteers. Thirty-two young, healthy, non-smoking males were assessed for the baseline activity of cytochrome P450 (CYP) 1A2, CYP3A, CYP2D6, N-acetyltransferase 2 and xanthine oxidase according to the urinary metabolic indices of 8-hr urine samples collected after the administration of a 150-mg dose of caffeine and a 30-mg dose of dextromethorphan, and the ratio of urinary excretion of 6β-hydroxycortisol to cortisol. Thereafter, the volunteers received 3.75 g of seijo-bofu-to twice daily for 7 days and underwent the same tests on post-dose day 7. The geometric mean ratio of the CYP1A2 activity on day 7 to that observed at baseline was 0.66 (95% CI, 0.55-0.79, p = 0.001). The geometric mean phenotypic indices for CYP3A, CYP2D6, N-acetyltransferase 2 and xanthine oxidase on day 7 did not differ from the baseline values. The findings of the present study suggest that seijo-bofu-to may inhibit the activity of CYP1A2, whereas it is unlikely to participate in herb-drug interactions involving medications predominantly metabolized by CYP3A, CYP2D6, N-acetyltransferase 2 or xanthine oxidase.

  16. Inhibition of human cytochrome P450 enzymes by Bacopa monnieri standardized extract and constituents.

    PubMed

    Ramasamy, Seetha; Kiew, Lik Voon; Chung, Lip Yong

    2014-02-24

    Bacopa monnieri and the constituents of this plant, especially bacosides, possess various neuropharmacological properties. Like drugs, some herbal extracts and the constituents of their extracts alter cytochrome P450 (CYP) enzymes, causing potential herb-drug interactions. The effects of Bacopa monnieri standardized extract and the bacosides from the extract on five major CYP isoforms in vitro were analyzed using a luminescent CYP recombinant human enzyme assay. B. monnieri extract exhibited non-competitive inhibition of CYP2C19 (IC50/Ki = 23.67/9.5 µg/mL), CYP2C9 (36.49/12.5 µg/mL), CYP1A2 (52.20/25.1 µg/mL); competitive inhibition of CYP3A4 (83.95/14.5 µg/mL) and weak inhibition of CYP2D6 (IC50 = 2061.50 µg/mL). However, the bacosides showed negligible inhibition of the same isoforms. B. monnieri, which is orally administered, has a higher concentration in the gut than the liver; therefore, this herb could exhibit stronger inhibition of intestinal CYPs than hepatic CYPs. At an estimated gut concentration of 600 µg/mL (based on a daily dosage of 300 mg/day), B. monnieri reduced the catalytic activities of CYP3A4, CYP2C9 and CYP2C19 to less than 10% compared to the total activity (without inhibitor = 100%). These findings suggest that B. monnieri extract could contribute to herb-drug interactions when orally co-administered with drugs metabolized by CYP1A2, CYP3A4, CYP2C9 and CYP2C19.

  17. Comparison of various urine collection intervals for caffeine and dextromethorphan phenotyping in children.

    PubMed

    Kennedy, Mary Jayne; Abdel-Rahman, Susan M; Kashuba, Angela D M; Leeder, J Steven

    2004-07-01

    Caffeine and dextromethorphan have been used successfully both alone and in combination to assess phenotype and enzyme activity in children of various ages. Previous pediatric phenotyping studies with these agents have used varying durations of urine collection. However, the minimum duration required for accurate phenotypic assessment with these compounds in children remains unknown. We calculated the cumulative metabolite recoveries and molar ratios in urine collected from children for 2, 4, 6, and 8 hours after caffeine and dextromethorphan administration to determine when respective urinary molar ratios stabilize and thus likely accurately reflect enzyme activity. Subjects (n = 24, ages 3-8 years) were given 4 oz of Coca-Cola(R) ( approximately 11.5 mg caffeine) and a single oral dose of dextromethorphan (0.5 mg/kg). Urine was collected at discrete intervals (0-2, 2-4, 4-6, and 6-8 h) during an 8-hour period, and the cumulative metabolite recoveries and urinary molar ratios were calculated. CYP2D6 genotyping was also performed in 21 of 24 subjects. In CYP2D6 extensive metabolizers, the extent of recovery for relevant metabolites was equivalent by 4 hours and represented 45% to 60% of the total amount recovered in the 8-hour period. The 2-hour CYP1A2 ratio was significantly different from those of longer collection intervals. Metabolite ratios for all other enzymes (i.e., NAT-2, XO, and CYP2D6) were independent of the duration of urine collection. These data suggest that a 4-hour urine collection is adequate for the concurrent assessment of hepatic CYP1A2, NAT-2, XO, and CYP2D6 activity in children ages 3 to 8 years who are CYP2D6 extensive metabolizers, using standard caffeine and dextromethorphan phenotyping methods. Longer collection periods may be required, however, in younger children or CYP2D6 poor metabolizers. PMID:15199075

  18. Effects of suberoylanilide hydroxamic acid on rat cytochrome P450 enzyme activities.

    PubMed

    Lin, Kezhi; Zhang, Qingwei; Liu, Zezheng; Yang, Suping; Lin, Yingying; Wen, Congcong; Zheng, Yuancai

    2015-01-01

    Vorinostat (suberoylanilide hydroxamic acid, SAHA) is the first approved histone deacetylase (HDAC) inhibitor for the treatment of cutaneous T-cell lymphoma after progressive disease following two systemic therapies. The rats were randomly divided into SAHA groups (low, medium and high dosage) and control group. The SAHA group rats were given 12.3, 24.5, and 49 mg/kg SAHA, respectively, by continuous intragastric administration for 7 days. The influence of SAHA on the activities of CYP450 isoforms CYP2B6, CYP1A2, CYP2C19, CYP2D6 and CYP2C9 were evaluated by cocktail method, they were responsed by the changes of pharmacokinetic parameters of bupropion, phenacetin, tolbutamide, metroprolol and omeprazole. The five probe drugs were given to rats through intragastric administration, and the plasma concentration were determined by UPLC-MS/MS. The result of SAHA group compared to control group, there were statistical pharmacokinetics difference for bupropion, phenacetin, tolbutamide and metroprolol. Continuous intragastric administration for 7 days may induce the activities of CYP2C19 of rats, inhibit CYP1A2 and slightly inhibit CYP2B6 and CYP2D6 of rats. This may give advising for reasonable drug use after co-used with SAHA. The results indicated that drug co-administrated with SAHA may need dose adjustment. Furthermore, continuous intragastric administration of SAHA for 7 days, liver cell damaged, causing liver cell edema, in liver metabolism process.

  19. Inhibitory Effects of Aschantin on Cytochrome P450 and Uridine 5'-diphospho-glucuronosyltransferase Enzyme Activities in Human Liver Microsomes.

    PubMed

    Kwon, Soon-Sang; Kim, Ju-Hyun; Jeong, Hyeon-Uk; Cho, Yong Yeon; Oh, Sei-Ryang; Lee, Hye Suk

    2016-01-01

    Aschantin is a bioactive neolignan found in Magnolia flos with antiplasmodial, Ca(2+)-antagonistic, platelet activating factor-antagonistic, and chemopreventive activities. We investigated its inhibitory effects on the activities of eight major human cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes of human liver microsomes to determine if mechanistic aschantin-enzyme interactions were evident. Aschantin potently inhibited CYP2C8-mediated amodiaquine N-de-ethylation, CYP2C9-mediated diclofenac 4'-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4'-hydroxylation, and CYP3A4-mediated midazolam 1'-hydroxylation, with Ki values of 10.2, 3.7, 5.8, and 12.6 µM, respectively. Aschantin at 100 µM negligibly inhibited CYP1A2-mediated phenacetin O-de-ethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated bupropion hydroxylation, and CYP2D6-mediated bufuralol 1'-hydroxylation. At 200 µM, it weakly inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A6-catalyzed N-acetylserotonin glucuronidation, and UGT1A9-catalyzed mycophenolic acid glucuronidation, with IC50 values of 131.7, 144.1, and 71.0 µM, respectively, but did not show inhibition against UGT1A3, UGT1A4, or UGT2B7 up to 200 µM. These in vitro results indicate that aschantin should be examined in terms of potential interactions with pharmacokinetic drugs in vivo. It exhibited potent mechanism-based inhibition of CYP2C8, CYP2C9, CYP2C19, and CYP3A4. PMID:27128896

  20. Biological definition of multiple chemical sensitivity from redox state and cytokine profiling and not from polymorphisms of xenobiotic-metabolizing enzymes

    SciTech Connect

    De Luca, Chiara; Scordo, Maria G.; Cesareo, Eleonora; Pastore, Saveria; Mariani, Serena; Maiani, Gianluca; Stancato, Andrea; Loreti, Beatrice; Valacchi, Giuseppe; Lubrano, Carla; Raskovic, Desanka; De Padova, Luigia; Genovesi, Giuseppe; Korkina, Liudmila G.

    2010-11-01

    Background: Multiple chemical sensitivity (MCS) is a poorly clinically and biologically defined environment-associated syndrome. Although dysfunctions of phase I/phase II metabolizing enzymes and redox imbalance have been hypothesized, corresponding genetic and metabolic parameters in MCS have not been systematically examined. Objectives: We sought for genetic, immunological, and metabolic markers in MCS. Methods: We genotyped patients with diagnosis of MCS, suspected MCS and Italian healthy controls for allelic variants of cytochrome P450 isoforms (CYP2C9, CYP2C19, CYP2D6, and CYP3A5), UDP-glucuronosyl transferase (UGT1A1), and glutathione S-transferases (GSTP1, GSTM1, and GSTT1). Erythrocyte membrane fatty acids, antioxidant (catalase, superoxide dismutase (SOD)) and glutathione metabolizing (GST, glutathione peroxidase (Gpx)) enzymes, whole blood chemiluminescence, total antioxidant capacity, levels of nitrites/nitrates, glutathione, HNE-protein adducts, and a wide spectrum of cytokines in the plasma were determined. Results: Allele and genotype frequencies of CYPs, UGT, GSTM, GSTT, and GSTP were similar in the Italian MCS patients and in the control populations. The activities of erythrocyte catalase and GST were lower, whereas Gpx was higher than normal. Both reduced and oxidised glutathione were decreased, whereas nitrites/nitrates were increased in the MCS groups. The MCS fatty acid profile was shifted to saturated compartment and IFNgamma, IL-8, IL-10, MCP-1, PDGFbb, and VEGF were increased. Conclusions: Altered redox and cytokine patterns suggest inhibition of expression/activity of metabolizing and antioxidant enzymes in MCS. Metabolic parameters indicating accelerated lipid oxidation, increased nitric oxide production and glutathione depletion in combination with increased plasma inflammatory cytokines should be considered in biological definition and diagnosis of MCS.

  1. Reversible inhibition of three important human liver cytochrome p450 enzymes by tiliroside.

    PubMed

    Sun, Dong-Xue; Lu, Jin-Cai; Fang, Zhong-Ze; Zhang, Yan-Yan; Cao, Yun-Feng; Mao, Yu-Xi; Zhu, Liang-Liang; Yin, Jun; Yang, Ling

    2010-11-01

    Tiliroside, an active flavonoid extensively found in many medicinal plants including Helichrysum italicum, Geranium mexicanum and Helianthemum glomeratum, has been demonstrated to exert multiple biological effects including antiinflammatory, antimicrobial, antioxidant and antitumor activities. Cytochrome P450 (CYP) enzymes play an important role in the Phase I oxidation metabolism of a wide range of xenobiotics and inhibition of CYP isoforms might influence the elimination of drugs and induce serious adverse drug response. The inhibition of seven CYP isoforms (CYP3A4, CYP1A2, CYP2A6, CYP2D6, CYP2C9, CYP2C8 and CYP2E1) by tiliroside was investigated using in vitro human liver microsomal incubation assays. The results showed that tiliroside strongly inhibited the activity of CYP3A4 (IC(50) = 9.0 ± 1.7 μm), CYP2C8 (IC(50) = 12.1 ± 0.9 μm) and CYP2C9 (IC(50) = 10.2 ± 0.9 μm) with other CYP isoforms negligibly influenced. Further kinetic analysis showed that inhibition of these three CYP isoforms by tiliroside is best fit to a competitive way. The K(i) value was calculated to be 5.5 μm, 3.3 μm, 9.4 μm for CYP3A4, CYP2C9 and CYP2C8, respectively. The relatively low K(i) values suggested that tiliroside might induce drug-drug interactions with many clinically used drugs which are mainly metabolized by these three CYP isoforms. Therefore, attention should be given to the probable drug-drug interaction between tiliroside-containing herbs and substrates of CYP3A4, CYP2C9 and CYP2C8.

  2. Pharmacogenetics of drug oxidation via cytochrome P450 (CYP) in the populations of Denmark, Faroe Islands and Greenland.

    PubMed

    Brosen, Kim

    2015-09-01

    Denmark, the Faroe Islands and Greenland are three population-wise small countries on the northern part of the Northern Hemisphere, and studies carried out here on the genetic control over drug metabolism via cytochrome P450 have led to several important discoveries. Thus, CYP2D6 catalyzes the 2-hydroxylation, and CYP2C19 in part catalyzes the N-demethylation of imipramine. The phenomenon of phenocopy with regard to CYP2D6 was first described when Danish patients changed phenotype from extensive to poor metabolizers during treatment with quinidine. It was a Danish extensive metabolizer patient that became a poor metabolizer during paroxetine treatment, and this was due to the potent inhibition of CYP2D6 by paroxetine, which is also is metabolized by this enzyme. Fluoxetine and norfluoxetine are also potent inhibitors of CYP2D6, and fluvoxamine is a potent inhibitor of both CYP1A2 and CYP2C19. The bioactivation of proguanil to cycloguanil is impaired in CYP2C19 poor metabolizers. The O-demethylation of codeine and tramadol to their respective my-opioid active metabolites, morphine and (+)-O-desmethyltramadol was markedly impaired in CYP2D6 poor metabolizers compared to extensive metabolizers, and this impairs the hypoalgesic effect of the two drugs in the poor metabolizers. The frequency of CYP2D6 poor metabolizers is 2%-3% in Greenlanders and nearly 15% in the Faroese population. The frequency of CYP2C19 poor metabolizers in East Greenlanders is approximately 10%. A study in Danish mono and dizygotic twins showed that the non-polymorphic 3-N-demethylation of caffeine catalyzed by CYP1A2 is subject to approximately 70% genetic control.

  3. Screening of Drug Metabolizing Enzymes for the Ginsenoside Compound K In Vitro: An Efficient Anti-Cancer Substance Originating from Panax Ginseng

    PubMed Central

    Lin, Xiu-Xian; Peng, Shi-Fang; Xiao, Mei-Fang; Huang, Wei-Hua; Wang, Yi-Cheng; Peng, Jing-Bo; Zhang, Wei; Ouyang, Dong-Sheng; Chen, Yao

    2016-01-01

    Ginsenoside compound K (CK), a rare ginsenoside originating from Panax Ginseng, has been found to possess unique pharmacological activities specifically as anti-cancers. However, the role of cytochrome P450s (CYPs) in the metabolism of CK is unclear. In this study, we screened the CYPs for the metabolism of CK in vitro using human liver microsomes (HLMs) or human recombinant CYPs. The results showed that CK inhibited the enzyme activities of CYP2C9 and CYP3A4 in the HLMs. The Km and Vmax values of CK were 84.20±21.92 μM and 0.28±0.04 nmol/mg protein/min, respectively, for the HLMs; 34.63±10.48 μM and 0.45±0.05 nmol/nmol P450/min, respectively, for CYP2C9; and 27.03±5.04 μM and 0.68±0.04 nmol/nmol P450/min, respectively, for CYP3A4. The IC50 values were 16.00 μM and 9.83 μM, and Ki values were 14.92 μM and 11.42μM for CYP2C9 and CYP3A4, respectively. Other human CYP isoforms, including CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP2C19, showed minimal or no effect on CK metabolism. The results suggested that CK was a substrate and also inhibitors for both CYP2C9 and CYP3A4. Patients using CK in combination with therapeutic drugs that are substrates of CYP2C9 and CYP3A4 for different reasons should be careful, although the inhibiting potency of CK is much poorer than that of enzyme-specific inhibitors. PMID:26845774

  4. Identification of metabolic pathways and enzyme systems involved in the in vitro human hepatic metabolism of dronedarone, a potent new oral antiarrhythmic drug

    PubMed Central

    Klieber, Sylvie; Arabeyre-Fabre, Catherine; Moliner, Patricia; Marti, Eric; Mandray, Martine; Ngo, Robert; Ollier, Céline; Brun, Priscilla; Fabre, Gérard

    2014-01-01

    The in vitro metabolism of dronedarone and its major metabolites has been studied in human liver microsomes and cryopreserved hepatocytes in primary culture through the use of specific or total cytochrome P450 (CYP) and monoamine oxidase (MAO) inhibitors. The identification of the main metabolites and enzymes participating in their metabolism was also elucidated by using rhCYP, rhMAO, flavin monooxygenases (rhFMO) and UDP-glucuronosyltransferases (rhUGT) and liquid chromatography/tandem mass spectrometry (LC/MS-MS) analysis. Dronedarone was extensively metabolized in human hepatocytes with a metabolic clearance being almost completely inhibited (98 ± 2%) by 1-aminobenzotriazole. Ketoconazole also inhibited dronedarone metabolism by 89 ± 7%, demonstrating the crucial role of CYP3A in its metabolism. CYP3A isoforms mostly contributed to N-debutylation while hydroxylation on the butyl-benzofuran moiety was catalyzed by CYP2D6. However, hydroxylation on the dibutylamine moiety did not appear to be CYP-dependent. N-debutyl-dronedarone was less rapidly metabolized than dronedarone, the major metabolic pathway being catalyzed by MAO-A to form propanoic acid-dronedarone and phenol-dronedarone. Propanoic acid-dronedarone was metabolized at a similar rate to that of N-debutyl-dronedarone and was predominantly hydroxylated by CYP2C8 and CYP1A1. Phenol-dronedarone was extensively glucuronidated while C-dealkyl-dronedarone was metabolized at a slow rate. The evaluation of the systemic clearance of each metabolic process together with the identification of both the major metabolites and predominant enzyme systems and isoforms involved in the formation and subsequent metabolism of these metabolites has enhanced the overall understanding of metabolism of dronedarone in humans. PMID:25505590

  5. Screening of Drug Metabolizing Enzymes for the Ginsenoside Compound K In Vitro: An Efficient Anti-Cancer Substance Originating from Panax Ginseng.

    PubMed

    Xiao, Jian; Chen, Dan; Lin, Xiu-Xian; Peng, Shi-Fang; Xiao, Mei-Fang; Huang, Wei-Hua; Wang, Yi-Cheng; Peng, Jing-Bo; Zhang, Wei; Ouyang, Dong-Sheng; Chen, Yao

    2016-01-01

    Ginsenoside compound K (CK), a rare ginsenoside originating from Panax Ginseng, has been found to possess unique pharmacological activities specifically as anti-cancers. However, the role of cytochrome P450s (CYPs) in the metabolism of CK is unclear. In this study, we screened the CYPs for the metabolism of CK in vitro using human liver microsomes (HLMs) or human recombinant CYPs. The results showed that CK inhibited the enzyme activities of CYP2C9 and CYP3A4 in the HLMs. The Km and Vmax values of CK were 84.20±21.92 μM and 0.28±0.04 nmol/mg protein/min, respectively, for the HLMs; 34.63±10.48 μM and 0.45±0.05 nmol/nmol P450/min, respectively, for CYP2C9; and 27.03±5.04 μM and 0.68±0.04 nmol/nmol P450/min, respectively, for CYP3A4. The IC50 values were 16.00 μM and 9.83 μM, and Ki values were 14.92 μM and 11.42μM for CYP2C9 and CYP3A4, respectively. Other human CYP isoforms, including CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP2C19, showed minimal or no effect on CK metabolism. The results suggested that CK was a substrate and also inhibitors for both CYP2C9 and CYP3A4. Patients using CK in combination with therapeutic drugs that are substrates of CYP2C9 and CYP3A4 for different reasons should be careful, although the inhibiting potency of CK is much poorer than that of enzyme-specific inhibitors.

  6. Characterization and biological properties of NanoCUR formulation and its effect on major human cytochrome P450 enzymes.

    PubMed

    Shamsi, Suhaili; Chen, Yan; Lim, Lee Yong

    2015-11-10

    Curcumin (CUR) has been formulated into a host of nano-sized formulations in a bid to improve its in vivo solubility, stability and bioavailability. The aim of this study was to investigate whether the encapsulation of CUR in nanocarriers would impede its biological interactivity, specifically its potential anti-cancer adjuvant activity via the modulation of CYP enzymes in vitro. NanoCUR, a micellar dispersion prepared via a thin film method using only Pluronic F127 as excipient, was amenable to lyophilization, and retained its nano-sized spherical dimensions (17-33 nm) upon reconstitution with water followed by dilution to 5 μM with HBSS or EMEM. NanoCUR was a weaker cytotoxic agent compared to CUR in solution (sCUR), affecting HepG2 cell viability only when the incubation time was prolonged from 4h to 48 h. Correlation with 2h uptake data suggests this was due to a lower cellular uptake rate of CUR from NanoCUR than from sCUR. The poorer CUR accessibility might also account for NanoCUR being a weaker inhibitor of CYP2C9 and CYP2D6 than sCUR. NanoCUR was, however, 1.76-fold more potent against the CYP3A4 (IC50 5.13 ± 0.91 μM) metabolic function. The higher activity against CYP3A4 might be attributed to the synergistic action of Pluronic F127, since the blank micellar dispersion also inhibited CYP3A4 activity. Both sCUR and NanoCUR had no effect on the CYP3A4 mRNA levels in the HepG2 cells. NanoCUR therefore, maintained most of the biological activities of CUR in vitro, albeit at a lower potency and response rate. PMID:26319630

  7. In vitro inhibition and induction of human liver cytochrome P450 enzymes by gentiopicroside: potent effect on CYP2A6.

    PubMed

    Deng, Yating; Wang, Lu; Yang, Yong; Sun, Wenji; Xie, Renming; Liu, Xueying; Wang, Qingwei

    2013-01-01

    Gentiopicroside (GE), a naturally occurring iridoid glycoside, has been developed into a Novel Traditional Chinese Drug named gentiopicroside injection, and it was approved for the treatment of acute jaundice and chronic active hepatitis by SFDA. However, the inhibitory and inducible effects of GE on the activity of cytochrome P450 (CYP450) are unclear. The purpose of this study was to evaluate the ability of GE to inhibit and induce human cytochrome P450 enzymes in vitro. In human liver microsomes, GE inhibited CYP2A6 and CYP2E1 in a concentration-dependent manner, with IC₅₀ values of 21.8 µg/ml and 594 µg/ml, respectively, and the IC₅₀ of CYP2A6 was close to the C(max) value observed clinically. GE was a non-competitive inhibitor of CYP2A6 at lower concentrations and a competitive inhibitor at higher concentrations. GE did not produce inhibition of CYP2C9, CYP2D6, CYP1A2 or CYP3A4 activities. However, a significant increase of CYP1A2 and CYP3A4 activity was observed at high concentrations. In cultured human hepatocytes no significant induction of CYP1A2, CYP3A4 or CYP2B6 was observed. Given these results, the in vivo potential inhibition of GE on CYP2A6 deserves further investigation, and it seems that the hepatoprotective effect of GE is irrelevant to its effect on P450s.

  8. Relationship between Type A and B personality and debrisoquine hydroxylation capacity

    PubMed Central

    Gan, S H; Ismail, R; Wan Adnan, W A; Zulmi, W; Kumaraswamy, N; Larmie, E T

    2004-01-01

    Aim A person with Type A personality is an ‘aggressor’ compared with the rarely harried Type B. Although debrisoquine hydroxylase (CYP2D6) capacity has been associated with personality, no study has specifically investigated its association with personality Type A and B. Therefore the aim of this research was to study the impact of CYP2D6 on Type A and B personality. Methods Type A and B personality questionnaires were administered to 48 healthy patients undergoing elective orthopaedic surgery. After obtaining informed consent, patients were genotyped for the various CYP2D6 alleles by allele-specific polymerase chain reaction. Based on the genotypes, patients were grouped as extensive metabolizer (EM)1 (normal) (CYP2D6*1/*1), EM2 (intermediate) (CYP2D6*1/*4, CYP2D6*1/*5, CYP2D6*1/*9 and CYP2D6*1/*10) and EM3 (slow) (CYP2D6*4/*10, CYP2D6*5/*10, CYP2D6*10/*10 and CYP2D6*10/*17). χ2 was used to determine the relationship between the groups and personality types. Results The percentages of patients who were of the EM1, EM2 and EM3 groups were 20.8%, 52.1% and 27.1%, respectively. There was a significant difference (P = 0.032) between the three groups in terms of personality type, in which EM1 showed a tendency to be of personality Type A while EM2 and EM3 tended to be of personality Type B. Conclusion The study suggests that there is a relationship between CYP2D6 activity and Type A and B personality. PMID:15151524

  9. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies

    PubMed Central

    Qiu, Jia-Xuan; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Zhou, Shu-Feng; Zhu, Shengrong

    2015-01-01

    Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, β-bisabolene, β-sesquiphelandrene, 6-gingerdione, (−)-zingiberene, and methyl-6-isogingerol) and human cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A2, 2C9, 2C19, 2D6, and 3A4 mainly through hydrogen bond formation, to a lesser extent, via π–π stacking. The pharmacokinetic simulation studies showed that the [I]/[Ki] value for CYP2C9, 2C19, and 3A4 ranged from 0.0002 to 19.6 and the R value ranged from 1.0002 to 20.6 and that ginger might exhibit a high risk of drug interaction via inhibition of the activity of human CYP2C9 and CYP3A4, but a low risk of drug interaction toward CYP2C19-mediated drug metabolism. Furthermore, it has been evaluated that the 12 ginger components possessed a favorable ADMET profiles with regard to the solubility, absorption, permeability across the blood–brain barrier, interactions with CYP2D6, hepatotoxicity, and plasma protein binding. The validation results showed that there was no remarkable effect of ginger on the metabolism of warfarin in humans, whereas concurrent use of ginger and nifedipine exhibited

  10. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies.

    PubMed

    Qiu, Jia-Xuan; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Zhou, Shu-Feng; Zhu, Shengrong

    2015-01-01

    Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, β-bisabolene, β-sesquiphelandrene, 6-gingerdione, (-)-zingiberene, and methyl-6-isogingerol) and human cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A2, 2C9, 2C19, 2D6, and 3A4 mainly through hydrogen bond formation, to a lesser extent, via π-π stacking. The pharmacokinetic simulation studies showed that the [I]/[Ki ] value for CYP2C9, 2C19, and 3A4 ranged from 0.0002 to 19.6 and the R value ranged from 1.0002 to 20.6 and that ginger might exhibit a high risk of drug interaction via inhibition of the activity of human CYP2C9 and CYP3A4, but a low risk of drug interaction toward CYP2C19-mediated drug metabolism. Furthermore, it has been evaluated that the 12 ginger components possessed a favorable ADMET profiles with regard to the solubility, absorption, permeability across the blood-brain barrier, interactions with CYP2D6, hepatotoxicity, and plasma protein binding. The validation results showed that there was no remarkable effect of ginger on the metabolism of warfarin in humans, whereas concurrent use of ginger and nifedipine exhibited a

  11. Studies of novel deuterides RMn2D6 (R — rare earth) compressed in DAC up to 30 GPa

    NASA Astrophysics Data System (ADS)

    Filipek, S. M.; Sugiura, H.; Paul-Boncour, V.; Wierzbicki, R.; Liu, R. S.; Bagkar, N.

    2008-07-01

    The exposure of RMn2 (C15 or C14 cubic Laves phase, where R = Y; Dy; Ho or Er) to high deuterium pressure leads to formation of novel, unique YMn2D6, DyMn2D6, HoMn2D6 and ErMn2D6 deuterides with cubic Fm-3m symmetry. In spite of different structures and molecular volumes of parent RMn2 compounds, the molar volumes of RMn2D6 deuterides are almost identical. In this paper, we present results of studies on RMn2Dx (where R = Y, Dy, Ho and Er) submitted to compression up to 30 GPa in diamond anvil cell (DAC) combined with energy dispersive X-ray diffraction. The EOS (equation of state) parameters of the above four RMn2D6 samples and YMn2Dx, with x <= 4 are compared. The EOS parameters of YMn2D6 are very similar to those of other RMn2D6 but very different than those of interstitial deuterides YMn2Dx (x <= 4). The phase transition or segregation was not detected in RMn2D6 up to 30 GPa.

  12. In vitro inhibitory effects of scutellarin on six human/rat cytochrome P450 enzymes and P-glycoprotein.

    PubMed

    Han, Yong-Long; Li, Dan; Yang, Quan-Jun; Zhou, Zhi-Yong; Liu, Li-Ya; Li, Bin; Lu, Jin; Guo, Cheng

    2014-05-05

    Inhibition of cytochrome P450 (CYP) and P-glycoprotein (P-gp) are regarded as the most frequent and clinically important pharmacokinetic causes among the various possible factors for drug-drug interactions. Scutellarin is a flavonoid which is widely used for the treatment of cardiovascular diseases. In this study, the in vitro inhibitory effects of scutellarin on six major human CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and six rat CYPs (CYP1A2, CYP2C7, CYP2C11, CYP2C79, CYP2D4, and CYP3A2) activities were examined by using liquid chromatography-tandem mass spectrometry. Meanwhile, the inhibitory effects of scutellarin on P-gp activity were examined on a human metastatic malignant melanoma cell line WM-266-4 by calcein-AM fluorometry screening assay. Results demonstrated that scutellarin showed negligible inhibitory effects on the six major CYP isoenzymes in human/rat liver microsomes with almost all of the IC50 values exceeding 100 μM, whereas it showed values of 63.8 μM for CYP2C19 in human liver microsomes, and 63.1 and 85.6 μM for CYP2C7 and CYP2C79 in rat liver microsomes, respectively. Scutellarin also showed weak inhibitory effect on P-gp. In conclusion, this study demonstrates that scutellarin is unlikely to cause any clinically significant herb-drug interactions in humans when co-administered with substrates of the six CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and P-gp.

  13. Role of Metabolic Enzymes P450 (CYP) on Activating Procarcinogen and their Polymorphisms on the Risk of Cancers.

    PubMed

    He, Xin; Feng, Shan

    2015-01-01

    Cytochrome P450 (CYP450) enzymes are the most important metabolizing enzyme family exists among all organs. Apart from their role in the deactivation of most endogenous compounds and xenobiotics, they also mediate most procarcinogens oxidation to ultimate carcinogens. There are several modes of CYP450s activation of procarcinogens. 1) Formation of epoxide and diol-epoxides intermediates, such as CYP1A1 and CYP1B1 mediates PAHs oxidation to epoxide intermediates; 2) Formation of diazonium ions, such as CYP2A6, CYP2A13 and CYP2E1 mediates activation of most nitrosamines to unstable metabolites, which can rearrange to give diazonium ions. 3) Formation of reactive semiquinones and quinines, such as CYP1A1 and CYP1B1 transformation of estradiol to catechol estrogens, subsequently formation semiquinones; 4) Formation of toxic O-esterification, such as CYP1A1 and CYP1A2 metabolizes PhIP to N(2)-acetoxy-PhIP and N(2)-sulfonyloxy-PhIP, which are carcinogenic metabolites. 5) Formation of free radical, such as CYP2E1 is involved in activation tetrachloromethane to free radicals. While for CYP2B6 and CYP2D6, only a minor role has been found in procarcinogens activation. In addition, as the gene polymorphisms reflected, the polymorphisms of CYP1A1 (-3801T/C and -4889A/G), CYP1A2 (- 163C/A and -2467T/delT), CYP1B1 (-48G/C, -119G/T and -432G/C), CYP2E1 (-1293G/C and -1053 C/T) have been associated with an increased risk of lung cancer. The polymorphisms CYP1A1 (-3801T/C and -4889A/G), and CYP2E1 (PstI/Rsa and 9-bp insertion) have an association with higher risk colon cancers, whereas CYP1A2 (-163C/A and -3860G/A) polymorphism is found to be among the protective factors. The polymorphisms CYP1A1 (-3801T/C and -4889A/G), CYP1B1 -432G/C, CYP2B6 (-516G/T and -785A/G) may increase the risk of breast cancer. In conclusion, CYP1A1, CYP1A2, CYP1B1, CYP2A6, and CYP2E1 are responsible for most of the procarcinogens activation, and their gene polymorphisms are associated with the risk of

  14. CYP2J2 and CYP2C19 are the major enzymes responsible for metabolism of albendazole and fenbendazole in human liver microsomes and recombinant P450 assay systems.

    PubMed

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk; Lee, Taeho; Liu, Kwang-Hyeon

    2013-11-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo.

  15. Infrared and Ultraviolet Spectra of Diborane(6): B2H6 and B2D6.

    PubMed

    Peng, Yu-Chain; Chou, Sheng-Lung; Lo, Jen-Iu; Lin, Meng-Yeh; Lu, Hsiao-Chi; Cheng, Bing-Ming; Ogilvie, J F

    2016-07-21

    We recorded absorption spectra of diborane(6), B2H6 and B2D6, dispersed in solid neon near 4 K in both mid-infrared and ultraviolet regions. For gaseous B2H6 from 105 to 300 nm, we report quantitative absolute cross sections; for solid B2H6 and for B2H6 dispersed in solid neon, we measured ultraviolet absorbance with relative intensities over a wide range. To assign the mid-infrared spectra to specific isotopic variants, we applied the abundance of (11)B and (10)B in natural proportions; we undertook quantum-chemical calculations of wavenumbers associated with anharmonic vibrational modes and the intensities of the harmonic vibrational modes. To aid an interpretation of the ultraviolet spectra, we calculated the energies of electronically excited singlet and triplet states and oscillator strengths for electronic transitions from the electronic ground state. PMID:27351464

  16. Machine Learning Energies of 2 Million Elpasolite (A B C2D6) Crystals

    NASA Astrophysics Data System (ADS)

    Faber, Felix A.; Lindmaa, Alexander; von Lilienfeld, O. Anatole; Armiento, Rickard

    2016-09-01

    Elpasolite is the predominant quaternary crystal structure (AlNaK2F6 prototype) reported in the Inorganic Crystal Structure Database. We develop a machine learning model to calculate density functional theory quality formation energies of all ˜2 ×106 pristine A B C2D6 elpasolite crystals that can be made up from main-group elements (up to bismuth). Our model's accuracy can be improved systematically, reaching a mean absolute error of 0.1 eV /atom for a training set consisting of 10 ×103 crystals. Important bonding trends are revealed: fluoride is best suited to fit the coordination of the D site, which lowers the formation energy whereas the opposite is found for carbon. The bonding contribution of the elements A and B is very small on average. Low formation energies result from A and B being late elements from group II, C being a late (group I) element, and D being fluoride. Out of 2 ×106 crystals, 90 unique structures are predicted to be on the convex hull—among which is NFAl2Ca6, with a peculiar stoichiometry and a negative atomic oxidation state for Al.

  17. Variation in Human Cytochrome P-450 Drug-Metabolism Genes: A Gateway to the Understanding of Plasmodium vivax Relapses

    PubMed Central

    Silvino, Ana Carolina Rios; Costa, Gabriel Luiz; de Araújo, Flávia Carolina Faustino; Ascher, David Benjamin; Pires, Douglas Eduardo Valente; Fontes, Cor Jesus Fernandes; Carvalho, Luzia Helena; de Brito, Cristiana Ferreira Alves; Sousa, Tais Nobrega

    2016-01-01

    Although Plasmodium vivax relapses are classically associated with hypnozoite activation, it has been proposed that a proportion of these cases are due to primaquine (PQ) treatment failure caused by polymorphisms in cytochrome P-450 2D6 (CYP2D6). Here, we present evidence that CYP2D6 polymorphisms are implicated in PQ failure, which was reinforced by findings in genetically similar parasites, and may explain a number of vivax relapses. Using a computational approach, these polymorphisms were predicted to affect the activity of CYP2D6 through changes in the structural stability that could lead to disruption of the PQ-enzyme interactions. Furthermore, because PQ is co-administered with chloroquine (CQ), we investigated whether CQ-impaired metabolism by cytochrome P-450 2C8 (CYP2C8) could also contribute to vivax recurrences. Our results show that CYP2C8-mutated patients frequently relapsed early (<42 days) and had a higher proportion of genetically similar parasites, suggesting the possibility of recrudescence due to CQ therapeutic failure. These results highlight the importance of pharmacogenetic studies as a tool to monitor the efficacy of antimalarial therapy. PMID:27467145

  18. Atomoxetine pharmacogenetics: associations with pharmacokinetics, treatment response and tolerability.

    PubMed

    Brown, Jacob T; Bishop, Jeffrey R

    2015-01-01

    Atomoxetine is indicated for the treatment of attention deficit hyperactivity disorder and is predominantly metabolized by the CYP2D6 enzyme. Differences in pharmacokinetic parameters as well as clinical treatment outcomes across CYP2D6 genotype groups have resulted in dosing recommendations within the product label, but clinical studies supporting the use of genotype guided dosing are currently lacking. Furthermore, pharmacokinetic and clinical studies have primarily focused on extensive as compared with poor metabolizers, with little information known about other metabolizer categories as well as genes involved in the pharmacodynamics of atomoxetine. This review describes the pharmacogenetic associations with atomoxetine pharmacokinetics, treatment response and tolerability with considerations for the clinical utility of this information.

  19. Molecular Evolution of the CYP2D Subfamily in Primates: Purifying Selection on Substrate Recognition Sites without the Frequent or Long-Tract Gene Conversion

    PubMed Central

    Yasukochi, Yoshiki; Satta, Yoko

    2015-01-01

    The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences. PMID:25808902

  20. The Use of In Vitro Data and Physiologically-Based Pharmacokinetic Modeling to Predict Drug Metabolite Exposure: Desipramine Exposure in Cytochrome P4502D6 Extensive and Poor Metabolizers Following Administration of Imipramine.

    PubMed

    Nguyen, Hoa Q; Callegari, Ernesto; Obach, R Scott

    2016-10-01

    Major circulating drug metabolites can be as important as the drugs themselves in efficacy and safety, so establishing methods whereby exposure to major metabolites following administration of parent drug can be predicted is important. In this study, imipramine, a tricyclic antidepressant, and its major metabolite desipramine were selected as a model system to develop metabolite prediction methods. Imipramine undergoes N-demethylation to form the active metabolite desipramine, and both imipramine and desipramine are converted to hydroxylated metabolites by the polymorphic enzyme CYP2D6. The objective of the present study is to determine whether the human pharmacokinetics of desipramine following dosing of imipramine can be predicted using static and dynamic physiologically-based pharmacokinetic (PBPK) models from in vitro input data for CYP2D6 extensive metabolizer (EM) and poor metabolizer (PM) populations. The intrinsic metabolic clearances of parent drug and metabolite were estimated using human liver microsomes (CYP2D6 PM and EM) and hepatocytes. Passive diffusion clearance of desipramine, used in the estimation of availability of the metabolite, was predicted from passive permeability and hepatocyte surface area. The predicted area under the curve (AUCm/AUCp) of desipramine/imipramine was 12- to 20-fold higher in PM compared with EM subjects following i.v. or oral doses of imipramine using the static model. Moreover, the PBPK model was able to recover simultaneously plasma profiles of imipramine and desipramine in populations with different phenotypes of CYP2D6. This example suggested that mechanistic PBPK modeling combined with information obtained from in vitro studies can provide quantitative solutions to predict in vivo pharmacokinetics of drugs and major metabolites in a target human population.

  1. Boronic Prodrug of Endoxifen as an Effective Hormone Therapy for Breast Cancer

    PubMed Central

    Zhang, Changde; Zhong, Qiu; Zhang, Qiang; Zheng, Shilong; Miele, Lucio; Wang, Guangdi

    2015-01-01

    As a prodrug, tamoxifen is activated by the P450 enzyme CYP2D6 that is responsible for converting it to the active metabolites, 4-hydroxytamoxifen and endoxifen. Patients with genetic polymorphisms of CYP2D6 may not receive the full benefit of tamoxifen therapy. There is increasing evidence that poor metabolizer patients have lower plasma concentrations of endoxifen and suffer worse disease outcome, although some clinical studies reported no correlation between CYP2D6 polymorphism and tamoxifen therapy outcome. Endoxifen is currently undergoing clinical trials as a potentially improved and more potent SERM (Selective Estrogen Receptor Modulator) for endocrine therapy that is independent of CYP2D6 status in patients. However, direct administration of endoxifen may present the problem of low bioavailability due to its rapid first-pass metabolism via O-glucuronidation. We have designed and synthesized ZB483, a boronic prodrug of endoxifen suitable for oral administration with greatly enhanced bioavailability by increasing the concentration of endoxifen in mouse blood. Our study demonstrated that ZB483 potently inhibited growth of ER+ breast cancer cells in vitro and was efficiently converted to endoxifen in cell culture media by oxidative deboronation. In vivo this metabolic conversion is equally efficient as indicated in the pharmacokinetic study. Moreover, at the same dose, ZB483 afforded a 30-40 fold higher level endoxifen in mouse blood compared to unconjugated endoxifen administration. The significantly enhanced bioavailability of endoxifen conferred by the boronic prodrug was further validated in an in vivo efficacy study. ZB483 was demonstrated to be more efficacious than endoxifen in inhibiting xenograft tumor growth in mice at equal dosage but more so at lower dosage. Together, these preclinical studies demonstrate that ZB483 is a promising endocrine therapy agent with markedly enhanced bioavailability in systemic circulation and superior efficacy compared to

  2. Effects of desvenlafaxine on the pharmacokinetics of desipramine in healthy adults.

    PubMed

    Nichols, Alice I; Abell, Madelyn; Madelyn, Abell; Chen, Yang; Behrle, Jessica A; Frick, Glen; Paul, Jeffrey

    2013-03-01

    The results of two single-center, two-period, open-label trials that evaluated the effects of multiple doses of desvenlafaxine on the pharmacokinetics of desipramine, a cytochrome P450 (CYP) 2D6 enzyme substrate, are presented. Healthy individuals aged 18-45 years were administered a single oral dose of 50 mg desipramine with and without 100 mg daily (n=34) or 400 mg daily (n=23) desvenlafaxine for 5 days. After coadministration of 100 mg desvenlafaxine, desipramine exposure, measured by peak plasma concentration (C(max)) and total area under the plasma concentration-versus-time curve (AUC), showed minimal increases of 25 and 17%, respectively; coadministration of 400 mg desvenlafaxine resulted in a 52% increase in desipramine C(max) and a 90% increase in AUC. For the 100 mg dose, the geometric least squares mean ratios and 90% confidence intervals (CIs) for desipramine AUC (117%; 90% CI 110-125%), 2-hydroxydesipramine AUC (114%; 90% CI 110-119%), and C(max) (110%; 90% CI 104-116%) were all within the 80-125% interval, showing the bioequivalence for AUC between desipramine administered alone and in combination with 100 mg desvenlafaxine. These results indicate that desvenlafaxine is a relatively weak inhibitor of CYP2D6 and that desvenlafaxine 100 mg, twice the recommended therapeutic dose of 50 mg, is unlikely to cause drug-drug interactions with CYP2D6 substrates.

