Science.gov

Sample records for 2d6 cyp2d6 genotype

  1. Response to CYP2D6 substrate antidepressants is predicted by a CYP2D6 composite phenotype based on genotype and comedications with CYP2D6 inhibitors.

    PubMed

    Gressier, F; Verstuyft, C; Hardy, P; Becquemont, L; Corruble, E

    2015-01-01

    The cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of most antidepressants. Comedication with a potent CYP2D6 inhibitor can convert patients with extensive metabolizer (EM) or ultra-rapid metabolizer (UM) genotypes into poor metabolizer (PM) phenotypes. Since comedication is frequent in depressed patients treated with antidepressants, we investigated the effect of the CYP2D6 composite phenotype on antidepressant efficacy, taking into account both the CYP2D6 genotype and comedication with CYP2D6 inhibitors. 87 Caucasian in patients with a major depressive episode were prospectively treated with flexible doses of antidepressant monotherapy as well as comedications and genotyped for the major CYP2D6 alleles (CYP2D6*3 rs35742686, *4 rs3892097, *5 del, *6 rs5030655, and *2xN). They were classified for CYP2D6 composite phenotype and assessed for antidepressant response after 4 weeks. In terms of genotypes (g), 6 subjects were UMg, 6 PMg, and 75 EMg. Ten patients were coprescribed a CYP2D6 inhibitor, resulting in the following composite phenotypes (cp): 5 UMcp, 16 PMcp, and 66 EMcp. Whereas none of the CYP2D6 genotypes were significantly associated with antidepressant response, UMcp had a lower antidepressant response than PMcp or EMcp (respectively: 39.0 ± 17.9, 50.0 ± 26.0, and 61.6 ± 23.4, p = 0.02). Despite small sample size, this study suggests that a CYP2D6 composite phenotype, taking into account both genotype and comedications with CYP2D6 inhibitors, could predict CYP2D6 substrate antidepressants response. Thus, to optimize antidepressant response, CYP2D6 genotype could be performed and comedications with CYP2D6 inhibitors should be avoided, when prescribing CYP2D6 substrate antidepressants.

  2. Serum flecainide S/R ratio reflects the CYP2D6 genotype and changes in CYP2D6 activity.

    PubMed

    Doki, Kosuke; Sekiguchi, Yukio; Kuga, Keisuke; Aonuma, Kazutaka; Homma, Masato

    2015-08-01

    The aims of this study were to clarify whether the ratio of S- to R-flecainide (S/R ratio) in the serum flecainide concentration was associated with the stereoselectivity of flecainide metabolism, and to investigate the effects of the cytochrome P450 (CYP) 2D6 (CYP2D6) genotype and CYP2D6 inhibitor on the serum flecainide S/R ratio. In vitro studies using human liver microsomes and cDNA-expressed CYP isoforms suggested that variability in the serum flecainide S/R ratio was associated with the stereoselectivity of CYP2D6-mediated flecainide metabolism. We examined the serum flecainide S/R ratio in 143 patients with supraventricular tachyarrhythmia. The S/R ratio was significantly lower in intermediate metabolizers and poor metabolizers (IMs/PMs) than in extensive metabolizers (EMs) identified by the CYP2D6 genotype. The cut-off value for the S/R ratio to allow the discrimination between CYP2D6 EMs and IMs/PMs was 0.99. The S/R ratio in patients with co-administration of bepridil, a potent CYP2D6 inhibitor, was lower than 0.99, regardless of the CYP2D6 genotype status. Other factors, including age, sex, body weight, and renal function, did not affect the serum flecainide S/R ratio. This study suggests that the serum flecainide S/R ratio reflects the CYP2D6 genotype and changes in CYP2D6 activity on co-administration of a CYP2D6 inhibitor.

  3. Auto-interpreter for CYP2D6 SNaPshot genotyping.

    PubMed

    Ong, Sungmoon; Jeong, Hye-Eun; Lee, Sang Seop; Shon, Ji-Hong; Shin, Jae-Gook; Kim, Eun-Young

    2008-11-06

    CYP2D6 genotyping using SNaPshot method is a very useful tool clinically. However it's hard to interpret the obtained data as a genotype without training. Thus SNaPshot auto-interpreter for the genotype was designed to interpret obtained raw data to a genotype. The auto-interpreter showed good concordance with experts' reading. The validated auto-interpreter of CYP2D6 genotyping using SNaPshot can contribute to accelerating the clinical use.

  4. SNP genotyping using TaqMan technology: the CYP2D6*17 assay conundrum.

    PubMed

    Gaedigk, Andrea; Freeman, Natalie; Hartshorne, Toinette; Riffel, Amanda K; Irwin, David; Bishop, Jeffrey R; Stein, Mark A; Newcorn, Jeffrey H; Jaime, Lazara Karelia Montané; Cherner, Mariana; Leeder, J Steven

    2015-03-19

    CYP2D6 contributes to the metabolism of many clinically used drugs and is increasingly tested to individualize drug therapy. The CYP2D6 gene is challenging to genotype due to the highly complex nature of its gene locus. TaqMan technology is widely used in the clinical and research settings for genotype analysis due to assay reliability, low cost, and the availability of commercially available assays. The assay identifying 1023C>T (rs28371706) defining a reduced function (CYP2D6*17) and several nonfunctional alleles, produced a small number of unexpected diplotype calls in three independent sets of samples, i.e. calls suggested the presence of a CYP2D6*4 subvariant containing 1023C>T. Gene resequencing did not reveal any unknown SNPs in the primer or probe binding sites in any of the samples, but all affected samples featured a trio of SNPs on their CYP2D6*4 allele between one of the PCR primer and probe binding sites. While the phenomenon was ultimately overcome by an alternate assay utilizing a PCR primer excluding the SNP trio, the mechanism causing this phenomenon remains elusive. This rare and unexpected event underscores the importance of assay validation in samples representing a variety of genotypes, but also vigilance of assay performance in highly polymorphic genes such as CYP2D6.

  5. CYP2D6 Genotype Dependent Oxycodone Metabolism in Postoperative Patients

    PubMed Central

    Stamer, Ulrike M.; Zhang, Lan; Book, Malte; Lehmann, Lutz E.; Stuber, Frank; Musshoff, Frank

    2013-01-01

    Background The impact of polymorphic cytochrome P450 CYP2D6 enzyme on oxycodone's metabolism and clinical efficacy is currently being discussed. However, there are only spare data from postoperative settings. The hypothesis of this study is that genotype dependent CYP2D6 activity influences plasma concentrations of oxycodone and its metabolites and impacts analgesic consumption. Methods Patients received oxycodone 0.05 mg/kg before emerging from anesthesia and patient-controlled analgesia (PCA) for the subsequent 48 postoperative hours. Blood samples were drawn at 30, 90 and 180 minutes after the initial oxycodone dose. Plasma concentrations of oxycodone and its metabolites oxymorphone, noroxycodone and noroxymorphone were analyzed by liquid chromatography-mass spectrometry with electrospray ionization. CYP2D6 genotyping was performed and 121 patients were allocated to the following genotype groups: PM (poor metabolizer: no functionally active CYP2D6 allele), HZ/IM (heterozygous subjects, intermediate metabolizers with decreased CYP2D6 activity), EM (extensive metabolizers, normal CYP2D6 activity) and UM (ultrarapid metabolizers, increased CYP2D6 activity). Primary endpoint was the genotype dependent metabolite ratio of plasma concentrations oxymorphone/oxycodone. Secondary endpoint was the genotype dependent analgesic consumption with calculation of equianalgesic doses compared to the standard non-CYP dependent opioid piritramide. Results Metabolism differed between CYP2D6 genotypes. Mean (95%-CI) oxymophone/oxycodone ratios were 0.10 (0.02/0.19), 0.13 (0.11/0.16), 0.18 (0.16/0.20) and 0.28 (0.07/0.49) in PM, HZ/IM, EM and UM, respectively (p = 0.005). Oxycodone consumption up to the 12th hour was highest in PM (p = 0.005), resulting in lowest equianalgesic doses of piritramide versus oxycodone for PM (1.6 (1.4/1.8); EM and UM 2.2 (2.1/2.3); p<0.001). Pain scores did not differ between genotypes. Conclusions In this postoperative setting, the number of

  6. CYP2D6 genotype and adjuvant tamoxifen: meta-analysis of heterogeneous study populations.

    PubMed

    Province, M A; Goetz, M P; Brauch, H; Flockhart, D A; Hebert, J M; Whaley, R; Suman, V J; Schroth, W; Winter, S; Zembutsu, H; Mushiroda, T; Newman, W G; Lee, M-T M; Ambrosone, C B; Beckmann, M W; Choi, J-Y; Dieudonné, A-S; Fasching, P A; Ferraldeschi, R; Gong, L; Haschke-Becher, E; Howell, A; Jordan, L B; Hamann, U; Kiyotani, K; Krippl, P; Lambrechts, D; Latif, A; Langsenlehner, U; Lorizio, W; Neven, P; Nguyen, A T; Park, B-W; Purdie, C A; Quinlan, P; Renner, W; Schmidt, M; Schwab, M; Shin, J-G; Stingl, J C; Wegman, P; Wingren, S; Wu, A H B; Ziv, E; Zirpoli, G; Thompson, A M; Jordan, V C; Nakamura, Y; Altman, R B; Ames, M M; Weinshilboum, R M; Eichelbaum, M; Ingle, J N; Klein, T E

    2014-02-01

    The International Tamoxifen Pharmacogenomics Consortium was established to address the controversy regarding cytochrome P450 2D6 (CYP2D6) status and clinical outcomes in tamoxifen therapy. We performed a meta-analysis on data from 4,973 tamoxifen-treated patients (12 globally distributed sites). Using strict eligibility requirements (postmenopausal women with estrogen receptor-positive breast cancer, receiving 20 mg/day tamoxifen for 5 years, criterion 1); CYP2D6 poor metabolizer status was associated with poorer invasive disease-free survival (IDFS: hazard ratio = 1.25; 95% confidence interval = 1.06, 1.47; P = 0.009). However, CYP2D6 status was not statistically significant when tamoxifen duration, menopausal status, and annual follow-up were not specified (criterion 2, n = 2,443; P = 0.25) or when no exclusions were applied (criterion 3, n = 4,935; P = 0.38). Although CYP2D6 is a strong predictor of IDFS using strict inclusion criteria, because the results are not robust to inclusion criteria (these were not defined a priori), prospective studies are necessary to fully establish the value of CYP2D6 genotyping in tamoxifen therapy.

  7. Individualization of tamoxifen therapy: much more than just CYP2D6 genotyping.

    PubMed

    Binkhorst, Lisette; Mathijssen, Ron H J; Jager, Agnes; van Gelder, Teun

    2015-03-01

    Clinical response to tamoxifen varies widely among women treated with this drug for hormone receptor-positive breast cancer. The principal active metabolite - endoxifen - is generated through hepatic metabolism of tamoxifen, with key roles for cytochrome P450 (CYP) CYP2D6 and CYP3A. By influencing endoxifen formation, genetic variants of CYP2D6 may affect response to tamoxifen. After a decade of research, examining the effects of CYP2D6 genetic variants on tamoxifen efficacy, there is still no agreement on the clinical utility of CYP2D6 genotype as biomarker for the prediction of breast cancer outcome, because studies revealed conflicting results. However, tamoxifen metabolism is complex and involves several other drug-metabolizing enzymes. Genetic variants of other CYP enzymes, including CYP3A4 and CYP2C9/19, as well as co-medication interfering with the metabolic activity of CYP2D6 and CYP3A4 have been shown to affect endoxifen concentrations and may also contribute to the variability in response to tamoxifen. Phenotyping strategies can predict endoxifen exposure more accurately than CYP2D6 genotype, but do not take into account all factors influencing endoxifen exposure. Therapeutic drug monitoring (TDM) is likely to be the optimal strategy for individualization of tamoxifen treatment. According to a growing amount of literature, endoxifen concentration seems to be a predictor of clinical outcome. The relationship between endoxifen levels and breast cancer outcomes has to be replicated and confirmed and the value of TDM should be evaluated in prospective clinical trials. Caution is advised regarding the concomitant use of medications which could interact with tamoxifen, including inhibitors and inducers of CYP enzymes.

  8. Prediction of CYP2D6 phenotype from genotype across world populations

    PubMed Central

    Gaedigk, Andrea; Sangkuhl, Katrin; Whirl-Carrillo, Michelle; Klein, Teri; Leeder, J. Steven

    2017-01-01

    Purpose: Owing to its highly polymorphic nature and major contribution to the metabolism and bioactivation of numerous clinically used drugs, CYP2D6 is one of the most extensively studied drug-metabolizing enzymes and pharmacogenes. CYP2D6 alleles confer no, decreased, normal, or increased activity and cause a wide range of activity among individuals and between populations. However, there is no standard approach to translate diplotypes into predicted phenotype. Methods: We exploited CYP2D6 allele-frequency data that have been compiled for Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines (>60,000 subjects, 173 reports) in order to estimate genotype-predicted phenotype status across major world populations based on activity score (AS) assignments. Results: Allele frequencies vary considerably across the major ethnic groups predicting poor metabolizer status (AS = 0) between 0.4 and 5.4% across world populations. The prevalence of genotypic intermediate (AS = 0.5) and normal (AS = 1, 1.5, or 2) metabolizers ranges between 0.4 and 11% and between 67 and 90%, respectively. Finally, 1 to 21% of subjects (AS >2) are predicted to have ultrarapid metabolizer status. Conclusions: This comprehensive study summarizes allele frequencies, diplotypes, and predicted phenotype across major populations, providing a rich data resource for clinicians and researchers. Challenges of phenotype prediction from genotype data are highlighted and discussed. Genet Med 19 1, 69–76. PMID:27388693

  9. CYP2D6 genotyping in patients on psychoactive drug therapy.

    PubMed

    Topić, E; Stefanović, M; Ivanisević, A M; Blazinić, F; Culav, J; Skocilić, Z

    2000-09-01

    The polymorphic isoenzyme CYP2D6 has a major role in the oxidative metabolism of many deal of psychoactive drugs. Its six mutant alleles (null alleles *3, *4, *5, *6, *7 and *8) encode for inactive enzyme molecules. A carrier of two mutant alleles is considered a poor metabolizer phenotype, while a carrier of only one damaged allele is considered an intermediate metabolizer phenotype. The aim of the study was to assess the prevalence of null alleles in a group of psychiatric patients suffering from depression (n=49) and schizophrenia (n=86) in comparison with healthy individuals (n=145) by the method of multiplex allele specific PCR. Only CYP2D6*3,*4 and *6 mutant alleles were found in the study subjects. No significant difference between the depression and control groups was found for allele prevalence, genotype or phenotype distribution (p>0.05). However, a significant difference was observed between schizophrenic patients and controls for allele frequency (p=0.002), genotype distribution (p=0.016), and phenotype prevalence (p=0.018). The odds ratio of 2.542 for 2D6*4 suggested a significant association between this allele and schizophrenia, significantly contributing to poor metabolizer phenotype (odds ratio=5.020). The relationship between CYP2D6 gene polymorphism and side effects in schizophrenic patients undergoing long-term psychoactive drug therapy was investigated. A significant difference was obtained for allele prevalence (p=0.002), genotype (p=0.029), and phenotype (p=0.002) distribution between patients without and with side effects. A relative risk of 2.626 and 5.333 for 2D6*4 and 2D6*6, respectively, and of 7.08 for poor metabolizer phenotype suggested a significant association between the hereditary susceptibility for a particular type of drug metabolism (defect alleles) and side effects. These preliminary results suggest that the CYP2D6 genotyping appears to be useful for predicting risks for side effects of psychoactive drugs in schizophrenic

  10. Challenges in CYP2D6 phenotype assignment from genotype data: a critical assessment and call for standardization.

    PubMed

    Hicks, J Kevin; Swen, Jesse J; Gaedigk, Andrea

    2014-02-01

    The cytochrome P450 2D6 (CYP2D6) enzyme contributes to the metabolism and/or bioactivation of approximately 25% of clinically used drugs. The CYP2D6 gene locus is highly polymorphic and complex, and variants within this gene locus affect CYP2D6 enzymatic function resulting in a wide range of metabolic activity from little to no activity to ultrarapid metabolism. For many of the drugs metabolized by CYP2D6, the variation in metabolic activity is one of the most important factors responsible for interindividual drug response. Therefore, determining an individual's CYP2D6 phenotype, or metabolic status, will help identify individuals that may benefit from a change in drug or drug dosage. Genotype analysis has become the method of choice to predict a person's metabolic status. Numerous reference laboratories now offer CYP2D6 genotyping; however, there can be substantial differences in the number of genetic variants interrogated as well as test interpretation. Furthermore, there is no standardized process of how a CYP2D6 genotype result is translated into a phenotype assignment. This review summarizes the complexity of CYP2D6 genotyping and highlights the major challenges for phenotype classification. We call for the implementation of a universally accepted system for CYP2D6 phenotype assignment to promote consistency of test interpretation among reference laboratories and medical institutions. We propose a system that utilizes the CYP2D6 activity score system to place individuals into a continuum of activity scores - rather than using the traditional poor, intermediate, extensive and ultra-rapid metabolizer categorizations - and directly translating activity scores into clinically actionable recommendations.

  11. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  12. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  13. Development of a PCR-based strategy for CYP2D6 genotyping including gene multiplication of worldwide potential use.

    PubMed

    Dorado, Pedro; Cáceres, Macarena; Pozo-Guisado, Eulalia; Wong, Ma-Li; Licinio, Julio; Llerena, Adrián

    2005-10-01

    There is growing consensus on the potential use of pharmacogenetics in clinical practice, and hopes have been expressed for application to the improvement of global health. However, two major challenges may lead to widening the "biotechnological gap" between the developing and the industrial world; first the unaffordability of some current technologies for poorer countries, and second the necessity of analyzing all described alleles for every clinical case due to the inability to predict the ethnic group of a given patient. Because of its role in the metabolism of a number of drugs, cytochrome P450 2D6 (CYP2D6) is an excellent candidate for use in the optimization of drug therapy. CYP2D6 is a highly polymorphic gene locus with more than 50 variant alleles, and subjects can be classified as poor metabolizers (PM), extensive metabolizers (EM), or ultrarapid metabolizers (UM) of a given CYP2D6 substrate. Several strategies and methods for CYP2D6 genotyping exist. Some, however, are expensive and laborious. The aim of this study was to design a PCR-based genotyping methodology to allow rapid, straightforward, and inexpensive identification of 90%-95% of CYP2D6 PM or UM genotypes for routine clinical use, independent of the individual's ethnic group. CYP2D6 is amplified in initial extra long PCRs (XL-PCRs), which subsequently undergo fragment-length polymorphism analysis for the determination of carriers of CYP2D6 allelic variants. The same XL-PCRs are also used for the determination of CYP2D6 multiplication and 2D6*5 allele (abolished activity). The application of this new strategy for the detection of CYP2D6 mutated alleles and multiplications to routine clinical analysis will enable the PM and UM phenotypes to be predicted and identified at a reasonable cost in a large number of individuals at most locations.

  14. Development of a PCR-based strategy for CYP2D6 genotyping including gene multiplication of worldwide potential use.

    PubMed

    Dorado, Pedro; Cáceres, Macarena C; Pozo-Guisado, Eulalia; Wong, Ma-Li; Licinio, Julio; Llerena, Adrian

    2005-10-01

    There is growing consensus on the potential use of pharmacogenetics in clinical practice, and hopes have been expressed for application to the improvement of global health. However, two major challenges may lead to widening the "biotechnological gap" between the developing and the industrial world;first the unaffordability of some current technologies for poorer countries, and second the necessity of analyzing all described alleles for every clinical case due to the inability to predict the ethnic group of a given patient. Because of its role in the metabolism of a number of drugs, cytochrome P450 2D6 (CYP2D6) is an excellent candidate for use in the optimization of drug therapy. CYP2D6 is a highly polymorphic gene locus with more than 50 variant alleles, and subjects can be classified as poor metabolizers (PM), extensive metabolizers (EM), or ultrarapid metabolizers (UM) of a given CYP2D6 substrate. Several strategies and methods for CYP2D6 genotyping exist. Some, however, are expensive and laborious. The aim of this study was to design a PCR-based genotyping methodology to allow rapid, straightforward, and inexpensive identification of 90%-95% of CYP2D6 PM or UM genotypes for routine clinical use, independent of the individual's ethnic group. CYP2D6 is amplified in initial extra long PCRs (XL-PCRs), which subsequently undergo fragment-length polymorphism analysis for the determination of carriers of CYP2D6 allelic variants. The same XL-PCRs are also used for the determination of CYP2D6 multiplication and 2D6*5 allele (abolished activity). The application of this new strategy for the detection of CYP2D6 mutated alleles and multiplications to routine clinical analysis will enable the PM and UM phenotypes to be predicted and identified at a reasonable cost in a large number of individuals at most locations.

  15. National Prociency Testing Result of CYP2D6*10 Genotyping for Adjuvant Tamoxifen Therapy in China

    PubMed Central

    Lin, Guigao; Zhang, Kuo; Yi, Lang; Han, Yanxi; Xie, Jiehong; Li, Jinming

    2016-01-01

    Tamoxifen has been successfully used for treating breast cancer and preventing cancer recurrence. Cytochrome P450 2D6 (CYP2D6) plays a key role in the process of metabolizing tamoxifen to its active moiety, endoxifen. Patients with variants of the CYP2D6 gene may not receive the full benefit of tamoxifen treatment. The CYP2D6*10 variant (the most common variant in Asians) was analyzed to optimize the prescription of tamoxifen in China. To ensure referring clinicians have accurate information for genotype-guided tamoxifen treatment, the Chinese National Center for Clinical Laboratories (NCCL) organized a national proficiency testing (PT) to evaluate the performance of laboratories providing CYP2D6*10 genotyping. Ten genomic DNA samples with CYP2D6 wild-type or CYP2D6*10 variants were validated by PCR-sequencing and sent to 28 participant laboratories. The genotyping results and pharmacogenomic test reports were submitted and evaluated by NCCL experts. Additional information regarding the number of samples tested, the accreditation/certification status, and detecting technology was also requested. Thirty-one data sets were received, with a corresponding analytical sensitivity of 98.2% (548/558 challenges; 95% confidence interval: 96.7–99.1%) and an analytic specificity of 96.5% (675/682; 95% confidence interval: 97.9–99.5%). Overall, 25/28 participants correctly identified CYP2D6*10 status in 10 samples; however, two laboratories made serious genotyping errors. Most of the essential information was included in the 20 submitted CYP2D6*10 test reports. The majority of Chinese laboratories are reliable for detecting the CYP2D6*10 variant; however, several issues revealed in this study underline the importance of PT schemes in continued external assessment and provision of guidelines. PMID:27603206

  16. SNP genotyping using TaqMan® technology: the CYP2D6*17 assay conundrum

    PubMed Central

    Gaedigk, Andrea; Freeman, Natalie; Hartshorne, Toinette; Riffel, Amanda K.; Irwin, David; Bishop, Jeffrey R.; Stein, Mark A.; Newcorn, Jeffrey H.; Jaime, Lazara Karelia Montané; Cherner, Mariana; Leeder, J. Steven

    2015-01-01

    CYP2D6 contributes to the metabolism of many clinically used drugs and is increasingly tested to individualize drug therapy. The CYP2D6 gene is challenging to genotype due to the highly complex nature of its gene locus. TaqMan® technology is widely used in the clinical and research settings for genotype analysis due to assay reliability, low cost, and the availability of commercially available assays. The assay identifying 1023C>T (rs28371706) defining a reduced function (CYP2D6*17) and several nonfunctional alleles, produced a small number of unexpected diplotype calls in three independent sets of samples, i.e. calls suggested the presence of a CYP2D6*4 subvariant containing 1023C>T. Gene resequencing did not reveal any unknown SNPs in the primer or probe binding sites in any of the samples, but all affected samples featured a trio of SNPs on their CYP2D6*4 allele between one of the PCR primer and probe binding sites. While the phenomenon was ultimately overcome by an alternate assay utilizing a PCR primer excluding the SNP trio, the mechanism causing this phenomenon remains elusive. This rare and unexpected event underscores the importance of assay validation in samples representing a variety of genotypes, but also vigilance of assay performance in highly polymorphic genes such as CYP2D6. PMID:25788121

  17. Genotype-based quantitative prediction of drug exposure for drugs metabolized by CYP2D6.

    PubMed

    Tod, M; Goutelle, S; Gagnieu, M C

    2011-10-01

    We propose a framework to enable quantitative prediction of the impact of CYP2D6 polymorphisms on drug exposure. It relies mostly on in vivo data and uses two characteristic parameters: one for the drug and the other for the genotype. The metric of interest is the ratio of drug area under the curve (AUC) in patients with mutant genotype to the AUC in patients with wild-type genotype. Any combination of alleles, as well as duplications, may be accommodated in the framework. Estimates of the characteristic parameters were obtained by orthogonal regression for 40 drugs and five classes of genotypes, respectively, including poor, intermediate, and ultrarapid metabolizers (PMs, IMs, and UMs). The mean prediction error of AUC ratios was -0.05, and the mean prediction absolute error was 0.20. An external validation was also carried out. The model may be used to predict the variations in exposure induced by all drug-genotype combinations. An application of this model to a rare combination of alleles (*4*10) is described.

  18. Cytochrome P-450 2D6 (CYP2D6) Genotype and Breast Cancer Recurrence in Tamoxifen-Treated Patients: Evaluating the Importance of Loss of Heterozygosity.

    PubMed

    Ahern, Thomas P; Hertz, Daniel L; Damkier, Per; Ejlertsen, Bent; Hamilton-Dutoit, Stephen J; Rae, James M; Regan, Meredith M; Thompson, Alastair M; Lash, Timothy L; Cronin-Fenton, Deirdre P

    2017-01-15

    Tamoxifen therapy for estrogen receptor-positive breast cancer reduces the risk of recurrence by approximately one-half. Cytochrome P-450 2D6, encoded by the polymorphic cytochrome P-450 2D6 gene (CYP2D6), oxidizes tamoxifen to its most active metabolites. Steady-state concentrations of endoxifen (4-hydroxy-N-desmethyltamoxifen), the most potent antiestrogenic metabolite, are reduced in women whose CYP2D6 genotypes confer poor enzyme function. Thirty-one studies of the association of CYP2D6 genotype with breast cancer survival have yielded heterogeneous results. Some influential studies genotyped DNA from tumor-infiltrated tissues, and their results may have been susceptible to germline genotype misclassification from loss of heterozygosity at the CYP2D6 locus. We systematically reviewed 6 studies of concordance between genotypes obtained from paired nonneoplastic and breast tumor-infiltrated tissues, all of which showed excellent CYP2D6 genotype agreement. We applied these concordance data to a quantitative bias analysis of the subset of the 31 studies that were based on genotypes from tumor-infiltrated tissue to examine whether genotyping errors substantially biased estimates of association. The bias analysis showed negligible bias by discordant genotypes. Summary estimates of association, with or without bias adjustment, indicated no clinically important association between CYP2D6 genotype and breast cancer survival in tamoxifen-treated women.

  19. CYP2D6 genotyping in natives and immigrants from the Emilia-Romagna Region (Italy).

    PubMed

    Riccardi, Laura N; Lanzellotto, Rossana; Luiselli, Donata; Ceccardi, Stefania; Falconi, Mirella; Bini, Carla; Pelotti, Susi

    2011-11-01

    Pharmacogenetic testing of drug metabolizing enzyme polymorphisms provides an important tool to improve prescribing decisions, avoiding therapeutic failure and adverse drug reactions. Cytochrome P450 2D6 isoform plays an important role in the metabolism of about 20%-25% of widely used clinical drugs. Interethnic differences in allele frequency distribution of the CYP2D6 gene are well established, but interethnic admixture, introducing variations in population ancestry and resulting in distinct levels of population structure, should be acknowledged in pharmacogenomic studies to avoid inappropriate extrapolation of CYP2D6 data. The aim of the present research was to characterize CYP2D6 polymorphism in a random sample of 122 natives and 175 immigrants from Africa, Asia, and South America living in the Emilia-Romagna region (Italy), considering the present scenario of immigration and back migration events, which is a source of admixture. The results are today consistent with the known interethnic genetic variation, but the observed significant divergence between natives and Africans or South-East Asians predicts that admixture will reshape the population structure and the native metabolic ratio curve requiring, for drug prescription and pharmacogenetics studies, an interdisciplinary approach applied in an appropriate biogeographical and anthropological frame.

  20. The Association of CYP2D6 Genotype and Postoperative Nausea and Vomiting in Orthopedic Trauma Patients

    PubMed Central

    Wesmiller, Susan W.; Henker, Richard A.; Sereika, Susan M.; Donovan, Heidi S.; Meng, Li; Gruen, Gary S.; Tarkin, Ivan S.; Conley, Yvette P.

    2014-01-01

    The CYP2D6 gene encodes for an enzyme that is involved in the metabolism of more than 25% of all medications, including many opioids and antiemetics. It may contribute to the risk of postoperative nausea and vomiting (PONV), a common surgical complication. However, little research has been conducted in this area. The purpose of this study was to explore the association of CYP2D6 genotypes with PONV in adult surgical trauma patients. Data from 112 patients (28% female) with single extremity fractures, aged 18–70 years, were analyzed. PONV was defined as present if patients reported nausea, were observed vomiting, or received medication for PONV. Saliva samples collected for DNA extraction and Taqman® allele discrimination and quantitative real time polymerase chain reaction (qRT-PCR) were used to collect genotype data that were then used to assign CYP2D6 phenotype classification. The incidence of PONV was 38% in the postanesthesia care unit and increased to 50% when assessed at 48 hr. CYP2D6 classification results were 7 (6%) poor metabolizers, 34 (30%) intermediate metabolizers, and 71 (63%) extensive metabolizers. No ultrarapid metabolizers were identified. Patients who were classified as poor metabolizers had less PONV and higher pain scores. Gender and history of PONV, but not smoking, were also significant risk factors. Findings suggest variability in CYP2D6 impacts susceptibility to PONV. PMID:22718526

  1. Cytochrome P450 CYP2D6 genotypes: association with hair colour, Breslow thickness and melanocyte stimulating hormone receptor alleles in patients with malignant melanoma.

    PubMed

    Strange, R C; Ellison, T; Ichii-Jones, F; Bath, J; Hoban, P; Lear, J T; Smith, A G; Hutchinson, P E; Osborne, J; Bowers, B; Jones, P W; Fryer, A A

    1999-06-01

    We previously identified associations between polymorphism in the cytochrome P450 CYP2D6 gene and outcome in several cancers. We have now examined the hypothesis that homozygosity for the mutant alleles, CYP2D6*4 and CYP2D6*3, is associated with susceptibility and outcome in malignant melanoma. Outcome was assessed by Breslow thickness. We first confirmed previous reports that these mutant alleles are associated with increased susceptibility to malignant melanoma. For example, the frequency of homozygosity for CYP2D6*4 was significantly greater (P = 0.006, chi-squared 1 d.f. = 7.4, odds ratio 2.2, 95% confidence interval 1.2, 3.9) in cases (9.1%) than in control individuals (4.3%). The frequency of homozygosity for the mutant alleles was next examined in the malignant melanoma cases grouped on the basis of characteristics associated with malignant melanoma risk. Homozygosity was significantly more common (P = 0.038) in cases with red/blonde hair than in those with brown/black hair. We found no associations between the CYP2D6 genotype and sex, skin type or eye colour. The possible association of CYP2D6 with outcome was assessed by comparing genotype frequencies in patients with tumours of Breslow thickness < 1.5 mm with those whose tumours were > or = 1.5 mm. In patients with red/blonde, but not brown or black hair, homozygosity for CYP2D6*4 was significantly associated with thicker lesions in a multivariate model (P = 0.036). We further examined the association of CYP2D6*4 homozygosity with red/blonde hair by classifying patients on the basis of homo- or heterozygosity for wild-type or val92met, asp294his or asp84glu melanocyte stimulating hormone receptor (MC1R) alleles. None of the nine patients with brown/black hair with the asp294his allele were homozygotes for CYP2D6*4. By contrast, in the patients with red/blonde hair, three of five cases with asp294his were homozygotes for the mutant CYP2D6 allele. The difference in the frequency of CYP2D6*4 homozygotes in

  2. Influence of CYP2D6 and CYP2C19 genotypes on venlafaxine metabolic ratios and stereoselective metabolism in forensic autopsy cases.

    PubMed

    Karlsson, L; Zackrisson, A-L; Josefsson, M; Carlsson, B; Green, H; Kugelberg, F C

    2015-04-01

    We investigated whether polymorphisms in the CYP2D6 and CYP2C19 genes influence the metabolic ratios and enantiomeric S/R ratios of venlafaxine (VEN) and its metabolites O-desmethylvenlafaxine (ODV), N-desmethylvenlafaxine (NDV) and N,O-didesmethylvenlafaxine (DDV) in blood from forensic autopsy cases. In all, 94 postmortem cases found positive for VEN during toxicological screening were included. The CYP2D6 genotype was shown to significantly influence the ODV/VEN (P=0.003), DDV/NDV (P=0.010) and DDV/ODV (P=0.034) ratios. The DDV/ODV (P=0.013) and DDV/VEN (P=0.021) ratios were significantly influenced by the CYP2C19 genotype. The S/R ratios of VEN were significantly influenced by both CYP2D6 and CYP2C19 genotypes. CYP2D6 poor metabolizers (PMs) had lower S/R VEN ratios and CYP2C19 PMs had high S/R ratios of VEN in comparison. Our results show that the CYP2D6 genotype influences the O-demethylation whereas CYP2C19 influences the N-demethylation of VEN and its metabolites. In addition, we show a stereoselective metabolism where CYP2D6 favours the R-enantiomer whereas CYP2C19 favours the S-enantiomer.

  3. Allelic and genotype frequencies of catechol-O-methyltransferase (Val158Met) and CYP2D6*10 (Pro34Ser) single nucleotide polymorphisms in the Philippines

    PubMed Central

    Baclig, Michael O; Predicala, Rey Z; Mapua, Cynthia A; Lozano-Kühne, Jingky P; Daroy, Maria Luisa G; Natividad, Filipinas F; Javier, Francis O

    2012-01-01

    A hospital-based cross-sectional study was conducted to determine the allelic and genotype frequencies in the genes encoding for catechol-O-methyltransferase and CYP2D6*10 among healthy volunteers and patients clinically diagnosed with cancer pain. PCR-RFLP was used to identify COMT and CYP2D6*10 genotypes. Allelic frequencies among healthy volunteer Filipinos were 0.83 and 0.17 for the COMT Val and COMT Met alleles, respectively. Calculated frequencies in Hardy-Weinberg equilibrium (HWE) were 73% for COMT Val/Val, 26% for COMT Val/Met, and 1% for COMT Met/Met genotype. For CYP2D6*10, allelic frequencies in HWE among volunteers were 0.46 for the C allele and 0.54 for the T allele. Twenty percent were identified as homozygous for the wild-type C/C genotype, 56% were identified as heterozygous for the C/T genotype, and 24% were identified as homozygous for the T/T variant genotype. No significant differences in COMT and CYP2D6*10 allele frequencies between cancer patients and healthy volunteers were noted. Our data demonstrated that the allele frequencies of COMT and CYP2D6*10 in the Filipino healthy volunteers were similar with other Asians but markedly different from Caucasian populations. PMID:22724048

  4. Allelic and genotype frequencies of catechol-O-methyltransferase (Val158Met) and CYP2D6*10 (Pro34Ser) single nucleotide polymorphisms in the Philippines.

    PubMed

    Baclig, Michael O; Predicala, Rey Z; Mapua, Cynthia A; Lozano-Kühne, Jingky P; Daroy, Maria Luisa G; Natividad, Filipinas F; Javier, Francis O

    2012-01-01

    A hospital-based cross-sectional study was conducted to determine the allelic and genotype frequencies in the genes encoding for catechol-O-methyltransferase and CYP2D6*10 among healthy volunteers and patients clinically diagnosed with cancer pain. PCR-RFLP was used to identify COMT and CYP2D6*10 genotypes. Allelic frequencies among healthy volunteer Filipinos were 0.83 and 0.17 for the COMT Val and COMT Met alleles, respectively. Calculated frequencies in Hardy-Weinberg equilibrium (HWE) were 73% for COMT Val/Val, 26% for COMT Val/Met, and 1% for COMT Met/Met genotype. For CYP2D6*10, allelic frequencies in HWE among volunteers were 0.46 for the C allele and 0.54 for the T allele. Twenty percent were identified as homozygous for the wild-type C/C genotype, 56% were identified as heterozygous for the C/T genotype, and 24% were identified as homozygous for the T/T variant genotype. No significant differences in COMT and CYP2D6*10 allele frequencies between cancer patients and healthy volunteers were noted. Our data demonstrated that the allele frequencies of COMT and CYP2D6*10 in the Filipino healthy volunteers were similar with other Asians but markedly different from Caucasian populations.

  5. An investigation of CYP2D6 genotype and response to metoprolol CR/XL during dose titration in patients with heart failure: a MERIT-HF substudy.

    PubMed

    Batty, J A; Hall, A S; White, H L; Wikstrand, J; de Boer, R A; van Veldhuisen, D J; van der Harst, P; Waagstein, F; Hjalmarson, Å; Kjekshus, J; Balmforth, A J

    2014-03-01

    To explore the pharmacogenetic effects of the cytochrome P450 (CYP)2D6 genotype in patients with systolic heart failure treated using controlled/extended-release (CR/XL) metoprolol, this study assessed the CYP2D6 locus for the nonfunctional *4 allele (1846G>A; rs3892097) in the Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF; n = 605). Participants were characterized as extensive, intermediate, or poor metabolizers (EMs, IMs, or PMs, respectively), based on the presence of the CYP2D6*4 allele (EM: *1*1, 60.4%; IM: *1*4, 35.8%; and PM: *4*4, 3.8%). Plasma metoprolol concentrations were 2.1-/4.6-fold greater in the IM/PM groups as compared with the EM group (P < 0.0001). Metoprolol induced significantly lower heart rates and diastolic blood pressures during early titration, indicating a CYP2D6*4 allele dose-response effect (P < 0.05). These effects were not observed at maximal dose, suggesting a saturable effect. Genotype did not adversely affect surrogate treatment efficacy. CYP2D6 genotype modulates metoprolol pharmacokinetics/pharmacodynamics during early titration; however, the MERIT-HF-defined titration schedule remains recommended for all patients, regardless of genotype.

  6. Common CYP2D6 polymorphisms affecting alternative splicing and transcription: long-range haplotypes with two regulatory variants modulate CYP2D6 activity.

    PubMed

    Wang, Danxin; Poi, Ming J; Sun, Xiaochun; Gaedigk, Andrea; Leeder, J Steven; Sadee, Wolfgang

    2014-01-01

    Cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of 25% of clinically used drugs. Genetic polymorphisms cause substantial variation in CYP2D6 activity and serve as biomarkers guiding drug therapy. However, genotype-phenotype relationships remain ambiguous except for poor metabolizers carrying null alleles, suggesting the presence of yet unknown genetic variants. Searching for regulatory CYP2D6 polymorphisms, we find that a SNP defining the CYP2D6*2 allele, rs16947 [R296C, 17-60% minor allele frequency (MAF)], previously thought to convey normal activity, alters exon 6 splicing, thereby reducing CYP2D6 expression at least 2-fold. In addition, two completely linked SNPs (rs5758550/rs133333, MAF 13-42%) increase CYP2D6 transcription more than 2-fold, located in a distant downstream enhancer region (>100 kb) that interacts with the CYP2D6 promoter. In high linkage disequilibrium (LD) with each other, rs16947 and the enhancer SNPs form haplotypes that affect CYP2D6 enzyme activity in vivo. In a pediatric cohort of 164 individuals, rs16947 alone (minor haplotype frequency 28%) was associated with reduced CYP2D6 metabolic activity (measured as dextromethorphan/metabolite ratios), whereas rs5758550/rs133333 alone (frequency 3%) resulted in increased CYP2D6 activity, while haplotypes containing both rs16947 and rs5758550/rs133333 were similar to the wild-type. Other alleles used in biomarker panels carrying these variants such as CYP2D6*41 require re-evaluation of independent effects on CYP2D6 activity. The occurrence of two regulatory variants of high frequency and in high LD, residing on a long haplotype, highlights the importance of gene architecture, likely shaped by evolutionary selection pressures, in determining activity of encoded proteins.

  7. CYP2D6 Genetic Polymorphisms and Phenotypes in Different Ethnicities of Malaysian Breast Cancer Patients.

    PubMed

    Chin, Fee Wai; Chan, Soon Choy; Abdul Rahman, Sabariah; Noor Akmal, Sharifah; Rosli, Rozita

    2016-01-01

    The cytochrome P450, family 2, subfamily D, polypeptide 6 (CYP2D6) is an enzyme that is predominantly involved in the metabolism of tamoxifen. Genetic polymorphisms of the CYP2D6 gene may contribute to inter-individual variability in tamoxifen metabolism, which leads to the differences in clinical response to tamoxifen among breast cancer patients. In Malaysia, the knowledge on CYP2D6 genetic polymorphisms as well as metabolizer status in Malaysian breast cancer patients remains unknown. Hence, this study aimed to comprehensively identify CYP2D6 genetic polymorphisms among 80 Malaysian breast cancer patients. The genetic polymorphisms of all the 9 exons of CYP2D6 gene were identified using high-resolution melting analysis and confirmed by DNA sequencing. Seven CYP2D6 alleles consisting of CYP2D6*1, CYP2D6*2, CYP2D6*4, CYP2D6*10, CYP2D6*39, CYP2D6*49, and CYP2D6*75 were identified in this study. Among these alleles, CYP2D6*10 is the most common allele in both Malaysian Malay (54.8%) and Chinese (71.4%) breast cancer patients, whereas CYP2D6*4 in Malaysian Indian (28.6%) breast cancer patients. In relation to CYP2D6 genotype, CYP2D6*10/*10 is more frequently observed in both Malaysian Malay (28.9%) and Chinese (57.1%) breast cancer patients, whereas CYP2D6*4/*10 is more frequently observed in Malaysian Indian (42.8%) breast cancer patients. In terms of CYP2D6 phenotype, 61.5% of Malaysian Malay breast cancer patients are predicted as extensive metabolizers in which they are most likely to respond well to tamoxifen therapy. However, 57.1% of Chinese as well as Indian breast cancer patients are predicted as intermediate metabolizers and they are less likely to gain optimal benefit from the tamoxifen therapy. This is the first report of CYP2D6 genetic polymorphisms and phenotypes in Malaysian breast cancer patients for different ethnicities. These data may aid clinicians in selecting an optimal drug therapy for Malaysian breast cancer patients, hence improve the

  8. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice.

    PubMed

    Pan, Xian; Jeong, Hyunyoung

    2015-07-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼ 50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter.

  9. Frequency of undetected CYP2D6 hybrid genes in clinical samples: impact on phenotype prediction.

    PubMed

    Black, John Logan; Walker, Denise L; O'Kane, Dennis J; Harmandayan, Maria

    2012-01-01

    Cytochrome P450 2D6 (CYP2D6) is highly polymorphic. CYP2D6-2D7 hybrid genes can be present in samples containing CYP2D6*4 and CYP2D6*10 alleles. CYP2D7-2D6 hybrid genes can be present in samples with duplication signals and in samples with homozygous genotyping results. The frequency of hybrid genes in clinical samples is unknown. We evaluated 1390 samples for undetected hybrid genes by polymerase chain reaction (PCR) amplification, PCR fragment analysis, TaqMan copy number assays, DNA sequencing, and allele-specific primer extension assay. Of 508 CYP2D6*4-containing samples, 109 (21.5%) harbored CYP2D6*68 + *4-like, whereas 9 (1.8%) harbored CYP2D6*4N + *4-like. Of 209 CYP2D6*10-containing samples, 44 (21.1%) were found to have CYP2D6*36 + *10. Of 332 homozygous samples, 4 (1.2%) harbored a single CYP2D7-2D6 hybrid, and of 341 samples with duplication signals, 25 (7.3%) harbored an undetected CYP2D7-2D6 hybrid. Phenotype before and after accurate genotyping was predicted using a method in clinical use. The presence of hybrid genes had no effect on the phenotype prediction of CYP2D6*4- and CYP2D6*10-containing samples. Four of four (100%) homozygous samples containing a CYP2D7-2D6 gene had a change in predicted phenotype, and 23 of 25 (92%) samples with a duplication signal and a CYP2D7-2D6 gene had a change in predicted phenotype. Four novel genes were identified (CYP2D6*13A1 variants 1 and 2, CYP2D6*13G1, and CYP2D6*13G2), and two novel hybrid tandem structures consisting of CYP2D6*13B + *68×2 + *4-like and CYP2D6*13A1 variant 2 + *1×N were observed.