  3. Construction of Metabolism Prediction Models for CYP450 3A4, 2D6, and 2C9 Based on Microsomal Metabolic Reaction System

    PubMed Central

    He, Shuai-Bing; Li, Man-Man; Zhang, Bai-Xia; Ye, Xiao-Tong; Du, Ran-Feng; Wang, Yun; Qiao, Yan-Jiang

    2016-01-01

    During the past decades, there have been continuous attempts in the prediction of metabolism mediated by cytochrome P450s (CYP450s) 3A4, 2D6, and 2C9. However, it has indeed remained a huge challenge to accurately predict the metabolism of xenobiotics mediated by these enzymes. To address this issue, microsomal metabolic reaction system (MMRS)—a novel concept, which integrates information about site of metabolism (SOM) and enzyme—was introduced. By incorporating the use of multiple feature selection (FS) techniques (ChiSquared (CHI), InfoGain (IG), GainRatio (GR), Relief) and hybrid classification procedures (Kstar, Bayes (BN), K-nearest neighbours (IBK), C4.5 decision tree (J48), RandomForest (RF), Support vector machines (SVM), AdaBoostM1, Bagging), metabolism prediction models were established based on metabolism data released by Sheridan et al. Four major biotransformations, including aliphatic C-hydroxylation, aromatic C-hydroxylation, N-dealkylation and O-dealkylation, were involved. For validation, the overall accuracies of all four biotransformations exceeded 0.95. For receiver operating characteristic (ROC) analysis, each of these models gave a significant area under curve (AUC) value >0.98. In addition, an external test was performed based on dataset published previously. As a result, 87.7% of the potential SOMs were correctly identified by our four models. In summary, four MMRS-based models were established, which can be used to predict the metabolism mediated by CYP3A4, 2D6, and 2C9 with high accuracy. PMID:27735849

  4. Reactions of ethynyl radicals - Rate constants with CH4, C2H6, and C2D6

    NASA Technical Reports Server (NTRS)

    Laufer, A. H.

    1981-01-01

    An experiment to measure ethynyl radical reactivity with other simple molecules is described. Flash photolysis of CF3C2H, a C2H precursor, was kinetically and spectroscopically analyzed for C2H reactions with CH4, C2H6, and C2D6 and rate constants for the abstraction reaction at room temperature were determined. The experimental apparatus is described, and the acetylene feedstock purification procedures are outlined. Rate constants are provided, and additional examination of the effects of added helium showed no alterations over the pressure range 20-700 torr.

  5. The relationship between trauma and personality in victims of the Boeing 737-2D6C crash in Coventry.

    PubMed

    Chung, M C; Easthope, Y; Chung, C; Clark-Carter, D

    1999-05-01

    The aims of this paper were to (a) ascertain the extent of psychological distress and (b) identify the association between personality variables and psychological distress among individuals who had been exposed to an aircraft disaster in Coventry, U.K. Hundreds of people escaped death but were exposed to the impact of the disaster when a Boeing 737-2D6C 7T-VEE crashed into a woodland area on the edge of a large housing estate in Coventry, U.K. in 1994. Eighty-two residents were randomly chosen for interviews in which they were assessed using the Impact of Event Scale, the General Health Questionnaire, and the Eysenck Personality Questionnaire-R Short Scale (EPQ-R). The results showed that the Coventry residents' scores reached similar levels of intrusion and avoidance compared with standardized samples and the Lockerbie samples. Fifty-two percent reached the GHQ case level score, which was again similar to the Lockerbie residents. The Coventry residents were significantly less extroverted and neurotic than standardized samples. Stepwise multiple regression showed that there were associations between intrusion and neuroticism and intrusion and extroversion, as well as between avoidance and neuroticism.

  6. Risk of mortality with concomitant use of tamoxifen and selective serotonin reuptake inhibitors: multi-database cohort study

    PubMed Central

    Donneyong, Macarius M; Bykov, Katsiaryna; Bosco-Levy, Pauline; Dong, Yaa-Hui; Levin, Raisa

    2016-01-01

    Objective To compare differences in mortality between women concomitantly treated with tamoxifen and selective serotonin reuptake inhibitors (SSRIs) that are potent inhibitors of the cytochrome-P450 2D6 enzyme (CYP2D6) versus tamoxifen and other SSRIs. Design Population based cohort study. Setting Five US databases covering individuals enrolled in private and public health insurance programs from 1995 to 2013. Participants Two cohorts of women who started taking tamoxifen. In cohort 1, women started taking an SSRI during tamoxifen treatment. In cohort 2, women were already taking an SSRI when they started taking tamoxifen. Main outcome measures All cause mortality in each cohort in women taking SSRIs that are potent inhibitors of CYP2D6 (paroxetine, fluoxetine) versus other SSRIs. Propensity scores were used to match exposure groups in a variable ratio fashion. Results were measured separately for each cohort and combined hazard ratios calculated from Cox regression models across the two cohorts with random effects meta-analysis. Results There were 6067 and 8465 new users of tamoxifen in cohorts 1 and 2, respectively. Mean age was 55. A total of 991 and 1014 deaths occurred in cohorts 1 and 2 during a median follow-up of 2.2 (interquartile range 0.9-4.5) and 2.0 (0.8-3.9) years, respectively. The pooled hazard ratio for death for potent inhibitors (rate 58.6/1000 person years) compared with other SSRIs (rate 57.9/1000 person years) across cohorts 1 and 2 was 0.96 (95% confidence interval 0.88 to 1.06). Results were consistent across sensitivity analyses. Conclusion Concomitant use of tamoxifen and potent CYP2D6 inhibiting SSRIs versus other SSRIs was not associated with an increased risk of death. PMID:27694571

  7. Inhibitory and inductive effects of Phikud Navakot extract on human cytochrome P450.

    PubMed

    Chiangsom, Abhiruj; Lawanprasert, Somsong; Oda, Shingo; Kulthong, Kornphimol; Luechapudiporn, Rataya; Yokoi, Tsuyoshi; Maniratanachote, Rawiwan

    2016-06-01

    Effects of the hydroethanolic extract of Phikud Navakot (PN), a Thai traditional remedy, on human cytochrome P450s (CYPs) were investigated in vitro. Selective substrates of CYPs were used to investigate the effects and kinetics of PN on CYP inhibition using human liver microsomes. Primary human hepatocytes were used to assess the inductive effects of PN on CYP enzyme activities and protein expressions. The results showed that PN inhibited the activities of CYP1A2, CYP2C9, CYP2D6, and CYP3A4 with half maximal inhibitory concentration (IC50) values of 13, 62, 67, and 88 μg/mL, respectively. Meanwhile, it had no effect on the activities of CYP2C19 and CYP2E1 (IC50 > 1 mg/mL). PN exhibited competitive inhibition of CYP1A2 (Ki = 34 μg/mL), mixed type inhibition of CYP2C9 and CYP2D6 (Ki = 80 and 12 μg/mL, respectively), and uncompetitive inhibition of CYP3A4 (Ki = 150 μg/mL). PN did not have an inductive effect on CYP1A2, CYP2C9, CYP2C19 and CYP3A4 in primary human hepatocytes, which is an advantageous characteristic of the extract. However the extract may cause herb-drug interactions via inhibition of CYP1A2, CYP2C9, CYP2D6 and CYP3A4, and precautions should be taken when PN is coadministered with drugs that are metabolized by these CYP enzymes. PMID:27212065

  8. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  9. Toward a clinical practice guide in pharmacogenomics testing for functional polymorphisms of drug-metabolizing enzymes. Gene/drug pairs and barriers perceived in Spain

    PubMed Central

    Agúndez, José A. G.; Abad-Santos, Francisco; Aldea, Ana; Alonso-Navarro, Hortensia; Bernal, María L.; Borobia, Alberto M.; Borrás, Emma; Carballo, Miguel; Carvajal, Alfonso; García-Muñiz, José D.; Gervasini, Guillermo; Jiménez-Jiménez, Félix J.; Lucena, María I.; Martínez, Carmen; Sacristán, José A.; Salado, Inés; Sinués, Blanca; Vicente, Jorge; García-Martín, Elena

    2012-01-01

    The development of clinical practice recommendations or guidelines for the clinical use of biomarkers is an issue of great importance with regard to adverse drug reactions. The potential of pharmacogenomic biomarkers has been extensively investigated in recent years. However, several barriers to implementing the use of pharmacogenomics testing exist. We conducted a survey among members of the Spanish Societies of Pharmacology and Clinical Pharmacology to obtain information about the perception of such barriers and to compare the perceptions of participants about the relative importance of major gene/drug pairs. Of 11 potential barriers, the highest importance was attributed to lack of institutional support for pharmacogenomics testing, and to the issues related to the lack of guidelines. Of the proposed gene/drug pairs the highest importance was assigned to HLA-B/abacavir, UGT1A1/irinotecan, and CYP2D6/tamoxifen. In this perspective article, we compare the relative importance of 29 gene/drug pairs in the Spanish study with that of the same pairs in the American Society for Clinical Pharmacology and Therapeutics study, and we provide suggestions and areas of focus to develop a guide for clinical practice in pharmacogenomics testing. PMID:23233861

  10. Effect of Single Nucleotide Polymorphisms in Cytochrome P450 Isoenzyme and N-Acetyltransferase 2 Genes on the Metabolism of Artemisinin-Based Combination Therapies in Malaria Patients from Cambodia and Tanzania

    PubMed Central

    Staehli Hodel, Eva Maria; Csajka, Chantal; Ariey, Frédéric; Guidi, Monia; Kabanywanyi, Abdunoor Mulokozi; Duong, Socheat; Decosterd, Laurent Arthur; Olliaro, Piero; Genton, Blaise

    2013-01-01

    The pharmacogenetics of antimalarial agents are poorly known, although the application of pharmacogenetics might be critical in optimizing treatment. This population pharmacokinetic-pharmacogenetic study aimed at assessing the effects of single nucleotide polymorphisms (SNPs) in cytochrome P450 isoenzyme genes (CYP, namely, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5) and the N-acetyltransferase 2 gene (NAT2) on the pharmacokinetics of artemisinin-based combination therapies in 150 Tanzanian patients treated with artemether-lumefantrine, 64 Cambodian patients treated with artesunate-mefloquine, and 61 Cambodian patients treated with dihydroartemisinin-piperaquine. The frequency of SNPs varied with the enzyme and the population. Higher frequencies of mutant alleles were found in Cambodians than Tanzanians for CYP2C9*3, CYP2D6*10 (100C→T), CYP3A5*3, NAT2*6, and NAT2*7. In contrast, higher frequencies of mutant alleles were found in Tanzanians for CYP2D6*17 (1023C→T and 2850C→T), CYP3A4*1B, NAT2*5, and NAT2*14. For 8 SNPs, no significant differences in frequencies were observed. In the genetic-based population pharmacokinetic analyses, none of the SNPs improved model fit. This suggests that pharmacogenetic data need not be included in appropriate first-line treatments with the current artemisinin derivatives and quinolines for uncomplicated malaria in specific populations. However, it cannot be ruled out that our results represent isolated findings, and therefore more studies in different populations, ideally with the same artemisinin-based combination therapies, are needed to evaluate the influence of pharmacogenetic factors on the clearance of antimalarials. PMID:23229480

  11. Development of a complex parent-metabolite joint population pharmacokinetic model.

    PubMed

    Bertrand, Julie; Laffont, Céline M; Mentré, France; Chenel, Marylore; Comets, Emmanuelle

    2011-09-01

    This study aimed to develop a joint population pharmacokinetic model for an antipsychotic agent in development (S33138) and its active metabolite (S35424) produced by reversible metabolism. Because such a model leads to identifiability problems and numerical difficulties, the model building was performed using the FOCE-I and the Stochastic Approximation Expectation Maximization (SAEM) estimation algorithms in NONMEM and MONOLIX, respectively. Four different structural models were compared based on Bayesian information criteria. Models were first written as ordinary differential equations systems and then in closed form (CF) to facilitate further analyses. The impact of polymorphisms on genes coding for the CYP2C19 and CYP2D6 enzymes, respectively involved in the parent drug and the metabolite elimination were investigated using permutation Wald test. The parent drug and metabolite plasma concentrations of 101 patients were analyzed on two occasions after 4 and 8 weeks of treatment at 1, 3, 6, and 24 h following daily oral administration. All configurations led to a two compartment model with back-transformation of the metabolite into the parent drug and a first-pass effect. The elimination clearance of the metabolite through other processes than back-transformation was decreased by 35% [9-53%] in CYP2D6 poor metabolizer. Permutation tests were performed to ensure the robustness of the analysis, using SAEM and CF. In conclusion, we developed a complex joint pharmacokinetic model adequately predicting the impact of CYP2D6 polymorphisms on the parent drug and its metabolite concentrations through the back-transformation mechanism. PMID:21618059

  12. Xenobiotic Sensor- and Metabolism-Related Gene Variants in Environmental Sensitivity-Related Illnesses: A Survey on the Italian Population

    PubMed Central

    Caccamo, Daniela; Cesareo, Eleonora; Mariani, Serena; Raskovic, Desanka; Ientile, Riccardo; Currò, Monica; Korkina, Liudmila; De Luca, Chiara

    2013-01-01

    In the environmental sensitivity-related illnesses (SRIs), multiple chemical sensitivity (MCS), chronic fatigue syndrome (FCS), and fibromyalgia (FM), the search for genetic polymorphisms of phase I/II xenobiotic-metabolizing enzymes as suitable diagnostic biomarkers produced so far inconclusive results, due to patient heterogeneity, geographic/ethnic differences in genetic backgrounds, and different methodological approaches. Here, we compared the frequency of gene polymorphisms of selected cytochrome P450 (CYP) metabolizing enzymes and, for the first time, the frequency of the xenobiotic sensor Aryl hydrocarbon receptor (AHR) in the three cohorts of 156 diagnosed MCS, 94 suspected MCS, and 80 FM/FCS patients versus 113 healthy controls. We found significantly higher frequency of polymorphisms CYP2C9∗2, CYP2C9∗3, CYP2C19∗2, CYP2D6∗4 and CYP2D6∗41 in patients compared with controls. This confirms that these genetic variants represent a genetic risk factor for SRI. Moreover, the compound heterozygosity for CYP2C9∗2 and ∗3 variants was useful to discriminate between either MCS or FM/CFS versus SMCS, while the PM ∗41/∗41 genotype discriminated between MCS and either SMCS or FM/CFS. The compound heterozygosity for CYP2C9 ∗1/∗3 and CYP2D6 ∗1/∗4 differentiated MCS and SMCS cases from FM/CFS ones. Interestingly, despite the distribution of the AHR Arg554Lys variant did not result significantly different between SRI cases and controls, it resulted useful for the discrimination between MCS and SMCS cases when considered within haplotypes in combination with CYP2C19 ∗1/∗2 and CYP2D6 ∗1/∗4. Results allowed us to propose the genotyping for these specific CYP variants, together with the AHR Arg554Lys variant, as reliable, cost-effective genetic parameters to be included in the still undefined biomarkers' panel for laboratory diagnosis of the main types of environmental-borne SRI. PMID:23936614

  13. Characterization of hybrid bilayer membranes on silver electrodes as biocompatible SERS substrates to study membrane-protein interactions.

    PubMed

    Millo, Diego; Bonifacio, Alois; Moncelli, Maria Rosa; Sergo, Valter; Gooijer, Cees; van der Zwan, Gert

    2010-11-01

    Hybrid bilayer lipid membranes (HBMs) were built on roughened silver electrodes exhibiting surface-enhanced Raman scattering (SERS) activity. The HBM consisted of a first layer of octadecanethiol (ODT) directly bound to the electrode surface, on which a second layer of 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) was obtained by self-assembled phospholipid vesicle fusion. The electrochemical properties of the HBM were investigated in situ by cyclic voltammetry (CV), AC voltammetry and electrochemical impedance spectroscopy (EIS). The results indicate that our HBMs are well-formed, and their insulating properties are comparable to those observed for HBM supported by smooth metal substrates. The interaction between the bilayer and the human enzyme cytochrome P450 2D6 (CYP2D6) was investigated. Surface-enhanced resonance Raman scattering (SERRS) measurements in combination with AC and EIS, performed on the same electrode sample, proved that the CYP2D6 is immobilized on the HBM without evident alterations of its active site and without significant perturbations of the bilayer architecture. This study yields novel insights into the properties of HBMs built on roughened surfaces, providing in situ electrochemical characterization of a substrate which is suitable for studying peripheral membrane proteins with SERRS spectroscopy.

  14. Identification of the Metabolic Enzyme Involved Morusin Metabolism and Characterization of Its Metabolites by Ultraperformance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (UPLC/Q-TOF-MS/MS)

    PubMed Central

    Shi, Xianbao; Mackie, Brianna; Zhang, Gang; Song, Yonggui; Su, Dan; Liu, Yali

    2016-01-01

    Morusin, the important active component of a traditional Chinese medicine, Morus alba L., has been shown to exhibit many vital pharmacological activities. In this study, six recombinant CYP450 supersomes and liver microsomes were used to perform metabolic studies. Chemical inhibition studies and screening assays with recombinant human cytochrome P450s were also used to characterize the CYP450 isoforms involved in morusin metabolism. The morusin metabolites identified varied greatly among different species. Eight metabolites of morusin were detected in the liver microsomes from pigs (PLMs), rats (RLMs), and monkeys (MLMs) by LC-MS/MS and six metabolites were detected in the liver microsomes from humans (HLMs), rabbits (RAMs), and dogs (DLMs). Four metabolites (M1, M2, M5, and M7) were found in all species and hydroxylation was the major metabolic transformation. CYP1A2, CYP2C9, CYP2D6, CYP2E1, CYP3A4, and CYP2C19 contributed differently to the metabolism of morusin. Compared to other CYP450 isoforms, CYP3A4 played the most significant role in the metabolism of morusin in human liver microsomes. These results are significant to better understand the metabolic behaviors of morusin among various species.

  15. Identification of the Metabolic Enzyme Involved Morusin Metabolism and Characterization of Its Metabolites by Ultraperformance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (UPLC/Q-TOF-MS/MS)

    PubMed Central

    Shi, Xianbao; Mackie, Brianna; Zhang, Gang; Song, Yonggui; Su, Dan; Liu, Yali

    2016-01-01

    Morusin, the important active component of a traditional Chinese medicine, Morus alba L., has been shown to exhibit many vital pharmacological activities. In this study, six recombinant CYP450 supersomes and liver microsomes were used to perform metabolic studies. Chemical inhibition studies and screening assays with recombinant human cytochrome P450s were also used to characterize the CYP450 isoforms involved in morusin metabolism. The morusin metabolites identified varied greatly among different species. Eight metabolites of morusin were detected in the liver microsomes from pigs (PLMs), rats (RLMs), and monkeys (MLMs) by LC-MS/MS and six metabolites were detected in the liver microsomes from humans (HLMs), rabbits (RAMs), and dogs (DLMs). Four metabolites (M1, M2, M5, and M7) were found in all species and hydroxylation was the major metabolic transformation. CYP1A2, CYP2C9, CYP2D6, CYP2E1, CYP3A4, and CYP2C19 contributed differently to the metabolism of morusin. Compared to other CYP450 isoforms, CYP3A4 played the most significant role in the metabolism of morusin in human liver microsomes. These results are significant to better understand the metabolic behaviors of morusin among various species. PMID:27698677

  16. Insights into drug metabolism from modelling studies of cytochrome P450-drug interactions.

    PubMed

    Maréchal, Jean-Didier; Sutcliffe, Michael J

    2006-01-01

    The cytochromes P450 (CYPs) comprise a vast superfamily of enzymes found in virtually all life forms. In mammals, xenobiotic metabolising CYPs provide crucial protection from the harmful effects of exposure to a wide variety of chemicals, including environmental toxins and therapeutic drugs. Elucidating the structural features of CYPs that contribute to their metabolism of structurally diverse substrates impacts on the rational design of improved therapeutic drugs and specific inhibitors. Models capable of predicting the possible involvement of CYPs in the metabolism of drugs or drug candidates are thus important tools in drug discovery and development. Ideally, functional information would be obtained from crystal structures of all the CYPs of interest. Initially only crystal structures of distantly related bacterial CYPs were available - comparative modelling techniques were used to bridge the gap and produce structural models of human CYPs, and thereby obtain some useful functional information. A significant step forward in the reliability of these models came six years ago with the first crystal structure of a mammalian CYP, rabbit CYP2C5, followed by the structures of five human enzymes, CYP2A6, CYP2C8, CYP2C9, CYP2D6 and CYP3A4, and a second rabbit enzyme, CYP2B4. The evolution of a CYP2D6 model, leading to the validation of the model as an in silico tool for predicting binding and metabolism, is presented as a case study. PMID:16918473

  17. Factors affecting the development of adverse drug reactions to β-blockers in hospitalized cardiac patient population

    PubMed Central

    Mugoša, Snežana; Djordjević, Nataša; Djukanović, Nina; Protić, Dragana; Bukumirić, Zoran; Radosavljević, Ivan; Bošković, Aneta; Todorović, Zoran

    2016-01-01

    The aim of the present study was to undertake a study on the prevalence of cytochrome P450 2D6 (CYP2D6) poor metabolizer alleles (*3, *4, *5, and *6) on a Montenegrin population and its impact on developing adverse drug reactions (ADRs) of β-blockers in a hospitalized cardiac patient population. A prospective study was conducted in the Cardiology Center of the Clinical Center of Montenegro and included 138 patients who had received any β-blocker in their therapy. ADRs were collected using a specially designed questionnaire, based on the symptom list and any signs that could point to eventual ADRs. Data from patients’ medical charts, laboratory tests, and other available parameters were observed and combined with the data from the questionnaire. ADRs to β-blockers were observed in 15 (10.9%) patients. There was a statistically significant difference in the frequency of ADRs in relation to genetically determined enzymatic activity (P<0.001), with ADRs’ occurrence significantly correlating with slower CYP2D6 metabolism. Our study showed that the adverse reactions to β-blockers could be predicted by the length of hospitalization, CYP2D6 poor metabolizer phenotype, and the concomitant use of other CYP2D6-metabolizing drugs. Therefore, in hospitalized patients with polypharmacy CYP2D6 genotyping might be useful in detecting those at risk of ADRs. PMID:27536078

  18. Genetic factors affecting statin concentrations and subsequent myopathy: a HuGENet systematic review.

    PubMed

    Canestaro, William J; Austin, Melissa A; Thummel, Kenneth E

    2014-11-01

    Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors, have proven efficacy in both lowering low-density-lipoprotein levels and preventing major coronary events, making them one of the most commonly prescribed drugs in the United States. Statins exhibit a class-wide side effect of muscle toxicity and weakness, which has led regulators to impose both dosage limitations and a recall. This review focuses on the best-characterized genetic factors associated with increased statin muscle concentrations, including the genes encoding cytochrome P450 enzymes (CYP2D6, CYP3A4, and CYP3A5), a mitochondrial enzyme (GATM), an influx transporter (SLCO1B1), and efflux transporters (ABCB1 and ABCG2). A systematic literature review was conducted to identify relevant research evaluating the significance of genetic variants predictive of altered statin concentrations and subsequent statin-related myopathy. Studies eligible for inclusion must have incorporated genotype information and must have associated it with some measure of myopathy, either creatine kinase levels or self-reported muscle aches and pains. After an initial review, focus was placed on seven genes that were adequately characterized to provide a substantive review: CYP2D6, CYP3A4, CYP3A5, GATM, SLCO1B1, ABCB1, and ABCG2. All statins were included in this review. Among the genetic factors evaluated, statin-related myopathy appears to be most strongly associated with variants in SLCO1B1.

  19. Evaluation of genipin on human cytochrome P450 isoenzymes and P-glycoprotein in vitro.

    PubMed

    Gao, Li-Na; Zhang, Ye; Cui, Yuan-Lu; Yan, Kuo

    2014-10-01

    Genipin is obtained from the fruit of Gardenia jasminoides Ellis and acts as an herbal medicine or functional food in East Asia. In addition to produce natural colorant, it possesses widely antiinflammatory, antithrombotic, antidepressive and anticarcinogenic activities. However, little research focuses on the potential of genipin for drug-drug interactions. In this study, effects of genipin on mRNA and protein expression of cytochrome P450 (CYP) 2C19, CYP2D6 and CYP3A4 were detected by real-time reverse-transcription polymerase chain reaction (real-time RT-PCR) and Western blot, respectively, in human hepatoma HepG2 cells. Enzyme activities of which were detected by luminogenic CYP assay in vitro. Moreover, effect of genipin on P-glycoprotein expression was analyzed by Western blot. Results showed that genipin possessed a significant induction on CYP2D6 and a remarkable inhibition on CYP2C19 and CYP3A4 not only from the expression of mRNA and protein (P<0.05 or P<0.01), but the level of enzyme activity. Moreover, a concentration-dependent induction of genipin on P-glycoprotein expression was observed. In conclusion, caution should be exercised with respect to the induction or inhibition of genipin on CYP isoenzymes and the strong induction on P-glycoprotein. PMID:25073096

  20. Assessment of the stereoselective metabolism of methaqualone in man by capillary electrophoresis.

    PubMed

    Prost, Francine; Thormann, Wolfgang

    2003-08-01

    Methaqualone (MQ) and its hydroxylated metabolites are quinazoline derivatives that exhibit atropisomerism. As a continuation of our previous work with these compounds (Electrophoresis 2001, 22, 3270-3280), chiral capillary zone electrophoresis with hydroxypropyl-beta-cyclodextrin as buffer additive and multiwavelength absorbance detection is shown to be an effective tool to provide insight into the stereoselectivity of the MQ metabolism. The five major monohydroxy MQ metabolites formed during biotransformation do not show enantiomerization at temperatures up to 85 degrees C. Enzymatic and acidic hydrolysis of urines that were collected after concomitant administration of 250 mg of MQ and 25 mg diphenhydramine (DH) chloride are both shown to provide stereoselective metabolic patterns with 4'-hydroxymethaqualone, the major urinary metabolite, being excreted almost exclusively as a single enantiomer. A stereoselectivity in the formation of 2'-hydroxymethaqualone and 2-hydroxymethaqualone was also observed in vitro using human liver microsomes and preparations containing the cytochrome P450 enzyme (CYP) CYP3A4 only. The presence of DH during incubation with human liver microsomes did not reveal a difference in the metabolic pattern obtained. Furthermore, CYP2D6 and CYP2C19 do not significantly contribute to the metabolism of MQ. This was independently observed in vitro and via analysis of urines of individuals that are either efficient metabolizer phenotypes or poor metabolizer phenotypes for the two polymorphic enzymes. Although interindividual differences in the monitored metabolic patterns were noted, no marked difference could be related to a CYP2D6 or CYP2C19 polymorphism.

  1. Cytochrome P450 induction properties of food and herbal-derived compounds using a novel multiplex RT-qPCR in vitro assay, a drug-food interaction prediction tool.

    PubMed

    Koe, Xue Fen; Tengku Muhammad, Tengku Sifzizul; Chong, Alexander Shu-Chien; Wahab, Habibah Abdul; Tan, Mei Lan

    2014-09-01

    A multiplex RT-qPCR was developed to examine CYP1A2, CYP2D6, and CYP3A4 induction properties of compounds from food and herbal sources. The induction of drug metabolizing enzymes is an important pharmacokinetic interaction with unique features in comparison with inhibition of metabolizing enzymes. Cytochrome induction can lead to serious drug-drug or drug-food interactions, especially if the coadministered drug plasma level is critical as it can reduce therapeutic effects and cause complications. Using this optimized multiplex RT-qPCR, cytochrome induction properties of andrographolide, curcumin, lycopene, bergamottin, and resveratrol were determined. Andrographolide, curcumin, and lycopene produced no significant induction effects on CYP1A2, CYP2D6, and CYP3A4. However, bergamottin appeared to be a significant in vitro CYP1A2 inducer starting from 5 to 50 μmol/L with induction ranging from 60 to 100-fold changes. On the other hand, resveratrol is a weak in vitro CYP1A2 inducer. Examining the cytochrome induction properties of food and herbal compounds help complement CYP inhibition studies and provide labeling and safety caution for such products. PMID:25473508

  2. Genetic factors affecting statin concentrations and subsequent myopathy: a HuGENet systematic review

    PubMed Central

    Canestaro, William J.; Austin, Melissa A.; Thummel, Kenneth E.

    2015-01-01

    Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors, have proven efficacy in both lowering low-density-lipoprotein levels and preventing major coronary events, making them one of the most commonly prescribed drugs in the United States. Statins exhibit a class-wide side effect of muscle toxicity and weakness, which has led regulators to impose both dosage limitations and a recall. This review focuses on the best-characterized genetic factors associated with increased statin muscle concentrations, including the genes encoding cytochrome P450 enzymes (CYP2D6, CYP3A4, and CYP3A5), a mitochondrial enzyme (GATM), an influx transporter (SLCO1B1), and efflux transporters (ABCB1 and ABCG2). A systematic literature review was conducted to identify relevant research evaluating the significance of genetic variants predictive of altered statin concentrations and subsequent statin-related myopathy. Studies eligible for inclusion must have incorporated genotype information and must have associated it with some measure of myopathy, either creatine kinase levels or self-reported muscle aches and pains. After an initial review, focus was placed on seven genes that were adequately characterized to provide a substantive review: CYP2D6, CYP3A4, CYP3A5, GATM, SLCO1B1, ABCB1, and ABCG2. All statins were included in this review. Among the genetic factors evaluated, statin-related myopathy appears to be most strongly associated with variants in SLCO1B1. PMID:24810685

  3. Evaluation of the effect of TM208 on the activity of five cytochrome P450 enzymes using on-line solid-phase extraction HPLC-DAD: a cocktail approach.

    PubMed

    Lin, Wensi; Zhang, Jianmei; Ling, Xiaomei; Yu, Ning; Li, Jing; Yang, Haisong; Li, Runtao; Cui, Jingrong

    2013-04-01

    A rapid, simple, and sensitive on-line solid-phase extraction HPLC-DAD method for simultaneous evaluation of the activity of five CYP450 isoforms (CYP1A2, CYP2C19, CYP2D6, CYP2E1 and CYP3A4) in vivo has been developed and validated. The five specific probe substrates include caffeine (1A2), metoprolol (2D6), dapsone (3A4), omeprazole (2C19) and chlorzoxazone (2E1). Automated pre-purification of plasma and enrichment of analytes were performed using a C18 on-line solid-phase extraction cartridge. After being eluted from the cartridge, the analytes and the internal standard antipyrine were separated on a C18 RP analytical column and analyzed by DAD. The method was validated to quantify the concentration ranges of 0.05-50.0 μg/ml for dapsone and omeprazole, 0.1-50.0 μg/ml for caffeine and 0.2-50.0 μg/ml for metoprolol and chlorzoxazone. The linearity (R(2)) for all analytes tested was exceeded 0.99. The intra-day precision ranged from 0.29 to 13% and the inter-day precision ranged from 5.0 to 15%, respectively. The intra-day and inter-day accuracy were between 86.7% and 113.6%. The extraction recoveries were in the range 82.8-109.9% for all the analytes and internal standard antipyrine. This method was successfully applied to evaluate the effects of TM208 on rat five CYP450 isoforms.

  4. Fatal hydrocodone overdose in a child: pharmacogenetics and drug interactions.

    PubMed

    Madadi, Parvaz; Hildebrandt, Doris; Gong, Inna Y; Schwarz, Ute I; Ciszkowski, Catherine; Ross, Colin J D; Sistonen, Johanna; Carleton, Bruce C; Hayden, Michael R; Lauwers, Albert E; Koren, Gideon

    2010-10-01

    Fatal opioid toxicity occurred in a developmentally delayed child aged 5 years 9 months who was inadvertently administered high doses of hydrocodone for a respiratory tract infection. The concentration of hydrocodone in postmortem blood was in the range associated with fatality; however, hydromorphone, a major metabolite catalyzed by cytochrome P450 2D6 (CYP2D6), was not detected when using mass spectrometry. Genetic analysis revealed that the child had a reduced capability to metabolize the drug via the CYP2D6 pathway (CYP2D6*2A/*41). Coadministration of clarithromycin (a potent cytochrome P450 3A4 inhibitor) for an ear infection and valproic acid for seizures since birth further prevented drug elimination from the body. This case highlights the interplay between pharmacogenetic factors, drug-drug interactions, and dose-related toxicity in a child.

  5. An experimental and theoretical study on the kinetic isotope effect of C2H6 and C2D6 reaction with OH

    NASA Astrophysics Data System (ADS)

    Khaled, Fethi; Giri, Binod Raj; Szőri, Milán; Viskolcz, Béla; Farooq, Aamir

    2015-11-01

    We report experimental and theoretical results for the deuterated kinetic isotope effect (DKIE) of the reaction of OH with ethane (C2H6) and deuterated ethane (C2D6). The reactions were investigated behind reflected shock waves over 800-1350 K by monitoring OH radicals near 306.69 nm using laser absorption. In addition, high level CCSD(T)/cc-pV(T,Q)Z//MP2/cc-pVTZ quantum chemical and statistical rate theory calculations were performed which agreed very well with the experimental findings. The results reported herein provide the first experimental evidence that DKIE asymptotes to a value of 1.4 at high temperatures.

  6. The Effect of Vinpocetine on Human Cytochrome P450 Isoenzymes by Using a Cocktail Method

    PubMed Central

    Kong, Lingti; Song, Chunli; Ye, Linhu; Guo, Daohua; Yu, Meiling; Xing, Rong

    2016-01-01

    Vinpocetine is a derivative of the alkaloid vincamine, which had been prescribed for chronic cerebral vascular ischemia and acute ischemic stroke or used as a dietary supplement for its several different mechanisms of biological activities. However, information on the cytochrome P450 (CYP) enzyme-mediated drug metabolism has not been previously studied. The present study was performed to investigate the effects of vinpocetine on CYPs activity, and cocktail method was used, respectively. To evaluate the effects of vinpocetine on the activity of human CYP3A4, CYP2C9, CYP2C19, CYP2D6, and CYP2E1, human liver microsomes were utilized to incubate with the mixed CYPs probe substrates and the target components. The results indicate that vinpocetine exhibited weak inhibitory effect on the CYP2C9, where the IC50 value is 68.96 μM, whereas the IC50 values for CYP3A4, CYP2C19, CYP2D6, and CYP2E1 were all over range of 100 μM, which showed that vinpocetine had no apparent inhibitory effects on these CYPs. In conclusion, the results indicated that drugs metabolized by CYP2C9 coadministrated with vinpocetine may require attention or dose adjustment. PMID:27006677

  7. Inhibition of dextromethorphan metabolism by moclobemide.

    PubMed

    Härtter, S; Dingemanse, J; Baier, D; Ziegler, G; Hiemke, C

    1998-01-01

    This pilot study was conducted to evaluate the potential of the new antidepressant moclobemide to inhibit the cytochrome enzyme P4502D6 (CYP2D6) using the cough suppressant dextromethorphan as a substrate in four extensive metabolizers (EM) of debrisoquine. The subjects received seven oral doses of 20 mg dextromethorphan at 4-h intervals over 2 days (1 and 2) and subsequently moclobemide (300 mg b.i.d.) for 9 days. On days 10 and 11, they received seven doses of 20 mg dextromethorphan in addition to moclobemide. During monotreatment and combined treatment, blood was collected on days 2 and 11, respectively, for determination of dextromethorphan and its demethylated metabolites using automated high-performance liquid chromatography with column switching. Concurrent administration of moclobemide markedly reduced the O-demethylation of dextromethorphan, whereas the N-demethylation of dextrorphan to hydroxymorphinan was not affected. The findings indicate that moclobemide can affect the pharmacokinetics of drugs that are mainly metabolized by CYP2D6. PMID:9489930

  8. The effects of azole-based heme oxygenase inhibitors on rat cytochromes P450 2E1 and 3A1/2 and human cytochromes P450 3A4 and 2D6.

    PubMed

    Hum, Maaike; McLaughlin, Brian E; Roman, Gheorghe; Vlahakis, Jason Z; Szarek, Walter A; Nakatsu, Kanji

    2010-09-01

    Heme oxygenases (HOs) catalyze the degradation of heme to biliverdin, carbon monoxide (CO), and free iron. The two major isoforms, HO-1 (inducible) and HO-2 (constitutive), are involved in a variety of physiological functions, including inflammation, apoptosis, neuromodulation, and vascular regulation. Major tools used in exploring these actions have been metalloporphyrin analogs of heme that inhibit the HOs. However, these tools are limited by their lack of selectivity; they affect other heme-dependent enzymes, such as cytochromes P450 (P450s), soluble guanylyl cyclase (sGC), and nitric-oxide synthase (NOS). Our laboratory has successfully synthesized a number of nonporphyrin azole-based HO inhibitors (QC-xx) that had little or no effect on sGC and NOS activity. However, their effects on various P450 isoforms have yet to be fully elucidated. To determine the effects of the QC-xx inhibitors on P450 enzyme activity, microsomal preparations of two rat P450 isoforms (2E1 and 3A1/3A2) and two human P450 supersome isoforms (3A4 and 2D6) were incubated with varying concentrations of HO inhibitor, and the activity was determined by spectrophotometric or fluorometric analysis. Results indicated that some QC compounds demonstrated little to no inhibition of the P450s, whereas others did inhibit these P450 isoforms. Four structural regions of QC-xx were analyzed, leading to the identification of structures that confer a decreased effect on both rat and human P450 isoforms studied while maintaining an inhibitory effect on the HOs.

  9. Frequencies of 23 Functionally Significant Variant Alleles Related with Metabolism of Antineoplastic Drugs in the Chilean Population: Comparison with Caucasian and Asian Populations

    PubMed Central

    Roco, Ángela; Quiñones, Luis; Agúndez, José A. G.; García-Martín, Elena; Squicciarini, Valentina; Miranda, Carla; Garay, Joselyn; Farfán, Nancy; Saavedra, Iván; Cáceres, Dante; Ibarra, Carol; Varela, Nelson

    2012-01-01

    Cancer is a leading cause of death worldwide. The cancer incidence rate in Chile is 133.7/100,000 inhabitants and it is the second cause of death, after cardiovascular diseases. Most of the antineoplastic drugs are metabolized to be detoxified, and some of them to be activated. Genetic polymorphisms of drug-metabolizing enzymes can induce deep changes in enzyme activity, leading to individual variability in drug efficacy and/or toxicity. The present research describes the presence of genetic polymorphisms in the Chilean population, which might be useful in public health programs for personalized treatment of cancer, and compares these frequencies with those reported for Asian and Caucasian populations, as a contribution to the evaluation of ethnic differences in the response to chemotherapy. We analyzed 23 polymorphisms in a group of 253 unrelated Chilean volunteers from the general population. The results showed that CYP2A6*2, CYP2A6*3, CYP2D6*3, CYP2C19*3, and CYP3A4*17 variant alleles are virtually absent in Chileans. CYP1A1*2A allele frequency (0.37) is similar to that of Caucasians and higher than that reported for Japanese people. Allele frequencies for CYP3A5*3(0.76) and CYP2C9*3(0.04) are similar to those observed in Japanese people. CYP1A1*2C(0.32), CYP1A2*1F(0.77), CYP3A4*1B(0.06), CYP2D6*2(0.41), and MTHFR T(0.52) allele frequencies are higher than the observed either in Caucasian or in Japanese populations. Conversely, CYP2C19*2 allelic frequency (0.12), and genotype frequencies for GSTT1 null (0.11) and GSTM1 null (0.36) are lower than those observed in both populations. Finally, allele frequencies for CYP2A6*4(0.04), CYP2C8*3(0.06), CYP2C9*2(0.06), CYP2D6*4(0.12), CYP2E1*5B(0.14), CYP2E1*6(0.19), and UGT2B7*2(0.40) are intermediate in relation to those described in Caucasian and in Japanese populations, as expected according to the ethnic origin of the Chilean population. In conclusion, our findings support the idea that ethnic variability must be

  10. Metabolism-mediated interaction potential of standardized extract of Tinospora cordifolia through rat and human liver microsomes

    PubMed Central

    Bahadur, Shiv; Mukherjee, Pulok K.; Milan Ahmmed, S. K.; Kar, Amit; Harwansh, Ranjit K.; Pandit, Subrata

    2016-01-01

    Objective: Tinospora cordifolia is used for treatment of several diseases in Indian system of medicine. In the present study, the inhibition potential of T. cordifolia extracts and its constituent tinosporaside to cause herb-drug interactions through rat and human liver cytochrome enzymes was evaluated. Materials and Methods: Bioactive compound was quantified through reverse phase high-performance liquid chromatography, to standardize the plant extracts and interaction potential of standardized extract. Interaction potential of the test sample was evaluated through cytochrome P450-carbon monoxide complex (CYP450-CO) assay with pooled rat liver microsome. Influence on individual recombinant human liver microsomes such as CYP3A4, CYP2D6, CYP2C9, and CYP1A2 isozymes was analyzed through fluorescence microplate assay, and respective IC50 values were determined. Results: The content of tinosporaside was found to be 1.64% (w/w) in T. cordifolia extract. Concentration-dependent inhibition was observed through T. cordifolia extract. Observed IC50 (μg/ml) value was 136.45 (CYP3A4), 144.37 (CYP2D6), 127.55 (CYP2C9), and 141.82 (CYP1A2). Tinosporaside and extract showed higher IC50 (μg/ml) value than the known inhibitors. T. cordifolia extract showed significantly less interaction potential and indicates that the selected plant has not significant herb-drug interactions relating to the inhibition of major CYP450 isozymes. Conclusions: Plant extract showed significantly higher IC50 value than respective positive inhibitors against CYP3A4, 2D6, 2C9, and 1A2 isozymes. Consumption of T. cordifolia may not cause any adverse effects when consumed along with other xenobiotics. PMID:27721546

  11. Coexpression of CPR from various origins enhances biotransformation activity of human CYPs in S. pombe.

    PubMed

    Neunzig, Ina; Widjaja, Maria; Peters, Frank T; Maurer, Hans H; Hehn, Alain; Bourgaud, Frédéric; Bureik, Matthias

    2013-08-01

    Cytochrome P450 enzymes (CYPs or P450s) are the most important enzymes involved in the phase I metabolism of drugs (and other xenobiotics) in humans, and the corresponding drug metabolites are needed as reference substances for their structural confirmation and for pharmacological or toxicological characterization. We have previously shown that biotechnological synthesis of such metabolites is feasible by whole-cell biotransformation with human CYPs recombinantly expressed in the fission yeast Schizosaccharomyces pombe. It was the aim of this study to compare the activity of seven human microsomal CYPs (CYP2C9, CYP2D6, CYP3A4, CYP3A5, CYP3A7, CYP17, and CYP21) upon coexpression with NADPH-cytochrome P450 oxidoreductases (CPRs) from various origins, namely, human CPR (hCPR) and its homologues from fission yeast (ccr1) and the bishop's weed Ammi majus (AmCPR), respectively. For this purpose, 28 recombinant strains were needed, with five of them having been constructed previously and 23 strains being newly constructed. Bioconversion experiments showed that coexpression of a CPR does not only influence the reaction rate but, in some cases, also exerts an influence on the metabolite pattern. For CYP3A enzymes, coexpression of hCPR yielded the best results, while for another two, hCPR was equally helpful as ccr1 (both CYP17 and CYP21) or AmCPR (CYP17 only), respectively. Interestingly, CYP2D6 displayed its highest activity when coexpressed with ccr1 and CYP2C9 with AmCPR. These results corroborate the view of CPR as a well-suited bio-brick in synthetic biology for the construction of artificial enzyme complexes.

  12. Enhanced methamphetamine metabolism in rhesus macaque as compared with human: an analysis using a novel method of liquid chromatography with tandem mass spectrometry, kinetic study, and substrate docking.

    PubMed

    Earla, Ravinder; Kumar, Santosh; Wang, Lei; Bosinger, Steven; Li, Junhao; Shah, Ankit; Gangwani, Mohitkumar; Nookala, Anantha; Liu, Xun; Cao, Lu; Jackson, Austin; Silverstein, Peter S; Fox, Howard S; Li, Weihua; Kumar, Anil

    2014-12-01

    Methamphetamine (MA), which remains one of the widely used drugs of abuse, is metabolized by the cytochrome P450 (P450) family of enzymes in humans. However, metabolism of methamphetamine in macaques is poorly understood. Therefore, we first developed and validated a very sensitive liquid chromatography with tandem mass spectrometry (LC-MS/MS) method using solid phase extraction of rhesus plasma with a lower limit of quantitation at 1.09 ng/ml for MA and its metabolites, 4-hydroxy methamphetamine (4-OH MA), amphetamine (AM), 4-OH amphetamine (4-OH AM), and norephedrine. We then analyzed plasma samples of MA-treated rhesus, which showed >10-fold higher concentrations of AM (∼29 ng/ml) and 4-OH AM (∼28 ng/ml) than MA (∼2 ng/ml). Because the plasma levels of MA metabolites in rhesus were much higher than in human samples, we examined MA metabolism in human and rhesus microsomes. Interestingly, the results showed that AM and 4-OH AM were formed more rapidly and that the catalytic efficiency (Vmax/Km) for the formation of AM was ∼8-fold higher in rhesus than in human microsomes. We further examined the differences in these kinetic characteristics using three selective inhibitors of each human CYP2D6 and CYP3A4 enzymes. The results showed that each of these inhibitors inhibited both d- and l-MA metabolism by 20%-60% in human microsomes but not in rhesus microsomes. The differences between human and rhesus CYP2D6 and CYP3A4 enzymes were further assessed by docking studies for both d and l-MA. In conclusion, our results demonstrated an enhanced MA metabolism in rhesus compared with humans, which is likely to be caused by differences in MA-metabolizing P450 enzymes between these species.

  13. Interactions of Papua New Guinea medicinal plant extracts with antiretroviral therapy

    PubMed Central

    Larson, Erica C.; Hathaway, Laura B.; Lamb, John G.; Pond, Chris D.; Rai, Prem P.; Matainaho, Teatulohi K.; Piskaut, Pius; Barrows, Louis R.; Franklin, Michael R.

    2014-01-01

    Ethnopharmacological relevance A substantial proportion of the population in Papua New Guinea (PNG) lives with human immunodeficiency virus (HIV). Treatment requires lifelong use of antiretroviral therapy (ART). The majority of people in PNG use traditional medicines (TM) derived from plants for all types of health promotions. Consequently, there is a concern that herb-drug interactions may impact the efficacy of ART. Herb-drug, or drug-drug, interactions occur at the level of metabolism through two major mechanisms: enzyme induction or enzyme inhibition. In this study, extracts of commonly-used medicinal plants from PNG were screened for herb-drug interactions related to cytochrome P450s (CYPs). Materials and Methods Sixty nine methanol extracts of TM plants were screened for their ability to induce CYPs by human aryl hydrocarbon receptor- (hAhR-) and human pregnane X receptor- (hPXR-) dependent mechanisms, utilizing a commercially available cell-based luciferase reporter system. Inhibition of three major CYPs, CYP1A2, CYP3A4, and CYP2D6, was determined using human liver microsomes and enzyme-selective model substrates. Results Almost one third of the TM plant extracts induced the hAhR-dependent expression of CYP1A2, the hPXR-dependent expression of CYP3A4, or both. Almost two thirds inhibited CYP1A2, CYP3A4, or CYP2D6, or combinations thereof. Many plant extracts exhibited both induction and inhibition properties. Conclusions We demonstrated that the potent and selective ability of extracts from PNG medicinal plants to affect drug metabolizing enzymes through induction and/or inhibition is a common phenomenon. Use of traditional medicines concomitantly with ART could dramatically alter the concentrations of antiretroviral drugs in the body; and their efficacy. PNG healthcare providers should counsel HIV patients because of this consequence. PMID:25138353

  14. Clinical pharmacokinetics of mirtazapine.

    PubMed

    Timmer, C J; Sitsen, J M; Delbressine, L P

    2000-06-01

    the orally administered dose is excreted via urine and faeces within 4 days. Biotransformation is mainly mediated by the CYP2D6 and CYP3A4 isoenzymes. Inhibitors of these isoenzymes, such as paroxetine and fluoxetine, cause modestly increased mirtazapine plasma concentrations (17 and 32%, respectively) without leading to clinically relevant consequences. Enzyme induction by carbamazepine causes a considerable decrease (60%) in mirtazapine plasma concentrations. Mirtazapine has little inhibitory effects on CYP isoenzymes and, therefore, the pharmacokinetics of coadministered drugs are hardly affected by mirtazapine. Although no concentration-effect relationship could be established, it was found that with therapeutic dosages of mirtazapine (15 to 45 mg/day), plasma concentrations range on average from 5 to 100 microg/L. PMID:10885584

  15. Pharmacokinetics of dextromethorphan after single or multiple dosing in combination with quinidine in extensive and poor metabolizers.

    PubMed

    Pope, Laura E; Khalil, M H; Berg, James E; Stiles, Mark; Yakatan, Gerald J; Sellers, Edward M

    2004-10-01

    Dextromethorphan (DM) pharmacological properties predict that the widely used cough suppressant could be used to treat several neuronal disorders, but it is rapidly metabolized after oral dosing. To find out whether quinidine (Q), a CYP2D6 inhibitor, could elevate and prolong DM plasma profiles, 2 multiple-dose studies identified the lowest oral dose of Q that could be used in a fixed combination with 3 doses of DM. A multiple-dose study in healthy subjects with an extensive or a poor enzyme metabolizer phenotype evaluated the safety and pharmacokinetic profile of a selected fixed-dose combination (AVP-923). Study 1 randomized 46 healthy subjects, who were extensive CYP2D6 metabolizers, to receive 0, 2.5, 10, 25, 50, or 75 mg Q twice daily in combination with 30 mg DM for 7 days. Plasma and urine samples were collected after the first and last doses for the assay of DM, dextrorphan (DX), and Q. Study 2 randomized 65 healthy extensive CYP2D6 metabolizers to 8 groups given twice-daily 45- or 60-mg DM doses combined with 0, 30, 45, or 60 mg Q for 7 days. The effects of increasing Q were not different with doses greater than 25 mg, whereas lower doses showed a dose-related increase in plasma DM concentrations. Urinary ratios of DM/DX showed a Q dose- and time-related increase in the number of subjects converted to the poor metabolizer phenotype that reached 100% on day 3 of dosing with 25 mg Q. Results from both studies indicated that 25 to 30 mg Q is adequate to maximally suppress O-demethylation of DM. Study 3 evaluated 7 extensive metabolizers and 2 poor metabolizers given an oral capsule every 12 hours containing 30 mg Q combined with 30 mg DM. DM plasma AUC values increased in both groups of subjects during the 8-day study. The mean urinary metabolic ratio (DM/DX) increased at least 27-fold in extensive metabolizers by day 8. There was no effect of Q on urinary metabolic ratios in poor metabolizers. Safety evaluations, including electrocardiograms, indicated that

  16. Toxicogenetics--cytochrome P450 microarray analysis in forensic cases focusing on morphine/codeine and diazepam.

    PubMed

    Andresen, H; Augustin, C; Streichert, T

    2013-03-01

    Genetic polymorphisms in cytochrome P 450 (CYP) enzymes could lead to a phenotype with altered enzyme activity. In pharmacotherapy, genotype-based dose recommendations achieved great importance for several drugs. In our pilot study, we ask if these genetic tests should be applied to forensic problems as a matter of routine. Starting from 2004 through 2008, we screened routine cases for samples where the relation of parent compound to metabolite(s) (P/M ratio), particularly morphine to codeine ratios and diazepam to its metabolites, was noticeable or not consistent with the information provided by the defendants. We found 11 samples with conspicuous results. These were analyzed for polymorphisms of the CYP 2D6 and 2C19 genes using the Roche AmpliChip Cytochrome P450 Genotyping test. If not previously conducted, a general unknown analysis by gas chromatography/mass spectrometry (GC/MS) was additionally carried out. For CYP 2D6, we found two cases with the genotype poor metabolizer (PM), three cases with heterozygote extensive metabolizer genotype classified as an intermediate metabolizer (IM) with probably reduced enzyme activities, but no ultrarapid metabolizer genotype. For CYP 2C19, two cases were characterized as IM phenotypes, with no PM found. Once we achieved no appropriate amounts of DNA, one case was excluded after GC/MS analysis. Only in one case could the polymorphism clearly explain the changes in drug metabolism. More frequently, a drug-drug interaction was thought to have a stronger impact. Additionally, our results suggest that IM genotypes may be more relevant than previously suspected. With respect to the small number of cases in which we thought a genotyping would be helpful, we conclude that the overall relevance of toxicogenetics in forensic problems is moderate. However, in some individual cases, a genotyping may provide new insight.

  17. Toxicogenetics--cytochrome P450 microarray analysis in forensic cases focusing on morphine/codeine and diazepam.

    PubMed

    Andresen, H; Augustin, C; Streichert, T

    2013-03-01

    Genetic polymorphisms in cytochrome P 450 (CYP) enzymes could lead to a phenotype with altered enzyme activity. In pharmacotherapy, genotype-based dose recommendations achieved great importance for several drugs. In our pilot study, we ask if these genetic tests should be applied to forensic problems as a matter of routine. Starting from 2004 through 2008, we screened routine cases for samples where the relation of parent compound to metabolite(s) (P/M ratio), particularly morphine to codeine ratios and diazepam to its metabolites, was noticeable or not consistent with the information provided by the defendants. We found 11 samples with conspicuous results. These were analyzed for polymorphisms of the CYP 2D6 and 2C19 genes using the Roche AmpliChip Cytochrome P450 Genotyping test. If not previously conducted, a general unknown analysis by gas chromatography/mass spectrometry (GC/MS) was additionally carried out. For CYP 2D6, we found two cases with the genotype poor metabolizer (PM), three cases with heterozygote extensive metabolizer genotype classified as an intermediate metabolizer (IM) with probably reduced enzyme activities, but no ultrarapid metabolizer genotype. For CYP 2C19, two cases were characterized as IM phenotypes, with no PM found. Once we achieved no appropriate amounts of DNA, one case was excluded after GC/MS analysis. Only in one case could the polymorphism clearly explain the changes in drug metabolism. More frequently, a drug-drug interaction was thought to have a stronger impact. Additionally, our results suggest that IM genotypes may be more relevant than previously suspected. With respect to the small number of cases in which we thought a genotyping would be helpful, we conclude that the overall relevance of toxicogenetics in forensic problems is moderate. However, in some individual cases, a genotyping may provide new insight. PMID:22899355

  18. An in vitro evaluation of cytochrome P450 inhibition and P-glycoprotein interaction with goldenseal, Ginkgo biloba, grape seed, milk thistle, and ginseng extracts and their constituents.

    PubMed

    Etheridge, Amy S; Black, Sherry R; Patel, Purvi R; So, James; Mathews, James M

    2007-07-01

    Drug-herb interactions can result from the modulation of the activities of cytochrome P450 (P450) and/or drug transporters. The effect of extracts and individual constituents of goldenseal, Ginkgo biloba (and its hydrolyzate), grape seed, milk thistle, and ginseng on the activities of cytochrome P450 enzymes CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 in human liver microsomes were determined using enzyme-selective probe substrates, and their effect on human P-glycoprotein (Pgp) was determined using a baculovirus expression system by measuring the verapamil-stimulated, vanadate-sensitive ATPase activity. Extracts were analyzed by HPLC to standardize their concentration(s) of constituents associated with the pharmacological activity, and to allow comparison of their effects on P450 and Pgp with literature values. Many of the extracts/constituents exerted > or = 50 % inhibition of P450 activity. These include those from goldenseal (normalized to alkaloid content) inhibiting CYP2C8, CYP2D6, and CYP3A4 at 20 microM, ginkgo inhibiting CYP2C8 at 10 microM, grape seed inhibiting CYP2C9 and CYP3A4 at 10 microM, milk thistle inhibiting CYP2C8 at 10 microM, and ginsenosides F1 and Rh1 (but not ginseng extract) inhibiting CYP3A4 at 10 microM. Goldenseal extracts/constituents (20 microM, particularly hydrastine) and ginsenoside Rh1 stimulated ATPase at about half of the activity of the model substrate, verapamil (20 microM). The data suggest that the clearance of a variety of drugs may be diminished by concomitant use of these herbs via inhibition of P450 enzymes, but less so by Pgp-mediated effects.

  19. Clinical response to eliglustat in treatment-naïve patients with Gaucher disease type 1: Post-hoc comparison to imiglucerase-treated patients enrolled in the International Collaborative Gaucher Group Gaucher Registry.

    PubMed

    Ibrahim, Jennifer; Underhill, Lisa H; Taylor, John S; Angell, Jennifer; Peterschmitt, M Judith

    2016-09-01

    Eliglustat is a recently approved oral therapy in the United States and Europe for adults with Gaucher disease type 1 who are CYP2D6 extensive, intermediate, or poor metabolizers (> 90% of patients) that has been shown to decrease spleen and liver volume and increase hemoglobin concentrations and platelet counts in untreated adults with Gaucher disease type 1 and maintain these parameters in patients previously stabilized on enzyme replacement therapy. In a post-hoc analysis, we compared the results of eliglustat treatment in treatment-naïve patients in two clinical studies with the results of imiglucerase treatment among a cohort of treatment-naïve patients with comparable baseline hematologic and visceral parameters in the International Collaborative Gaucher Group Gaucher Registry. Organ volumes and hematologic parameters improved from baseline in both treatment groups, with a time course and degree of improvement in eliglustat-treated patients similar to imiglucerase-treated patients. PMID:27408819

  20. Metabolites profiling of 10 bufadienolides in human liver microsomes and their cytotoxicity variation in HepG2 cell.

    PubMed

    Han, Lingyu; Wang, Hongjie; Si, Nan; Ren, Wei; Gao, Bo; Li, Yan; Yang, Jian; Xu, Miao; Zhao, Haiyu; Bian, Baolin

    2016-04-01

    Bufadienolides, a class of polyhydroxy steroids, exhibit significant antitumor activity. In this study, a total of 39 metabolites from 10 bufadienolides were detected and identified by ultrahigh-performance liquid chromatography (UHPLC) coupled with an LTQ Orbitrap mass spectrometer. The results showed that hydroxylation and dehydrogenation were the major metabolic pathways of bufadienolides in human liver microsomes (HLMs). CYP3A4 was found to be the major metabolic enzyme and CYP2D6 only mediated the dehydrogenation reaction. A systematic validated cytotoxicity evaluation method for bufadienolide metabolites at equal equivalents was established. Hellebrigenin (1), hellebrigenol (2), arenobufagin (3), bufotalin (5), and bufalin (6) were selected to determine their cytotoxicity against HepG2 cells before and after incubation in HLMs. All the test samples were enriched by a validated solid-phase extraction (SPE) method. Although the cytotoxicities of metabolites were weaker than those of the parent compounds to different degrees, their effects were still strong.

  1. Allele and genotype frequencies of metabolic genes in Native Americans from Argentina and Paraguay.

    PubMed

    Bailliet, G; Santos, M R; Alfaro, E L; Dipierri, J E; Demarchi, D A; Carnese, F R; Bianchi, N O

    2007-03-01

    Interethnic differences in the allele frequencies of CYP2D6, NAT2, GSTM1 and GSTT1 deletions have been documented for Caucasians, Asians, and Africans population. On the other hand, data on Amerindians are scanty and limited to a few populations from southern areas of South America. In this report we analyze the frequencies of 11 allele variants of CYP2D6 and 4 allele variants of NAT2 genes, and the frequency of GSTM1 and GSTT1 homozygous deleted genotypes in a sample of 90 donors representing 8 Native American populations from Argentina and Paraguay, identified as Amerindians on the basis of their geographic location, genealogical data, mitochondrial- and Y-chromosome DNA markers. For CYP2D6, 88.6% of the total allele frequency corresponded to *1, *2, *4 and *10 variants. Average frequencies for NAT2 *4, *5, *6 and *7 alleles were 51.2%, 25%, 6.1%, and 20.1%, respectively. GSTM1 deletion ranged from 20% to 66%, while GSTT1 deletion was present in four populations in less than 50%. We assume that CYP2D6 *2, *4, *10, *14; NAT2 *5, *7 alleles and GSTM1 and GSTT1 *0/*0 genotypes are founder variants brought to America by the first Asian settlers. PMID:17194620

  2. Eliglustat: A Review in Gaucher Disease Type 1.

    PubMed

    Scott, Lesley J

    2015-09-01

    Oral eliglustat (Cerdelga®) is approved in several countries for the long-term treatment of adults with Gaucher disease type 1 (GD1) who are cytochrome P450 (CYP) 2D6 extensive metabolizers (EMs), intermediate metabolizer (IMs) or poor metabolizers (PMs) [these three CYP categories encompass >90 % of individuals]. Eliglustat is a potent, selective inhibitor of glucosylceramide synthase, the rate-limiting enzyme in the synthesis of certain glycosphingolipids, and thus, reduces the rate of biosynthesis of glycosphingolipids to counteract the catabolic defect (i.e. substrate reduction therapy). In the 9-month phase 3 ENGAGE trial, eliglustat significantly improved haematological endpoints and reduced organomegaly compared with placebo in treatment-naive adults with GD1, with the bone marrow burden score (a marker of Gaucher cell infiltration) and GD1 biomarkers also improving from baseline in eliglustat recipients. After 12 months in the phase 3 ENCORE trial, oral eliglustat was noninferior to intravenous imiglucerase [an enzyme replacement therapy (ERT)] in maintaining disease stability in adults who had stable disease after receiving ERT for ≥3 years. During long-term treatment with eliglustat (≤4 years) in the extension period of each of these pivotal trials and a phase 2 trial, patients experienced sustained improvements in visceral, haematological and skeletal endpoints, with no new safety concerns identified. Further clinical experience will help to more definitively establish the position of eliglustat treatment in adults with GD1. In the meantime, with its convenient oral regimen, eliglustat is an emerging alternative therapy to ERT for the long-term treatment of adults with GD1 who are CYP2D6 EMs, IMs or PMs. PMID:26384672

  3. The effects of milk thistle (Silybum marianum) on human cytochrome P450 activity.

    PubMed

    Kawaguchi-Suzuki, Marina; Frye, Reginald F; Zhu, Hao-Jie; Brinda, Bryan J; Chavin, Kenneth D; Bernstein, Hilary J; Markowitz, John S

    2014-10-01

    Milk thistle (Silybum marianum) extracts are widely used as a complementary and alternative treatment of various hepatic conditions and a host of other diseases/disorders. The active constituents of milk thistle supplements are believed to be the flavonolignans contained within the extracts. In vitro studies have suggested that some milk thistle components may significantly inhibit specific cytochrome P450 (P450) enzymes. However, determining the potential for clinically significant drug interactions with milk thistle products has been complicated by inconsistencies between in vitro and in vivo study results. The aim of the present study was to determine the effect of a standardized milk thistle supplement on major P450 drug-metabolizing enzymes after a 14-day exposure period. CYP1A2, CYP2C9, CYP2D6, and CYP3A4/5 activities were measured by simultaneously administering the four probe drugs, caffeine, tolbutamide, dextromethorphan, and midazolam, to nine healthy volunteers before and after exposure to a standardized milk thistle extract given thrice daily for 14 days. The three most abundant falvonolignans found in plasma, following exposure to milk thistle extracts, were silybin A, silybin B, and isosilybin B. The concentrations of these three major constituents were individually measured in study subjects as potential perpetrators. The peak concentrations and areas under the time-concentration curves of the four probe drugs were determined with the milk thistle administration. Exposure to milk thistle extract produced no significant influence on CYP1A2, CYP2C9, CYP2D6, or CYP3A4/5 activities.

  4. Fluvoxamine inhibition and carbamazepine induction of the metabolism of clozapine: evidence from a therapeutic drug monitoring service.

    PubMed

    Jerling, M; Lindström, L; Bondesson, U; Bertilsson, L

    1994-08-01

    Therapeutic drug monitoring data for clozapine were used to study interactions with other drugs. The distribution of the ratio concentration/dose (C/D) of clozapine was compared in four matched groups--patients simultaneously treated with benzodiazepines, patients on drugs that inhibit the cytochrome P450 enzyme CYP2D6, patients taking carbamazepine, and those not taking any of these drugs. No difference was seen among the monotherapy, CYP2D6, and benzodiazepine groups. Patients on carbamazepine had a mean 50% lower C/D than the monotherapy group (p < 0.001), indicating that carbamazepine is an inducer of the metabolism of clozapine. The C/D was inversely correlated to the daily dose of carbamazepine. Intraindividual comparisons in eight patients, with analyses both on and off carbamazepine, confirmed a substantial decrease of the clozapine concentration when carbamazepine was introduced. Four patients treated with clozapine were concomitantly given the antidepressant fluvoxamine. Three of them exhibited a much higher C/D ratio when on fluvoxamine compared with the monotherapy group. Two had their clozapine levels analyzed when on and off fluvoxamine. The dose-normalized clozapine concentration increased by a factor of 5-10 when fluvoxamine was added. We conclude that carbamazepine causes decreased clozapine plasma levels, while fluvoxamine increases the levels. The pathways are not known with certainty, but CYP1A2 may be of major importance for the metabolism of clozapine, since fluvoxamine is a potent inhibitor of this enzyme. A recent panel study suggests that determination of CYP1A2 activity with the caffeine test may be very useful for the dosing of clozapine. The induction of clozapine metabolism by carbamazepine might be partly mediated by CYP3A4.

  5. Modulation of CYPs, P-gp, and PXR by Eschscholzia californica (California Poppy) and Its Alkaloids.

    PubMed

    Manda, Vamshi K; Ibrahim, Mohamed A; Dale, Olivia R; Kumarihamy, Mallika; Cutler, Stephen J; Khan, Ikhlas A; Walker, Larry A; Muhammad, Ilias; Khan, Shabana I

    2016-04-01

    Eschscholzia californica, a native US plant, is traditionally used as a sedative, analgesic, and anxiolytic herb. With the rapid rise in the use of herbal supplements together with over-the-counter and prescription drugs, the risk for potential herb-drug interactions is also increasing. Most of the clinically relevant pharmacokinetic drug interactions occur due to modulation of cytochrome P450 enzymes (CYPs), P-glycoprotein, and the pregnane X receptor by concomitantly used herbs. This study aimed to determine the effects of an EtOH extract, aqueous extract (tea), basic CHCl3 fractions, and isolated major alkaloids, namely protopine (1), escholtzine (2), allocryptopine (3), and californidine (4), of E. californica on the activity of cytochrome P450s, P-glycoprotein and the pregnane X receptor. The EtOH extract and fractions showed strong time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19, and reversible inhibition of CYP 2D6. Among the alkaloids, escholtzine (2) and allocryptopine (3) exhibited time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19 (IC50 shift ratio > 2), while protopine (1) and allocryptopine (3) showed reversible inhibition of CYP 2D6 enzyme. A significant activation of the pregnane X receptor (> 2-fold) was observed with the EtOH extract, basic CHCl3 fraction, and alkaloids (except protopine), which resulted into an increased expression of mRNA and the activity of CYP 3A4 and CYP 1A2. The expression of P-glycoprotein was unaffected. However, aqueous extract (tea) and its main alkaloid californidine (4) did not affect cytochrome P450s, P-glycoprotein, or the pregnane X receptor. This data suggests that EtOH extract of E. californica and its major alkaloids have a potential of causing interactions with drugs that are metabolized by cytochrome P450s, while the tea seems to be safer. PMID:27054913

  6. Methadone dose in heroin-dependent patients: role of clinical factors, comedications, genetic polymorphisms and enzyme activity

    PubMed Central

    Mouly, Stéphane; Bloch, Vanessa; Peoc'h, Katell; Houze, Pascal; Labat, Laurence; Ksouda, Kamilia; Simoneau, Guy; Declèves, Xavier; Bergmann, Jean Francois; Scherrmann, Jean-Michel; Laplanche, Jean-Louis; Lepine, Jean-Pierre; Vorspan, Florence

    2015-01-01

    Aims Methadone is characterized by wide intersubject variability regarding the dose needed to obtain full therapeutic response. We assessed the influence of sociodemographic, ethnic, clinical, metabolic and genotypic variables on methadone maintenance dose requirement in opioid-dependent responder patients. Methods Eighty-one stable patients (60 men and 21 women, 43.7 ± 8.1 years old, 63.1 ± 50.9 mg day−1 methadone), divided into quartiles with respect to the median daily dose, were enrolled and underwent clinical examination, treatment history and determination of liver/intestinal cytochrome P450 (CYP) 3A4 activity measured by the midazolam test, R,S-methadone trough concentration and clinically significant polymorphisms of the OPRM1, DRD2, COMT, ABCB1, CYP2B6, CYP3A5, CYP2C19 and CYP2D6 genes. Results Methadone maintenance dose was correlated to the highest dose ever used (r2 = 0.57, P < 0.0001). Fractioned methadone intake (odds ratio 4.87, 95% confidence interval 1.27–18.6, P = 0.02), bodyweight (odds ratio 1.57, 95% confidence interval 1.01–2.44, P = 0.04), history of cocaine dependence (80 vs. 44 mg day−1 in never-addict patients, P = 0.005) and ethnicity (Asian > Caucasian > African, P = 0.04) were independently associated with high-dose methadone in multiple regression analysis. A modest correlation was observed between liver/intestinal CYP3A4 activity and methadone dose at steady state (Spearman rank correlation coefficient [rs] = 0.21, P = 0.06) but not with highest dose ever used (rs = 0.15, P = 0.18) or dose-normalized R,S-methadone trough concentrations (rs = −0.05, P = 0.64). Concomitant CYP3A4 inhibitors only affected the relationship between methadone dose and R,S-methadone trough concentration. None of the genetic polymorphisms explored was predictive of the methadone maintenance dose. Conclusions Methadone maintenance dose was predicted by sociodemographic and clinical variables rather than genetic polymorphisms or liver/intestinal CYP

  7. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; de Vries, Emmely M; van Nierop, F Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R; Boelen, Anita; Romijn, Johannes A; Mathôt, Ron A A

    2015-06-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug metabolism. In a randomized crossover study design, nine healthy subjects ingested a cocktail consisting of five P450-specific probe drugs [caffeine (CYP1A2), S-warfarin (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6), and midazolam (CYP3A4)] on two occasions (control study after an overnight fast and after 36 h of fasting). Blood samples were drawn for pharmacokinetic analysis using nonlinear mixed effects modeling. In addition, we studied in Wistar rats the effects of short-term fasting on hepatic mRNA expression of P450 isoforms corresponding with the five studied P450 enzymes in humans. In the healthy subjects, short-term fasting increased oral caffeine clearance by 20% (P = 0.03) and decreased oral S-warfarin clearance by 25% (P < 0.001). In rats, short-term fasting increased mRNA expression of the orthologs of human CYP1A2, CYP2C19, CYP2D6, and CYP3A4 (P < 0.05), and decreased the mRNA expression of the ortholog of CYP2C9 (P < 0.001) compared with the postabsorptive state. These results demonstrate that short-term fasting alters cytochrome P450-mediated drug metabolism in a nonuniform pattern. Therefore, short-term fasting is another factor affecting cytochrome P450-mediated drug metabolism in humans.

  8. PG4KDS: A Model for the Clinical Implementation of Pre-emptive Pharmacogenetics

    PubMed Central

    Hoffman, James M.; Haidar, Cyrine E.; Wilkinson, Mark R.; Crews, Kristine R.; Baker, Donald K.; Kornegay, Nancy M.; Yang, Wenjian; Pui, Ching-Hon; Reiss, Ulrike M.; Gaur, Aditya H.; Howard, Scott C.; Evans, William E.; Broeckel, Ulrich; Relling, Mary V.

    2014-01-01

    Pharmacogenetics is frequently cited as an area for initial focus of the clinical implementation of genomics. Through the PG4KDS protocol, St. Jude Children’s Research Hospital pre-emptively genotypes patients for 230 genes using the Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus array supplemented with a CYP2D6 copy number assay. The PG4KDS protocol provides a rational, stepwise process for implementing gene/drug pairs, organizing data, and obtaining consent from patients and families. Through August 2013, 1559 patients have been enrolled, and 4 gene tests have been released into the electronic health record (EHR) for clinical implementation: TPMT, CYP2D6, SLCO1B1, and CYP2C19. These genes are coupled to 12 high-risk drugs. Of the 1016 patients with genotype test results available, 78% of them had at least one high-risk (i.e., actionable) genotype result placed in their EHR. Each diplotype result released to the EHR is coupled with an interpretive consult that is created in a concise, standardized format. To support-gene based prescribing at the point of care, 55 interruptive clinical decision support (CDS) alerts were developed. Patients are informed of their genotyping result and its relevance to their medication use through a letter. Key elements necessary for our successful implementation have included strong institutional support, a knowledgeable clinical laboratory, a process to manage any incidental findings, a strategy to educate clinicians and patients, a process to return results, and extensive use of informatics, especially CDS. Our approach to pre-emptive clinical pharmacogenetics has proven feasible, clinically useful, and scalable. PMID:24619595

  9. In vitro oxidative metabolism of cajaninstilbene Acid by human liver microsomes and hepatocytes: involvement of cytochrome p450 reaction phenotyping, inhibition, and induction studies.

    PubMed

    Hua, Xin; Peng, Xiao; Tan, Shengnan; Li, Chunying; Wang, Wei; Luo, Meng; Fu, Yujie; Zu, Yuangang; Smyth, Hugh

    2014-10-29

    Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid), an active constituent of pigeonpea leaves, an important tropical crop, is known for its clinical effects in the treatment of diabetes, hepatitis, and measles and its potential antitumor effect. In this study, the effect of the cytochrome P450 isozymes on the activity of CSA was investigated. Two hydroxylation metabolites were identified in the study. The reaction phenotype study showed that CYP3A4, CYP2C9, and CYP1A2 were the major cytochrome P450 isozymes in the metabolism of CSA. The metabolic food-drug interaction potential was also evaluated in vitro. The effect of CSA inhibition/induction of enzymatic activities of seven drug-metabolizing CYP450 isozymes in vitro was estimated by high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry analytical techniques. CSA showed different inhibitory effects on different isozymes. CSA reversibly inhibited CYP3A4 and CYP2C9 activities in human liver microsomes with IC50 values of 28.3 and 31.3 μM, respectively, but exhibited no inhibition activities to CYP1A2, CYP2A6, CYP2C19, CYP2D6, and CYP2E1. CSA showed a weak effect on CYP450 enzymes in a time-dependent manner. CSA did not substantially induce CYP1A2, CYP2A6, CYP2B6, CYP2E1, CYP2C9, CYP2C19, CYP2D6, or CYP3A4 at concentrations up to 30 μM in primary human hepatocytes. The results of our experiments may be helpful to predict clinically significant food-drug interactions when other drugs are administered in combination with CSA. PMID:25272989

  10. Evaluation of inhibitory effects of caffeic acid and quercetin on human liver cytochrome p450 activities.

    PubMed

    Rastogi, Himanshu; Jana, Snehasis

    2014-12-01

    When herbal drugs and conventional allopathic drugs are used together, they can interact in our body which can lead to the potential for herb-drug interactions. This work was conducted to evaluate the herb-drug interaction potential of caffeic acid and quercetin mediated by cytochrome P450 (CYP) inhibition. Human liver microsomes (HLMs) were added to each selective probe substrates of cytochrome P450 enzymes with or without of caffeic acid and quercetin. IC50 , Ki values, and the types of inhibition were determined. Both caffeic acid and quercetin were potent competitive inhibitors of CYP1A2 (Ki = 1.16 and 0.93 μM, respectively) and CYP2C9 (Ki = 0.95 and 1.67 μM, respectively). Caffeic acid was a potent competitive inhibitor of CYP2D6 (Ki = 1.10 μM) and a weak inhibitor of CYP2C19 and CYP3A4 (IC50  > 100 μM). Quercetin was a potent competitive inhibitor of CYP 2C19 and CYP3A4 (Ki = 1.74 and 4.12 μM, respectively) and a moderate competitive inhibitor of CYP2D6 (Ki = 18.72 μM). These findings might be helpful for safe and effective use of polyphenols in clinical practice. Our data indicated that it is necessary to study the in vivo interactions between drugs and pharmaceuticals with dietary polyphenols. PMID:25196644

  11. Pharmacogenomic diversity of tamoxifen metabolites and estrogen receptor genes in Hispanics and non-Hispanic whites with breast cancer

    PubMed Central

    Rangel, Leticia B. A.; Taraba, Jodi L.; Frei, Christopher R.; Smith, Lon; Rodriguez, Gladys

    2015-01-01

    Ethnic differences in patient genetics and breast cancer (BC) biology contribute to ethnic disparities in cancer presentation and patient outcome. We prospectively evaluated SNPs within phase I and phase II tamoxifen (TAM) metabolizing enzymes, and the estrogen receptor gene (ESR1), aiming to identify potential pharmacogenomic ethnicity patterns in an ER-positive BC cohort constituted of Hispanic and Non-Hispanic White (NHW) women in South Texas. Plasma concentrations of TAM/metabolites were measured using HPLC. CYP2C9, CYP2D6 and SULT1A1 genotypes were determined by DNA sequencing/Pyrosequencing technology. ESR1 PvuII and XbaI SNPs were genotyped using Applied Biosystems Taqman® Allelic Discrimination Assay. Hispanics had higher levels of TAM, 4-hydroxytamoxifen, and endoxifen than NHWs. There was a higher prevalence of CYP2D6 EM within Hispanics than NHWs, which corresponded to higher endoxifen levels, but no differences were verified with regard to CYP2C9 and SULT1A1. We found a higher incidence of the wild type forms of the ESR1 in Hispanics than NHWs. The performance status, the disease stage at diagnosis, and the use of aromatase inhibitors might have overcome the overall favorable pharmacogenomics profile of Hispanics when compared to NHWs in relation to TAM therapy responsiveness. Our data strongly point to ethnical peculiarities related to pharmacogenomics and demographic features of TAM treated Hispanics and NHWs. In the era of pharmacogenomics and its ultimate goal of individualized, efficacious and safe therapy, cancer studies focused on the Hispanic population are warranted because this is the fastest growing major demographic group, and an understudied segment in the U.S. PMID:25395315

  12. Prediction of Cytochrome P450 Profiles of Environmental Chemicals with QSAR Models Built from Drug-like Molecules

    PubMed Central

    Sun, Hongmao; Veith, Henrike; Xia, Menghang; Austin, Christopher P.; Tice, Raymond R.; Huang, Ruili

    2012-01-01

    The human cytochrome P450 (CYP) enzyme family is involved in the biotransformation of many xenobiotics. As part of the U.S. Tox21 Phase I effort, we profiled the CYP activity of approximately three thousand compounds, primarily those of environmental concern, against human CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 isoforms in a quantitative high throughput screening (qHTS) format. In order to evaluate the extent to which computational models built from a drug-like library screened in these five CYP assays under the same conditions can accurately predict the outcome of an environmental compound library, five support vector machines (SVM) models built from over 17,000 drug-like compounds were challenged to predict the CYP activities of the Tox21 compound collection. Although a large fraction of the test compounds fall outside of the applicability domain (AD) of the models, as measured by k-nearest neighbor (k-NN) similarities, the predictions were largely accurate for CYP1A2, CYP2C9, and CYP3A4 ioszymes with area under the receiver operator characteristic curves (AUC-ROC) ranging between 0.82 and 0.84. The lower predictive power of the CYP2C19 model (AUC-ROC = 0.76) is caused by experimental errors and that of the CYP2D6 model (AUC-ROC = 0.76) can be rescued by rebalancing the training data. Our results demonstrate that decomposing molecules into atom types enhanced the coverage of the AD and that computational models built from drug-like molecules can be used to predict the ability of non-drug like compounds to interact with these CYPs. PMID:23459712

  13. Simultaneous interstitial pneumonitis and cardiomyopathy induced by venlafaxine* **

    PubMed Central

    Ferreira, Pedro Gonçalo; Costa, Susana; Dias, Nuno; Ferreira, António Jorge; Franco, Fátima

    2014-01-01

    Venlafaxine is a serotonin-norepinephrine reuptake inhibitor used as an antidepressant. Interindividual variability and herb-drug interactions can lead to drug-induced toxicity. We report the case of a 35-year-old female patient diagnosed with synchronous pneumonitis and acute cardiomyopathy attributed to venlafaxine. The patient sought medical attention due to dyspnea and dry cough that started three months after initiating treatment with venlafaxine for depression. The patient was concomitantly taking Centella asiatica and Fucus vesiculosus as phytotherapeutic agents. Chest CT angiography and chest X-ray revealed parenchymal lung disease (diffuse micronodules and focal ground-glass opacities) and simultaneous dilated cardiomyopathy. Ecocardiography revealed a left ventricular ejection fraction (LVEF) of 21%. A thorough investigation was carried out, including BAL, imaging studies, autoimmune testing, right heart catheterization, and myocardial biopsy. After excluding other etiologies and applying the Naranjo Adverse Drug Reaction Probability Scale, a diagnosis of synchronous pneumonitis/cardiomyopathy associated with venlafaxine was assumed. The herbal supplements taken by the patient have a known potential to inhibit cytochrome P450 enzyme complex, which is responsible for the metabolization of venlafaxine. After venlafaxine discontinuation, there was rapid improvement, with regression of the radiological abnormalities and normalization of the LVEF. This was an important case of drug-induced cardiopulmonary toxicity. The circumstantial intake of inhibitors of the CYP2D6 isoenzyme and the presence of a CYP2D6 slow metabolism phenotype might have resulted in the toxic accumulation of venlafaxine and the subsequent clinical manifestations. Here, we also discuss why macrophage-dominant phospholipidosis was the most likely mechanism of toxicity in this case. PMID:25029655

  14. Application of physiologically based pharmacokinetic modeling in predicting drug–drug interactions for sarpogrelate hydrochloride in humans

    PubMed Central

    Min, Jee Sun; Kim, Doyun; Park, Jung Bae; Heo, Hyunjin; Bae, Soo Hyeon; Seo, Jae Hong; Oh, Euichaul; Bae, Soo Kyung

    2016-01-01

    Background Evaluating the potential risk of metabolic drug–drug interactions (DDIs) is clinically important. Objective To develop a physiologically based pharmacokinetic (PBPK) model for sarpogrelate hydrochloride and its active metabolite, (R,S)-1-{2-[2-(3-methoxyphenyl)ethyl]-phenoxy}-3-(dimethylamino)-2-propanol (M-1), in order to predict DDIs between sarpogrelate and the clinically relevant cytochrome P450 (CYP) 2D6 substrates, metoprolol, desipramine, dextromethorphan, imipramine, and tolterodine. Methods The PBPK model was developed, incorporating the physicochemical and pharmacokinetic properties of sarpogrelate hydrochloride, and M-1 based on the findings from in vitro and in vivo studies. Subsequently, the model was verified by comparing the predicted concentration-time profiles and pharmacokinetic parameters of sarpogrelate and M-1 to the observed clinical data. Finally, the verified model was used to simulate clinical DDIs between sarpogrelate hydrochloride and sensitive CYP2D6 substrates. The predictive performance of the model was assessed by comparing predicted results to observed data after coadministering sarpogrelate hydrochloride and metoprolol. Results The developed PBPK model accurately predicted sarpogrelate and M-1 plasma concentration profiles after single or multiple doses of sarpogrelate hydrochloride. The simulated ratios of area under the curve and maximum plasma concentration of metoprolol in the presence of sarpogrelate hydrochloride to baseline were in good agreement with the observed ratios. The predicted fold-increases in the area under the curve ratios of metoprolol, desipramine, imipramine, dextromethorphan, and tolterodine following single and multiple sarpogrelate hydrochloride oral doses were within the range of ≥1.25, but <2-fold, indicating that sarpogrelate hydrochloride is a weak inhibitor of CYP2D6 in vivo. Collectively, the predicted low DDIs suggest that sarpogrelate hydrochloride has limited potential for causing

  15. Application of physiologically based pharmacokinetic modeling in predicting drug–drug interactions for sarpogrelate hydrochloride in humans

    PubMed Central

    Min, Jee Sun; Kim, Doyun; Park, Jung Bae; Heo, Hyunjin; Bae, Soo Hyeon; Seo, Jae Hong; Oh, Euichaul; Bae, Soo Kyung

    2016-01-01

    Background Evaluating the potential risk of metabolic drug–drug interactions (DDIs) is clinically important. Objective To develop a physiologically based pharmacokinetic (PBPK) model for sarpogrelate hydrochloride and its active metabolite, (R,S)-1-{2-[2-(3-methoxyphenyl)ethyl]-phenoxy}-3-(dimethylamino)-2-propanol (M-1), in order to predict DDIs between sarpogrelate and the clinically relevant cytochrome P450 (CYP) 2D6 substrates, metoprolol, desipramine, dextromethorphan, imipramine, and tolterodine. Methods The PBPK model was developed, incorporating the physicochemical and pharmacokinetic properties of sarpogrelate hydrochloride, and M-1 based on the findings from in vitro and in vivo studies. Subsequently, the model was verified by comparing the predicted concentration-time profiles and pharmacokinetic parameters of sarpogrelate and M-1 to the observed clinical data. Finally, the verified model was used to simulate clinical DDIs between sarpogrelate hydrochloride and sensitive CYP2D6 substrates. The predictive performance of the model was assessed by comparing predicted results to observed data after coadministering sarpogrelate hydrochloride and metoprolol. Results The developed PBPK model accurately predicted sarpogrelate and M-1 plasma concentration profiles after single or multiple doses of sarpogrelate hydrochloride. The simulated ratios of area under the curve and maximum plasma concentration of metoprolol in the presence of sarpogrelate hydrochloride to baseline were in good agreement with the observed ratios. The predicted fold-increases in the area under the curve ratios of metoprolol, desipramine, imipramine, dextromethorphan, and tolterodine following single and multiple sarpogrelate hydrochloride oral doses were within the range of ≥1.25, but <2-fold, indicating that sarpogrelate hydrochloride is a weak inhibitor of CYP2D6 in vivo. Collectively, the predicted low DDIs suggest that sarpogrelate hydrochloride has limited potential for causing

  16. Pharmacogenetics: Using Genetic Information to Guide Drug Therapy

    PubMed Central

    CHANG, KU-LANG; WEITZEL, KRISTIN; SCHMIDT, SIEGFRIED

    2016-01-01

    Clinical pharmacogenetics, the use of genetic data to guide drug therapy decisions, is beginning to be used for medications commonly prescribed by family physicians. However, clinicians are largely unfamiliar with principles supporting clinical use of this type of data. For example, genetic variability in the cytochrome P450 2D6 drug metabolizing enzyme can alter the clinical effects of some opioid analgesics (e.g., codeine, tramadol), whereas variability in the CYP2C19 enzyme affects the antiplatelet agent clopidogrel. If testing is performed, patients who are ultrarapid or poor metabolizers of CYP2D6 should avoid codeine use (and possibly tramadol, hydrocodone, and oxycodone) because of the potential for increased toxicity or lack of effectiveness. Patients undergoing percutaneous coronary intervention for acute coronary syndromes who are known to be poor metabolizers of CYP2C19 should consider alternate antiplatelet therapy (e.g., ticagrelor, prasugrel). Some guidelines are available that address appropriate drug therapy changes, and others are in development. Additionally, a number of clinical resources are emerging to support family physicians in the use of pharmacogenetics. When used appropriately, pharmacogenetic testing can be a practical tool to optimize drug therapy and avoid medication adverse effects. PMID:26447442

  17. Pharmacogenetics: Using Genetic Information to Guide Drug Therapy.

    PubMed

    Chang, Ku-Lang; Weitzel, Kristin; Schmidt, Siegfried

    2015-10-01

    Clinical pharmacogenetics, the use of genetic data to guide drug therapy decisions, is beginning to be used for medications commonly prescribed by family physicians. However, clinicians are largely unfamiliar with principles supporting clinical use of this type of data. For example, genetic variability in the cytochrome P450 2D6 drug metabolizing enzyme can alter the clinical effects of some opioid analgesics (e.g., codeine, tramadol), whereas variability in the CYP2C19 enzyme affects the antiplatelet agent clopidogrel. If testing is performed, patients who are ultrarapid or poor metabolizers of CYP2D6 should avoid codeine use (and possibly tramadol, hydrocodone, and oxycodone) because of the potential for increased toxicity or lack of effectiveness. Patients undergoing percutaneous coronary intervention for acute coronary syndromes who are known to be poor metabolizers of CYP2C19 should consider alternate antiplatelet therapy (e.g., ticagrelor, prasugrel). Some guidelines are available that address appropriate drug therapy changes, and others are in development. Additionally, a number of clinical resources are emerging to support family physicians in the use of pharmacogenetics. When used appropriately, pharmacogenetic testing can be a practical tool to optimize drug therapy and avoid medication adverse effects.