  10. Impact of Ageing on Serum Concentrations of Risperidone and Its Active Metabolite in Patients with Known CYP2D6 Genotype.

    PubMed

    Molden, Espen; Waade, Ragnhild Birkeland; Hoff, Maren; Haslemo, Tore

    2016-11-01

    The aim of this study was to investigate the impact of ageing on serum concentrations of risperidone and 9-hydroxyrisperidone in patients with known CYP2D6 genotype. We included retrospective therapeutic drug monitoring data from 464 genotyped patients with measured serum concentrations of risperidone and 9-hydroxyrisperidone after oral administration. Patients were divided into two age subgroups, that is ≤65 (n = 396) and >65 years (n = 68), and dose-adjusted concentrations (C:D ratios) were compared using multiple linear regression analyses with CYP2D6 genotype and gender as covariates. Moreover, absolute concentrations and prescribed daily doses were compared between age subgroups by simple, univariate Mann-Whitney tests. Age had no effect on C:D ratio of risperidone (p > 0.4), but C:D ratios of 9-hydroxyrisperidone and risperidone + 9-hydroxyrisperidone (total active moiety) were estimated to be 2.6 and 2.0 times higher in patients >65 versus ≤65 years (p < 0.001). Female gender and a CYP2D6 poor metabolizer (PM) genotype were also associated with significantly higher C:D ratio of the total active moiety (p < 0.01). Despite lower dosing in patients >65 versus ≤65 years (median 1.5 versus 3.0 mg/day, p < 0.0001), absolute concentration of the total active moiety did not differ between the age subgroups (median 52.5 versus 47.0 nmol/L, p > 0.6). In conclusion, ageing implies significantly increased dose-adjusted serum concentration of risperidone active moiety, and treatment intensity is not generally reduced by halving the oral dose in the elderly. Tolerability of risperidone therapy should therefore be closely monitored in older patients, and female CYP2D6 PMs >65 years might be a particularly vulnerable subgroup of adverse effects.

  11. CYP2D6 variability in populations from Venezuela.

    PubMed

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  12. Influence of CYP2D6 genotype on the disposition of the enantiomers of venlafaxine and its major metabolites in postmortem femoral blood.

    PubMed

    Kingbäck, Maria; Karlsson, Louise; Zackrisson, Anna-Lena; Carlsson, Björn; Josefsson, Martin; Bengtsson, Finn; Ahlner, Johan; Kugelberg, Fredrik C

    2012-01-10

    Venlafaxine (VEN) is an antidepressant drug mainly metabolized by the cytochrome P450 (CYP) enzyme CYP2D6 to the active metabolite O-desmethylvenlafaxine (ODV). VEN is also metabolized to N-desmetylvenlafaxine (NDV) via CYP3A4. ODV and NDV are further metabolized to N,O-didesmethylvenlafaxine (DDV). VEN is a racemic mixture of the S- and R-enantiomers and these have in vitro displayed different degrees of serotonin and noradrenaline reuptake inhibition. The aim of the study was to investigate if an enantioselective analysis of VEN and its metabolites, in combination with genotyping for CYP2D6, could assist in the interpretation of forensic toxicological results in cases with different causes of deaths. Concentrations of the enantiomers of VEN and metabolites were determined in femoral blood obtained from 56 autopsy cases with different causes of death. The drug analysis was done by liquid chromatography tandem mass spectrometry (LC/MS/MS) and the CYP2D6 genotyping by PCR and pyrosequencing. The mean (median) enantiomeric S/R ratios of VEN, ODV, NDV and DDV were 0.99 (0.91), 2.17 (0.93), 0.92 (0.86) and 1.08 (1.03), respectively. However, a substantial variation in the relationship between the S- and R-enantiomers of VEN and metabolites was evident (S/R ratios ranging from 0.23 to 17.6). In six cases, a low S/R VEN ratio (mean 0.5) was associated with a high S/R ODV ratio (mean 11.9). Genotyping showed that these individuals carried two inactive CYP2D6 genes indicating a poor metabolizer phenotype. From these data we conclude that enantioselective analysis of VEN and ODV can predict if a person is a poor metabolizer genotype/phenotype for CYP2D6. Knowledge of the relationship between the S- and R-enantiomers of this antidepressant drug and its active metabolite is also important since the enantiomers display different pharmacodynamic profiles.

  13. A Model Based Cost-Effectiveness Analysis of Routine Genotyping for CYP2D6 among Older, Depressed Inpatients Starting Nortriptyline Pharmacotherapy

    PubMed Central

    Luttjeboer, Jos; Wilffert, Bob; Postma, Maarten J.

    2016-01-01

    Objective Genotyping for CYP2D6 has the potential to predict differences in metabolism of nortriptyline. This information could optimize pharmacotherapy. We determined the costs and effects of routine genotyping for old aged Dutch depressed inpatients. Methods With a decision-tree, we modelled the first 12 weeks of nortriptyline therapy. Direct costs of genotyping, hospitalization, therapeutic drug monitoring and drugs were included. Based on genotype, patients could be correctly, sub-, or supratherapeutically dosed. Improvement from sub- or supratherapeutically dosed patients to correctly dosed patients was simulated, assuming that genotyping would prevent under- or overdosing of patients. In the base case, this improvement was assumed to be 35%. A probabilistic sensitivity analysis (PSA) was performed to determine uncertainty around the incremental cost-effectiveness ratio (ICER). Results In the base case analysis, costs for genotyping were assumed €200 per test with a corresponding ICER at €1 333 000 per QALY. To reach a €50 000 per QALY cut-off, genotyping costs should be decreased towards €40 per test. At genotyping test costs < €35 per test, genotyping was dominant. At test costs of €17 per test there was a 95% probability that genotyping was cost-effective at €50 000 per QALY. Conclusions CYP2D6 genotyping was not cost-effective at current genotyping costs at a €50 000 per QALY threshold, however at test costs below €40, genotyping could be costs-effective. PMID:28033366

  14. Variation in the inhibitory potency of terbinafine among genetic variants of CYP2D6.

    PubMed

    Akiyoshi, Takeshi; Ishiuchi, Miho; Imaoka, Ayuko; Ohtani, Hisakazu

    2015-08-01

    Cytochrome P450 2D6 (CYP2D6) is a highly polymorphic enzyme that is involved in the metabolism of many drugs. Terbinafine (TER) is a CYP2D6 inhibitor and causes persistent drug interactions in the clinical setting; however, its inhibitory mechanism and the differences in its inhibitory potency among genetic variants of CYP2D6 remain to be investigated. This study aimed to investigate the inhibitory mechanism of TER and the differences in its inhibitory potency among three CYP2D6 variants, CYP2D6.1, CYP2D6.2, and CYP2D6.10. In a competitive inhibition study, the metabolic activity of the CYP2D6 was assessed based on their demethylation of dextromethorphan in the presence or absence of TER, and the time-dependency of the inhibitory effects were examined by preincubating the enzymes with TER. TER had weaker inhibitory effects on CYP2D6.2 and CYP2D6.10 than on CYP2D6.1; i.e., TER exhibited Ki values (the concentration of inhibitor that results in half-maximal inhibition) of 0.0525, 0.355, and 1.85 μM for CYP2D6.1, CYP2D6.2, and CYP2D6.10, respectively. The inhibitory effects of TER were not time-dependent. Since TER's Ki value for CYP2D6.10 was 35.2-fold higher than its Ki value for CYP2D6.1, the CYP2D6 genotype of subjects should be taken into account when estimating the severity of drug interactions involving TER.

  15. Differential CYP 2D6 metabolism alters primaquine pharmacokinetics.

    PubMed

    Potter, Brittney M J; Xie, Lisa H; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T; Bandara Herath, H M T; Dhammika Nanayakkara, N P; Tekwani, Babu L; Walker, Larry A; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Marcsisin, Sean R

    2015-04-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.

  16. Flexible and Scalable Full‐Length CYP2D6 Long Amplicon PacBio Sequencing

    PubMed Central

    Vossen, Rolf H.A.M.; Anvar, Seyed Yahya; Allard, William G.; Guchelaar, Henk‐Jan; White, Stefan J.; den Dunnen, Johan T.; Swen, Jesse J.; van der Straaten, Tahar

    2017-01-01

    ABSTRACT Cytochrome P450 2D6 (CYP2D6) is among the most important genes involved in drug metabolism. Specific variants are associated with changes in the enzyme's amount and activity. Multiple technologies exist to determine these variants, like the AmpliChip CYP450 test, Taqman qPCR, or Second‐Generation Sequencing, however, sequence homology between cytochrome P450 genes and pseudogene CYP2D7 impairs reliable CYP2D6 genotyping, and variant phasing cannot accurately be determined using these assays. To circumvent this, we sequenced CYP2D6 using the Pacific Biosciences RSII and obtained high‐quality, full‐length, phased CYP2D6 sequences, enabling accurate variant calling and haplotyping of the entire gene‐locus including exonic, intronic, and upstream and downstream regions. Unphased diplotypes (Roche AmpliChip CYP450 test) were confirmed for 24 of the 25 samples, including gene duplications. Cases with gene deletions required additional specific assays to resolve. In total, 61 unique variants were detected, including variants that had not previously been associated with specific haplotypes. To further aid genomic analysis using standard reference sequences, we have established an LOVD‐powered CYP2D6 gene‐variant database, and added all reference haplotypes and data reported here. We conclude that our CYP2D6 genotyping approach produces reliable CYP2D6 diplotypes and reveals information about additional variants, including phasing and copy‐number variation. PMID:28044414

  17. Impact of CYP2D6 polymorphisms on clinical efficacy and tolerability of metoprolol tartrate.

    PubMed

    Hamadeh, I S; Langaee, T Y; Dwivedi, R; Garcia, S; Burkley, B M; Skaar, T C; Chapman, A B; Gums, J G; Turner, S T; Gong, Y; Cooper-DeHoff, R M; Johnson, J A

    2014-08-01

    Metoprolol is a selective β-1 adrenergic receptor blocker that undergoes extensive metabolism by the polymorphic enzyme cytochrome P450 2D6 (CYP2D6). Our objective was to investigate the influence of CYP2D6 polymorphisms on the efficacy and tolerability of metoprolol tartrate. Two hundred and eighty-one participants with uncomplicated hypertension received 50 mg of metoprolol twice daily followed by response-guided titration to 100 mg twice daily. Phenotypes were assigned based on results of CYP2D6 genotyping and copy number variation assays. Clinical response to metoprolol and adverse effect rates were analyzed in relation to CYP2D6 phenotypes using appropriate statistical tests. Heart rate response differed significantly by CYP2D6 phenotype (P < 0.0001), with poor and intermediate metabolizers showing greater reduction. However, blood pressure response and adverse effect rates were not significantly different by CYP2D6 phenotype. Other than a significant difference in heart rate response, CYP2D6 polymorphisms were not determinants of variability in metoprolol response or tolerability.

  18. Altered expression of small heterodimer partner governs cytochrome P450 (CYP) 2D6 induction during pregnancy in CYP2D6-humanized mice.

    PubMed

    Koh, Kwi Hye; Pan, Xian; Shen, Hong-Wu; Arnold, Samuel L M; Yu, Ai-Ming; Gonzalez, Frank J; Isoherranen, Nina; Jeong, Hyunyoung

    2014-02-07

    Substrates of a major drug-metabolizing enzyme CYP2D6 display increased elimination during pregnancy, but the underlying mechanisms are unknown in part due to a lack of experimental models. Here, we introduce CYP2D6-humanized (Tg-CYP2D6) mice as an animal model where hepatic CYP2D6 expression is increased during pregnancy. In the mouse livers, expression of a known positive regulator of CYP2D6, hepatocyte nuclear factor 4α (HNF4α), did not change during pregnancy. However, HNF4α recruitment to CYP2D6 promoter increased at term pregnancy, accompanied by repressed expression of small heterodimer partner (SHP). In HepG2 cells, SHP repressed HNF4α transactivation of CYP2D6 promoter. In transgenic (Tg)-CYP2D6 mice, SHP knockdown led to a significant increase in CYP2D6 expression. Retinoic acid, an endogenous compound that induces SHP, exhibited decreased hepatic levels during pregnancy in Tg-CYP2D6 mice. Administration of all-trans-retinoic acid led to a significant decrease in the expression and activity of hepatic CYP2D6 in Tg-CYP2D6 mice. This study provides key insights into mechanisms underlying altered CYP2D6-mediated drug metabolism during pregnancy, laying a foundation for improved drug therapy in pregnant women.

  19. Enantioselective analysis of citalopram and escitalopram in postmortem blood together with genotyping for CYP2D6 and CYP2C19.

    PubMed

    Carlsson, Björn; Holmgren, Anita; Ahlner, Johan; Bengtsson, Finn

    2009-03-01

    Citalopram is marketed as a racemate (50:50) mixture of the S(+)-enantiomer and R(-)-enantiomer and the active S(+)-enantiomer (escitalopram) that possess inhibitory effects. Citalopram was introduced in Sweden in 1992 and is the most frequently used antidepressant to date in Sweden. In 2002, escitalopram was introduced onto the Swedish market for treatment of depression and anxiety disorders. The main objective of this study was to investigate S(+)-citalopram [i.e., the racemic drug (citalopram) or the enantiomer (escitalopram)] present in forensic autopsy cases positive for the presence of citalopram in routine screening using a non-enantioselective bioanalytical method. Fifty out of the 270 samples found positive by gas chromatography-nitrogen-phosphorus detection were further analyzed using enantioselective high-performance liquid chromatography. The 50 cases were genotyped for CYP2D6 and CYP2C19, as these isoenzymes are implicated in the metabolism of citalopram and escitalopram. In samples positive for racemic citalopram using the screening method for forensic autopsy cases, up to 20% would have been misinterpreted in the absence of an enantioselective method. An enantioselective method is thus necessary for correct interpretation of autopsy cases, after the enantiomer has been introduced onto the market. The percentage of poor metabolizers was 6% for CYP2D6 and 8% for CYP2C19.

  20. Distribution of CYP2D6 alleles and phenotypes in the Brazilian population.

    PubMed

    Friedrich, Deise C; Genro, Júlia P; Sortica, Vinicius A; Suarez-Kurtz, Guilherme; de Moraes, Maria Elizabete; Pena, Sergio D J; dos Santos, Andrea K Ribeiro; Romano-Silva, Marco A; Hutz, Mara H

    2014-01-01

    The CYP2D6 enzyme is one of the most important members of the cytochrome P450 superfamily. This enzyme metabolizes approximately 25% of currently prescribed medications. The CYP2D6 gene presents a high allele heterogeneity that determines great inter-individual variation. The aim of this study was to evaluate the variability of CYP2D6 alleles, genotypes and predicted phenotypes in Brazilians. Eleven single nucleotide polymorphisms and CYP2D6 duplications/multiplications were genotyped by TaqMan assays in 1020 individuals from North, Northeast, South, and Southeast Brazil. Eighteen CYP2D6 alleles were identified in the Brazilian population. The CYP2D6*1 and CYP2D6*2 alleles were the most frequent and widely distributed in different geographical regions of Brazil. The highest number of CYPD6 alleles observed was six and the frequency of individuals with more than two copies ranged from 6.3% (in Southern Brazil) to 10.2% (Northern Brazil). The analysis of molecular variance showed that CYP2D6 is homogeneously distributed across different Brazilian regions and most of the differences can be attributed to inter-individual differences. The most frequent predicted metabolic status was EM (83.5%). Overall 2.5% and 3.7% of Brazilians were PMs and UMs respectively. Genomic ancestry proportions differ only in the prevalence of intermediate metabolizers. The IM predicted phenotype is associated with a higher proportion of African ancestry and a lower proportion of European ancestry in Brazilians. PM and UM classes did not vary among regions and/or ancestry proportions therefore unique CYP2D6 testing guidelines for Brazilians are possible and could potentially avoid ineffective or adverse events outcomes due to drug prescriptions.

  1. Distribution of CYP2D6 Alleles and Phenotypes in the Brazilian Population

    PubMed Central

    Sortica, Vinicius A.; Suarez-Kurtz, Guilherme; de Moraes, Maria Elizabete; Pena, Sergio D. J.; dos Santos, Ândrea K. Ribeiro; Romano-Silva, Marco A.; Hutz, Mara H.

    2014-01-01

    Abstract The CYP2D6 enzyme is one of the most important members of the cytochrome P450 superfamily. This enzyme metabolizes approximately 25% of currently prescribed medications. The CYP2D6 gene presents a high allele heterogeneity that determines great inter-individual variation. The aim of this study was to evaluate the variability of CYP2D6 alleles, genotypes and predicted phenotypes in Brazilians. Eleven single nucleotide polymorphisms and CYP2D6 duplications/multiplications were genotyped by TaqMan assays in 1020 individuals from North, Northeast, South, and Southeast Brazil. Eighteen CYP2D6 alleles were identified in the Brazilian population. The CYP2D6*1 and CYP2D6*2 alleles were the most frequent and widely distributed in different geographical regions of Brazil. The highest number of CYPD6 alleles observed was six and the frequency of individuals with more than two copies ranged from 6.3% (in Southern Brazil) to 10.2% (Northern Brazil). The analysis of molecular variance showed that CYP2D6 is homogeneously distributed across different Brazilian regions and most of the differences can be attributed to inter-individual differences. The most frequent predicted metabolic status was EM (83.5%). Overall 2.5% and 3.7% of Brazilians were PMs and UMs respectively. Genomic ancestry proportions differ only in the prevalence of intermediate metabolizers. The IM predicted phenotype is associated with a higher proportion of African ancestry and a lower proportion of European ancestry in Brazilians. PM and UM classes did not vary among regions and/or ancestry proportions therefore unique CYP2D6 testing guidelines for Brazilians are possible and could potentially avoid ineffective or adverse events outcomes due to drug prescriptions. PMID:25329392

  2. CYP2D6 polymorphisms and their influence on risperidone treatment

    PubMed Central

    Puangpetch, Apichaya; Vanwong, Natchaya; Nuntamool, Nopphadol; Hongkaew, Yaowaluck; Chamnanphon, Monpat; Sukasem, Chonlaphat

    2016-01-01

    Cytochrome P450 enzyme especially CYP2D6 plays a major role in biotransformation. The interindividual variations of treatment response and toxicity are influenced by the polymorphisms of this enzyme. This review emphasizes the effect of CYP2D6 polymorphisms in risperidone treatment in terms of basic knowledge, pharmacogenetics, effectiveness, adverse events, and clinical practice. Although the previous studies showed different results, the effective responses in risperidone treatment depend on the CYP2D6 polymorphisms. Several studies suggested that CYP2D6 polymorphisms were associated with plasma concentration of risperidone, 9-hydroxyrisperidone, and active moiety but did not impact on clinical outcomes. In addition, CYP2D6 poor metabolizer showed more serious adverse events such as weight gain and prolactin than other predicted phenotype groups. The knowledge of pharmacogenomics of CYP2D6 in risperidone treatment is increasing, and it can be used for the development of personalized medication in term of genetic-based dose recommendation. Moreover, the effects of many factors in risperidone treatment are still being investigated. Both the CYP2D6 genotyping and therapeutic drug monitoring are the important steps to complement the genetic-based risperidone treatment. PMID:27942231

  3. MDMA, methamphetamine, and CYP2D6 pharmacogenetics: what is clinically relevant?

    PubMed Central

    de la Torre, Rafael; Yubero-Lahoz, Samanta; Pardo-Lozano, Ricardo; Farré, Magí

    2012-01-01

    In vitro human studies show that the metabolism of most amphetamine-like psychostimulants is regulated by the polymorphic cytochrome P450 isozyme CYP2D6. Two compounds, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA), were selected as archetypes to discuss the translation and clinical significance of in vitro to in vivo findings. Both compounds were chosen based on their differential interaction with CYP2D6 and their high abuse prevalence in society. Methamphetamine behaves as both a weak substrate and competitive inhibitor of CYP2D6, while MDMA acts as a high affinity substrate and potent mechanism-based inhibitor (MBI) of the enzyme. The MBI behavior of MDMA on CYP2D6 implies that subjects, irrespective of their genotype/phenotype, are phenocopied to the poor metabolizer (PM) phenotype. The fraction of metabolic clearance regulated by CYP2D6 for both drugs is substantially lower than expected from in vitro studies. Other isoenzymes of cytochrome P450 and a relevant contribution of renal excretion play a part in their clearance. These facts tune down the potential contribution of CYP2D6 polymorphism in the clinical outcomes of both substances. Globally, the clinical relevance of CYP2D6 polymorphism is lower than that predicted by in vitro studies. PMID:23162568

  4. Novel drug metabolism indices for pharmacogenetic functional status based on combinatory genotyping of CYP2C9, CYP2C19 and CYP2D6 genes

    PubMed Central

    Villagra, David; Goethe, John; Schwartz, Harold I; Szarek, Bonnie; Kocherla, Mohan; Gorowski, Krystyna; Windemuth, Andreas; Ruaño, Gualberto

    2011-01-01

    Aims We aim to demonstrate clinical relevance and utility of four novel drug-metabolism indices derived from a combinatory (multigene) approach to CYP2C9, CYP2C19 and CYP2D6 allele scoring. Each index considers all three genes as complementary components of a liver enzyme drug metabolism system and uniquely benchmarks innate hepatic drug metabolism reserve or alteration through CYP450 combinatory genotype scores. Methods A total of 1199 psychiatric referrals were genotyped for polymorphisms in the CYP2C9, CYP2C19 and CYP2D6 gene loci and were scored on each of the four indices. The data were used to create distributions and rankings of innate drug metabolism capacity to which individuals can be compared. Drug-specific indices are a combination of the drug metabolism indices with substrate-specific coefficients. Results The combinatory drug metabolism indices proved useful in positioning individuals relative to a population with regard to innate drug metabolism capacity prior to pharmacotherapy. Drug-specific indices generate pharmacogenetic guidance of immediate clinical relevance, and can be further modified to incorporate covariates in particular clinical cases. Conclusions We believe that this combinatory approach represents an improvement over the current gene-by-gene reporting by providing greater scope while still allowing for the resolution of a single-gene index when needed. This method will result in novel clinical and research applications, facilitating the translation from pharmacogenomics to personalized medicine, particularly in psychiatry where many drugs are metabolized or activated by multiple CYP450 isoenzymes. PMID:21861665

  5. The Psychostimulant Khat (Catha edulis) Inhibits CYP2D6 Enzyme Activity in Humans.

    PubMed

    Bedada, Worku; de Andrés, Fernando; Engidawork, Ephrem; Pohanka, Anton; Beck, Olof; Bertilsson, Leif; Llerena, Adrián; Aklillu, Eleni

    2015-12-01

    The use of khat (Catha edulis) while on medication may alter treatment outcome. In particular, the influence of khat on the metabolic activities of drug-metabolizing enzymes is not known. We performed a comparative 1-way crossover study to evaluate the effect of khat on cytochrome P450 (CYP)2D6 and CYP3A4 enzyme activity. After 1 week of khat abstinence, baseline CYP2D6 and CYP3A4 metabolic activities were determined in 40 Ethiopian male volunteers using 30 mg dextromethorphan (DM) as a probe drug and then repeated after 1 week of daily use of 400 g fresh khat leaves. Urinary concentrations of cathinone and cathine were determined to monitor the subjects' compliance to the study protocol. Genotyping for CYP2D6*3 and CYP2D6*4 was done. Plasma DM, dextrorphan and 3-methoxymorphinan concentrations were quantified. CYP2D6 and CYP3A4 enzyme activities were assessed by comparing plasma log DM/dextrorphan and log DM/methoxymorphinan metabolic ratio (MR) respectively in the presence and absence of khat. Cytochrome 2D6 MR was significantly increased from baseline by concurrent khat use (paired t test, P = 0.003; geometric mean ratio, 1.38; 95% confidence interval [95% CI], 1.12-1.53). Moreover, the inhibition of CYP2D6 activity by khat was more pronounced in CYP2D6*1/*1 compared with CYP2D6*1/*4 genotypes (P = 0.01). A marginal inhibition of CYP3A4 activity in the presence of khat was observed (P = 0.24). The mean percentage increase of CYP2D6 and CYP3A4 MR from baseline by khat use was 46% (95% CI, 20-72) and 31% (95% CI, 8-54), respectively. This is the first report linking khat use with significant inhibition of CYP2D6 metabolic activity in humans.

  6. Genetic polymorphism of CYP2D6 in patients with systemic lupus erythematosus and systemic sclerosis.

    PubMed

    Barańska, Małgorzata; Rychlik-Sych, Mariola; Kaszuba, Andrzej; Dziankowska-Bartkowiak, Bożena; Skrętkowicz, Jadwiga; Waszczykowska, Elżbieta

    2016-01-20

    Human organism is constantly exposed to harmful exogenous factors (xenobiotics) including drugs and carcinogenic compounds that can induce development of a large number of diseases. The processes of biotransformation in the organism are multidirectional and xenobiotics can be transformed into active or inactive metabolites via the oxidative route. The knowledge of oxidation polymorphism in the course of systemic lupus erythematosus and systemic sclerosis may be helpful in choosing more efficient and safer therapy, particularly in the case of a disease involving various organs and treated with drugs belonging to diverse therapeutic groups. The aim of the study was to evaluate the CYP2D6 polymorphism in the SLE (systemic lupus erythematosus) and SSc (systemic sclerosis) patients and to investigate a possible correlation with disease susceptibility. The study was carried out in 296 patients: 65 patients with SLE, 81 patients with SSc, and 150 healthy volunteers. The CYP2D6 genotypes were analyzed by polymerase chain reaction fragment length polymorphism (PCR-RFLP) method. The relative risk of developing SSc, expressed by the odds ratio, was three-fold higher for persons with the CYP2D6*1/CYP2D6*4 genotype (OR = 2.9; statistically significant difference, p = 0.0002). A statistically significant correlation between the CYP2D6*4 allele prevalence and the risk for developing SSc was found (OR = 1.53; p = 0.047). No effect of the CYP2D6 gene mutations on the incidence of SLE was noted. The obtained results may suggest the influence of CYP2D6*4 gene variants alleles on increased incidence of systemic sclerosis.

  7. CYP2D6 allele distribution in Macedonians, Albanians and Romanies in the Republic of Macedonia

    PubMed Central

    Kuzmanovska, M; Dimishkovska, M; Maleva Kostovska, I; Noveski, P; Sukarova Stefanovska, E

    2015-01-01

    Abstract Cytochrome P450 2D6 (CYP2D6) is an enzyme of great importance for the metabolism of clinically used drugs. More than 100 variants of the CYP2D6 gene have been identified so far. The aim of this study was to investigate the allele distribution of CYP2D6 gene variants in 100 individuals of each of the Macedonian, Albanian and Romany population, by genotyping using long range polymerase chain reaction (PCR) and a multiplex single base extension method. The most frequent variants and almost equally distributed in the three groups were the fully functional alleles *1 and *2. The most common non functional allele in all groups was *4 that was found in 22.5% of the Albanians. The most common allele with decreased activity was *41 which was found in 23.0% of the Romany ethnic group, in 11.0% of the Macedonians and in 10.5% of the Albanians. Seven percent of the Albanians, 6.0% of the Romani and 4.0% of the Macedonians were poor metabolizers, while 5.0% of the Macedonians, 1.0% of Albanians and 1.0% of the Romanies were ultrarapid metabolizers. We concluded that the CYP2D6 gene locus is highly heterogeneous in these groups and that the prevalence of the CYP2D6 allele variants and genotypes in the Republic of Macedonia is in accordance with that of other European populations. PMID:27785397

  8. CYP2D6 allele distribution in Macedonians, Albanians and Romanies in the Republic of Macedonia.

    PubMed

    Kuzmanovska, M; Dimishkovska, M; Maleva Kostovska, I; Noveski, P; Sukarova Stefanovska, E; Plaseska-Karanfilska, D

    2015-12-01

    Cytochrome P450 2D6 (CYP2D6) is an enzyme of great importance for the metabolism of clinically used drugs. More than 100 variants of the CYP2D6 gene have been identified so far. The aim of this study was to investigate the allele distribution of CYP2D6 gene variants in 100 individuals of each of the Macedonian, Albanian and Romany population, by genotyping using long range polymerase chain reaction (PCR) and a multiplex single base extension method. The most frequent variants and almost equally distributed in the three groups were the fully functional alleles *1 and *2. The most common non functional allele in all groups was *4 that was found in 22.5% of the Albanians. The most common allele with decreased activity was *41 which was found in 23.0% of the Romany ethnic group, in 11.0% of the Macedonians and in 10.5% of the Albanians. Seven percent of the Albanians, 6.0% of the Romani and 4.0% of the Macedonians were poor metabolizers, while 5.0% of the Macedonians, 1.0% of Albanians and 1.0% of the Romanies were ultrarapid metabolizers. We concluded that the CYP2D6 gene locus is highly heterogeneous in these groups and that the prevalence of the CYP2D6 allele variants and genotypes in the Republic of Macedonia is in accordance with that of other European populations.

  9. Metoclopramide is metabolized by CYP2D6 and is a reversible inhibitor, but not inactivator, of CYP2D6.

    PubMed

    Livezey, Mara R; Briggs, Erran D; Bolles, Amanda K; Nagy, Leslie D; Fujiwara, Rina; Furge, Laura Lowe

    2014-04-01

    1. Metoclopramide is a widely used clinical drug in a variety of medical settings with rare acute dystonic events reported. The aim of this study was to assess a previous report of inactivation of CYP2D6 by metoclopramide, to determine the contribution of various CYPs to metoclopramide metabolism, and to identify the mono-oxygenated products of metoclopramide metabolism. 2. Metoclopramide interacted with CYP2D6 with Type I binding and a Ks value of 9.56 ± 1.09 µM. CYP2D6 was the major metabolizer of metoclopramide and the two major products were N-deethylation of the diethyl amine and N-hydroxylation on the phenyl ring amine. CYPs 1A2, 2C9, 2C19, and 3A4 also metabolized metoclopramide. 3. While reversible inhibition of CYP2D6 was noted, CYP2D6 inactivation by metoclopramide was not observed under conditions of varying concentration or varying time using Supersomes(TM) or pooled human liver microsomes. 4. The major metabolites of metoclopramide were N-hydroxylation and N-deethylation formed most efficiently by CYP2D6 but also formed by all CYPs examined. Also, while metoclopramide is metabolized primarily by CYP2D6, it is not a mechanism-based inactivator of CYP2D6 in vitro.

  10. Detection of CYP2D6 polymorphism using Luminex xTAG technology in autism spectrum disorder: CYP2D6 activity score and its association with risperidone levels.

    PubMed

    Vanwong, Natchaya; Ngamsamut, Nattawat; Hongkaew, Yaowaluck; Nuntamool, Nopphadol; Puangpetch, Apichaya; Chamnanphon, Montri; Sinrachatanant, Ananya; Limsila, Penkhae; Sukasem, Chonlaphat

    2016-04-01

    CYP2D6 is involved in the biotransformation of a large number of drugs, including risperidone. This study was designed to detect CYP2D6 polymorphisms with a Luminex assay, including assessment the relationship of CYP2D6 polymorphisms and risperidone plasma concentration in autism spectrum disorder children (ASD) treated with risperidone. All 84 ASD patients included in this study had been receiving risperidone at least for 1 month. The CYP2D6 genotypes were determined by Luminex assay. Plasma concentrations of risperidone and 9-hydroxyrisperidone were measured using LC/MS/MS. Among the 84 patients, there were 46 (55.42%) classified as EM, 33 (39.76%) as IM, and 4(4.82%) as UM. The plasma concentration of risperidone and risperidone/9-hydroxyrisperidone ratio in the patients were significant differences among the CYP2D6 predicted phenotype group (P = 0.001 and P < 0.0001 respectively). Moreover, the plasma concentration of risperidone and risperidone/9-hydroxyrisperidone ratio in the patients with CYP2D6 activity score 0.5 were significantly higher than those with the CYP2D6 activity score 2.0 (P = 0.004 and P = 0.002 respectively). These findings suggested that the determination of the accurate CYP2D6 genotype-predicted phenotype is essential in the clinical setting and individualization of drug therapy. The use of the Luminex assay for detection of CYP2D6 polymorphisms could help us more accurately identify an individual's CYP2D6 phenotype.

  11. Genomics of Dementia: APOE- and CYP2D6-Related Pharmacogenetics

    PubMed Central

    Cacabelos, Ramón; Martínez, Rocío; Fernández-Novoa, Lucía; Carril, Juan C.; Lombardi, Valter; Carrera, Iván; Corzo, Lola; Tellado, Iván; Leszek, Jerzy; McKay, Adam; Takeda, Masatoshi

    2012-01-01

    Dementia is a major problem of health in developed societies. Alzheimer's disease (AD), vascular dementia, and mixed dementia account for over 90% of the most prevalent forms of dementia. Both genetic and environmental factors are determinant for the phenotypic expression of dementia. AD is a complex disorder in which many different gene clusters may be involved. Most genes screened to date belong to different proteomic and metabolomic pathways potentially affecting AD pathogenesis. The ε4 variant of the APOE gene seems to be a major risk factor for both degenerative and vascular dementia. Metabolic factors, cerebrovascular disorders, and epigenetic phenomena also contribute to neurodegeneration. Five categories of genes are mainly involved in pharmacogenomics: genes associated with disease pathogenesis, genes associated with the mechanism of action of a particular drug, genes associated with phase I and phase II metabolic reactions, genes associated with transporters, and pleiotropic genes and/or genes associated with concomitant pathologies. The APOE and CYP2D6 genes have been extensively studied in AD. The therapeutic response to conventional drugs in patients with AD is genotype specific, with CYP2D6-PMs, CYP2D6-UMs, and APOE-4/4 carriers acting as the worst responders. APOE and CYP2D6 may cooperate, as pleiotropic genes, in the metabolism of drugs and hepatic function. The introduction of pharmacogenetic procedures into AD pharmacological treatment may help to optimize therapeutics. PMID:22482072

  12. Clinical inhibition of CYP2D6-catalysed metabolism by the antianginal agent perhexiline

    PubMed Central

    Davies, Benjamin J L; Coller, Janet K; James, Heather M; Gillis, David; Somogyi, Andrew A; Horowitz, John D; Morris, Raymond G; Sallustio, Benedetta C

    2004-01-01

    Aims Perhexiline is an antianginal agent that displays both saturable and polymorphic metabolism via CYP2D6. The aim of this study was to determine whether perhexiline produces clinically significant inhibition of CYP2D6-catalysed metabolism in angina patients. Methods The effects of perhexiline on CYP2D6-catalysed metabolism were investigated by comparing urinary total dextrorphan/dextromethorphan metabolic ratios following a single dose of dextromethorphan (16.4 mg) in eight matched control patients not taking perhexiline and 24 patients taking perhexiline. All of the patients taking perhexiline had blood drawn for CYP2D6 genotyping as well as to measure plasma perhexiline and cis-OH-perhexiline concentrations. Results Median (range) dextrorphan/dextromethorphan metabolic ratios were significantly higher (P < 0.0001) in control patients, 271.1 (40.3–686.1), compared with perhexiline-treated patients, 5.0 (0.3–107.9). In the perhexiline-treated group 10/24 patients had metabolic ratios consistent with poor metabolizer phenotypes; however, none was a genotypic poor metabolizer. Interestingly, 89% of patients who had phenocopied to poor metabolizers had only one functional CYP2D6 gene. There was a significant negative linear correlation between the log of the dextrorphan/dextromethorphan metabolic ratio and plasma perhexiline concentrations (r2 = 0.69, P < 0.0001). Compared with patients with at least two functional CYP2D6 genes, those with one functional gene were on similar perhexiline dosage regimens but had significantly higher plasma perhexiline concentrations, 0.73 (0.21–1.00) vs. 0.36 (0.04–0.69) mg l−1 (P = 0.04), lower cis-OH-perhexiline/perhexiline ratios, 2.85 (0.35–6.10) vs. 6.51 (1.84–11.67) (P = 0.03), and lower dextrorphan/dextromethorphan metabolic ratios, 2.51 (0.33–39.56) vs. 11.80 (2.90–36.93) (P = 0.005). Conclusions Perhexiline significantly inhibits CYP2D6-catalysed metabolism in angina patients. The plasma cis

  13. Host determinants of DNA alkylation and DNA repair activity in human colorectal tissue: O(6)-methylguanine levels are associated with GSTT1 genotype and O(6)-alkylguanine-DNA alkyltransferase activity with CYP2D6 genotype.

    PubMed

    Povey, A C; Hall, C N; Badawi, A F; Cooper, D P; Guppy, M J; Jackson, P E; O'Connor, P J; Margison, G P

    2001-08-22

    There is increasing evidence that alkylating agent exposure may increase large bowel cancer risk and factors which either alter such exposure or its effects may modify risk. Hence, in a cross-sectional study of 78 patients with colorectal disease, we have examined whether (i) metabolic genotypes (GSTT1, GSTM1, CYP2D6, CYP2E1) are associated with O(6)-methyldeoxyguanosine (O(6)-MedG) levels, O(6)-alkylguanine-DNA alkyltransferase (ATase) activity or K-ras mutations, and (ii) there was an association between ATase activity and O(6)-MedG levels. Patients with colon tumours and who were homozygous GSTT1(*)2 genotype carriers were more likely than patients who expressed GSTT1 to have their DNA alkylated (83 versus 32%, P=0.03) and to have higher O(6)-MedG levels (0.178+/-0.374 versus 0.016+/-0.023 micromol O(6)-MedG/mol dG, P=0.04) in normal, but not tumour, DNA. No such association was observed between the GSTT1 genotype and the frequency of DNA alkylation or O(6)-MedG levels in patients with benign colon disease or rectal tumours. Patients with colon tumours or benign colon disease who were CYP2D6-poor metabolisers had higher ATase activity in normal tissue than patients who were CYP2D6 extensive metabolisers or CYP2D6 heterozygotes. Patients with the CYP2E1 Dra cd genotype were less likely to have a K-ras mutation: of 55 patients with the wild-type CYP2E1 genotype (dd), 23 had K-ras mutations, whereas none of the 7 individuals with cd genotype had a K-ras mutation (P=0.04). No other associations were observed between GSTT1, GSTM1, CYP2D6 and CYP2E1 Pst genotypes and adduct levels, ATase activity or mutational status. O(6)-MedG levels were not associated with ATase activity in either normal or tumour tissue. However, in 15 patients for whom both normal and tumour DNA contained detectable O(6)-MedG levels, there was a strong positive association between the normal DNA/tumour DNA adduct ratio and the normal tissue/tumour tissue ATase ratio (r(2)=0.66, P=0.001). These

  14. Loss of Heterozygosity at the CYP2D6 Locus in Breast Cancer: Implications for Germline Pharmacogenetic Studies

    PubMed Central

    Goetz, Matthew P.; Sun, James X.; Suman, Vera J.; Silva, Grace O.; Perou, Charles M.; Nakamura, Yusuke; Cox, Nancy J.; Stephens, Philip J.; Miller, Vincent A.; Ross, Jeffrey S.; Chen, David; Safgren, Stephanie L.; Kuffel, Mary J.; Ames, Matthew M.; Kalari, Krishna R.; Gomez, Henry L.; Gonzalez-Angulo, Ana M.; Burgues, Octavio; Brauch, Hiltrud B.; Ingle, James N.; Ratain, Mark J.; Yelensky, Roman

    2015-01-01

    Background: Controversy exists regarding the impact of CYP2D6 genotype on tamoxifen responsiveness. We examined loss of heterozygosity (LOH) at the CYP2D6 locus and determined its impact on genotyping error when tumor tissue is used as a DNA source. Methods: Genomic tumor data from the adjuvant and metastatic settings (The Cancer Genome Atlas [TCGA] and Foundation Medicine [FM]) were analyzed to characterize the impact of CYP2D6 copy number alterations (CNAs) and LOH on Hardy Weinberg equilibrium (HWE). Additionally, we analyzed CYP2D6 *4 genotype from formalin-fixed paraffin-embedded (FFPE) tumor blocks containing nonmalignant tissue and buccal (germline) samples from patients on the North Central Cancer Treatment Group (NCCTG) 89-30-52 tamoxifen trial. All statistical tests were two-sided. Results: In TCGA samples (n =627), the CYP2D6 LOH rate was similar in estrogen receptor (ER)–positive (41.2%) and ER-negative (35.2%) but lower in HER2-positive tumors (15.1%) (P < .001). In FM ER+ samples (n = 290), similar LOH rates were observed (40.8%). In 190 NCCTG samples, the agreement between CYP2D6 genotypes derived from FFPE tumors and FFPE tumors containing nonmalignant tissue was moderate (weighted Kappa = 0.74; 95% CI = 0.63 to 0.84). Comparing CYP2D6 genotypes derived from buccal cells to FFPE tumor DNA, CYP2D6*4 genotype was discordant in six of 31(19.4%). In contrast, there was no disagreement between CYP2D6 genotypes derived from buccal cells with FFPE tumors containing nonmalignant tissue. Conclusions: LOH at the CYP2D6 locus is common in breast cancer, resulting in potential misclassification of germline CYP2D6 genotypes. Tumor DNA should not be used to determine germline CYP2D6 genotype without sensitive techniques to detect low frequency alleles and quality control procedures appropriate for somatic DNA. PMID:25490892

  15. A case of respiratory depression in a child with ultrarapid CYP2D6 metabolism after tramadol.

    PubMed

    Orliaguet, Gilles; Hamza, Jamil; Couloigner, Vincent; Denoyelle, Françoise; Loriot, Marie-Anne; Broly, Franck; Garabedian, Erea Noel

    2015-03-01

    We discuss a case of severe respiratory depression in a child, with ultrarapid CYP2D6 genotype and obstructive sleep apnea syndrome, after taking tramadol for pain relief related to a day-case tonsillectomy.

  16. Epitope spreading of the anti-CYP2D6 antibody response in patients with autoimmune hepatitis and in the CYP2D6 mouse model.

    PubMed

    Hintermann, Edith; Holdener, Martin; Bayer, Monika; Loges, Stephanie; Pfeilschifter, Josef M; Granier, Claude; Manns, Michael P; Christen, Urs

    2011-11-01

    Autoimmune hepatitis (AIH) is a serious chronic inflammatory disease of the liver with yet unknown etiology and largely uncertain immunopathology. The hallmark of type 2 AIH is the generation of liver kidney microsomal-1 (LKM-1) autoantibodies, which predominantly react to cytochrome P450 2D6 (CYP2D6). The identification of disease initiating factors has been hampered in the past, since antibody epitope mapping was mostly performed using serum samples collected late during disease resulting in the identification of immunodominant epitopes not necessarily representing those involved in disease initiation. In order to identify possible environmental triggers for AIH, we analyzed for the first time the spreading of the anti-CYP2D6 antibody response over a prolonged period of time in AIH patients and in the CYP2D6 mouse model, in which mice infected with Adenovirus-human CYP2D6 (Ad-h2D6) develop antibodies with a similar specificity than AIH patients. Epitope spreading was analyzed in six AIH-2-patients and in the CYP2D6 mouse model using SPOTs membranes containing peptides covering the entire CYP2D6 protein. Despite of a considerable variation, both mice and AIH patients largely focus their humoral immune response on an immunodominant epitope early after infection (mice) or diagnosis (patients). The CYP2D6 mouse model revealed that epitope spreading is initiated at the immunodominant epitope and later expands to neighboring and remote regions. Sequence homologies to human pathogens have been detected for all identified epitopes. Our study demonstrates that epitope spreading does indeed occur during the pathogenesis of AIH and supports the concept of molecular mimicry as a possible initiating mechanism for AIH.

  17. Effect of cyp2d6*10 allele on the pharmacokinetics of loratadine in chinese subjects.

    PubMed

    Yin, Ophelia Q P; Shi, X J; Tomlinson, B; Chow, Moses S S

    2005-09-01

    Loratadine is known to be a substrate for both CYP3A4 and CYP2D6 based on a previous in vitro study. In view of the large interindividual variability in loratadine pharmacokinetics and the greater genetically determined variability of CYP2D6 activity than of CYP3A4 in vivo, we hypothesized that CYP2D6 polymorphisms may contribute to the pharmacokinetic variability of loratadine. The purpose of this study was to evaluate the effect of CYP2D6 genotype (specifically the CYP2D6*10 allele) on the pharmacokinetics of loratadine in Chinese subjects. Three groups of healthy male Chinese subjects were enrolled: group I, homozygous CYP2D6*1 (*1/*1, n=4); group II, heterozygous CYP2D6*10 (*1/*10 or *2/*10, n=6); and group III, homozygous CYP2D6*10 (*10/*10, n=7) carriers. Each subject received a single oral dose of 20 mg of loratadine under fasting conditions. Multiple blood samples were collected over 48 h, and the plasma concentrations of loratadine and its metabolite desloratadine were determined by high-performance liquid chromatography. In comparing homozygous CYP2D6*10 (group III) to heterozygous CYP2D6*10 (group II) to homozygous CYP2D6*1 (group I) subjects, loratadine oral clearance values were 7.17+/- 2.54 versus 11.06+/-1.70 versus 14.59+/-2.43 l/h/kg, respectively [one-way analysis of variance (ANOVA), p<0.01], and the corresponding metabolic ratios [area under the plasma concentration-time curve (AUC)(desloratadine)/AUC(loratadine)] were 1.55+/-0.73 versus 2.47+/- 0.46 versus 3.32+/- 0.49, respectively (one-way ANOVA, p<0.05), indicating a gene-dose effect. The results demonstrated that CYP2D6 polymorphism prevalent in the Chinese population significantly affected loratadine pharmacokinetics.