  18. Pharmacogenetics: Using Genetic Information to Guide Drug Therapy.

    PubMed

    Chang, Ku-Lang; Weitzel, Kristin; Schmidt, Siegfried

    2015-10-01

    Clinical pharmacogenetics, the use of genetic data to guide drug therapy decisions, is beginning to be used for medications commonly prescribed by family physicians. However, clinicians are largely unfamiliar with principles supporting clinical use of this type of data. For example, genetic variability in the cytochrome P450 2D6 drug metabolizing enzyme can alter the clinical effects of some opioid analgesics (e.g., codeine, tramadol), whereas variability in the CYP2C19 enzyme affects the antiplatelet agent clopidogrel. If testing is performed, patients who are ultrarapid or poor metabolizers of CYP2D6 should avoid codeine use (and possibly tramadol, hydrocodone, and oxycodone) because of the potential for increased toxicity or lack of effectiveness. Patients undergoing percutaneous coronary intervention for acute coronary syndromes who are known to be poor metabolizers of CYP2C19 should consider alternate antiplatelet therapy (e.g., ticagrelor, prasugrel). Some guidelines are available that address appropriate drug therapy changes, and others are in development. Additionally, a number of clinical resources are emerging to support family physicians in the use of pharmacogenetics. When used appropriately, pharmacogenetic testing can be a practical tool to optimize drug therapy and avoid medication adverse effects. PMID:26447442

  19. Ellipticine oxidation and DNA adduct formation in human hepatocytes is catalyzed by human cytochromes P450 and enhanced by cytochrome b5.

    PubMed

    Stiborová, Marie; Poljaková, Jitka; Martínková, Eva; Ulrichová, Jitka; Simánek, Vilím; Dvořák, Zdeněk; Frei, Eva

    2012-12-16

    Ellipticine is an antineoplastic agent considered a pro-drug, the pharmacological and genotoxic effects of which are dependent on cytochrome P450 (CYP)- and/or peroxidase-mediated activation to covalent DNA adducts. We investigated whether ellipticine-DNA adducts are formed in human hepatic microsomes and human hepatocytes. We then identified which human CYPs oxidize ellipticine to metabolites forming DNA adducts and the effect of cytochrome b(5) on this oxidation. 13-Hydroxyellipticine, the metabolite forming the major ellipticine-DNA adduct, was generated mainly by CYP3A4 and 1A1, followed by CYP2D6>2C19>1B1>1A2>2E1 and >2C9. Cytochrome b(5) increased formation of this metabolite by human CYPs, predominantly by CYP1A1, 3A4, 1A2 and 2C19. Formation of 12-hydroxyellipticine is generated mainly by CYP2C19, followed by CYP2C9>3A4>2D6>2E1 and >2A6. Other CYPs were less active (CYP2C8 and 2B6) or did not oxidize ellipticine to this metabolite (CYP1A1, 1A2 and 1B1). CYP2D6 was the most efficient enzyme generating ellipticine N(2)-oxide. CYP3A4 and 1A1 in the presence of cytochrome b(5) are mainly responsible for bioactivation of ellipticine to DNA adduct 1 (formed by ellipticine-13-ylium from 13-hydroxyellipticine), while 12-hydroxyellipticine generated during the CYP2C19-mediated ellipticine oxidation is the predominant metabolite forming ellipticine-12-ylium that generates ellipticine-DNA adduct 2. These ellipticine-DNA adducts were also generated by human hepatic microsomes and in primary human hepatocytes exposed to ellipticine. Ellipticine is toxic to these hepatocytes, decreasing their viability; the IC(50) value of ellipticine in these cells was 0.7 μM. In liver CYP3A4 is the predominant ellipticine activating CYP species, which is expected to result in efficient metabolism after oral ingestion of ellipticine in humans.

  20. CYP isoform specificity toward drug metabolism: analysis using common feature hypothesis.

    PubMed

    Ramesh, M; Bharatam, Prasad V

    2012-02-01

    Three dimensional pharmacophoric maps were generated for each isoforms of CYP2C9, CYP2D6 and CYP3A4 separately using independent training sets consist of highly potent substrates (seven substrates for each isoform). HipHop module of CATALYST software was used in the generation of pharmacophore models. The best pharmacophore model was chosen out of the several models on the basis of (i) highest ranking score, (ii) better fit value among training set, (iii) capability to screen substrates from data set and (iv) efficiency to identify the isoform specificity. The individual pharmacophore models (CYP2C9-hypo1, CYP2D6-hypo1 and CYP3A4-hypo1) are characterized by the pharmacophoric features XZDH, RPZH and XYZHH for the CYP2C9, CYP2D6 and CYP3A4 respectively. Each of the chosen models was validated by using data sets of CYP substrates. This comparative study of CYP substrates demonstrates the importance of acidic character along with HBD and HBAl features for CYP2C9, basic character with ring aromatic features for CYP2D6 and hydrophobic features for CYP3A4. Acidity, basicity and hydrophobicity features arising from the functional groups of the substrates are also responsible for demonstrating CYP isoform specificity. Hence, these chemical features are incorporated in the decision tree along with pharmacophore maps. Finally, a decision tree based on chemical features and pharmacophore features was generated to identify the isoform specificity of novel query molecule toward the three isoforms. PMID:21562823

  1. CYP isoform specificity toward drug metabolism: analysis using common feature hypothesis.

    PubMed

    Ramesh, M; Bharatam, Prasad V

    2012-02-01

    Three dimensional pharmacophoric maps were generated for each isoforms of CYP2C9, CYP2D6 and CYP3A4 separately using independent training sets consist of highly potent substrates (seven substrates for each isoform). HipHop module of CATALYST software was used in the generation of pharmacophore models. The best pharmacophore model was chosen out of the several models on the basis of (i) highest ranking score, (ii) better fit value among training set, (iii) capability to screen substrates from data set and (iv) efficiency to identify the isoform specificity. The individual pharmacophore models (CYP2C9-hypo1, CYP2D6-hypo1 and CYP3A4-hypo1) are characterized by the pharmacophoric features XZDH, RPZH and XYZHH for the CYP2C9, CYP2D6 and CYP3A4 respectively. Each of the chosen models was validated by using data sets of CYP substrates. This comparative study of CYP substrates demonstrates the importance of acidic character along with HBD and HBAl features for CYP2C9, basic character with ring aromatic features for CYP2D6 and hydrophobic features for CYP3A4. Acidity, basicity and hydrophobicity features arising from the functional groups of the substrates are also responsible for demonstrating CYP isoform specificity. Hence, these chemical features are incorporated in the decision tree along with pharmacophore maps. Finally, a decision tree based on chemical features and pharmacophore features was generated to identify the isoform specificity of novel query molecule toward the three isoforms.

  2. Interest and attitudes of patients, cancer physicians, medical students and cancer researchers towards a spectrum of genetic tests relevant to breast cancer patients.

    PubMed

    Ngoi, Natalie; Lee, Soo-Chin; Hartman, Mikael; Khin, Lay-Wai; Wong, Andrea

    2013-02-01

    The perspectives of patients and healthcare professionals towards breast cancer genetic tests that are becoming increasingly available is unexplored in Asians. We surveyed the interest and attitudes of 200 breast cancer patients, 67 cancer physicians, 485 medical students and cancer researchers towards three genetic tests, BRCA1/2 mutation, CYP2D6 genotype and Oncotype DX testing, using hypothetical scenarios. Approximately 60% of patients expressed initial interest in each genetic test, although the majority reversed their decisions once test limitations were conveyed, with <15% maintaining interest in each test. Cancer physicians were most likely to recommend BRCA1/2 mutation testing (73%) and least likely to recommend CYP2D6 genotyping (12%), while patients were more likely to choose Oncotype DX testing (28%) over CYP2D6 (21%) and BRCA1/2 testing (15%). Cost concerns, low educational level and lack of prior awareness of genetic testing were the main barriers against breast cancer genetic testing among Asian patients.

  3. Pharmacogenomic considerations in opioid analgesia

    PubMed Central

    Vuilleumier, Pascal H; Stamer, Ulrike M; Landau, Ruth

    2012-01-01

    Translating pharmacogenetics to clinical practice has been particularly challenging in the context of pain, due to the complexity of this multifaceted phenotype and the overall subjective nature of pain perception and response to analgesia. Overall, numerous genes involved with the pharmacokinetics and dynamics of opioids response are candidate genes in the context of opioid analgesia. The clinical relevance of CYP2D6 genotyping to predict analgesic outcomes is still relatively unknown; the two extremes in CYP2D6 genotype (ultrarapid and poor metabolism) seem to predict pain response and/or adverse effects. Overall, the level of evidence linking genetic variability (CYP2D6 and CYP3A4) to oxycodone response and phenotype (altered biotransformation of oxycodone into oxymorphone and overall clearance of oxycodone and oxymorphone) is strong; however, there has been no randomized clinical trial on the benefits of genetic testing prior to oxycodone therapy. On the other hand, predicting the analgesic response to morphine based on pharmacogenetic testing is more complex; though there was hope that simple genetic testing would allow tailoring morphine doses to provide optimal analgesia, this is unlikely to occur. A variety of polymorphisms clearly influence pain perception and behavior in response to pain. However, the response to analgesics also differs depending on the pain modality and the potential for repeated noxious stimuli, the opioid prescribed, and even its route of administration. PMID:23226064

  4. Pharmacogenomics and therapeutic prospects in dementia.

    PubMed

    Cacabelos, Ramón

    2008-03-01

    . Cholinesterase inhibitors of current use in AD are metabolized via CYP-related enzymes. These drugs can interact with many other drugs which are substrates, inhibitors or inducers of the cytochrome P-450 system; this interaction elicits liver toxicity and other adverse drug reactions. CYP2D6-related enzymes are involved in the metabolism of more than 20% of CNS drugs. The distribution of the CYP2D6 genotypes differentiates four major categories of CYP2D6-related metabolyzer types: (a) Extensive Metabolizers (EM)(*1/*1, *1/*10)(51.61%); (b) Intermediate Metabolizers (IM) (*1/*3, *1/*4, *1/*5, *1/*6, *1/*7, *10/*10, *4/*10, *6/*10, *7/*10) (32.26%); (c) Poor Metabolizers (PM) (*4/*4, *5/*5) (9.03%); and (d) Ultra-rapid Metabolizers (UM) (*1xN/*1, *1xN/*4, Dupl) (7.10%). PMs and UMs tend to show higher transaminase activity than EMs and IMs. EMs and IMs are the best responders, and PMs and UMs are the worst responders to pharmacological treatments in AD. It seems very plausible that the pharmacogenetic response in AD depends upon the interaction of genes involved in drug metabolism and genes associated with AD pathogenesis. The establishment of clinical protocols for the practical application of pharmacogenetic strategies in AD will foster important advances in drug development, pharmacological optimization and cost-effectiveness of drugs, and personalized treatments in dementia. PMID:18344047

  5. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2015-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity.

  6. High-Throughput and Combinatorial Gene Expression on a Chip for Metabolism-Induced Toxicology Screening

    PubMed Central

    Kwon, Seok Joon; Lee, Dong Woo; Shah, Dhiral A.; Ku, Bosung; Jeon, Sang Youl; Solanki, Kusum; Ryan, Jessica D.; Clark, Douglas S.; Dordick, Jonathan S.; Lee, Moo-Yeal

    2014-01-01

    Differential expression of various drug-metabolizing enzymes in the human liver may cause deviations of pharmacokinetic profiles, resulting in inter-individual variability of drug toxicity and/or efficacy. Here we present the “Transfected Enzyme and Metabolism Chip” (TeamChip), which predicts potential metabolism-induced drug or drug-candidate toxicity. The TeamChip is prepared by delivering genes into miniaturized three-dimensional cellular microarrays on a micropillar chip using recombinant adenoviruses in a complementary microwell chip. The device enables users to manipulate the expression of individual and multiple human metabolizing-enzyme genes (such as CYP3A4, CYP2D6, CYP2C9, CYP1A2, CYP2E1, and UGT1A4) in THLE-2 cell microarrays. To identify specific enzymes involved in drug detoxification, we created 84 combinations of metabolic-gene expressions in a combinatorial fashion on a single microarray. Thus, the TeamChip platform can provide critical information necessary for evaluating metabolism-induced toxicity in a high-throughput manner. PMID:24799042

  7. Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics

    PubMed Central

    Cacabelos, Ramón

    2007-01-01

    Donepezil is the leading compound for the treatment of Alzheimer’s disease (AD) in more than 50 countries. As compared with other conventional acetylcholinesterase inhibitors (AChEIs), donepezil is a highly selective and reversible piperidine derivative with AChEI activity that exhibits the best pharmacological profile in terms of cognitive improvement, responders rate (40%–58%), dropout cases (5%–13%), and side-effects (6%–13%) in AD. Although donepezil represents a non cost-effective treatment, most studies convey that this drug can provide a modest benefit on cognition, behavior, and activities of the daily living in both moderate and severe AD, contributing to slow down disease progression and, to a lesser exetnt, to delay institutionalization. Patients with vascular dementia might also benefit from donepezil in a similar fashion to AD patients. Some potential effects of donepezil on the AD brain, leading to reduced cortico-hippocampal atrophy, include the following: AChE inhibition, enhancement of cholinergic neurotransmission and putative modulation of other neurotransmitter systems, protection against glutamate-induced excitotoxicity, activation of neurotrophic mechanisms, promotion of non-amyloidodgenic pathways for APP processing, and indirect effects on cerebrovascular function improving brain perfusion. Recent studies demonstrate that the therapeutic response in AD is genotype-specific. Donepezil is metabolized via CYP-related enzymes, especially CYP2D6, CYP3A4, and CYP1A2. Approximately, 15%–20% of the AD population may exhibit an abnormal metabolism of AChEIs; about 50% of this population cluster would show an ultrarapid metabolism, requiring higher doses of AChEIs to reach a therapeutic threshold, whereas the other 50% of the cluster would exhibit a poor metabolism, displaying potential adverse events at low doses. In AD patients treated with a multifactorial therapy, including donepezil, the best responders are the CYP2D6-related extensive

  8. Clinical validity: Combinatorial pharmacogenomics predicts antidepressant responses and healthcare utilizations better than single gene phenotypes.

    PubMed

    Altar, C A; Carhart, J M; Allen, J D; Hall-Flavin, D K; Dechairo, B M; Winner, J G

    2015-10-01

    In four previous studies, a combinatorial multigene pharmacogenomic test (GeneSight) predicted those patients whose antidepressant treatment for major depressive disorder resulted in poorer efficacy and increased health-care resource utilizations. Here, we extended the analysis of clinical validity to the combined data from these studies. We also compared the outcome predictions of the combinatorial use of allelic variations in genes for four cytochrome P450 (CYP) enzymes (CYP2D6, CYP2C19, CYP2C9 and CYP1A2), the serotonin transporter (SLC6A4) and serotonin 2A receptor (HTR2A) with the outcome predictions for the very same subjects using traditional, single-gene analysis. Depression scores were measured at baseline and 8-10 weeks later for the 119 fully blinded subjects who received treatment as usual (TAU) with antidepressant standard of care, without the benefit of pharmacogenomic medication guidance. For another 96 TAU subjects, health-care utilizations were recorded in a 1-year, retrospective chart review. All subjects were genotyped after the clinical study period, and phenotype subgroups were created among those who had been prescribed a GeneSight panel medication that is a substrate for either CYP enzyme or serotonin effector protein. On the basis of medications prescribed for each subject at baseline, the combinatorial pharmacogenomic (CPGx™) GeneSight method categorized each subject into either a green ('use as directed'), yellow ('use with caution') or red category ('use with increased caution and with more frequent monitoring') phenotype, whereas the single-gene method categorized the same subjects with the traditional phenotype (for example, poor, intermediate, extensive or ultrarapid CYP metabolizer). The GeneSight combinatorial categorization approach discriminated and predicted poorer outcomes for red category patients prescribed medications metabolized by CYP2D6, CYP2C19 and CYP1A2 (P=0.0034, P=0.04 and P=0.03, respectively), whereas the single

  9. Pharmacokinetic interaction profile of riociguat, a new soluble guanylate cyclase stimulator, in vitro.

    PubMed

    Rickert, Verena; Haefeli, Walter Emil; Weiss, Johanna

    2014-08-01

    Riociguat is a new soluble guanylate cyclase stimulator under development for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. So far, the interaction potential of riociguat with other drugs is nearly unknown. Therefore, we assessed in vitro the potency of riociguat to inhibit important drug metabolising enzymes (cytochrome P450 (CYP) 3A4, CYP2C19, and CYP2D6) and drug transporters (P-glycoprotein (P-gp/ABCB1), breast cancer resistance protein (BCRP/ABCG2), and organic anion transporting polypeptides (OATP) 1B1 and 1B3). In addition we evaluated its substrate characteristics for P-gp, BCRP, and the multidrug resistance-associated protein 1 (MRP1/ABCC1). We also assessed riociguat's inducing properties on important drug metabolising enzymes and transporters and investigated its ability to activate the pregnane-X-receptor (PXR). Riociguat was identified as a weak to moderate inhibitor of P-gp (f2-value: 11.7 ± 4.8 μM), BCRP (IC50 = 46.2 ± 20.3 μM), OATP1B1 (IC50 = 34.1 ± 3.15 μM), OATP1B3 (IC50 = 50.3 ± 7.5 μM), CYP2D6 (IC50 = 12.4 ± 0.74 μM), and CYP2C19 (IC50 = 46.1 ± 7.14 μM). Furthermore, it induced mRNA expression of BCRP/ABCG2 (3-fold at 20 μM) and to a lesser extent of CYP3A4 (2.3-fold at 20 μM), UGT1A4, and ABCB11. The only weak inducing properties were confirmed by weak activation of PXR. Considering its systemic concentrations its interaction potential as a perpetrator drug seems to be low. In contrast, our data suggest that riociguat is a P-gp substrate and might therefore act as a victim drug when co-administered with strong P-gp inductors or inhibitors. PMID:24657506

  10. The role of CYP2C9 genetic polymorphism in carvedilol O-desmethylation in vitro.

    PubMed

    Pan, Pei-Pei; Weng, Qing-Hua; Zhou, Chen-Jian; Wei, Yan-Li; Wang, Li; Dai, Da-Peng; Cai, Jian-Ping; Hu, Guo-Xin

    2016-02-01

    We aimed at investigating the role of CYP2C9 in carvedilol O-desmethylation and identifying the effect of 35 CYP2C9 allelic variants we found in Chinese Han population on the in vitro metabolism of carvedilol. Recombinant CYP2C9 and CYP2D6 microsomes of the wild type were used to test and verify the enzymes involved in carvedilol O-desmethylation. Recombinant CYP2C9 microsomes of distinguished genotypes were used to characterize the corresponding enzyme activity toward carvedilol. 2-100 μM carvedilol was incubated for 30 min at 37 °C. The products were detected using high-performance liquid chromatography. CYP2C9 plays a certain role in carvedilol metabolism. Compared with wild-type CYP2C9*1, the intrinsic clearance (V max/K m) values of all variants toward carvedilol O-desmethylation were significantly altered. The variants exhibited significantly decreased values (from 30 to 99.8 %) due to increased K m and/or decreased V max values. We conclude that recombinant system could be used to investigate the enzymes involved in drug metabolism and these findings complement the database where CYP2C9 polymorphism interacts with biotransformation of exogenous substances like drugs and toxins.

  11. Evaluation of the Transport, In Vitro Metabolism and Pharmacokinetics of Salvinorin A, a Potent Hallucinogen

    PubMed Central

    Teksin, Zeynep S.; Lee, Insong J.; Nemieboka, Noble N.; Othman, Ahmed A.; Upreti, Vijay V.; Hassan, Hazem E.; Syed, Shariq S.; Prisinzano, Thomas E.; Eddington, Natalie D.

    2009-01-01

    Salvinorin A is an unregulated potent hallucinogen isolated from the leaves of Salvia divinorum. It is the only known non-nitrogenous kappa-opioid selective agonist and rivals synthetic lysergic acid diethylamide (LSD) in potency. This objective of this study was to characterize the in vitro transport, in vitro metabolism, and pharmacokinetic properties of Salvinorin A. The transport characteristics of Salvinorin A were assessed using MDCK-MDR1 cell monolayers. The P-glycoprotein (P-gp) affinity status was assessed by the P-gp ATPase assay. In vitro metabolism studies were performed with various specific human CYP450 isoforms and UGT2B7 to assess the metabolic characteristics of Salvinorin A. Cohorts (n=3) of male Sprague Dawley rats were used to evaluate the pharmacokinetics and brain distribution of Salvinorin A (10 mg/kg, intraperitonal (i.p.) over a 240 min period. A validated UV-HPLC and LC/MS/MS method was used to quantify the hallucinogen concentrations obtained from the in vitro and in vivo studies, respectively. Salvinorin A displayed a high secretory transport in the MDCK-MDR1 cells (4.07±1.34 × 10-5 cm/s). Salvinorin A also stimulated the P-gp ATPase activity in a concentration (5-10 μm) dependent manner, suggesting that it may be a substrate of P-gp. A significant decrease in Salvinorin A concentration ranging from 14.7±0.80 % to 31.1±1.20 % was observed after incubation with CYP2D6, CYP1A1, CYP2C18, and CYP2E1, respectively. A significant decrease was also observed after incubation with UGT2B7. These results suggest that Salvinorin A may be a substrate of UGT2B7, CYP2D6, CYP1A1, CYP2E1 and CYP2C18. The in vivo pharmacokinetic study showed a relatively fast elimination with a half-life (t1/2) of 75 min and a clearance (Cl/F) of 26 L/h/kg. The distribution was extensive (Vd of 47.1 L/kg), however the brain to plasma ratio was 0.050. Accordingly, the brain half life was relatively short, 36 min. Salvinorin A is rapidly eliminated after i.p. dosing

  12. Predictors of Blood Trihalomethane Concentrations in NHANES 1999–2006

    PubMed Central

    Dhingra, Radhika; Blount, Benjamin C.; Steenland, Kyle

    2014-01-01

    Background: Trihalomethanes (THMs) are water disinfection by-products that have been associated with bladder cancer and adverse birth outcomes. Four THMs (bromoform, chloroform, bromodichloromethane, dibromochloromethane) were measured in blood and tap water of U.S. adults in the National Health and Nutrition Examination Survey (NHANES) 1999–2006. THMs are metabolized to potentially toxic/mutagenic intermediates by cytochrome p450 (CYP) 2D6 and CYP2E1 enzymes. Objectives: We conducted exploratory analyses of blood THMs, including factors affecting CYP2D6 and CYP2E1 activity. Methods: We used weighted multivariable regressions to evaluate associations between blood THMs and water concentrations, survey year, and other factors potentially affecting THM exposure or metabolism (e.g., prescription medications, cruciferous vegetables, diabetes, fasting, pregnancy, swimming). Results: From 1999 to 2006, geometric mean blood and water THM levels dropped in parallel, with decreases of 32%–76% in blood and 38%–52% in water, likely resulting, in part, from the lowering of the total THM drinking water standard in 2002–2004. The strongest predictors of blood THM levels were survey year and water concentration (n = 4,232 total THM; n = 4,080 bromoform; n = 4,582 chloroform; n = 4,374 bromodichloromethane; n = 4,464 dibromochloromethane). We detected statistically significant inverse associations with diabetes and eating cruciferous vegetables in all but the bromoform model. Medications did not consistently predict blood levels. Afternoon/evening blood samples had lower THM concentrations than morning samples. In a subsample (n = 230), air chloroform better predicted blood chloroform than water chloroform, suggesting showering/bathing was a more important source than drinking. Conclusions: We identified several factors associated with blood THMs that may affect their metabolism. The potential health implications require further study. Citation: Riederer AM, Dhingra R

  13. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer's disease.

    PubMed

    Noetzli, Muriel; Eap, Chin B

    2013-04-01

    With the aging population and its rapidly increasing prevalence, dementia has become an important public health concern in developed and developing countries. To date, the pharmacological treatment is symptomatic and based on the observed neurotransmitter disturbances. The four most commonly used drugs are donepezil, galantamine, rivastigmine and memantine. Donepezil, galantamine and rivastigmine are acetylcholinesterase inhibitors with different pharmacodynamic and pharmacokinetic profiles. Donepezil inhibits selectively the acetylcholinesterase and has a long elimination half-life (t(1/2)) of 70 h. Galantamine is also a selective acetylcholinesterase inhibitor, but also modulates presynaptic nicotinic receptors. It has a t(1/2) of 6-8 h. Donepezil and galantamine are mainly metabolised by cytochrome P450 (CYP) 2D6 and CYP3A4 in the liver. Rivastigmine is a so-called 'pseudo-irreversible' inhibitor of acetylcholinesterase and butyrylcholinesterase. The t(1/2) of the drug is very short (1-2 h), but the duration of action is longer as the enzymes are blocked for around 8.5 and 3.5 h, respectively. Rivastigmine is metabolised by esterases in liver and intestine. Memantine is a non-competitive low-affinity antagonist of the NMDA receptor with a t(1/2) of 70 h. Its major route of elimination is unchanged via the kidneys. Addressing the issue of inter-patient variability in treatment response might be of special importance for the vulnerable population taking anti-dementia drugs. Pharmacogenetic considerations might help to avoid multiple medication changes due to non-response and/or adverse events. Some pharmacogenetic studies conducted on donepezil and galantamine reported an influence of the CYP2D6 genotype on the pharmacokinetics of the drugs and/or on the response to treatment. Moreover, polymorphisms in genes of the cholinergic markers acetylcholinesterase, butyrylcholinesterase, choline acetyltransferase and paraoxonase were found to be associated with better

  14. ABCB1 and ABCC2 and the risk of distant metastasis in Thai breast cancer patients treated with tamoxifen

    PubMed Central

    Sensorn, Insee; Sukasem, Chonlaphat; Sirachainan, Ekaphop; Chamnanphon, Montri; Pasomsub, Ekawat; Trachu, Narumol; Supavilai, Porntip; Pinthong, Darawan; Wongwaisayawan, Sansanee

    2016-01-01

    Background Genetic polymorphisms of drug-metabolizing enzymes and transporters have been extensively studied with regard to tamoxifen treatment outcomes. However, the results are inconclusive. Analysis of organ-specific metastasis may reveal the association of these pharmacogenetic factors. The aim of this study is to investigate the impact of CYP3A5, CYP2D6, ABCB1, and ABCC2 polymorphisms on the risk of all distant and organ-specific metastases in Thai patients who received tamoxifen adjuvant therapy. Methods Genomic DNA was extracted from blood samples of 73 patients with breast cancer who received tamoxifen adjuvant therapy. CYP3A5 (6986A>G), CYP2D6 (100C>T), ABCB1 (3435C>T), and ABCC2 (−24C>T) were genotyped using allelic discrimination real-time polymerase chain reaction assays. The impacts of prognostic clinical factors and genetic variants on disease-free survival were analyzed using the Kaplan–Meier method and Cox regression analysis. Results In the univariate analysis, primary tumor size >5 cm was significantly associated with increased risk of distant metastasis (P=0.004; hazard ratio [HR] =3.05; 95% confidence interval [CI], 1.44–6.47). In the multivariate analysis, tumor size >5 cm remained predictive of distant metastasis (P<0.001; HR=5.49; 95% CI, 2.30–13.10). ABCC2 −24CC were shown to be associated with increased risk of distant metastasis (P=0.040; adjusted HR=2.34; 95% CI, 1.04–5.27). The combined genotype of ABCC2 −24CC − ABCB1 3435 CT+TT was associated with increased risk of distant and bone metastasis (P=0.020; adjusted HR=2.46; 95% CI, 1.15–5.26 and P=0.040; adjusted HR=3.70; 95% CI, 1.06–12.89, respectively). Conclusion This study indicates that polymorphisms of ABCC2 and ABCB1 are independently associated with bone metastasis. Further prospective studies with larger sample sizes are needed to verify this finding. PMID:27110128

  15. The impact of ethnicity and cardiovascular risk on the pharmacologic management of osteoarthritis: a US perspective.

    PubMed

    Balmaceda, Casilda M

    2015-01-01

    Many individuals with osteoarthritis (OA) also have other chronic, comorbid conditions, such as obesity, hypertension and diabetes, which can compound the risk for developing cardiovascular adverse events that have been associated with specific analgesics, most notably nonselective nonsteroidal anti-inflammatory drugs (NSAIDs) and selective cyclooxygenase-2 inhibitor NSAIDs. Pharmacotherapy may be further complicated by genetic factors that may influence drug metabolism in certain individuals. These risks may vary according to race and ethnicity. Black and Hispanic populations are known to have a higher prevalence of cardiovascular risk factors and disease, and a substantial proportion of black and Hispanic individuals possess genotypes of the cytochrome P450 (CYP) 2C9 enzyme involved in the metabolism of many NSAIDs and the CYP2D6 enzyme involved in metabolism of the dual opioid agonist/norepinephrine-serotonin reuptake inhibitor tramadol. As a result, the efficacy and safety of available analgesics may vary between patients in different racial and ethnic groups. This review article focuses on racial and ethnic differences in cardiovascular risk and genetic factors altering drug efficacy and safety and evaluates the pharmacologic options that can be used for the management of OA in these populations. Particular emphasis is given to the place of topical NSAIDs and capsaicin in the management of OA patients for whom systemic exposure to available pharmacotherapy poses particular risk. Evidence-based guidelines in OA management, as they relate to appropriate patient-specific pharmacotherapy, are also examined.

  16. Present status and perspective of pharmacogenetics in Mexico.

    PubMed

    Cuautle-Rodríguez, Patricia; Llerena, Adrián; Molina-Guarneros, Juan

    2014-01-01

    Drug costs account for up to 24% of the country's health expenditure and there are 13,000 registered drugs being prescribed. Diabetes is the main cause of death in the country, with over 85% of diabetic patients currently under drug treatment. The importance of knowing interindividual variability in drug metabolism on Mexican populations is thus evident. The purpose of this article is to provide an overlook of the current situation of pharmacogenetic research in Mexico, focusing on drug-metabolizing enzymes, and the possibility of developing a phenotyping cocktail for Mexican populations. So far, 21 pharmacogenetic studies on Mexican population samples (Mestizos and Amerindian) have been published. These have reported interindividual variability through phenotyping and/or genotyping cytochromes: CYP2D6, 2C19, 2C9, 2E1, and phase II enzymes UGT and NAT2. Some cytochromes with important clinical implications have not yet been phenotyped in Mexican populations. The development of a cocktail adapted to them could be a significant contribution to a larger knowledge on drug response variability at a lower price and shorter time. There are validated phenotyping cocktails that present several practical advantages, being valuable, safe, and inexpensive tools in drug metabolism characterization, which require only a single experiment to provide information on several cytochrome activities. PMID:24129103

  17. The AmpliChip CYP450 test: principles, challenges, and future clinical utility in digestive disease.

    PubMed

    Juran, Brian D; Egan, Laurence J; Lazaridis, Konstantinos N

    2006-07-01

    Understanding genetically encoded inherited differences in drug metabolism and targets (ie, receptors, transporters) offers the promise of minimizing adverse drug reactions and improving therapies. Among the enzymes involved in drug metabolism, the cytochromes P450 (CYP450) hold a central position. In fact, CYP450 are involved in the biotransformation of most drugs used in clinical practice. Recent advances in the development of DNA-based diagnostics, coupled with a better understanding of genetic polymorphisms in influencing pharmacologic responses, have provided the foundation for novel in vitro tests that may predict side effects and/or therapeutic responses. The AmpliChip CYP450 test was developed as a clinical test to evaluate an individual's metabolic capacity for certain drugs by identifying polymorphisms of 2 CYP450 enzymes (ie, CYP2D6 and CYP2D19). Even though the AmpliChip CYP450 has been approved by the US Food and Drug Administration, its practical clinical utility has not yet been determined, and there is a paucity of data related to gastrointestinal and liver diseases. An understanding of the principles and opportunities provided by this new category of diagnostic test is key before planning the necessary studies to evaluate the usefulness of AmpliChip CYP450 in gastroenterologic clinical practice.

  18. Enhancing cytochrome P450-mediated conversions in P. pastoris through RAD52 over-expression and optimizing the cultivation conditions.

    PubMed

    Wriessnegger, Tamara; Moser, Sandra; Emmerstorfer-Augustin, Anita; Leitner, Erich; Müller, Monika; Kaluzna, Iwona; Schürmann, Martin; Mink, Daniel; Pichler, Harald

    2016-04-01

    Cytochrome P450 enzymes (CYPs) play an essential role in the biosynthesis of various natural compounds by catalyzing regio- and stereospecific hydroxylation reactions. Thus, CYP activities are of great interest in the production of fine chemicals, pharmaceutical compounds or flavors and fragrances. Industrial applicability of CYPs has driven extensive research efforts aimed at improving the performance of these enzymes to generate robust biocatalysts. Recently, our group has identified CYP-mediated hydroxylation of (+)-valencene as a major bottleneck in the biosynthesis of trans-nootkatol and (+)-nootkatone in Pichia pastoris. In the current study, we aimed at enhancing CYP-mediated (+)-valencene hydroxylation by over-expressing target genes identified through transcriptome analysis in P. pastoris. Strikingly, over-expression of the DNA repair and recombination gene RAD52 had a distinctly positive effect on trans-nootkatol formation. Combining RAD52 over-expression with optimization of whole-cell biotransformation conditions, i.e. optimized media composition and cultivation at higher pH value, enhanced trans-nootkatol production 5-fold compared to the initial strain and condition. These engineering approaches appear to be generally applicable for enhanced hydroxylation of hydrophobic compounds in P. pastoris as confirmed here for two additional membrane-attached CYPs, namely the limonene-3-hydroxylase from Mentha piperita and the human CYP2D6. PMID:26898115

  19. Meclizine metabolism and pharmacokinetics: formulation on its absorption.

    PubMed

    Wang, Zhijun; Lee, Benjamin; Pearce, Daniel; Qian, Shuai; Wang, Yanfeng; Zhang, Qizhi; Chow, Moses S S

    2012-09-01

    Meclizine, an antihistamine, has been widely used for prophylactic treatment and management of motion sickness. However, the onset of action of meclizine was about 1 hour for the treatment of motion sickness and vertigo. A new suspension formulation of meclizine (MOS) was developed with the intention to achieve a rapid effect. To investigate the pharmacokinetics of the new MOS formulation versus the marketed meclizine oral tablet (MOT), a phase 1 pharmacokinetic study was performed in 20 healthy volunteers. In addition, an in vitro metabolic study using human hepatic microsome and recombinant CYP enzyme was also performed to determine the metabolic pathway in the human body. The plasma concentration of MOS appeared more rapidly in comparison to the MOT. The geometric mean ratios (90% confidence interval) of AUC(0-24) and AUC(0-∞) indicated no significant difference in bioavailability between the 2 formulations. CYP2D6 was found to be the dominant enzyme for metabolism of meclizine, and its genetic polymorphism could contribute to the large interindividual variability. In view of the similar bioavailability with a much shorter peak time of the plasma meclizine concentration from the MOS formulation, this new formulation is expected to produce a much quicker onset of action when used for the management of motion sickness. PMID:21903894

  20. Is maternal opioid use hazardous to breast-fed infants?

    PubMed

    Hendrickson, Robert G; McKeown, Nathanael J

    2012-01-01

    Over the last few decades, the rate of breastfeeding has increased steadily in the developed countries of the world. During this time, opioid use in the general population has steadily increased as well. Despite this, clinicians remain unclear whether opioid use is safe during breastfeeding. While the vast majority of medications used during breastfeeding occur without incident, case reports and studies have reported possible opioid toxicity in breast-fed infants. Multiple enzymes are involved in the metabolism of opioids. CYP2D6 catabolizes O-demethylation of codeine, tramadol, oxycodone, and hydrocodone to more potent metabolites. CYP3A4 inactivates methadone, meperidine, and buprenorphine. Glucoronide conjugation by the UGT enzyme family inactivates morphine and hydromorphone. Genetic polymorphisms and interfering medications affect the maternal metabolism, which in turn determines the exposure and risk to the breast-fed neonate. We review the production of breast milk, the transfer of xenobiotics from blood to milk, the characteristics that alter xenobiotic breast-milk concentrations, and we review the evidence of specific common opioids and infant toxicity. The short-term maternal use of prescription opioids is usually safe and infrequently presents a hazard to the newborn.

  1. Inhibitory effects of phthalimide derivatives on the activity of the hepatic cytochrome P450 monooxygenases CYP2C9 and CYP2C19.

    PubMed

    Kolukisaoglu, Üner; Wendler, Christian; Goerdes, Dirk; Diener, Annette; Thurow, Kerstin

    2010-12-01

    Affecting hepatic cytochrome (CYP) activity is one of the major concerns in drug-drug interaction. Thus the testing of drug candidates on their impact on these enzymes is an essential step in early drug discovery. We tested a collection of 480 in-house phthalimide derivatives against different CYP450s using a high throughput inhibition assay. In initial tests with the isoform CYP2C19 about 57.5% of the tested phthalimide derivatives showed significantly enhanced inhibitory effects against this enzyme. In addition similar patterns of phthalimide inhibition for CYP2C9 and CYP2C19 were found, whereas the unrelated isoforms CYP2D6 and CYP3A4 were not specifically affected. Also less than 10% of randomly chosen substances inhibited CYP2C9. Analyses of structure-function relationships revealed that the substituent at the nitrogen atom in the isoindole ring is of crucial impact for the activity of CYP2C9/19.

  2. Metabolism and Disposition of Prescription Opioids: A Review.

    PubMed

    DePriest, A Z; Puet, B L; Holt, A C; Roberts, A; Cone, E J

    2015-07-01

    Opioid analgesics are commonly prescribed for acute and chronic pain, but are subject to abuse. Consequently, toxicology testing programs are frequently implemented for both forensic and clinical applications. Understanding opioid metabolism and disposition is essential for assessing risk of toxicity and, in some cases, providing additional information regarding risk of therapeutic failure. Opioids significantly metabolized by the cytochromeP450 (CYP450) enzyme system maybe subjectto drug-drug interactions, including codeine, hydrocodone, oxycodone, fentanyl, meperidine, methadone, buprenorphine, and tramadol. CYP2D6 metabolism is polymorphic, and pharmacogenetic testing has been investigated for codeine, tramadol, oxycodone, and hydrocodone. CYP2B6 pharmacogenetic testing of methadone may reduce the risk of cardiac toxicity associated with the S-enantiomer. Opioids metabolized primarily by uridine 5'-diphospho-glucuronsyltransferase (UGT) enzymes include morphine, hydromorphone, dihydrocodeine, oxymorphone, levorphanol, and tapentadol. Parent and metabolite disposition is described for blood, oral fluid, and urine. Parent drug is most commonly detected in blood and oral fluid, whereas metabolites typically predominate in urine. Oral fluid/blood ratios exceed 1 for most opioids, making this an excellent alternative matrix for testing of this drug class. Metabolites of codeine, hydrocodone, and oxycodone are commercially available, and knowledge of metabolism is necessary for correct interpretation.

  3. Promising Tools in Prostate Cancer Research: Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors

    PubMed Central

    Bonomo, Silvia; Hansen, Cecilie H.; Petrunak, Elyse M.; Scott, Emily E.; Styrishave, Bjarne; Jørgensen, Flemming Steen; Olsen, Lars

    2016-01-01

    Cytochrome P450 17A1 (CYP17A1) is an important target in the treatment of prostate cancer because it produces androgens required for tumour growth. The FDA has approved only one CYP17A1 inhibitor, abiraterone, which contains a steroidal scaffold similar to the endogenous CYP17A1 substrates. Abiraterone is structurally similar to the substrates of other cytochrome P450 enzymes involved in steroidogenesis, and interference can pose a liability in terms of side effects. Using non-steroidal scaffolds is expected to enable the design of compounds that interact more selectively with CYP17A1. Therefore, we combined a structure-based virtual screening approach with density functional theory (DFT) calculations to suggest non-steroidal compounds selective for CYP17A1. In vitro assays demonstrated that two such compounds selectively inhibited CYP17A1 17α-hydroxylase and 17,20-lyase activities with IC50 values in the nanomolar range, without affinity for the major drug-metabolizing CYP2D6 and CYP3A4 enzymes and CYP21A2, with the latter result confirmed in human H295R cells. PMID:27406023

  4. The effects of antiepileptic inducers in neuropsychopharmacology, a neglected issue. Part II: Pharmacological issues and further understanding.

    PubMed

    de Leon, Jose

    2015-01-01

    The literature on inducers in epilepsy and bipolar disorder is seriously contaminated by false negative findings. Part II of this comprehensive review on antiepileptic drug (AED) inducers provides clinicians with further educational material about the complexity of interpreting AED drug-drug interactions. The basic pharmacology of induction is reviewed including the cytochrome P450 (CYP) isoenzymes, the Uridine Diphosphate Glucuronosyltransferases (UGTs), and P-glycoprotein (P-gp). CYP2B6 and CYP3A4 are very sensitive to induction. CYP1A2 is moderately sensitive while CYP2C9 and CYP2C19 are only mildly sensitive. CYP2D6 cannot be induced by medications. Induction of UGT and P-gp are poorly understood. The induction of metabolic enzymes such as CYPs and UGTs, and transporters such as P-gp, implies that the amount of these proteins increases when they are induced; this is almost always explained by increasing synthesis mediated by the so-called nuclear receptors (constitutive androstane, estrogen, glucocorticoid receptors and pregnaneX receptors). Although parti provides correction factors for AEDs, extrapolation from an average to an individual patient may be influenced by administration route, absence of metabolic enzyme for genetic reasons, and presence of inhibitors or other inducers. AED pharmacodynamic DDIs may also be important. Six patients with extreme sensitivity to AED inductive effects are described. PMID:26111722

  5. Serotonin syndrome, disseminated intravascular coagulation, and hepatitis after a single ingestion of MDMA in an Asian woman.

    PubMed

    Nadkarni, Girish N; Hoskote, Sumedh S; Piotrkowski, Jared; Annapureddy, Narender

    2014-01-01

    N-Methyl-3,4-methylenedioxyamphetamine (MDMA), also called "Ecstasy," is a commonly abused psychoactive drug among the American youth. We present the case of a 23-year-old Korean-American woman who presented with seizure, delirium, and rigidity after MDMA ingestion. She was febrile (38.7°C), tachycardic (188 beats/min), tachypneic (26 breaths/min) with a borderline blood pressure (95/43 mm Hg). Examination revealed generalized muscle rigidity, tremors, hyperreflexia, and ocular clonus, leading to the diagnosis of serotonin syndrome. Urine toxicology screen was only positive for amphetamines, consistent with the history of MDMA ingestion. Initial laboratory testing showed thrombocytopenia, further testing showed deranged prothrombin time, partial thromboplastin time, decreased fibrinogen, and elevated D-dimer, suggesting disseminated intravascular coagulation. Hepatic transaminases trended up dramatically reflecting acute hepatitis. The patient received supportive care and improved by hospital day 3. MDMA toxicity manifested as serotonin syndrome, hepatitis, and coagulopathy is exceedingly rare. MDMA is metabolized by the hepatic CYP2D6 enzyme. Certain populations, such as Koreans, Chinese, and Japanese have a high prevalence of a polymorphism that confers reduced enzyme activity. We discuss this hypothesis as a possible cause for this severe presentation in our patient after a single ingestion.

  6. Promising Tools in Prostate Cancer Research: Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors.

    PubMed

    Bonomo, Silvia; Hansen, Cecilie H; Petrunak, Elyse M; Scott, Emily E; Styrishave, Bjarne; Jørgensen, Flemming Steen; Olsen, Lars

    2016-01-01

    Cytochrome P450 17A1 (CYP17A1) is an important target in the treatment of prostate cancer because it produces androgens required for tumour growth. The FDA has approved only one CYP17A1 inhibitor, abiraterone, which contains a steroidal scaffold similar to the endogenous CYP17A1 substrates. Abiraterone is structurally similar to the substrates of other cytochrome P450 enzymes involved in steroidogenesis, and interference can pose a liability in terms of side effects. Using non-steroidal scaffolds is expected to enable the design of compounds that interact more selectively with CYP17A1. Therefore, we combined a structure-based virtual screening approach with density functional theory (DFT) calculations to suggest non-steroidal compounds selective for CYP17A1. In vitro assays demonstrated that two such compounds selectively inhibited CYP17A1 17α-hydroxylase and 17,20-lyase activities with IC50 values in the nanomolar range, without affinity for the major drug-metabolizing CYP2D6 and CYP3A4 enzymes and CYP21A2, with the latter result confirmed in human H295R cells. PMID:27406023

  7. Present status and perspective of pharmacogenetics in Mexico.

    PubMed

    Cuautle-Rodríguez, Patricia; Llerena, Adrián; Molina-Guarneros, Juan

    2014-01-01

    Drug costs account for up to 24% of the country's health expenditure and there are 13,000 registered drugs being prescribed. Diabetes is the main cause of death in the country, with over 85% of diabetic patients currently under drug treatment. The importance of knowing interindividual variability in drug metabolism on Mexican populations is thus evident. The purpose of this article is to provide an overlook of the current situation of pharmacogenetic research in Mexico, focusing on drug-metabolizing enzymes, and the possibility of developing a phenotyping cocktail for Mexican populations. So far, 21 pharmacogenetic studies on Mexican population samples (Mestizos and Amerindian) have been published. These have reported interindividual variability through phenotyping and/or genotyping cytochromes: CYP2D6, 2C19, 2C9, 2E1, and phase II enzymes UGT and NAT2. Some cytochromes with important clinical implications have not yet been phenotyped in Mexican populations. The development of a cocktail adapted to them could be a significant contribution to a larger knowledge on drug response variability at a lower price and shorter time. There are validated phenotyping cocktails that present several practical advantages, being valuable, safe, and inexpensive tools in drug metabolism characterization, which require only a single experiment to provide information on several cytochrome activities.

  8. The effects of antiepileptic inducers in neuropsychopharmacology, a neglected issue. Part II: Pharmacological issues and further understanding.

    PubMed

    de Leon, Jose

    2015-01-01

    The literature on inducers in epilepsy and bipolar disorder is seriously contaminated by false negative findings. Part II of this comprehensive review on antiepileptic drug (AED) inducers provides clinicians with further educational material about the complexity of interpreting AED drug-drug interactions. The basic pharmacology of induction is reviewed including the cytochrome P450 (CYP) isoenzymes, the Uridine Diphosphate Glucuronosyltransferases (UGTs), and P-glycoprotein (P-gp). CYP2B6 and CYP3A4 are very sensitive to induction. CYP1A2 is moderately sensitive while CYP2C9 and CYP2C19 are only mildly sensitive. CYP2D6 cannot be induced by medications. Induction of UGT and P-gp are poorly understood. The induction of metabolic enzymes such as CYPs and UGTs, and transporters such as P-gp, implies that the amount of these proteins increases when they are induced; this is almost always explained by increasing synthesis mediated by the so-called nuclear receptors (constitutive androstane, estrogen, glucocorticoid receptors and pregnaneX receptors). Although parti provides correction factors for AEDs, extrapolation from an average to an individual patient may be influenced by administration route, absence of metabolic enzyme for genetic reasons, and presence of inhibitors or other inducers. AED pharmacodynamic DDIs may also be important. Six patients with extreme sensitivity to AED inductive effects are described.

  9. Metabolism and Disposition of Prescription Opioids: A Review.

    PubMed

    DePriest, A Z; Puet, B L; Holt, A C; Roberts, A; Cone, E J

    2015-07-01

    Opioid analgesics are commonly prescribed for acute and chronic pain, but are subject to abuse. Consequently, toxicology testing programs are frequently implemented for both forensic and clinical applications. Understanding opioid metabolism and disposition is essential for assessing risk of toxicity and, in some cases, providing additional information regarding risk of therapeutic failure. Opioids significantly metabolized by the cytochromeP450 (CYP450) enzyme system maybe subjectto drug-drug interactions, including codeine, hydrocodone, oxycodone, fentanyl, meperidine, methadone, buprenorphine, and tramadol. CYP2D6 metabolism is polymorphic, and pharmacogenetic testing has been investigated for codeine, tramadol, oxycodone, and hydrocodone. CYP2B6 pharmacogenetic testing of methadone may reduce the risk of cardiac toxicity associated with the S-enantiomer. Opioids metabolized primarily by uridine 5'-diphospho-glucuronsyltransferase (UGT) enzymes include morphine, hydromorphone, dihydrocodeine, oxymorphone, levorphanol, and tapentadol. Parent and metabolite disposition is described for blood, oral fluid, and urine. Parent drug is most commonly detected in blood and oral fluid, whereas metabolites typically predominate in urine. Oral fluid/blood ratios exceed 1 for most opioids, making this an excellent alternative matrix for testing of this drug class. Metabolites of codeine, hydrocodone, and oxycodone are commercially available, and knowledge of metabolism is necessary for correct interpretation. PMID:26227254

  10. In vivo prediction of CYP-mediated metabolic interaction potential of formononetin and biochanin A using in vitro human and rat CYP450 inhibition data.

    PubMed

    Arora, Sumit; Taneja, Isha; Challagundla, Muralikrishna; Raju, Kanumuri Siva Rama; Singh, Sheelendra Pratap; Wahajuddin, Muhammad

    2015-11-19

    Formononetin (FMN) and Biochanin A (BCA) are the principal isoflavones present in commercially available extracts of red clover that are widely been consumed for various health benefits. We investigated the in vitro effects of FMN and BCA on catalytic activity of human/rat cytochrome P450 enzymes to assess the drug interaction potential of red clover. IC50 and Ki values of FMN and BCA for CYPs were determined in human/rat liver microsomes. FMN and BCA showed concentration-dependent inhibition of CYP1A2 activity with IC50 values of 13.42 and 24.98μM in human liver microsomes and 38.57 and 11.86μM in rat liver microsomes, respectively. The mode of inhibition of human CYP1A2 by FMN was found to be competitive with apparent Ki value of 10.13±1.96μM. FMN also inhibited human CYP2D6. BCA exerted moderately inhibitory effects on human CYP2C9. The predicted in vivo inhibition for CYP1A2 was insignificant (R value <1.1) at hepatic level while at intestinal level, it was significant (R value >11). The inhibitory effects on other CYPs were found to be minimal. Red clover may be considered safe to be consumed along with co-prescribed medications; however, precaution must be taken while co-administering it with CYP1A2 substrates.

  11. Traditional Preparations and Methanol Extracts of Medicinal Plants from Papua New Guinea Exhibit Similar Cytochrome P450 Inhibition

    PubMed Central

    Rai, Prem P.; Matainaho, Teatulohi K.; Piskaut, Pius; Franklin, Michael R.

    2016-01-01

    The hypothesis underlying this current work is that fresh juice expressed from Papua New Guinea (PNG) medicinal plants (succus) will inhibit human Cytochrome P450s (CYPs). The CYP inhibitory activity identified in fresh material was compared with inhibition in methanol extracts of dried material. Succus is the most common method of traditional medicine (TM) preparation for consumption in PNG. There is increasing concern that TMs might antagonize or complicate drug therapy. We have previously shown that methanol extracts of commonly consumed PNG medicinal plants are able to induce and/or inhibit human CYPs in vitro. In this current work plant succus was prepared from fresh plant leaves. Inhibition of three major CYPs was determined using human liver microsomes and enzyme-selective model substrates. Of 15 species tested, succus from 6/15 was found to inhibit CYP1A2, 7/15 inhibited CYP3A4, and 4/15 inhibited CYP2D6. Chi-squared tests determined differences in inhibitory activity between succus and methanol preparations. Over 80% agreement was found. Thus, fresh juice from PNG medicinal plants does exhibit the potential to complicate drug therapy in at risk populations. Further, the general reproducibility of these findings suggests that methanol extraction of dried material is a reasonable surrogate preparation method for fresh plant samples. PMID:27642356

  12. High-throughput screening of inhibitory effects of Bo-yang-hwan-o-tang on human cytochrome P450 isoforms in vitro using UPLC/MS/MS.

    PubMed

    Lee, Miran; Park, Jeonghyeon; Lim, Mi-sun; Seong, Sook Jin; Lee, Joomi; Seo, Jeong Ju; Park, Yong-Ki; Lee, Hae Won; Yoon, Young-Ran

    2012-01-01

    Bo-yang-hwan-o-tang (BHT) is an oriental herbal medicine for treating brain disorders such as cerebral ischemia. The objective of this study was to develop an economically feasible and time-saving high-throughput screening method to monitor the potential inhibitory effects of BHT on human cytochrome P450 (CYP) enzymes in vitro. Two cocktail sets were used for incubation of human liver microsomes: Cocktail A: 6 probe substrates for CYP1A2, CYP2A6, CYP2C8, CYP2C19, CYP2D6, CYP3A4; Cocktail B: 3 for CYP2B6, CYP2C9, CYP2E1. The concentrations of the substrate metabolites were simultaneously analyzed using UPLC/MS/MS. The BHT extract had almost negligible inhibitory effects on the nine human CYP isoforms tested, with the half-maximal inhibitory concentration value ranged from 3624.99 to 45412.44 μg/ml. The results suggest that BHT extract has no inhibitory effects on CYP isoforms within the clinically recommended dosage range. We conclude that BHT might be free of drug-herb interactions when co-administered with other medicines. However, more in vivo human studies are needed to confirm these results. The high-throughput screening method can be a useful tool for drug discovery and for understanding drug interactions. PMID:23232241

  13. Design, synthesis, and biological evaluation of a novel series of peripheral-selective noradrenaline reuptake inhibitors-Part 2.

    PubMed

    Yukawa, Tomoya; Fujimori, Ikuo; Kamei, Taku; Nakada, Yoshihisa; Sakauchi, Nobuki; Yamada, Masami; Ohba, Yusuke; Ueno, Hiroyuki; Takiguchi, Maiko; Kuno, Masako; Kamo, Izumi; Nakagawa, Hideyuki; Fujioka, Yasushi; Igari, Tomoko; Ishichi, Yuji; Tsukamoto, Tetsuya

    2016-07-15

    Peripherally selective inhibition of noradrenaline reuptake is a novel mechanism for the treatment of stress urinary incontinence to overcome adverse effects associated with central action. Herein, we describe our medicinal chemistry approach to discover peripheral-selective noradrenaline reuptake inhibitors to avert the risk of P-gp-mediated DDI at the blood-brain barrier. We observed that steric shielding of the hydrogen-bond acceptors and donors (HBA and HBD) of compound 1 reduced the multidrug resistance protein 1 (MDR1) efflux ratio; however, the resulting compound 6, a methoxyacetamide derivative, was mainly metabolized by CYP2D6 and CYP2C19 in the in vitro phenotyping study, implying the risk of PK variability based on the genetic polymorphism of the CYPs. Replacement of the hydrogen atom with a deuterium atom in a strategic, metabolically hot spot led to compound 13, which was mainly metabolized by CYP3A4. To our knowledge, this study represents the first report of the effect of deuterium replacement for a major metabolic enzyme. The compound 13, N-{[(6S,7R)-7-(4-chloro-3-fluorophenyl)-1,4-oxazepan-6-yl]methyl}-2-[(2H(3))methyloxy]acetamide hydrochloride, which exhibited peripheral NET selective inhibition at tested doses in rats, increased urethral resistance in a dose-dependent manner. PMID:27255177

  14. Personalized medicine in psychiatry: new technologies and approaches.

    PubMed

    Costa e Silva, Jorge A

    2013-01-01

    Psychiatric patients tend to exhibit significant interindividual variability in their responses to psychoactive drugs, as well as an irregular clinical course. For these (and other) reasons, increasing numbers of psychiatrists are turning to genotyping for help in selecting the psychopharmacologic agents best suited to an individual patient's distinctive metabolic characteristics and clinical presentation. Fortunately, routine genotyping is already available for gene variations that code for proteins involved in neurotransmission, and for drug-metabolizing enzymes involved in the elimination of many medications. Thus, genotyping-based personalized psychiatry is now in sight. Increasing numbers of clinically useful DNA microarrays are in the development stage, including a simplified procedure for genotyping patients for CYP2D6, which metabolizes a high proportion of the currently prescribed antidepressants and antipsychotics. It has been pointed out that psychiatric disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of complex intracellular networks in the brain. Thus, analysis of functional neuronal networks is becoming an essential component of drug development strategies. The integrated use of technologies such as electroencephalography, magnetoencephalography, functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI), in combination with pharmacogenetics, promises to transform our understanding of the mechanisms of psychiatric disorders and their treatment. The concept of network medicine envisions a time to come when drugs will be used to target a neural network rather than simply components within the network. Personalized medicine in psychiatry is still at an early stage, but it has a very promising future.

  15. Role of active metabolites in the use of opioids.

    PubMed

    Coller, Janet K; Christrup, Lona L; Somogyi, Andrew A

    2009-02-01

    The opioid class of drugs, a large group, is mainly used for the treatment of acute and chronic persistent pain. All are eliminated from the body via metabolism involving principally CYP3A4 and the highly polymorphic CYP2D6, which markedly affects the drug's function, and by conjugation reactions mainly by UGT2B7. In many cases, the resultant metabolites have the same pharmacological activity as the parent opioid; however in many cases, plasma metabolite concentrations are too low to make a meaningful contribution to the overall clinical effects of the parent drug. These metabolites are invariably more water soluble and require renal clearance as an important overall elimination pathway. Such metabolites have the potential to accumulate in the elderly and in those with declining renal function with resultant accumulation to a much greater extent than the parent opioid. The best known example is the accumulation of morphine-6-glucuronide from morphine. Some opioids have active metabolites but at different target sites. These are norpethidine, a neurotoxic agent, and nordextropropoxyphene, a cardiotoxic agent. Clinicians need to be aware that many opioids have active metabolites that will become therapeutically important, for example in cases of altered pathology, drug interactions and genetic polymorphisms of drug-metabolizing enzymes. Thus, dose individualisation and the avoidance of adverse effects of opioids due to the accumulation of active metabolites or lack of formation of active metabolites are important considerations when opioids are used.

  16. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects.

    PubMed

    Ingelman-Sundberg, Magnus; Sim, Sarah C; Gomez, Alvin; Rodriguez-Antona, Cristina

    2007-12-01

    The polymorphic nature of the cytochrome P450 (CYP) genes affects individual drug response and adverse reactions to a great extent. This variation includes copy number variants (CNV), missense mutations, insertions and deletions, and mutations affecting gene expression and activity of mainly CYP2A6, CYP2B6, CYP2C9, CYP2C19 and CYP2D6, which have been extensively studied and well characterized. CYP1A2 and CYP3A4 expression varies significantly, and the cause has been suggested to be mainly of genetic origin but the exact molecular basis remains unknown. We present a review of the major polymorphic CYP alleles and conclude that this variability is of greatest importance for treatment with several antidepressants, antipsychotics, antiulcer drugs, anti-HIV drugs, anticoagulants, antidiabetics and the anticancer drug tamoxifen. We also present tables illustrating the relative importance of specific common CYP alleles for the extent of enzyme functionality. The field of pharmacoepigenetics has just opened, and we present recent examples wherein gene methylation influences the expression of CYP. In addition microRNA (miRNA) regulation of P450 has been described. Furthermore, this review updates the field with respect to regulatory initiatives and experience of predictive pharmacogenetic investigations in the clinics. It is concluded that the pharmacogenetic knowledge regarding CYP polymorphism now developed to a stage where it can be implemented in drug development and in clinical routine for specific drug treatments, thereby improving the drug response and reducing costs for drug treatment.

  17. Traditional Preparations and Methanol Extracts of Medicinal Plants from Papua New Guinea Exhibit Similar Cytochrome P450 Inhibition.

    PubMed

    Larson, Erica C; Pond, Christopher D; Rai, Prem P; Matainaho, Teatulohi K; Piskaut, Pius; Franklin, Michael R; Barrows, Louis R

    2016-01-01

    The hypothesis underlying this current work is that fresh juice expressed from Papua New Guinea (PNG) medicinal plants (succus) will inhibit human Cytochrome P450s (CYPs). The CYP inhibitory activity identified in fresh material was compared with inhibition in methanol extracts of dried material. Succus is the most common method of traditional medicine (TM) preparation for consumption in PNG. There is increasing concern that TMs might antagonize or complicate drug therapy. We have previously shown that methanol extracts of commonly consumed PNG medicinal plants are able to induce and/or inhibit human CYPs in vitro. In this current work plant succus was prepared from fresh plant leaves. Inhibition of three major CYPs was determined using human liver microsomes and enzyme-selective model substrates. Of 15 species tested, succus from 6/15 was found to inhibit CYP1A2, 7/15 inhibited CYP3A4, and 4/15 inhibited CYP2D6. Chi-squared tests determined differences in inhibitory activity between succus and methanol preparations. Over 80% agreement was found. Thus, fresh juice from PNG medicinal plants does exhibit the potential to complicate drug therapy in at risk populations. Further, the general reproducibility of these findings suggests that methanol extraction of dried material is a reasonable surrogate preparation method for fresh plant samples. PMID:27642356

  18. Codeine Ultra-rapid Metabolizers: Age Appears to be a Key Factor in Adverse Effects of Codeine.

    PubMed

    Heintze, K; Fuchs, W

    2015-12-01

    Codeine is widely used as an analgesic drug. Taking into account the high consumption of codeine, only few fatal adverse events have been published. A number of reports, where neonates and children showed serious or fatal adverse reactions, led to a restriction of the use of codeine in this patient group. Therefore, we reviewed the safety of codeine in adults. PubMed was systematically searched for clinical studies and case reports, with a special focus on CYP2D6, the enzyme that converts codeine to morphine and exhibits genetic polymorphism.181 cases were identified in adults in conjunction with serious or lethal effects of codeine. In the vast majority of cases, codeine was used in combination with other drugs by drug-dependent individuals or with a suicidal intent. Only 2 cases were found where ultra-rapid metabolizers experienced severe non-lethal adverse events. This is far less than would be predicted from the number of cases reported in children. The discrepancy may be explained by developmental changes in the disposition of codeine.The strategy of regulatory authorities to restrict access to codeine for infants and young children, the apparent highest risk group, has a factual and pharmacological rationale. By the same standards, there is no need for restrictions for adult use of codeine.

  19. Geneva cocktail for cytochrome p450 and P-glycoprotein activity assessment using dried blood spots.

    PubMed

    Bosilkovska, M; Samer, C F; Déglon, J; Rebsamen, M; Staub, C; Dayer, P; Walder, B; Desmeules, J A; Daali, Y

    2014-09-01

    The suitability of the capillary dried blood spot (DBS) sampling method was assessed for simultaneous phenotyping of cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) using a cocktail approach. Ten volunteers received an oral cocktail capsule containing low doses of the probes bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and fexofenadine (P-gp) with coffee/Coke (CYP1A2) on four occasions. They received the cocktail alone (session 1), and with the CYP inhibitors fluvoxamine and voriconazole (session 2) and quinidine (session 3). In session 4, subjects received the cocktail after a 7-day pretreatment with the inducer rifampicin. The concentrations of probes/metabolites were determined in DBS and plasma using a single liquid chromatography-tandem mass spectrometry method. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. Important modulation of CYP and P-gp activities was observed in the presence of inhibitors and the inducer. Minimally invasive one- and three-point (at 2, 3, and 6 h) DBS-sampling methods were found to reliably reflect CYP and P-gp activities at each session.

  20. Geneva Cocktail for Cytochrome P450 and P-Glycoprotein Activity Assessment Using Dried Blood Spots

    PubMed Central

    Bosilkovska, M; Samer, C F; Déglon, J; Rebsamen, M; Staub, C; Dayer, P; Walder, B; Desmeules, J A; Daali, Y

    2014-01-01

    The suitability of the capillary dried blood spot (DBS) sampling method was assessed for simultaneous phenotyping of cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) using a cocktail approach. Ten volunteers received an oral cocktail capsule containing low doses of the probes bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and fexofenadine (P-gp) with coffee/Coke (CYP1A2) on four occasions. They received the cocktail alone (session 1), and with the CYP inhibitors fluvoxamine and voriconazole (session 2) and quinidine (session 3). In session 4, subjects received the cocktail after a 7-day pretreatment with the inducer rifampicin. The concentrations of probes/metabolites were determined in DBS and plasma using a single liquid chromatography–tandem mass spectrometry method. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. Important modulation of CYP and P-gp activities was observed in the presence of inhibitors and the inducer. Minimally invasive one- and three-point (at 2, 3, and 6 h) DBS-sampling methods were found to reliably reflect CYP and P-gp activities at each session. PMID:24722393

  1. Clinical Utility of Combinatorial Pharmacogenomics-Guided Antidepressant Therapy: Evidence from Three Clinical Studies.

    PubMed

    Altar, C Anthony; Carhart, Joseph; Allen, Josiah D; Hall-Flavin, Daniel; Winner, Joel; Dechairo, Bryan

    2015-10-01

    DNA of 258 patients with treatment-resistant depression was collected in three 8-10 week, two-arm, prospective clinical trials. Forty-four allelic variations were measured in genes for the cytochrome P450 (CYP) enzymes CYP2D6, CYPC19, and CYP1A2, the serotonin transporter (SLC6A4), and the 5-HT2A receptor (HTR2A). The combinatorial pharmacogenomic (CPGx™) GeneSight test results were provided to clinicians to support medication changes from baseline (guided arm), or they were provided at the end of each study to clinicians of unguided patients who were treated as usual (TAU). TAU subjects who at baseline were prescribed medications genetically discordant for them showed only a 12% symptom improvement, far less than the 32.5% or 28.5% improvements of the TAU subjects on yellow-category ('use with caution'; p = 0.002) or green-category medications ('use as recommended'; p = 0.02), respectively. The odds of a clinical response were increased 2.3-fold among all GeneSight-guided compared to all TAU subjects (p = 0.004), and overall, the guided group had a 53% greater improvement in depressive symptoms (p = 0.0002), a 1.7-fold relative improvement in response (p = 0.01), and a number needed to treat for one clinical response above that seen in the TAU group of 6.07. PMID:27606312

  2. Distribution of the most Common Genetic Variants Associated with a Variable Drug Response in the Population of the Republic of Macedonia

    PubMed Central

    Kapedanovska Nestorovska, A; Jakovski, K; Naumovska, Z; Hiljadnikova Bajro, M; Sterjev, Z; Eftimov, A; Matevska Geskovska, N; Suturkova, L; Dimitrovski, K; Labacevski, N; Dimovski, AJ

    2014-01-01

    Genetic variation in the regulation, expression and activity of genes coding for Phase I, Phase II drug metabolizing enzymes (DMEs) and drug targets, can be defining factors for the variability in both the effectiveness and occurrence of drug therapy side effects. Information regarding the geographic structure and multi-ethnic distribution of clinically relevant genetic variations is becoming increasingly useful for improving drug therapy and explaining inter-individual and inter-ethnic differences in drug response. This study summarizes our current knowledge about the frequency distribution of the most common allelic variants in three broad gene categories: the Phase I oxidation-cytochrome P450 (CYP450) family (CYP2C9, CYP2C19, CYP3A5, CYP2D6); the Phase II conjugation (GSTT1, SULT1A1; UGT1A1) and drug target (TYMS-TSER, MTHFR and VKORC1) in the population of the Republic of Macedonia and compares the information obtained with data published for other indigenous European populations. Our findings define the population of the Republic of Macedonia as an ethnic group with a highly polymorphic genetic profile. These results add to the evidence regarding the distribution of clinically important variant alleles in DME and drug target genes in populations of European ancestry. PMID:25937793

  3. Traditional Preparations and Methanol Extracts of Medicinal Plants from Papua New Guinea Exhibit Similar Cytochrome P450 Inhibition

    PubMed Central

    Rai, Prem P.; Matainaho, Teatulohi K.; Piskaut, Pius; Franklin, Michael R.

    2016-01-01

    The hypothesis underlying this current work is that fresh juice expressed from Papua New Guinea (PNG) medicinal plants (succus) will inhibit human Cytochrome P450s (CYPs). The CYP inhibitory activity identified in fresh material was compared with inhibition in methanol extracts of dried material. Succus is the most common method of traditional medicine (TM) preparation for consumption in PNG. There is increasing concern that TMs might antagonize or complicate drug therapy. We have previously shown that methanol extracts of commonly consumed PNG medicinal plants are able to induce and/or inhibit human CYPs in vitro. In this current work plant succus was prepared from fresh plant leaves. Inhibition of three major CYPs was determined using human liver microsomes and enzyme-selective model substrates. Of 15 species tested, succus from 6/15 was found to inhibit CYP1A2, 7/15 inhibited CYP3A4, and 4/15 inhibited CYP2D6. Chi-squared tests determined differences in inhibitory activity between succus and methanol preparations. Over 80% agreement was found. Thus, fresh juice from PNG medicinal plants does exhibit the potential to complicate drug therapy in at risk populations. Further, the general reproducibility of these findings suggests that methanol extraction of dried material is a reasonable surrogate preparation method for fresh plant samples.

  4. In vitro metabolism of a novel PPAR gamma agonist, KR-62980, and its stereoisomer, KR-63198, in human liver microsomes and by recombinant cytochrome P450s.

    PubMed

    Kim, K-B; Seo, K-A; Yoon, Y-J; Bae, M-A; Cheon, H G; Shin, J-G; Liu, K-H

    2008-09-01

    1. KR-62980 and its stereoisomer KR-63198 are novel and selective peroxisome proliferator-activated receptor gamma (PPAR gamma) modulators with activity profiles different from that of rosiglitazone. This study was performed to identify the major metabolic pathways for KR-62980 and KR-63198 in human liver microsomes. 2. Human liver microsomal incubation of KR-62980 and KR-63198 in the presence of a beta-nicotinamide adenine dinucleotide phosphate (NADPH)-generating system resulted in hydroxy metabolite formation. In addition, the specific cytochrome P450s (CYPs) responsible for KR-62980 and KR-63198 hydroxylation were identified by using a combination of chemical inhibition in human liver microsomes and metabolism by recombinant P450s. It is shown that CYP1A2, CYP2D6, CYP3A4, and CYP3A5 are the predominant enzymes in the hydroxylation of KR-62980 and KR-63198. 3. The intrinsic clearance through hydroxylation was consistently and significantly higher for KR-62980 than for KR-63198, indicating metabolic stereoselectivity (CL(int) of 0.012 +/- 0.001 versus 0.004 +/- 0.001 microl min(-1) pmol(-1) P450, respectively). 4. In a drug-drug interaction study, KR-62980 and KR-63198 had no effect on the activities of the P450s tested (IC(50) > 50 microM), suggesting that in clinical interactions between KR-62980 and KR-63198 the P450s tested would not be expected.

  5. Serotonin 5-HT2A receptor binding in platelets from healthy subjects as studied by [3H]-lysergic acid diethylamide ([3H]-LSD): intra- and interindividual variability.

    PubMed

    Spigset, O; Mjörndal, T

    1997-04-01

    In studies on platelet 5-HT2A receptor binding in patients with neuropsychiatric disorders, there has been a marked variability and a considerable overlap of values between patients and controls. The causes of the large variability in 5-HT2A receptor parameters is still unsettled. In the present study, we have quantified the intra- and interindividual variability of platelet 5-HT2A receptor binding in 112 healthy subjects and explored factors that may influence 5-HT2A receptor binding, using [3H]-lysergic acid diethylamide as radioligand. Age, gender, blood pressure, and metabolic capacity of the liver enzymes CYP2D6 and CYP2C19 did not influence Bmax and Kd values. Body weight and body mass index (BMI) showed a negative correlation with Kd (p = .04 and .03, respectively), but not with Bmax. Bmax was significantly lower in the light half of the year than in the dark half of the year (p = .001), and Kd was significantly lower in the fall than in the summer and winter (p < .001). In females, there was a significant increase in Bmax from week 1 to week 2 of the menstrual cycle (p = .03). Females taking contraceptive pills had significantly higher Kd than drug-free females in weeks 1 and 4 of the menstrual cycle (p = .04). This study shows that a number of factors should be taken into account when using platelet 5-HT2A receptor binding in studies of neuropsychiatric disorders.

  6. In vitro metabolism studies on mephedrone and analysis of forensic cases.

    PubMed

    Pedersen, Anders Just; Reitzel, Lotte Ask; Johansen, Sys Stybe; Linnet, Kristian

    2013-06-01

    The stimulant designer drug mephedrone is a derivative of cathinone - a monoamine alkaloid found in khat - and its effect resembles that of 3,4-Methylenedioxymethamphetamine (MDMA). Abuse of mephedrone has been documented since 2007; it was originally a 'legal high' drug, but it has now been banned in most Western countries. Using cDNA-expressed CYP enzymes and human liver microsomal preparations, we found that cytochrome P450 2D6 (CYP2D6) was the main responsible enzyme for the in vitro Phase I metabolism of mephedrone, with some minor contribution from other NAPDH-dependent enzymes. Hydroxytolyl-mephedrone and nor-mephedrone were formed in vitro, and the former was purified and identified by nuclear magnetic resonance (NMR). In four forensic traffic cases where mephedrone was detected, we identified hydroxytolyl-mephedrone and nor-mephedrone again; as well as 4-carboxy-dihydro-mephedrone, which has been previously described; and two new metabolites: dihydro-mephedrone and 4-carboxy-mephedrone. Fragmentation patterns for all detected compounds were determined by a UPLC-QTOF/MS(E) system, and a fragmentation pathway via a conjugated indole structure was proposed for most of the metabolites. Blood concentrations in the forensic traffic cases ranged from 1 to 51 µg/kg for mephedrone, and from not detected to 9 µg/kg for hydroxytolyl-mephedrone. In one case, urine concentrations were also determined to be 700 µg/kg for mephedrone and 190 µg/kg for hydroxytolyl-mephedrone. All compounds were detected or quantified with an ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) system and an ultra performance liquid chromatography-time of flight/mass spectrometry (UPLC-TOF/MS) system.

  7. Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Moe, Owen; Cornelius, Richard

    1988-01-01

    Conveys an appreciation of enzyme kinetic analysis by using a practical and intuitive approach. Discusses enzyme assays, kinetic models and rate laws, the kinetic constants (V, velocity, and Km, Michaels constant), evaluation of V and Km from experimental data, and enzyme inhibition. (CW)

  8. Perception of the usefulness of drug/gene pairs and barriers for pharmacogenomics in Latin America.

    PubMed

    Quinones, Luis Abel; Lavanderos, Maria Alejandra; Cayun, Juan Pablo; Garcia-Martin, Elena; Agundez, Jose Augusto; Caceres, Dante Daniel; Roco, Angela Margarita; Morales, Jorge E; Herrera, Luisa; Encina, Gonzalo; Isaza, Carlos Alberto; Redal, Maria Ana; Larovere, Laura; Soria, Nestor Walter; Eslava-Schmalbach, Javier; Castaneda-Hernandez, Gilberto; Lopez-Cortes, Andres; Magno, Luiz Alexandre; Lopez, Marisol; Chiurillo, Miguel Angel; Rodeiro, Idania; Castro de Guerra, Dinorah; Teran, Enrique; Estevez-Carrizo, Francisco; Lares-Assef, Ismael

    2014-02-01

    Pharmacogenetics and Pharmacogenomics areas are currently emerging fields focused to manage pharmacotherapy that may prevent undertreatment while avoiding associated drug toxicity in patients. Large international differences in the awareness and in the use of pharmacogenomic testing are presumed, but not well assessed to date. In the present study we review the awareness of Latin American scientific community about pharmacogenomic testing and the perceived barriers for their clinical application. In order to that, we have compiled information from 9 countries of the region using a structured survey which is compared with surveys previously performed in USA and Spain. The most relevant group of barriers was related to the need for clear guidelines for the use of pharmacogenomics in clinical practice, followed by insufficient awareness about pharmacogenomics among clinicians and the absence of regulatory institutions that facilitate the use of pharmacogenetic tests. The higher ranked pairs were TPMT/thioguanine, TPMT/azathioprine, CYP2C9/warfarin, UGT1A1/irinotecan, CYP2D6/amitriptiline, CYP2C19/citalopram and CYP2D6/clozapine. The lower ranked pairs were SLCO1B1/simvastatin, CYP2D6/metoprolol and GP6D/chloroquine. Compared with USA and Spanish surveys, 25 pairs were of lower importance for Latin American respondents. Only CYP2C19/esomeprazole, CYP2C19/omeprazole, CYP2C19/celecoxib and G6PD/dapsone were ranked higher or similarly to the USA and Spanish surveys. Integration of pharmacogenomics in clinical practice needs training of healthcare professionals and citizens, but in addition legal and regulatory guidelines and safeguards will be needed. We propose that the approach offered by pharmacogenomics should be incorporated into the decision-making plans in Latin America. PMID:24524664

  9. Perception of the usefulness of drug/gene pairs and barriers for pharmacogenomics in Latin America.

    PubMed

    Quinones, Luis Abel; Lavanderos, Maria Alejandra; Cayun, Juan Pablo; Garcia-Martin, Elena; Agundez, Jose Augusto; Caceres, Dante Daniel; Roco, Angela Margarita; Morales, Jorge E; Herrera, Luisa; Encina, Gonzalo; Isaza, Carlos Alberto; Redal, Maria Ana; Larovere, Laura; Soria, Nestor Walter; Eslava-Schmalbach, Javier; Castaneda-Hernandez, Gilberto; Lopez-Cortes, Andres; Magno, Luiz Alexandre; Lopez, Marisol; Chiurillo, Miguel Angel; Rodeiro, Idania; Castro de Guerra, Dinorah; Teran, Enrique; Estevez-Carrizo, Francisco; Lares-Assef, Ismael

    2014-02-01

    Pharmacogenetics and Pharmacogenomics areas are currently emerging fields focused to manage pharmacotherapy that may prevent undertreatment while avoiding associated drug toxicity in patients. Large international differences in the awareness and in the use of pharmacogenomic testing are presumed, but not well assessed to date. In the present study we review the awareness of Latin American scientific community about pharmacogenomic testing and the perceived barriers for their clinical application. In order to that, we have compiled information from 9 countries of the region using a structured survey which is compared with surveys previously performed in USA and Spain. The most relevant group of barriers was related to the need for clear guidelines for the use of pharmacogenomics in clinical practice, followed by insufficient awareness about pharmacogenomics among clinicians and the absence of regulatory institutions that facilitate the use of pharmacogenetic tests. The higher ranked pairs were TPMT/thioguanine, TPMT/azathioprine, CYP2C9/warfarin, UGT1A1/irinotecan, CYP2D6/amitriptiline, CYP2C19/citalopram and CYP2D6/clozapine. The lower ranked pairs were SLCO1B1/simvastatin, CYP2D6/metoprolol and GP6D/chloroquine. Compared with USA and Spanish surveys, 25 pairs were of lower importance for Latin American respondents. Only CYP2C19/esomeprazole, CYP2C19/omeprazole, CYP2C19/celecoxib and G6PD/dapsone were ranked higher or similarly to the USA and Spanish surveys. Integration of pharmacogenomics in clinical practice needs training of healthcare professionals and citizens, but in addition legal and regulatory guidelines and safeguards will be needed. We propose that the approach offered by pharmacogenomics should be incorporated into the decision-making plans in Latin America.

  10. [Effect of Fuzheng Huayu recipe on CYP450 isozymes in normal and liver fibrosis rats].

    PubMed

    Zheng, Tian-hui; Liu, Wei; Li, Shu-ping; Yang, Tao; Wang, Chang-hong; Liu, Cheng-hai

    2015-03-01

    To study the effect of Fuzheng Huayu recipe (FZHY) on five types of isozymes of cytochrome P450 (CYP450) of normal and liver fibrosis rats by using the cocktail probe method. Dimethylnitrosamine ( DMN) was injected to induce the liver fibrosis model. After the tail vein injection with Cocktail probe solutions prepared with five CYP450s probe substrates (phenacetin-CYP1A2, omeprazole-CYP2C9, tolbutamide-CYP2C19, dextromethorphan-CYP2D6, midazolam-CYP3A4), the plasma concentrations of the five probe substrates were determined by LC-MS/MS, and the pharmacokinetic parameters were calculated by PK solutions 2. After the oral administration with FZHY, normal rats given phenacetin, omeprazole, tolbutamide and dextromethorphan showed increase in AUC(0-t) and decrease in CL to varying degrees, indicating that FZHY obviously inhibited the activities of CYP1A2, CYP2C9, CYP2C19 and CYP2D6 in normal rats, but with no obvious effect on the activity of CYP3A4. After the oral administration with FZHY, liver fibrosis rats treated with CYP2C9 showed the significant increase in AUC(0-t) and significant decrease in Vd, hut with no obvious changes in the pharmacokinetic parameters of other four types of prove substances, suggesting that FZHY could significantly inhibit the activity of CYP2C9 in rats but had no effect on the activities of CYP1A2, CYP2C19, CYP2D6 and CYP3A4. The changes in the activity of CYP450 isozymes in liver fibrosis rats may be the reason for FZHY's different effects on CYP450 isozymes in normal and liver fibrosis rats. PMID:26226765

  11. Pharmacogenetics of Risperidone and Cardiovascular Risk in Children and Adolescents

    PubMed Central

    Dos Santos-Júnior, Amilton; Henriques, Taciane Barbosa; de Mello, Maricilda Palandi; Della Torre, Osmar Henrique; Paes, Lúcia Arisaka; Ferreira-Neto, Adriana Perez; Sewaybricker, Letícia Esposito; Fontana, Thiago Salum; Celeri, Eloisa Helena Rubello Valler; Guerra-Júnior, Gil; Dalgalarrondo, Paulo

    2016-01-01

    Objective. To identify the frequency of obesity and metabolic complications in child and adolescent users of risperidone. Potential associations with clinical parameters and SNPs of the HTR2C, DRD2, LEP, LEPR, MC4R, and CYP2D6 genes were analyzed. Methods. Samples from 120 risperidone users (8–20 years old) were collected and SNPs were analyzed, alongside assessment of chronological and bone ages, prescribed and weight-adjusted doses, use of other psychotropic drugs, waist circumference, BMI z-scores, blood pressure, HOMA-IR index, fasting levels of serum glucose, insulin, cholesterol, triglycerides, transaminases, and leptin. Results. Thirty-two (26.7%) patients were overweight and 5 (4.2%) obese. Hypertension was recorded in 8 patients (6.7%), metabolic syndrome in 6 (5%), and increased waist circumference in 20 (16.7%). The HOMA-IR was high for 22 patients (18.3%), while total cholesterol and triglycerides were high in 20 (16.7%) and 41 (34.2%) patients, respectively. SNP associations were found for LEP, HTR2C, and CYP2D6 with BMI; CYP2D6 with blood pressure, ALT, and HOMA-IR; HTR2C and LEPR with leptin levels; MC4R and DRD2 with HOMA-IR; HTR2C with WC; and LEP with ALT. Conclusions. Although not higher than in the general pediatric population, a high frequency of patients was overweight/obese, with abnormalities in metabolic parameters and some pharmacogenetic associations. PMID:26880915

  12. Metabolomics reveals the metabolic map of procainamide in humans and mice

    PubMed Central

    Li, Fei; Patterson, Andrew D.; Krausz, Kristopher W.; Dick, Bernhard; Frey, Felix J.; Gonzalez, Frank J.; Idle, Jeffrey R.