  18. CYP2D6 poor metabolizer status might be associated with better response to risperidone treatment.

    PubMed

    Almoguera, Berta; Riveiro-Alvarez, Rosa; Lopez-Castroman, Jorge; Dorado, Pedro; Vaquero-Lorenzo, Concepción; Fernandez-Piqueras, José; Llerena, Adrián; Abad-Santos, Francisco; Baca-García, Enrique; Dal-Ré, Rafael; Ayuso, Carmen

    2013-11-01

    The variability in the antipsychotic response is, to some extent, genetically determined. Several studies have attempted to establish a role for genetic variation in genes coding pharmacokinetic and pharmacodynamic targets, but to date, no definite genetic predictive marker has been identified. We aimed to explore the putative role of 19 genetic variants and risperidone clinical improvement in 76 White schizophrenic inpatients, measured as change in Positive and Negative Syndrome Scale (PANSS). CYP2D6 poor metabolism was significantly associated with greater clinical improvement in total PANSS and a trend was also found for MDR1 3435C>T to higher total PANSS scores in 3435T carriers. This study suggests the importance that genetic variability on pharmacokinetic factors may have in risperidone response and gives evidence for the need for further investigation in order to establish the actual predictive value and clinical utility that CYP2D6 genotyping might have in risperidone therapy management.

  19. Detection of an endogenous urinary biomarker associated with CYP2D6 activity using global metabolomics

    PubMed Central

    Tay-Sontheimer, Jessica; Shireman, Laura M; Beyer, Richard P; Senn, Taurence; Witten, Daniela; Pearce, Robin E; Gaedigk, Andrea; Fomban, Cletus L Gana; Lutz, Justin D; Isoherranen, Nina; Thummel, Kenneth E; Fiehn, Oliver; Leeder, J Steven; Lin, Yvonne S

    2015-01-01

    Aim We sought to discover endogenous urinary biomarkers of human CYP2D6 activity. Patients & methods Healthy pediatric subjects (n = 189) were phenotyped using dextromethorphan and randomized for candidate biomarker selection and validation. Global urinary metabolomics was performed using liquid chromatography quadrupole time-of-flight mass spectrometry. Candidate biomarkers were tested in adults receiving fluoxetine, a CYP2D6 inhibitor. Results A biomarker, M1 (m/z 444.3102) was correlated with CYP2D6 activity in both the pediatric training and validation sets. Poor metabolizers had undetectable levels of M1, whereas it was present in subjects with other phenotypes. In adult subjects, a 9.56-fold decrease in M1 abundance was observed during CYP2D6 inhibition. Conclusion Identification and validation of M1 may provide a noninvasive means of CYP2D6 phenotyping. PMID:25521354

  20. CYP2D6 Is Inducible by Endogenous and Exogenous Corticosteroids.

    PubMed

    Farooq, Muhammad; Kelly, Edward J; Unadkat, Jashvant D

    2016-05-01

    Although cytochrome P450 (CYP) 2D6 has been widely considered to be noninducible on the basis of human hepatocyte studies, in vivo data suggests that it is inducible by endo- and xenobiotics. Therefore, we investigated if the experimental conditions routinely used in human hepatocyte studies may be a confounding factor in the lack of in vitro induction of CYP2D6. Sandwich cultured human hepatocytes (SCHH) were preincubated with or without dexamethasone (100 nM) for 72 hours before incubation with 1μM endogenous (cortisol or corticosterone) or exogenous (dexamethasone or prednisolone) corticosteroids. At 72 hours, CYP2D6 mRNA, protein, and activity were quantified by real-time quantitative polymerase chain reaction, quantitative proteomics, and formation of dextrorphan from dextromethorphan, respectively. In the absence of supplemental dexamethasone, CYP2D6 activity, mRNA, and protein were significantly and robustly (>10-fold) induced by all four corticosteroids. However, this CYP2D6 induction was abolished in cells preincubated with supplemental dexamethasone. These data show, for the first time, that CYP2D6 is inducible in vitro but the routine presence of 100 nM dexamethasone in the culture medium masks this induction. Our cortisol data are in agreement with the clinical observation that CYP2D6 is inducible during the third trimester of pregnancy when the plasma concentrations of cortisol increase to ∼1μM. These findings, if confirmed in vivo, have implications for predicting CYP2D6-mediated drug-drug interactions and call for re-evaluation of regulatory guidelines on screening for CYP2D6 induction by xenobiotics. Our findings also suggest that cortisol may be a causative factor in the in vivo induction of CYP2D6 during pregnancy.

  1. Length of psychiatric hospitalization is correlated with CYP2D6 functional status in inpatients with major depressive disorder

    PubMed Central

    Ruaño, Gualberto; Szarek, Bonnie L; Villagra, David; Gorowski, Krystyna; Kocherla, Mohan; Seip, Richard L; Goethe, John W; Schwartz, Harold I

    2016-01-01

    Aim This study aimed to determine the effect of the CYP2D6 genotype on the length of hospitalization stay for patients treated for major depressive disorder. Methods A total of 149 inpatients with a diagnosis of major depressive disorder at the Institute of Living, Hartford Hospital (CT, USA), were genotyped to detect altered alleles in the CYP2D6 gene. Prospectively defined drug metabolism indices (metabolic reserve, metabolic alteration and allele alteration) were determined quantitatively and assessed for their relationship to length of hospitalization stay. Results Hospital stay was significantly longer in deficient CYP2D6 metabolizers (metabolic reserve <2) compared with functional or suprafunctional metabolizers (metabolic reserve ≥2; 7.8 vs 5.7 days, respectively; p = 0.002). Conclusion CYP2D6 enzymatic functional status significantly affected length of hospital stay, perhaps due to reduced efficacy or increased side effects of the medications metabolized by the CYP2D6 isoenzyme. Functional scoring of CYP2D6 alleles may have a substantial impact on the quality of care, patient satisfaction and the economics of psychiatric treatment. PMID:23734807

  2. CYP2D6 polymorphism: implications for antipsychotic drug response, schizophrenia and personality traits.

    PubMed

    Dorado, Pedro; Peñas-Lledó, Eva M; Llerena, Adrián

    2007-11-01

    The CYP2D6 gene is highly polymorphic, causing absent (poor metabolizers), decreased, normal or increased enzyme activity (extensive and ultrarapid metabolizers). The genetic polymorphism of the CYP2D6 influences plasma concentration of a wide variety of drugs metabolized in the liver by the cytochrome P450 (CYP) 2D6 enzyme, including antipsychotic drugs used for schizophrenia treatment. Additionally, CYP2D6 is involved in the metabolism of endogenous substrates in the brain, and reported to be located in regions such as the cortex, hippocampus and cerebellum, which are impaired in schizophrenia. Moreover, recently we have found that CYP2D6 poor metabolizers are under-represented in a case-control association study of schizophrenia. Furthermore, null CYP2D6 activity in healthy volunteers is associated with personality characteristics of social cognitive anxiety, which may bear some resemblance to milder forms of psychotic-like symptoms. In keeping with this, CYP2D6 may influence, not only variability to drug response, but also vulnerability to disease in schizophrenia patients.

  3. Effect of CYP2D6 variants on venlafaxine metabolism in vitro.

    PubMed

    Zhan, Yun-Yun; Liang, Bing-Qing; Wang, Hao; Wang, Zhen-He; Weng, Qing-Hua; Dai, Da-Peng; Cai, Jian-Ping; Hu, Guo-Xin

    2016-01-01

    1. CYP2D6 is an important member of the cytochrome P450 (CYP450) enzyme superfamily, we recently identified 22 CYP2D6 alleles in the Han Chinese population. The aim of this study was to assess the catalytic activities of these allelic isoforms and their effects on the metabolism of venlafaxine in vitro. 2. The wild-type and 24 CYP2D6 variants were expressed in insect cells, and each variant was characterized using venlafaxine as the substrate. Reactions were performed at 37 °C with 5-500 μM substrate (three variants was adjusted to 1000 μM) for 50 min. By using high-performance liquid chromatography to detect the products, the kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of O-desmethylvenlafaxine were determined. 3. Among the 22 CYP2D6 variants, the intrinsic clearance (Vmax/Km) values of all variants were significantly decreased (from 0.2% to 84.5%) compared with wild-type CYP2D6*1. In addition, the kinetic parameters of two CYP2D6 variants could not be detected because they have no detectable enzyme activity. 4. The comprehensive in vitro assessment of CYP2D6 variants provides significant insights into allele-specific activity towards venlafaxine in vivo.

  4. The Effect of CYP2D6 Drug-Drug Interactions on Hydrocodone Effectiveness

    PubMed Central

    Monte, Andrew A.; Heard, Kennon J.; Campbell, Jenny; Hamamura, D.; Weinshilboum, Richard M.; Vasiliou, Vasilis

    2014-01-01

    Objectives The hepatic cytochrome 2D6 (CYP2D6) is a saturable enzyme responsible for metabolism of approximately 25% of known pharmaceuticals. CYP interactions can alter the efficacy of prescribed medications. Hydrocodone is largely dependent on CYP2D6 metabolism for analgesia, ondansetron is inactivated by CYP2D6, and oxycodone analgesia is largely independent of CYP2D6. The objective was to determine if CYP2D6 medication co-ingestion decreases the effectiveness of hydrocodone. Methods This was a prospective observational study conducted in an academic U.S. emergency department (ED). Subjects were included if they had self-reported pain or nausea; and were excluded if they were unable to speak English, were less than 18 years of age, had liver or renal failure, or carried diagnoses of chronic pain or cyclic vomiting. Detailed drug ingestion histories for the preceding 48 hours prior to the ED visit were obtained. The patient's pain and nausea were quantified using a 100-millimeter visual analogue scale (VAS) at baseline prior to drug administration and following doses of hydrocodone, oxycodone, or ondansetron. We used a mixed model with random subject effect to determine the interaction between CYP2D6 drug ingestion and study drug effectiveness. Odds ratios (OR) were calculated to compare clinically significant VAS changes between CYP2D6 users and non-users. Results Two hundred fifty (49.8%) of the 502 subjects enrolled had taken at least one CYP2D6 substrate, inhibitor, or inducing pharmaceutical, supplement, or illicit drug in the 48 hours prior to ED presentation. CYP2D6-drug users were one third as likely to respond to hydrocodone (OR 0.33, 95% CI = 0.1 to 0.8), and more than three times as likely as non-users to respond to ondansetron (OR 3.4, 95% CI = 1.3 to 9.1). There was no significant difference in oxycodone effectiveness between CYP2D6 users and non-users (OR 0.53, 95% CI = 0.3 to 1.1). Conclusions CYP2D6 drug-drug interactions appear to change

  5. Lack of association between schizophrenia and the CYP2D6 gene polymorphisms

    SciTech Connect

    Pirmohamed, M.; Wild, M.J.; Kitteringham, N.R.

    1996-04-09

    Approximately 5-10% of the Caucasian population lack the P450 isoform, CYP2D6. This polymorphism may be of importance in determining individual susceptibility to Parkinson`s disease. In this journal, Daniels et al. recently reported a negative association between the CYP2D6 gene locus and schizophrenia, a disease characterized by dopamine overactivity. It is important to exclude such an association because CYP2D6 is expressed in the brain and it is involved in dopamine catabolism. Between 1992 and 1993, we also performed a study similar to that, and reached the same conclusion. 7 refs., 1 tab.

  6. Relationship between CYP 2D6 metabolic status and sexual dysfunction in paroxetine treatment.

    PubMed

    Zourková, Alexandra; Hadasová, Eva

    2002-01-01

    This article describes the incidence of sexual dysfunction in 30 patients subjected to long-term treatment by paroxetine in dependence on the P 450 CYP 2D6 isoenzyme metabolic status. Measured on the Arizona Sexual Experience Scale (ASEX; McGahuey, Delgado, & Gelenberg, 1999), the incidence of sexual dysfunction in patients converted to CYP 2D6 poor metabolizers was markedly higher compared with patients who had no history of such conversion, a difference that reached the level of statistical significance. Our article discusses the incidence of sexual dysfunction in connection with reduced CYP 2D6 capacity.

  7. Metabolism of trimipramine in vitro by human CYP2D6 isozyme.

    PubMed

    Bolaji, O O; Coutts, R T; Baker, G B

    1993-10-01

    In vitro metabolism of the tricyclic antidepressant trimipramine using a commercial preparation of human CYP2D6 isozyme expressed in a human cell line is described. 2-Hydroxytrimipramine and a previously unreported metabolite, 2,10- or 2,11-dihydroxytrimipramine were isolated. Their structures were determined by gas chromatography/mass spectroscopy of underivatized and derivatized extracts. Acetylation of the new metabolite resulted in dehydration at C10 to give 10,11-dehydro-2-acetoxytrimipramine. No N-dealkylation of trimipramine was observed. Prior administration of quinidine produced a large reduction in the metabolic oxidation of trimipramine with CYP2D6 while prior administration of quinine had no effect. The use of this CYP2D6 isozyme preparation in vitro is of value in the identification of possible in vivo substrates for the human CYP2D6 isozyme.

  8. Progression of cervical intraepithelial neoplasia to cervical cancer: interactions of cytochrome P450 CYP2D6 EM and glutathione s-transferase GSTM1 null genotypes and cigarette smoking.

    PubMed Central

    Warwick, A. P.; Redman, C. W.; Jones, P. W.; Fryer, A. A.; Gilford, J.; Alldersea, J.; Strange, R. C.

    1994-01-01

    The factors that determine progression of cervical intraepithelial neoplasia (CIN) to squamous cell carcinoma (SCC) are unknown. Cigarette smoking is an independent risk factor for cervical neoplasia, suggesting that polymorphism at detoxicating enzyme loci such as cytochrome P450 CYP2D6 and glutathione S-transferase GSTM1 may determine susceptibility to these cancers. We have studied the frequencies of genotypes at these loci in women suffering low-grade CIN, high-grade CIN and SCC. A non-cancer control group was provided by women with normal cervical histology suffering menorrhagia. Comparison of the frequency distributions of the CYP2D6 PM, HET and EM genotypes (G-->A transition at intron 3/exon 4 and base pair deletion in exon 5) revealed no significant differences between the menorrhagia and SCC groups. Frequency distributions in the menorrhagia group, however, were significantly different (P < 0.04) from those in the low- and high-grade CIN groups. Thus, the proportion of EM was significantly larger (P < 0.03) and of HET generally lower. We found that the frequency of GSTM1 null in the menorrhagia and case groups was not significantly different. Interactive effects of enzyme genotypes with cigarette smoking were studied by comparing the multinomial frequency distributions of CYP2D6 EM/GSTM1 null/smoking over mutually exclusive categories. These showed no significant differences between the menorrhagia group and SCC or low-grade CIN groups. The frequency distribution in high-grade CIN, however, was significantly different to that in the menorrhagia group and in both SCC and low-grade CIN groups. This study was identified, for the first time, an inherited characteristic in women with high-grade CIN who appear to be at reduced risk of SCC. Thus, women with CYP2D6 EM who smoke have increased susceptibility to high-grade CIN but are less likely to progress to SCC, possibly because they effectively detoxify an unidentified chemical involved in mediating disease

  9. Effect of CYP2D6 genetic polymorphism on the metabolism of citalopram in vitro.

    PubMed

    Hu, Xiao-Xia; Yuan, Ling-Jing; Fang, Ping; Mao, Yong-Hui; Zhan, Yun-Yun; Li, Xiang-Yu; Dai, Da-Peng; Cai, Jian-Ping; Hu, Guo-Xin

    2016-04-01

    Genetic polymorphisms of CYP2D6 significantly influence the efficacy and safety of some drugs, which might cause adverse effects and therapeutic failure. We aimed at investigating the role of CYP2D6 in the metabolism of citalopram and identifying the effect of 24 CYP2D6 allelic variants we found in Chinese Han population on the metabolism of citalopram in vitro. These CYP2D6 variants expressed by insect cells system were incubated with 10-1000 μM citalopram for 30 min at 37 °C and the reaction was terminated by cooling to -80 °C immediately. Citalopram and its metabolites were analyzed by high-performance liquid chromatography (HPLC). The intrinsic clearance (Vmax/Km) values of the variants toward citalopram metabolites were significantly altered, 38-129% for demethylcitalopram and 13-138% for citalopram N-oxide when compared with CYP2D6*1. Most of the tested rare alleles exhibited significantly decreased values due to increased Km and/or decreased Vmax values. We conclude that recombinant system could be used to investigate the enzymes involved in drug metabolism and these findings suggest that more attention should be paid to subjects carrying these CYP2D6 alleles when administering citalopram in the clinic.

  10. Simultaneous detection of single nucleotide polymorphisms and copy number variations in the CYP2D6 gene by multiplex polymerase chain reaction combined with capillary electrophoresis.

    PubMed

    Liao, Hsiao-Wei; Tsai, I-Lin; Chen, Guan-Yuan; Kuo, Chun-Ting; Wei, Ming-Feng; Hwang, Tzung-Jeng; Chen, Wei J; Shen, Li-Jiuan; Kuo, Ching-Hua

    2013-02-06

    CYP2D6 (cytochrome P450 2D6) is one of the most important enzymes involved in drug metabolism, and CYP2D6 gene variants may cause toxic effects of therapeutic drugs or treatment failure. In this research, a rapid and simple method for genotyping the most common mutant alleles in the Asian population (CYP2D6*1/*1, CYP2D6*1/*10, CYP2D6*10/*10, CYP2D6*1/*5, CYP2D6*5/*10, and CYP2D6*5/*5) was developed by allele-specific polymerase chain reaction (AS-PCR) combined with capillary electrophoresis (CE). We designed a second mismatch nucleotide next to the single nucleotide polymorphism (SNP) site in allele-specific primers to increase the difference in PCR amplification. Besides, we established simulation equations to predict the CYP2D6 genotypes by analyzing the DNA patterns in the CE chromatograms. The multiplex PCR combined with CE method was applied to test 50 patients, and all of the test results were compared with the DNA sequencing method, long-PCR method and real-time PCR method. The correlation of the analytical results between the proposed method and other methods were higher than 90%, and the proposed method is superior to other methods for being able to simultaneous detection of SNPs and copy number variations (CNV). Furthermore, we compared the plasma concentration of aripiprazole (a CYP2D6 substrate) and its major metabolites with the genotype of 25 patients. The results demonstrate the proposed genotyping method is effective for estimating the activity of the CYP2D6 enzyme and shows potential for application in personalized medicine. Similar approach can be applied to simultaneous detection of SNPs and CNVs of other genes.

  11. Association between Genetic Polymorphisms of CYP2D6 and Outcomes in Breast Cancer Patients with Tamoxifen Treatment

    PubMed Central

    Park, Hyung Seok; Choi, Ji-Yeob; Lee, Mi-Jeong; Park, Seho; Yeo, Chang-Woo; Lee, Sang Seop; Shin, Jae-Gook

    2011-01-01

    The aim of the study was to evaluate the association between genetic polymorphisms of CYP2D6 and outcomes in breast cancer patients with tamoxifen treatment. We evaluated the CYP2D6 genetic polymorphisms in 766 breast cancer patients. Among them, 110 patients whose samples were prospectively collected before surgery and treated with tamoxifen were included to evaluate the association between CYP2D6 and outcomes. The genotypes of CYP2D6 were categorized as extensive metabolizer (EM), intermediate metabolizer (IM), and poor metabolizer (PM) according to the activity score. The clinicopathologic features of 110 patients were not significantly different among the three groups except for the T-stage and nodal status. The high T-stage and axillary metastasis were more frequent in the PM group. While recurrence-free and overall survival in the PM group was poorer than the other groups, there was no significant difference between the EM and the IM group. The difference between the PM and the other groups on univariate analysis disappeared on multivariate analysis. These conflicting results suggest that the clinical value of CYP2D6 polymorphisms is still unclear and more large-sized and comprehensively designed trials are necessary. PMID:21860550

  12. Simultaneous determination of metoprolol and its metabolites, α-hydroxymetoprolol and O-desmethylmetoprolol, in human plasma by liquid chromatography with tandem mass spectrometry: Application to the pharmacokinetics of metoprolol associated with CYP2D6 genotypes.

    PubMed

    Bae, Soo Hyeon; Lee, Joeng Kee; Cho, Doo-Yeoun; Bae, Soo Kyung

    2014-06-01

    A rapid and simple LC with MS/MS method for the simultaneous determination of metoprolol and its two CYP2D6-derived metabolites, α-hydroxy- and O-desmethylmetoprolol, in human plasma was established. Metoprolol (MET), its two metabolites, and the internal standard chlorpropamide were extracted from plasma (50 μL) using ethyl acetate. Chromatographic separation was performed on a Luna CN column with an isocratic mobile phase consisting of distilled water and methanol containing 0.1% formic acid (60:40, v/v) at a flow rate of 0.3 mL/min. The total run time was 3.0 min per sample. Mass spectrometric detection was conducted by ESI in positive ion selected-reaction monitoring mode. The linear ranges of concentration for MET, α-hydroxymetoprolol, and O-desmethylmetoprolol were 2-1000, 2-500, and 2-500 ng/mL, respectively, with a lower limit of quantification of 2 ng/mL for all analytes. The coefficient of variation for the assay's precision was ≤ 13.2%, and the accuracy was 89.1-110%. All analytes were stable under various storage and handling conditions and no relevant cross-talk and matrix effect were observed. Finally, this method was successfully applied to assess the influence of CYP2D6 genotypes on the pharmacokinetics of MET after oral administration of 100 mg to healthy Korean volunteers.

  13. Characterization of the CYP2D6 drug metabolizing phenotypes of the Chilean mestizo population through polymorphism analyses.

    PubMed

    Varela, Nelson; Quiñones, Luis A; Stojanova, Jana; Garay, Joselyn; Cáceres, Dante; Cespedes, Silvia; Sasso, Jaime; Miranda, Carla

    2015-11-01

    We tested the influence of four polymorphisms and gene duplication in CYP2D6 on in vivo enzyme activity in a Chilean mestizo population in order to identify the most relevant genetic profiles that account for observed phenotypes in this ethnic group. CYP2D6*2 (2850C>T), *3 (2549A>del), *4 (1846G>A), *17 (1023C>T) and gene duplication were determined by PCR-RFLP or PCRL in a group of 321 healthy volunteers. Individuals with different variant alleles were phenotyped by determining debrisoquine 4-hydroxylase activity as a metabolic ratio (MR) using a validated HPLC assay. Minor allele frequencies were 0.41, 0.01, 0.12 and 0.00 for CYP2D6*2, *3, *4 and *17 variants, respectively, and the duplication frequency was 0.003. Genotype analysis correlated with phenotypes in 18 of 23 subjects (78.3%). 11 subjects were extensive metabolizers (EM), 8 were intermediate metabolizers (IM), 2 were poor metabolizers (PM) and 2 were ultra-rapid metabolizers (UM) which is fairly coincident with expected phenotypes metabolic ratios ranged from 0.11 to 126.41. The influence of CYP2D6*3 was particularly notable, although only heterozygote carriers were present in our population. Individuals homozygous for *4 were always PM. As expected, the only subject with gene duplication was UM. In conclusion, there was a clear effect of genotype on observed CYP2D6 activity. Classification of EM, PM and UM through genotyping was useful to characterize CYP2D6 phenotype in the Chilean mestizo population.

  14. CYP2D6 and CYP2A6 biotransform dietary tyrosol into hydroxytyrosol.

    PubMed

    Rodríguez-Morató, Jose; Robledo, Patricia; Tanner, Julie-Anne; Boronat, Anna; Pérez-Mañá, Clara; Oliver Chen, C-Y; Tyndale, Rachel F; de la Torre, Rafael

    2017-02-15

    The dietary phenol tyrosol has been reported to be endogenously transformed into hydroxytyrosol, a potent antioxidant with multiple health benefits. In this work, we evaluated whether tyrosine hydroxylase (TH) and cytochrome P450s (CYPs) catalyzed this process. To assess TH involvement, Wistar rats were treated with α-methyl-L-tyrosine and tyrosol. Tyrosol was converted into hydroxytyrosol whilst α-methyl-L-tyrosine did not inhibit the biotransformation. The role of CYP was assessed in human liver microsomes (HLM) and tyrosol-to-hydroxytyrosol conversion was observed. Screening with selective enzymatic CYP inhibitors identified CYP2A6 as the major isoform involved in this process. Studies with baculosomes further demonstrated that CYP2D6 and CYP3A4 could transform tyrosol into hydroxytyrosol. Experiments using human genotyped livers showed an interindividual variability in hydroxytyrosol formation and supported findings that CYP2D6 and CYP2A6 mediated this reaction. The dietary health benefits of tyrosol-containing foods remain to be evaluated in light of CYP pharmacogenetics.

  15. Influence of CYP2D6 Polymorphisms on Serum Levels of Tamoxifen Metabolites in Spanish Women with Breast Cancer

    PubMed Central

    Zafra-Ceres, Mercedes; de Haro, Tomas; Farez-Vidal, Esther; Blancas, Isabel; Bandres, Fernando; de Dueñas, Eduardo Martinez; Ochoa-Aranda, Enrique; Gomez-Capilla, Jose A.; Gomez-Llorente, Carolina

    2013-01-01

    Background Estrogen receptor-positive breast cancer tumors depend on estrogen signaling for their growth and replication and can be treated by anti-estrogen therapy with tamoxifen. Polymorphisms of the CYP2D6 and CYP2C19 genes are associated with an impaired response to tamoxifen. The study objective was to investigate the impact of genetic polymorphisms in CYP2D6 and CYP2C19 on the pharmacokinetics of tamoxifen and its metabolites in Spanish women with estrogen receptor-positive breast cancer who were candidates for tamoxifen therapy. Methods: We studied 90 women with estrogen receptor-positive breast cancer, using the AmpliChip CYP450 test to determine CYP2D6 and CYP2C19 gene variants. Plasma levels of tamoxifen and its metabolites were quantified by high-performance liquid chromatography. Results The CYP2D6 phenotype was extensive metabolizer in 80%, intermediate metabolizer in 12.2%, ultra-rapid metabolizer in 2.2%, and poor metabolizer in 5.6% of patients, and the allele frequency was 35.0% for allele *1, 21.0% for *2, and 18.9% for *4. All poor metabolizers in this series were *4/*4, and their endoxifen and 4-hydroxy tamoxifen levels were 25% lower than those of extensive metabolizers. CYP2C19*2 allele, which has been related to breast cancer outcomes, was detected in 15.6% of the studied alleles. Conclusion CYP2D6*4/*4 genotype was inversely associated with 4-hydroxy tamoxifen and endoxifen levels. According to these results, CYP2D6 and CYP2C19 genotyping appears advisable before the prescription of tamoxifen therapy. PMID:23781139

  16. Metabolism of methoxyphenamine in vitro by a CYP2D6 microsomal preparation.

    PubMed

    Coutts, R T; Bolaji, O O; Su, P; Baker, G B

    1994-01-01

    Metabolism of methoxyphenamine (MP) was conducted in vitro using commercially available microsomes prepared from human AHH-1 TK+/-cells in which CYP2D6 had been expressed. This study has confirmed the involvement of CYP2D6 in the metabolism of MP to O-desmethylmethoxyphenamine (ODMP) and 5-hydroxymethoxyphenamine (5HMP), but not to N-desmethylmethoxyphenamine. It has also revealed that CYP2D6 catalyzes the formation of another, hitherto unknown, ring-hydroxylated metabolite of MP, isomeric with 5HMP. The analytical procedure used to identify and quantify MP metabolites involved an acetylation procedure that had distinct advantages. MP and its basic and amphoteric metabolites were all converted to neutral products that were efficiently extracted into organic solvent. The acetylated products also had good chromatographic properties and provided mass spectra that were readily interpretable. MP metabolism studies were also conducted with CYP2D6 microsomes in the presence of quinidine and quinine. The former was the more potent inhibitor of CYP2D6-catalyzed oxidations of MP. Its inclusion resulted in complete inhibition of metabolism of MP to ODMP, 5HMP, and its novel isomer. This study shows that the in vitro use of human cytochrome P450 isozyme preparations in drug metabolism studies can aid in the identification of possible in vivo metabolites of these drugs in humans and can provide information on putative drug-drug interactions.

  17. Understanding CYP2D6 and its role in tamoxifen metabolism.

    PubMed

    Smith, Edith Caroline

    2013-11-01

    The gene CYP2D6 has an extremely important role in drug metabolism. "Cytochrome P450, family 2, subfamily D, polypeptide 6" is the official name of CYP2D6. The gene is located at position 13.1 on the long (q) arm of chromosome 21 and encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases that are heavily involved in drug metabolism (Genetics Home Reference, 2013), and many drugs are activated into their biologically active compounds. Because of numerous polymorphisms, the gene also has significant person-to-person variability. To date, more than 80 distinct CYP2D6 alleles and specific types and frequencies have been associated with different ethnic groups. CYP2D6*4 is the most common variant allele in Caucasians and, in that population, has a frequency of about 25%. On the other hand, CYP2D6*10 is common in the Asian population (Stearns & Rae, 2008).

  18. CYP2D6*2 Polymorphism as a Predictor of Failed Outpatient Tramadol Therapy in Postherpetic Neuralgia Patients.

    PubMed

    Nasare, Namita Vilas; Banerjee, Basu Dev; Suryakantrao Deshmukh, Pravin; Mediratta, Pramod Kumari; Saxena, Ashok Kumar; Ahmed, Rafat Sultana; Bhattacharya, Sambit Nath

    2016-01-01

    Human cytochrome P4502D6 (CYP2D6) gene is highly polymorphic, leading to wide interindividual ethnic differences in CYP2D6-mediated drug metabolism. Its activity ranges from complete deficiency to excessive activity, potentially causing toxicity of the medication or therapeutic failure with recommended drug dosages. The aim of the study was to find the association of CYP2D6*2 polymorphisms with demographic characters (age, sex, and weight), pain intensity scales [numerical rating scale (NRS) sleep, global perceived effect (GPE)], and adverse drug effects in postherpetic neuralgia (PHN) patients receiving tramadol. The study comprised 246 patients [including 123 nonresponders (NRs) and 123 responders (Rs)] with PHN undergoing analgesic treatment at the pain clinic, Out Patient Department, University College of Medical Sciences, Guru Teg Bahadur Hospital, Delhi, India. Patients with any history of diabetes mellitus, human immunodeficiency virus, malignancy, hematological or liver disease, psychiatric illness, alcohol abuse, and tramadol sensitivity were excluded from the study. The NRSs of (resting and movement), NRS-sleep, and GPE were evaluated by the treating physician. Adverse drug effects during the time of the study were recorded. All samples were analyzed for CYP2D6*2 polymorphism using the polymerase chain reaction-restriction fragment length polymorphism method. The genotype distribution did not vary significantly among genders [NR (P = 0.723); R (P = 0.947)] and different age groups in NRs (P = 0.763) and Rs (P = 0.268). Clinically, statistically significant (P < 0.001) results were obtained in both the groups when compared with baseline in the NRS-sleep and GPE scores, whereas no association was found between NRS-sleep and GPE scores when compared with CYP2D6*2 genotype (P > 0.05). In addition, CYP2D6*2 genotype was not related to the adverse effects of analgesic therapy. The overall results suggested that CYP2D6*2 polymorphism plays no role in the PHN

  19. In vitro functional assessment of 22 newly identified CYP2D6 allelic variants in the Chinese population.

    PubMed

    Dai, Da-Peng; Geng, Pei-Wu; Wang, Shuang-Hu; Cai, Jie; Hu, Li-Ming; Nie, Jing-Jing; Hu, Ji-Hong; Hu, Guo-Xin; Cai, Jian-Ping

    2015-07-01

    Cytochrome P450 2D6 (CYP2D6) is one of the most widely investigated CYPs related to genetic polymorphisms and is responsible for one-quarter of the currently used clinical drugs. We previously detected 22 novel, non-synonymous, mutated sites in the Chinese population, but nothing is known about the functional effects of these mutations in terms of specific CYP2D6 substrates. In this study, wild-type CYP2D6, two common allelic variants and 22 newly reported CYP2D6 isoforms were transiently expressed in 293FT cells, and the enzymatic activities of these variants were systematically assessed using dextromethorphan and bufuralol as the probing substrates. Consequently, 19 and 21 allelic variants were found to exhibit significantly decreased enzymatic activities for dextromethorphan and bufuralol, respectively. Of 22 novel CYP2D6 variants, six allelic isoforms (CYP2D6.89, CYP2D6.92, CYP2D6.93, CYP2D6.96, E215K and R440C) exhibited absent or extremely reduced metabolic activities compared with those observed for the wild-type enzyme. Our in vitro functional data can be useful for CYP2D6 phenotype prediction and provide valuable information for the study of clinical impact of these newly found CYP2D6 variants in China.

  20. Interpreting the CYP2D6 Results From the International Tamoxifen Pharmacogenetics Consortium

    PubMed Central

    Province, MA; Altman, RB; Klein, TE

    2014-01-01

    Meta-analysis of the entire analyzable cohort of 4,935 tamoxifen-treated breast cancer patients by the International Tamoxifen Pharmacogenetics Consortium (ITPC) (criterion 3) revealed no CYP2D6 effect on outcomes but strong heterogeneity across sites.1 However, a post hoc–defined subgroup (criterion 1: postmenopausal, estrogen receptor positive, receiving 20 mg/day tamoxifen for 5 years; n = 1,996) did find statistically significant effect of CYP2D6 on both invasive disease–free survival as well as breast cancer–free interval, with little site heterogeneity. How should we interpret these discrepant findings? PMID:25056393

  1. Genetic Polymorphism of CYP2D6 and Clomiphene Concentrations in Infertile Patients with Ovulatory Dysfunction Treated with Clomiphene Citrate.

    PubMed

    Ji, Misuk; Kim, Kwang-Rae; Lee, Woochang; Choe, Wonho; Chun, Sail; Min, Won-Ki

    2016-02-01

    CYP2D6 is primarily responsible for the metabolism of clomiphene citrate (CC). The purpose of the present study was to investigate the relationship between CYP2D6 genotypes, concentrations of CC and its major metabolites and drug response in infertility patients. We studied 42 patients with ovulatory dysfunction treated with only CC. Patients received a dose of 100 mg/day CC on days 3-7 of the menstrual cycle. CYP2D6 genotyping and measurement of CC and the major metabolite concentrations were performed. Patients were categorized into CC responders or non-responders according to one cycle response for the ovulation. Thirty-two patients were CC responders and 10 patients were non-responders with 1 cycle treatment. The CC concentrations were highly variable within the same group, but non-responders revealed significantly lower (E)-clomiphene concentration and a trend of decreased concentrations of active metabolites compared to the responders. Nine patients with intermediate metabolizer phenotype were all responders. We confirmed that the CC and the metabolite concentrations were different according to the ovulation status. However, our results do not provide evidence for the contribution of CYP2D6 polymorphism to either drug response or CC concentrations.

  2. Genetic polymorphism of CYP1A1 and CYP2D6 in the Tundra Nentsi population of Siberia.

    PubMed

    Lyakhovich, V V; Mitrofanov, D V; Gutkina, N I; Duzhak, T G; Posukh, O L; Osipova, L P

    1998-01-01

    The purpose of this study was to establish the frequencies of CYP1A1 and CYP2D6 polymorphic genotypes in the Tundra Nentsi population, which is a small indigenous northern people living in Siberia and belonging to the Northern Mongoloid race. The frequencies of Ile/Ile, Ile/Val, and Val/Val genotypes in the Tundra Nentsi population, as determined by means of the allele-specific PCR, were 50.8%, 39.2%, and 10%, respectively. Thus, the Val allele frequency in Tundra Nentsi appeared to be as high (29.5%) as in the Japanese population (25%) reported elsewhere. Those frequencies in the reference group of Siberian Caucasians were in good agreement with the data reported elsewhere for other Caucasians, although the Val allele frequency observed in Siberia inhabitants (5.7%) was somewhat higher than those frequencies obtained for other Caucasian populations. By means of PCR followed by specific-site digestion with MvaI endonuclease, we analysed the frequencies of CYP2D6B allele in the Tundra Nentsi population. The frequencies of 2D6wt/2D6wt and 2D6wt/B in the group of 120 Nentsi were 84.2% and 15.8%, respectively, with no subject possessing the 2D6B/2D6B genotype. The group of Siberian Caucasians represented those frequencies as 67.7%, 27.1%, and 5.2%, respectively. In total, the frequency of CYP2D6B allele in the Tundra Nentsi population was half that in Caucasians (8.3% vs. 19%). Taken together, our data indicate that the frequencies of CYP2D6B and Val allele of CYP1A1 in Tundra Nentsi population are different from those obtained for Caucasians. We also found similarities in the CYP1A1 mutation frequencies in the Tundra Nentsi and Japanese populations.

  3. High frequency of CYP2D6 ultrarapid metabolizers in Spain: controversy about their misclassification in worldwide population studies.

    PubMed

    Naranjo, M E G; de Andrés, F; Delgado, A; Cobaleda, J; Peñas-Lledó, E M; LLerena, A

    2016-10-01

    A high frequency (7-10%) of CYP2D6 ultrarapid metabolizers estimated from the genotype (gUMs) has been claimed to exist among Spaniards and Southern Europeans. However, methodological aspects such as the inclusion of individuals carrying non-active multiplied alleles as gUMs may have led to an overestimation. Thus, this study aimed to analyze the gUM frequency (considering only those carrying more than two active genes) in 805 Spanish healthy volunteers studied for CYP2D6*2, *3, *4, *5, *6, *10, *17, *35, *41, and multiplications. Second, all worldwide studies reporting gUM frequencies were reviewed in order to evaluate potential misclassifications. The gUM frequency in this Spanish population was 5.34%, but increased to 8.3% if all individuals with CYP2D6 multiplications were classified as gUMs without considering the activity of the multiplied alleles. Moreover, among all reviewed worldwide studies only 55.6% precisely determined whether the multiplied alleles were active. Present results suggest that the evaluation of CYP2D6 ultrarapid metabolism should be standarized, and that the frequency of gUMs should be reconsidered in Spaniards and globally.

  4. Future Trends in the Pharmacogenomics of Brain Disorders and Dementia: Influence of APOE and CYP2D6 Variants

    PubMed Central

    Cacabelos, Ramón; Fernández-Novoa, Lucía; Martínez-Bouza, Rocío; McKay, Adam; Carril, Juan C.; Lombardi, Valter; Corzo, Lola; Carrera, Iván; Tellado, Iván; Nebril, Laura; Alcaraz, Margarita; Rodríguez, Susana; Casas, Ángela; Couceiro, Verónica; Álvarez, Antón

    2010-01-01

    About 80% of functional genes in the human genome are expressed in the brain and over 1,200 different genes have been associated with the pathogenesis of CNS disorders and dementia. Pharmacogenetic studies of psychotropic drug response have focused on determining the relationship between variations in specific candidate genes and the positive and adverse effects of drug treatment. Approximately, 18% of neuroleptics are substrates of CYP1A2 enzymes, 40% of CYP2D6, and 23% of CYP3A4; 24% of antidepressants are substrates of CYP1A2 enzymes, 5% of CYP2B6, 38% of CYP2C19, 85% of CYP2D6, and 38% of CYP3A4; 7% of benzodiazepines are substrates of CYP2C19 enzymes, 20% of CYP2D6, and 95% of CYP3A4. 10-20% of Western populations are defective in genes of the CYP superfamily; and the pharmacogenomic response of psychotropic drugs also depends on genetic variants associated with dementia. Prospective studies with anti-dementia drugs or with multifactorial strategies have revealed that the therapeutic response to conventional drugs in Alzheimer’s disease is genotype-specific. The disease-modifying effects (cognitive performance, biomarker modification) of therapeutic intervention are APOE-dependent, with APOE-4 carriers acting as the worst responders (APOE-3/3 > APOE-3/4 > APOE-4/4). APOE-CYP2D6 interactions also influence the therapeutic outcome in patients with dementia.

  5. Effect of 22 CYP2D6 variants found in the Chinese population on tolterodine metabolism in vitro.

    PubMed

    Wang, Hao; Dai, Da-Peng; Sun, Peng; Xu, Li-Ping; Liang, Bing-Qing; Cai, Jian-Ping; Hu, Guo-Xin

    2017-02-25

    Cytochrome P450 2D6 (CYP2D6) is an important member of the cytochrome P450 enzyme superfamily. We recently identified 22 novel variants in the Chinese population using PCR and bidirectional sequencing methods. The aim of this study is to characterize the enzymatic activity of these variants and their effects on the metabolism of the antimuscarinic drug tolterodine in vitro. A baculovirus-mediated expression system was used to express wild-type CYP2D6 and 24 variants (CYP2D6*2, CYP2D6*10, and 22 novel CYP2D6 variants) at high levels. The insect microsomes expressing CYP2D6 proteins were incubated with 0.1-50 μM tolterodine at 37 °C for 30 min and the metabolites were analyzed by high-performance liquid chromatography-tandem mass spectrometry system. Of the 24 CYP2D6 variants tested, 2 variants (CYP2D6*92 and CYP2D6*96) were found to be catalytically inactive, 4 variants (CYP2D6*94, F164L, F219S and D336N) exhibited markedly increased intrinsic clearance values (Vmax/Km) compared with the wild-type (from 66.34 to 99.79%), whereas 4 variants (CYP2D6*10, *93, *95 and E215K) exhibited significantly decreased values (from 49.02 to 98.50%). This is the first report of all these rare alleles for tolterodine metabolism and these findings suggest that more attention should be paid to subjects carrying these infrequent CYP2D6 alleles when administering tolterodine in the clinic.

  6. Assessment of 25 CYP2D6 alleles found in the Chinese population on propafenone metabolism in vitro.

    PubMed

    Su, Ying; Liang, Bing-Qing; Feng, Yan-Lin; Zhan, Yunyun; Gu, Ermin; Chen, Xinxin; Dai, Da-Peng; Hu, Guo-Xin; Cai, Jian-Ping

    2016-08-01

    Cytochrome P450 enzyme 2D6 (CYP2D6) is an important member of the cytochrome P450 enzyme superfamily, with more than 100 CYP2D6 allelic variants being previously reported. The aim of this study was to assess the catalytic characteristics of 25 alleles (CYP2D6.1 and 24 CYP2D6 variants) and their effects on the metabolism of propafenone in vitro. Twenty-five CYP2D6 alleles were expressing in 21 Spodoptera frugiperda (Sf) insect cells, and each variant was evaluated using propafenone as the substrate. Reactions were performed at 37 °C with 1-100 μmol/L propafenone for 30 min. After termination, the product 5-OH-propafenone was extracted and used for signal collection by ultra-performance liquid chromatography (UPLC). Compared with wild type CYP2D6.1, the intrinsic clearance (Vmax and Km) values of all variants were significantly altered. Three variants (CYP2D6.87, CYP2D6.90, CYP2D6.F219S) exhibited markedly increased intrinsic clearance values (129% to 165%), whereas 21 variants exhibited significantly decreased values (16% to 85%) due to increased Km and (or) decreased Vmax values. These results indicated that the majority of tested alleles had significantly altered catalytic activity towards propafenone hydroxylation in this expression system. Attention should be paid to subjects carrying these rare alleles when treated with propafenone.

  7. Influence of amino acid residue 374 of cytochrome P-450 2D6 (CYP2D6) on the regio- and enantio-selective metabolism of metoprolol.