    2013-01-01

    Procainamide, a type I antiarrhythmic agent, is used to treat a variety of atrial and ventricular dysrhythmias. It was reported that long-term therapy with procainamide may cause lupus erythematosus in 25–30% of patients. Interestingly, procainamide does not induce lupus erythematosus in mouse models. To explore the differences in this side-effect of procainamide between humans and mouse models, metabolomic analysis using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS) was conducted on urine samples from procainamide-treated humans, CYP2D6-humanized mice, and wild-type mice. Thirteen urinary procainamide metabolites, including nine novel metabolites, derived from P450-dependent, FMO-dependent oxidations and acylation reactions, were identified and structurally elucidated. In vivo metabolism of procainamide in CYP2D6-humanized mice as well as in vitro incubations with microsomes and recombinant P450s suggested that human CYP2D6 plays a major role in procainamide metabolism. Significant differences in N-acylation and N-oxidation of the drug between humans and mice largely account for the interspecies differences in procainamide metabolism. Significant levels of the novel N-oxide metabolites produced by FMO1 and FMO3 in humans might be associated with the development of procainamide-induced systemic lupus erythematosus. Observations based on this metabolomic study offer clues to understanding procainamide-induced lupus in humans and the effect of P450s and FMOs on procainamide N-oxidation. PMID:22387617

  13. Pharmacogenetics of Risperidone and Cardiovascular Risk in Children and Adolescents.

    PubMed

    Dos Santos-Júnior, Amilton; Henriques, Taciane Barbosa; de Mello, Maricilda Palandi; Della Torre, Osmar Henrique; Paes, Lúcia Arisaka; Ferreira-Neto, Adriana Perez; Sewaybricker, Letícia Esposito; Fontana, Thiago Salum; Celeri, Eloisa Helena Rubello Valler; Guerra-Júnior, Gil; Dalgalarrondo, Paulo

    2016-01-01

    Objective. To identify the frequency of obesity and metabolic complications in child and adolescent users of risperidone. Potential associations with clinical parameters and SNPs of the HTR2C, DRD2, LEP, LEPR, MC4R, and CYP2D6 genes were analyzed. Methods. Samples from 120 risperidone users (8-20 years old) were collected and SNPs were analyzed, alongside assessment of chronological and bone ages, prescribed and weight-adjusted doses, use of other psychotropic drugs, waist circumference, BMI z-scores, blood pressure, HOMA-IR index, fasting levels of serum glucose, insulin, cholesterol, triglycerides, transaminases, and leptin. Results. Thirty-two (26.7%) patients were overweight and 5 (4.2%) obese. Hypertension was recorded in 8 patients (6.7%), metabolic syndrome in 6 (5%), and increased waist circumference in 20 (16.7%). The HOMA-IR was high for 22 patients (18.3%), while total cholesterol and triglycerides were high in 20 (16.7%) and 41 (34.2%) patients, respectively. SNP associations were found for LEP, HTR2C, and CYP2D6 with BMI; CYP2D6 with blood pressure, ALT, and HOMA-IR; HTR2C and LEPR with leptin levels; MC4R and DRD2 with HOMA-IR; HTR2C with WC; and LEP with ALT. Conclusions. Although not higher than in the general pediatric population, a high frequency of patients was overweight/obese, with abnormalities in metabolic parameters and some pharmacogenetic associations. PMID:26880915

  14. Frequencies of Functional Polymorphisms in Three Pharmacokinetic Genes of Clinical Interest within the Admixed Puerto Rican Population

    PubMed Central

    Orengo-Mercado, Carmelo; Nieves, Bianca; López, Lizbeth; Vallés-Ortiz, Nabila; Renta, Jessicca Y.; Santiago-Borrero, Pedro J.; Cadilla, Carmen L.; Duconge, Jorge

    2013-01-01

    Objective This cross-sectional study was aimed at determining the allele frequencies for the CYP2C19*2, CYP2C19*3, CYP2D6*10 and PON1 (rs662) polymorphisms in the Puerto Rican population. The CYP2C19, CYP2D6 and PON1 genes are known to be associated with functional changes in drug metabolism and activation. Individuals carrying the aforementioned polymorphisms are at a higher risk of suffering from drug-induced adverse events and/ or unresponsiveness from a variety of drugs that includes antidepressants, atypical antipsychotics and antiplatelet compounds. Information on the frequency of these polymorphisms is more commonly found on homogeneous populations, but is scarce in highly heterogeneous populations like Hispanics, as in the case of Puerto Ricans. Method Genotyping was carried out in 100 genomic DNA samples from dried blood spots supplied by the Puerto Rican Newborn Screening program using Taqman® Genotyping Assays. Results The Minor Allele Frequencies (MAF) obtained were 9% for CYP2C19*2 and CYP2D6*10, 50% for PON1 (rs662), while the CYP2C19*3 variant was not detected in our study. Furthermore, Hardy Weinberg equilibrium analysis was assessed as well as a comparison between Puerto Rico and other reference populations using a Z-test for proportions. Conclusion The observed allele and genotype frequencies on these relevant pharmacogenes in Puerto Ricans were more closely related to those early reported in two other reference populations of Americans (Mexicans and Colombians). PMID:24040574

  15. The communication of pharmacogenetic research results: participants weigh in on their informational needs in a pilot study.

    PubMed

    Madadi, Parvaz; Joly, Yann; Avard, Denise; Chitayat, David C; Smith, M Anne; D Ross, Colin J; Carleton, Bruce C; Hayden, Michael R; Koren, Gideon

    2011-01-01

    In this brief investigation, the informational needs of research participants [n = 62; mothers who had breastfed, taken codeine, and participated in a pharmacogenetic study] were probed during a counselling session in which they received their CYP2D6 pharmacogenetic research results and overall study results. In addition to the standard information, developed by a multidisciplinary team and provided to the participants, 38% of individuals had further questions related to potential adverse effects in babies, future codeine or medication use, heredity, and consequences for policies and programmes. The diversity and complexity of the questions raised support the need to communicate the results in the context of personalized genetic counselling information sessions. PMID:21467605

  16. Communicating pharmacogenetic research results to breastfeeding mothers taking codeine: a pilot study of perceptions and benefits.

    PubMed

    Madadi, P; Joly, Y; Avard, D; Chitayat, D C; Smith, M A; Ross, C J D; Carleton, B C; Hayden, M R; Koren, G

    2010-12-01

    Sixty-two codeine-prescribed breastfeeding mothers from a pharmacogenetic study were interviewed regarding the communication of individual CYP2D6 genotype results and overall research findings. All participants wanted to receive the results of their individual genetic tests; however, individuals placed different values on the usefulness of this information toward future medical decisions. Receiving one's pharmacogenetic test results was not associated with a negative psychosocial impact. Thirty-three percent of the participants wished to withhold these results from their physicians. Participants' expectations seem to dictate the extent of transparency of pharmacogenetic research results. PMID:20739920

  17. Biotransformation and pharmacokinetics of ethylmorphine after a single oral dose.

    PubMed Central

    Aasmundstad, T A; Xu, B Q; Johansson, I; Ripel, A; Bjørneboe, A; Christophersen, A S; Bodd, E; Mørland, J

    1995-01-01

    1. The pharmacokinetics of ethylmorphine after administration of a single dose of the cough mixture Cosylan were investigated in 10 healthy subjects. 2. The median urinary recovery of ethylmorphine and measured metabolites was 77% over 48 h. The median tmax of unchanged ethylmorphine was 45 min, and the terminal elimination t1/2 was 2 h. Ethylmorphine-6-glucuronide was found to be the major metabolite. 3. Two subjects had significantly lower urinary recovery (0.48 h) of morphine and morphine-glucuronides than the remainder. Furthermore, these two had urinary metabolic ratios (MRO) and partial metabolic clearances (CLmO) for O-deethylation of ethylmorphine tentatively classifying them phenotypically as poor metabolisers of the debrisoquine/sparteine type. 4. Genotyping for cytochrome P450 (CYP) 2D6 alleles revealed five homozygote (wt/wt) and five heterozygote subjects. Two subjects phenotypically classified as poor metabolisers were genotypically CYP2D6A/wt and CYP2D6D/wt, respectively. 5. Serum and urine samples taken more than 8 and 24 h after administration of ethyl-morphine respectively, contained morphine and morphine-glucuronides, but no ethylmorphine, ethylmorphine-6-glucuronide or (serum only) norethylmorphine. Norethylmorphine could be detected after hydrolysis of urine samples in all subjects. The urinary recovery of the active metabolites morphine and morphine-6-glucuronide after administration of ethylmorphine varied by a factor of 9 between individuals. 6. The wide variation in recovery of morphine and morphine-glucuronides after oral administration of ethylmorphine could not be explained simply by a difference in CYP2D6 genotype. Constitutional variation in other enzymatic pathways involved in ethylmorphine metabolism is probably crucial. Ratios of morphine to parent drug cannot be used to distinguish the source of morphine after administration of ethylmorphine. Norethylmorphine should be included in urine assays for opiates in forensic toxicology

  18. In vitro metabolism of nobiletin, a polymethoxy-flavonoid, by human liver microsomes and cytochrome P450.

    PubMed

    Koga, Nobuyuki; Ohta, Chiho; Kato, Yoshihisa; Haraguchi, Koichi; Endo, Tetsuya; Ogawa, Kazunori; Ohta, Hideaki; Yano, Masamichi

    2011-11-01

    Cytochrome P450 enzymes (CYPs) in the liver metabolize drugs prior to excretion, with different enzymes acting at different molecular motifs. At present, the human CYPs responsible for the metabolism of the flavonoid, nobiletin (NBL), are unidentified. We investigated which enzymes were involved using human liver microsomes and 12 cDNA-expressed human CYPs. Human liver microsomes metabolized NBL to three mono-demethylated metabolites (4'-OH-, 7-OH- and 6-OH-NBL) with a relative ratio of 1:4.1:0.5, respectively, by aerobic incubation with nicotinamide adenine dinucleotide phosphate (NADPH). Of 12 human CYPs, CYP1A1, CYP1A2 and CYP1B1 showed high activity for the formation of 4'-OH-NBL. CYP3A4 catalyzed the formation of 7-OH-NBL with the highest activity and of 6-OH-NBL with lower activity. CYP3A5 also catalyzed the formation of both metabolites but considerably more slowly than CYP3A4. In contrast, seven CYPs (CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1) were inactive for NBL. Both ketoconazole and troleandomycin (CYP3A inhibitors) almost completely inhibited the formation of 7-OH- and 6-OH-NBL. Similarly, α-naphthoflavone (CYP1A1 inhibitor) and furafylline (CYP1A2 inhibitor) significantly decreased the formation of 4'-OH-NBL. These results suggest that CYP1A2 and CYP3A4 are the key enzymes in human liver mediating the oxidative demethylation of NBL in the B-ring and A-ring, respectively.

  19. Alternative Sampling Strategies for Cytochrome P450 Phenotyping.

    PubMed

    De Kesel, Pieter M M; Lambert, Willy E; Stove, Christophe P

    2016-02-01

    Interindividual variability in the expression and function of drug metabolizing cytochrome P (CYP) 450 enzymes, determined by a combination of genetic, non-genetic and environmental parameters, is a major source of variable drug response. Phenotyping by administration of a selective enzyme substrate, followed by the determination of a specific phenotyping metric, is an appropriate approach to assess the in vivo activity of CYP450 enzymes as it takes into account all influencing factors. A phenotyping protocol should be as simple and convenient as possible. Typically, phenotyping metrics are determined in traditional matrices, such as blood, plasma or urine. Several sampling strategies have been proposed as an alternative for these traditional sampling techniques. In this review, we provide a comprehensive overview of available methods using dried blood spots (DBS), hair, oral fluid, exhaled breath and sweat for in vivo CYP450 phenotyping. We discuss the relation between phenotyping metrics measured in these samples and those in conventional matrices, along with the advantages and limitations of the alternative sampling techniques. Reliable phenotyping procedures for several clinically relevant CYP450 enzymes, including CYP1A2, CYP2C19 and CYP2D6, are currently available for oral fluid, breath or DBS, while additional studies are needed for other CYP450 isoforms, such as CYP3A4. The role of hair analysis for this purpose remains to be established. Being non- or minimally invasive, these sampling strategies provide convenient and patient-friendly alternatives for classical phenotyping procedures, which may contribute to the implementation of CYP450 phenotyping in clinical practice.

  20. In vitro evaluation of cytochrome P450 induction and the inhibition potential of mitragynine, a stimulant alkaloid.

    PubMed

    Lim, Ee Lin; Seah, Tiong Chai; Koe, Xue Fen; Wahab, Habibah Abdul; Adenan, Mohd Ilham; Jamil, Mohd Fadzly Amar; Majid, Mohamed Isa Abdul; Tan, Mei Lan

    2013-03-01

    CYP450 enzymes are key determinants in drug toxicities, reduced pharmacological effect and adverse drug reactions. Mitragynine, an euphoric compound was evaluated for its effects on the expression of mRNAs encoding CYP1A2, CYP2D6 and CYP3A4 and protein expression and resultant enzymatic activity. The mRNA and protein expression of CYP450 isoforms were carried out using an optimized multiplex qRT-PCR assay and Western blot analysis. CYP1A2 and CYP3A4 enzyme activities were evaluated using P450-Glo™ assays. The effects of mitragynine on human CYP3A4 protein expression were determined using an optimized hCYP3A4-HepG2 cell-based assay. An in silico computational method to predict the binding conformation of mitragynine to the active site of the CYP3A4 enzyme was performed and further validated using in vitro CYP3A4 inhibition assays. Mitragynine was found to induce mRNA and protein expression of CYP1A2. For the highest concentration of 25 μM, induction of mRNA was approximately 70% that of the positive control and was consistent with the increased CYP1A2 enzymatic activity. Thus, mitragynine is a significant in vitro CYP1A2 inducer. However, it appeared to be a weak CYP3A4 inducer at the transcriptional level and a weak CYP3A4 enzyme inhibitor. It is therefore, unlikely to have any significant clinical effects on CYP3A4 activity. PMID:23274770

  1. Boron-Based 4-Hydroxytamoxifen Bioisosteres for Treatment of de Novo Tamoxifen Resistant Breast Cancer

    PubMed Central

    2012-01-01

    Tamoxifen remains the first line therapy for estrogen receptor positive (ER+) breast cancer. However, polymorphisms of the gene encoding P450 2D6 could result in no protein expression or no CYP2D6 enzymatic activity and may significantly reduce the benefit of the hormone therapy. To address this issue, we designed and synthesized three 4-hydroxytamoxifen bioisosteres utilizing a boron-aryl carbon bond that can be oxidized under physiological conditions to yield 4-hydroxytamoxifen. We show that the bioisosteres inhibit the growth of two ER+ breast cancer cell lines, MCF-7 and T47D, with potencies comparable to or greater than that of 4-hydroxytamoxifen. We further demonstrate that after incubation with breast cancer cells, the majority of the bioisosteres has been converted to 4-hydroxytamoxifen. Our study suggests that boron-based 4-hydroxytamoxifen bioisosteres may be an effective therapeutic remedy for intrinsic tamoxifen resistance in breast cancer patients deficient in CYP2D6 metabolism. PMID:23864928

  2. Propafenone poisoning--a case report with plasma propafenone concentrations.

    PubMed

    Ovaska, Hanna; Ludman, Andrew; Spencer, Edgar P; Wood, David M; Jones, Alison L; Dargan, Paul I

    2010-03-01

    Propafenone is an anti-arrhythmic drug used in the management of supraventricular and ventricular arrhythmias. It is metabolised through cytochrome P450 2D6 pathways; the major metabolites possess anti-arrhythmic activity. The cytochrome P450 CYP2D6 is coded by more than 70 alleles resulting in great genetic polymorphism of CYP2D6 isoenzymes, and up to 7% of Caucasian population are poor metabolisers. This case report describes a patient with severe overdose of propafenone who presented with coma, seizures and cardiotoxicity. The patient was managed with intravenous glucagon, hypertonic sodium bicarbonate, hypertonic saline and inotropic support. The propafenone and its 5-hydroxypropafenone (5-OHP) metabolite were measured by high-performance liquid chromatography with ultraviolet detection (no assay was available at the time to measure N-despropyl propafenone concentrations). Toxicological screen showed propafenone concentrations at a maximum of 1.26 mg/L at 9-10 h post-presentation, falling to 0.25 mg/L at 27-28 h post-presentation. No propafenone metabolite 5-OHP was detected in any sample analysed. No antidepressant or analgesic drugs were detected in toxicological screen. Propafenone overdose has been reported to be associated with features of severe cardiovascular and CNS toxicity. Aggressive treatment, meticulous monitoring and supportive care was associated with a good outcome in this case. PMID:20373066

  3. Serum-free culture of primary human hepatocytes in a miniaturized hollow-fibre membrane bioreactor for pharmacological in vitro studies.

    PubMed

    Lübberstedt, Marc; Müller-Vieira, Ursula; Biemel, Klaus M; Darnell, Malin; Hoffmann, Stefan A; Knöspel, Fanny; Wönne, Eva C; Knobeloch, Daniel; Nüssler, Andreas K; Gerlach, Jörg C; Andersson, Tommy B; Zeilinger, Katrin

    2015-09-01

    Primary human hepatocytes represent an important cell source for in vitro investigation of hepatic drug metabolism and disposition. In this study, a multi-compartment capillary membrane-based bioreactor technology for three-dimensional (3D) perfusion culture was further developed and miniaturized to a volume of less than 0.5 ml to reduce demand for cells. The miniaturized bioreactor was composed of two capillary layers, each made of alternately arranged oxygen and medium capillaries serving as a 3D culture for the cells. Metabolic activity and stability of primary human hepatocytes was studied in this bioreactor in the presence of 2.5% fetal calf serum (FCS) under serum-free conditions over a culture period of 10 days. The miniaturized bioreactor showed functions comparable to previously reported data for larger variants. Glucose and lactate metabolism, urea production, albumin synthesis and release of intracellular enzymes (AST, ALT, GLDH) showed no significant differences between serum-free and serum-supplemented bioreactors. Activities of human-relevant cytochrome P450 (CYP) isoenzymes (CYP1A2, CYP3A4/5, CYP2C9, CYP2D6, CYP2B6) analyzed by determination of product formation rates from selective probe substrates were also comparable in both groups. Gene expression analysis showed moderately higher expression in the majority of CYP enzymes, transport proteins and enzymes of Phase II metabolism in the serum-free bioreactors compared to those maintained with FCS. In conclusion, the miniaturized bioreactor maintained stable function over the investigated period and thus provides a suitable system for pharmacological studies on primary human hepatocytes under defined serum-free conditions.

  4. Complex Hydrocarbon Chemistry in Interstellar and Solar System Ices Revealed: A Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry Analysis of Ethane (C2H6) and D6-Ethane (C2D6) Ices Exposed to Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Abplanalp, Matthew J.; Kaiser, Ralf I.

    2016-08-01

    The irradiation of pure ethane (C2H6/C2D6) ices at 5.5 K, under ultrahigh vacuum conditions was conducted to investigate the formation of complex hydrocarbons via interaction with energetic electrons simulating the secondary electrons produced in the track of galactic cosmic rays. The chemical modifications of the ices were monitored in situ using Fourier transform infrared spectroscopy (FTIR) and during temperature-programmed desorption via mass spectrometry exploiting a quadrupole mass spectrometer with electron impact ionization (EI-QMS) as well as a reflectron time-of-flight mass spectrometer coupled to a photoionization source (PI-ReTOF-MS). FTIR confirmed previous ethane studies by detecting six molecules: methane (CH4), acetylene (C2H2), ethylene (C2H4), the ethyl radical (C2H5), 1-butene (C4H8), and n-butane (C4H10). However, the TPD phase, along with EI-QMS, and most importantly, PI-ReTOF-MS, revealed the formation of at least 23 hydrocarbons, many for the first time in ethane ice, which can be arranged in four groups with an increasing carbon-to-hydrogen ratio: C n H2n+2 (n = 3, 4, 6, 8, 10), C n H2n (n = 3–10), {{{C}}}n{{{H}}}2n-2 (n = 3–10), and {{{C}}}n{{{H}}}2n-4 (n = 4–6). The processing of simple ethane ices is relevant to the hydrocarbon chemistry in the interstellar medium, as ethane has been shown to be a major product of methane, as well as in the outer solar system. These data reveal that the processing of ethane ices can synthesize several key hydrocarbons such as C3H4 and C4H6 isomers, which ha­ve been found to synthesize polycyclic aromatic hydrocarbons like indene (C9H8) and naphtha­lene (C10H8) in the ISM and in hydrocarbon-rich atmospheres of planets and their moons such as Titan.

  5. Complex Hydrocarbon Chemistry in Interstellar and Solar System Ices Revealed: A Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry Analysis of Ethane (C2H6) and D6-Ethane (C2D6) Ices Exposed to Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Abplanalp, Matthew J.; Kaiser, Ralf I.

    2016-08-01

    The irradiation of pure ethane (C2H6/C2D6) ices at 5.5 K, under ultrahigh vacuum conditions was conducted to investigate the formation of complex hydrocarbons via interaction with energetic electrons simulating the secondary electrons produced in the track of galactic cosmic rays. The chemical modifications of the ices were monitored in situ using Fourier transform infrared spectroscopy (FTIR) and during temperature-programmed desorption via mass spectrometry exploiting a quadrupole mass spectrometer with electron impact ionization (EI-QMS) as well as a reflectron time-of-flight mass spectrometer coupled to a photoionization source (PI-ReTOF-MS). FTIR confirmed previous ethane studies by detecting six molecules: methane (CH4), acetylene (C2H2), ethylene (C2H4), the ethyl radical (C2H5), 1-butene (C4H8), and n-butane (C4H10). However, the TPD phase, along with EI-QMS, and most importantly, PI-ReTOF-MS, revealed the formation of at least 23 hydrocarbons, many for the first time in ethane ice, which can be arranged in four groups with an increasing carbon-to-hydrogen ratio: C n H2n+2 (n = 3, 4, 6, 8, 10), C n H2n (n = 3-10), {{{C}}}n{{{H}}}2n-2 (n = 3-10), and {{{C}}}n{{{H}}}2n-4 (n = 4-6). The processing of simple ethane ices is relevant to the hydrocarbon chemistry in the interstellar medium, as ethane has been shown to be a major product of methane, as well as in the outer solar system. These data reveal that the processing of ethane ices can synthesize several key hydrocarbons such as C3H4 and C4H6 isomers, which ha­ve been found to synthesize polycyclic aromatic hydrocarbons like indene (C9H8) and naphtha­lene (C10H8) in the ISM and in hydrocarbon-rich atmospheres of planets and their moons such as Titan.

  6. Food Enzymes

    ERIC Educational Resources Information Center

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  7. Zinc Enzymes.

    ERIC Educational Resources Information Center

    Bertini, I.; And Others

    1985-01-01

    Discusses the role of zinc in various enzymes concerned with hydration, hydrolysis, and redox reactions. The binding of zinc to protein residues, properties of noncatalytic zinc(II) and catalytic zinc, and the reactions catalyzed by zinc are among the topics considered. (JN)

  8. Stereoselectivity in the oxidation of bufuralol, a chiral substrate, by human cytochrome P450s.

    PubMed

    Narimatsu, Shizuo; Takemi, Chie; Kuramoto, Shino; Tsuzuki, Daisuke; Hichiya, Hiroyuki; Tamagake, Keietsu; Yamamoto, Shigeo

    2003-05-01

    Bufuralol (BF), a nonselective beta-adrenoceptor blocking agent, has a chiral center in its molecule, yielding the enantiomers 1'R-BF and 1'S-BF. beta-Adrenoceptor blocking potency is much higher in 1'S-BF than in 1'R-BF. One of the metabolic pathways of BF is 1"-hydroxylation of an ethyl group attached at the aromatic 7-position forming a carbinol metabolite (1"-hydroxybufuralol, 1"-OH-BF), and further oxidation (or dehydrogenation) produces a ketone metabolite (1-oxobufuralol, 1"-Oxo-BF). Both 1"-OH-BF and 1"-Oxo-BF are known to have beta-adrenoceptor blocking activities comparable to or higher than those of the parent drug. The 1"-hydroxylation introduces another chiral center into the BF molecule and four 1"-OH-BF diastereomers are formed from BF racemate in mammals, including humans, making elucidation of the metabolic profiles complicated. HPLC methods employing derivatization, reversed phase, or chiral columns have been developed to efficiently separate the four 1"-OH-BF diastereomers formed from BF enantiomers or racemate. Accumulated in vitro experimental results revealed that 1'R-BF is a much more preferential substrate than 1'S-BR for BF 1"-hydroxylation in human liver microsomes. Kinetic studies using recombinant human cytochrome P450 (CYP) enzymes indicate that CYP2D6 serves as a major BF 1"-hydroxylase and that CYP1A2 and CYP2C19 also contribute to BF 1"-hydroxylation in human livers. This mini-review summarizes the knowledge reported so far on the pharmacology of BF and its metabolites and the profiles of BF metabolism, especially focusing on the stereoselectivity in the oxidation of BF mainly in human livers and recombinant CYP enzymes. PMID:12666241

  9. Update on allele nomenclature for human cytochromes P450 and the Human Cytochrome P450 Allele (CYP-allele) Nomenclature Database.

    PubMed

    Sim, Sarah C; Ingelman-Sundberg, Magnus

    2013-01-01

    Interindividual variability in xenobiotic metabolism and drug response is extensive and genetic factors play an important role in this variation. A majority of clinically used drugs are substrates for the cytochrome P450 (CYP) enzyme system and interindividual variability in expression and function of these enzymes is a major factor for explaining individual susceptibility for adverse drug reactions and drug response. Because of the existence of many polymorphic CYP genes, for many of which the number of allelic variants is continually increasing, a universal and official nomenclature system is important. Since 1999, all functionally relevant polymorphic CYP alleles are named and published on the Human Cytochrome P450 Allele (CYP-allele) Nomenclature Web site (http://www.cypalleles.ki.se). Currently, the database covers nomenclature of more than 660 alleles in a total of 30 genes that includes 29 CYPs as well as the cytochrome P450 oxidoreductase (POR) gene. On the CYP-allele Web site, each gene has its own Webpage, which lists the alleles with their nucleotide changes, their functional consequences, and links to publications identifying or characterizing the alleles. CYP2D6, CYP2C9, CYP2C19, and CYP3A4 are the most important CYPs in terms of drug metabolism, which is also reflected in their corresponding highest number of Webpage hits at the CYP-allele Web site.The main advantage of the CYP-allele database is that it offers a rapid online publication of CYP-alleles and their effects and provides an overview of peer-reviewed data to the scientific community. Here, we provide an update of the CYP-allele database and the associated nomenclature.

  10. Identification of in vitro metabolites of ethylphenidate by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.

    PubMed

    Negreira, Noelia; Erratico, Claudio; van Nuijs, Alexander L N; Covaci, Adrian

    2016-01-01

    Ethylphenidate is a new potent synthetic psychoactive drug, structurally related to methylphenidate. Using human liver microsomes and cytosol, we have investigated for the first time the Phase-I and Phase-II in vitro metabolism of ethylphenidate. The structure of the metabolites was elucidated by hybrid quadrupole time-of-flight mass spectrometry. Overall, seven Phase-I, but no Phase-II metabolites were detected. Ethylphenidate underwent hydroxylation forming two primary mono-hydroxylated metabolites and, subsequently, dehydration and ring opening with an additional hydroxylation, forming secondary metabolites. The involvement of different human cytochrome P450 (CYP) enzymes in the formation of ethylphenidate metabolites was investigated using a panel of human recombinant CYPs (rCYPs). rCYP2C19 was the most active recombinant enzyme involved in the formation of all seven ethylphenidate metabolites detected, although other rCYPs (rCYP1A2, rCYP2B6, rCYPC9, rCYP2D6, and rCYP3A4, but not rCYP2E1) played a role in the metabolism of ethylphenidate. All metabolites identified in the present study can be considered as potential specific biomarkers of ethylphenidate in toxicological studies. Additionally, ritalinic acid and methylphenidate were formed by non-enzymatic hydrolysis and trans-esterification, and, therefore, they cannot be considered as (oxidative) metabolites of ethylphenidate. The presence of methylphenidate and ritalinic acid cannot be exclusively associated to the use of ethylphenidate, since methylphenidate is a drug itself and ritanilic acid can be formed from both ethylphenidate and methylphenidate. PMID:26454340

  11. Demethylation of neferine in human liver microsomes and formation of quinone methide metabolites mediated by CYP3A4 accentuates its cytotoxicity.

    PubMed

    Shen, Qi; Zuo, Minjuan; Ma, Li; Tian, Ye; Wang, Lu; Jiang, Huidi; Zhou, Quan; Zhou, Hui; Yu, Lushan; Zeng, Su

    2014-12-01

    Neferine is a bisbenzylisoquinoline alkaloid isolated from the seed embryos of Nelumbonucifera Gaertn (Lotus) with various potent pharmacological effects. Recently, neferine has attracted attention for its anti-tumor activities. Our study explored its metabolism and cytotoxicity mechanism. Approaches using chemical inhibitors and recombinant human enzymes to characterize the involved enzymes and kinetic studies indicated that the demethylation of neferine by cytochrome P450 (CYP) 2D6 and CYP3A4 fitted a biphasic kinetic profile. Glutathione (GSH) was used as a trapping agent to identify reactive metabolites of neferine, and four novel GSH conjugates were detected with [M+H](+) ions at m/z 902.4, 916.2, 916.1, and 930.4. Based on its structure containing para-methylene phenol and results from a product ion scan, GSH tends to conjugate with C9' after undergoing oxidative metabolism to form the binding site predominated by CYP3A4. Furthermore, the addition of recombinant human GSTA1, GSTT1, and GSTP1 had little effect on the production of the GSH conjugates. In a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide assay, combined with the GSH modulators l-buthionine sulfoximine or N-acetyl-l-cysteine, neferine treatment of MDCK-hCYP3A4 and HepG2 cells revealed that CYP3A4 expression and cellular GSH content could cause an EC50 shift. Metabolic activation mediated by CYP3A4 and GSH depletion significantly enhanced neferine-induced cytotoxicity. PMID:25451576

  12. Activity, inhibition, and induction of cytochrome P450 2J2 in adult human primary cardiomyocytes.

    PubMed

    Evangelista, Eric A; Kaspera, Rüdiger; Mokadam, Nahush A; Jones, J P; Totah, Rheem A

    2013-12-01

    Cytochrome P450 2J2 plays a significant role in the epoxidation of arachidonic acid to signaling molecules important in cardiovascular events. CYP2J2 also contributes to drug metabolism and is responsible for the intestinal clearance of ebastine. However, the interaction between arachidonic acid metabolism and drug metabolism in cardiac tissue, the main expression site of CYP2J2, has not been examined. Here we investigate an adult-derived human primary cardiac cell line as a suitable model to study metabolic drug interactions (inhibition and induction) of CYP2J2 in cardiac tissue. The primary human cardiomyocyte cell line demonstrated similar mRNA-expression profiles of P450 enzymes to adult human ventricular tissue. CYP2J2 was the dominant isozyme with minor contributions from CYP2D6 and CYP2E1. Both terfenadine and astemizole oxidation were observed in this cell line, whereas midazolam was not metabolized suggesting lack of CYP3A activity. Compared with recombinant CYP2J2, terfenadine was hydroxylated in cardiomyocytes at a similar K(m) value of 1.5 μM. The V(max) of terfenadine hydroxylation in recombinant enzyme was found to be 29.4 pmol/pmol P450 per minute and in the cells 6.0 pmol/pmol P450 per minute. CYP2J2 activity in the cell line was inhibited by danazol, astemizole, and ketoconazole in submicromolar range, but also by xenobiotics known to cause cardiac adverse effects. Of the 14 compounds tested for CYP2J2 induction, only rosiglitazone increased mRNA expression, by 1.8-fold. This cell model can be a useful in vitro model to investigate the role of CYP2J2-mediated drug metabolism, arachidonic acid metabolism, and their association to drug induced cardiotoxicity. PMID:24021950

  13. A high throughput screening assay to screen for CYP2E1 metabolism and inhibition using a fluorogenic vivid p450 substrate.

    PubMed

    Marks, Bryan D; Smith, Ronald W; Braun, Heidi A; Goossens, Tony A; Christenson, Marie; Ozers, Mary S; Lebakken, Connie S; Trubetskoy, Olga V

    2002-11-01

    Large-scale screening of multiple compound libraries and combinatorial libraries for pharmacological activity is one of the novel approaches of the modern drug discovery process. The application of isozyme-specific high-throughput screening (HTS) assays for characterizing the interactions of potential drug candidates with major human drug-metabolizing cytochrome p450 enzymes (p450s) is newly becoming an essential part of this process. Fluorescence-based HTS assays have been successfully employed for in vitro assessment of drug-drug interactions and enzyme inhibition with several p450 isoforms, including CYP3A4, CYP2D6, CYP2C9, and CYP2C19. Here we describe a fluorescence-based HTS assay for detecting drug metabolism and inhibition with human CYP2E1. CYP2E1 plays an important role in the metabolism of several drugs, many solvents, and toxins and therefore has been repeatedly linked to numerous pathologies, including cancer, liver and kidney toxicity, diabetes, and alcoholism. The assay is based on the ability of a drug to compete with the fluorogenic Vivid CYP2E1 Blue Substrate for CYP2E1 metabolism and thus enables rapid screening of lead molecules for their inhibitory potential. We have used this assay to screen a panel of drugs and compounds for their effects on CYP2E1 metabolism and inhibition. Our results demonstrate the assay's usefulness in identifying CYP2E1 substrates and inhibitors and in enabling in-depth characterization of their interactions with the CYP2E1 isozyme. We also present detailed characteristics of the assay, including its dynamic range and Z'-factor values, which indicate that this robust assay is well suited for kinetic and inhibition studies in HTS formats.

  14. Enzyme Kinetics

    PubMed Central

    Lam, C. F.; Priest, D. G.

    1972-01-01

    One of the most generally applicable algorithms for the derivation of steady-state rate equations for complex enzyme reaction mechanisms is that of King and Altman. Several modifications of this algorithm have been suggested; however, each requires the generation of numerous valid and invalid patterns and the subsequent elimination of those that are invalid. A method is presented, employing topological theory of linear graphs, for the systematic generation of only those patterns which are valid. This method is readily adaptable to use on a digital computer. An independent method for the calculation of the number of valid patterns is also presented. This calculation can be used to substantiate the accuracy of the patterns obtained. This calculation is also adaptable to computerization. Examples are included to demonstrate both the generation of patterns and the calculation of their number for specific enzyme mechanisms. PMID:5016111

  15. Alkylating enzymes.

    PubMed

    Wessjohann, Ludger A; Keim, Jeanette; Weigel, Benjamin; Dippe, Martin

    2013-04-01

    Chemospecific and regiospecific modifications of natural products by methyl, prenyl, or C-glycosyl moieties are a challenging and cumbersome task in organic synthesis. Because of the availability of an increasing number of stable and selective transferases and cofactor regeneration processes, enzyme-assisted strategies turn out to be promising alternatives to classical synthesis. Two categories of alkylating enzymes become increasingly relevant for applications: firstly prenyltransferases and terpene synthases (including terpene cyclases), which are used in the production of terpenoids such as artemisinin, or meroterpenoids like alkylated phenolics and indoles, and secondly methyltransferases, which modify flavonoids and alkaloids to yield products with a specific methylation pattern such as 7-O-methylaromadendrin and scopolamine.

  16. Morphine/Codeine Ratio, a Key in Investigating a Case of Doping

    PubMed Central

    Seif-Barghi, Tohid; Moghadam, Navid; Kobarfard, Farzad

    2015-01-01

    Introduction: Consumption of codeine can lead to positive urine test for morphine in athletes. Morphine is classified as a prohibited doping drug while Codeine is not. Morphine/codeine ratio is used in forensic medicine to distinguish the consumption of codeine from abuse of morphine and other narcotics. Case Presentation: We present an athlete with positive urine test for morphine with a history of consumption of codeine. The disciplinary committee came to conclusion that the athlete had not consumed morphine and did not violate doping code based on morphine/codeine ratio. Conclusions: Analysis of codeine to morphine metabolism rate is needed when we are using morphine/codeine ratio to rule out abuse of narcotics. WADA should consider analysis for the CYP2D6 alleles (main metabolizer of codeine) in case of including morphine/codeine ratio in future prohibited list. The possibility of ultra-rapid CYP2D6 cannot be ruled out in certain results of morphine/codeine near the cut point. PMID:26715976

  17. Contribution of Cytochrome P450 and ABCB1 Genetic Variability on Methadone Pharmacokinetics, Dose Requirements, and Response

    PubMed Central

    Fonseca, Francina; de la Torre, Rafael; Díaz, Laura; Pastor, Antonio; Cuyàs, Elisabet; Pizarro, Nieves; Khymenets, Olha; Farré, Magí; Torrens, Marta

    2011-01-01

    Although the efficacy of methadone maintenance treatment (MMT) in opioid dependence disorder has been well established, the influence of methadone pharmacokinetics in dose requirement and clinical outcome remains controversial. The aim of this study is to analyze methadone dosage in responder and nonresponder patients considering pharmacogenetic and pharmacokinetic factors that may contribute to dosage adequacy. Opioid dependence patients (meeting Diagnostic and Statistical Manual of Mental Disorders, [4th Edition] criteria) from a MMT community program were recruited. Patients were clinically assessed and blood samples were obtained to determine plasma concentrations of (R,S)-, (R) and (S)- methadone and to study allelic variants of genes encoding CYP3A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, and P-glycoprotein. Responders and nonresponders were defined by illicit opioid consumption detected in random urinalysis. The final sample consisted in 105 opioid dependent patients of Caucasian origin. Responder patients received higher doses of methadone and have been included into treatment for a longer period. No differences were found in terms of genotype frequencies between groups. Only CYP2D6 metabolizing phenotype differences were found in outcome status, methadone dose requirements, and plasma concentrations, being higher in the ultrarapid metabolizers. No other differences were found between phenotype and responder status, methadone dose requirements, neither in methadone plasma concentrations. Pharmacokinetic factors could explain some but not all differences in MMT outcome and methadone dose requirements. PMID:21589866

  18. Adding metoclopramide to paroxetine induced extrapyramidal symptoms and hyperprolactinemia in a depressed woman: a case report

    PubMed Central

    Igata, Ryohei; Hori, Hikaru; Atake, Kiyokazu; Katsuki, Asuka; Nakamura, Jun

    2016-01-01

    A 54-year-old Japanese woman was diagnosed with major depressive disorder and prescribed paroxetine 20 mg/day. In around May 2013, the patient experienced gastric discomfort, so metoclopramide was prescribed. Beginning on June 4, 2013, the patient was given metoclopramide, 10 mg intravenously, twice per week. On the seventh day after beginning metoclopramide, facial hot flushes, increased sweating, muscle rigidity, and galactorrhea were noted. Extrapyramidal symptoms (EPS) rapidly subsided in response to an intramuscular injection of biperiden. Blood biochemical tests revealed an elevated serum prolactin level of 44 ng/mL. After stopping metoclopramide, EPS disappeared. Serum prolactin level decreased to 15 ng/mL after 4 weeks. In our case, although no adverse reactions had previously occurred following the administration of metoclopramide, the patient developed EPS and hyperprolactinemia following the administration of this antiemetic in combination with paroxetine. Paroxetine and metoclopramide are mainly metabolized by CYP2D6, and they are inhibitors for CYP2D6. We report a case with EPS and hyperprolactinemia whose plasma paroxetine and metoclopramide level rapidly increased after the addition of metoclopramide. Our experience warrants the issuing of a precaution that adverse reactions may arise following the coadministration of metoclopramide and paroxetine even at their respective standard dose levels.

  19. Adding metoclopramide to paroxetine induced extrapyramidal symptoms and hyperprolactinemia in a depressed woman: a case report

    PubMed Central

    Igata, Ryohei; Hori, Hikaru; Atake, Kiyokazu; Katsuki, Asuka; Nakamura, Jun

    2016-01-01

    A 54-year-old Japanese woman was diagnosed with major depressive disorder and prescribed paroxetine 20 mg/day. In around May 2013, the patient experienced gastric discomfort, so metoclopramide was prescribed. Beginning on June 4, 2013, the patient was given metoclopramide, 10 mg intravenously, twice per week. On the seventh day after beginning metoclopramide, facial hot flushes, increased sweating, muscle rigidity, and galactorrhea were noted. Extrapyramidal symptoms (EPS) rapidly subsided in response to an intramuscular injection of biperiden. Blood biochemical tests revealed an elevated serum prolactin level of 44 ng/mL. After stopping metoclopramide, EPS disappeared. Serum prolactin level decreased to 15 ng/mL after 4 weeks. In our case, although no adverse reactions had previously occurred following the administration of metoclopramide, the patient developed EPS and hyperprolactinemia following the administration of this antiemetic in combination with paroxetine. Paroxetine and metoclopramide are mainly metabolized by CYP2D6, and they are inhibitors for CYP2D6. We report a case with EPS and hyperprolactinemia whose plasma paroxetine and metoclopramide level rapidly increased after the addition of metoclopramide. Our experience warrants the issuing of a precaution that adverse reactions may arise following the coadministration of metoclopramide and paroxetine even at their respective standard dose levels. PMID:27621638

  20. Species differences in intestinal metabolic activities of cytochrome P450 isoforms between cynomolgus monkeys and humans.

    PubMed

    Nishimuta, Haruka; Sato, Kimihiko; Mizuki, Yasuyuki; Yabuki, Masashi; Komuro, Setsuko

    2011-06-01

    The oral bioavailability of some drugs is markedly lower in cynomolgus monkeys than in humans. One of the reasons for the low bioavailability in cynomolgus monkeys may be the higher metabolic activity of intestinal CYP3A; however, the species differences in intestinal metabolic activities of other CYP isoforms between cynomolgus monkeys and humans are not well known. In the present study, we investigated the intrinsic clearance (CL(int)) values in pooled intestinal microsomes from cynomolgus monkeys and humans using 25 substrates of human CYP1A2, CYP2J2, CYP2C, and CYP2D6. As in humans, intestinal CL(int) values of human CYP1A2 and CYP2D6 substrates in cynomolgus monkeys were low. On the other hand, intestinal CL(int) values of human CYP2J2 and CYP2C substrates in cynomolgus monkeys were greatly higher than those in humans. Using immunoinhibitory antibodies and chemical inhibitors, we showed that the higher intestinal CL(int) values of the human CYP2J2 and CYP2C substrates in cynomolgus monkeys might be caused by monkey CYP4F and CYP2C subfamily members, respectively. In conclusion, there is a possibility that the greatly higher metabolic activity of CYP2C and CYP4F in cynomolgus monkey intestine is one of the causes of the species difference of intestinal first-pass metabolism between cynomolgus monkeys and humans. PMID:21383522

  1. Cytochrome P450 inhibition potential of new psychoactive substances of the tryptamine class.

    PubMed

    Dinger, Julia; Woods, Campbell; Brandt, Simon D; Meyer, Markus R; Maurer, Hans H

    2016-01-22

    New psychoactive substances (NPS) are not tested for their cytochrome P450 (CYP) inhibition potential before consumption. Therefore, this potential was explored for tryptamine-derived NPS (TDNPS) including alpha-methyl tryptamines (AMTs), dimethyl tryptamines (DMTs), diallyl tryptamines (DALTs), and diisopropyl tryptamines (DiPTs) using test substrates preferred by the Food and Drug Administration in a cocktail assay. All tested TDNPS with the exception of DMT inhibited CYP2D6 activity with IC50 values below 100μM. DALTs inhibited CYP2D6 activity similar to paroxetine and quinidine and CYP1A2 activity comparable to fluvoxamine. 5-Methoxy-N,N-diallyltryptamine reduced in vivo the caffeine metabolism in rats consistent with in vitro results. Five of the AMTs also inhibited CYP1A2 activity comparable to amiodarone. AMT and 6-F-AMT inhibited CYP2A6 activity in the range of the test inhibitor tranylcypromine. CYP2B6 activity was inhibited by 19 tryptamines, but weakly compared to efavirenz. CYP2C8 activity was inhibited by five of the tested TDNPS and three showed values comparable to trimethoprim and gemfibrozil. Six tryptamines inhibited CYP2C9 and seven CYP2C19 activities comparable to fluconazole and chloramphenicol, respectively. Nineteen compounds showed inhibition of CYP2E1 and 18 of CYP3A activity, respectively. These results showed that the CYP inhibition by TDNPS might be clinically relevant, but clinical studies are needed to explore this further. PMID:26599973

  2. Adding metoclopramide to paroxetine induced extrapyramidal symptoms and hyperprolactinemia in a depressed woman: a case report.

    PubMed

    Igata, Ryohei; Hori, Hikaru; Atake, Kiyokazu; Katsuki, Asuka; Nakamura, Jun

    2016-01-01

    A 54-year-old Japanese woman was diagnosed with major depressive disorder and prescribed paroxetine 20 mg/day. In around May 2013, the patient experienced gastric discomfort, so metoclopramide was prescribed. Beginning on June 4, 2013, the patient was given metoclopramide, 10 mg intravenously, twice per week. On the seventh day after beginning metoclopramide, facial hot flushes, increased sweating, muscle rigidity, and galactorrhea were noted. Extrapyramidal symptoms (EPS) rapidly subsided in response to an intramuscular injection of biperiden. Blood biochemical tests revealed an elevated serum prolactin level of 44 ng/mL. After stopping metoclopramide, EPS disappeared. Serum prolactin level decreased to 15 ng/mL after 4 weeks. In our case, although no adverse reactions had previously occurred following the administration of metoclopramide, the patient developed EPS and hyperprolactinemia following the administration of this antiemetic in combination with paroxetine. Paroxetine and metoclopramide are mainly metabolized by CYP2D6, and they are inhibitors for CYP2D6. We report a case with EPS and hyperprolactinemia whose plasma paroxetine and metoclopramide level rapidly increased after the addition of metoclopramide. Our experience warrants the issuing of a precaution that adverse reactions may arise following the coadministration of metoclopramide and paroxetine even at their respective standard dose levels. PMID:27621638

  3. [Interindividual variation of pharmacokinetic disposition of and clinical responses to opioid analgesics in cancer pain patients].