    PubMed Central

    Ellis, S W; Rowland, K; Ackland, M J; Rekka, E; Simula, A P; Lennard, M S; Wolf, C R; Tucker, G T

    1996-01-01

    Cytochrome P-450 2D6 (CYP2D6) is an important human drug-metabolizing enzyme responsible for the oxidation of more than 30 widely used therapeutic agents. The enzymes encoded by the published genomic [Kimura, Umeno, Skoda, Meyer and Gonzalez (1989) Am. J. Hum. Genet. 45, 889-904] and cDNA [Gonzalez, Skoda, Kimura, Umeno, Zanger, Nebert, Gelboin, Hardwick and Meyer (1988) Nature 331, 442-446] sequences of CYP2D6, and presumed to represent wild-type sequences, differ at residue 374 and encode valine (CYP2D6-Val) and methionine (CYP2D6-Met) respectively. The influence of this amino acid difference on cytochrome P-450 expression, ligand binding, catalysis and stereoselective oxidation of metoprolol was investigated by the heterologous expression of the corresponding cDNAs in the yeast Saccharomyces cerevisiae. The level of expression of apo- and holo-protein was similar with each form of CYP2D6 cDNA, and the binding affinities of a series of ligands to CYP2D6-Val and CYP2D6-Met were identical. The enantioselective O-demethylation and alpha-hydroxylation of metoprolol were also similar with each form of CYP2D6, O-demethylation being R-(+)- enantioselective (CYP2D6-Val: R/S, 1.6; CYP2D6-Met: R/S, 1.4), whereas alpha-hydroxylation showed a preference for S-(-)-metoprolol (CYP2D6-Val: R/S, 0.7; CYP2D6-Met: R/S, 0.8). However, although the favoured regiomer overall was O-demethylmetoprolol (ODM), the regioselectivity for O-demethylation of each metoprolol enantiomer was significantly greater for CYP2D6-Val [R-(+)-: ODM/alpha-hydroxymetoprolol (alpha OH), 5.9; S-(-)-: ODM/alpha OH, 2.5) than that observed for CYP2D6-Met [R-(+)-: ODM/alpha OH, 2.2; S-(-)-: ODM/alpha OH, 1.4]. The stereoselective properties of CYP2D6-Val were consistent with those observed for CYP2D6 in human liver microsomes. The difference in the stereoselective properties of CYP2D6-Val and CYP2D6-Met were rationalized with respect to a homology model of the active site of CYP2D6 based on an alignment with

  8. Prevalence of the CYP2D6*10 (C100T), *4 (G1846A), and *14 (G1758A) alleles among Iranians of different ethnicities.

    PubMed

    Bagheri, Ali; Kamalidehghan, Behnam; Haghshenas, Maryam; Azadfar, Parisa; Akbari, Leila; Sangtarash, Mohammad Hossein; Vejdandoust, Faramarz; Ahmadipour, Fatemeh; Meng, Goh Yong; Houshmand, Massoud

    2015-01-01

    The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatment. Here, we compared the prevalence of the CYP2D6*10, *4, and 14* alleles in an Iranian population of different ethnicities with those of other populations. Allele and genotype frequency distributions of CYP2D6*10 variants and predicted phenotypes including extensive metabolizers, intermediate metabolizers, and poor metabolizers were analysed in blood samples of 300 unrelated healthy individuals in an Iranian population using polymerase chain reaction (PCR)-restriction fragment length polymorphism, PCR-single-strand conformation polymorphism, and direct genomic DNA sequencing. The CYP2D6*4 (G1846A) and *14 (G1758A) allelic frequencies were not detected in different ethnicities, demonstrating the absence of a significant contribution of these alleles in Iranian populations. However, the T/T, C/T, and C/C genotype frequencies of the CYP2D6*10 allele were significantly different (P<0.01) in all Iranian ethnic groups. Additionally, the frequency of the homozygous T/T variant of the CYP2D6*10 allele was significantly high in the Lure (P<0.017) and low in the Kurd (P<0.002) ethnicities. The frequency of the T/T variant of the CYP2D6*10 allele in central Iran was the highest (P<0.001), while the south of Iran had the lowest frequency (P<0.001). The frequency of the C/T variant of the CYP2D6*10 allele was significantly a bit high (P<0.001) in females compare to males, while the frequencies of the T/T variant in females is similar to males, which are 24.4% and 24.3%, respectively. In contrast to absence of the CYP2D6*4 (G1846A) and *14 (G1758A) alleles in Iranian populations of different ethnicities, the prediction of the CYP2D6*10 allele is required in drug research and routine treatment, where the information would be helpful for clinicians to optimize therapy or identify persons at risk of adverse drug reactions before

  9. Practical interpretation of CYP2D6 haplotypes: Comparison and integration of automated and expert calling.

    PubMed

    Ruaño, Gualberto; Kocherla, Mohan; Graydon, James S; Holford, Theodore R; Makowski, Gregory S; Goethe, John W

    2016-05-01

    We describe a population genetic approach to compare samples interpreted with expert calling (EC) versus automated calling (AC) for CYP2D6 haplotyping. The analysis represents 4812 haplotype calls based on signal data generated by the Luminex xMap analyzers from 2406 patients referred to a high-complexity molecular diagnostics laboratory for CYP450 testing. DNA was extracted from buccal swabs. We compared the results of expert calls (EC) and automated calls (AC) with regard to haplotype number and frequency. The ratio of EC to AC was 1:3. Haplotype frequencies from EC and AC samples were convergent across haplotypes, and their distribution was not statistically different between the groups. Most duplications required EC, as only expansions with homozygous or hemizygous haplotypes could be automatedly called. High-complexity laboratories can offer equivalent interpretation to automated calling for non-expanded CYP2D6 loci, and superior interpretation for duplications. We have validated scientific expert calling specified by scoring rules as standard operating procedure integrated with an automated calling algorithm. The integration of EC with AC is a practical strategy for CYP2D6 clinical haplotyping.

  10. CYP2D6 variation, behaviour and psychopathology: implications for pharmacogenomics-guided clinical trials.

    PubMed

    Peñas-Lledó, Eva M; Llerena, Adrián

    2014-04-01

    Individual and population differences in polymorphic cytochrome P450 enzyme function have been known for decades. The biological significance of these differences has now been deciphered with regard to drug metabolism, action and toxicity as well as disposition of endogenous substrates, including neuroactive compounds. While the cytochrome P450 enzymes occur abundantly in the liver, they are expressed in most tissues of the body, albeit in varying amounts, including the brain. The latter location of cytochrome P450s is highly pertinent for susceptibility to neuropsychiatric diseases, not to mention local drug metabolism at the site of psychotropic drug action in the brain. In the current era of personality medicine with companion theranostics (i.e. the fusion of therapeutics with diagnostics), this article underscores that such versatile biological roles of cytochrome P450s offer multiple points of entry for personalized medicine and rational therapeutics. We focus our discussion on CYP2D6, one of the most intensively researched drug and endogenous compound metabolism pathways, with a view to relevance for, and optimization of, pharmacogenomic-guided clinical trials. Working on the premise that CYP2D6 is related to human behaviour and certain personality traits such as serotonin and dopamine system function, we further suggest that the motivation of healthy volunteers to participate in clinical trials may in part be influenced by an under- or over-representation of certain CYP2D6 metabolic groups.

  11. Effects of 22 CYP2D6 Genetic Variations Newly Identified in Chinese Population on Olanzapine Metabolism in vitro.

    PubMed

    Zhou, Hong-Yu; Gu, Er-Min; Chen, Qiu-Lei; Zhan, Yun-Yun; Wang, Shuang-Hu; Liang, Bing-Qing; Dai, Da-Peng; Cai, Jian-Ping; Hu, Guo-Xin

    2016-01-01

    The objective of this study was to assess the catalytic activity of 22 novel CYP2D6 allelic variants (2D6*87-*98, R25Q, F164L, E215K, F219S, V327M, D336N, V342M, R344Q, R440C and R497C) to olanzapine in vitro. Their protein products expressed in Spodoptera frugiperda 21 (Sf21) insect cells were incubated with olanzapine 100-2,000 μmol/l for 30 min. The kinetic parameters of Km, Vmax and intrinsic clearance were determined by 2-hydroxymethylolanzapine, the metabolite of olanzapine mediated by CYP2D6, using ultra-performance liquid chromatography tandem mass spectrometry. Results showed that the kinetic parameters of 2 alleles, CYP2D6*92 and 2D6*96, could not be detected; 17 allelic variants, CYP2D6*87-*88, 2D6*90-*91, 2D6*93-*95, 2D6*97, R25Q, F164L, E215K, F219S, V327M, V342M, R344Q, R440C and R497C, significantly reduced the intrinsic clearance of olanzapine; 2 variants, CYP2D6*89 and 2D6*98, increased the intrinsic clearance of olanzapine; no difference was found in intrinsic clearance of D336N. Furthermore, 6 alleles, CYP2D6*87, 2D6*88, 2D6*91, 2D6*93, 2D6*97 and R497C, exhibited higher Km values in a range of 120.80-217.56% relative to wild-type CYP2D6*1. The research demonstrated the metabolic phenotype of the 22 novel CYP2D6 variants for olanzapine that were different from probe drugs we used previously and might provide beneficial information to the personalized medicine of olanzapine.

  12. Evaluation of the influence of sex and CYP2C19 and CYP2D6 polymorphisms in the disposition of citalopram.

    PubMed

    Fudio, Salvador; Borobia, Alberto M; Piñana, Enrique; Ramírez, Elena; Tabarés, Beatriz; Guerra, Pedro; Carcas, Antonio; Frías, Jesús

    2010-01-25

    We investigate the impact of sex and genotype on citalopram disposition in 35 healthy volunteers who received an oral dose of 20mg citalopram within a single-dose bioequivalence study. CYP2C19*2 and *3, and CYP2D6*4 mutations were determined by Real-Time PCR. The influence of sex and genotype was analyzed by a linear mixed model for repeated measures, including formulation, period, sequence, sex, CYP2C19 and CYP2D6 as fixed effects and subject nested sequence*sex*CYP2C19*CYP2D6 as the random one. Pharmacokinetic parameters were log-transformed and AUC(infinity) and C(max) adjusted to the administered dose/weight. The model yields a statistical significance in AUC(infinity) and CL/F for CYP2C19 and CYP2D6. Gender, formulation, sequence or period effects were not statistically significant. AUC(infinity) of CYP2C19*1/*2 and CYP2C19*2/*2 carriers is 44% and 118% higher than wild type, respectively; CYP2D6 volunteers carrying 1/4 have an AUC 23% higher than wild type. Our data also suggest that the influence of CYP2D6 on AUC(infinity) is very low when it is in association with CYP2C19*1/*1 while its influence is more apparent in association with CYP2C19*1/*2. In conclusion, we demonstrate the influence of CYP2C19 and CYP2D6 in the disposition of citalopram, and we suggest that the influence of CYP2D6 is more probable in volunteers with at least one defective allele of CYP2C19.

  13. In silico study on the inhibitory interaction of drugs with wild-type CYP2D6.1 and the natural variant CYP2D6.17.

    PubMed

    Handa, Koichi; Nakagome, Izumi; Yamaotsu, Noriyuki; Gouda, Hiroaki; Hirono, Shuichi

    2014-01-01

    The natural variant of the cytochrome P450 enzyme CYP2D6.1, CYP2D6.17, is most common in African populations, has three amino acid substitutions (T107I, R296C, and S486T) compared to the wild-type, and is known to have a different ligand preference from CYP2D6.1. It is becoming increasingly important to understand differences in the metabolism of medicines in different ethnic groups in order to assess the relevance of clinical data from different countries. This study investigated differences in the inhibition profiles of drugs for CYP2D6 with respect to gene polymorphisms. Firstly, we used computer docking with six drugs to several CYP2D6.1 structures, sampled from the trajectory of MD simulations, and calculated MM-GB/SA scores representing binding free energies. We then used regression analysis to predict the potency with which drugs inhibited CYP2D6.1 based on MM-GB/SA scores. The pKi-values obtained were in good agreement with experimental values measured for the six drugs (r(2) = 0.81). We carried out the same analysis for CYP2D6.17 and the pKi-values calculated were also in good agreement with experimental values (r(2) = 0.92). Finally, we were able to successfully explain the different abilities of CYP2D6.1 and CYP2D6.17 to metabolize drugs in different ethnic groups with reference to their 3D-structures.

  14. Implications of mechanism-based inhibition of CYP2D6 for the pharmacokinetics and toxicity of MDMA.

    PubMed

    Yang, Jiansong; Jamei, Masoud; Heydari, Amir; Yeo, Karen R; de la Torre, Rafael; Farré, Magí; Tucker, Geoffrey T; Rostami-Hodjegan, Amin

    2006-11-01

    The aim of this study was to model the in vivo kinetic consequences of mechanism-based inhibition (MBI) of CYP2D6 by 3,4 methylenedioxymethamphetamine (MDMA, ecstasy). A model with physiologically-based components of drug metabolism was developed, taking account of change in the hepatic content of active CYP2D6 due to MBI by MDMA. Based on the in vitro information, plasma concentration time profiles of MDMA after various doses were computed and compared with reported observations. The analysis suggested that a typical recreational MDMA dose could inactivate most hepatic CYP2D6 within an hour, and the return to a basal level of CYP2D6 could take at least 10 days. Thus, the genetic polymorphism of CYP2D6 and coadministration of CYP2D6 inhibitors may have less impact on MDMA pharmacokinetics and the risk of acute toxicity than previously thought. This is consistent with clinical observations that indicate no obvious link between inherited CYP2D6 deficiency and acute MDMA intoxication.

  15. Krüppel-like factor 9 promotes hepatic cytochrome P450 2D6 expression during pregnancy in CYP2D6-humanized mice.

    PubMed

    Koh, Kwi Hye; Pan, Xian; Zhang, Wei; McLachlan, Alan; Urrutia, Raul; Jeong, Hyunyoung

    2014-12-01

    Cytochrome P450 2D6 (CYP2D6), a major drug-metabolizing enzyme, is responsible for metabolism of approximately 25% of marketed drugs. Clinical evidence indicates that metabolism of CYP2D6 substrates is increased during pregnancy, but the underlying mechanisms remain unclear. To identify transcription factors potentially responsible for CYP2D6 induction during pregnancy, a panel of genes differentially expressed in the livers of pregnant versus nonpregnant CYP2D6-humanized (tg-CYP2D6) mice was compiled via microarray experiments followed by real-time quantitative reverse-transcription polymerase chain reaction(qRT-PCR) verification. As a result, seven transcription factors-activating transcription factor 5 (ATF5), early growth response 1 (EGR1), forkhead box protein A3 (FOXA3), JUNB, Krüppel-like factor 9 (KLF9), KLF10, and REV-ERBα-were found to be up-regulated in liver during pregnancy. Results from transient transfection and promoter reporter gene assays indicate that KLF9 itself is a weak transactivator of CYP2D6 promoter but significantly enhances CYP2D6 promoter transactivation by hepatocyte nuclear factor 4 (HNF4α), a known transcriptional activator of CYP2D6 expression. The results from deletion and mutation analysis of CYP2D6 promoter activity identified a KLF9 putative binding motif at -22/-14 region to be critical in the potentiation of HNF4α-induced transactivation of CYP2D6. Electrophoretic mobility shift assays revealed a direct binding of KLF9 to the putative KLF binding motif. Results from chromatin immunoprecipitation assay showed increased recruitment of KLF9 to CYP2D6 promoter in the livers of tg-CYP2D6 mice during pregnancy. Taken together, our data suggest that increased KLF9 expression is in part responsible for CYP2D6 induction during pregnancy via the potentiation of HNF4α transactivation of CYP2D6.

  16. Selective inhibition of the cytochrome P450 isoform by hyperoside and its potent inhibition of CYP2D6.

    PubMed

    Song, Min; Hong, Miri; Lee, Min Young; Jee, Jun-Goo; Lee, You Mie; Bae, Jong-Sup; Jeong, Tae Cheon; Lee, Sangkyu

    2013-09-01

    Hyperoside, quercetin-3-O-galactoside, is a flavonoid isolated from Oenanthe javanica. In the present study, we investigated potential herb-drug inhibitory effects of hyperoside on nine cytochrome P450 (CYP) isoforms in pooled human liver microsomes (HLMs) and human recombinant cDNA expressed CYP using a cocktail probe assay. Hyperoside strongly inhibited CYP2D6-catalyzed dextromethorphan O-demethylation, with IC₅₀ values of 1.2 and 0.81 μM after 0 and 15 min of preincubation, and a Ki value of 2.01 μM in HLMs, respectively. Hyperoside strongly decreased CYP2D6 activity dose-, but not time-, dependently in HLMs. In addition, the Lineweaver-Burk and Secondary plots for the inhibition of CYP2D6 in HLMs fitted a competitive inhibition mode. Furthermore, hyperoside decreased CYP2D6-catalyzed dextromethorphan O-demethylation activity of human recombinant cDNA-expressed CYP2D6, with an IC₅₀ value of 3.87 μM. However, other CYPs were not inhibited significantly by hyperoside. In conclusion, our data demonstrate that hyperoside is a potent selective CYP2D6 inhibitor in HLMs, and suggest that hyperoside might cause herb-drug interactions when co-administrated with CYP2D substrates.

  17. CYP2D6 polymorphisms may predict occurrence of adverse effects to tamoxifen: a preliminary retrospective study

    PubMed Central

    Wickramage, Ishani; Tennekoon, Kamani Hemamala; Ariyaratne, Merenchi Arachchige Yasantha; Hewage, Asanka Sudeshini; Sundralingam, Tharmini

    2017-01-01

    Introduction and aims Tamoxifen is an adjuvant drug effective in treating hormone receptor – positive breast cancer. However, 30%–50% of patients relapse and many develop adverse effects, such as hot flashes and fatty liver. Allelic variations altering the activity of cytochrome P450-2D6 enzyme affect response to tamoxifen by modulating metabolism of tamoxifen into its pharmacologically active metabolite endoxifen. Although association between CYP2D6 polymorphisms and recurrence of breast cancer in patients on tamoxifen had been reported, little evidence exists on association between these polymorphisms and adverse effects to tamoxifen. This study explored the association between CYP2D6 polymorphisms and tamoxifen effects, hitherto not studied in Sri Lanka. Methods A retrospective preliminary study was carried out on 24 breast cancer patients on tamoxifen for minimally 3 months attending National Cancer Institute, Maharagama, Sri Lanka. They were not on CYP2D6-inhibiting drugs, chemotherapy or other endocrine therapy, and had no conditions that could occur as adverse effects to tamoxifen before starting the therapy. Their blood samples were collected, DNA was extracted and genotyped using SNaPshot Multiplex sequencing based single-nucleotide polymorphism (SNP) assay. Results SNP/allele frequencies detected: 1846G>A (confirmatory of *4 null allele)=8.3%; 2549delA (confirmatory of *3 null allele)=50%; 100C>T (suggestive of *10 reduced functional allele, in addition to other alleles)=0%; combination of 2988G>A, −1584C and 2850C>T (strongly suggestive of *41 or other reduced functional allele)=4.8%. Occurrence of heterozygous 2988G>A SNP with −1584C and 2850C>T was significantly higher among those with ultrasound-diagnosed fatty liver following the commencement of tamoxifen therapy (P=0.029). Adverse effects occurred at a significantly higher frequency among postmenopausal women (P=0.041). Three patients who developed recurrence of breast cancer had no

  18. Effects of imatinib (Glivec) on the pharmacokinetics of metoprolol, a CYP2D6 substrate, in Chinese patients with chronic myelogenous leukaemia

    PubMed Central

    Wang, Yanfeng; Zhou, Li; Dutreix, Catherine; Leroy, Elisabeth; Yin, Qi; Sethuraman, Venkat; Riviere, Gilles-Jacques; Yin, Ophelia Q P; Schran, Horst; Shen, Zhi-Xiang

    2008-01-01

    AIMS To investigate the effect of imatinib on the pharmacokinetics of a CYP2D6 substrate, metoprolol, in patients with chronic myeloid leukaemia (CML). The pharmacokinetics of imatinib were also studied in these patients. METHODS Patients (n = 20) received a single oral dose of metoprolol 100 mg on day 1 after an overnight fast. On days 2–10, imatinib 400 mg was administered twice daily. On day 8, another 100 mg dose of metoprolol was administered 1 h after the morning dose of imatinib 400 mg. Blood samples for metoprolol and α-hydroxymetoprolol measurement were taken on study days 1 and 8, and on day 8 for imatinib. RESULTS Of the 20 patients enrolled, six patients (30%) were CYP2D6 intermediate metabolizers (IMs), 13 (65%) extensive metabolizers (EMs), and the CYP2D6 status in one patient was unknown. In the presence of 400 mg twice daily imatinib, the mean metoprolol AUC was increased by 17% in IMs (from 1190 to 1390 ng ml−1 h), and 24% in EMs (from 660 to 818 ng ml−1 h). Patients classified as CYP2D6 IMs had an approximately 1.8-fold higher plasma metoprolol exposure than those classified as EMs. The oral clearance of imatinib was 11.0 ± 2.0 l h−1 and 11.8 ± 4.1 l h−1 for CYP2D6 IMs and EMs, respectively. CONCLUSIONS Co-administration of a high dose of imatinib resulted in a small or moderate increase in metoprolol plasma exposure in all patients regardless of CYP2D6 status. The clearance of imatinib showed no difference between CYP2D6 IMs and EMs. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Imatinib, a tyrosine kinase inhibitor, exhibits a competitive inhibition on the CYP450 2D6 isozyme with a Ki value of 7.5 μm. However, the clinical significance of the inhibition and its relevance to 2D6 polymorphisms have not been evaluated. The pharmacokinetics of imatinib have been well studied in Caucasians, but not in a Chinese population. Metoprolol, a CYP2D6 substrate, has different clearances among patients with different CYP2D6 genotypes. It is often

  19. Antipsychotic drugs and QTc prolongation: the potential role of CYP2D6 genetic polymorphism.

    PubMed

    Dorado, Pedro; Berecz, Roland; Peñas-Lledó, Eva M; Llerena, Adrián

    2007-02-01

    Although the most common, and usually serious, side effects of first-generation (or typical) antipsychotic drugs, such as Parkinsonism, dystonias and tardive dyskinesia, were known from early times, their cardiovascular safety was not properly in the focus of treatment management. The growing evidence of these drug-related cardiac changes and the appearance of potentially fatal dysrhythmias have increased the interest on their safety profile. Thus, the introduction of the new second-generation (atypical) antipsychotic drugs put emphasis on the preregistration evaluation of the potential cardiac side effects and electrocardiogram predictors (QT interval lengthening). In spite of this, these drugs do not appear to be exempt from these potential risks. The present review summarizes up-to-date knowledge about the cardiac safety of antipsychotic drugs, and analyses the role of drug metabolic processes (CYP2D6 genetic polymorphism) in the complex pathophysiology of the phenomenon. In addition, some recommendations are formulated.

  20. Determination of CYP2D6 *3, *4, and *10 frequency in women with breast cancer in São Luís, Brazil, and its association with prognostic factors and disease-free survival

    PubMed Central

    Martins, D.M.F.; Vidal, F.C.B.; Souza, R.D.M.; Brusaca, S.A.; Brito, L.M.O.

    2014-01-01

    The CYP2D6 enzyme is crucial for the metabolism of tamoxifen. The CYP2D6 gene is highly polymorphic, and individuals can be extensive, intermediate, or poor tamoxifen metabolizers. The aim of this study was to determine the frequencies of the CYP2D6 *3, *4, and *10 alleles in women with breast cancer who were treated with tamoxifen and analyze the association of enzyme activity with prognostic factors and disease-free survival. We observed a high frequency of CYP2D6 *10, with an allelic frequency of 0.14 (14.4%). The *3 allele was not present in the studied population, and *4 had an allelic frequency of 0.13 (13.8%). We conclude that patients with reduced CYP2D6 activity did not present worse tumor characteristics or decreased disease-free survival than women with normal enzyme activity, as the difference was not statistically significant. We also observed a high frequency of CYP2D6 *10, which had not been previously described in this specific population. This study is the first in north-northeastern Brazil that aimed to contribute to the knowledge of the Brazilian regional profile for CYP2D6 polymorphisms and their phenotypes. These findings add to the knowledge of the distribution of different polymorphic CYP2D6 alleles and the potential role of CYP2D6 genotyping in clinical practice prior to choosing therapeutic protocols. PMID:25296365

  1. Determination of CYP2D6 *3, *4, and *10 frequency in women with breast cancer in São Luís, Brazil, and its association with prognostic factors and disease-free survival.

    PubMed

    Martins, D M F; Vidal, F C B; Souza, R D M; Brusaca, S A; Brito, L M O

    2014-11-01

    The CYP2D6 enzyme is crucial for the metabolism of tamoxifen. The CYP2D6 gene is highly polymorphic, and individuals can be extensive, intermediate, or poor tamoxifen metabolizers. The aim of this study was to determine the frequencies of the CYP2D6 *3, *4, and *10 alleles in women with breast cancer who were treated with tamoxifen and analyze the association of enzyme activity with prognostic factors and disease-free survival. We observed a high frequency of CYP2D6 *10, with an allelic frequency of 0.14 (14.4%). The *3 allele was not present in the studied population, and *4 had an allelic frequency of 0.13 (13.8%). We conclude that patients with reduced CYP2D6 activity did not present worse tumor characteristics or decreased disease-free survival than women with normal enzyme activity, as the difference was not statistically significant. We also observed a high frequency of CYP2D6 *10, which had not been previously described in this specific population. This study is the first in north-northeastern Brazil that aimed to contribute to the knowledge of the Brazilian regional profile for CYP2D6 polymorphisms and their phenotypes. These findings add to the knowledge of the distribution of different polymorphic CYP2D6 alleles and the potential role of CYP2D6 genotyping in clinical practice prior to choosing therapeutic protocols.

  2. Impact of CYP2D6 Genetic Variation on the Response of the Cardiovascular Patient to Carvedilol and Metoprolol.

    PubMed

    Lymperopoulos, Anastasios; McCrink, Katie A; Brill, Ava

    2015-01-01

    Carvedilol and metoprolol are two of the most commonly prescribed β-blockers in cardiovascular medicine and primarily used in the treatment of hypertension and heart failure. Cytochrome P450 2D6 (CYP2D6) is the predominant metabolizing enzyme of these two drugs. Since the first description of a CYP2D6 sparteinedebrisoquine polymorphism in the mid-seventies, substantial genetic heterogeneity has been reported in the human CYP2D6 gene, with ~100 different polymorphisms identified to date. Some of these polymorphisms render the enzyme completely inactive while others do not modify its activity. Based on all the identified variants, four metabolizer phenotypes are nowadays used to characterize drug metabolism via CYP2D6 in humans: ultra-rapid metabolizer (UM); extensive metabolizer (EM); intermediate metabolizer (IM); and poor metabolizer (PM) phenotypes. As a consequence of these CYP2D6 metabolizer phenotypes, pharmacokinetics and bioavailability of carvedilol and metoprolol can range from therapeutically ineffective levels (in the UM patients) to excessive (overdose) and potentially toxic concentrations (in PM patients). This, in turn, can result in elevated risks for either treatment failure (in terms of blood pressure reduction of hypertensive patients and of improving survival and cardiovascular function of heart failure patients) or for adverse effects (e.g. hypotension and bradycardia). The present review will discuss the impact of these CYP2D6 genetic polymorphisms on the therapeutic responses of cardiovascular patients treated with either of these two β-blockers. In addition, the potential advantages and disadvantages of implementing CYP2D6 genetic testing in the clinic to guide/personalize therapy with these two drugs will be discussed.

  3. Influences of CYP2D6*10 polymorphisms on the pharmacokinetics of iloperidone and its metabolites in Chinese patients with schizophrenia: a population pharmacokinetic analysis

    PubMed Central

    Pei, Qi; Huang, Lu; Huang, Jie; Gu, Jing-kai; Kuang, Yun; Zuo, Xiao-cong; Ding, Jun-jie; Tan, Hong-yi; Guo, Cheng-xian; Liu, Shi-kun; Yang, Guo-ping

    2016-01-01

    Aim: Iloperidone is an atypical antipsychotic drug that is mainly metabolized by CYP2D6, CYP3A4, and cytosolic enzymes. Previous studies show that extensive and poor metabolizers of CYP2D6 exhibit different plasma concentrations of iloperidone and its metabolites. The aim of this study was to develop a parent-metabolite population pharmacokinetic (PPK) model to quantify the effects of CYP2D6*10 allele on the pharmacokinetics of iloperidone and its metabolites in Chinese schizophrenia patients. Methods: Seventy Chinese schizophrenia patients were enrolled, from whom limited blood samples were collected on d 15 (0 h) and d 28 (0, 4 and 12 h after drug administration). The plasma concentrations of iloperidone and its metabolites M1 (P-88) and M2 (P-95) were simultaneously detected using a validated HPLC-MS assay. CYP2D6*10 (rs1065852) genotyping was performed. A PPK model was developed based on data from the patients using the NONMEM software (version 7.2). A one-compartment model with first-order absorption and elimination was used to describe the pharmacokinetic data related to iloperidone and its metabolites. Results: Patients with the CYP2D6*10 T/T genotype had significantly higher concentrations of iloperidone and M1, and lower concentrations of M2 than the patients with C/C or C/T genotypes. The CYP2D6*10 genotype affected the elimination constants for transformation of iloperidone to the metabolites M1 (K23) and M2 (K24). The K23 value of the patients with T/T genotype was 1.34-fold as great as that of the patients with C/C or C/T genotype. The K24 value of the patients with C/T and T/T genotypes was 0.693- and 0.492-fold, respectively, as low as that of the patients with C/C genotype. Conclusion: CYP2D6*10 mutations affect the pharmacokinetics of iloperidone and its metabolites in Chinese schizophrenia patients, suggesting that the clinical doses of iloperidone for patients with CYP2D6*10 mutations need to be optimized. PMID:27665849

  4. Use of pharmacogenetics in bioequivalence studies to reduce sample size: an example with mirtazapine and CYP2D6.

    PubMed

    González-Vacarezza, N; Abad-Santos, F; Carcas-Sansuan, A; Dorado, P; Peñas-Lledó, E; Estévez-Carrizo, F; Llerena, A

    2013-10-01

    In bioequivalence studies, intra-individual variability (CV(w)) is critical in determining sample size. In particular, highly variable drugs may require enrollment of a greater number of subjects. We hypothesize that a strategy to reduce pharmacokinetic CV(w), and hence sample size and costs, would be to include subjects with decreased metabolic enzyme capacity for the drug under study. Therefore, two mirtazapine studies, two-way, two-period crossover design (n=68) were re-analysed to calculate the total CV(w) and the CV(w)s in three different CYP2D6 genotype groups (0, 1 and ≥ 2 active genes). The results showed that a 29.2 or 15.3% sample size reduction would have been possible if the recruitment had been of individuals carrying just 0 or 0 plus 1 CYP2D6 active genes, due to the lower CV(w). This suggests that there may be a role for pharmacogenetics in the design of bioequivalence studies to reduce sample size and costs, thus introducing a new paradigm for the biopharmaceutical evaluation of drug products.

  5. Significant Effect of Polymorphisms in CYP2D6 and ABCC2 on Clinical Outcomes of Adjuvant Tamoxifen Therapy for Breast Cancer Patients

    PubMed Central

    Kiyotani, Kazuma; Mushiroda, Taisei; Imamura, Chiyo K.; Hosono, Naoya; Tsunoda, Tatsuhiko; Kubo, Michiaki; Tanigawara, Yusuke; Flockhart, David A.; Desta, Zeruesenay; Skaar, Todd C.; Aki, Fuminori; Hirata, Koichi; Takatsuka, Yuichi; Okazaki, Minoru; Ohsumi, Shozo; Yamakawa, Takashi; Sasa, Mitsunori; Nakamura, Yusuke; Zembutsu, Hitoshi

    2010-01-01

    Purpose The clinical efficacy of tamoxifen is suspected to be influenced by the activity of drug-metabolizing enzymes and transporters involved in the formation, metabolism, and elimination of its active forms. We investigated relationships of polymorphisms in transporter genes and CYP2D6 to clinical outcome of patients receiving tamoxifen. Patients and Methods We studied 282 patients with hormone receptor–positive, invasive breast cancer receiving tamoxifen monotherapy, including 67 patients who have been previously reported. We investigated the effects of allelic variants of CYP2D6 and haplotype-tagging single nucleotide polymorphisms (tag-SNPs) of ABCB1, ABCC2, and ABCG2 on recurrence-free survival using the Kaplan-Meier method and Cox regression analysis. Plasma concentrations of tamoxifen metabolites were measured in 98 patients receiving tamoxifen 20 mg/d. Results CYP2D6 variants were significantly associated with shorter recurrence-free survival (P = .000036; hazard ratio [HR] = 9.52; 95% CI, 2.79 to 32.45 in patients with two variant alleles v patients without variant alleles). Among 51 tag-SNPs in transporter genes, a significant association was found at rs3740065 in ABCC2 (P = .00017; HR = 10.64; 95% CI, 1.44 to 78.88 in patients with AA v GG genotypes). The number of risk alleles of CYP2D6 and ABCC2 showed cumulative effects on recurrence-free survival (P = .000000055). Patients carrying four risk alleles had 45.25-fold higher risk compared with patients with ≤ one risk allele. CYP2D6 variants were associated with lower plasma levels of endoxifen and 4-hydroxytamoxifen (P = .0000043 and .00052), whereas no significant difference was found among ABCC2 genotype groups. Conclusion Our results suggest that polymorphisms in CYP2D6 and ABCC2 are important predictors for the prognosis of patients with breast cancer treated with tamoxifen. PMID:20124171

  6. Pharmacogenetics and drug therapy in psychiatry--the role of the CYP2D6 polymorphism.

    PubMed

    Vandel, P; Talon, J M; Haffen, E; Sechter, D

    2007-01-01

    The importance of pharmacogenetics in medicine is growing with the identification of genetic variability by faster screening methods using automatic sequencers. A particularly interesting finding is that apart from environmental and psychological factors, drug response may be influenced by several biological factors as a result of genetic determinants leading to interindividual variability. Several mutations in genes coding for enzymes of the drug metabolizing system, as well as for neurotransmitter receptors or degrading enzymes and monoamine transport proteins, have been identified and investigated in psychiatry. But, despite the fact that some genetic polymorphisms of enzymes (mainly cytochrome P450 2D6) are well known, the application of pharmacogenetics as a therapeutic tool for improving patient care is rare. This review has three parts. In the first an overview is given of CYP450 characteristics and the genetic polymorphisms of interest to psychiatry. In the second the clinical implications of the CYP2D6 polymorphism are reviewed and in the third part other aspects on pharmacogenetic research in psychiatry are discussed. The aim of our review is to promote the application of pharmacogenetics in everyday clinical practice.

  7. Optimizing QSAR models for predicting ligand binding to the drug-metabolizing cytochrome P450 isoenzyme CYP2D6.

    PubMed

    Saraceno, Marilena; Massarelli, Ilaria; Imbriani, Marcello; James, Thomas L; Bianucci, Anna M

    2011-08-01

    The cytochrome P450 isozyme CYP2D6 binds a large variety of drugs, oxidizing many of them, and plays a crucial role in establishing in vivo drug levels, especially in multidrug regimens. The current study aimed to develop reliable predictive models for estimating the CYP2D6 inhibition properties of drug candidates. Quantitative structure-activity relationship (QSAR) studies utilizing 51 known CYP2D6 inhibitors were carried out. Performance achieved using models based on two-dimensional (2D) molecular descriptors was compared with performance using models entailing additional molecular descriptors that depend upon the three-dimensional (3D) structure of ligands. To properly compute the descriptors, all the 3D inhibitor structures were optimized such that induced-fit binding of the ligand to the active site was accommodated. CODESSA software was used to obtain equations for correlating the structural features of the ligands to their pharmacological effects on CYP2D6 (inhibition). The predictive power of all the QSAR models obtained was estimated by applying rigorous statistical criteria. To assess the robustness and predictability of the models, predictions were carried out on an additional set of known molecules (prediction set). The results showed that only models incorporating 3D descriptors in addition to 2D molecular descriptors possessed the requisite high predictive power for CYP2D6 inhibition.

  8. The correlation between CYP2D6 isoenzyme activity and haloperidol efficacy and safety profile in patients with alcohol addiction during the exacerbation of the addiction

    PubMed Central

    Sychev, Dmitry Alekseevich; Zastrozhin, Mikhail Sergeevich; Smirnov, Valery Valerieevich; Grishina, Elena Anatolievna; Savchenko, Ludmila Mikhailovna; Bryun, Evgeny Alekseevich

    2016-01-01

    Background Today, it is proved that isoenzymes CYP2D6 and CYP3A4 are involved in metabolism of haloperidol. In our previous investigation, we found a medium correlation between the efficacy and safety of haloperidol and the activity of CYP3A4 in patients with alcohol abuse. Objective The aim of this study was to evaluate the correlation between the activity of CYP2D6 and the efficacy and safety of haloperidol in patients with diagnosed alcohol abuse. Methods The study involved 70 men (average age: 40.83±9.92 years) with alcohol addiction. A series of psychometric scales were used in the research. The activity of CYP2D6 was evaluated by high-performance liquid chromatography with mass spectrometry using the ratio of 6-hydroxy-1,2,3,4-tetrahydro-beta-carboline to pinoline. Genotyping of CYP2D6 (1846G>A) was performed using real-time polymerase chain reaction. Results According to results of correlation analysis, statistically significant values of Spearman correlation coefficient (rs) between the activity of CYP2D6 and the difference of points in psychometric scale were obtained in patients receiving haloperidol in injection form (Sheehan Clinical Anxiety Rating Scale =−0.721 [P<0.001] and Udvald for Kliniske Undersogelser Side Effect Rating Scale =0.692 [P<0.001]) and in those receiving haloperidol in tablet form (Covi Anxiety Scale =−0.851 [P<0.001] and Udvald for Kliniske Undersogelser Side Effect Rating Scale =0.797 [P<0.001]). Conclusion This study demonstrated the correlations between the activity of CYP2D6 isozyme and the efficacy and safety of haloperidol in patients with alcohol addiction. PMID:27695358

  9. Involvement of CYP2D6 in oxidative metabolism of cinnarizine and flunarizine in human liver microsomes.

    PubMed

    Narimatsu, S; Kariya, S; Isozaki, S; Ohmori, S; Kitada, M; Hosokawa, S; Masubuchi, Y; Suzuki, T

    1993-06-30

    Oxidative metabolism of cinnarizine (CZ) and its fluorine derivative flunarizine (FZ), both of which are selective calcium entry blockers, was examined in human liver microsomes. The ring-hydroxylations and the N-desalkylations constituted primary metabolic pathways in microsomal metabolism of CZ and FZ. Among these pathways, the ring-hydroxylase (p-hydroxylation) activities at the cinnamyl moiety of both drugs were highly correlated with debrisoquine 4-hydroxylase activity and CYP2D6 content. Quinidine, a selective inhibitor of CYP2D6, suppressed the ring-hydroxylase activities of CZ and FZ. These results suggest that CYP2D6 is involved in the ring-hydroxylation of the cinnamyl moiety of both CZ and FZ in human liver microsomes.

  10. Isolation and characterization of the CYP2D6 gene in Felidae with comparison to other mammals.

    PubMed

    Schenekar, Tamara; Winkler, Kathrin A; Troyer, Jennifer L; Weiss, Steven

    2011-02-01

    The highly polymorphic CYP2D6 protein metabolizes about 25% of commonly used drugs and underlies a broad spectrum of drug responses among individuals. In contrast to extensive knowledge on the human CYP2D6 gene, little is known about the gene in non-human mammals. CYP2D6 mRNA from 23 cats (Felidae) spanning seven species were compared to available CYPD6 sequences in ten additional mammals and multiple allelic variants in humans. A relatively high mean dN/dS ratio (0.565) was observed, especially within Felidae. Pairwise dN/dS ratios were non-monotonically distributed with respect to evolutionary distance suggesting either positive selection or retention of slightly deleterious mutations. Positive selection on specific codons, most notably in regions involved in substrate recognition and membrane anchoring is supported and the possible influence of diet on specific amino acid changes in substrate binding sites is discussed.

  11. Role of Pharmacogenetics in Improving the Safety of Psychiatric Care by Predicting the Potential Risks of Mania in CYP2D6 Poor Metabolizers Diagnosed With Bipolar Disorder.

    PubMed

    Sánchez-Iglesias, Santiago; García-Solaesa, Virginia; García-Berrocal, Belén; Sanchez-Martín, Almudena; Lorenzo-Romo, Carolina; Martín-Pinto, Tomás; Gaedigk, Andrea; González-Buitrago, José Manuel; Isidoro-García, María

    2016-02-01

    One of the main concerns in psychiatric care is safety related to drug management. Pharmacogenetics provides an important tool to assess causes that may have contributed the adverse events during psychiatric therapy. This study illustrates the potential of pharmacogenetics to identify those patients for which pharmacogenetic-guided therapy could be appropriate. It aimed to investigate CYP2D6 genotype in our psychiatric population to assess the value of introducing pharmacogenetics as a primary improvement for predicting side effects.A broad series of 224 psychiatric patients comprising psychotic disorders, depressive disturbances, bipolar disorders, and anxiety disorders was included. The patients were genotyped with the AmpliChip CYP450 Test to analyzing 33 allelic variants of the CYP2D6 gene.All bipolar patients with poor metabolizer status showed maniac switching when CYP2D6 substrates such as selective serotonin reuptake inhibitors were prescribed. No specific patterns were identified for adverse events for other disorders.We propose to utilize pharmacogenetic testing as an intervention to aid in the identification of patients who are at risk of developing affective switching in bipolar disorder treated with selective serotonin reuptake inhibitors, CYP2D6 substrates, and inhibitors.

  12. Role of Pharmacogenetics in Improving the Safety of Psychiatric Care by Predicting the Potential Risks of Mania in CYP2D6 Poor Metabolizers Diagnosed With Bipolar Disorder

    PubMed Central

    Sánchez-Iglesias, Santiago; García-Solaesa, Virginia; García-Berrocal, Belén; Sanchez-Martín, Almudena; Lorenzo-Romo, Carolina; Martín-Pinto, Tomás; Gaedigk, Andrea; González-Buitrago, José Manuel; Isidoro-García, María

    2016-01-01

    Abstract One of the main concerns in psychiatric care is safety related to drug management. Pharmacogenetics provides an important tool to assess causes that may have contributed the adverse events during psychiatric therapy. This study illustrates the potential of pharmacogenetics to identify those patients for which pharmacogenetic-guided therapy could be appropriate. It aimed to investigate CYP2D6 genotype in our psychiatric population to assess the value of introducing pharmacogenetics as a primary improvement for predicting side effects. A broad series of 224 psychiatric patients comprising psychotic disorders, depressive disturbances, bipolar disorders, and anxiety disorders was included. The patients were genotyped with the AmpliChip CYP450 Test to analyzing 33 allelic variants of the CYP2D6 gene. All bipolar patients with poor metabolizer status showed maniac switching when CYP2D6 substrates such as selective serotonin reuptake inhibitors were prescribed. No specific patterns were identified for adverse events for other disorders. We propose to utilize pharmacogenetic testing as an intervention to aid in the identification of patients who are at risk of developing affective switching in bipolar disorder treated with selective serotonin reuptake inhibitors, CYP2D6 substrates, and inhibitors. PMID:26871771

  13. Mutation frequencies of the cytochrome CYP2D6 gene in Parkinson disease patients and in families

    SciTech Connect

    Lucotte, G.; Turpin, J.C.; Gerard, N.

    1996-07-26

    The frequencies of five mutations of the debrisoquine 4-hydroxylase (CYP2D6) gene (mutations D6-A, B, C, D, and T), corresponding to poor metabolizer (PM) phenotypes, were determined by restriction fragment length polymorphism (RFLP) and polymerase chain reaction (PCR) in 47 patients with Parkinson disease, and compared with the findings in 47 healthy controls. These mutant alleles were about twice as frequent among patients as in controls, with an approximate relative risk ratio of 2.12 (95% confidence interval, 1.41-2.62). There seem to be no significant differences in frequencies of mutant genotypes in patients among gender and modalities of response with levodopa therapy; but frequency of the mutations was slightly enhanced after age-at-onset of 60 years. Mutations D6-B, D, and T were detected in 7 patients belonging to 10 Parkinson pedigrees. 25 refs., 1 fig., 2 tabs.

  14. A combined high CYP2D6-CYP2C19 metabolic capacity is associated with the severity of suicide attempt as measured by objective circumstances.

    PubMed

    Peñas-Lledó, E; Guillaume, S; Naranjo, M E G; Delgado, A; Jaussent, I; Blasco-Fontecilla, H; Courtet, P; LLerena, A

    2015-04-01

    This study examined, for the first time, whether a high CYP2D6-CYP2C19 metabolic capacity combination increases the likelihood of suicidal intent severity in a large study cohort. Survivors of a suicide attempt (n=587; 86.8% women) were genotyped for CYP2C19 (*2, *17) and CYP2D6 (*3, *4, *4xN, *5, *6, *10, wtxN) genetic variation and evaluated with the Beck Suicide Intent Scale (SIS). Patients with a high CYP2D6-CYP2C19 metabolic capacity showed an increased risk for a severe suicide attempt (P<0.01) as measured by the SIS-objective circumstance subscale (odds ratio (OR)=1.37; 95% confidence interval (CI)=1.05-1.78; P=0.02) after adjusting for confounders (gender, age, level of studies, marital status, mental disorders, tobacco use, family history of suicide, personal history of attempts and violence of the attempt). Importantly, the risk was greater in those without a family history of suicide (OR=1.82; CI=1.19-2.77; P=0.002). Further research is warranted to evaluate whether the observed relationship is mediated by the role of CYP2D6 and CYP2C19 involvement in the endogenous physiology or drug metabolism or both.

  15. In silico and in vivo evaluation of flavonoid extracts on CYP2D6-mediated herb-drug interaction.

    PubMed

    Su, Zhe; Zhang, Bo; Zhu, Wenliang; Du, Zhimin

    2012-10-01

    Flavonoid extracts are widely used for preventing and treating ischemic heart disease. However, because many flavonoid extracts have been verified to inhibit CYP2D6 the main metabolic enzyme for the majority of antiarrhythmics and beta-blockers, co-administration of flavonoid extracts with these drugs may cause adverse herb-drug interaction in clinic. Here, we evaluated 43 common flavonoids on CYP2D6 inhibition in sillico and four commercial flavonoid extracts in vivo on the pharmacokinetics and pharmacodynamics of metoprolol in rats. Surprisingly, we found that the core skeletons of flavonoids instead of their substituents determine the extent of inhibiting CYP2D6 by a flavonoid extract. Isoflavones are less likely to inhibit CYP2D6, compared with other categories of flavonoids. Consistently, co-administration of soy extract that mainly contains isoflavones did not significantly increase plasma concentration of metoprolol and alter the systolic blood pressure of rats. Our results have implication in rationally selecting flavonoid extracts for therapeutic application.

  16. Stimulus control by 5-methoxy-N,N-dimethyltryptamine in wild-type and CYP2D6-humanized mice.

    PubMed

    Winter, J C; Amorosi, D J; Rice, Kenner C; Cheng, Kejun; Yu, Ai-Ming

    2011-09-01

    In previous studies we have observed that, in comparison with wild type mice, Tg-CYP2D6 mice have increased serum levels of bufotenine [5-hydroxy-N,N-dimethyltryptamine] following the administration of 5-MeO-DMT. Furthermore, following the injection of 5-MeO-DMT, harmaline was observed to increase serum levels of bufotenine and 5-MeO-DMT in both wild-type and Tg-CYP2D6 mice. In the present investigation, 5-MeO-DMT-induced stimulus control was established in wild-type and Tg-CYP2D6 mice. The two groups did not differ in their rate of acquisition of stimulus control. When tested with bufotenine, no 5-MeO-DMT-appropriate responding was observed. In contrast, the more lipid soluble analog of bufotenine, acetylbufotenine, was followed by an intermediate level of responding. The combination of harmaline with 5-MeO-DMT yielded a statistically significant increase in 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice; a comparable increase occurred in wild-type mice. In addition, it was noted that harmaline alone was followed by a significant degree of 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice. It is concluded that wild-type and Tg-CYPD2D6 mice do not differ in terms of acquisition of stimulus control by 5-MeO-DMT or in their response to bufotenine and acetylbufotenine. In both groups of mice, harmaline was found to enhance the stimulus effects of 5-MeO-DMT.

  17. Influence of CYP2D6 activity on the pharmacokinetics and pharmacodynamics of a single 20 mg dose of ibogaine in healthy volunteers.

    PubMed

    Glue, Paul; Winter, Helen; Garbe, Kira; Jakobi, Hannah; Lyudin, Alexander; Lenagh-Glue, Zoe; Hung, C Tak

    2015-06-01

    Conversion of ibogaine to its active metabolite noribogaine appears to be mediated primarily by CYP2D6. We compared 168 hours pharmacokinetic profiles of both analytes after a single oral 20 mg dose of ibogaine in 21 healthy subjects who had been pretreated for 6 days with placebo or the CYP2D6 inhibitor paroxetine. In placebo-pretreated subjects, ibogaine was rapidly converted to noribogaine. Median peak noribogaine concentrations occurred at 4 hours. Compared with placebo-pretreated subjects, paroxetine-pretreated subjects had rapid (Tmax  = 1.5 hours) and substantial absorption of ibogaine, with detectable levels out to 72 hours, and an elimination half-life of 10.2 hours. In this group, ibogaine was also rapidly converted to noribogaine with a median Tmax of 3 hours. Extent of noribogaine exposure was similar in both groups. CYP2D6 phenotype was robustly correlated with ibogaine AUC0-t (r = 0.82) and Cmax (r = 0.77). Active moiety (ibogaine plus noribogaine) exposure was ∼2-fold higher in paroxetine-pretreated subjects. Single 20 mg ibogaine doses were safe and well tolerated in all subjects. The doubling of exposure to active moiety in subjects with reduced CYP2D6 activity suggests it may be prudent to genotype patients awaiting ibogaine treatment, and to at least halve the intended dose of ibogaine in CYP2D6 poor metabolizers.

  18. Clinical Pharmacology of 3,4-Methylenedioxymethamphetamine (MDMA, “Ecstasy”): The Influence of Gender and Genetics (CYP2D6, COMT, 5-HTT)

    PubMed Central

    O’Mathúna, Brian; Torrens, Marta; Mustata, Cristina; Pérez-Mañá, Clara; Langohr, Klaus; Cuyàs, Elisabet; Carbó, Marcel·lí; de la Torre, Rafael

    2012-01-01

    The synthetic psychostimulant MDMA (±3,4-methylenedioxymethamphetamine, ecstasy) acts as an indirect serotonin, dopamine, and norepinephrine agonist and as a mechanism-based inhibitor of the cytochrome P-450 2D6 (CYP2D6). It has been suggested that women are more sensitive to MDMA effects than men but no clinical experimental studies have satisfactorily evaluated the factors contributing to such observations. There are no studies evaluating the influence of genetic polymorphism on the pharmacokinetics (CYP2D6; catechol-O-methyltransferase, COMT) and pharmacological effects of MDMA (serotonin transporter, 5-HTT; COMT). This clinical study was designed to evaluate the pharmacokinetics and physiological and subjective effects of MDMA considering gender and the genetic polymorphisms of CYP2D6, COMT, and 5-HTT. A total of 27 (12 women) healthy, recreational users of ecstasy were included (all extensive metabolizers for CYP2D6). A single oral weight-adjusted dose of MDMA was administered (1.4 mg/kg, range 75–100 mg) which was similar to recreational doses. None of the women were taking oral contraceptives and the experimental session was performed during the early follicular phase of their menstrual cycle. Principal findings show that subjects reached similar MDMA plasma concentrations, and experienced similar positive effects, irrespective of gender or CYP2D6 (not taking into consideration poor or ultra-rapid metabolizers) or COMT genotypes. However, HMMA plasma concentrations were linked to CYP2D6 genotype (higher with two functional alleles). Female subjects displayed more intense physiological (heart rate, and oral temperature) and negative effects (dizziness, sedation, depression, and psychotic symptoms). Genotypes of COMT val158met or 5-HTTLPR with high functionality (val/val or l/*) determined greater cardiovascular effects, and with low functionality (met/* or s/s) negative subjective effects (dizziness, anxiety, sedation). In conclusion, the contribution of

  19. CYP2D6 status of extensive metabolizers after multiple-dose fluoxetine, fluvoxamine, paroxetine, or sertraline.

    PubMed

    Alfaro, C L; Lam, Y W; Simpson, J; Ereshefsky, L

    1999-04-01

    The aim of this study was to evaluate the CYP2D6 inhibitory effects of four selective rerotonin re-uptake inhibitors (SSRIs). Thirty-one healthy subjects were phenotyped as extensive metabolizers using the dextromethorphan/dextrorphan (DM/DX) urinary ratio as a marker for CYP2D6 activity before and after 8 days of administration of fluoxetine 60 mg (loading dose strategy), fluvoxamine 100 mg, paroxetine 20 mg, or sertraline 100 mg in a parallel-group design. Statistical analysis was performed on log-transformed DM/DX ratios because of variability within and between treatment groups. DM/DX ratios before (DM/DX(BL)) and after (DM/DX(SSRI)) were compared within and between the four SSRI groups. DM/DX(BL) ratios were not significantly different between the four SSRI treatment groups. Comparing within groups, significant differences between DM/DX(BL) and DM/DX(SSRI) were found for the fluoxetine (p < 0.001; ratio values, 0.020 vs. 0.364) and paroxetine (p = 0.0005, ratio values 0.029 vs. 1.085) but not for the fluvoxamine or sertraline groups. Comparing between groups, significant differences in DM/DX(SSRI) ratios were found for fluoxetine versus sertraline (p = 0.0019, DM/DX = 0.364 vs. 0.057), fluoxetine versus fluvoxamine (p < 0.0001, DM/DX = 0.364 vs. 0.019), paroxetine versus sertraline (p = 0.0026, DM/DX = 1.085 vs. 0.057), and paroxetine versus fluvoxamine (p < 0.0001, DM/DX = 1.085 vs. 0.019). No significant differences were noted between the two potent CYP2D6 inhibitors, fluoxetine and paroxetine, or the two weakest inhibitors, fluvoxamine and sertraline. Five subjects in the fluoxetine and four subjects in the paroxetine groups changed to poor metabolizer phenotype (DM/DX > or = 0.3) after treatment. Although CYP2D6 inhibitory effects of fluvoxamine and sertraline did not yield significant differences from baseline, some subjects exhibited DM/DX ratio increases of 150 to 200%. One paroxetine-treated subject did not exhibit any CYP2D6 inhibition. SSRI dose and

  20. CYP1A2 and CYP2D6 Gene Polymorphisms in Schizophrenic Patients with Neuroleptic Drug-Induced Side Effects.

    PubMed

    Ivanova, S A; Filipenko, M L; Vyalova, N M; Voronina, E N; Pozhidaev, I V; Osmanova, D Z; Ivanov, M V; Fedorenko, O Yu; Semke, A V; Bokhan, N A

    2016-03-01

    Polymorphic variants of CYP1A2 and CYP2D6 genes of the cytochrome P450 system were studied in patients with schizophrenia with drug-induced motor disorders and hyperprolactinemia against the background of long-term neuroleptic therapy. We revealed an association of polymorphic variant C-163A CYP1A2*1F of CYP1A2 gene with tardive dyskinesia and association of polymorphic variant 1846G>A CY2D6*4 and genotype A/A of CYP2D6 gene (responsible for debrisoquin-4-hydroxylase synthesis) with limbotruncal tardive dyskinesia in patients with schizophrenia receiving neuroleptics for a long time.

  1. Molecular analysis and modeling of inactivation of human CYP2D6 by four mechanism based inactivators.

    PubMed

    Livezey, Mara; Nagy, Leslie D; Diffenderfer, Laura E; Arthur, Evan J; Hsi, David J; Holton, Jeffrey M; Furge, Laura Lowe

    2012-03-01

    Human cytochrome P450 2D6 (CYP2D6) is involved in metabolism of approximately 25% of pharmaceutical drugs. Inactivation of CYP2D6 can lead to adverse drug interactions. Four inactivators of CYP2D6 have previously been identified: 5-Fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine(SCH66712), (1-[(2-ethyl- 4-methyl-1H-imidazol-5-yl)-methyl]-4-[4-(trifluoromethyl)-2-pyridinyl]piperazine(EMTPP), paroxetine, and 3,4- methylenedioxymethamphetamine (MDMA). All four contain planar, aromatic groups as well as basic nitrogens common to CYP2D6 substrates. SCH66712 and EMTPP also contain piperazine groups and substituted imidazole rings that are common in pharmaceutical agents, though neither of these compounds is clinically relevant. Paroxetine and MDMA contain methylenedioxyphenyls. SCH66712 and EMTPP are both known protein adductors while paroxetine and MDMA are probable heme modifiers. The current study shows that each inactivator displays Type I binding with Ks values that vary by 2-orders of magnitude with lower Ks values associated with greater inactivation. Comparison of KI, kinact, and partition ratio values shows SCH66712 is the most potent inactivator. Molecular modeling experiments using AutoDock identify Phe120 as a key interaction for all four inactivators with face-to-face and edge-to-face pi interactions apparent. Distance between the ligand and heme iron correlates with potency of inhibition. Ligand conformations were scored according to their binding energies as calculated by AutoDock and correlation was observed between molecular models and Ks values.

  2. MOLECULAR ANALYSIS AND MODELING OF INACTIVATION OF HUMAN CYP2D6 BY FOUR MECHANISM BASED INACTIVATORS

    PubMed Central

    Livezey, Mara; Nagy, Leslie D.; Diffenderfer, Laura E.; Arthur, Evan J.; Hsi, David J.; Holton, Jeffrey M.; Furge, Laura Lowe

    2014-01-01

    Human cytochrome P450 2D6 (CYP2D6) is involved in metabolism of approximately 25% of pharmaceutical drugs. Inactivation of CYP2D6 can lead to adverse drug interactions. Four inactivators of CYP2D6 have previously been identified: 5-Fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine (SCH66712), (1-[(2-ethyl-4-methyl-1H(-EMTPP-imidazol-5-yl)-methyl]-4-[4-(trifluoromethyl)-2-pyridinyl]piperazine (EMTPP), paroxetine, and 3,4-methylenedioxymethamphetamine (MDMA). All four contain planar, aromatic groups as well as basic nitrogens common to CYP2D6 substrates. SCH66712 and EMTPP also contain piperazine groups and substituted imidazole rings that are common in pharmaceutical agents, though neither of these compounds is clinically relevant. Paroxetine and MDMA contain methylenedioxyphenyls. SCH66712 and EMTPP are both known protein adductors while paroxetine and MDMA are probable heme modifiers. The current study shows that each inactivator displays Type I binding with Ks values that vary by 2-orders of magnitude with lower Ks values associated with greater inactivation. Comparison of KI, kinact, and partition ratio values shows SCH66712 is the most potent inactivator. Molecular modeling experiments using AutoDock identify Phe120 as a key interaction for all four inactivators with face-to-face and edge-to-face pi interactions apparent. Distance between the ligand and heme iron correlates with potency of inhibition. Ligand conformations were scored according to their binding energies as calculated by AutoDock and correlation was observed between molecular models and Ks values. PMID:22372551

  3. Non-alcoholic fatty liver disease (NAFLD) potentiates autoimmune hepatitis in the CYP2D6 mouse model.

    PubMed

    Müller, Peter; Messmer, Marie; Bayer, Monika; Pfeilschifter, Josef M; Hintermann, Edith; Christen, Urs

    2016-05-01

    Non-alcoholic fatty liver disease (NAFLD) and its more severe development non-alcoholic steatohepatitis (NASH) are increasing worldwide. In particular NASH, which is characterized by an active hepatic inflammation, has often severe consequences including progressive fibrosis, cirrhosis, and eventually hepatocellular carcinoma (HCC). Here we investigated how metabolic liver injury is influencing the pathogenesis of autoimmune hepatitis (AIH). We used the CYP2D6 mouse model in which wild type C57BL/6 mice are infected with an Adenovirus expressing the major liver autoantigen cytochrome P450 2D6 (CYP2D6). Such mice display several features of human AIH, including interface hepatitis, formation of LKM-1 antibodies and CYP2D6-specific T cells, as well as hepatic fibrosis. NAFLD was induced with a high-fat diet (HFD). We found that pre-existing NAFLD potentiates the severity of AIH. Mice fed for 12 weeks with a HFD displayed increased cellular infiltration of the liver, enhanced hepatic fibrosis and elevated numbers of liver autoantigen-specific T cells. Our data suggest that a pre-existing metabolic liver injury constitutes an additional risk for the severity of an autoimmune condition of the liver, such as AIH.

  4. Application of Mice Humanized for CYP2D6 to the Study of Tamoxifen Metabolism and Drug–Drug Interaction with Antidepressants

    PubMed Central

    MacLeod, A. Kenneth; McLaughlin, Lesley A.; Henderson, Colin J.

    2017-01-01

    Tamoxifen is an estrogen receptor antagonist used in the treatment of breast cancer. It is a prodrug that is converted by several cytochrome P450 enzymes to a primary metabolite, N-desmethyltamoxifen (NDT), which is then further modified by CYP2D6 to a pharmacologically potent secondary metabolite, 4-hydroxy-N-desmethyltamoxifen (endoxifen). Antidepressants (ADs), which are often coprescribed to patients receiving tamoxifen, are also metabolized by CYP2D6 and evidence suggests that a drug–drug interaction between these agents adversely affects the outcome of tamoxifen therapy by inhibiting endoxifen formation. We evaluated this potentially important drug–drug interaction in vivo in mice humanized for CYP2D6 (hCYP2D6). The rate of conversion of NDT to endoxifen by hCYP2D6 mouse liver microsomes (MLMs) in vitro was similar to that of the most active members of a panel of 13 individual human liver microsomes. Coincubation with quinidine, a CYP2D6 inhibitor, ablated endoxifen generation by hCYP2D6 MLMs. The NDT-hydroxylation activity of wild-type MLMs was 7.4 times higher than that of hCYP2D6, whereas MLMs from Cyp2d knockout animals were inactive. Hydroxylation of NDT correlated with that of bufuralol, a CYP2D6 probe substrate, in the human liver microsome panel. In vitro, ADs of the selective serotonin reuptake inhibitor class were, by an order of magnitude, more potent inhibitors of NDT hydroxylation by hCYP2D6 MLMs than were compounds of the tricyclic class. At a clinically relevant dose, paroxetine pretreatment inhibited the generation of endoxifen from NDT in hCYP2D6 mice in vivo. These data demonstrate the potential of ADs to affect endoxifen generation and, thereby, the outcome of tamoxifen therapy. PMID:27756789

  5. Exploring the possible metabolism mediated interaction of Glycyrrhiza glabra extract with CYP3A4 and CYP2D6.

    PubMed

    Pandit, Subrata; Ponnusankar, Sivasankaran; Bandyopadhyay, Arun; Ota, Sarda; Mukherjee, Pulok K

    2011-10-01

    The rhizome of Glycyrrhiza glabra L. (licorice) is used very widely in Indian and Chinese traditional medicine, and it is a popular flavor ingredient of drinks, sweets and candies. Its medicinal uses include treating bronchitis, dry cough, respiratory infections, liver disorders and diabetes. Glycyrrhizin is normally considered to be its biologically active marker, so a rapid RP-HPLC method was developed for the quantitative estimation of glycyrrhizin in the extract. The effect of the standardized extract and its marker on drug metabolizing enzymes was evaluated through CYP3A4 and CYP2D6 inhibition assays to evaluate the safety through its drug interaction potential. The inhibition of CYP3A4 and CYP2D6 isozymes was analysed by the fluorescent product formation method. In the CYP450-CO assay, the interaction potential of the standardized extract and pooled microsomes (percentage inhibition 23.23 ± 1.84%), was found to be less than the standard inhibitor. In the fluorimetric assay, G. glabra extracts showed higher IC(50) values than their positive inhibitors, ketoconazole and quinidine for CYP3A4 and CYP2D6, respectively. Furthermore, the interaction potential of the plant extract was greater than the pure compound. The results demonstrate that G. glabra and its principle bioactive compound, glycyrrhizin, when co-administered with conventional medicines showed only a weak interaction potential with drug metabolizing enzymes.

  6. Generation and validation of rapid computational filters for cyp2d6 and cyp3a4.

    PubMed

    Ekins, Sean; Berbaum, Jennifer; Harrison, Richard K

    2003-09-01

    CYP2D6 and CYP3A4 represent two particularly important members of the cytochrome p450 enzyme family due to their involvement in the metabolism of many commercially available drugs. Avoiding potent inhibitory interactions with both of these enzymes is highly desirable in early drug discovery, long before entering clinical trials. Computational prediction of this liability as early as possible is desired. Using a commercially available data set of over 1750 molecules to train computer models that were generated with commercially available software enabled predictions of inhibition for CYP2D6 and CYP3A4, which were compared with empirical data. The results suggest that using a recursive partitioning (tree) technique with augmented atom descriptors enables a statistically significant rank ordering of test-set molecules (Spearman's rho of 0.61 and 0.48 for CYP2D6 and CYP3A4, respectively), which represents an increased rate of identifying the best compounds when compared with the random rate. This approach represents a valuable computational filter in early drug discovery to identify compounds that may have p450 inhibition liabilities prior to molecule synthesis. Such computational filters offer a new approach in which lead optimization in silico can occur with virtual molecules simultaneously tested against multiple enzymes implicated in drug-drug interactions, with a resultant cost savings from a decreased level of molecule synthesis and in vitro screening.

  7. [Identification of metabolites of epiberberine in rat liver microsomes and its inhibiting effects on CYP2D6].

    PubMed

    Yang, Xiao-Yan; Ye, Jing; Sun, Gui-Xia; Xue, Bao-Juan; Zhao, Yuan-Yuan; Miao, Pei-Pei; Su, Jin; Zhang, Yu-Jie

    2014-10-01

    Epiberberine, one of the most important isoquinoline alkaloid in Coptidis Rhizoma, possesses extensive pharmacological activities. In this paper, the liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to study phase I and phase II metabolites. A Thermo HPLC system (including Surveyor AS, Surveyor LC Pump, Surveyor PDA. USA) was used. The cocktail probe drugs method was imposed to determine the content change of metoprolol, dapsone, phenacetin, chlorzoxazone and tolbutamide simultaneously for evaluating the activity of CYP2D6, CYP3A4, CYP1A2, CYP2E1 and CYP2C9 under different concentrations of epiberberine in rat liver microsomes. The result showed that epiberberine may have phase I and phase II metabolism in the rat liver and two metabolites in phase I and three metabolites in phase II are identified in the temperature incubation system of in vitro liver microsomes. Epiberberine showed significant inhibition on CYP2D6 with IC50 value of 35.22 μmol L(-1), but had no obvious inhibiting effect on the activities of CYP3A4, CYP1A2, CYP2E1 and CYP2C9. The results indicated that epiberberine may be caused drug interactions based on CYP2D6 enzyme. This study aims to provide a reliable experimental basis for its further research and development of epiberberine.

  8. Effects of polymorphisms in CYP2D6 and ABC transporters and side effects induced by gefitinib on the pharmacokinetics of the gefitinib metabolite, O-desmethyl gefitinib.

    PubMed

    Kobayashi, Hiroyuki; Sato, Kazuhiro; Niioka, Takenori; Takeda, Masahide; Okuda, Yuji; Asano, Mariko; Ito, Hiroshi; Miura, Masatomo

    2016-06-01

    We investigated the effects of polymorphisms in CYP2D6, ABCB1, and ABCG2 and the side effects induced by gefitinib on the pharmacokinetics of O-desmethyl gefitinib, the active metabolite of gefitinib. On day 14 after beginning therapy with gefitinib, plasma concentrations of gefitinib and O-desmethyl gefitinib were measured. Patients were grouped into three groups according to their combination of CYP2D6 alleles: homozygous extensive metabolisers (EMs; *1/*1, *1/*2, and *2/*2; n = 13), heterozygous EMs (*1/*5, *2/*5, *1/*10, and *2/*10; n = 18), and intermediate metabolisers (IMs; *5/*10 and *10/*10; n = 5). The median AUC0-24 of O-desmethyl gefitinib in CYP2D6 IMs was 1460 ng h/mL, whereas that in homozygous EMs was 12,523 ng h/mL (P = 0.021 in univariate analysis). The median AUC ratio of O-desmethyl gefitinib to gefitinib differed among homozygous EMs, heterozygous EMs, and IMs at a ratio of 1.41:0.86:0.24 (P = 0.030). On the other hand, there were no significant differences in the AUC0-24 of O-desmethyl gefitinib between ABCB1 and ABCG2 genotypes. In a multivariate analysis, CYP2D6 homozygous EMs (P = 0.012) were predictive for a higher AUC0-24 of O-desmethyl gefitinib. The side effects of diarrhoea, skin rash, and hepatotoxicity induced by gefitinib were unrelated to the AUC0-24 of O-desmethyl gefitinib. CYP2D6 polymorphisms were associated with the formation of O-desmethyl gefitinib from gefitinib. In CYP2D6 homozygous EMs, the plasma concentrations of O-desmethyl gefitinib were higher over 24 h after taking gefitinib than those of the parent compound; however, side effects induced by gefitinib were unrelated to O-desmethyl gefitinib exposure.

  9. Distribution of CYP2D6 and CYP2C19 Polymorphisms Associated with Poor Metabolizer Phenotype in Five Amerindian Groups and Western Mestizos from Mexico

    PubMed Central

    Salazar-Flores, Joel; Torres-Reyes, Luis A.; Martínez-Cortés, Gabriela; Rubi-Castellanos, Rodrigo; Sosa-Macías, Martha; Muñoz-Valle, José F.; González-González, César; Ramírez, Angélica; Román, Raquel; Méndez, José L.; Barrera, Andrés; Torres, Alfredo; Medina, Rafael

    2012-01-01

    Background: The distribution of polymorphisms in the CYP2D6 and CYP2C19 genes allows inferring the potential risk for specific adverse drug reactions and lack of therapeutic effects in humans. This variability shows differences among human populations. The aim of this study was to analyze single-nucleotide polymorphisms related to a poor metabolizer (PM) phenotype in nonpreviously studied Amerindian groups and Mestizos (general admixed population) from Mexico. Methods: We detected by SNaPshot® different polymorphisms located in CYP2D6 (*3, *4, *6, *7, and *8) and CYP2C19 (*2, *3, *4 and *5) in western Mestizos (n=145) and five Amerindian groups from Mexico: Tarahumaras from the North (n=88); Purépechas from the Center (n=101); and Tojolabales (n=68), Tzotziles (n=88), and Tzeltales (n=20) from the Southeast. Genotypes were observed by capillary electrophoresis. The genetic relationships among these populations were estimated based on these genes. Results and Discussion: The wild-type allele (*1) of both genes was predominant in the Mexican populations studied. The most widely observed alleles were CYP2C19*2 (range, 0%–31%) and CYP2D6*4 (range, 1.2%–7.3%), whereas CYP2D6*3 was exclusively detected in Mestizos. Conversely, CYP2C19*4 and *5, as well as CYP2D6*3, *6, *7, and *8, were not observed in the majority of the Mexican populations. The Tarahumaras presented a high frequency of the allele CYP2C19*2 (31%) and of homozygotes *2/*2 (10.7%), which represent a high frequency of potentially PM phenotypes in this Amerindian group. The genetic distances showed high differentiation of Tarahumaras (principally for CYP2C19 gene). In general, a relative proximity was observed between most of the Amerindian, Mexican-Mestizo, and Latin-American populations. Conclusion: In general, the wild-type allele (*1) predominates in Mexican populations, outlining a relatively homogeneous distribution for CYP2C19 and CYP2D6. The exception is the Tarahumara group that displays a

  10. Clinical Response to Donepezil in Mild and Moderate Dementia: Relationship to Drug Plasma Concentration and CYP2D6 and APOE Genetic Polymorphisms.

    PubMed

    Miranda, Luís F J R; Gomes, Karina B; Tito, Pedro A L; Silveira, Josianne N; Pianetti, Gerson A; Byrro, Ricardo M D; Peles, Patrícia R H; Pereira, Fernando H; Santos, Thiago R; Assini, Arthur G; Ribeiro, Valéria V; Moraes, Edgar N; Caramelli, Paulo

    2017-01-01

    The clinical response to donepezil in patients with mild and moderate dementia was investigated in relation to the drug plasma concentration and APOE and CYP2D6 polymorphisms. In a prospective naturalistic observational study, 42 patients with Alzheimer's disease (AD) and AD with cerebrovascular disease who took donepezil (10 mg) for 12 months were evaluated. Their DNA was genotyped, and the donepezil plasma concentrations were measured after 3, 6, and 12 months. Good responders scored ≥-1 on the Mini-Mental State Examination at 12 months in comparison to the baseline score. The study results indicated the good response pattern was influenced by the concentration of donepezil, but not by APOE and CYP2D6 polymorphisms.

  11. No association between schizophrenia and polymorphisms within the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT)

    SciTech Connect

    Daniels, J.; Williams, J.; Asherson, P.; McGuffin, P.; Owen, M.

    1995-02-27

    It has been suggested that the cytochrome P450 mono-oxygenase, debrisoquine 4-hydroxylase, is involved in the catabolism and processing of neurotransmitters subsequent to their reuptake into target cells. It is also thought to be related to the dopamine transporter that acts to take released dopamine back up into presynaptic terminals. The present study used the association approach to test the hypothesis that mutations in the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT) confer susceptibility to schizophrenia. There were no differences in allele or genotype frequencies between patients and controls in the mutations causing the poor metaboliser phenotype in CYP2D6. In addition there was no association found between schizophrenia and a 48 bp repeat within the 3{prime} untranslated region of DAT. 18 refs., 2 tabs.

  12. Stereoselective metabolism of donepezil and steady-state plasma concentrations of S-donepezil based on CYP2D6 polymorphisms in the therapeutic responses of Han Chinese patients with Alzheimer's disease.

    PubMed

    Lu, Jin; Wan, Lili; Zhong, Yuan; Yu, Qi; Han, Yonglong; Chen, Pengguo; Wang, Beiyun; Li, Wei; Miao, Ya; Guo, Cheng

    2015-11-01

    The therapeutic response rates of patients to donepezil vary from 20% to 60%, one of the reasons is their genetic differences in donepezil-metabolizing enzymes, which directly influence liver metabolism. However, the mechanism of donepezil metabolism and that of its enantiomers is unknown. This study evaluated CYP2D6 polymorphisms to elucidate the stereoselective metabolism of donepezil and to confirm the association between the steady-state plasma concentrations of the pharmaco-effective S-donepezil and the therapeutic responses of Han Chinese patients with Alzheimer's disease. The in vitro study of the stereoselective metabolism demonstrated that CYP2D6 is the predominant P450 enzyme that metabolizes donepezil and that different CYP2D6 alleles differentially affect donepezil enantiomers metabolism. A total of 77 Han Chinese patients with Alzheimer's disease were recruited to confirm these results, by measuring their steady-state plasma concentrations of S-donepezil. The related CYP2D6 genes were genotyped. Plasma concentrations of S-donepezil (based on CYP2D6 polymorphisms) were significantly associated with therapeutic responses. This finding suggests that plasma concentrations of S-donepezil influence therapeutic outcomes following treatment with donepezil in Han Chinese patients with Alzheimer's disease. Therefore, determining a patient's steady-state plasma concentration of S-donepezil in combination with their CYP2D6 genotype might be useful for clinically monitoring the therapeutic efficacy of donepezil.

  13. The impact of experimental design on assessing mechanism-based inactivation of CYP2D6 by MDMA (Ecstasy).

    PubMed

    Van, Linh M; Heydari, Amir; Yang, Jiansong; Hargreaves, Judith; Rowland-Yeo, Karen; Lennard, Martin S; Tucker, Geoffrey T; Rostami-Hodjegan, Amin

    2006-11-01

    MDMA (3-4-methylenedioxymethamphetamine, commonly known as Ecstasy) is a potent mechanism-based inhibitor (MBI) of cytochrome P450 2D6 (CYP2D6), causing quasi-irreversible inhibition of the enzyme in vitro. An evaluation of the in vivo implications of this phenomenon depends on the accuracy of the estimates of the parameters that define the inhibition in vitro, namely k(inact) (the maximal inhibition rate) and KI (the inactivation constant). These values are determined in two steps, pre-incubation of the enzyme with the inhibitor (enzyme inactivation), followed by dilution and further incubation to measure residual enzyme activity with a probe substrate. The aim of this study was to assess the impact of different dilutions and probe substrate concentrations on the estimates of k(inact) and KI using recombinantly expressed CYP2D6. Enzyme activity was measured by the conversion of dextromethorphan (DEX) to dextrorphan (DOR). Dilution factors of 1.25, 2, 5, 10, 25 and 50 (DEX at 30 microM) gave mean (+/-SE) values of k(inact) (min-1) of 0.20+/-0.06, 0.21+/-0.05, 0.31+/-0.06, 0.37+/-0.11, 0.51+/-0.10 and 0.58+/-0.08, respectively, and KI (microM) values (after correction for non-specific microsomal binding) of 2.22+/-1.90, 2.80+/-1.34, 5.78+/-2.07, 6.36+/-2.93, 3.99+/-1.57 and 4.86+/-1.37, respectively. Accordingly, high (e.g. 50 fold) and low (e.g. 1.25 fold) dilutions were associated with statistically significant differences in kinetic values (p <0.05). Varying DEX concentration (10-100 microM) was not associated with significant changes in k(inact) and KI values when a five-fold dilution was used (with the exception of a lower KI at 10 microM DEX). High dilution was also shown to reduce non-specific microsomal binding of MDMA. The changes in the two kinetic parameters were dependent on the experimental procedure and shown to be unlikely to have a material influence on the maximum inhibition of CYP2D6 expected in vivo after typical recreational doses of MDMA (50

  14. Influence of Cytochrome P450, Family 2, Subfamily D, Polypeptide 6 (CYP2D6) polymorphisms on pain sensitivity and clinical response to weak opioid analgesics.

    PubMed

    Zahari, Zalina; Ismail, Rusli

    2014-01-01

      CYP2D6 polymorphisms show large geographical and interethnic differences. Variations in CYP2D6 activity may impact upon a patient's pain level and may contribute to interindividual variations in the response to opioids. This paper reviews the evidence on how CYP2D6 polymorphisms might influence pain sensitivity and clinical response to codeine and tramadol. For example, it is shown that (1) CYP2D6 poor metabolizers (PMs) may be less efficient at synthesizing endogenous morphine compared with other metabolizers. In contrast, ultra-rapid metabolizers (UMs) may be more efficient than other metabolizers at synthesizing endogenous morphine, thus strengthening endogenous pain modulation. Additionally, for codeine and tramadol that are bioactivated by CYP2D6, PMs may undergo no metabolite formation, leading to inadequate analgesia. Conversely, UMs may experience quicker analgesic effects but be prone to higher mu-opioid-related toxicity. The literature suggested the potential usefulness of the determination of CYP2D6 polymorphisms in elucidating serious adverse events and in preventing subsequent inappropriate selection or doses of codeine and tramadol. Notably, even though many studies investigated a possible role of the CYP2D6 polymorphisms on pain sensitivity, pharmacokinetics and pharmacodynamics of these drugs, the results of analgesia and adverse effects are conflicting. More studies are required to demonstrate genetically determined unresponsiveness and risk of developing serious adverse events for patients with pain and these should involve larger numbers of patients in different population types.

  15. Similarities and/or dissimilarities of CYP2D6 polymorphism in three Tunisian ethnic groups: Arabs, Berbers, Numides.

    PubMed

    Attitallah, S; Berard, M; Belkahia, C; Bechtel, Y C; Bechtel, P R

    2000-01-01

    Using the validated probe drug debrisoquine and the 8 h urinary metabolic ratio debrisoquine/4 hydroxy-debrisoquine, we have determined the phenotype of the debrisoquine CYP2D6 dependent polymorphic metabolism in 464 Arabs, 227 Berbers and 215 Numides to elicit similarities or dissimilarities of poor metabolizer (PM) prevalence. We found 2.36 per cent of PM in Arabs, 3.08 per cent in Berbers and 2.33 per cent in Numides. These figures are similar to those observed in Middle East populations, and cannot be considered as different from those observed in Caucasians.

  16. Fast evaluation of enantioselective drug metabolism by electrophoretically mediated microanalysis: application to fluoxetine metabolism by CYP2D6.

    PubMed

    Asensi-Bernardi, Lucía; Martín-Biosca, Yolanda; Escuder-Gilabert, Laura; Sagrado, Salvador; Medina-Hernández, María José

    2013-12-01

    In this work, a capillary electrophoretic methodology for the enantioselective in vitro evaluation of drugs metabolism is applied to the evaluation of fluoxetine (FLX) metabolism by cytochrome 2D6 (CYP2D6). This methodology comprises the in-capillary enzymatic reaction and the chiral separation of FLX and its major metabolite, norfluoxetine enantiomers employing highly sulfated β-CD and the partial filling technique. The methodology employed in this work is a fast way to obtain a first approach of the enantioselective in vitro metabolism of racemic drugs, with the additional advantage of an extremely low consumption of enzymes, CDs and all the reagents involved in the process. Michaelis-Menten kinetic parameters (Km and Vmax ) for the metabolism of FLX enantiomers by CYP2D6 have been estimated by nonlinear fitting of experimental data to the Michaelis-Menten equation. Km values have been found to be 30 ± 3 μM for S-FLX and 39 ± 5 μM for R-FLX. Vmax estimations were 28.6 ± 1.2 and 34 ± 2 pmol·min(-1) ·(pmol CYP)(-1) for S- and R-FLX, respectively. Similar results were obtained using a single enantiomer (R-FLX), indicating that the use of the racemate is a good option for obtaining enantioselective estimations. The results obtained show a slight enantioselectivity in favor of R-FLX.

  17. Modulation of CYP2D6 and CYP3A4 metabolic activities by Ferula asafetida resin

    PubMed Central

    Al-Jenoobi, Fahad I.; Al-Thukair, Areej A.; Alam, Mohd Aftab; Abbas, Fawkeya A.; Al-Mohizea, Abdullah M.; Alkharfy, Khalid M.; Al-Suwayeh, Saleh A.

    2014-01-01

    Present study investigated the potential effects of Ferula asafetida resin on metabolic activities of human drug metabolizing enzymes: CYP2D6 and CYP3A4. Dextromethorphan (DEX) was used as a marker to assess metabolic activities of these enzymes, based on its CYP2D6 and CYP3A4 mediated metabolism to dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. In vitro study was conducted by incubating DEX with human liver microsomes and NADPH in the presence or absence of Asafetida alcoholic extract. For clinical study, healthy human volunteers received a single dose of DEX alone (phase-I) and repeated the same dose after a washout period and four-day Asafetida treatment (phase-II). Asafetida showed a concentration dependent inhibition on DOR formation (in vitro) and a 33% increase in DEX/DOR urinary metabolic ratio in clinical study. For CYP3A4, formation of 3-MM in microsomes was increased at low Asafetida concentrations (10, 25 and 50 μg/ml) but slightly inhibited at the concentration of 100 μg/ml. On the other hand, in vivo observations revealed that Asafetida significantly increased DEX/3-MM urinary metabolic ratio. The findings of this study suggest that Asafetida may have a significant effect on CYP3A4 metabolic activity. Therefore, using Ferula asafetida with CYP3A4 drug substrates should be cautioned especially those with narrow therapeutic index such as cyclosporine, tacrolimus and carbamazepine. PMID:25561870

  18. Altering metabolic profiles of drugs by precision deuteration: reducing mechanism-based inhibition of CYP2D6 by paroxetine.

    PubMed

    Uttamsingh, Vinita; Gallegos, Richard; Liu, Julie F; Harbeson, Scott L; Bridson, Gary W; Cheng, Changfu; Wells, David S; Graham, Philip B; Zelle, Robert; Tung, Roger

    2015-07-01

    Selective deuterium substitution as a means of ameliorating clinically relevant pharmacokinetic drug interactions is demonstrated in this study. Carbon-deuterium bonds are more stable than corresponding carbon-hydrogen bonds. Using a precision deuteration platform, the two hydrogen atoms at the methylenedioxy carbon of paroxetine were substituted with deuterium. The new chemical entity, CTP-347 [(3S,4R)-3-((2,2-dideuterobenzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidine], demonstrated similar selectivity for the serotonin receptor, as well as similar neurotransmitter uptake inhibition in an in vitro rat synaptosome model, as unmodified paroxetine. However, human liver microsomes cleared CTP-347 faster than paroxetine as a result of decreased inactivation of CYP2D6. In phase 1 studies, CTP-347 was metabolized more rapidly in humans and exhibited a lower pharmacokinetic accumulation index than paroxetine. These alterations in the metabolism profile resulted in significantly reduced drug-drug interactions between CTP-347 and two other CYP2D6-metabolized drugs: tamoxifen (in vitro) and dextromethorphan (in humans). Our results show that precision deuteration can improve the metabolism profiles of existing pharmacotherapies without affecting their intrinsic pharmacologies.

  19. Genetic polymorphisms of CYP2D6, CYP1A1, GSTM1 and p53 genes in a unique Siberian population of Tundra Nentsi.

    PubMed

    Duzhak, T; Mitrofanov, D; Ostashevskii, V; Gutkina, N; Chasovnikova, O; Posukh, O; Osipova, L; Lyakhovich, V V

    2000-08-01

    The purpose of this study was to establish the frequencies of CYP2D6, CYP1A1, GSTM1 and p53 polymorphic genotypes in Tundra Nentsi, which comprises the small group of indigenous people belonging to Northern Mongoloids and Caucasians of Western Siberia. A total number of 102 Tundra Nentsi individuals and 96 Caucasians of Western Siberia were genotyped by means of polymerase chain reaction-based assays. Mutated alleles comprising CYP2D6*4, CYP1A1Val, GSTM1*0 and p53Pro were analysed along with the wild-type alleles. The results showed the intermedial position of CYP2D6*4 allele frequency in Tundra Nentsi, compared to Caucasians and Orientals (0.07 versus 0.2, P = 0.0003; 0.07 versus 0.003, P = 1 x 10(-6), respectively). Thus, our data indicate that the intermedial position of Tundra Nentsi between Orientals and Caucasians most likely shows the Caucasian ancestral origin of CYP2D6*4 allele. Comparative analysis of p53Pro allele frequency showed the pronounced ethnic differences with geographic gradient. Though the frequency of p53Pro allele ranged from 0.17 in Tundra Nentsi up to 0.3 in Caucasians of Western Siberia (P = 0.002), which is in agreement with the previously reported radial distribution of the known genetic markers. No differences were found in the CYP1A1Val allele distribution among Caucasians of Western Siberia and Caucasoid populations presented in other studies, whereas the frequency of Val allele in Nentsi was 1.5-fold higher (P = 0.076) compared to the Japanese group. It was found that the frequency of GSTM1 null genotype in Tundra Nentsi was only 39.8%. The frequency of GSTM1 null genotype in females was higher than in males (0.27 and 0.50, respectively) but that difference was not statistically significant. Comparative analyses of the distribution of putative markers towards cancer susceptibility, CYP1A1Val, GSTM1*0 and p53Pro alleles, have shown that the healthy Tundra Nentsi population (Northern Mongoloids) have a low number of p53Pro alleles and

  20. Complex Disease–, Gene–, and Drug–Drug Interactions: Impacts of Renal Function, CYP2D6 Phenotype, and OCT2 Activity on Veliparib Pharmacokinetics

    PubMed Central

    Li, Jing; Kim, Seongho; Sha, Xianyi; Wiegand, Richard; Wu, Jianmei; LoRusso, Patricia

    2014-01-01

    Purpose Veliparib, a poly (ADP-ribose) polymerase (PARP) inhibitor, undergoes renal excretion and liver metabolism. This study quantitatively assessed the interactions of veliparib with metabolizing enzyme (CYP2D6) and transporter (OCT2) in disease settings (renal impairment). Experimental Design Veliparib in vitro metabolism was examined in human liver microsomes and recombinant enzymes carrying wild-type CYP2D6 or functional defect variants (CYP2D6*10 and *4). Plasma pharmacokinetics were evaluated in 27 patients with cancer. A parent–metabolite joint population model was developed to characterize veliparib and metabolite (M8) pharmacokinetics and to identify patient factors influencing veliparib disposition. A physiologically based pharmacokinetic model integrated with a mechanistic kidney module was developed to quantitatively predict the individual and combined effects of renal function, CYP2D6 phenotype, and OCT2 activity on veliparib pharmacokinetics. Results In vitro intrinsic clearance of CYP2D6.1 and CYP2D6.10 for veliparib metabolism were 0.055 and 0.017 μL/min/pmol CYP, respectively. Population mean values for veliparib oral clearance and M8 clearance were 13.3 and 8.6 L/h, respectively. Creatinine clearance was identified as the significant covariate on veliparib oral clearance. Moderate renal impairment, CYP2D6 poor metabolizer, and co-administration of OCT2 inhibitor (cimetidine) increased veliparib steady-state exposure by 80%, 20%, and 30%, respectively. These factors collectively led to >2-fold increase in veliparib exposure. Conclusions Renal function (creatinine clearance) is a significant predictor for veliparib exposure in patients with cancer. Although a single factor (i.e., renal impairment, CYP2D6 deficiency, and reduced OCT2 activity) shows a moderate impact, they collectively could result in a significant and potentially clinically relevant increase in veliparib exposure. PMID:24947923

  1. Physiologically Based Pharmacokinetic Predictions of Tramadol Exposure Throughout Pediatric Life: an Analysis of the Different Clearance Contributors with Emphasis on CYP2D6 Maturation.