    PubMed

    Naito, Takafumi; Kawakami, Junichi

    2015-01-01

    Use of prescription opioids for cancer pain according to the World Health Organization analgesic ladder has been accepted in Japan. Although oxycodone and fentanyl are commonly used as first-line analgesics, a few clinical reports have been published on interindividual variations in their pharmacokinetics and clinical responses in cancer patients. (1) Some factors relating to CYP2D6, CYP3A, ATP-binding cassette sub-family B member 1 (ABCB1), and opioid receptor mu 1 (OPRM1) involve oxycodone pharmacokinetics and sensitivity in humans. The relations between their genetic variations and clinical responses to oxycodone are being revealed in limited groups. In our study, the impact of genetic variants and pharmacokinetics on clinical responses to oxycodone were evaluated in Japanese populations. (2) Opioid switching improves the opioid tolerance related to the balance between analgesia and adverse effects. Some patients have difficulty in obtaining better opioid tolerance in recommended conversion ratios. The activities of CYP3A, ABCB1, and OPRM1 contribute to the interindividual variations in clinical responses to fentanyl in cancer patients. However, the variations in opioid switching remain to be clarified in clinical settings. In our study, genetic factors related to interindividual variations in clinical responses in opioid switching to fentanyl were revealed in Japanese populations. In this symposium review, the possibility of approaches to personalized palliative care using opioids based on genetic variants of CYP2D6, CYP3A5, ABCB1, and OPRM1 is discussed.

  4. Effect of Radix Sophorae Flavescentis on activity of CYP450 isoforms in rats

    PubMed Central

    Chen, Lianguo; Cai, Jinzhang; Wang, Shuanghu; Hu, Lufeng; Yang, Xuezhi

    2015-01-01

    Kushen (Radix Sophorae Flavescentis) is the dried roots of Sophora Flavescens Ait, alkaloids and flavonoids are the main active constituents of Radix Sophorae Flavescentis. The influence of Radix Sophorae Flavescentis on the activities of CYP450 isoforms CYP2B6, CYP2C19, CYP1A2, CYP2C9, CYP3A4 and CYP2D6 were evaluated by cocktail method. The rats were randomly divided into Radix Sophorae Flavescentis group and control group. The Radix Sophorae Flavescentis group rats were given 5 g/kg Radix Sophorae Flavescentis decoction by intragastric administration. The six probe drugs (bupropion, omeprazole, phenacetin, tolbutamide, midazolam and metroprolol) were given to rats through intragastric administration, and the plasma concentration were determined by UPLC-MS/MS. The result of Radix Sophorae Flavescentis group compared to control group, there were statistical pharmacokinetics difference for omeprazole, phenacetin, tolbutamide and metroprolol. It indicated that the Radix Sophorae Flavescentis may induce the activities of CYP2D6, and inhibit of CYP2C19, CYP1A2 and CYP2C9 of rats. As other drugs are always used after Radix Sophorae Flavescentis, interactions between other drugs and Radix Sophorae Flavescentis undertake the risk of either diminished efficacy or adverse effects. This may give advising for reasonable drug use after Radix Sophorae Flavescentis. PMID:26885078

  5. In vitro metabolism and interaction of cilostazol with human hepatic cytochrome P450 isoforms.

    PubMed

    Abbas, R; Chow, C P; Browder, N J; Thacker, D; Bramer, S L; Fu, C J; Forbes, W; Odomi, M; Flockhart, D A

    2000-03-01

    1. Cilostazol (OPC-13013) undergoes extensive hepatic metabolism. The hydroxylation of the quinone moiety of cilostazol to OPC-13326 was the predominant route in all the liver preparations studies. The hydroxylation of the hexane moiety to OPC-13217 was the second most predominant route in vitro. 2. Ketoconazole (1 microM) was the most potent inhibitor of both quinone and hexane hydroxylation. Both the CYP2D6 inhibitor quinidine (0.1 microM) and the CYP2C19 inhibitor omeprazole (10 microM) failed to consistently inhibit metabolism of cilostazol via either of these two predominant routes. 3. Data obtained from a bank of pre-characterized human liver microsomes demonstrated a stronger correlation (r2=0.68, P < 0.01) between metabolism of cilostazol to OPC-13326 and metabolism of felodipine, a CYP3A probe, that with probes for any other isoform. Cimetidine demonstrated concentration-dependent competitive inhibition of the metabolism of cilostazol by both routes. 4. Kinetic data demonstrated a Km value of 101 microM for cilostazol, suggesting a relatively low affinity of cilostazol for CYP3A. While recombinant CYP1A2, CYP2D6 and CYP2C19 were also able to catalyze formation of specific cilostazol metabolites, they did not appear to contribute significantly to cilostazol metabolism in whole human liver microsomes.

  6. Primary enzyme quantitation

    DOEpatents

    Saunders, G.C.

    1982-03-04

    The disclosure relates to the quantitation of a primary enzyme concentration by utilizing a substrate for the primary enzyme labeled with a second enzyme which is an indicator enzyme. Enzyme catalysis of the substrate occurs and results in release of the indicator enzyme in an amount directly proportional to the amount of primary enzyme present. By quantifying the free indicator enzyme one determines the amount of primary enzyme present.

  7. Human cytochrome p450 enzyme specificity for the bioactivation of estragole and related alkenylbenzenes.

    PubMed

    Jeurissen, Suzanne M F; Punt, Ans; Boersma, Marelle G; Bogaards, Jan J P; Fiamegos, Yiannis C; Schilter, Benoit; van Bladeren, Peter J; Cnubben, Nicole H P; Rietjens, Ivonne M C M

    2007-05-01

    Human cytochrome P450 enzymes involved in the bioactivation of estragole to its proximate carcinogen 1'-hydroxyestragole were identified and compared to the enzymes of importance for 1'-hydroxylation of the related alkenylbenzenes methyleugenol and safrole. Incubations with Supersomes revealed that all enzymes tested, except P450 2C8, are intrinsically able to 1'-hydroxylate estragole. Experiments with Gentest microsomes, expressing P450 enzymes to roughly average liver levels, indicated that P450 1A2, 2A6, 2C19, 2D6, and 2E1 might contribute to estragole 1'-hydroxylation in the human liver. Especially P450 1A2 is an important enzyme based on the correlation between P450 1A2 activity and estragole 1'-hydroxylation in human liver microsomal samples and inhibition of estragole 1'-hydroxylation by the P450 1A2 inhibitor alpha-naphthoflavone. Kinetic studies revealed that, at physiologically relevant concentrations of estragole, P450 1A2 and 2A6 are the most important enzymes for bioactivation in the human liver showing enzyme efficiencies (kcat/Km) of, respectively, 59 and 341 min-1 mM-1. Only at relatively high estragole concentrations, P450 2C19, 2D6, and 2E1 might contribute to some extent. Comparison to results from similar studies for safrole and methyleugenol revealed that competitive interactions between estragole and methyleugenol 1'-hydroxylation and between estragole and safrole 1'-hydroxylation are to be expected because of the involvement of, respectively, P450 1A2 and P450 2A6 in the bioactivation of these compounds. Furthermore, poor metabolizer phenotypes in P450 2A6 might diminish the chances on bioactivation of estragole and safrole, whereas lifestyle factors increasing P450 1A2 activities such as cigarette smoking and consumption of charbroiled food might increase those chances for estragole and methyleugenol.

  8. Effect of tamoxifen on the enzymatic activity of human cytochrome CYP2B6.

    PubMed

    Sridar, Chitra; Kent, Ute M; Notley, Lisa M; Gillam, Elizabeth M J; Hollenberg, Paul F

    2002-06-01

    Tamoxifen is primarily used in the treatment of breast cancer. It has been approved as a chemopreventive agent for individuals at high risk for this disease. Tamoxifen is metabolized to a number of different products by cytochrome P450 enzymes. The effect of tamoxifen on the enzymatic activity of bacterially expressed human cytochrome CYP2B6 in a reconstituted system has been investigated. The 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation activity of purified CYP2B6 was inactivated by tamoxifen in a time- and concentration-dependent manner. Enzymatic activity was lost only in samples that were incubated with both tamoxifen and NADPH. The inactivation was characterized by a K(I) of 0.9 microM, a k(inact) of 0.02 min(-1), and a t(1/2) of 34 min. The loss in the 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation activity did not result in a similar percentage loss in the reduced carbon monoxide spectrum, suggesting that the heme moiety was not the major site of modification. The activity of CYP2B6 was not recovered after removal of free tamoxifen using spin column gel filtration. The loss in activity seemed to be due to a modification of the CYP2B6 and not reductase because adding fresh reductase back to the inactivated samples did not restore enzymatic activity. A reconstituted system containing purified CYP2B6, NADPH-reductase, and NADPH-generating system was found to catalyze tamoxifen metabolism to 4-OH-tamoxifen, 4'-OH-tamoxifen, and N-desmethyl-tamoxifen as analyzed by high-performance liquid chromatography analysis. Preliminary studies showed that tamoxifen had no effect on the activities of CYP1B1 and CYP3A4, whereas CYP2D6 and CYP2C9 exhibited a 25% loss in enzymatic activity. PMID:12023523

  9. Polymorphisms of pesticide-metabolizing genes in children living in intensive farming communities.

    PubMed

    Gómez-Martín, Antonio; Hernández, Antonio F; Martínez-González, Luis Javier; González-Alzaga, Beatriz; Rodríguez-Barranco, Miguel; López-Flores, Inmaculada; Aguilar-Garduno, Clemente; Lacasana, Marina

    2015-11-01

    Polymorphisms in genes encoding xenobiotic-metabolizing enzymes (XME) are important parameters accounting for the wide inter-individual variability to environmental exposures. Paraoxonase-1 (PON1), butyrylcholinesterase (BChE) and Cytochrome-P450 constitute major classes of XME involved in the detoxification of pesticide chemicals, in particular organophosphates. This study explored the allelic frequency, linkage disequilibrium and haplotype analysis of ten common polymorphic variants of seven key genes involved in organophosphate metabolism (BCHE-K, BCHE-A, PON1 Q192R, PON1 L55M, PON1 -108C/T, CYP2C19 G681A, CYP2D6 G1846A, CYP3AP1 -44G/A, GSTM1∗0 and GSTT1∗0) in a children population living near an intensive agriculture area in Spain. It was hypothesized that individuals with unfavorable combinations of gene variants will be more susceptible to adverse effects from organophosphate exposure. Genomic DNA from 496 healthy children was isolated and amplified by PCR. Hydrolysis probes were used for the detection of eight specific SNPs and two copy number variants (CNVs) by using TaqMan® Assay-based real-time PCR. Frequencies of SNPs and CNVs in the target genes were in Hardy-Weinberg equilibrium and broadly consistent with European populations. Linkage disequilibrium was found between the three PON1 genetic polymorphisms studied and between BCHE-K and BCHE-A. The adverse genotype combination (unusual BCHE variants, PON1 55MM/-108TT and null genotype for both GSTM1 and GSTT1) potentially conferring a greater genetic risk from exposure to organophosphates was observed in 0.2% of our study population. This information allows broadening our knowledge about differential susceptibility toward environmental toxicants and may be helpful for further research to understand the inter-individual toxicokinetic variability in response to organophosphate pesticides exposure.

  10. Genomics and pharmacogenomics of breast cancer: current knowledge and trends.

    PubMed

    Ayoub, Nehad; Lucas, Courtney; Kaddoumi, Amal

    2011-01-01

    The impact of genomics and pharmacogenomics in the current arena of clinical oncology is well-established. In breast cancer, mutations in the BRCA1 and BRCA2 genes have been well-characterized to carry a high risk of the disease during a woman's lifespan. However, these high risk genes contribute to only a small proportion of the familial cases of breast cancer. Hence, further efforts aimed to study the contribution of genetic mutations in other genes, including the estrogen receptor gene, TP53, CYP19, and mismatch repair genes to further investigate the genetic component of breast cancer. Multiple pharmacogenomic studies have previously linked genetic variants in known pathways with treatment response in cancer patients. Currently, polymorphisms in drug metabolizing enzymes, efflux transporters, as well as, drug targets have shown correlations to variations in response and toxicity to commonly prescribed chemotherapeutic treatments of breast cancer. CYP2D6 variants have been correlated with tamoxifen response and interindividual variability seen. An emerging application of cancer genetics and pharmacogenetics involves the use of inherited or acquired genetic abnormalities to predict treatment toxicity or outcomes. Recently, methods that involve the scanning of entire genomes for common variants have begun to influence studies of cancer causation. Currently, treatment individualization for breast cancer can take place on the basis of few molecular targets including the estrogen receptor and the overexpression of the HER2 receptor. Overall, the current review summarizes the recent findings in the genetic and pharmacogenetic research of breast cancer and the advances made in personalization of treatment. PMID:21875255

  11. Pharmacogenomics can improve antipsychotic treatment in schizophrenia.

    PubMed

    Xu, Qingqing; Wu, Xi; Xiong, Yuyu; Xing, Qinghe; He, Lin; Qin, Shengying

    2013-06-01

    Schizophrenia is a widespread mental disease with a prevalence of about 1% in the world population, and heritability of up to 80%. Drug therapy is an important approach to treating the disease. However, the curative effect of antipsychotic is far from satisfactory in terms of tolerability and side effects. Many studies have indicated that about 30% of the patients exhibit little or no improvements associated with antipsychotics. The response of individual patients who are given the same dose of the same drug varies considerably. In addition, antipsychotic drugs are often accompanied by adverse drug reactions (ADRs), which can cause considerable financial loss in addition to the obvious societal harm. So, it is strongly recommended that personalized medicine should be implemented both to improve drug efficacy and to minimize adverse events and toxicity. There is therefore a need for pharmacogenomic studies into the factors affecting response of schizophrenia patients to antipsychotic drugs to provide informed guidance for clinicians. Individual differences in drug response is due to a combination of many complex factors including ADEM (absorption, distribution, metabolism, excretion) process, transporting, binding with receptor and intracellular signal transduction. Pharmacogenetic and pharmacogenomic studies have successfully identified genetic variants that contribute to this interindividual variability in antipsychotics response. In addition, epigenetic factors such as methylation of DNA and regulation by miRNA have also been reported to play an important role in the complex interactions between the multiple genes and environmental factors which influence individual drug response phenotypes in patients. In this review, we will focus on the latest research on polymorphisms of candidate genes that code for drug metabolic enzymes (CYP2D6, CYP1A2, CYP3A4, etc.), drug transporters (mainly ABCB1) and neurotransmitter receptors (dopamine receptors and serotonin

  12. Prediction of Drug Clearance and Drug-Drug Interactions in Microscale Cultures of Human Hepatocytes.

    PubMed

    Lin, Christine; Shi, Julianne; Moore, Amanda; Khetani, Salman R

    2016-01-01

    Accurate prediction of in vivo hepatic drug clearance using in vitro assays is important to properly estimate clinical dosing regimens. Clearance of low-turnover compounds is especially difficult to predict using short-lived suspensions of unpooled primary human hepatocytes (PHHs) and functionally declining PHH monolayers. Micropatterned cocultures (MPCCs) of PHHs and 3T3-J2 fibroblasts have been shown previously to display major liver functions for several weeks in vitro. In this study, we first characterized long-term activities of major cytochrome P450 enzymes in MPCCs created from unpooled cryopreserved PHH donors. MPCCs were then used to predict the clearance of 26 drugs that exhibit a wide range of turnover rates in vivo (0.05-19.5 ml/min per kilogram). MPCCs predicted 73, 92, and 96% of drug clearance values for all tested drugs within 2-fold, 3-fold, and 4-fold of in vivo values, respectively. There was good correlation (R(2) = 0.94, slope = 1.05) of predictions between the two PHH donors. On the other hand, suspension hepatocytes and conventional monolayers created from the same donor had significantly reduced predictive capacity (i.e., 30-50% clearance values within 4-fold of in vivo), and were not able to metabolize several drugs. Finally, we modulated drug clearance in MPCCs by inducing or inhibiting P450s. Rifampin-mediated CYP3A4 induction increased midazolam clearance by 73%, while CYP3A4 inhibition with ritonavir decreased midazolam clearance by 79%. Similarly, quinidine-mediated CYP2D6 inhibition reduced clearance of dextromethorphan and desipramine by 71 and 22%, respectively. In conclusion, MPCCs created using cryopreserved unpooled PHHs can be used for drug clearance predictions and to model drug-drug interactions. PMID:26452722

  13. Molecular genetic analysis of the cytochrome P450-debrisoquine hydroxylase locus and association with cancer susceptibility.

    PubMed Central

    Smith, C A; Moss, J E; Gough, A C; Spurr, N K; Wolf, C R

    1992-01-01

    The cytochrome P450-dependent monooxygenases play a central role in the metabolism of chemical carcinogens. The action of these enzymes can lead to either carcinogen detoxication or activation. Differences in P450 expression in animal models give rise to large differences in susceptibility to chemical carcinogens, so genetic polymorphisms in P450 expression may be expected to be an important factor in individual human susceptibility to cancer. Of particular interest is the genetic polymorphism at the cytochrome P450-debrisoquine/sparteine hydroxylase locus (CYP2D6). Although this is a minor liver P450, its polymorphic expression is associated with the abnormal metabolism of at least 30 therapeutic drugs, including beta-blockers and tricyclic antidepressants. Conflicting reports have been made on the association of this polymorphism with cancer susceptibility. This disagreement may be attributable to limitations of the phenotyping assay used to identify affected individuals (poor metabolizers, PMs). In order to clarify these anomalies, we have developed a simple DNA-based assay with which we can identify the majority of PMs. The assay is centered around the primary gene defect responsible for the polymorphism, a G to A transition at the junction of intron 3/exon 4 which results in a frame-shift in the resultant mRNA. The frequency of this mutation is 70-80% in PMs. We have studied the frequency of mutated alleles in a control population and in a wide range of cancer patients. No association between this polymorphism and lung cancer susceptibility was observed; however, in other populations of cancer patients some very interesting shifts were found in the proportion of PMs and heterozygotes from that in the normal population. PMID:1486838

  14. Evaluation of the inhibition potential of plumbagin against cytochrome P450 using LC-MS/MS and cocktail approach

    PubMed Central

    Chen, Ang; Zhou, Xiaojing; Tang, Shuowen; Liu, Mingyao; Wang, Xin

    2016-01-01

    Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), a natural naphthoquinone compound isolated from roots of Plumbago zeylanica L., has drawn a lot of attention for its plenty of pharmacological properties including antidiabetes and anti-cancer. The aim of this study was to investigate the effects of plumbagin on CYP1A2, CYP2B1/6, CYP2C9/11, CYP2D1/6, CYP2E1 and CYP3A2/4 activities in human and rat liver and evaluate the potential herb-drug interactions using the cocktail approach. All CYP substrates and their metabolites were analyzed using high-performance liquid chromatography–tandem mass spectrometry (LC-MS/MS). Plumbagin presented non-time-dependent inhibition of CYP activities in both human and rat liver. In humans, plumbagin was not only a mixed inhibitor of CYP2B6, CYP2C9, CYP2D6, CYP2E1 and CYP3A4, but also a non-competitive inhibitor of CYP1A2, with Ki values no more than 2.16 μM. In rats, the mixed inhibition of CYP1A2 and CYP2D1, and competitive inhibition for CYP2B1, CYP2C11 and CYP2E1 with Ki values less than 9.93 μM were observed. In general, the relatively low Ki values of plumbagin in humans would have a high potential to cause the toxicity and drug interactions involving CYP enzymes. PMID:27329697

  15. Identifying a selective substrate and inhibitor pair for the evaluation of CYP2J2 activity.

    PubMed

    Lee, Caroline A; Jones, J P; Katayama, Jonathan; Kaspera, Rüdiger; Jiang, Ying; Freiwald, Sascha; Smith, Evan; Walker, Gregory S; Totah, Rheem A

    2012-05-01

    CYP2J2, an arachidonic acid epoxygenase, is recognized for its role in the first-pass metabolism of astemizole and ebastine. To fully assess the role of CYP2J2 in drug metabolism, a selective substrate and potent specific chemical inhibitor are essential. In this study, we report amiodarone 4-hydoxylation as a specific CYP2J2-catalyzed reaction with no CYP3A4, or other drug-metabolizing enzyme, involvement. Amiodarone 4-hydroxylation enabled the determination of liver relative activity factor and intersystem extrapolation factor for CYP2J2. Amiodarone 4-hydroxylation correlated with astemizole O-demethylation but not with CYP2J2 protein content in a sample of human liver microsomes. To identify a specific CYP2J2 inhibitor, 138 drugs were screened using terfenadine and astemizole as probe substrates with recombinant CYP2J2. Forty-two drugs inhibited CYP2J2 activity by ≥50% at 30 μM, but inhibition was substrate-dependent. Of these, danazol was a potent inhibitor of both hydroxylation of terfenadine (IC(50) = 77 nM) and O-demethylation of astemizole (K(i) = 20 nM), and inhibition was mostly competitive. Danazol inhibited CYP2C9, CYP2C8, and CYP2D6 with IC(50) values of 1.44, 1.95, and 2.74 μM, respectively. Amiodarone or astemizole were included in a seven-probe cocktail for cytochrome P450 (P450) drug-interaction screening potential, and astemizole demonstrated a better profile because it did not appreciably interact with other P450 probes. Thus, danazol, amiodarone, and astemizole will facilitate the ability to determine the metabolic role of CYP2J2 in hepatic and extrahepatic tissues. PMID:22328583

  16. Evaluation of the in vitro/in vivo drug interaction potential of BST204, a purified dry extract of ginseng, and its four bioactive ginsenosides through cytochrome P450 inhibition/induction and UDP-glucuronosyltransferase inhibition.

    PubMed

    Zheng, Yu Fen; Bae, Soo Hyeon; Choi, Eu Jin; Park, Jung Bae; Kim, Sun Ok; Jang, Min Jung; Park, Gyu Hwan; Shin, Wan Gyoon; Oh, Euichaul; Bae, Soo Kyung

    2014-06-01

    We evaluated the potential of BST204, a purified dry extract of ginseng, to inhibit or induce human liver cytochrome P450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) in vitro to assess its safety. In vitro drug interactions of four bioactive ginsenosides of BST204, S-Rg3, R-Rg3, S-Rh2, and R-Rh2, were also evaluated. We demonstrated that BST204 slightly inhibited CYP2C8, CYP2D6, CYP2C9, and CYP2B6 activities with IC50 values of 17.4, 26.8, 31.5, and 49.7μg/mL, respectively. BST204 also weakly inhibited UGT1A1, UGT1A9, and UGT2B7 activities with IC50 values of 14.5, 26.6, and 31.5μg/mL, respectively. The potential inhibition by BST204 of the three UGT activities might be attributable to S-Rg3, at least in part, as its inhibitory pattern was similar to that of BST204. However, BST204 showed no time-dependent inactivation of the nine CYPs studied. In addition, BST204 did not induce CYP1A2, 2B6, or 3A4/5. On the basis of an in vivo interaction studies, our data strongly suggest that BST204 is unlikely to cause clinically significant drug-drug interactions mediated via inhibition or induction of most CYPs or UGTs involved in drug metabolism in vivo. Our findings offer a clearer understanding and possibility to predict drug-drug interactions for the safe use of BST204 in clinical practice. PMID:24632066

  17. Drug-Like Property Profiling of Novel Neuroprotective Compounds to Treat Acute Ischemic Stroke: Guidelines to Develop Pleiotropic Molecules

    PubMed Central

    Lapchak, Paul A.

    2012-01-01

    The development of novel neuroprotective compounds to treat acute ischemic stroke (AIS) has been problematic and quite complicated, since many candidates that have been tested clinically lacked significant pleiotropic activity, were unable to effectively cross the blood brain barrier (BBB), had poor bioavailability or were toxic. Moreover, the compounds did not confer significant neuroprotection or clinical efficacy measured using standard behavioral endpoints, when studied in clinical trials in a heterogeneous population of stroke patients. To circumvent some of the drug development problems describe above, we have used a rational funnel approach to identify and develop promising candidates. Using a step-wise approach, we have identified a series of compounds based upon two different neuroprotection assays. We have then taken the candidates and determined their “drug-like” properties. This guidelines article details in vitro screening assays used to show pleiotropic activity of a series of novel compounds; including enhanced neuroprotective activity compared to the parent compound fisetin. Moreover, for preliminary drug de-risking or risk reduction during development, we used compound assessment in the CeeTox assay, ADME toxicity using the AMES test for genotoxicity and interaction with Cytochrome P450 using CYP450 inhibition analysis against a spectrum of CYP450 enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) as a measure of drug interaction. Moreover, the compounds have been studied using a transfected Madin Darby canine kidney (MDCK) cell assay to assess blood brain barrier penetration (BBB). Using this series of assays, we have identified 4 novel molecules to be developed as an AIS treatment. PMID:23687519

  18. Organophosphorothionate pesticides inhibit the bioactivation of imipramine by human hepatic cytochrome P450s

    SciTech Connect

    Di Consiglio, Emma; Meneguz, Annarita; Testai, Emanuela . E-mail: testai@iss.it

    2005-06-15

    The drug-toxicant interaction between the antidepressant imipramine (IMI) and three organophosphorothionate pesticides (OPTs), to which humans may be chronically and simultaneously exposed, has been investigated in vitro. Concentrations of IMI (2-400 {mu}M) and OPTs ({<=}10 {mu}M) representative of actual human exposure have been tested with recombinant human CYPs and human liver microsomes (HLM). The different CYPs involved in IMI demethylation to the pharmacologically active metabolite desipramine (DES) were CYP2C19 > CYP1A2 > CYP3A4. The OPTs significantly inhibited (up to >80%) IMI bioactivation catalyzed by the recombinant CYPs tested, except CYP2D6, and by HLM; the inhibition was dose-dependent and started at low pesticide concentrations (0.25-2.5 {mu}M). The OPTs, having lower K {sub m} values, efficiently competed with IMI for the enzyme active site, as in the case of CYP2C19. However, with CYP1A2 and CYP3A4, a time- and NADPH-dependent mechanism-based inactivation also occurred, consistently with irreversible inhibition due to the release of the sulfur atom, binding to the active CYP during OPT desulfuration. At low IMI and OPT concentrations, lower IC50 values have been obtained with recombinant CYP1A2 (0.7-1.1 {mu}M) or with HLM rich in 1A2-related activity (2-10.8 {mu}M). The K {sub i} values (2-14 {mu}M), independent on substrate concentrations, were quite low and similar for the three pesticides. Exposure to OPTs during IMI therapeutic treatments may lead to decreased DES formation, resulting in high plasma levels of the parent drug, eventual impairment of its pharmacological action and possible onset of adverse drug reactions (ADRs)

  19. Contextualizing Hepatocyte Functionality of Cryopreserved HepaRG Cell Cultures.

    PubMed

    Jackson, Jonathan P; Li, Linhou; Chamberlain, Erica D; Wang, Hongbing; Ferguson, Stephen S

    2016-09-01

    Over the last decade HepaRG cells have emerged as a promising alternative to primary human hepatocytes (PHH) and have been featured in over 300 research publications. Most of these reports employed freshly differentiated HepaRG cells that require time-consuming culture (∼28 days) for full differentiation. Recently, a cryopreserved, predifferentiated format of HepaRG cells (termed here "cryo-HepaRG") has emerged as a new model that improves global availability and experimental flexibility; however, it is largely unknown whether HepaRG cells in this format fully retain their hepatic characteristics. Therefore, we systematically investigated the hepatocyte functionality of cryo-HepaRG cultures in context with the range of interindividual variation observed with PHH in both sandwich-culture and suspension formats. These evaluations uncovered a novel adaptation period for the cryo-HepaRG format and demonstrated the impact of extracellular matrix on cryo-HepaRG functionality. Pharmacologically important drug-metabolizing alleles were genotyped in HepaRG cells and poor metabolizer alleles for CYP2D6, CYP2C9, and CYP3A5 were identified and consistent with higher frequency alleles found in individuals of Caucasian decent. We observed liver enzyme inducibility with aryl hydrocarbon receptor, constitutive androstane receptor (CAR), and pregnane X receptor activators comparable to that of sandwich-cultured PHH. Finally, we show for the first time that cryo-HepaRG supports proper CAR cytosolic sequestration and translocation to hepatocyte nuclei in response to phenobarbital treatment. Taken together, these data reveal important considerations for the use of this cell model and demonstrate that cryo-HepaRG are suitable for metabolism and toxicology screening.

  20. Hydralazine as a selective probe inactivator of aldehyde oxidase in human hepatocytes: estimation of the contribution of aldehyde oxidase to metabolic clearance.

    PubMed

    Strelevitz, Timothy J; Orozco, Christine C; Obach, R Scott

    2012-07-01

    Aldehyde oxidase (AO) metabolism could lead to significant underestimation of clearance in prediction of human pharmacokinetics as well as unanticipated exposure to AO-generated metabolites, if not accounted for early in drug research. We report a method using cryopreserved human hepatocytes and the time-dependent AO inhibitor hydralazine (K(I) = 83 ± 27 μM, k(inact) = 0.063 ± 0.007 min(-1)), which estimates the contribution of AO metabolism relative to total hepatic clearance. Using zaleplon as a probe substrate and simultaneously monitoring the AO-catalyzed formation of oxozaleplon and the CYP3A-catalyzed formation of desethyzaleplon in the presence of a range of hydralazine concentrations, it was determined that >90% inhibition of the AO activity with minimal effect on the CYP3A activity could be achieved with 25 to 50 μM hydralazine. This method was used to estimate the fraction metabolized due to AO [f(m(AO))] for six compounds with clearance attributed to AO along with four other drugs not metabolized by AO. The f(m(AO)) values for the AO substrates ranged between 0.49 and 0.83. Differences in estimated f(m(AO)) between two batches of pooled human hepatocytes suggest that sensitivity to hydralazine varies slightly with hepatocyte preparations. Substrates with a CYP2D6 contribution to clearance were affected by hydralazine to a minor extent, because of weak inhibition of this enzyme. Overall, these findings demonstrate that hydralazine, at a concentration of 25 to 50 μM, can be used in human hepatocyte incubations to estimate the contribution of AO to the hepatic clearance of drugs and other compounds.

  1. The St. Gallen Prize Lecture 2011: evolution of long-term adjuvant anti-hormone therapy: consequences and opportunities.

    PubMed

    Jordan, V Craig; Obiorah, Ifeyinwa; Fan, Ping; Kim, Helen R; Ariazi, Eric; Cunliffe, Heather; Brauch, Hiltrud

    2011-10-01

    The successful translation of the scientific principles of targeting the breast tumour oestrogen receptor (ER) with the nonsteroidal anti-oestrogen tamoxifen and using extended durations (at least 5 years) of adjuvant therapy, dramatically increased patient survivorship and significantly enhanced a drop in national mortality rates from breast cancer. The principles are the same for the validation of aromatase inhibitors to treat post-menopausal patients but tamoxifen remains a cheap, life-saving medicine for the pre-menopausal patient. Results from the Oxford Overview Analysis illustrate the scientific principle of "longer is better" for adjuvant therapy in pre-menopausal patients. One year of adjuvant therapy is ineffective at preventing disease recurrence or reducing mortality, whereas five years of adjuvant tamoxifen reduces recurrence by 50% which is maintained for a further ten years after treatment stops. Mortality is reduced but the magnitude continues to increase to 30% over a 15-year period. With this clinical database, it is now possible to implement simple solutions to enhance survivorship. Compliance with long-term anti-hormone adjuvant therapy is critical. In this regard, the use of selective serotonin reuptake inhibitors (SSRIs) to reduce severe menopausal side effects may be inappropriate. It is known that SSRIs block the CYP2D6 enzyme that metabolically activates tamoxifen to its potent anti-oestrogenic metabolite, endoxifen. The selective norepinephrine reuptake inhibitor, venlafaxine, does not block CYP2D6, and may be a better choice. Nevertheless, even with perfect compliance, the relentless drive of the breast cancer cell to acquire resistance to therapy persists. The clinical application of long-term anti-hormonal therapy for the early treatment and prevention of breast cancer, focused laboratory research on the discovery of mechanisms involved in acquired anti-hormone resistance. Decades of laboratory study to reproduce clinical experience

  2. Evolution of Long-Term Adjuvant Anti-hormone Therapy: Consequences and Opportunities. The St. Gallen Prize Lecture

    PubMed Central

    Jordan, V. Craig; Obiorah, Ifeyinwa; Fan, Ping; Kim, Helen R.; Ariazi, Eric; Cunliffe, Heather; Brauch, Hiltrud

    2012-01-01

    The successful translation of the scientific principles of targeting the breast tumour oestrogen receptor (ER) with the nonsteroidal anti-oestrogen tamoxifen and using extended durations (at least 5-years) of adjuvant therapy, dramatically increased patient survivorship and significantly enhanced a drop in national mortality rates from breast cancer. The principles are the same for the validation of aromatase inhibitors to treat post-menopausal patients but tamoxifen remains a cheap, life-saving medicine for the pre-menopausal patient. Results from the Oxford Overview Analysis illustrate the scientific principle of “longer is better” for adjuvant therapy in pre-menopausal patients. One-year of adjuvant therapy is ineffective at preventing disease recurrence or reducing mortality, whereas five-years of adjuvant tamoxifen reduces recurrence by 50% which is maintained for a further ten-years after treatment stops. Mortality is reduced but the magnitude continues to increase to 30% over a 15-year period. With this clinical database, it is now possible to implement simple solutions to enhance survivorship. Compliance with long-term anti-hormone adjuvant therapy is critical. In this regard, the use of selective serotonin reuptake inhibitors (SSRIs) to reduce severe menopausal side effects may be inappropriate. It is known that SSRIs block the CYP2D6 enzyme that metabolically activates tamoxifen to its potent anti-oestrogenic metabolite, endoxifen. The selective nor-epinephrine reuptake inhibitor, venlafaxine, does not block CYP2D6, and may be a better choice. Nevertheless, even with perfect compliance, the relentless drive of the breast cancer cell to acquire resistance to therapy persists. The clinical application of long-term anti-hormonal therapy for the early treatment and prevention of breast cancer, focused laboratory research on the discovery of mechanisms involved in acquired anti-hormone resistance. Decades of laboratory study to reproduce clinical

  3. The St. Gallen Prize Lecture 2011: evolution of long-term adjuvant anti-hormone therapy: consequences and opportunities.

    PubMed

    Jordan, V Craig; Obiorah, Ifeyinwa; Fan, Ping; Kim, Helen R; Ariazi, Eric; Cunliffe, Heather; Brauch, Hiltrud

    2011-10-01

    The successful translation of the scientific principles of targeting the breast tumour oestrogen receptor (ER) with the nonsteroidal anti-oestrogen tamoxifen and using extended durations (at least 5 years) of adjuvant therapy, dramatically increased patient survivorship and significantly enhanced a drop in national mortality rates from breast cancer. The principles are the same for the validation of aromatase inhibitors to treat post-menopausal patients but tamoxifen remains a cheap, life-saving medicine for the pre-menopausal patient. Results from the Oxford Overview Analysis illustrate the scientific principle of "longer is better" for adjuvant therapy in pre-menopausal patients. One year of adjuvant therapy is ineffective at preventing disease recurrence or reducing mortality, whereas five years of adjuvant tamoxifen reduces recurrence by 50% which is maintained for a further ten years after treatment stops. Mortality is reduced but the magnitude continues to increase to 30% over a 15-year period. With this clinical database, it is now possible to implement simple solutions to enhance survivorship. Compliance with long-term anti-hormone adjuvant therapy is critical. In this regard, the use of selective serotonin reuptake inhibitors (SSRIs) to reduce severe menopausal side effects may be inappropriate. It is known that SSRIs block the CYP2D6 enzyme that metabolically activates tamoxifen to its potent anti-oestrogenic metabolite, endoxifen. The selective norepinephrine reuptake inhibitor, venlafaxine, does not block CYP2D6, and may be a better choice. Nevertheless, even with perfect compliance, the relentless drive of the breast cancer cell to acquire resistance to therapy persists. The clinical application of long-term anti-hormonal therapy for the early treatment and prevention of breast cancer, focused laboratory research on the discovery of mechanisms involved in acquired anti-hormone resistance. Decades of laboratory study to reproduce clinical experience

  4. In vitro characterization of the metabolic pathways and cytochrome P450 inhibition and induction potential of BMS-690514, an ErbB/vascular endothelial growth factor receptor inhibitor.

    PubMed

    Hong, Haizheng; Su, Hong; Ma, Li; Yao, Ming; Iyer, Ramaswamy A; Humphreys, W Griffith; Christopher, Lisa J

    2011-09-01

    (3R,4R)-4-Amino-1-((4-((3-methoxyphenyl)amino)pyrrolo[2,1-f][1,2,4]triazin-5-yl)methyl)-3-piperidinol (BMS-690514) is a potent inhibitor of ErbB human epidermal growth factor receptors (HER1, 2, and 4) and vascular endothelial growth factor receptors 1 to 3 that has been under clinical development for solid tumor malignancies. BMS-690514 is primarily cleared by metabolism with the primary metabolic pathways being direct glucuronidation (M6), hydroxylation (M1, M2, and M37), and O-demethylation (M3). In the current investigation, the metabolic drug-drug interaction potential of BMS-690514 was evaluated in a series of in vitro studies. Reaction phenotyping experiments with cDNA-expressed human cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) enzymes and human liver microsomes (HLM) in the presence of P450 or UGT inhibitors suggested that CYP3A4, CYP2D6, and CYP2C9 were the major enzymes responsible for the oxidative metabolism of BMS-690514, whereas both UGT2B4 and UGT2B7 were responsible for the formation of M6. BMS-690514 did not cause direct or time-dependent inhibition of P450 enzymes (IC(50) values ≥40 μM) in incubations with HLM and probe substrates of CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, or 3A4. The compound also did not substantially induce CYP1A1, CYP1A2, CYP2B6, CYP3A4, or UGT1A1 at concentrations up to 10 μM in cultured human hepatocytes. Considering the submicromolar plasma C(max) concentration at the anticipated clinical dose of 200 mg, BMS-690514 is unlikely to cause clinically relevant drug-drug interactions when coadministered with other medications. In addition, because multiple enzymatic clearance pathways are available for the compound, inhibition of an individual metabolic pathway either via coadministered drugs or gene polymorphisms is not expected to cause pronounced (>2-fold) increases in BMS-690514 exposure. PMID:21673131

  5. Classification Models for Predicting Cytochrome P450 Enzyme-Substrate Selectivity.

    PubMed

    Zhang, Tao; Dai, Hao; Liu, Limin Angela; Lewis, David F V; Wei, Dongqing

    2012-01-01

    Cytochrome P450 (CYP) is an important drug-metabolizing enzyme family. Different CYPs often have different substrate preferences. In addition, one drug molecule may be preferentially metabolized by one or more CYP enzymes. Therefore, the classification and prediction of substrate specificity of CYP enzymes are of importance to the understanding of drug metabolisms and may help guide the development of new drugs. In this study, we used three different machine learning methods to classify CYP substrates for predicting CYP-substrate specificity based solely on structural and physicochemical properties of the substrates. We first built a simple decision tree model to classify substrates of four CYP enzymes, 1A2, 2C9, 2D6 and 3A4 with more than 78 % classification accuracy. We then built a single-label eight-class model and a multilabel five-class model to classify substrates of eight CYP enzymes and to classify substrates that can be metabolized by more than one CYP enzymes, respectively. Above 90 % and >80 % prediction accuracy was achieved for the single-label and multilabel models, respectively. The main improvement of our models over existing ones is the automated and unbiased selection of descriptors by genetic algorithms, which makes our methods applicable for larger data sets and increased number of CYP enzymes.

  6. Size- and time-dependent alteration in metabolic activities of human hepatic cytochrome P450 isozymes by gold nanoparticles via microsomal coincubations

    NASA Astrophysics Data System (ADS)

    Ye, Meiling; Tang, Ling; Luo, Mengjun; Zhou, Jing; Guo, Bin; Liu, Yangyuan; Chen, Bo

    2014-11-01

    Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation of the impacts of gold nanoparticles (AuNPs) on five major CYP isozymes under in vitro incubations of human liver microsomes (HLMs) with tannic acid (TA)-stabilized AuNPs in the size range of 5 to 100 nm. It is found that smaller AuNPs show more pronounced inhibitory effects on CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in a dose-dependent manner, while 1A2 is the least susceptible to the AuNP inhibition. The size- and dose-dependent CYP-specific inhibition and the nonspecific drug-nanogold binding in the coincubation media can be significantly reduced by increasing the concentration ratio of microsomal proteins to AuNPs, probably via a noncompetitive mode. Remarkably, AuNPs are also found to exhibit a slow time-dependent inactivation of 2D6 and 3A4 in a β-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt hydrate (NADPH)-independent manner. During microsomal incubations, UV-vis spectroscopy, dynamic light scattering, and zeta-potential measurements were used to monitor the changes in particle properties under the miscellaneous AuNP/HLM/CYP dispersion system. An improved stability of AuNPs by mixing HLM with the gold nanocolloid reveals that the stabilization via AuNP-HLM interactions may occur on a faster time scale than the salt-induced nanoaggregation by incubation in phosphate buffer. The results suggest that the AuNP induced CYP inhibition can be partially attributed to its adhesion onto the enzymes to alter their structural conformations or onto the HLM membrane therefore impairing the integral membrane proteins. Additionally, AuNPs likely block the substrate pocket on the CYP surface, depending on both the particle characteristics and the

  7. Size- and time-dependent alteration in metabolic activities of human hepatic cytochrome P450 isozymes by gold nanoparticles via microsomal coincubations

    PubMed Central

    2014-01-01

    Nano-sized particles are known to interfere with drug-metabolizing cytochrome P450 (CYP) enzymes, which can be anticipated to be a potential source of unintended adverse reactions, but the mechanisms underlying the inhibition are still not well understood. Herein we report a systematic investigation of the impacts of gold nanoparticles (AuNPs) on five major CYP isozymes under in vitro incubations of human liver microsomes (HLMs) with tannic acid (TA)-stabilized AuNPs in the size range of 5 to 100 nm. It is found that smaller AuNPs show more pronounced inhibitory effects on CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in a dose-dependent manner, while 1A2 is the least susceptible to the AuNP inhibition. The size- and dose-dependent CYP-specific inhibition and the nonspecific drug-nanogold binding in the coincubation media can be significantly reduced by increasing the concentration ratio of microsomal proteins to AuNPs, probably via a noncompetitive mode. Remarkably, AuNPs are also found to exhibit a slow time-dependent inactivation of 2D6 and 3A4 in a β-nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium salt hydrate (NADPH)-independent manner. During microsomal incubations, UV–vis spectroscopy, dynamic light scattering, and zeta-potential measurements were used to monitor the changes in particle properties under the miscellaneous AuNP/HLM/CYP dispersion system. An improved stability of AuNPs by mixing HLM with the gold nanocolloid reveals that the stabilization via AuNP-HLM interactions may occur on a faster time scale than the salt-induced nanoaggregation by incubation in phosphate buffer. The results suggest that the AuNP induced CYP inhibition can be partially attributed to its adhesion onto the enzymes to alter their structural conformations or onto the HLM membrane therefore impairing the integral membrane proteins. Additionally, AuNPs likely block the substrate pocket on the CYP surface, depending on both the particle characteristics and the

  8. Fasting-Induced Changes in Hepatic P450 Mediated Drug Metabolism Are Largely Independent of the Constitutive Androstane Receptor CAR

    PubMed Central

    de Vries, E. M.; Lammers, L. A.; Achterbergh, R.; Klümpen, H-J; Mathot, R. A. A.; Boelen, A.; Romijn, J. A.