    PubMed

    T'jollyn, Huybrecht; Snoeys, Jan; Vermeulen, An; Michelet, Robin; Cuyckens, Filip; Mannens, Geert; Van Peer, Achiel; Annaert, Pieter; Allegaert, Karel; Van Bocxlaer, Jan; Boussery, Koen

    2015-11-01

    This paper focuses on the retrospective evaluation of physiologically based pharmacokinetic (PBPK) techniques used to mechanistically predict clearance throughout pediatric life. An intravenous tramadol retrograde PBPK model was set up in Simcyp® using adult clearance values, qualified for CYP2D6, CYP3A4, CYP2B6, and renal contributions. Subsequently, the model was evaluated for mechanistic prediction of total, CYP2D6-related, and renal clearance predictions in very early life. In two in vitro pediatric human liver microsomal (HLM) batches (1 and 3 months), O-desmethyltramadol and N-desmethyltramadol formation rates were compared with CYP2D6 and CYP3A4 activity, respectively. O-desmethyltramadol formation was mediated only by CYP2D6, while N-desmethyltramadol was mediated in part by CYP3A4. Additionally, the clearance maturation of the PBPK model predictions was compared to two in vivo maturation models (Hill and exponential) based on plasma concentration data, and to clearance estimations from a WinNonlin® fit of plasma concentration and urinary excretion data. Maturation of renal and CYP2D6 clearance is captured well in the PBPK model predictions, but total tramadol clearance is underpredicted. The most pronounced underprediction of total and CYP2D6-mediated clearance was observed in the age range of 2-13 years. In conclusion, the PBPK technique showed to be a powerful mechanistic tool capable of predicting maturation of CYP2D6 and renal tramadol clearance in early infancy, although some underprediction occurs between 2 and 13 years for total and CYP2D6-mediated tramadol clearance.

  2. Risk of renal cell carcinoma and polymorphism in phase I xenobiotic metabolizing CYP1A1 and CYP2D6 enzymes.

    PubMed

    Ahmad, Shiekh Tanveer; Arjumand, Wani; Seth, Amlesh; Nafees, Sana; Rashid, Summya; Ali, Nemat; Hamiza, Oday O; Sultana, Sarwat

    2013-10-01

    The progressive increase in sporadic renal cell carcinoma (RCC) observed in industrialized countries supports the opinion that certain carcinogens present in the environment (tobacco smoke, drugs, pollutants, and dietary constituents) may affect the occurrence and progression of this disease in developing countries like India. The polymorphism of the enzymes involved in metabolism of such environmental factors may, therefore, confer variable propensity to RCC. The possible association between RCC and a polymorphism of the CYP1A1 and CYP2D6 genes specific to the Indian population was examined using peripheral blood DNA from 196 RCC cases and 250 population controls with detailed data of clinicopathologic characteristics for the disease. The CYP1A1 (val) "variant" genotype, which contains at least 1 copy of the CYP1A1 variant alleles, was found to be associated with a 2.03-fold [GG ver. AA/AG, unadjusted OR = 2.03; 95%CI = 1.233-3.342; P = 0.005] increase in the risk of RCC. There was also a significant association (p(trend) = 0.034) between higher frequency of RCC subjects containing at least of copy of the CYP1A1 (val) "variant" genotype with III or IV Fuhrman's grade. Whereas, the CYP2D6 polymorphism did not show any association with RCC risk [TT ver. CT/CC, unadjusted OR = 95%CI = 1.233-3.342; P = 0.005]. There was a significant association (p(trend) = 0.001) between the poor metabolizer CYP2D6 (TT) and progression towards higher pathological stage of RCC. Our data demonstrate for the first time a significant association between pharmacogenetic polymorphisms of CYP1A1 and risk of RCC development in the Indian population. The findings suggest that inter-individual variation in the phase I metabolic enzymes involved in the fictionalization and detoxification of specific xenobiotics is an important susceptibility factor for development and progression of RCC in Indians.

  3. Genetic polymorphisms of CYP2D6*10 and the effectiveness of combined tamoxifen citrate and testosterone undecanoate treatment in infertile men with idiopathic oligozoospermia.

    PubMed

    Tang, Kai-fa; Zhao, Yi-li; Ding, Shang-shu; Wu, Qi-fei; Wang, Xing-yang; Shi, Jia-qi; Sun, Fa; Xing, Jun-ping

    2015-03-01

    Tamoxifen citrate, as the first line of treatment for infertile men with idiopathic oligozoospermia, was proposed by the World Health Organization (WHO), and testosterone undecanoate has shown benefits in semen values. Our objective was to assess the effectiveness of treatment with tamoxifen citrate and testosterone undecanoate in infertile men with idiopathic oligozoospermia, and whether the results would be affected by polymorphisms of CYP2D6*10. A total of 230 infertile men and 147 controls were included in the study. Patients were treated with tamoxifen citrate and testosterone undecanoate. Sex hormone, sperm parameters, and incidence of spontaneous pregnancy were detected. There were no significant differences between the control and patient groups with respect to CYP2D6*10 genotype frequencies (P>0.05). The follicle-stimulation hormone (FSH), luteinizing hormone (LH), and testosterone (T) levels were raised, and sperm concentration and motility were increased at 3 months and became significant at 6 months, and they were higher in the wild-type allele (C/C) than in the heterozygous variant allele (C/T) or homozygous variant allele (T/T) subgroups (P<0.05). In addition, the percentage of normal morphology was raised at 6 months, and represented the highest percentage in the C/C subgroup (P<0.05). The incidence of spontaneous pregnancy in the C/C subgroup was higher than that in the C/T or T/T subgroups (P<0.01). This study showed that the CYP2D6*10 variant genotype demonstrated worse clinical effects in infertile men with idiopathic oligozoospermia.

  4. Effect of Curcuma longa on CYP2D6- and CYP3A4-mediated metabolism of dextromethorphan in human liver microsomes and healthy human subjects.

    PubMed

    Al-Jenoobi, Fahad Ibrahim; Al-Thukair, Areej A; Alam, Mohd Aftab; Abbas, Fawkeya A; Al-Mohizea, Abdullah M; Alkharfy, Khalid M; Al-Suwayeh, Saleh A

    2015-03-01

    Effect of Curcuma longa rhizome powder and its ethanolic extract on CYP2D6 and CYP3A4 metabolic activity was investigated in vitro using human liver microsomes and clinically in healthy human subjects. Dextromethorphan (DEX) was used as common probe for CYP2D6 and CYP3A4 enzymes. Metabolic activity of CYP2D6 and CYP3A4 was evaluated through in vitro study; where microsomes were incubated with NADPH in presence and absence of Curcuma extract. In clinical study phase-I, six healthy human subjects received a single dose (30 mg) of DEX syrup, and in phase-II DEX syrup was administered with Curcuma powder. The enzyme CYP2D6 and CYP3A4 mediated O- and N-demethylation of dextromethorphan into dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. Curcuma extract significantly inhibited the formation of DOR and 3-MM, in a dose-dependent and linear fashion. The 100 μg/ml dose of curcuma extract produced highest inhibition, which was about 70 % for DOR and 80 % for 3-MM. Curcuma significantly increases the urine metabolic ratio of DEX/DOR but the change in DEX/3-MM ratio was statistically insignificant. Present findings suggested that curcuma significantly inhibits the activity of CYP2D6 in in vitro as well as in vivo; which indicates that curcuma has potential to interact with CYP2D6 substrates.

  5. Systematic and quantitative assessment of the effect of chronic kidney disease on CYP2D6 and CYP3A4/5

    PubMed Central

    Yoshida, K; Sun, B; Zhang, L; Zhao, P; Abernethy, DR; Nolin, TD; Rostami‐Hodjegan, A; Zineh, I

    2016-01-01

    Recent reviews suggest that chronic kidney disease (CKD) can affect the pharmacokinetics of nonrenally eliminated drugs, but the impact of CKD on individual elimination pathways has not been systematically evaluated. In this study we developed a comprehensive dataset of the effect of CKD on the pharmacokinetics of CYP2D6‐ and CYP3A4/5‐metabolized drugs. Drugs for evaluation were selected based on clinical drug–drug interaction (CYP3A4/5 and CYP2D6) and pharmacogenetic (CYP2D6) studies. Information from dedicated CKD studies was available for 13 and 18 of the CYP2D6 and CYP3A4/5 model drugs, respectively. Analysis of these data suggested that CYP2D6‐mediated clearance is generally decreased in parallel with the severity of CKD. There was no apparent relationship between the severity of CKD and CYP3A4/5‐mediated clearance. The observed elimination‐route dependency in CKD effects between CYP2D6 and CYP3A4/5 may inform the need to conduct clinical CKD studies with nonrenally eliminated drugs for optimal use of drugs in patients with CKD. PMID:26800425

  6. Influence of Cyp2D6 genetic polymorphism on ratios of steady-state serum concentration to dose of the neuroleptic zuclopenthixol.

    PubMed

    Linnet, K; Wiborg, O

    1996-12-01

    One hundred and nineteen psychiatric patients undergoing therapeutic drug monitoring (TDM) of the neuroleptic zuclopenthixol were genotyped with regard to Cyp2D6. Twelve patients (10.1%) were of the poor metabolizer genotype. The extensive metabolizers comprised 58 patients receiving no potentially interacting drugs and 38 patients concomitantly treated with other drugs competing for metabolism by Cyp2D6. Information on the rest (11 patients) was missing. The median steady-state serum concentration-to-dose ratio (C/D) of the PM group (2.00 nmol/L/mg) was close to that of the EM group receiving potentially interacting drugs (1.80) and approximately 60% higher than that of the remaining EM group (1.25) (p < 0.01). When judging the clinical importance of this difference, the total group variability in C/D of nearly 10-fold should be kept in mind (0.5-4.2 nmol/L/mg). In terms of serum concentrations not corrected for dose, the three groups had about similar levels, with median values from 16 to 21 nmol/L. We consider that TDM adequately takes into account dose adjustments for both EM and PM subjects in the context of this neuroleptic.

  7. Pharmacophore, QSAR, and binding mode studies of substrates of human cytochrome P450 2D6 (CYP2D6) using molecular docking and virtual mutations and an application to chinese herbal medicine screening.

    PubMed

    Mo, Sui-Lin; Liu, Wei-Feng; Li, Chun-Guang; Zhou, Zhi-Wei; Luo, Hai-Bin; Chew, Helen; Liang, Jun; Zhou, Shu-Feng

    2012-07-01

    The highly polymorphic human cytochrome P450 2D6 (CYP2D6) metabolizes about 25% of currently used drugs. In this study, we have explored the interaction of a large number of substrates (n = 120) with wild-type and mutated CYP2D6 by molecular docking using the CDOCKER module. Before we conducted the molecular docking and virtual mutations, the pharmacophore and QSAR models of CYP2D6 substrates were developed and validated. Finally, we explored the interaction of a traditional Chinese herbal formula, Fangjifuling decoction, with CYP2D6 by virtual screening. The optimized pharmacophore model derived from 20 substrates of CYP2D6 contained two hydrophobic features and one hydrogen bond acceptor feature, giving a relevance ratio of 76% when a validation set of substrates were tested. However, our QSAR models gave poor prediction of the binding affinity of substrates. Our docking study demonstrated that 117 out of 120 substrates could be docked into the active site of CYP2D6. Forty one out of 117 substrates (35.04%) formed hydrogen bonds with various active site residues of CYP2D6 and 53 (45.30%) substrates formed a strong π-π interaction with Phe120 (53/54), with only carvedilol showing π-π interaction with Phe483. The active site residues involving hydrogen bond formation with substrates included Leu213, Lys214, Glu216, Ser217, Gln244, Asp301, Ser304, Ala305, Phe483, and Phe484. Furthermore, the CDOCKER algorithm was further applied to study the impact of mutations of 28 active site residues (mostly non-conserved) of CYP2D6 on substrate binding modes using five probe substrates including bufuralol, debrisoquine, dextromethorphan, sparteine, and tramadol. All mutations of the residues examined altered the hydrogen bond formation and/or aromatic interactions, depending on the probe used in molecular docking. Apparent changes of the binding modes have been observed with the Glu216Asp and Asp301Glu mutants. Overall, 60 compounds out of 130 from Fangjifuling decoction

  8. Pharmacokinetic interactions between monoamine oxidase A inhibitor harmaline and 5-methoxy-N,N-dimethyltryptamine, and the impact of CYP2D6 status.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Mager, Donald E; Yu, Ai-Ming

    2013-05-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT or street name "5-MEO") is a newer designer drug belonging to a group of naturally occurring indolealkylamines. Our recent study has demonstrated that coadministration of monoamine oxidase A (MAO-A) inhibitor harmaline (5 mg/kg) increases systemic exposure to 5-MeO-DMT (2 mg/kg) and active metabolite bufotenine. This study is aimed at delineating harmaline and 5-MeO-DMT pharmacokinetic (PK) interactions at multiple dose levels, as well as the impact of CYP2D6 that affects harmaline PK and determines 5-MeO-DMT O-demethylation to produce bufotenine. Our data revealed that inhibition of MAO-A-mediated metabolic elimination by harmaline (2, 5, and 15 mg/kg) led to a sharp increase in systemic and cerebral exposure to 5-MeO-DMT (2 and 10 mg/kg) at all dose combinations. A more pronounced effect on 5-MeO-DMT PK was associated with greater exposure to harmaline in wild-type mice than CYP2D6-humanized (Tg-CYP2D6) mice. Harmaline (5 mg/kg) also increased blood and brain bufotenine concentrations that were generally higher in Tg-CYP2D6 mice. Surprisingly, greater harmaline dose (15 mg/kg) reduced bufotenine levels. The in vivo inhibitory effect of harmaline on CYP2D6-catalyzed bufotenine formation was confirmed by in vitro study using purified CYP2D6. Given these findings, a unified PK model including the inhibition of MAO-A- and CYP2D6-catalyzed 5-MeO-DMT metabolism by harmaline was developed to describe blood harmaline, 5-MeO-DMT, and bufotenine PK profiles in both wild-type and Tg-CYP2D6 mouse models. This PK model may be further employed to predict harmaline and 5-MeO-DMT PK interactions at various doses, define the impact of CYP2D6 status, and drive harmaline-5-MeO-DMT pharmacodynamics.

  9. CYP2D6 function moderates the pharmacokinetics and pharmacodynamics of 3,4-methylene-dioxymethamphetamine in a controlled study in healthy individuals

    PubMed Central

    Schmid, Yasmin; Vizeli, Patrick; Hysek, Cédric M.; Prestin, Katharina; Meyer zu Schwabedissen, Henriette E.

    2016-01-01

    The role of genetic polymorphisms in cytochrome (CYP) 2D6 involved in the metabolism of 3,4-methylene-dioxymethamphetamine (MDMA, ecstasy) is unclear. Effects of genetic variants in CYP2D6 on the pharmacokinetics and pharmacodynamic effects of MDMA were characterized in 139 healthy individuals (70 men, 69 women) in a pooled analysis of eight double-blind, placebo-controlled crossover studies. In CYP2D6 poor metabolizers, the maximum concentrations (Cmax) of MDMA and its active metabolite 3,4-methylene-dioxyamphetamine were +15 and +50% higher, respectively, compared with extensive metabolizers and the Cmax of the inactive metabolite 4-hydroxy-3-methoxymethamphetamine was 50–70% lower. Blood pressure and subjective drug effects increased more rapidly after MDMA administration in poor metabolizers than in extensive metabolizers. In conclusion, the disposition of MDMA and its effects in humans are altered by polymorphic CYP2D6 activity, but the effects are small because of the autoinhibition of CYP2D6. PMID:27253829

  10. CYP2D6 predicted metabolizer status and safety in adult patients with attention-deficit hyperactivity disorder participating in a large placebo-controlled atomoxetine maintenance of response clinical trial.

    PubMed

    Fijal, Bonnie A; Guo, Yingying; Li, Si G; Ahl, Jonna; Goto, Taro; Tanaka, Yoko; Nisenbaum, Laura K; Upadhyaya, Himanshu P

    2015-10-01

    Atomoxetine, which is indicated for treatment of attention-deficit hyperactivity disorder (ADHD), is predominantly metabolized by genetically polymorphic cytochrome P450 2D6 (CYP2D6). Based on identified CYP2D6 genotypes, individuals can be categorized into 4 phenotypic metabolizer groups as ultrarapid, extensive, intermediate, and poor. Previous studies have focused on observed differences between poor and extensive metabolizers, but it is not well understood whether the safety profile of intermediate metabolizers differs from that of ultrarapid and extensive metabolizers. This study compared safety and tolerability among the different CYP2D6 metabolizer groups in the 12-week open-label phase of an atomoxetine study in adult patients with ADHD. Genotyping identified 1039 patients as extensive/ultrarapid metabolizers, 780 patients as intermediate metabolizers, and 117 patients as poor metabolizers. Common (≥5% frequency) treatment-emergent adverse events did not significantly differ between extensive/ultrarapid and intermediate metabolizers (odds ratios were <2.0 or >0.5). Poor metabolizers had higher frequencies of dry mouth, erectile dysfunction, hyperhidrosis, insomnia, and urinary retention compared with the other metabolizer groups. There were no significant differences between extensive/ultrarapid and intermediate metabolizers in changes from baseline in vital signs. These results suggest that data from CYP2D6 intermediate and extensive/ultrarapid metabolizers can be combined when considering safety analyses related to atomoxetine.

  11. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides

    SciTech Connect

    Singh, Satyender; Kumar, Vivek; Vashisht, Kapil; Singh, Priyanka; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Rai, Arvind

    2011-11-15

    Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activity toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p < 0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37 {+-} 2.15 vs. 6.24 {+-} 1.37 tail% DNA, p < 0.001). Further, the workers with CYP2D6*3 PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p < 0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. -- Highlights: Black-Right-Pointing-Pointer Role of CYP1A1, CYP3A5, CYP2C, CYP2D6 and PON1 genotypes on DNA damage. Black-Right-Pointing-Pointer Workers exposed to some OPs demonstrated increased DNA damage. Black-Right-Pointing-Pointer CYP2D6 *3 PM and PON1 (Q192R and L55M) genotypes are associated with DNA damage. Black-Right-Pointing-Pointer Concomitant presence of certain CYP2D6 and PON1 genotypes can increase DNA damage.

  12. Guanfu base A, an antiarrhythmic alkaloid of Aconitum coreanum, Is a CYP2D6 inhibitor of human, monkey, and dog isoforms.

    PubMed

    Sun, Jianguo; Peng, Ying; Wu, Hui; Zhang, Xueyuan; Zhong, Yunxi; Xiao, Yanan; Zhang, Fengyi; Qi, Huanhuan; Shang, Lili; Zhu, Jianping; Sun, Yue; Liu, Ke; Liu, Jinghan; A, Jiye; Ho, Rodney J Y; Wang, Guangji

    2015-05-01

    Guanfu base A (GFA) is a novel heterocyclic antiarrhythmic drug isolated from Aconitum coreanum (Lèvl.) rapaics and is currently in a phase IV clinical trial in China. However, no study has investigated the influence of GFA on cytochrome P450 (P450) drug metabolism. We characterized the potency and specificity of GFA CYP2D inhibition based on dextromethorphan O-demethylation, a CYP2D6 probe substrate of activity in human, mouse, rat, dog, and monkey liver microsomes. In addition, (+)-bufuralol 1'-hydroxylation was used as a CYP2D6 probe for the recombinant form (rCYP2D6), 2D1 (rCYP2D1), and 2D2 (rCYP2D2) activities. Results show that GFA is a potent noncompetitive inhibitor of CYP2D6, with inhibition constant Ki = 1.20 ± 0.33 μM in human liver microsomes (HLMs) and Ki = 0.37 ± 0.16 μM for the human recombinant form (rCYP2D6). GFA is also a potent competitive inhibitor of CYP2D in monkey (Ki = 0.38 ± 0.12 μM) and dog (Ki = 2.4 ± 1.3 μM) microsomes. However, GFA has no inhibitory activity on mouse or rat CYP2Ds. GFA did not exhibit any inhibition activity on human recombinant CYP1A2, 2A6, 2C8, 2C19, 3A4, or 3A5, but showed slight inhibition of 2B6 and 2E1. Preincubation of HLMs and rCYP2D6 resulted in the inactivation of the enzyme, which was attenuated by GFA or quinidine. Beagle dogs treated intravenously with dextromethorphan (2 mg/ml) after pretreatment with GFA injection showed reduced CYP2D metabolic activity, with the Cmax of dextrorphan being one-third that of the saline-treated group and area under the plasma concentration-time curve half that of the saline-treated group. This study suggests that GFA is a specific CYP2D6 inhibitor that might play a role in CYP2D6 medicated drug-drug interaction.

  13. CYP2D6 gene polymorphisms in Brazilian patients with breast cancer treated with adjuvant tamoxifen and its association with disease recurrence

    PubMed Central

    De Ameida Melo, Mariella; De Vasconcelos-Valença, Rodrigo José; Neto, Fidelis Manes; Borges, Rafael Soares; Costa-Silva, Danylo Rafhael; Da Conceição Barros-Oliveira, Maria; Borges, Umbelina Soares; Alencar, Airlane Pereira; Silva, Vladimir Costa; Da Silva, Benedito Borges

    2016-01-01

    At present, there is controversy regarding the efficacy of tamoxifen in breast cancer patients who are carriers of cytochrome P450 2D6 (CYP2D6) gene polymorphisms, in terms of recurrence and overall survival. Thus, the aim of the present study was to investigate the association of the CYP2D6 *4, *10 and *17 gene polymorphisms with breast cancer recurrence in a Brazilian population. The cohort comprised 40 receptor-positive breast cancer patients without recurrence and 40 with distant recurrence. A 3-ml sample of peripheral blood was collected from each patient to determine the presence of the *4, *10 and *17 single nucleotide polymorphisms of the CYP2D6 gene by quantitative polymerase chain reaction analysis. There was no statistically significant difference between the two groups regarding the polymorphism frequency (P=0.246). The results revealed that intermediate metabolizers occurred in 5% of patients without recurrence and in 15% of those with distant recurrence. Poor metabolizers occurred in only 1 patient (2.5%) per group, and there was no significant difference between the groups (P=0.789). The present study concluded that the CYP2D6 gene polymorphism in women with hormone-sensitive breast cancer treated with tamoxifen was not associated with disease recurrence. PMID:27882219

  14. An unequal cross-over event within the CYP2D gene cluster generates a chimeric CYP2D7/CYP2D6 gene which is associated with the poor metabolizer phenotype.

    PubMed Central

    Panserat, S; Mura, C; Gérard, N; Vincent-Viry, M; Galteau, M M; Jacoz-Aigrain, E; Krishnamoorthy, R

    1995-01-01

    1. The study of the CYP2D genotype and phenotype of a Caucasian family revealed that a XbaI-9 kb allele was associated with the poor metabolizer phenotype. 2. A Polymerase Chain Reaction (PCR)-based assay showed that the previously described mutations D6A and D6B are not associated with the XbaI-9 kb allele. 3. To explore the molecular basis of the poor metabolizer phenotype associated with the XbaI-9 kb allele, complete sequencing of the nine exons and intron-exon boundaries of the CYP2D6 gene was undertaken after amplification by PCR. 4. All the exons were successfully amplified using CYP2D6 gene-specific primers except exon 1 which required a combination of CYP2D7 gene-specific 5' primer and a CYP2D6 gene-specific 3' primer. 5. Sequence data derived from this amplified product revealed that the XbaI-9 kb allele corresponds to a novel rearrangement of the locus. This involved a deletion of an approximately 20 kilobase (kb) DNA segment generating a hybrid 5' CYP2D7/CYP2D6 3' gene. 6. The chimeric gene is non-functional presumably due to an insertion in exon 1 (characteristic of the exon 1 of the CYP2D7 gene) which causes a shift in the reading frame with premature termination of translation. Images Figure 1 Figure 2 Figure 4 PMID:8554938

  15. Influence of CYP2D6 and CYP2C19 gene variants on antidepressant response in obsessive-compulsive disorder.

    PubMed

    Brandl, E J; Tiwari, A K; Zhou, X; Deluce, J; Kennedy, J L; Müller, D J; Richter, M A

    2014-04-01

    Numerous studies have reported on pharmacogenetics of antidepressant response in depression. In contrast, little is known of response predictors in obsessive-compulsive disorder (OCD), a disorder with among the lowest proportion of responders to medication (40-60%). Our study is the largest investigation to date (N=184) of treatment response and side effects to antidepressants in OCD based on metabolizer status for CYP2D6 and CYP2C19. We observed significantly more failed medication trials in CYP2D6 non-extensive compared with extensive metabolizers (P=0.007). CYP2D6 metabolizer status was associated with side effects to venlafaxine (P=0.022). There were nonsignificant trends for association of CYP2D6 metabolizer status with response to fluoxetine (P=0.056) and of CYP2C19 metabolizer status with response to sertraline (P=0.064). Our study is the first to indicate that CYP genes may have a role in antidepressant response in OCD. More research is required for a future clinical application of genetic testing, which could lead to improved treatment outcomes.

  16. Effect of the potent CYP2D6 inhibitor sarpogrelate on the pharmacokinetics and pharmacodynamics of metoprolol in healthy male Korean volunteers.

    PubMed

    Cho, Doo-Yeoun; Bae, Soo Hyeon; Lee, Joeng Kee; Park, Jung Bae; Kim, Yang-Weon; Lee, Sukhyang; Oh, Euichaul; Kim, Bom-Taeck; Bae, Soo Kyung

    2015-03-01

    1. Recently, we demonstrated that sarpogrelate is a potent and selective CYP2D6 inhibitor in vitro. Here, we evaluated the effect of sarpogrelate on the pharmacokinetics and pharmacodynamics of metoprolol in healthy subjects. 2. Nine healthy male subjects genotyped for CYP2D6*1/*1 or *1/*2 were included in an open-label, randomized, three treatment-period and crossover study. A single oral dose of metoprolol (100 mg) was administered with water (treatment A) and sarpogrelate (100 mg bid.; a total dose of 200 mg and treatment B), or after pretreatment of sarpogrelate for three days (100 mg tid.; treatment C). Plasma levels of metoprolol and α-hydroxymetoprolol were determined using a validated LC-MS/MS method. Changes in heart rate and blood pressure were monitored as pharmacodynamic responses to metoprolol. 3. Metoprolol was well tolerated in the three treatment groups. In treatment B and C groups, the AUCt of metoprolol increased by 53% (GMR, 1.53; 90% CI, 1.17-2.31) and by 51% (1.51; 1.17-2.31), respectively. Similar patterns were observed for the increase in Cmax of metoprolol by sarpogrelate. However, the pharmacodynamics of metoprolol did not differ significantly among the three treatment groups. 4. Greater systemic exposure to metoprolol after co-administration or pretreatment with sarpogrelate did not result in clinically relevant effects. Co-administration of both agents is well tolerated and can be employed without the need for dose adjustments.

  17. Investigation of CYP3A4 and CYP2D6 Interactions of Withania somnifera and Centella asiatica in Human Liver Microsomes.

    PubMed

    Savai, Jay; Varghese, Alice; Pandita, Nancy; Chintamaneni, Meena

    2015-05-01

    Withania somnifera is commonly used as a rejuvenator, whereas Centella asiatica is well known for its anxiolytic and nootropic effects. The present study aims at investigating the effect of crude extracts and principal phytoconstituents of both the medicinal plants with CYP3A4 and CYP2D6 enzyme activity in human liver microsomes (HLM). Phytoconstituents were quantified in the crude extracts of both the medicinal plants using reverse phase HPLC. Crude extracts and phytoconstituents of W. somnifera showed no significant interaction with both CYP3A4 and CYP2D6 enzymes in HLM. Of the crude extracts of C. asiatica screened in vitro, methanolic extract showed potent noncompetitive inhibition of only CYP3A4 enzyme (Ki-64.36 ± 1.82 µg/mL), whereas ethanol solution extract showed potent noncompetitive inhibition of only CYP2D6 enzyme (Ki-36.3 ± 0.44 µg/mL). The flavonoids, quercetin, and kaempferol showed potent (IC50 values less than 100 μM) inhibition of CYP3A4 activity, whereas quercetin alone showed potent inhibition of CYP2D6 activity in HLM. Because methanolic extract of C. asiatica showed a relatively high percentage content of quercetin and kaempferol than ethanol solution extract, the inhibitory effect of methanolic extract on CYP3A4 enzyme activity could be attributed to the flavonoids. Thus, co-administration of the alcoholic extracts of C. asiatica with drugs that are substrates of CYP3A4 and CYP2D6 enzymes may lead to undesirable herb-drug interactions in humans.

  18. A service improvement project to review prescribing information provided by general practitioners for new referrals to a UK National Health Service hospital pain clinic: potential implications of CYP2D6 enzyme inhibition

    PubMed Central

    Radford, Helen; Fitzgerald, Pauline; Martin, Stephen; Johnson, Mark I

    2016-01-01

    Introduction: Chronic pain is often managed using co-prescription of analgesics and adjuvants, with concomitant medication prescribed for comorbidities. Patients may have suboptimal response to some analgesics or be at risk of drug interactions or adverse drug reactions (ADRs) due to polypharmacy affecting CYP2D6 enzyme activity. The aim of the service improvement project was to determine the proportion of patients referred to a specialist pain service in the UK National Health Service (NHS) by general practitioners (GPs) who may be at risk of suboptimal analgesic response or ADRs due to CYP2D6 inhibition through polypharmacy. This was achieved by reviewing clinical prescribing information provided by GPs at time of referral. It was hoped that the findings could be used to aid clinical and prescribing decisions without conducting CYP2D6 genotyping or phenotyping. Methods: A review of letters from 250 patients referred to an NHS hospital pain service from GPs over a 3-month period was undertaken. Information about current and concomitant medications was analysed to identify the potential for CYP2D6 inhibition and adverse events. Results: Letters failed to provide information about current pain medication for 20 (8%) patients or non-pain concomitant medication for 54 (21.6%) patients. Of 176 patients, 52 (29.5%) patients with information about non-pain concomitant medication had been prescribed at least one known CYP2D6 inhibitor. A total of 35 (19.9%) patients were identified as being at risk of an adverse drug reaction and 33 (18.75%) patients at risk of suboptimal analgesic response due to co-administration of CYP2D6 inhibitors. Conclusion: The review revealed the need for improved detail in GP referral letters used to transfer care to UK NHS hospital pain clinics. There is a need to consider an individual’s CYP2D6 phenotype when prescribing analgesic prodrugs to manage persistent pain. Caution is needed when patients are co-prescribed codeine or tramadol with

  19. Impact of fraction unbound, CYP3A, and CYP2D6 in vivo activities, and other potential covariates to the clearance of tramadol enantiomers in patients with neuropathic pain.

    PubMed

    de Moraes, Natália V; Lauretti, Gabriela R; Coelho, Eduardo B; Godoy, Ana Leonor P C; Neves, Daniel V; Lanchote, Vera L

    2016-04-01

    The pharmacokinetics of tramadol is characterized by a large interindividual variability, which is partially attributed to polymorphic CYP2D6 metabolism. The contribution of CYP3A, CYP2B6, fraction unbound, and other potential covariates remains unknown. This study aimed to investigate the contribution of in vivo activities of cytochrome P450 (CYP) 2D6 and 3A as well as other potential covariates (CYP2B6 genotype to the SNP g.15631G>T, fraction unbound, age, body weight, creatinine clearance) to the enantioselective pharmacokinetics of tramadol. Thirty patients with neuropathic pain and phenotyped as CYP2D6 extensive metabolizers were treated with a single oral dose of 100 mg tramadol. Multiple linear regressions were performed to determine the contribution of CYP activities and other potential covariates to the clearance of tramadol enantiomers. The apparent total clearances were 44.9 (19.1-102-2) L/h and 55.2 (14.8-126.0) L/h for (+)- and (-)-tramadol, respectively [data presented as median (minimum-maximum)]. Between 79 and 83% of the overall variation in apparent clearance of tramadol enantiomers was explained by fraction unbound, CYP2D6, and CYP3A in vivo activities and body weight. Fraction unbound explained 47 and 41% of the variation in clearance of (+)-tramadol and (-)-tramadol, respectively. Individually, CYP2D6 and CYP3A activities were shown to have moderate contribution on clearance of tramadol enantiomers (11-16% and 11-18%, respectively). In conclusion, factors affecting fraction unbound of drugs (such as hyperglycemia or co-administration of drugs highly bound to plasma proteins) should be monitored, because this parameter dominates the elimination of tramadol enantiomers.

  20. A Physiologically Based Pharmacokinetic Model to Predict Disposition of CYP2D6 and CYP1A2 Metabolized Drugs in Pregnant Women

    PubMed Central

    Ke, Alice Ban; Nallani, Srikanth C.; Zhao, Ping; Rostami-Hodjegan, Amin; Isoherranen, Nina

    2013-01-01

    Conducting pharmacokinetic (PK) studies in pregnant women is challenging. Therefore, we asked if a physiologically based pharmacokinetic (PBPK) model could be used to evaluate different dosing regimens for pregnant women. We refined and verified our previously published pregnancy PBPK model by incorporating cytochrome P450 CYP1A2 suppression (based on caffeine PK) and CYP2D6 induction (based on metoprolol PK) into the model. This model accounts for gestational age–dependent changes in maternal physiology and hepatic CYP3A activity. For verification, the disposition of CYP1A2–metabolized drug theophylline (THEO) and CYP2D6–metabolized drugs paroxetine (PAR), dextromethorphan (DEX), and clonidine (CLO) during pregnancy was predicted. Our PBPK model successfully predicted THEO disposition during the third trimester (T3). Predicted mean postpartum to third trimester (PP:T3) ratios of THEO area under the curve (AUC), maximum plasma concentration, and minimum plasma concentration were 0.76, 0.95, and 0.66 versus observed values 0.75, 0.89, and 0.72, respectively. The predicted mean PAR steady-state plasma concentration (Css) ratio (PP:T3) was 7.1 versus the observed value 3.7. Predicted mean DEX urinary ratio (UR) (PP:T3) was 2.9 versus the observed value 1.9. Predicted mean CLO AUC ratio (PP:T3) was 2.2 versus the observed value 1.7. Sensitivity analysis suggested that a 100% induction of CYP2D6 during T3 was required to recover the observed PP:T3 ratios of PAR Css, DEX UR, and CLO AUC. Based on these data, it is prudent to conclude that the magnitude of hepatic CYP2D6 induction during T3 ranges from 100 to 200%. Our PBPK model can predict the disposition of CYP1A2, 2D6, and 3A drugs during pregnancy. PMID:23355638

  1. Design and synthesis of 6-fluoro-2-naphthyl derivatives as novel CCR3 antagonists with reduced CYP2D6 inhibition.

    PubMed

    Sato, Ippei; Morihira, Koichiro; Inami, Hiroshi; Kubota, Hirokazu; Morokata, Tatsuaki; Suzuki, Keiko; Iura, Yosuke; Nitta, Aiko; Imaoka, Takayuki; Takahashi, Toshiya; Takeuchi, Makoto; Ohta, Mitsuaki; Tsukamoto, Shin-Ichi

    2008-09-15

    In our previous study on discovering novel types of CCR3 antagonists, we found a fluoronaphthalene derivative (1) that exhibited potent CCR3 inhibitory activity with an IC(50) value of 20 nM. However, compound 1 also inhibited human cytochrome P450 2D6 (CYP2D6) with an IC(50) value of 400 nM. In order to reduce its CYP2D6 inhibitory activity, we performed further systematic structural modifications on 1. In particular, we focused on reducing the number of lipophilic moieties in the biphenyl part of 1, using ClogD(7.4) values as the reference index of lipophilicity. This research led to the identification of N-{(3-exo)-8-[(6-fluoro-2-naphthyl)methyl]-8-azabicyclo[3.2.1]oct-3-yl}-3-(piperidin-1-ylcarbonyl)isonicotinamide 1-oxide (30) which showed comparable CCR3 inhibitory activity (IC(50)=23 nM) with much reduced CYP2D6 inhibitory activity (IC(50)=29,000 nM) compared with 1.

  2. The effect of mirabegron, a potent and selective β3-adrenoceptor agonist, on the pharmacokinetics of CYP2D6 substrates desipramine and metoprolol.

    PubMed

    Krauwinkel, Walter; Dickinson, James; Schaddelee, Marloes; Meijer, John; Tretter, Reiner; van de Wetering, Jeroen; Strabach, Gregory; van Gelderen, Marcel

    2014-03-01

    Mirabegron is a potent and selective β3-adrenoceptor agonist developed for the treatment of overactive bladder. In vitro studies demonstrated that mirabegron partly acts as a (quasi-) irreversible, metabolism-dependent inhibitor of CYP2D6. The effect of steady-state mirabegron on single doses of the sensitive CYP2D6 substrates metoprolol (100 mg) and desipramine (50 mg) was assessed in two open-label, one-sequence crossover studies in healthy subjects (CYP2D6 extensive metabolizers). Mirabegron 160 mg/day increased metoprolol maximum plasma concentration (C max) 1.90-fold (90 % confidence interval [CI] 1.54; 2.33) and total exposure (AUC0-∞) 3.29-fold (90 % CI 2.70; 4.00) in 12 males (study 1). Mean metoprolol half-life increased from 2.96 to 4.11 h. α-Hydroxymetoprolol C max and AUC to last measurable concentration decreased 2.6-fold and 2.2-fold, respectively. In study 2, mirabegron 100 mg/day increased desipramine C max 1.79-fold (90 % CI 1.69; 1.90) and AUC0-∞ 3.41-fold (90 % CI 3.07; 3.80) in 14 males and 14 females. Mean desipramine half-life increased from 19.5 to 35.8 h. C max of 2-hydroxydesipramine decreased ~twofold, while AUC increased ~1.3-fold. Desipramine was administered again 2 weeks after the last mirabegron dose. Desipramine C max and AUC0-∞ were still ~1.13-fold increased; the 90 % CIs fell within the 0.80-1.25 interval. All treatments were well tolerated. In conclusion, mirabegron is a moderate CYP2D6 inhibitor (ratio and 90 % CI <5.0).

  3. Effect of antipsychotic drugs on human liver cytochrome P-450 (CYP) isoforms in vitro: preferential inhibition of CYP2D6.

    PubMed

    Shin, J G; Soukhova, N; Flockhart, D A

    1999-09-01

    The ability of antipsychotic drugs to inhibit the catalytic activity of five cytochrome P-450 (CYP) isoforms was compared using in vitro human liver microsomal preparations to evaluate the relative potential of these drugs to inhibit drug metabolism. The apparent kinetic parameters for enzyme inhibition were determined by nonlinear regression analysis of the data. All antipsychotic drugs tested competitively inhibited dextromethorphan O-demethylation, a selective marker for CYP2D6, in a concentration-dependent manner. Thioridazine and perphenazine were the most potent, with IC(50) values (2.7 and 1.5 microM) that were comparable to that of quinidine (0.52 microM). The estimated K(i) values for CYP2D6-catalyzing dextrorphan formation were ranked in the following order: perphenazine (0.8 microM), thioridazine (1.4 microM), chlorpromazine (6.4 microM), haloperidol (7.2 microM), fluphenazine (9.4 microM), risperidone (21.9 microM), clozapine (39.0 microM), and cis-thiothixene (65.0 microM). No remarkable inhibition of other CYP isoforms was observed except for moderate inhibition of CYP1A2-catalyzed phenacetin O-deethylation by fluphenazine (K(i) = 40.2 microM) and perphenazine (K(i) = 65.1). The estimated K(i) values for the inhibition of CYP2C9, 2C19, and 3A were >300 microM in almost all antipsychotics tested. These results suggest that antipsychotic drugs exhibit a striking selectivity for CYP2D6 compared with other CYP isoforms. This may reflect a remarkable commonality of structure between the therapeutic targets for these drugs, the transporters, and metabolic enzymes that distribute and eliminate them. Clinically, coadministration of these medicines with drugs that are primarily metabolized by CYP2D6 may result in significant drug interactions.

  4. Correlations of CYP2C9∗3/CYP2D6∗10/CYP3A5∗3 gene polymorphisms with efficacy of etanercept treatment for patients with ankylosing spondylitis

    PubMed Central

    Chen, Yuan-Yuan

    2017-01-01

    Abstract Background: The tumor necrosis factor alpha (TNF-α) inhibitor etanercept has been proven to be effective in the treatment of ankylosing spondylitis (AS), while genetic polymorphism may affect drug metabolism or drug receptor, resulting in interindividual variability in drug disposition and efficacy. The purpose of this study is to investigate the correlations between CYP2C9∗3/CYP2D6∗10/CYP3A5∗3 gene polymorphisms and the efficacy of etanercept treatment for patients with AS. Methods: From March 2012 to June 2015, 312 AS patients (174 males and 138 females, mean age: 35.2 ± 5.83 years) from 18 to 56 years old were enrolled in this study. Polymerase chain reaction-restriction fragment length polymorphism was applied to detect the allele and genotype frequencies of CYP2C9∗3, CYP2D6∗10, and CYP3A5∗3 gene polymorphisms. The joint swelling score, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) level of AS patients were compared before and after 24-week etanercept treatment. Assessment in Ankylosing Spondylitis (ASAS) and bath ankylosing spondylitis disease activity index (BASDAI) scores were recorded to assess the efficacy of etanercept treatment. Results: The AS patients with wild-type ∗1/∗1 and heterozygous ∗1/∗3 genotypes of CYP2C9∗3 polymorphism accounted for 93.59% and 6.41%, respectively, without ∗3/∗3 genotype. The AS patients with wild-type CC, heterozygous CT, and mutation homozygous TT genotypes of CYP2D6∗10 polymorphism accounted for 19.23%, 39.10%, and 41.67%, respectively. The AS patients with wild-type ∗1/∗1, heterozygous ∗1/∗3, and mutation homozygous ∗3/∗3 genotypes of CYP3A5∗3 polymorphism accounted for 7.69%, 36.22%, and 56.09%, respectively. After 24-week treatment, AS patients with wild-type ∗1/∗1 genotype of CYP2C9∗3, CC genotype of CYP2D6∗10, and ∗3/∗3 genotype of CYP3A5∗3 polymorphisms had lower joint swelling score, ESR, and CRP level. The joint swelling

  5. Cytochrome b5 is a major determinant of human cytochrome P450 CYP2D6 and CYP3A4 activity in vivo.

    PubMed

    Henderson, Colin J; McLaughlin, Lesley A; Scheer, Nico; Stanley, Lesley A; Wolf, C Roland

    2015-04-01

    The cytochrome P450-dependent mono-oxygenase system is responsible for the metabolism and disposition of chemopreventive agents, chemical toxins and carcinogens, and >80% of therapeutic drugs. Cytochrome P450 (P450) activity is regulated transcriptionally and by the rate of electron transfer from P450 reductase. In vitro studies have demonstrated that cytochrome b5 (Cyb5) also modulates P450 function. We recently showed that hepatic deletion of Cyb5 in the mouse (HBN) markedly alters in vivo drug pharmacokinetics; a key outstanding question is whether Cyb5 modulates the activity of the major human P450s in drug disposition in vivo. To address this, we crossed mice humanized for CYP2D6 or CYP3A4 with mice carrying a hepatic Cyb5 deletion. In vitro triazolam 4-hydroxylation (probe reaction for CYP3A4) was reduced by >50% in hepatic microsomes from CYP3A4-HBN mice compared with controls. Similar reductions in debrisoquine 4-hydroxylation and metoprolol α-hydroxylation were observed using CYP2D6-HBN microsomes, indicating a significant role for Cyb5 in the activity of both enzymes. This effect was confirmed by the concentration-dependent restoration of CYP3A4-mediated triazolam turnover and CYP2D6-mediated bufuralol and debrisoquine turnover on addition of Escherichia coli membranes containing recombinant Cyb5. In vivo, the peak plasma concentration and area under the concentration time curve from 0 to 8 hours (AUC0-8 h) of triazolam were increased 4- and 5.7-fold, respectively, in CYP3A4-HBN mice. Similarly, the pharmacokinetics of bufuralol and debrisoquine were significantly altered in CYP2D6-HBN mice, the AUC0-8 h being increased ∼1.5-fold and clearance decreased by 40-60%. These data demonstrate that Cyb5 can be a major determinant of CYP3A4 and CYP2D6 activity in vivo, with a potential impact on the metabolism, efficacy, and side effects of numerous therapeutic drugs.

  6. CYP2D6 inhibition by fluoxetine, paroxetine, sertraline, and venlafaxine in a crossover study: intraindividual variability and plasma concentration correlations.