    2016-01-01

    Introduction Hepatic drug metabolism by cytochrome P450 enzymes is altered by the nutritional status of patients. The expression of P450 enzymes is partly regulated by the constitutive androstane receptor (CAR). Fasting regulates the expression of both P450 enzymes and CAR and affects hepatic drug clearance. We hypothesized that the fasting-induced alterations in P450 mediated drug clearance are mediated by CAR. Methods To investigate this we used a drug cocktail validated in humans consisting of five widely prescribed drugs as probes for specific P450 enzymes: caffeine (CYP1A2), metoprolol (CYP2D6), omeprazole (CYP2C19), midazolam (CYP3A4) and s-warfarin (CYP2C9). This cocktail was administered to wild type (WT, C57Bl/6) mice or mice deficient for CAR (CAR-/-) that were either fed ad libitum or fasted for 24 hours. Blood was sampled at predefined intervals and drug concentrations were measured as well as hepatic mRNA expression of homologous/orthologous P450 enzymes (Cyp1a2, Cyp2d22, Cyp3a11, Cyp2c37, Cyp2c38 and Cyp2c65). Results Fasting decreased Cyp1a2 and Cyp2d22 expression and increased Cyp3a11 and Cyp2c38 expression in both WT and CAR-/- mice. The decrease in Cyp1a2 was diminished in CAR-/- in comparison with WT mice. Basal Cyp2c37 expression was lower in CAR-/- compared to WT mice. Fasting decreased the clearance of all drugs tested in both WT and CAR-/- mice. The absence of CAR was associated with an decrease in the clearance of omeprazole, metoprolol and midazolam in fed mice. The fasting-induced reduction in clearance of s-warfarin was greater in WT than in CAR-/-. The changes in drug clearance correlated with the expression pattern of the specific P450 enzymes in case of Cyp1a2-caffeine and Cyp2c37-omeprazole. Conclusion We conclude that CAR is important for hepatic clearance of several widely prescribed drugs metabolized by P450 enzymes. However the fasting-induced alterations in P450 mediated drug clearance are largely independent of CAR. PMID

  9. Biocatalytic Single Enzyme Nanoparticles

    SciTech Connect

    Grate, Jay W.; Kim, Jungbae

    2004-03-31

    As an innovative way of enzyme stabilization, we recently developed a new enzyme composite of nano-meter scale that we call "single-enzyme nanoparticles (SENs)" (9). Each enzyme molecule is surrounded with a porous composite organic/inorganic network of less than a few nanometers think. This approach represents a new type of enzyme-containing nanostructure. In experiments with perotease (chymotrypsin, CT), the activity of single enzyme nanoparticle form of the enzyme was greatly stabilized compared to the free form, without imposing a serious mass transfer limitation of substrates. In this chapter we will describe the synthesis, characterization and catalytic activity of the new SENs.

  10. Cytochrome P450 expression and activities in human tongue cells and their modulation by green tea extract

    SciTech Connect

    Yang, S.-P.; Raner, Gregory M. . E-mail: gmraner@uncg.edu

    2005-01-15

    The expression, inducibility, and activities of several cytochrome P450 (CYP) enzymes were investigated in a human tongue carcinoma cell model, CAL 27, and compared with the human liver model HepG2 cells. The modulation effects of green tea on various CYP isoforms in both cell lines were also examined. RT-PCR analysis of CAL 27 cells demonstrated constitutive expression of mRNA for CYPs 1A1, 1A2, 2C, 2E1, 2D6, and 4F3. The results were negative for CYP2A6, 2B6/7, 3A3/4, and 3A7. Both cell lines displayed identical expression and induction profiles for all of the isoforms examined in this study except 3A7 and 2B6/7, which were produced constitutively in HepG2 but not Cal-27 cells. CYP1A1 and 1A2 were both induced by treatment with {beta}-napthoflavone as indicated by RT-PCR and Western blotting, while CYP2C mRNA was upregulated by all-trans retinoic acid and farnesol. RT-PCR and Western blot analysis showed that the expressions of CYP1A1 and 1A2 were induced by green tea extract (GTE), which also caused an increase in mRNA for CYP2E1, CYP2D6, and CYP2C isoforms. The four tea catechins, EGC, EC, EGCG and ECG, applied to either HepG2 or Cal-27 cells at the concentration found in GTE failed to induce CYP1A1 or CYP1A2, as determined by RT-PCR. Of the isoforms that were apparently induced by GTE, only 7-ethoxycoumarin deethylase (ECOD) activity could be detected in CAL 27 or HepG2 cells. Interestingly, mRNA and protein for CYP1A1 and CYP1A2 were detected in both cell lines, and although protein and mRNA levels of CYP1A1 and CYP1A2 were increased by GTE, the observed ECOD activity in both cell lines was decreased.

  11. Involvement of multiple cytochrome P450 and UDP-glucuronosyltransferase enzymes in the in vitro metabolism of muraglitazar.

    PubMed

    Zhang, Donglu; Wang, Lifei; Chandrasena, Gamini; Ma, Li; Zhu, Mingshe; Zhang, Hongjian; Davis, Carl D; Humphreys, W Griffith

    2007-01-01

    Muraglitazar (Pargluva), a dual alpha/gamma peroxisome proliferator-activated receptor activator, has both glucose- and lipid-lowering effects in animal models and in patients with diabetes. The human major primary metabolic pathways of muraglitazar include acylglucuronidation, aliphatic/aryl hydroxylation, and O-demethylation. This study describes the identification of human cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) enzymes involved in the in vitro metabolism of muraglitazar. [(14)C]Muraglitazar was metabolized by cDNA-expressed CYP2C8, 2C9, 2C19, 2D6, and 3A4, but to a very minimal extent by CYP1A2, 2A6, 2B6, 2C18, 2E1, and 3A5. Inhibition of the in vitro metabolism of muraglitazar in human liver microsomes, at a clinically efficacious concentration, by chemical inhibitors and monoclonal antibodies further supported involvement of CYP2C8, 2C9, 2C19, 2D6, and 3A4 in its oxidation. A combination of intrinsic clearance (V(max)/K(m)) and relative concentrations of each P450 enzyme in the human liver was used to predict the contribution of CYP2C8, 2C9, 2C19, 2D6, and 3A4 to the formation of each primary oxidative metabolite and to the overall oxidative metabolism of muraglitazar. Glucuronidation of [(14)C]muraglitazar was catalyzed by cDNA-expressed UGT1A1, 1A3, and 1A9, but not by UGT1A6, 1A8, 1A10, 2B4, 2B7, and 2B15. The K(m) values for muraglitazar glucuronidation by the three active UGT enzymes were similar (2-4 muM). In summary, muraglitazar was metabolized by multiple P450 and UGT enzymes to form multiple metabolites. This characteristic predicts a low potential for the alteration of the pharmacokinetic parameters of muraglitazar via polymorphic drug metabolism enzymes responsible for clearance of the compound or by coadministration of drugs that inhibit or induce relevant metabolic enzymes. PMID:17062778

  12. Insolubilization process increases enzyme stability

    NASA Technical Reports Server (NTRS)

    Billingham, J.; Lyn, J.

    1971-01-01

    Enzymes complexed with polymeric matrices contain properties suggesting application to enzyme-controlled reactions. Stability of insolubilized enzyme derivatives is markedly greater than that of soluble enzymes and physical form of insolubilized enzymes is useful in column and batch processes.

  13. The effect of resveratrol on pharmacokinetics of aripiprazole in vivo and in vitro.

    PubMed

    Zhan, Yun-Yun; Liang, Bing-Qing; Li, Xiang-Yu; Gu, Er-Min; Dai, Da-Peng; Cai, Jian-Ping; Hu, Guo-Xin

    2016-01-01

    1. The objective of this study were to investigate the effect of orally administered resveratrol on the pharmacokinetics of aripiprazole (APZ) in rat, and the inhibitory effects of resveratrol on APZ dehydrogenation activity in liver microsomes and human cytochrome P450 3A4 and 2D6. 2. Twenty-five healthy male Sprague-Dawley rats were randomly divided into five groups: A (control group), B (multiple dose of 200 mg/kg resveratrol), C (multiple dose of 100 mg/kg resveratrol), D (a single dose of 200 mg/kg resveratrol) and E (a single dose of 100 mg/kg resveratrol). A single dose of 3 mg/kg APZ administered orally 30 min after administration of resveratrol. In addition, CYP2D6*1, CYP3A4*1, human and rat liver microsomes were performed to determine the effect of resveratrol on the metabolism of APZ in vitro. 3. The multiple dose of 200 or 100 mg/kg resveratrol significantly increased the AUC and Cmax of APZ. The resveratrol also obviously decreased the CL, but without any significant difference on t1/2 in vivo. On the other hand, resveratrol showed inhibitory effect on CYP3A4*1, CYP2D6*1, human and rat microsomes, the IC50 of resveratrol was 6.771, 87.87, 45.11 and 35.59 μmol l(-1), respectively. 4. Those results indicated more attention should be paid when APZ was administrated combined with resveratrol. PMID:26391142

  14. How the Probability and Potential Clinical Significance of Pharmacokinetically Mediated Drug-Drug Interactions Are Assessed in Drug Development: Desvenlafaxine as an Example

    PubMed Central

    Nichols, Alice I.; Preskorn, Sheldon H.

    2015-01-01

    Objective: The avoidance of adverse drug-drug interactions (DDIs) is a high priority in terms of both the US Food and Drug Administration (FDA) and the individual prescriber. With this perspective in mind, this article illustrates the process for assessing the risk of a drug (example here being desvenlafaxine) causing or being the victim of DDIs, in accordance with FDA guidance. Data Sources/Study Selection: DDI studies for the serotonin-norepinephrine reuptake inhibitor desvenlafaxine conducted by the sponsor and published since 2009 are used as examples of the systematic way that the FDA requires drug developers to assess whether their new drug is either capable of causing clinically meaningful DDIs or being the victim of such DDIs. In total, 8 open-label studies tested the effects of steady-state treatment with desvenlafaxine (50–400 mg/d) on the pharmacokinetics of cytochrome (CYP) 2D6 and/or CYP 3A4 substrate drugs, or the effect of CYP 3A4 inhibition on desvenlafaxine pharmacokinetics. The potential for DDIs mediated by the P-glycoprotein (P-gp) transporter was assessed in in vitro studies using Caco-2 monolayers. Data Extraction: Changes in area under the plasma concentration-time curve (AUC; CYP studies) and efflux (P-gp studies) were reviewed for potential DDIs in accordance with FDA criteria. Results: Desvenlafaxine coadministration had minimal effect on CYP 2D6 and/or 3A4 substrates per FDA criteria. Changes in AUC indicated either no interaction (90% confidence intervals for the ratio of AUC geometric least-squares means [GM] within 80%–125%) or weak inhibition (AUC GM ratio 125% to < 200%). Coadministration with ketoconazole resulted in a weak interaction with desvenlafaxine (AUC GM ratio of 143%). Desvenlafaxine was not a substrate (efflux ratio < 2) or inhibitor (50% inhibitory drug concentration values > 250 μM) of P-gp. Conclusions: A 2-step process based on FDA guidance can be used first to determine whether a pharmacokinetically mediated

  15. Epithelial ovarian cancer: influence of polymorphism at the glutathione S-transferase GSTM1 and GSTT1 loci on p53 expression.

    PubMed Central

    Sarhanis, P.; Redman, C.; Perrett, C.; Brannigan, K.; Clayton, R. N.; Hand, P.; Musgrove, C.; Suarez, V.; Jones, P.; Fryer, A. A.; Farrell, W. E.; Strange, R. C.

    1996-01-01

    The importance of polymorphism in the glutathione S-transferase GSTM1, GSTT1 and, cytochrome P450, CYP2D6 loci in the pathogenesis of epithelial ovarian cancer has been assessed in two studies; firstly, a case-control study designed to determine the influence of these genes on susceptibility to this cancer, and secondly, the putative role of these genes in the protection of host cell DNA has been studied by comparing p53 expression in patients with different GSTM1, GSTT1 and CYP2D6 genotypes. The frequencies of GSTM1, GSTT1 and CYP2D6 genotypes in 84 cases and 325 controls were not different. Immunohistochemistry was used to detect p53 expression in 63 of these tumours. Expression was found in 23 tumours. Of the patients demonstrating immunopositivity, 20 (87%) were GSTM1 null. The frequency distributions of GSTM1 genotypes in p53-positive and -negative samples were significantly different (P = 0.002) and those for GSTT1 genotypes approached significance (exact P = 0.057). The proportion of patients with both GSTM1 null and GSTT1 null was also significantly greater in the immunopositive (4/22) than in the immunonegative group (1/40) (P = 0.0493). Single-strand conformational polymorphism (SSCP) analysis was used to detect mutations in the 23 tumour samples demonstrating p53 positivity. A shift in electrophoretic mobility of amplified fragments was found in 11 patients (exons 5, 6, 7 and 8) and these exons were sequenced. In eight samples a mutation was found. No SCCP variants were identified in the other 12 immunopositive patients. Sequencing of exons 4-9 of p53 from these tumours resulted in the detection of mutations in two patients (exons 5 and 7). Thus, in 23 patients who demonstrated immunopositivity, p53 mutations were found in nine patients with GSTM1 null (90.0%). In the 13 patients in whom no mutations were identified, 11 were GSTM1 null (84.6%). The data show that overexpression of p53 is associated with the GSTM1 null genotype. We propose the data are

  16. Impact of inter-individual differences in drug metabolism and pharmacokinetics on safety evaluation.

    PubMed

    Dorne, J L C M

    2004-12-01

    Safety evaluation aims to assess the dose-response relationship to determine a dose/level of exposure for food contaminants below which no deleterious effect is measurable that is 'without appreciable health risk' when consumed daily over a lifetime. These safe levels, such as the acceptable daily intake (ADI) have been derived from animal studies using surrogates for the threshold such as the no-observed-adverse-effect-level (NOAEL). The extrapolation from the NOAEL to the human safe intake uses a 100-fold uncertainty factor, defined as the product of two 10-fold factors allowing for human variability and interspecies differences. The 10-fold factor for human variability has been further subdivided into two factors of 10(0.5) (3.16) to cover toxicokinetics and toxicodynamics and this subdivsion allows for the replacement of an uncertainty factor with a chemical-specific adjustment factor (CSAF) when compound-specific data are available. Recently, an analysis of human variability in pharmacokinetics for phase I metabolism (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, hydrolysis, alcohol dehydrogenase), phase II metabolism (N-acetyltransferase, glucuronidation, glycine conjugation, sulphation) and renal excretion was used to derive pathway-related uncertainty factors in subgroups of the human population (healthy adults, effects of ethnicity and age). Overall, the pathway-related uncertainty factors (99th centile) were above the toxicokinetic uncertainty factor for healthy adults exposed to xenobiotics handled by polymorphic metabolic pathways (and assuming the parent compound was the proximate toxicant) such as CYP2D6 poor metabolizers (26), CYP2C19 poor metabolizers (52) and NAT-2 slow acetylators (5.2). Neonates were the most susceptible subgroup of the population for pathways with available data [CYP1A2 and glucuronidation (12), CYP3A4 (14), glycine conjugation (28)]. Data for polymorphic pathways were not available in neonates but uncertainty factors

  17. Impact of inter-individual differences in drug metabolism and pharmacokinetics on safety evaluation.

    PubMed

    Dorne, J L C M

    2004-12-01

    Safety evaluation aims to assess the dose-response relationship to determine a dose/level of exposure for food contaminants below which no deleterious effect is measurable that is 'without appreciable health risk' when consumed daily over a lifetime. These safe levels, such as the acceptable daily intake (ADI) have been derived from animal studies using surrogates for the threshold such as the no-observed-adverse-effect-level (NOAEL). The extrapolation from the NOAEL to the human safe intake uses a 100-fold uncertainty factor, defined as the product of two 10-fold factors allowing for human variability and interspecies differences. The 10-fold factor for human variability has been further subdivided into two factors of 10(0.5) (3.16) to cover toxicokinetics and toxicodynamics and this subdivsion allows for the replacement of an uncertainty factor with a chemical-specific adjustment factor (CSAF) when compound-specific data are available. Recently, an analysis of human variability in pharmacokinetics for phase I metabolism (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, hydrolysis, alcohol dehydrogenase), phase II metabolism (N-acetyltransferase, glucuronidation, glycine conjugation, sulphation) and renal excretion was used to derive pathway-related uncertainty factors in subgroups of the human population (healthy adults, effects of ethnicity and age). Overall, the pathway-related uncertainty factors (99th centile) were above the toxicokinetic uncertainty factor for healthy adults exposed to xenobiotics handled by polymorphic metabolic pathways (and assuming the parent compound was the proximate toxicant) such as CYP2D6 poor metabolizers (26), CYP2C19 poor metabolizers (52) and NAT-2 slow acetylators (5.2). Neonates were the most susceptible subgroup of the population for pathways with available data [CYP1A2 and glucuronidation (12), CYP3A4 (14), glycine conjugation (28)]. Data for polymorphic pathways were not available in neonates but uncertainty factors

  18. [Pharmacogenetics and pharmacogenomics].

    PubMed

    Bourel, Michel; Ardaillou, Raymond

    2006-01-01

    Genetic polymorphisms can lead to drug adverse effects because certain allelic variants of genes that encode enzymes, targets or carriers involved in drug metabolism, are associated with an increase or a loss of function. Drug metabolism takes place essentially in the liver and is regulated by phase I enzymes (including several cytochrome P450 isoenzymes), the role of which is to make drug metabolites more polar by hydroxylation, and by phase II enzymes that catalyse conjugation reactions. Cytochromes P450 isoenzymes control 80% of oxidative reactions, owing to their low substrate specificity. The most extensively studied polymorphisms are those of CYP2D6 and CYP2C9, which are frequent and affect the metabolism of many drugs. For example, several CYP2C9 gene variants are associated with lower activity of the corresponding enzyme, potentially leading to drug overdose. Thiopurine methyl transferase and UDP-glucuronyl transferase are phase II enzymes that conjugate respectively 6-mercaptopurine metabolites with a methyl radical and metabolites of irinotecan (an anti-tumour drug) with a glucuronyl radical. Mutations in the corresponding genes can, through a loss of function, lead to excessively high levels of active metabolites, with a risk of bone marrow aplasia. The action of vitamin K antagonists is influenced by polymorphisms of vitamine K epoxyde reductase, the target molecule of vitamin K. A mutation in the methylene tetrahydrofolate reductase gene diminishes the folate pool and thereby increases the effects of methotrexate, a folic acid antagonist. Resistance to the anti-platelet effect of aspirin can be due to polymorphisms that affect other platelet aggregation pathways. Genotyping results must be confirmed by phenotyping, which examines the rate of transformation of a drug into its metabolites and shows whether the increase or decrease in this rate is linked to a specific polymorphism. Somatic mutations in malignant tumours can modify the response to

  19. Insights on Cytochrome P450 Enzymes and Inhibitors Obtained Through QSAR Studies

    PubMed Central

    Sridhar, Jayalakshmi; Liu, Jiawang; Foroozesh, Maryam; Stevens, Cheryl L. Klein

    2013-01-01

    The cytochrome P450 (CYP) superfamily of heme enzymes play an important role in the metabolism of a large number of endogenous and exogenous compounds, including most of the drugs currently on the market. Inhibitors of CYP enzymes have important roles in the treatment of several disease conditions such as numerous cancers and fungal infections in addition to their critical role in drug-drug interactions. Structure activity relationships (SAR), and three-dimensional quantitative structure activity relationships (3D-QSAR) represent important tools in understanding the interactions of the inhibitors with the active sites of the CYP enzymes. A comprehensive account of the QSAR studies on the major human CYPs 1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4 and a few other CYPs are detailed in this review which will provide us with an insight into the individual/common characteristics of the active sites of these enzymes and the enzyme-inhibitor interactions. PMID:22864238

  20. Developments in Enzyme Technology.

    ERIC Educational Resources Information Center

    Chaplin, M. F.

    1984-01-01

    Enzyme technology has a well-established industrial base, with applications that have survived competition. The most prominent applications of enzymes in biotechnology are examined with an explanation of some theoretical background. Topics include extending an enzyme's useful life, partition and diffusion, industrial uses, and therapeutic uses.…

  1. Chloroplast and Cytoplasmic Enzymes

    PubMed Central

    Anderson, Louise E.; Advani, Vimal R.

    1970-01-01

    Three pea (Pisum sativum) leaf chloroplast enzymes—triose phosphate isomerase, glyceric acid 3-phosphate kinase, and fructose 1,6-diphosphate aldolase—have been separated from the corresponding cytoplasmic enzymes by isoelectric focusing. These three enzymes of the reductive pentose phosphate cycle are therefore distinct proteins, not identical with the analogous enzymes of the Embden-Meyerhof-Parnas pathway. PMID:16657347

  2. The average enzyme principle.

    PubMed

    Reznik, Ed; Chaudhary, Osman; Segrè, Daniel

    2013-09-01

    The Michaelis-Menten equation for an irreversible enzymatic reaction depends linearly on the enzyme concentration. Even if the enzyme concentration changes in time, this linearity implies that the amount of substrate depleted during a given time interval depends only on the average enzyme concentration. Here, we use a time re-scaling approach to generalize this result to a broad category of multi-reaction systems, whose constituent enzymes have the same dependence on time, e.g. they belong to the same regulon. This "average enzyme principle" provides a natural methodology for jointly studying metabolism and its regulation.

  3. Profiling the orphan enzymes.

    PubMed

    Sorokina, Maria; Stam, Mark; Médigue, Claudine; Lespinet, Olivier; Vallenet, David

    2014-06-06

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called "orphan enzymes". The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to "local orphan enzymes" that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new activities.

  4. Enzyme kinetics of conjugating enzymes: PAPS sulfotransferase.

    PubMed

    James, Margaret O

    2014-01-01

    The sulfotransferase (SULT) enzymes catalyze the formation of sulfate esters or sulfamates from substrates that contain hydroxy or amine groups, utilizing 3'-phosphoadenosyl-5'-phosphosulfate (PAPS) as the donor of the sulfonic group. The rate of product formation depends on the concentrations of PAPS and substrate as well as the sulfotransferase enzyme; thus, if PAPS is held constant while varying substrate concentration (or vice versa), the kinetic constants derived are apparent constants. When studied over a narrow range of substrate concentrations, classic Michaelis-Menten kinetics can be observed with many SULT enzymes and most substrates. Some SULT enzymes exhibit positive or negative cooperativity during conversion of substrate to product, and the kinetics fit the Hill plot. A characteristic feature of most sulfotransferase-catalyzed reactions is that, when studied over a wide range of substrate concentrations, the rate of product formation initially increases as substrate concentration increases, then decreases at high substrate concentrations, i.e., they exhibit substrate inhibition or partial substrate inhibition. This chapter gives an introduction to sulfotransferases, including a historical note, the nomenclature, a description of the function of SULTs with different types of substrates, presentation of examples of enzyme kinetics with SULTs, and a discussion of what is known about mechanisms of substrate inhibition in the sulfotransferases.

  5. Enzymes for improved biomass conversion

    DOEpatents

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  6. Catalyzed enzyme electrodes

    SciTech Connect

    Zawodzinski, T.A.; Wilson, M.S.; Rishpon, J.; Gottesfeld, S.

    1992-12-31

    An enzyme electrode is prepared with a composite coating on an electrical conductor. The composite coating is formed from a casting solution of a perfluorosulfonic acid, polymer, an enzyme, and a carbon supported catalyst. The solution may be cast directly on the conductor surface or may be formed as a membrane and applied to the surface. The perfluorosulfonic acid ionomer formed from the casting solution provides an insoluble biocompatible protective matrix for the enzyme and acts to retain the enzyme for long term availability in the electrode structure. The carbon supported catalyst provides catalytic sites throughout the layer for the oxidation of hydrogen peroxide from the enzyme reactions. The carbon support then provides a conductive path for establishing an electrical signal to the electrical conductor. In one embodiment, the electrical conductor is a carbon cloth that permits oxygen or other gas to be introduced to the perfluorosulfonic polymer to promote the enzyme reaction independent of oxygen in the solution being tested.

  7. Catalyzed enzyme electrodes

    SciTech Connect

    Zawodzinski, T.A.; Wilson, M.S.; Rishpon, J.; Gottesfeld, S.

    1993-07-13

    An enzyme electrode is prepared with a composite coating on an electrical conductor. The composite coating is formed from a casting solution of a perfluorosulfonic acid polymer, an enzyme, and a carbon supported catalyst. The solution may be cast directly on the conductor surface or may be formed as a membrane and applied to the surface. The perfluorosulfonic acid ionomer formed from the casting solution provides an insoluble biocompatible protective matrix for the enzyme and acts to retain the enzyme for long term availability in the electrode structure. The carbon supported catalyst provides catalytic sites throughout the layer for the oxidation of hydrogen peroxide from the enzyme reactions. The carbon support then provides a conductive path for establishing an electrical signal to the electrical conductor. In one embodiment, the electrical conductor is a carbon cloth that permits oxygen or other gas to be introduced to the perfluorosulfonic polymer to promote the enzyme reaction independent of oxygen in the solution being tested.

  8. Catalyzed enzyme electrodes

    DOEpatents

    Zawodzinski, Thomas A.; Wilson, Mahlon S.; Rishpon, Judith; Gottesfeld, Shimshon

    1993-01-01

    An enzyme electrode is prepared with a composite coating on an electrical conductor. The composite coating is formed from a casting solution of a perfluorosulfonic acid polymer, an enzyme, and a carbon supported catalyst. The solution may be cast directly on the conductor surface or may be formed as a membrane and applied to the surface. The perfluorosulfonic acid ionomer formed from the casting solution provides an insoluble biocompatible protective matrix for the enzyme and acts to retain the enzyme for long term availability in the electrode structure. The carbon supported catalyst provides catalytic sites throughout the layer for the oxidation of hydrogen peroxide from the enzyme reactions. The carbon support then provides a conductive path for establishing an electrical signal to the electrical conductor. In one embodiment, the electrical conductor is a carbon cloth that permits oxygen or other gas to be introduced to the perfluorosulfonic polymer to promote the enzyme reaction independent of oxygen in the solution being tested.

  9. Rational enzyme redesign

    SciTech Connect

    Ornstein, R.L.

    1994-05-01

    Protein engineering is first a means of elucidating structure-function relations in an enzyme, and second, a means of changing a protein to make it serve a different, but generally related, purpose. In principle, one may change the functional characteristics of an enzyme by altering its substrate specificity, kinetics, optimum range of activity, and chemical mechanism. Obviously one cannot make all possible combinations of amino acid changes for even the smallest enzyme, so the essential question is which changes to make. The intent of rational protein/enzyme redesign is to alter a protein/enzyme in a timely and premeditated fashion. This article provides an outline of the process of rational enzyme redesign.

  10. Identification and characterization of reactive metabolites in myristicin-mediated mechanism-based inhibition of CYP1A2.

    PubMed

    Yang, Ai-Hong; He, Xin; Chen, Jun-Xiu; He, Li-Na; Jin, Chun-Huan; Wang, Li-Li; Zhang, Fang-Liang; An, Li-Jun

    2015-07-25

    Myristicin belongs to the methylenedioxyphenyl or allyl-benzene family of compounds, which are found widely in plants of the Umbelliferae family, such as parsley and carrot. Myristicin is also the major active component in the essential oils of mace and nutmeg. However, this compound can cause adverse reactions, particularly when taken inappropriately or in overdoses. One important source of toxicity of natural products arises from their metabolic biotransformations into reactive metabolites. Myristicin contains a methylenedioxyphenyl substructure, and this specific structural feature may allow compounds to cause a mechanism-based inhibition of cytochrome P450 enzymes and produce reactive metabolites. Therefore, the aim of this work was to identify whether the role of myristicin in CYP enzyme inhibition is mechanism-based inhibition and to gain further information regarding the structure of the resulting reactive metabolites. CYP cocktail assays showed that myristicin most significantly inhibits CYP1A2 among five CYP enzymes (CYP1A2, CYP2D6, CYP2E1, CYP3A4 and CYP2C19) from human liver microsomes. The 3.21-fold IC50 shift value of CYP1A2 indicates that myristicin may be a mechanism-based inhibitor of CYP1A2. Next, reduced glutathione was shown to block the inhibition of CYP1A2, indicating that myristicin utilized a mechanism-based inhibition. Phase I metabolism assays identified two metabolites, 5-allyl-1-methoxy-2,3-dihydroxybenzene (M1) and 1'-hydroxymyristicin or 2',3'-epoxy-myristicin (M2). Reduced glutathione capturing assays captured the glutathione-M1 adduct, and the reactive metabolites were identified using UPLC-MS(2) as a quinone and its tautomer. Thus, it was concluded that myristicin is a mechanism-based inhibitor of CYP1A2, and the reactive metabolites are quinone tautomers. Additionally, the cleavage process of the glutathione-M1 adduct was analyzed in further detail. This study provides additional information on the metabolic mechanism of myristicin

  11. Adenylate-forming enzymes.

    PubMed

    Schmelz, Stefan; Naismith, James H

    2009-12-01

    Thioesters, amides, and esters are common chemical building blocks in a wide array of natural products. The formation of these bonds can be catalyzed in a variety of ways. For chemists, the use of an activating group is a common strategy and adenylate enzymes are exemplars of this approach. Adenylating enzymes activate the otherwise unreactive carboxylic acid by transforming the normal hydroxyl leaving group into adenosine monophosphate. Recently there have been a number of studies of such enzymes and in this review we suggest a new classification scheme. The review highlights the diversity in enzyme fold, active site architecture, and metal coordination that has evolved to catalyze this particular reaction. PMID:19836944

  12. Liver function parameters in HIV/HCV co-infected patients treated with amprenavir and ritonavir and correlation with plasma levels.

    PubMed

    Spagnuolo, Vincenzo; Gentilini, Gianluca; De Bona, Anna; Galli, Laura; Uberti-Foppa, Caterina; Soldarini, Armando; Dorigatti, Fernanda; Seminari, Elena

    2007-07-01

    Acute liver toxicity is a frequent adverse event that occurs during antiretroviral therapy and was observed in 6-30% of the patients on treatment, especially in presence of HCV coinfection (Cooper et al., 2002, Maida et al., 2006, Sulkowski et al., 2000). A correlation between HCV-associated liver-fibrosis severity and the risk of HAART associated hepatoxicity has been demonstrated (Aranzabal et al., 2005, Sulkowski et al., 2004). This high liver toxicity rate might be due to increased drug exposure in patients with liver disease (Veronese et al., 2000). It has been reported that patients with chronic hepatitis C show significantly reduced CPY3A4 and CYP2D6 activity in comparison with healthy volunteers (Becquemont et al., 2002). The aim of this study was to evaluate the liver function tests in HCV-co-infected patients treated with fos-amprenavir and ritonavir.

  13. Pitfalls of haplotype phasing from amplicon-based long-read sequencing

    PubMed Central

    Laver, Thomas W.; Caswell, Richard C.; Moore, Karen A.; Poschmann, Jeremie; Johnson, Matthew B.; Owens, Martina M.; Ellard, Sian; Paszkiewicz, Konrad H.; Weedon, Michael N.

    2016-01-01

    The long-read sequencers from Pacific Bioscience (PacBio) and Oxford Nanopore Technologies (ONT) offer the opportunity to phase mutations multiple kilobases apart directly from sequencing reads. In this study, we used long-range PCR with ONT and PacBio sequencing to phase two variants 9 kb apart in the RET gene. We also re-analysed data from a recent paper which had apparently successfully used ONT to phase clinically important haplotypes at the CYP2D6 and HLA loci. From these analyses, we demonstrate PCR-chimera formation during PCR amplification and reference alignment bias are pitfalls that need to be considered when attempting to phase variants using amplicon-based long-read sequencing technologies. These methodological pitfalls need to be avoided if the opportunities provided by long-read sequencers are to be fully exploited. PMID:26883533

  14. Comparative study of hops-containing products on human cytochrome P450-mediated metabolism.

    PubMed

    Foster, Brian C; Arnason, John T; Saleem, Ammar; Tam, Teresa W; Liu, Rui; Mao, Jingqin; Desjardins, Suzanne

    2011-05-11

    The potential for 15 different ales (6), ciders (2 apple and 1 pear), and porters (6) and 2 non-alcoholic products to affect cytochrome P450 (CYP)-mediated biotransformation and P-glycoprotein-mediated efflux of rhodamine was examined. As in our previous study, a wide range of recovered nonvolatile suspended solids dry weights were noted. Aliquots were also found to have varying effects on biotransformation and efflux. Distinct differences in product ability to affect the safety and efficacy of therapeutic products confirmed our initial findings that some porters (stouts) have a potential to affect the safety and efficacy of health products metabolized by CYP2D6 and CYP3A4 isozymes. Most products, except 2 of the ciders and the 2 non-alcoholic products, also have the potential to affect the safety of CYP2C9 metabolized medications and supplements. Further studies are required to determine the clinical significance of these findings. PMID:21476568

  15. Aripiprazole induced non-cardiogenic pulmonary edema: a case report.

    PubMed

    Cetin, Mustafa; Celik, Mustafa; Cakıcı, Musa; Polat, Mustafa; Suner, Arif

    2014-01-01

    Aripiprazole is a second-generation antipsychotic drug with partial dopamine agonistic activity. Although the adverse cardiovascular effects of both typical and atypical antipsychotics are well known, similar data on aripiprazole, which was recently introduced, are scarce. Herein we report a 35-year-old female that presented to our emergency department with non-cardiogenic pulmonary edema. Chest X-ray and thoracic CT showed pulmonary edema and bilateral pleural effusion. Anamnesis showed that she had been taking sertraline 200 mg d-1 for obsessive-compulsive disorder for a long time and that aripiprazole10 mg d-1 was added for augmentation 2 months prior to presentation. We think that the CYP 2D6 inhibitor sertraline might have played a role in increasing the plasma concentration and toxicity of aripiprazole in the presented patient. PMID:25487626

  16. A Use Case to Support Precision Medicine for Frequently Hospitalized Older Adults with Polypharmacy

    PubMed Central

    Cabrera, Manuel; Finkelstein, Joseph

    2016-01-01

    Polypharmacy in older adults results in multiple negative clinical consequences including increased risk of hospital readmissions. Precision medicine may provide tools to optimize complex medication regimens however its potential in older adults with polypharmacy is unknown. We carried out pharmacogenetic testing in an older adult with multiple chronic conditions and polypharmacy who was concerned about frequent readmissions despite receiving guideline-concordant care and being adherent to medication regimen. The testing identified patients’ CYP2D6 rapid metabolizer status. This may have resulted in decreased exposure to Carvedilol which was primary drug for CHF management in this patient. Additional nine drug-drug interactions were identified during personalized drug regimen review. We concluded that, though precision medicine has enormous potential in older adults with polypharmacy, the complexity of pharmacogenetic information requires innovative informatics solutions to support optimal workflows, decision support, and medication optimization and management in order to fully utilize its potential in routine clinical care. PMID:27570642

  17. Pharmacotherapy and pregnancy: highlights from the Second International Conference for Individualized Pharmacotherapy in Pregnancy.

    PubMed

    Haas, David M; Hebert, Mary F; Soldin, Offie P; Flockhart, David A; Madadi, Parvaz; Nocon, James J; Chambers, Christina D; Hankins, Gary D; Clark, Shannon; Wisner, Katherine L; Li, Lang; Renbarger, Jamie L; Learman, Lee A

    2009-12-01

    To address provider struggles to provide evidence-based, rational drug therapy to pregnant women, a second conference was convened to highlight the current research in the field. Speakers from academic centers and institutions spoke about: the unique physiology and pathology of pregnancy; pharmacokinetic changes in pregnancy; thyroid disorders in pregnancy; pharmacogenetics in pregnancy; the role of CYP2D6 in pregnancy; treating addiction in pregnancy; the power of teratology networks to inform clinical decisions; the use of anti-depressants in pregnancy; and how to utilize computer-based modeling to aid with individualized pharmacotherapy in pregnancy. The Conference highlighted several areas of collaboration with the current Obstetrics Pharmacology Research Units Network (OPRU) and hoped to stimulate further collaboration and knowledge in the area with the common goal to improve the ability to safely and effectively use individualized pharmacotherapy in pregnancy. PMID:20443937

  18. Pharmacogenetics of tardive dyskinesia: an updated review of the literature.

    PubMed

    Lanning, Rachel K; Zai, Clement C; Müller, Daniel J

    2016-08-01

    Tardive dyskinesia (TD) is a serious and potentially irreversible side effect of long-term exposure to antipsychotic medication characterized by involuntary trunk, limb and orofacial muscle movements. Various mechanisms have been proposed for the etiopathophysiology of antipsychotic-induced TD in schizophrenia patients with genetic factors playing a prominent role. Earlier association studies have focused on polymorphisms in CYP2D6, dopamine-, serotonin-, GABA- and glutamate genes. This review highlights recent advances in the genetic investigation of TD. Recent promising findings were obtained with the HSPG2, DPP6, MTNR1A, SLC18A2, PIP5K2A and CNR1 genes. More research, including collection of well-characterized samples, enhancement of genome-wide strategies, gene-gene interaction and epigenetic analyses, is needed before genetic tests with clinical utility can be made available for TD.

  19. Pharmacogenetics of tardive dyskinesia: an updated review of the literature.

    PubMed

    Lanning, Rachel K; Zai, Clement C; Müller, Daniel J

    2016-08-01

    Tardive dyskinesia (TD) is a serious and potentially irreversible side effect of long-term exposure to antipsychotic medication characterized by involuntary trunk, limb and orofacial muscle movements. Various mechanisms have been proposed for the etiopathophysiology of antipsychotic-induced TD in schizophrenia patients with genetic factors playing a prominent role. Earlier association studies have focused on polymorphisms in CYP2D6, dopamine-, serotonin-, GABA- and glutamate genes. This review highlights recent advances in the genetic investigation of TD. Recent promising findings were obtained with the HSPG2, DPP6, MTNR1A, SLC18A2, PIP5K2A and CNR1 genes. More research, including collection of well-characterized samples, enhancement of genome-wide strategies, gene-gene interaction and epigenetic analyses, is needed before genetic tests with clinical utility can be made available for TD. PMID:27469238

  20. Practical recommendations for pharmacogenomics-based prescription: 2010 ESF-UB Conference on Pharmacogenetics and Pharmacogenomics.

    PubMed

    Becquemont, Laurent; Alfirevic, Ana; Amstutz, Ursula; Brauch, Hiltrud; Jacqz-Aigrain, Evelyne; Laurent-Puig, Pierre; Molina, Miguel A; Niemi, Mikko; Schwab, Matthias; Somogyi, Andrew A; Thervet, Eric; Maitland-van der Zee, Anke-Hilse; van Kuilenburg, André Bp; van Schaik, Ron Hn; Verstuyft, Céline; Wadelius, Mia; Daly, Ann K

    2011-01-01

    The present article summarizes the discussions of the 3rd European Science Foundation-University of Barcelona (ESF-UB) Conference in Biomedicine on Pharmacogenetics and Pharmacogenomics, which was held in June 2010 in Spain. It was focused on practical applications in routine medical practice. We provide practical recommendations for ten different clinical situations, that have either been approved or not approved by regulatory agencies. We propose some comments that might accompany the results of these tests, indicating the best drug and doses to be prescribed. The discussed examples include KRAS, cetuximab, panitumumab, EGFR-gefitinib, CYP2D6-tamoxifen, TPMT-azathioprine-6-mercaptopurine, VKORC1/CYP2C9-warfarin, CYP2C19-clopidogrel, HLA-B*5701-abacavir, HLA-B*5701-flucloxacillin, SLCO1B1-statins and CYP3A5-tacrolimus. We hope that these practical recommendations will help physicians, biologists, scientists and other healthcare professionals to prescribe, perform and interpret these genetic tests.

  1. Dyskinesias associated with atomoxetine in combination with other psychoactive drugs.

    PubMed

    Bond, G Randall; Garro, Aris C; Gilbert, Donald L

    2007-01-01

    Toxicity experience with atomoxetine, a selective norepinephrine reuptake inhibitor approved for Attention Deficit Hyperactivity Disorder (ADHD), is limited. We report two cases of neurologic complications requiring hospitalization in patients when atomoxetine was added to other psychoactive drugs. A 9-year-old taking clonidine and dextroamphetamine developed psychosis, abnormal involuntary movements, and insomnia. An 18-year-old also initiating venlafaxine developed facial tics, tremors, and speech disturbance. Acute symptoms did not respond to diphenhydramine in either case, but resolved after atomoxetine and other medications were discontinued. Possible explanations include atypical atomoxetine effect, excess atomoxetine or metabolites due to poor metabolizer status (CYP 2D6 polymorphism/deficiency), a drug-drug interaction leading to elevated drug levels or to excess synaptic norepinephrine or dopamine. Serotonin syndrome is a possibility in the second case, but not the first. Clinicians should be aware of emergent dyskinesias when combining atomoxetine with dopaminergic, noradrenergic, or serotonergic medications.

  2. A Use Case to Support Precision Medicine for Frequently Hospitalized Older Adults with Polypharmacy.

    PubMed

    Cabrera, Manuel; Finkelstein, Joseph

    2016-01-01

    Polypharmacy in older adults results in multiple negative clinical consequences including increased risk of hospital readmissions. Precision medicine may provide tools to optimize complex medication regimens however its potential in older adults with polypharmacy is unknown. We carried out pharmacogenetic testing in an older adult with multiple chronic conditions and polypharmacy who was concerned about frequent readmissions despite receiving guideline-concordant care and being adherent to medication regimen. The testing identified patients' CYP2D6 rapid metabolizer status. This may have resulted in decreased exposure to Carvedilol which was primary drug for CHF management in this patient. Additional nine drug-drug interactions were identified during personalized drug regimen review. We concluded that, though precision medicine has enormous potential in older adults with polypharmacy, the complexity of pharmacogenetic information requires innovative informatics solutions to support optimal workflows, decision support, and medication optimization and management in order to fully utilize its potential in routine clinical care. PMID:27570642

  3. A Use Case to Support Precision Medicine for Frequently Hospitalized Older Adults with Polypharmacy.

    PubMed

    Cabrera, Manuel; Finkelstein, Joseph

    2016-01-01

    Polypharmacy in older adults results in multiple negative clinical consequences including increased risk of hospital readmissions. Precision medicine may provide tools to optimize complex medication regimens however its potential in older adults with polypharmacy is unknown. We carried out pharmacogenetic testing in an older adult with multiple chronic conditions and polypharmacy who was concerned about frequent readmissions despite receiving guideline-concordant care and being adherent to medication regimen. The testing identified patients' CYP2D6 rapid metabolizer status. This may have resulted in decreased exposure to Carvedilol which was primary drug for CHF management in this patient. Additional nine drug-drug interactions were identified during personalized drug regimen review. We concluded that, though precision medicine has enormous potential in older adults with polypharmacy, the complexity of pharmacogenetic information requires innovative informatics solutions to support optimal workflows, decision support, and medication optimization and management in order to fully utilize its potential in routine clinical care.

  4. Enzyme technology: an overview.

    PubMed

    van Beilen, Jan B; Li, Zhi

    2002-08-01

    Enzymes are being used in numerous new applications in the food, feed, agriculture, paper, leather, and textiles industries, resulting in significant cost reductions. At the same time, rapid technological developments are now stimulating the chemistry and pharma industries to embrace enzyme technology, a trend strengthened by concerns regarding health, energy, raw materials, and the environment.