    PubMed

    Alfaro, C L; Lam, Y W; Simpson, J; Ereshefsky, L

    2000-01-01

    The authors report the CYP2D6 inhibitory effects of fluoxetine, paroxetine, sertraline, and venlafaxine in an open-label, multiple-dose, crossover design. Twelve CYP2D6 extensive metabolizers were phenotyped, using the dextromethorphan/dextrorphan (DM/DX) urinary ratio, before and after administration of fluoxetine 60 mg (loading dose strategy), paroxetine 20 mg, sertraline 100 mg, and venlafaxine 150 mg. Paroxetine, sertraline, and venlafaxine sequences were randomized with 2-week washouts between treatments; fluoxetine was the last antidepressant (AD) administered. Comparing within groups, baseline DM/DX ratios (0.017) were significantly lower than DM/DX ratios after treatment (DM/DXAD) with fluoxetine (0.313, p < 0.0001) and paroxetine (0.601, p < 0.0001) but not for sertraline (0.026, p = 0.066) or venlafaxine (0.023, p = 0.485). Between groups, DM/DXAD ratios were significantly higher for fluoxetine and paroxetine compared to sertraline and venlafaxine. No differences between DM/DXAD ratios were found for fluoxetine and paroxetine although more subjects phenocopied to PM status after receiving the latter (42% vs. 83%; chi 2 = 4.44, p = 0.049, df = 1). Similarly, no differences between DM/DXAD ratios were found for sertraline and venlafaxine. Of note, the DM/DXAD for 1 subject was much lower after treatment with paroxetine (0.058) compared to fluoxetine (0.490), while another subject exhibited a much lower ratio after treatment with fluoxetine (0.095) compared to paroxetine (0.397). Significant correlations between AD plasma concentration and DM/DXAD were found for paroxetine (r2 = 0.404, p = 0.026) and sertraline (r2 = 0.64, p = 0.002) but not fluoxetine or venlafaxine. In addition, DM/DXAD correlated with baseline isoenzyme activity for paroxetine, sertraline, and venlafaxine groups. These results demonstrate the potent, but variable, CYP2D6 inhibition of fluoxetine and paroxetine compared to sertraline and venlafaxine. CYP2D6 inhibition may be related, in

  7. Genetic polymorphisms of drug-metabolizing phase I enzymes CYP3A4, CYP2C9, CYP2C19 and CYP2D6 in Han, Uighur, Hui and Mongolian Chinese populations.

    PubMed

    Zuo, Jinliang; Xia, Dongya; Jia, Lihui; Guo, Tao

    2012-07-01

    We randomly evaluated 672 unrelated, healthy Chinese volunteers (136 Han, 214 Uighur, 164 Hui and 158 Mongolian) to compare CYP3A4, CYP2C9, CYP2C19 and CYP2D6 allele frequencies. Genomic DNA was extracted from peripheral leukocytes and genotyped for CYP3A4*5, CYP3A4*18, CYP2C9*2, CYP2C9*13, CYP2C19*2, CYP2C19*3 and CYP2D6*10 by PCR-restriction fragment length polymorphism analysis (PCR-RFLP). Our results showed that there is no significant difference in the distribution of CYP2C19*3 and CYP3A4*18 genotypes in the Han, Uighur, Hui and Mongolian Chinese populations. The CYP2C9*13/*13 and CYP3A4*5 genotypes were not observed in any of the four Chinese populations. We found a higher incidence of the CYP2C9*2 allele in Uighur populations, compared to the Han, Hui and Mongolian populations. The incidence of the CYP2C19*2 allele in the Han population was not significantly different from that in the Uighur, Hui or Mongolian populations; however, the Uighur population showed significantly lower rates of this allele than the Hui and Mongolian populations, and the Mongolian population had a significantly lower incidence of this allele than the Hui population. There was no significant difference in the presence of the CYP2D6*10 allele in the Mongolian, Han or Hui populations. However, the Uighur population showed significantly lower rates of this allele than the other three populations. These findings provide basic genetic information for further pharmacogenomic investigations in the Chinese population.

  8. High-throughput screening to estimate single or multiple enzymes involved in drug metabolism: microtitre plate assay using a combination of recombinant CYP2D6 and human liver microsomes.

    PubMed

    Yamamoto, T; Suzuki, A; Kohno, Y

    2003-08-01

    1. The purpose of this study was to estimate readily involvement of single or multiple enzymes in the metabolism of a drug through inhibitory assessment. Inhibitory effects of various compounds on CYP2D6 activity assayed by formation of fluorescent metabolite from 3-[2-(N,N-diethyl-N-methyl-ammonium)ethyl]-7-methoxy-4-methyl-coumarin (AMMC) were assessed using microtitre plate (MTP) assays with a combination of recombinant CYP2D6 and human liver microsomes (HLM). 2. Among various compounds studied, antipsychotic drugs extensively inhibited recombinant CYP2D6 activity and the IC50 values were generally lower than those of antidepressants and antiarrhythmic drugs. 3. After pre-incubation, the IC50 values of mianserin, chlorpromadine, risperidone, thioridazine, alprenolol, propafenone and dextromethorphan increased but the values of timolol, S-metoprolol and propranolol substantially decreased compared with those in case of co-incubation. 4. The IC50 values of typical substrates of CYP2D6 (bufuralol and dextromethorphan at lower substrate concentration) in inhibition studies using HLM, were similar to those in the case of recombinant CYP2D6, but the values of the compounds that are metabolized by multiple CYP forms (perphenazine and chlorpromazine) in HLM were much larger. 5. If the ratio (HLM/rCYP ratio) of IC50 values between HLM and recombinant CYP2D6 exceeds approximately 2, it suggests that other CYP forms in addition to CYP2D6 might be involved in the metabolism of the test compounds. From the advantage such as speed, high throughput and ease of the technique, the MTP assay using a combination of the recombinant CYP2D6 and HLM is useful to estimate the involvement of single or multiple enzymes in the metabolism of drugs at the stage of drug discovery.

  9. Influence of CYP2D6-dependent metabolism on the steady-state pharmacokinetics and pharmacodynamics of metoprolol and nicardipine, alone and in combination.

    PubMed Central

    Laurent-Kenesi, M A; Funck-Brentano, C; Poirier, J M; Decolin, D; Jaillon, P

    1993-01-01

    1 The metabolism of metoprolol depends in part on the genetically determined activity of the CYP2D6 isoenzyme. In vitro studies have shown that nicardipine is a potent inhibitor of CYP2D6 activity. Since the combination of metoprolol and nicardipine is likely to be used for the treatment of hypertension, we examined the interaction between these two drugs at steady-state. 2 Fourteen healthy volunteers, seven extensive and seven poor metabolisers of dextromethorphan were studied in a double-blind, randomised cross-over four-period protocol. Subjects received nicardipine 50 mg every 12 h, metoprolol 100 mg every 12 h, a combination of both drugs and placebo during 5.5 days. Steady-state pharmacokinetics of nicardipine and metoprolol were analyzed. Beta-adrenoceptor blockade was assessed as the reduction of exercise-induced tachycardia. 3 During treatment with metoprolol, alone or in combination with nicardipine, its steady-state plasma concentrations were higher in subjects of the poor metaboliser phenotype than in extensive metabolisers. Beta-adrenoceptor blockade was also more pronounced in poor metabolisers than in extensive metabolisers of dextromethorphan during treatment with metoprolol alone or in combination with nicardipine (24.0 +/- 2.4% vs 17.1 +/- 3.5% and 24.1 +/- 2.5% vs 15.4 +/- 2.7% reduction in exercise trachycardia, respectively, P < 0.01 in each case). 4 Nicardipine produced a small increase in plasma metoprolol concentration in extensive metabolisers from 35.9 +/- 16.6 to 45.8 +/- 15.4 ng ml(-1) (P < 0.02), but had no significant effect in poor metabolisers. However, nicardipine did not alter the R/S metoprolol ratio in plasma 3 h after dosing, the plasma concentration of S-(-)-metoprolol 3 h after dosing or the beta-adrenoceptor blockade produced by metoprolol in subjects of both phenotypes. The partial metabolic clearance of metoprolol to alpha-hydroxy-metoprolol was not altered significantly in extensive metabolisers. Plasma nicardipine

  10. Paroxetine markedly increases plasma concentrations of ophthalmic timolol; CYP2D6 inhibitors may increase the risk of cardiovascular adverse effects of 0.5% timolol eye drops.

    PubMed

    Mäenpää, Jukka; Volotinen-Maja, Marjo; Kautiainen, Hannu; Neuvonen, Mikko; Niemi, Mikko; Neuvonen, Pertti J; Backman, Janne T

    2014-12-01

    Although ophthalmic timolol is generally well tolerated, a significant fraction of topically administered timolol can be systemically absorbed. We investigated the effect of the strong CYP2D6 inhibitor paroxetine on the pharmacokinetics of timolol after ophthalmic administration. In a four-phase crossover study, 12 healthy volunteers ingested either paroxetine (20 mg) or placebo daily for 3 days. In phases 1-2, timolol 0.1% gel, and in phases 3-4, timolol 0.5% drops were administered to both eyes. Paroxetine increased the plasma concentrations of timolol with both timolol formulations to a similar degree. The geometric mean ratio (95% confidence interval) of timolol peak concentration was 1.53-fold (1.23-1.91) with 0.1% timolol and 1.49-fold (0.94-2.36) with 0.5% timolol, and that of timolol area under the plasma concentration-time curve (AUC) from time 0 to 12 hours was 1.61-fold (1.26- to 2.06-fold) and 1.78-fold (1.21-2.62), respectively. During paroxetine administration, six subjects on 0.5% timolol drops, but none on 0.1% timolol gel, had plasma timolol concentrations exceeding 0.7 ng/ml, which can cause systemic adverse effects in patients at risk. There was a positive correlation between the AUC from time 0 to 13 hours of paroxetine and the placebo phase AUC from time 0 to infinity of timolol after timolol 0.5% drops (P < 0.05), and a nonsignificant trend after timolol 0.1% gel, consistent with the role of CYP2D6 in the metabolism of both agents. In the orthostatic test, heart rate immediately after upright standing was significantly lower (P < 0.05) during the paroxetine phase than during the placebo phase at 1 and 3 hours after 0.5% timolol dosing. In conclusion, paroxetine and other CYP2D6 inhibitors can have a clinically important interaction with ophthalmic timolol, particularly when patients are using 0.5% timolol formulations.

  11. Melperone but not bisoprolol or metoprolol is a clinically relevant inhibitor of CYP2D6: evidence from a therapeutic drug monitoring survey.

    PubMed

    Hefner, Gudrun; Unterecker, Stefan; Shams, Mohamed E E; Wolf, Margarete; Falter, Tanja; Haen, Ekkehard; Hiemke, Christoph

    2015-11-01

    Cytochrome P450 enzymes (CYP) can be inhibited or induced by drugs, resulting in clinically significant drug-drug interactions that can cause unanticipated adverse reactions or therapeutic failures. The objective of the study was to analyze the in vivo inhibitory potential of the beta-blockers bisoprolol and metoprolol as well as the low-potency antipsychotic melperone on CYP2D6. By utilizing a large therapeutic drug monitoring database of 2874 samples, data from patients who had been treated with venlafaxine (VEN) either without (control group) or with a concomitant medication with bisoprolol, metoprolol or melperone were evaluated retrospectively to study the CYP2D6-catalyzed O-demethylation to O-desmethylvenlafaxine (ODVEN). Dose-adjusted serum levels (C/D) of VEN and ODVEN as well as the metabolic ratios (ODVEN/VEN) were computed for the four groups and compared using Kruskal-Wallis test. In total, 381 patients could be included for analysis. No significant difference was found in the median C/D (VEN), C/D (ODVEN) or C/D of the active moiety (VEN + ODVEN) in either the metoprolol (N = 103) or bisoprolol group (N = 101), compared to the control group (N = 108). In contrast, a significantly higher median C/D (VEN) (0.79 ng/ml/mg, range 0.13-5.73 ng/ml/mg) (P < 0.01) was found in the melperone group (N = 69), compared to the control group (0.46 ng/ml/mg, range 0.02-7.39 ng/ml/mg). A significant decrease (P < 0.01) was solely found in the median metabolic ratios of ODVEN/VEN between the melperone group (0.90, range 0.14-15.15), compared to the control group (2.39, range 0.06-15.31). The results of this study provided evidence that melperone but not bisoprolol or metoprolol has a clinically relevant inhibitory potential on CYP2D6.

  12. In vitro metabolism of the opioid tilidine and interaction of tilidine and nortilidine with CYP3A4, CYP2C19, and CYP2D6.

    PubMed

    Weiss, Johanna; Sawa, Evelyn; Riedel, Klaus-Dieter; Haefeli, Walter Emil; Mikus, Gerd

    2008-09-01

    Tilidine is one of the most widely used narcotics in Germany and Belgium. The compound's active metabolite nortilidine easily penetrates the blood-brain barrier and activates the mu-opioid receptor. Thus far, the enzymes involved in tilidine metabolism are unknown. Therefore, the aim of our study was to identify the cytochrome P450 isozymes (CYPs) involved in N-demethylation of tilidine in vitro. We used human liver microsomes as well as recombinant CYPs to investigate the demethylation of tilidine to nortilidine and quantified nortilidine by liquid chromatography-tandem mass spectrometry. Inhibition of CYPs was quantified with commercial kits. Moreover, inhibition of ABCB1 and ABCG2 was investigated. Our results demonstrated that N-demethylation of tilidine to nortilidine followed a Michaelis-Menten kinetic with a K(m) value of 36 +/- 13 microM and a v(max) value of 85 +/- 18 nmol/mg/h. This metabolic step was inhibited by CYP3A4 and CYP2C19 inhibitors. Investigations with recombinant CYP3A4 and CYP2C19 confirmed that the demethylation of tilidine occurs via these two CYPs. Inhibition assays demonstrated that tilidine and nortilidine can also inhibit CYP3A4, CYP2C19, CYP2D6, ABCB1, but not ABCG2, whereas inhibition of CYP2D6 and possibly also of CYP3A4 might be clinically relevant. By calculating the metabolic clearance based on the in vitro and published in vivo data, CYP3A4 and CYP2C19 were identified as the main elimination routes of tilidine. In vivo, drug-drug interactions of tilidine with CYP3A4 or CYP2C19 inhibitors are to be anticipated, whereas substrates of CYP2C19, ABCB1, or ABCG2 will presumably not be influenced by tilidine or nortilidine.

  13. Polymorphism in CYP2D6 and CYP2C19, members of the cytochrome P450 mixed-function oxidase system, in the metabolism of psychotropic drugs.

    PubMed

    Stingl, J; Viviani, R

    2015-02-01

    Numerous studies in the field of psychopharmacological treatment have investigated the possible contribution of genetic variability between individuals to differences in drug efficacy and safety, motivated by the wide individual variation in treatment response. Genomewide analyses have been conducted in several large-scale studies on antidepressant drug response. However, no consistent findings have emerged from these studies. In a recent meta-analysis of genomewide data from the three studies capturing common variation for association with symptomatic improvement and remission revealed the absence of any strong genetic association and failed to replicate results of individual studies in the pooled data. However, there are good reasons to consider the possible importance of pharmacogenetic variants separately. These variants explain a large portion of the manifold variability in individual drug metabolism. More than 20 psychotropic drugs have now been relabelled by the FDA adding information on polymorphic drug metabolism and therapeutic recommendations. Furthermore, dose recommendations for polymorphisms in drug metabolizing enzymes, first and foremost CYP2D6 and CYP2C19, have been issued with the advice to reduce the dosage in poor metabolizers to 50% or less (in eight cases), or to choose an alternative treatment. Beside the well-described role in hepatic drug metabolism, these enzymes are also expressed in the brain and play a role in biotransformation of endogenous substrates. These polymorphisms may therefore modulate brain metabolism and affect the function of the neural substrates of cognition and emotion.

  14. Prediction of Metabolic Interactions With Oxycodone via CYP2D6 and CYP3A Inhibition Using a Physiologically Based Pharmacokinetic Model

    PubMed Central

    Marsousi, N; Daali, Y; Rudaz, S; Almond, L; Humphries, H; Desmeules, J; Samer, C F

    2014-01-01

    Evaluation of a potential risk of metabolic drug–drug interactions (DDI) is of high importance in the clinical setting. In this study, a physiologically based pharmacokinetic (PBPK) model was developed for oxycodone and its two primary metabolites, oxymorphone and noroxycodone, in order to assess different DDI scenarios using published in vitro and in vivo data. Once developed and refined, the model was able to simulate pharmacokinetics of the three compounds and the DDI extent in case of coadministration with an inhibitor, as well as the oxymorphone concentration variation between CYP2D6 extensive metabolizers (EM) and poor metabolizers (PM). The reliability of the model was tested against published clinical studies monitoring different inhibitors and dose regimens, and all predicted area under the concentration–time curve (AUC) ratios were within the twofold acceptance range. This approach represents a strategy to evaluate the impact of coadministration of different CYP inhibitors using mechanistic incorporation of drug-dependent and system-dependent available in vitro and in vivo data. PMID:25518025

  15. Contributions of ionic interactions and protein dynamics to cytochrome P450 2D6 (CYP2D6) substrate and inhibitor binding.

    PubMed

    Wang, An; Stout, C David; Zhang, Qinghai; Johnson, Eric F

    2015-02-20

    P450 2D6 contributes significantly to the metabolism of >15% of the 200 most marketed drugs. Open and closed crystal structures of P450 2D6 thioridazine complexes were obtained using different crystallization conditions. The protonated piperidine moiety of thioridazine forms a charge-stabilized hydrogen bond with Asp-301 in the active sites of both complexes. The more open conformation exhibits a second molecule of thioridazine bound in an expanded substrate access channel antechamber with its piperidine moiety forming a charge-stabilized hydrogen bond with Glu-222. Incubation of the crystalline open thioridazine complex with alternative ligands, prinomastat, quinidine, quinine, or ajmalicine, displaced both thioridazines. Quinine and ajmalicine formed charge-stabilized hydrogen bonds with Glu-216, whereas the protonated nitrogen of quinidine is equidistant from Asp-301 and Glu-216 with protonated nitrogen H-bonded to a water molecule in the access channel. Prinomastat is not ionized. Adaptations of active site side-chain rotamers and polypeptide conformations were evident between the complexes, with the binding of ajmalicine eliciting a closure of the open structure reflecting in part the inward movement of Glu-216 to form a hydrogen bond with ajmalicine as well as sparse lattice restraints that would hinder adaptations. These results indicate that P450 2D6 exhibits sufficient elasticity within the crystal lattice to allow the passage of compounds between the active site and bulk solvent and to adopt a more closed form that adapts for binding alternative ligands with different degrees of closure. These crystals provide a means to characterize substrate and inhibitor binding to the enzyme after replacement of thioridazine with alternative compounds.

  16. RRM1, TUBB3, TOP2A, CYP19A1, CYP2D6: Difference between mRNA and protein expression in predicting prognosis of breast cancer patients.

    PubMed

    Xu, Ying-Chun; Zhang, Feng-Chun; Li, Jun-Jian; Dai, Jia-Qi; Liu, Qiang; Tang, Lei; Ma, Yue; Xu, Qi; Lin, Xiao-Lin; Fan, Hong-Bin; Wang, Hong-Xia

    2015-10-01

    The study investigated the clinical significance of RRM1 (ribonucleoside reductase subunit M1), TUBB3 (tubulin-β-III), TOP2A (DNA topoisomerase II), CYP19A1 (cytochrome P450, family 19, subfamily A, polypeptide 1) and CYP2D6 (cytochrome P450, family 2, subfamily D, polypeptide 6) for the diagnosis and possible predictive roles in breast cancer. Tissue microarray detected the expression of RRM1, tubulin-β-III, Topo IIα, CYP19A1 and CYP2D6 protein in breast cancer tissue and tissue adjacent to tumors (TATs). In addition, a publically available tool, was used to assess the prognostic value of their gene expression in breast cancer (http://kmplot.com). Analysis for relapse-free survival (RFS), disease-free survival (DFS) and overall survival (OS) was performed. Cytoplasmic RRM1, tubulin-β-III, CYP19A1 and Topo IIα staining were significantly higher in breast cancer tissues compared with TATs (P<0.050). Significant correlation occurred between RRM1 expression with pathological classification (P=0.018), lymph node involvement (P=0.035) and ER status (P=0.003). Tubulin-β-III and CYP2D6 expression correlated significantly with tumor grade (P=0.021 for tubulin-β-III and P=0.029 for CYP2D6, respectively). Cox analysis showed that the protein expression of CYP2D6, CYP19A1, RRM1, Topo IIα or tubulin-β-III was not an independent prognostic factor. A significant association occurred between RFS and TUBB3, TOP2A, CYP19A1, and CYP2D6 mRNA expression. With CYP19A1 (P<0.001) and CYP2D6 (P<0.001), a high expression was associated with good clinical outcome. Conversely, a low expression of TUBB3 (P<0.001) and TOP2A (P<0.001) was associated with good clinical outcome. TUBB3 (P=0.0004) and TOP2A (P<0.001) were significant prognostic factors in predicting the patient OS. The expression of RRM1, tubulin-β-III, Topo IIα and CYP19A1 in tumor tissues was significantly higher than that in TATs. TUBB3, TOP2A, CYP19A1 and CYP2D6 gene expression, but not protein expression, was

  17. Evaluation of the likelihood of a selective CHK1 inhibitor (LY2603618) to inhibit CYP2D6 with desipramine as a probe substrate in cancer patients.

    PubMed

    Hynes, Scott M; Wickremsinhe, Enaksha; Zhang, Wei; Decker, Rodney; Ott, Jennifer; Chandler, Jason; Mitchell, Malcolm

    2015-01-01

    LY2603618 is a selective inhibitor of deoxyribonucleic acid damage checkpoint kinase 1 (CHK1) and has been in development for the enhancement of chemotherapeutic agents. The study described was to assess the potential interaction between LY2603618 and cytochrome P450 isoform 2D6 (CYP2D6) substrate desipramine in patients with cancer. Before clinical investigation, in silico simulations (using Simcyp®) were conducted. An open-label, two-period, fixed-sequence study was planned in 30 patients with advanced or metastatic cancers, in which a 50 mg oral dose of desipramine was administered alone and in combination with 275 mg of LY2603618 (i.v. infusion). An interim analysis was planned after 15 patients completed both periods. Ratios of geometric least squares means (LSMs) of primary pharmacokinetic (PK) parameters and 90% repeated confidence intervals (RCIs) between desipramine plus LY2603618 and desipramine alone were calculated. Lack of an interaction was declared if the 90% RCI fell between 0.8 and 1.25. The LSM ratios (90% RCI) for areas under the plasma concentration-time curve from time zero to tlast (AUC[0-tlast]) and to infinity (AUC[0-∞]) and maximum plasma concentration (Cmax) were 1.14 (1.04, 1.25), 1.09 (0.99, 1.21) and 1.16 (1.05, 1.29). In silico simulations were predictive of clinical results. Single doses of 275 mg LY2603618 administered with 50 mg desipramine were generally well tolerated. In conclusion, no clinically significant interaction was observed between LY2603618 and desipramine in patients with cancer. In silico predictions of clinical results demonstrated that mechanistic and physiologically based PK approaches may inform clinical study design in cancer patients.

  18. Understanding outliers on the usual dose-response curve: venlafaxine as a way to phenotype patients in terms of their CYP 2D6 status and why it matters.

    PubMed

    Preskorn, Sheldon H

    2010-01-01

    Venlafaxine is a model substrate for the drug metabolizing cytochrome P450 (CYP) enzyme 2D6. The desvenlafaxine/venlafaxine ratio, either after a single dose or at steady state, can be used to determine whether a patient is functionally (i.e., phenotypically) a CYP 2D6 extensive or poor metabolizer (EM or PM). In turn, CYP 2D6 EM and PM status is important in determining the efficacy of venlafaxine as an antidepressant. Based on a secondary analysis of four of the venlafaxine registration trials, venlafaxine was effective in patients who were CYP 2D6 EMs versus a parallel placebo-treated control group, whereas it was not effective in patients who were CYP 2D6 PMs. Thus, venlafaxine is a useful example of how drugs can be used to quantify differences in drug metabolizing capacity among patients and how such differences can in turn affect the efficacy of a drug (i.e., make a patient an outlier on the usual dose-response curve).

  19. A pregnancy physiologically based pharmacokinetic (p-PBPK) model for disposition of drugs metabolized by CYP1A2, CYP2D6 and CYP3A4

    PubMed Central

    Gaohua, Lu; Abduljalil, Khaled; Jamei, Masoud; Johnson, Trevor N; Rostami-Hodjegan, Amin

    2012-01-01

    Aims Pregnant women are usually not part of the traditional drug development programme. Pregnancy is associated with major biological and physiological changes that alter the pharmacokinetics (PK) of drugs. Prediction of the changes to drug exposure in this group of patients may help to prevent under- or overtreatment. We have used a pregnancy physiologically based pharmacokinetic (p-PBPK) model to assess the likely impact of pregnancy on three model compounds, namely caffeine, metoprolol and midazolam, based on the knowledge of their disposition in nonpregnant women and information from in vitro studies. Methods A perfusion-limited form of a 13-compartment full-PBPK model (Simcyp® Simulator) was used for the nonpregnant women, and this was extended to the pregnant state by applying known changes to all model components (including the gestational related activity of specific cytochrome P450 enzymes) and through the addition of an extra compartment to represent the fetoplacental unit. The uterus and the mammary glands were grouped into the muscle compartment. The model was implemented in Matlab Simulink and validated using clinical observations. Results The p-PBPK model predicted the PK changes of three model compounds (namely caffeine, metoprolol and midazolam) for CYP1A2, CYP2D6 and CYP3A4 during pregnancy within twofold of observed values. The changes during the third trimester were predicted to be a 100% increase, a 30% decrease and a 35% decrease in the exposure of caffeine, metoprolol and midazolam, respectively, compared with the nonpregnant women. Conclusions In the absence of clinical data, the in silico prediction of PK behaviour during pregnancy can provide a valuable aid to dose adjustment in pregnant women. The performance of the model for drugs metabolized by a single enzyme to different degrees (high and low extraction) and for drugs that are eliminated by several different routes warrants further study. PMID:22725721

  20. Active-site structure, binding and redox activity of the heme–thiolate enzyme CYP2D6 immobilized on coated Ag electrodes: a surface-enhanced resonance Raman scattering study

    PubMed Central

    Bonifacio, Alois; Millo, Diego; Keizers, Peter H. J.; Boegschoten, Roald; Commandeur, Jan N. M.; Vermeulen, Nico P. E.; Gooijer, Cees

    2007-01-01

    Surface-enhance resonance Raman scattering spectra of the heme–thiolate enzyme cytochrome P450 2D6 (CYP2D6) adsorbed on Ag electrodes coated with 11-mercaptoundecanoic acid (MUA) were obtained in various experimental conditions. An analysis of these spectra, and a comparison between them and the RR spectra of CYP2D6 in solution, indicated that the enzyme’s active site retained its nature of six-coordinated low-spin heme upon immobilization. Moreover, the spectral changes detected in the presence of dextromethorphan (a CYP2D6 substrate) and imidazole (an exogenous heme axial ligand) indicated that the immobilized enzyme also preserved its ability to reversibly bind a substrate and form a heme–imidazole complex. The reversibility of these processes could be easily verified by flowing alternately solutions of the various compounds and the buffer through a home-built spectroelectrochemical flow cell which contained a sample of immobilized protein, without the need to disassemble the cell between consecutive spectral data acquisitions. Despite immobilized CYP2D6 being effectively reduced by a sodium dithionite solution, electrochemical reduction via the Ag electrode was not able to completely reduce the enzyme, and led to its extensive inactivation. This behavior indicated that although the enzyme’s ability to exchange electrons is not altered by immobilization per se, MUA-coated electrodes are not suited to perform direct electrochemistry of CYP2D6. Electronic supplementary material The online version of this article (doi:10.1007/s00775-007-0303-1) contains supplementary material, which is available to authorized users. PMID:17899220

  1. Influence of the CYP2D6 Isoenzyme in Patients Treated with Venlafaxine for Major Depressive Disorder: Clinical and Economic Consequences

    PubMed Central

    Sicras-Mainar, Antoni; Guijarro, Pablo; Armada, Beatriz; Blanca-Tamayo, Milagrosa; Navarro-Artieda, Ruth

    2014-01-01

    Background Antidepressant drugs are the mainstay of drug therapy for sustained remission of symptoms. However, the clinical results are not encouraging. This lack of response could be due, among other causes, to factors that alter the metabolism of the antidepressant drug. Objective: to evaluate the impact of concomitant administration of CYP2D6 inhibitors or substrates on the efficacy, tolerability and costs of patients treated with venlafaxine for major depressive disorder in clinical practice. Methods We designed an observational study using the medical records of outpatients. Subjects aged ≥18 years who started taking venlafaxine during 2008–2010 were included. Three study groups were considered: no combinations (reference), venlafaxine-substrate, and venlafaxine-inhibitor. The follow-up period was 12 months. The main variables were: demographic data, comorbidity, remission (Hamilton <7), response to treatment, adverse events and costs. The statistical analysis included logistic regression models and ANCOVA, with p values <0.05 considered significant. Results A total of 1,115 subjects were recruited. The mean age was 61.7 years and 75.1% were female. Approximately 33.3% (95% CI: 30.5 to 36.1) were receiving some kind of drug combination (venlafaxine-substrate: 23.0%, and venlafaxine-inhibitor: 10.3%). Compared with the venlafaxine-substrate and venlafaxine-inhibitor groups, patients not taking concomitant drugs had a better response to therapy (49.1% vs. 39.9% and 34.3%, p<0.01), greater remission of symptoms (59.9% vs. 50.2% and 43.8%, p<0.001), fewer adverse events (1.9% vs. 7.0% and 6.1%, p<0.05) and a lower mean adjusted cost (€2,881.7 vs. €4,963.3 and €7,389.1, p<0.001), respectively. All cost components showed these differences. Conclusions The patients treated with venlafaxine alone showed a better response to anti-depressant treatment, greater remission of symptoms, a lower incidence of adverse events and lower healthcare costs. PMID:25369508

  2. Pharmacogenetics in American Indian Populations: Analysis of CYP2D6, CYP3A4, CYP3A5, and CYP2C9 in the Confederated Salish and Kootenai Tribes

    PubMed Central

    Fohner, Alison; Muzquiz, LeeAnna I.; Austin, Melissa A.; Gaedigk, Andrea; Gordon, Adam; Thornton, Timothy; Rieder, Mark J.; Pershouse, Mark A.; Putnam, Elizabeth A.; Howlett, Kevin; Beatty, Patrick; Thummel, Kenneth E.; Woodahl, Erica L.

    2014-01-01

    Objectives Cytochrome P450 enzymes play a dominant role in drug elimination and variation in these genes is a major source of interindividual differences in drug response. Little is known, however, about pharmacogenetic variation in American Indian and Alaska Native (AI/AN) populations. We have developed a partnership with the Confederated Salish and Kootenai Tribes (CSKT) in northwestern Montana to address this knowledge gap. Methods We resequenced CYP2D6 in 187 CSKT subjects and CYP3A4, CYP3A5, and CYP2C9 in 94 CSKT subjects. Results We identified 67 variants in CYP2D6, 15 in CYP3A4, 10 in CYP3A5, and 41 in CYP2C9. The most common CYP2D6 alleles were CYP2D6*4 and *41 (20.86 and 11.23%, respectively). CYP2D6*3, *5, *6, *9, *10, *17, *28, *33, *35, *49, *1xN, *2xN, and *4xN frequencies were less than 2%. CYP3A5*3, CYP3A4*1G, and *1B were detected with frequencies of 92.47, 26.81, and 2.20%, respectively. Allelic variation in CYP2C9 was low: CYP2C9*2 (5.17%) and *3 (2.69%). In general, allele frequencies in CYP2D6, CYP2C9 and CYP3A5 were similar to those observed in European Americans. There was, however, a marked divergence in CYP3A4 for the CYP3A4*1G allele. We also observed low levels of linkage between CYP3A4*1G and CYP3A5*1 in the CSKT. The combination of nonfunctional CYP3A5*3 and putative reduced function CYP3A4*1G alleles may predict diminished clearance of CYP3A substrates. Conclusions These results highlight the importance of conducting pharmacogenomic research in AI/AN populations and demonstrate that extrapolation from other populations is not appropriate. This information could help to optimize drug therapy for the CSKT population. PMID:23778323

  3. Utilizing Structures of CYP2D6 and BACE1 Complexes To Reduce Risk of Drug–Drug Interactions with a Novel Series of Centrally Efficacious BACE1 Inhibitors

    DOE PAGES

    Brodney, Michael A.; Beck, Elizabeth M.; Butler, Christopher R.; ...

    2015-03-17

    In recent years, the first generation of β-secretase (BACE1) inhibitors advanced into clinical development for the treatment of Alzheimer’s disease (AD). However, the alignment of drug-like properties and selectivity remains a major challenge. Here in this paper, we describe the discovery of a novel class of potent, low clearance, CNS penetrant BACE1 inhibitors represented by thioamidine 5. Further profiling suggested that a high fraction of the metabolism (>95%) was due to CYP2D6, increasing the potential risk for victim-based drug–drug interactions (DDI) and variable exposure in the clinic due to the polymorphic nature of this enzyme. To guide future design, wemore » solved crystal structures of CYP2D6 complexes with substrate 5 and its corresponding metabolic product pyrazole 6, which provided insight into the binding mode and movements between substrate/inhibitor complexes. Guided by the BACE1 and CYP2D6 crystal structures, we designed and synthesized analogues with reduced risk for DDI, central efficacy, and improved hERG therapeutic margins.« less

  4. Utilizing Structures of CYP2D6 and BACE1 Complexes To Reduce Risk of Drug–Drug Interactions with a Novel Series of Centrally Efficacious BACE1 Inhibitors

    SciTech Connect

    Brodney, Michael A.; Beck, Elizabeth M.; Butler, Christopher R.; Barreiro, Gabriela; Johnson, Eric F.; Riddell, David; Parris, Kevin; Nolan, Charles E.; Fan, Ying; Atchison, Kevin; Gonzales, Cathleen; Robshaw, Ashley E.; Doran, Shawn D.; Bundesmann, Mark W.; Buzon, Leanne; Dutra, Jason; Henegar, Kevin; LaChapelle, Erik; Hou, Xinjun; Rogers, Bruce N.; Pandit, Jayvardhan; Lira, Ricardo; Martinez-Alsina, Luis; Mikochik, Peter; Murray, John C.; Ogilvie, Kevin; Price, Loren; Sakya, Subas M.; Yu, Aijia; Zhang, Yong; O’Neill, Brian T.

    2015-03-17

    In recent years, the first generation of β-secretase (BACE1) inhibitors advanced into clinical development for the treatment of Alzheimer’s disease (AD). However, the alignment of drug-like properties and selectivity remains a major challenge. Here in this paper, we describe the discovery of a novel class of potent, low clearance, CNS penetrant BACE1 inhibitors represented by thioamidine 5. Further profiling suggested that a high fraction of the metabolism (>95%) was due to CYP2D6, increasing the potential risk for victim-based drug–drug interactions (DDI) and variable exposure in the clinic due to the polymorphic nature of this enzyme. To guide future design, we solved crystal structures of CYP2D6 complexes with substrate 5 and its corresponding metabolic product pyrazole 6, which provided insight into the binding mode and movements between substrate/inhibitor complexes. Guided by the BACE1 and CYP2D6 crystal structures, we designed and synthesized analogues with reduced risk for DDI, central efficacy, and improved hERG therapeutic margins.

  5. Utilizing structures of CYP2D6 and BACE1 complexes to reduce risk of drug-drug interactions with a novel series of centrally efficacious BACE1 inhibitors.

    PubMed

    Brodney, Michael A; Beck, Elizabeth M; Butler, Christopher R; Barreiro, Gabriela; Johnson, Eric F; Riddell, David; Parris, Kevin; Nolan, Charles E; Fan, Ying; Atchison, Kevin; Gonzales, Cathleen; Robshaw, Ashley E; Doran, Shawn D; Bundesmann, Mark W; Buzon, Leanne; Dutra, Jason; Henegar, Kevin; LaChapelle, Erik; Hou, Xinjun; Rogers, Bruce N; Pandit, Jayvardhan; Lira, Ricardo; Martinez-Alsina, Luis; Mikochik, Peter; Murray, John C; Ogilvie, Kevin; Price, Loren; Sakya, Subas M; Yu, Aijia; Zhang, Yong; O'Neill, Brian T

    2015-04-09

    In recent years, the first generation of β-secretase (BACE1) inhibitors advanced into clinical development for the treatment of Alzheimer's disease (AD). However, the alignment of drug-like properties and selectivity remains a major challenge. Herein, we describe the discovery of a novel class of potent, low clearance, CNS penetrant BACE1 inhibitors represented by thioamidine 5. Further profiling suggested that a high fraction of the metabolism (>95%) was due to CYP2D6, increasing the potential risk for victim-based drug-drug interactions (DDI) and variable exposure in the clinic due to the polymorphic nature of this enzyme. To guide future design, we solved crystal structures of CYP2D6 complexes with substrate 5 and its corresponding metabolic product pyrazole 6, which provided insight into the binding mode and movements between substrate/inhibitor complexes. Guided by the BACE1 and CYP2D6 crystal structures, we designed and synthesized analogues with reduced risk for DDI, central efficacy, and improved hERG therapeutic margins.

  6. Interaction of serum proteins with CYP isoforms in human liver microsomes: inhibitory effects of human and bovine albumin, alpha-globulins, alpha-1-acid glycoproteins and gamma-globulins on CYP2C19 and CYP2D6.

    PubMed

    Xu, Bang Qian; Ishii, Mikio; Ding, Li Rong; Fischer, Nancy E; Inaba, Tadanobu

    2003-03-14

    The effects of serum proteins on the in vitro hydroxylation pathways of mephenytoin (CYP2C19) and debrisoquine (CYP2D6) were studied to enhance the predictability of in vivo drug metabolism from in vitro assays. Both CYP substrates are known to be weakly bound to albumin and the applicability of the free drug hypothesis was further appraised. Since bovine serum albumin (BSA) is used widely in in vitro assays, a comparison between human and bovine proteins was made. Four major serum proteins were studied: albumin, alpha1-acid glycoprotein (AGP), alpha- and gamma-globulins. Human serum albumin (HSA) inhibited both CYP activities about 20% more than BSA. The addition of human alpha-globulins, but not the bovine protein, resulted in marked reduction of 86% and 41% in CYP2C19 and CYP2D6 activities, respectively. This reduction of activity was strikingly greater than the fraction bound (14 and 22%, respectively). The inhibition was of the competitive type and the Ki values of human alpha-globulins on CYP2C19 and CYP2D6 were found to be 0.45% (4.5 mg/ml) and 3.5% (35 mg/ml), respectively. The effect of both human and bovine gamma-globulins on CYP isoforms was negligible. The Ki values of human and bovine AGP for CYP2C19 were 1.84% (420 microM) and 0.93% (210 microM), respectively. For HSA, human alpha-globulins and human and bovine AGP, the strongly decreased CYP activities in vitro cannot be explained by the free drug hypothesis. A direct interaction of these serum proteins with CYP enzymes is postulated. Differential effects of bovine and human serum proteins and CYP specific inhibition were observed.

  7. An evaluation of the CYP2D6 and CYP3A4 inhibition potential of metoprolol metabolites and their contribution to drug-drug and drug-herb interaction by LC-ESI/MS/MS.

    PubMed

    Borkar, Roshan M; Bhandi, Murali Mohan; Dubey, Ajay P; Ganga Reddy, V; Komirishetty, Prashanth; Nandekar, Prajwal P; Sangamwar, Abhay T; Kamal, Ahmed; Banerjee, Sanjay K; Srinivas, R

    2016-10-01

    The aim of the present study was to evaluate the contribution of metabolites to drug-drug interaction and drug-herb interaction using the inhibition of CYP2D6 and CYP3A4 by metoprolol (MET) and its metabolites. The peak concentrations of unbound plasma concentration of MET, α-hydroxy metoprolol (HM), O-desmethyl metoprolol (ODM) and N-desisopropyl metoprolol (DIM) were 90.37 ± 2.69, 33.32 ± 1.92, 16.93 ± 1.70 and 7.96 ± 0.94 ng/mL, respectively. The metabolites identified, HM and ODM, had a ratio of metabolic area under the concentration-time curve (AUC) to parent AUC of ≥0.25 when either total or unbound concentration of metabolite was considered. In vitro CYP2D6 and CYP3A4 inhibition by MET, HM and ODM study revealed that MET, HM and ODM were not inhibitors of CYP3A4-catalyzed midazolam metabolism and CYP2D6-catalyzed dextromethorphan metabolism. However, DIM only met the criteria of >10% of the total drug related material and <25% of the parent using unbound concentrations. If CYP inhibition testing is solely based on metabolite exposure, DIM metabolite would probably not be considered. However, the present study has demonstrated that DIM contributes significantly to in vitro drug-drug interaction. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Characterizing the effect of cytochrome P450 (CYP) 2C8, CYP2C9, and CYP2D6 genetic polymorphisms on stereoselective N-demethylation of fluoxetine.

    PubMed

    Wang, Zhangting; Wang, Shengjia; Huang, Minmin; Hu, Haihong; Yu, Lushan; Zeng, Su

    2014-03-01

    Fluoxetine (FLX) is one of the most widely prescribed selective serotonin reuptake inhibitors. Although FLX is used as racemate in the clinic, the clinical pharmacokinetics of FLX and its N-demethylation metabolite norfluoxetine (NFLX) show obvious cytochrome P450 (CYP) polymorphism dependency and exhibit marked stereoselectivity. However, the kinetic profiles of CYP variants to FLX remain unclear. In the present study, some variants of human CYP2C8, CYP2C9, and CYP2D6 were first expressed in insect cells, and their catalytic roles with respect to FLX enantiomers were then investigated. CYP2C8.4 and CYP2C9.10 showed significantly lower activity and CYP2C8.3 showed significantly higher activity toward both R- and S-FLX compared with the wildtype, while CYP2C9.3, CYP2C9.13, and CYP2C9.16 showed significantly lower activity only toward R-FLX. Five CYP2C9 variants and CYP2D6.1 exhibited significantly stereoselective kinetic profiles prior to R-FLX, and CYP2C8.3 showed a slight stereoselectivity. Interestingly, obvious substrate inhibition was observed in the CYP2C9 wildtype and its three variants only in the case of R-FLX. Together, these findings suggest that CYP2C9 and CYP2D6 polymorphism may play an important role in the clearance of FLX and also in the stereoselective kinetic profiles of FLX enantiomers.

  9. Modeling chemical interaction profiles: I. Spectral data-activity relationship and structure-activity relationship models for inhibitors and non-inhibitors of cytochrome P450 CYP3A4 and CYP2D6 isozymes.

    PubMed

    McPhail, Brooks; Tie, Yunfeng; Hong, Huixiao; Pearce, Bruce A; Schnackenberg, Laura K; Ge, Weigong; Valerio, Luis G; Fuscoe, James C; Tong, Weida; Buzatu, Dan A; Wilkes, Jon G; Fowler, Bruce A; Demchuk, Eugene; Beger, Richard D

    2012-03-15

    An interagency collaboration was established to model chemical interactions that may cause adverse health effects when an exposure to a mixture of chemicals occurs. Many of these chemicals--drugs, pesticides, and environmental pollutants--interact at the level of metabolic biotransformations mediated by cytochrome P450 (CYP) enzymes. In the present work, spectral data-activity relationship (SDAR) and structure-activity relationship (SAR) approaches were used to develop machine-learning classifiers of inhibitors and non-inhibitors of the CYP3A4 and CYP2D6 isozymes. The models were built upon 602 reference pharmaceutical compounds whose interactions have been deduced from clinical data, and 100 additional chemicals that were used to evaluate model performance in an external validation (EV) test. SDAR is an innovative modeling approach that relies on discriminant analysis applied to binned nuclear magnetic resonance (NMR) spectral descriptors. In the present work, both 1D ¹³C and 1D ¹⁵N-NMR spectra were used together in a novel implementation of the SDAR technique. It was found that increasing the binning size of 1D ¹³C-NMR and ¹⁵N-NMR spectra caused an increase in the tenfold cross-validation (CV) performance in terms of both the rate of correct classification and sensitivity. The results of SDAR modeling were verified using SAR. For SAR modeling, a decision forest approach involving from 6 to 17 Mold2 descriptors in a tree was used. Average rates of correct classification of SDAR and SAR models in a hundred CV tests were 60% and 61% for CYP3A4, and 62% and 70% for CYP2D6, respectively. The rates of correct classification of SDAR and SAR models in the EV test were 73% and 86% for CYP3A4, and 76% and 90% for CYP2D6, respectively. Thus, both SDAR and SAR methods demonstrated a comparable performance in modeling a large set of structurally diverse data. Based on unique NMR structural descriptors, the new SDAR modeling method complements the existing SAR

  10. Inter-ethnic differences in genetic polymorphisms of xenobiotic-metabolizing enzymes (CYP1A1, CYP2D6, NAT1 and NAT2) in healthy populations: correlation with the functional in silico prediction.

    PubMed

    Khlifi, Rim; Ben Salah, Ghada; Chakroun, Amine; Hamza-Chaffai, Amel; Rebai, Ahmed

    2014-09-01

    Several studies have shown that many polymorphisms of the xenobiotic-metabolizing enzymes (XME) affect either enzymatic functions or are associated with various aspects of human health. Owing to the presence of these single nucleotide variants (SNVs), differences in detoxification capacity have been observed between many ethnicities. The aim of this investigation was to study the prevalence of four polymorphisms in XME among various ethnic groups. Attention was focused on polymorphisms of CYP2D6 (rs1058172, G>A, p.Arg365His), CYP1A1 (rs4646421, c.-26-728C>T), NAT1 (rs4921880, c.-85-1014T>A) and NAT2 (rs1208, A>G, p.Arg268Lys). These polymorphisms were analyzed in 261 healthy Tunisians individuals in comparison with different ethnic backgrounds from hapmap database. In addition, in silico functional prediction was also performed to determine the loss of function variants. Our results demonstrated that population's origins widely affect the genetic variability of XME enzymes and Tunisians show a characteristic pattern. In silico predictions showed a deleterious effect for p.Arg268Lys substitution on CYP2D6 function, findings confirmed its key role played in cancer susceptibility. These data show that detoxification genes structures depend on the studied population. This suggests that ethnic differences impact on disease risk or response to drugs and therefore should be taken into consideration in genetic association studies focusing on XME enzymes. Our results provide the first report on these SNV in Tunisian population and could be useful for further epidemiological investigations including targeted therapy.

  11. A novel incubation direct injection LC/MS/MS technique for in vitro drug metabolism screening studies involving the CYP 2D6 and the CYP 3A4 isozymes.

    PubMed

    Bhoopathy, S; Xin, B; Unger, S E; Karnes, H T

    2005-04-01

    A direct injection LC/MS/MS method involving a novel incubation technique was developed for the inhibition screening of CYP 2D6 and CYP 3A4 isoenzymes using dextromethorphan and midazolam as probe substrates. Both assays were performed using an electrospray ionization source in the positive ion mode. Direct injection was possible by using a short C 18, LC column (2 mm x 20 mm) with large particle diameter packing (10 microm). Analytical characteristics of the direct injection technique were studied by examining matrix effects, which showed suppression of the ESI signal between 0.20 and 0.65 min. The retention times for analytes were adjusted to approximately 0.8 min (k'>3), resulting in no matrix effect. Column lifetime was evaluated and determined to be approximately 160 direct injections of the matrix. The precision and accuracy of the control samples for the quantitation of dextromethorphan was between -0.53 and -12.80, and 3.73 and 6.69% respectively. Unlike conventional incubation techniques, incubations were carried out in an autosampler equipped with a heating accessory. This novel incubation method, which involved no stirring of the incubation mixture, estimated the Cl(int in vitro) for dextromethorphan and midazolam in human liver microsomes to be 1.65+/-0.22 ml/(hmg) and 0.861 ml/(min mg) respectively. The autosampler tray maintained uniform temperature and was sensitive to changes in temperature between 33 and 41 degrees C. High-throughput screening was performed using known inhibitors of the CYP 2D6 isozyme, and the system was evaluated for its ability to differentiate between these inhibitors. The strong inhibitor quinidine resulted in a 25.6% increase in t(1/2), the medium potency inhibitor chlorpromazine resulted in an increase of 6.14% and the weak inhibitor primaquine had no significant effect on half-life. This technique involves no sample preparation, demonstrated run times of 2 min per injection and can be fully automated. The method should

  12. Fluoxetine- and norfluoxetine-mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19, and CYP3A4.

    PubMed

    Sager, J E; Lutz, J D; Foti, R S; Davis, C; Kunze, K L; Isoherranen, N

    2014-06-01

    Fluoxetine and its circulating metabolite norfluoxetine comprise a complex multiple-inhibitor system that causes reversible or time-dependent inhibition of the cytochrome P450 (CYP) family members CYP2D6, CYP3A4, and CYP2C19 in vitro. Although significant inhibition of all three enzymes in vivo was predicted, the areas under the concentration-time curve (AUCs) for midazolam and lovastatin were unaffected by 2-week dosing of fluoxetine, whereas the AUCs of dextromethorphan and omeprazole were increased by 27- and 7.1-fold, respectively. This observed discrepancy between in vitro risk assessment and in vivo drug-drug interaction (DDI) profile was rationalized by time-varying dynamic pharmacokinetic models that incorporated circulating concentrations of fluoxetine and norfluoxetine enantiomers, mutual inhibitor-inhibitor interactions, and CYP3A4 induction. The dynamic models predicted all DDIs with less than twofold error. This study demonstrates that complex DDIs that involve multiple mechanisms, pathways, and inhibitors with their metabolites can be predicted and rationalized via characterization of all the inhibitory species in vitro.

  13. The impact of Cytochrome P450 CYP1A2, CYP2C9, CYP2C19 and CYP2D6 genes on suicide attempt and suicide risk-a European multicentre study on treatment-resistant major depressive disorder.

    PubMed

    Höfer, Peter; Schosser, Alexandra; Calati, Raffaella; Serretti, Alessandro; Massat, Isabelle; Kocabas, Neslihan Aygun; Konstantinidis, Anastasios; Linotte, Sylvie; Mendlewicz, Julien; Souery, Daniel; Zohar, Joseph; Juven-Wetzler, Alzbeta; Montgomery, Stuart; Kasper, Siegfried

    2013-08-01

    Recently published data have reported associations between cytochrome P450 metabolizer status and suicidality. The aim of our study was to investigate the role of genetic polymorphisms of the cytochrome P450 genes on suicide risk and/or a personal history of suicide attempts. Two hundred forty-three major depressive disorder patients were collected in the context of a European multicentre resistant depression study and treated with antidepressants at adequate doses for at least 4 weeks. Suicidality was assessed using the Mini International Neuropsychiatric Interview and the Hamilton Rating Scale for Depression (HAM-D). Treatment response was defined as HAM-D ≤ 17 and remission as HAM-D ≤ 7 after 4 weeks of treatment with antidepressants at adequate dose. Genotyping was performed for all relevant variations of the CYP1A2 gene (*1A, *1F, *1C, *1 J, *1 K), the CYP2C9 gene (*2, *3), the CYP2C19 gene (*2, *17) and the CYP2D6 gene (*3, *4, *5, *6, *9, *19, *XN). No association between both suicide risk and personal history of suicide attempts, and the above mentioned metabolic profiles were found after multiple testing corrections. In conclusion, the investigated cytochrome gene polymorphisms do not seem to be associated with suicide risk and/or a personal history of suicide attempts, though methodological and sample size limitations do not allow definitive conclusions.

  14. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6.

    PubMed

    Qiao, Wanqiong; Yang, Yao; Sebra, Robert; Mendiratta, Geetu; Gaedigk, Andrea; Desnick, Robert J; Scott, Stuart A

    2016-03-01

    The cytochrome P450-2D6 (CYP2D6) enzyme metabolizes ∼25% of common medications, yet homologous pseudogenes and copy number variants (CNVs) make interrogating the polymorphic CYP2D6 gene with short-read sequencing challenging. Therefore, we developed a novel long-read, full gene CYP2D6 single molecule real-time (SMRT) sequencing method using the Pacific Biosciences platform. Long-range PCR and CYP2D6 SMRT sequencing of 10 previously genotyped controls identified expected star (*) alleles, but also enabled suballele resolution, diplotype refinement, and discovery of novel alleles. Coupled with an optimized variant-calling pipeline, CYP2D6 SMRT sequencing was highly reproducible as triplicate intra- and inter-run nonreference genotype results were completely concordant. Importantly, targeted SMRT sequencing of upstream and downstream CYP2D6 gene copies characterized the duplicated allele in 15 control samples with CYP2D6 CNVs. The utility of CYP2D6 SMRT sequencing was further underscored by identifying the diplotypes of 14 samples with discordant or unclear CYP2D6 configurations from previous targeted genotyping, which again included suballele resolution, duplicated allele characterization, and discovery of a novel allele and tandem arrangement. Taken together, long-read CYP2D6 SMRT sequencing is an innovative, reproducible, and validated method for full-gene characterization, duplication allele-specific analysis, and novel allele discovery, which will likely improve CYP2D6 metabolizer phenotype prediction for both research and clinical testing applications.

  15. Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)

    ClinicalTrials.gov

    2016-10-24

    Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  16. Effects of monoamine oxidase inhibitor and cytochrome P450 2D6 status on 5-methoxy-N,N-dimethyltryptamine metabolism and pharmacokinetics.

    PubMed

    Shen, Hong-Wu; Wu, Chao; Jiang, Xi-Ling; Yu, Ai-Ming

    2010-07-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural psychoactive indolealkylamine drug that has been used for recreational purpose. Our previous study revealed that polymorphic cytochrome P450 2D6 (CYP2D6) catalyzed 5-MeO-DMT O-demethylation to produce active metabolite bufotenine, while 5-MeO-DMT is mainly inactivated through deamination pathway mediated by monoamine oxidase (MAO). This study, therefore, aimed to investigate the impact of CYP2D6 genotype/phenotype status and MAO inhibitor (MAOI) on 5-MeO-DMT metabolism and pharmacokinetics. Enzyme kinetic studies using recombinant CYP2D6 allelic isozymes showed that CYP2D6.2 and CYP2D6.10 exhibited 2.6- and 40-fold lower catalytic efficiency (V(max)/K(m)), respectively, in producing bufotenine from 5-MeO-DMT, compared with wild-type CYP2D6.1. When co-incubated with MAOI pargyline, 5-MeO-DMT O-demethylation in 10 human liver microsomes showed significantly strong correlation with bufuralol 1'-hydroxylase activities (R(2)=0.98; P<0.0001) and CYP2D6 contents (R(2)=0.77; P=0.0007), whereas no appreciable correlations with enzymatic activities of other P450 enzymes. Furthermore, concurrent MAOI harmaline sharply reduced 5-MeO-DMT depletion and increased bufotenine formation in human CYP2D6 extensive metabolizer hepatocytes. In vivo studies in wild-type and CYP2D6-humanized (Tg-CYP2D6) mouse models showed that Tg-CYP2D6 mice receiving the same dose of 5-MeO-DMT (20mg/kg, i.p.) had 60% higher systemic exposure to metabolite bufotenine. In addition, pretreatment of harmaline (5mg/kg, i.p.) led to 3.6- and 4.4-fold higher systemic exposure to 5-MeO-DMT (2mg/kg, i.p.), and 9.9- and 6.1-fold higher systemic exposure to bufotenine in Tg-CYP2D6 and wild-type mice, respectively. These findings indicate that MAOI largely affects 5-MeO-DMT metabolism and pharmacokinetics, as well as bufotenine formation that is mediated by CYP2D6.

  17. Role of cytochrome P450 2D6 genetic polymorphism in carvedilol hydroxylation in vitro

    PubMed Central

    Wang, Zhe; Wang, Li; Xu, Ren-ai; Zhan, Yun-yun; Huang, Cheng-ke; Dai, Da-peng; Cai, Jian-ping; Hu, Guo-xin

    2016-01-01

    Cytochrome P450 2D6 (CYP2D6) is a highly polymorphic enzyme that catalyzes the metabolism of a great number of therapeutic drugs. Up to now, >100 allelic variants of CYP2D6 have been reported. Recently, we identified 22 novel variants in the Chinese population in these variants. The purpose of this study was to examine the enzymatic activity of the variants toward the CYP2D6 substrate carvedilol in vitro. The CYP2D6 proteins, including CYP2D6.1 (wild type), CYP2D6.2, CYP2D6.10, and 22 other novel CYP2D6 variants, were expressed from insect microsomes and incubated with carvedilol ranging from 1.0 μM to 50 μM at 37°C for 30 minutes. After termination, the carvedilol metabolites were extracted and detected using ultra-performance liquid chromatography tandem mass-spectrometry. Among the 24 CYP2D6 variants, CYP2D6.92 and CYP2D6.96 were catalytically inactive and the remaining 22 variants exhibited significantly decreased intrinsic clearance values (ranging from ~25% to 95%) compared with CYP2D6.1. The present data in vitro suggest that the newly found variants significantly reduced catalytic activities compared with CYP2D6.1. Given that CYP2D6 protein activities could affect carvedilol plasma levels, these findings are greatly relevant to personalized medicine. PMID:27354764

  18. Cytochrome P450 2D6 variants in a Caucasian population: Allele frequencies and phenotypic consequences

    SciTech Connect

    Sachse, C.; Brockmoeller, J.; Bauer, S.; Roots, I.

    1997-02-01

    Cytochrome P450 2D6 (CYP2D6) metabolizes many important drugs. CYP2D6 activity ranges from complete deficiency to ultrafast metabolism, depending on at least 16 different known alleles. Their frequencies were determined in 589 unrelated German volunteers and correlated with enzyme activity measured by phenotyping with dextromethorphan or debrisoquine. For genotyping, nested PCR-RFLP tests from a PCR amplificate of the entire CYP2D6 gene were developed. The frequency of the CYP2D6*1 allele coding for extensive metabolizer (EM) phenotype was .364. The alleles coding for slightly (CYP2D6*2) or moderately (*9 and *10) reduced activity (intermediate metabolizer phenotype [IM]) showed frequencies of .324, .018, and .015, respectively. By use of novel PCR tests for discrimination, CYP2D6 gene duplication alleles were found with frequencies of.005 (*1 x 2), .013 (* 2 x 2), and .001 (*4 x 2). Frequencies of alleles with complete deficiency (poor metabolizer phenotype [PM]) were .207 (*4), .020 (*3 and *5), .009 (*6), and .001 (*7, *15, and *16). The defective CYP2D6 alleles *8, *11, *12, *13, and *14 were not found. All 41 PMs (7.0%) in this sample were explained by five mutations detected by four PCR-RFLP tests, which may suffice, together with the gene duplication test, for clinical prediction of CYP2D6 capacity. Three novel variants of known CYP2D6 alleles were discovered: *1C (T{sub 1957}C), *2B (additional C{sub 2558}T), and *4E (additional C{sub 2938}T). Analysis of variance showed significant differences in enzymatic activity measured by the dextromethorphan metabolic ratio (MR) between carriers of EN/PM (mean MR = .006) and IM/PM (mean MR = .014) alleles and between carriers of one (mean MR = .009) and two (mean MR = .003) functional alleles. The results of this study provide a solid basis for prediction of CYP2D6 capacity, as required in drug research and routine drug treatment. 35 refs., 4 figs., 5 tabs.

  19. Cytochrome P450 2D6 Activity Predicts Discontinuation of Tamoxifen Therapy in Breast Cancer Patients

    PubMed Central

    Rae, James M.; Sikora, Matthew J.; Henry, N. Lynn; Li, Lang; Kim, Seongho; Oesterreich, Steffi; Skaar, Todd; Nguyen, Anne T.; Desta, Zeruesenay; Storniolo, Anna Maria; Flockhart, David A.; Hayes, Daniel F.; Stearns, Vered

    2009-01-01

    The selective estrogen receptor modulator tamoxifen is routinely used for treatment and prevention of estrogen receptor positive breast cancer. Studies of tamoxifen adherence suggest that over half of patients discontinue treatment before the recommended 5 years. We hypothesized that polymorphisms in CYP2D6, the enzyme responsible for tamoxifen activation, predict for tamoxifen discontinuation. Tamoxifen-treated women (n = 297) were genotyped for CYP2D6 variants and assigned a “score” based on predicted allele activities from 0 (no activity) to 2 (high activity). Correlation between CYP2D6 score and discontinuation rates at 4 months were tested. We observed a strong non-linear correlation between higher CYP2D6 score and increased rates of discontinuation (r2 = 0.935, p = 0.018). These data suggest that presence of active CYP2D6 alleles may predict for higher likelihood of tamoxifen discontinuation. Therefore, patients who may be most likely to benefit from tamoxifen may paradoxically be most likely to discontinue treatment prematurely. PMID:19421167

  20. Differential Consequences of Tramadol in Overdosing: Dilemma of a Polymorphic Cytochrome P450 2D6-Mediated Substrate.

    PubMed

    Srinivas, Nuggehally R

    2015-09-01

    Tramadol is a centrally acting opioid analgesic that is prone to polymorphic metabolism via cytochrome P450 (CYP) 2D6. The generation of the active metabolite, O-desmethyltramadol, which occurs through the CYP 2D6 pathway, significantly contributes to the drug's activity. However, dosage adjustments of tramadol are typically not practiced in the clinic when treating patients who are homozygous extensive metabolizers, heterozygous extensive metabolizers, or poor metabolizers. In the event of a tramadol overdose, the consequences may be influenced importantly by the genotype or phenotype status of the subject. Depending on the individual subject's CYP 2D6 status, one may see excessive miotic-related toxicity driven by the excessive availability of O-desmethyltramadol or one may manifest mydriatic-related toxicity driven by the excessive availability of tramadol. This report provides pharmacokinetic perspectives in situations of tramadol overdosing.

  1. Increased risk of hospitalization for ultrarapid metabolizers of cytochrome P450 2D6

    PubMed Central

    Takahashi, Paul Y; Ryu, Euijung; Pathak, Jyotishman; Jenkins, Gregory D; Batzler, Anthony; Hathcock, Matthew A; Black, John Logan; Olson, Janet E; Cerhan, James R; Bielinski, Suzette J

    2017-01-01

    Background Cytochrome P450 2D6 (CYP2D6) is responsible for the metabolism of clinically used drugs and other environmental exposures, but it is unclear whether the CYP2D6 phenotype is associated with adverse health outcomes. The aim was to determine the association of CYP2D6 phenotype with the risk of hospitalization or an emergency department (ED) visit among a group of primary care patients. Methods In this study, 929 adult patients underwent CYP2D6 testing. The primary outcome was risk of hospitalization or an ED visit from January 2005 through September 2014. CYP2D6 genotypes were interpreted as 1 of 7 clinical phenotypes, from ultrarapid to poor metabolizer, and patients with the extensive metabolizer phenotype were used as the reference group. The hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated for finding the association of CYP2D6 phenotypes with the risk of hospitalization or an ED visit by using Cox proportional hazard models and adjusting for age and sex. Results The median age was 49 years (interquartile range, 46–52 years); 74% of patients had 3 or fewer chronic conditions, 285 had at least 1 hospitalization, and 496 had at least 1 ED visit. The risk of hospitalization was higher among patients who were ultrarapid metabolizers compared to extensive metabolizers (47% vs 30%; HR, 1.69; 95% CI, 1.11–2.57), as was the risk of an ED visit (62% vs 49%; HR, 1.50; 95% CI, 1.05–2.14). For poor metabolizers compared to extensive metabolizers, there was no difference in the risk of hospitalization (HR, 0.95; 95% CI, 0.58–1.56), but there was an increase in the risk of an ED visit (HR, 1.38; 95% CI, 0.96–1.98) (the difference was not statistically significant). Conclusion We found an increased risk of hospitalization or an ED visit among ultrarapid compared to extensive CYP2D6 metabolizers. Further research identifying the mechanisms of the association and ultimate clinical utility is warranted. PMID:28243137

  2. Paroxetine-induced conversion of cytochrome P450 2D6 phenotype and occurence of adverse effects.

    PubMed

    Zourková, A; Hadasová, E

    2003-03-01

    The paper is focused on a comparison of the distribution of side effects of treatment with paroxetine within a group of 30 patients genotyped and phenotyped for their CYP 2D6 metabolic status. Genotyping procedure showed that the patient group did not include any individual with poor metabolizer (PM) genotype; on the other hand, most patients (24) were classified as PMs by virtue of their phenotype, which suggests that a conversion to the poor metabolic phenotype ("phenocopy") occurred, probably as a consequence of a long-term administration of the strong CYP 2D6 inhibitor paroxetine. As to the occurence of common adverse effects, no marked difference between subjects converted into the PM group and those who had no history of such conversion was found. A significantly higher incidence of sexual dysfunction (p < 0.05) was, nevertheless, recorded in patients with the PM phenotype. The results of the study may provide evidence that it is the metabolic phenotype status, rather than the genetically given enzyme capacity (CYP 2D6 genotype), that is relevant for the actual toleration of treatment with CYP 2D6 inhibitors.

  3. Impact of Cytochrome P450 2D6 Function on the Chiral Blood Plasma Pharmacokinetics of 3,4-Methylenedioxymethamphetamine (MDMA) and Its Phase I and II Metabolites in Humans.

    PubMed

    Steuer, Andrea E; Schmidhauser, Corina; Tingelhoff, Eva H; Schmid, Yasmin; Rickli, Anna; Kraemer, Thomas; Liechti, Matthias E

    2016-01-01

    3,4-methylenedioxymethamphetamine (MDMA; ecstasy) metabolism is known to be stereoselective, with preference for S-stereoisomers. Its major metabolic step involves CYP2D6-catalyzed demethylenation to 3,4-dihydroxymethamphetamine (DHMA), followed by methylation and conjugation. Alterations in CYP2D6 genotype and/or phenotype have been associated with higher toxicity. Therefore, the impact of CYP2D6 function on the plasma pharmacokinetics of MDMA and its phase I and II metabolites was tested by comparing extensive metabolizers (EMs), intermediate metabolizers (IMs), and EMs that were pretreated with bupropion as a metabolic inhibitor in a controlled MDMA administration study. Blood plasma samples were collected from 16 healthy participants (13 EMs and three IMs) up to 24 h after MDMA administration in a double-blind, placebo-controlled, four-period, cross-over design, with subjects receiving 1 week placebo or bupropion pretreatment followed by a single placebo or MDMA (125 mg) dose. Bupropion pretreatment increased the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from 0 to 24 h (AUC24) of R-MDMA (9% and 25%, respectively) and S-MDMA (16% and 38%, respectively). Bupropion reduced the Cmax and AUC24 of the CYP2D6-dependently formed metabolite stereoisomers of DHMA 3-sulfate, DHMA 4-sulfate, and 4-hydroxy-3-methoxymethamphetamine (HMMA sulfate and HMMA glucuronide) by approximately 40%. The changes that were observed in IMs were generally comparable to bupropion-pretreated EMs. Although changes in stereoselectivity based on CYP2D6 activity were observed, these likely have low clinical relevance. Bupropion and hydroxybupropion stereoisomer pharmacokinetics were unaltered by MDMA co-administration. The present data might aid further interpretations of toxicity based on CYP2D6-dependent MDMA metabolism.

  4. Impact of Cytochrome P450 2D6 Function on the Chiral Blood Plasma Pharmacokinetics of 3,4-Methylenedioxymethamphetamine (MDMA) and Its Phase I and II Metabolites in Humans

    PubMed Central

    Steuer, Andrea E.; Schmidhauser, Corina; Tingelhoff, Eva H.; Schmid, Yasmin; Rickli, Anna; Kraemer, Thomas; Liechti, Matthias E.

    2016-01-01

    3,4-methylenedioxymethamphetamine (MDMA; ecstasy) metabolism is known to be stereoselective, with preference for S-stereoisomers. Its major metabolic step involves CYP2D6-catalyzed demethylenation to 3,4-dihydroxymethamphetamine (DHMA), followed by methylation and conjugation. Alterations in CYP2D6 genotype and/or phenotype have been associated with higher toxicity. Therefore, the impact of CYP2D6 function on the plasma pharmacokinetics of MDMA and its phase I and II metabolites was tested by comparing extensive metabolizers (EMs), intermediate metabolizers (IMs), and EMs that were pretreated with bupropion as a metabolic inhibitor in a controlled MDMA administration study. Blood plasma samples were collected from 16 healthy participants (13 EMs and three IMs) up to 24 h after MDMA administration in a double-blind, placebo-controlled, four-period, cross-over design, with subjects receiving 1 week placebo or bupropion pretreatment followed by a single placebo or MDMA (125 mg) dose. Bupropion pretreatment increased the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from 0 to 24 h (AUC24) of R-MDMA (9% and 25%, respectively) and S-MDMA (16% and 38%, respectively). Bupropion reduced the Cmax and AUC24 of the CYP2D6-dependently formed metabolite stereoisomers of DHMA 3-sulfate, DHMA 4-sulfate, and 4-hydroxy-3-methoxymethamphetamine (HMMA sulfate and HMMA glucuronide) by approximately 40%. The changes that were observed in IMs were generally comparable to bupropion-pretreated EMs. Although changes in stereoselectivity based on CYP2D6 activity were observed, these likely have low clinical relevance. Bupropion and hydroxybupropion stereoisomer pharmacokinetics were unaltered by MDMA co-administration. The present data might aid further interpretations of toxicity based on CYP2D6-dependent MDMA metabolism. PMID:26967321

  5. Activities of cytochrome P450 1A2, N-acetyltransferase 2, xanthine oxidase, and cytochrome P450 2D6 are unaltered in children with cystic fibrosis.

    PubMed

    Kennedy, Mary Jayne; Scripture, Charity D; Kashuba, Angela D M; Scott, Christy S; Gaedigk, Andrea; Kearns, Gregory L

    2004-03-01

    The activities of hepatic cytochrome P450 (CYP) 1A2, N-acetyltransferase 2 (NAT-2), xanthine oxidase (XO), and CYP2D6 were evaluated in 12 young children (aged 3-8 years) with mild cystic fibrosis (CF) and 12 age-matched healthy control subjects by use of standard caffeine and dextromethorphan phenotyping methods. Subjects were given 4 oz of Coca-Cola (approximately 35 mg caffeine) (The Coca-Cola Company, Atlanta, Ga) and a single 0.5-mg/kg dose of dextromethorphan. Urine was collected for 8 hours after biomarker administration, and enzyme activity was assessed by use of previously validated caffeine and dextromethorphan molar ratios. CYP2D6 genotyping was also performed in 10 of 12 subjects with CF and 11 of 12 control subjects. There were no significant differences in the urinary molar ratios for any of the enzyme systems evaluated. These data suggest that CF does not alter the activities of CYP1A2, NAT-2, XO, and CYP2D6. Altered biotransformation of drugs in this patient population is likely enzyme- and isoform-specific and thus is apparent for only selected compounds that are substrates for enzymes other than CYP1A2, NAT-2, XO, and CYP2D6.

  6. Variable cytochrome P450 2D6 expression and metabolism of codeine and other opioid prodrugs: implications for the Australian anaesthetist.

    PubMed

    Wilcox, R A; Owen, H

    2000-12-01

    Codeine is a popular opioid prodrug dependent on the activity of the specific cytochrome P450 enzyme 2D6 (CYP2D6). This enzyme catalyses the production of the potent analgesic metabolite morphine, but genetic studies have demonstrated that individuals from different ethnic groups exhibit considerable variability in the functional capacities of their expressed CYP2D6 enzymes, and pharmacological studies have shown many commonly prescribed drugs can reduce the action of CYP2D6 enzymes. These findings have significant clinical implications for the rational prescription of effective analgesia, especially in a multicultural country like Australia.

  7. Human Liver Mitochondrial Cytochrome P450 2D6: Individual Variations and Implications in Drug Metabolism

    PubMed Central

    Cook Sangar, Michelle L.; Anandatheerthavarada, Hindupur K.; Tang, Weigang; Prabu, Subbuswamy K.; Martin, Martha V.; Dostalek, Miroslav; Guengerich, F. Peter; Avadhani, Narayan G.

    2009-01-01

    Summary Constitutively expressed human cytochrome P450 2D6 (CYP2D6) is responsible for the metabolism of approximately 25% of drugs in common clinical use. It is widely accepted that CYP2D6 is localized in the endoplasmic reticulum of cells; however, we have identified this enzyme in the mitochondria of human liver samples and found that extensive inter-individual variability exists in the level of the mitochondrial enzyme. Metabolic assays using 7-methoxy-4-aminomethylcoumarin as a substrate show that the human liver mitochondrial enzyme is capable of oxidizing this substrate and that the catalytic activity is supported by mitochondrial electron transfer proteins. Here we show that CYP2D6 contains an N-terminal chimeric signal that mediates its bimodal targeting to the endoplasmic reticulum (ER) and mitochondria. In vitro mitochondrial import studies using both N-terminal deletions and point mutations suggest that the mitochondrial targeting signal is localized between residues 23-33 and that the positively charged residues at positions 24, 25, 26, 28, and 32 are required for mitochondrial targeting. The importance of the positively charged residues was confirmed by transient transfection of a CYP2D6 mitochondrial targeting signal mutant in COS-7 cells. Both the mitochondria and the microsomes from a CYP2D6 stable expression cell line contain the enzyme and both fractions exhibit bufuralol 1′-hydroxylation activity, which is completely inhibited by CYP2D6 inhibitory antibody. Overall these results suggest that the targeting of CYP2D6 to mitochondria could be an important physiological process that has significance in xenobiotic metabolism. PMID:19438707

  8. Cytochrome P450-2D6 extensive metabolizers are more vulnerable to methamphetamine-associated neurocognitive impairment: preliminary findings.

    PubMed

    Cherner, Mariana; Bousman, Chad; Everall, Ian; Barron, Daniel; Letendre, Scott; Vaida, Florin; Atkinson, J Hampton; Heaton, Robert; Grant, Igor

    2010-09-01

    While neuropsychological deficits are evident among methamphetamine (meth) addicts, they are often unrelated to meth exposure parameters such as lifetime consumption and length of abstinence. The notion that some meth users develop neuropsychological impairments while others with similar drug exposure do not, suggests that there may be individual differences in vulnerability to the neurotoxic effects of meth. One source of differential vulnerability could come from genotypic variability in metabolic clearance of meth, dependent on the activity of cytochrome P450-2D6 (CYP2D6). We compared neuropsychological performance in 52 individuals with a history of meth dependence according with their CYP2D6 phenotype. All were free of HIV or hepatitis C infection and did not meet dependence criteria for other substances. Extensive metabolizers showed worse overall neuropsychological performance and were three times as likely to be cognitively impaired as intermediate/poor metabolizers. Groups did not differ in their demographic or meth use characteristics, nor did they evidence differences in mood disorder or other substance use. This preliminary study is the first to suggest that efficient meth metabolism is associated with worse neurocognitive outcomes in humans, and implicates the products of oxidative metabolism of meth as a possible source of brain injury.

  9. Comparative aromatic hydroxylation and N-demethylation of MPTP neurotoxin and its analogs, N-methylated {beta}-carboline and isoquinoline alkaloids, by human cytochrome P450 2D6

    SciTech Connect

    Herraiz, Tomas . E-mail: therraiz@ifi.csic.es; Guillen, Hugo; Aran, Vicente J.; Idle, Jeffrey R.; Gonzalez, Frank J.

    2006-11-01

    1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin is a chemical inducer of Parkinson's disease (PD) whereas N-methylated {beta}-carbolines and isoquinolines are naturally occurring analogues of MPTP involved in PD. This research has studied the oxidation of MPTP by human CYP2D6 (CYP2D6*1 and CYP2D6*10 allelic variants) as well as by a mixture of cytochrome P450s-resembling HLM, and the products generated compared with those afforded by human monoamine oxidase (MAO-B). MPTP was efficiently oxidized by CYP2D6 to two main products: MPTP-OH (p-hydroxylation) and PTP (N-demethylation), with turnover numbers of 10.09 min{sup -1} and K {sub m} of 79.36 {+-} 3 {mu}M (formation of MPTP-OH) and 18.95 min{sup -1} and K {sub m} 69.6 {+-} 2.2 {mu}M (PTP). Small amounts of dehydrogenated toxins MPDP{sup +} and MPP{sup +} were also detected. CYP2D6 competed with MAO-B for the oxidation of MPTP. MPTP oxidation by MAO-B to MPDP{sup +} and MPP{sup +} toxins (bioactivation) was up to 3-fold higher than CYP2D6 detoxification to PTP and MPTP-OH. Several N-methylated {beta}-carbolines and isoquinolines were screened for N-demethylation (detoxification) that was not significantly catalyzed by CYP2D6 or the P450s mixture. In contrast, various {beta}-carbolines were efficiently hydroxylated to hydroxy-{beta}-carbolines by CYP2D6. Thus, N(2)-methyl-1,2,3,4-tetrahydro-{beta}-carboline (a close MPTP analog) was highly hydroxylated to 6-hydroxy-N(2)-methyl-1,2,3,4-tetrahydro-{beta}-carboline and a corresponding 7-hydroxy-derivative. Thus, CYP2D6 could participate in the bioactivation and/or detoxification of these neuroactive compounds by an active hydroxylation pathway. The CYP2D6*1 enzymatic variant exhibited much higher metabolism of both MPTP and N(2)-methyl-1,2,3,4-tetrahydro-{beta}-carboline than the CYP2D6*10 variant, highlighting the importance of CYP2D6 polymorphism in the oxidation of these toxins. Altogether, these results suggest that CYP2D6 can play an important role

  10. Does pharmacogenetic testing for CYP450 2D6 and 2C19 among patients with diagnoses within the schizophrenic spectrum reduce treatment costs?

    PubMed

    Herbild, Louise; Andersen, Stig E; Werge, Thomas; Rasmussen, Henrik B; Jürgens, Gesche

    2013-10-01

    The effect of pharmacogenetic testing for CYP450 2D6 and 2C19 on treatment costs have not yet been documented. This study used Danish patient registers to calculate healthcare costs of treating patients with diagnoses within the schizophrenic spectrum for 1 year with or without pharmacogenetic testing for polymorphisms in the genes for the CYP2D6 and CYP2C19 enzymes. In a randomized, controlled trial, stratified with respect to metabolizer genotype, 104 patients were assigned to treatment based on pharmacogenetic testing and 103 patients to treatment as usual. Random exclusion of extensive and intermediate metabolizers was used to increase the frequency of extreme metabolizers (poor metabolizers and ultrarapid metabolizers for CYP2D6) to 20% in both groups. Cost differences were analysed at several levels including (i) overall healthcare expenditure, (ii) psychiatric hospital cost (iii) nonpsychiatric hospital cost, (iv) primary care spending and (v) pharmaceuticals. Statistically significant differences in costs of psychiatric care dependent on metabolizer status were found between intervention groups. Pharmacogenetic testing significantly reduced costs among the extreme metabolizers (poor metabolizers and ultrarapid metabolizers) to 28%. Use of primary care services and pharmaceuticals was also affected by the intervention.This study confirms earlier findings that extreme metabolizers (poor and ultrarapid metabolizers) incur higher costs than similar patients with a normal metabolizer genotype. However, this study shows that these excess costs can be reduced by pharmacogenetic testing. Pharmacogenetic testing for CYP2D6 and CYP2C19 could thus be considered as a means of curtailing high psychiatric treatment costs among extreme metabolizers.

  11. CYP2C19 genotype predicts steady state escitalopram concentration in GENDEP.

    PubMed

    Huezo-Diaz, Patricia; Perroud, Nader; Spencer, Edgar P; Smith, Rebecca; Sim, Sarah; Virding, Susanne; Uher, Rudolf; Gunasinghe, Cerisse; Gray, Jo; Campbell, Desmond; Hauser, Joanna; Maier, Wolfgang; Marusic, Andrej; Rietschel, Marcella; Perez, Jorge; Giovannini, Caterina; Mors, Ole; Mendlewicz, Julien; McGuffin, Peter; Farmer, Anne E; Ingelman-Sundberg, Magnus; Craig, Ian W; Aitchison, Katherine J

    2012-03-01

    In vitro work shows CYP2C19 and CYP2D6 contribute to the metabolism of escitalopram to its primary metabolite, N-desmethylescitalopram. We report the effect of CYP2C19 and CYP2D6 genotypes on steady state morning concentrations of escitalopram and N-desmethylescitalopram and the ratio of this metabolite to the parent drug in 196 adult patients with depression in GENDEP, a clinical pharmacogenomic trial. Subjects who had one CYP2D6 allele associated with intermediate metabolizer phenotype and one associated with poor metabolizer (i.e. IM/PM genotypic category) had a higher mean logarithm escitalopram concentration than CYP2D6 extensive metabolizers (EMs) (p = 0.004). Older age was also associated with higher concentrations of escitalopram. Covarying for CYP2D6 and age, we found those homozygous for the CYP2C19*17 allele associated with ultrarapid metabolizer (UM) phenotype had a significantly lower mean escitalopram concentration (2-fold, p = 0.0001) and a higher mean metabolic ratio (p = 0.0003) than EMs, while those homozygous for alleles conferring the PM phenotype had a higher mean escitalopram concentration than EMs (1.55-fold, p = 0.008). There was a significant overall association between CYP2C19 genotypic category and escitalopram concentration (p = 0.0003; p = 0.0012 Bonferroni corrected). In conclusion, we have demonstrated an association between CYP2C19 genotype, including the CYP2C19*17 allele, and steady state escitalopram concentration.

  12. Binding of bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine to wild-type and F120A mutant cytochrome P450 2D6 studied by resonance Raman spectroscopy

    SciTech Connect

    Bonifacio, Alois . E-mail: zwan@few.vu.nl

    2006-05-12

    Cytochrome P450 2D6 (CYP2D6) is one of the most important drug-metabolizing enzymes in humans. Resonance Raman data, reported for First time for CYP2D6, show that the CYP2D6 heme is found to be in a six-coordinated low-spin state in the absence of substrates, and it is perturbed to different extents by bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine (MDMA). Dextromethorphan and MDMA induce in CYP2D6 a significant amount of five-coordinated high-spin heme species and reduce the polarity of its heme-pocket, whereas bufuralol does not. Spectra of the F120A mutant CYP2D6 suggest that Phe{sup 12} is involved in substrate-binding of dextromethorphan and MDMA, being responsible for the spectral differences observed between these two compounds and bufuralol. These differences could be explained postulating a different substrate mobility for each compound in the CYP2D6 active site, consistently with the role previously suggested for Phe{sup 12} in binding dextromethorphan and MDMA.

  13. Using a homology model of cytochrome P450 2D6 to predict substrate site of metabolism

    NASA Astrophysics Data System (ADS)

    Unwalla, Rayomand J.; Cross, Jason B.; Salaniwal, Sumeet; Shilling, Adam D.; Leung, Louis; Kao, John; Humblet, Christine

    2010-03-01

    CYP2D6 is an important enzyme that is involved in first pass metabolism and is responsible for metabolizing 25% of currently marketed drugs. A homology model of CYP2D6 was built using X-ray structures of ligand-bound CYP2C5 complexes as templates. This homology model was used in docking studies to rationalize and predict the site of metabolism of known CYP2D6 substrates. While the homology model was generally found to be in good agreement with the recently solved apo (ligand-free) X-ray structure of CYP2D6, significant differences between the structures were observed in the B' and F-G helical region. These structural differences are similar to those observed between ligand-free and ligand-bound structures of other CYPs and suggest that these conformational changes result from induced-fit adaptations upon ligand binding. By docking to the homology model using Glide, it was possible to identify the correct site of metabolism for a set of 16 CYP2D6 substrates 85% of the time when the 5 top scoring poses were examined. On the other hand, docking to the apo CYP2D6 X-ray structure led to a loss in accuracy in predicting the sites of metabolism for many of the CYP2D6 substrates considered in this study. These results demonstrate the importance of describing substrate-induced conformational changes that occur upon binding. The best results were obtained using Glide SP with van der Waals scaling set to 0.8 for both the receptor and ligand atoms. A discussion of putative binding modes that explain the distribution of metabolic sites for substrates, as well as a relationship between the number of metabolic sites and substrate size, are also presented. In addition, analysis of these binding modes enabled us to rationalize the typical hydroxylation and O-demethylation reactions catalyzed by CYP2D6 as well as the less common N-dealkylation.

  14. Determination of the relationship between genotypes and chromosomal aberration frequencies in a normal population

    SciTech Connect

    Ramsey, M.; Tucker, J.

    1997-10-01

    Individual differences in cancer susceptibility may be attributed in part to genetic differences in the genes which code for enzymes involved in metabolic activation and detoxification of environmental procarcinogens. Polymorphisms of certain genes functioning in this manner (CYP2D6, CYP1A1, CYP2E1, NAT1, NAT2, GSTT1, GSTM1) have been linked to an increased risk of some cancers. An increased level of genomic instability, often reflected as an increase in chromosomal aberrations (CA), has also been associated with an elevated risk of cancer. Accurate polymorphism frequency determinations for these genes in a normal population is needed to establish whether these frequencies are different in a diseased population. In this work, analyses are being performed on over 100 normal individuals, ranging from 0 to 80 years of age, to determine CA frequency and genotypes. Individual exposure and health data have also been obtained from all individuals in the study. These analyses will provide a baseline frequency for the various gene polymorphisms in a normal (mainly Caucasian) population, and will determine whether a relationship between the CA frequency and certain polymorphisms and or genotypes exists. In addition the interaction between environmental exposures (such as smoking), genotypes and CA frequencies are being examined. At present 24 individuals have been genotyped for GSTT1, GSTM1 and CYP2D6(T) and their CA frequencies determined. Genotype frequencies of 21% for GSTM1 B, 4% for GSTM1 null, 29% for GSTM1 A, 21% for GSTM1 B, 4% for GSTM1 A,B, and 0% for CYP2D6(T) have been determined from the small sample analyzed to date. We plan to extend our genotype analysis to include the remaining CYP2D6 polymorphisms, CYP2E1, CYP1A1, NAT1 and NAT2.

  15. Altered spin state equilibrium in the T309V mutant of cytochrome P450 2D6: a spectroscopic and computational study

    PubMed Central

    Bonifacio, Alois; Groenhof, André R.; Keizers, Peter H. J.; de Graaf, Chris; Commandeur, Jan N. M.; Vermeulen, Nico P. E.; Ehlers, Andreas W.; Lammertsma, Koop; Gooijer, Cees

    2007-01-01

    Cytochrome P450 2D6 (CYP2D6) is one of the most important cytochromes P450 in humans. Resonance Raman data from the T309V mutant of CYP2D6 show that the substitution of the conserved I-helix threonine situated in the enzyme’s active site perturbs the heme spin equilibrium in favor of the six-coordinated low-spin species. A mechanistic hypothesis is introduced to explain the experimental observations, and its compatibility with the available structural and spectroscopic data is tested using quantum-mechanical density functional theory calculations on active-site models for both the CYP2D6 wild type and the T309V mutant. Electronic supplementary material The online version of this article (doi:10.1007/s00775-007-0210-5) contains supplementary material, which is available to authorized users. PMID:17318599

  16. Substituted Imidazole of 5-Fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine Inactivates Cytochrome P450 2D6 by Protein Adduction

    PubMed Central

    Nagy, Leslie D.; Mocny, Catherine S.; Diffenderfer, Laura E.; Hsi, David J.; Butler, Brendan F.; Arthur, Evan J.; Fletke, Kyle J.; Palamanda, Jairam R.; Nomeir, Amin A.

    2011-01-01

    5-Fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine (SCH 66712) is a potent mechanism-based inactivator of human cytochrome P450 2D6 that displays type I binding spectra with a Ks of 0.39 ± 0.10 μM. The partition ratio is ∼3, indicating potent inactivation that addition of exogenous nucleophiles does not prevent. Within 15 min of incubation with SCH 66712 and NADPH, ∼90% of CYP2D6 activity is lost with only ∼20% loss in ability to bind CO and ∼25% loss of native heme over the same time. The stoichiometry of binding to the protein was 1.2:1. SDS-polyacrylamide gel electrophoresis with Western blotting and autoradiography analyses of CYP2D6 after incubations with radiolabeled SCH 66712 further support the presence of a protein adduct. Metabolites of SCH 66712 detected by mass spectrometry indicate that the phenyl group on the imidazole ring of SCH 66712 is one site of oxidation by CYP2D6 and could lead to methylene quinone formation. Three other metabolites were also observed. For understanding the metabolic pathway that leads to CYP2D6 inactivation, metabolism studies with CYP2C9 and CYP2C19 were performed because neither of these enzymes is significantly inhibited by SCH 66712. The metabolites formed by CYP2C9 and CYP2C19 are the same as those seen with CYP2D6, although in different abundance. Modeling studies with CYP2D6 revealed potential roles of various active site residues in the oxidation of SCH 66712 and inactivation of CYP2D6 and showed that the phenyl group of SCH 66712 is positioned at 2.2 Å from the heme iron. PMID:21422192

  17. Addressing Adherence Using Genotype-Specific PBPK Modeling—Impact of Drug Holidays on Tamoxifen and Endoxifen Plasma Levels

    PubMed Central

    Dickschen, Kristin J. R.; Willmann, Stefan; Hempel, Georg; Block, Michael

    2017-01-01

    Introduction: Tamoxifen is one of the most common treatment opportunities for hormonal positive breast cancer. Despite its good tolerability, patients demonstrate decreasing adherence over years impacting on therapeutic success. PBPK modeling was applied to demonstrate the impact of drug holidays on plasma levels of tamoxifen and its active metabolite endoxifen for different CYP2D6 genotypes. Materials and Methods: A virtual study with 24,000 patients was conducted in order to investigate the development of tamoxifen steady-state kinetics in patient groups of different CYP2D6 genotypes. The impact of drug holidays on steady-state kinetics was investigated assuming changing drug holiday scenarios. Results: Drug holidays in CYP2D6 extensive and intermediate metabolizers (EMs, IMs) exceeding 1 month lead to a decrease of endoxifen steady-state trough levels below the 5th percentile of the control group. Assuming drug holidays of 1, 2, or 3 months and administering a fixed-dose combination of 20 mg tamoxifen and 3 mg endoxifen EMs demonstrated re-established endoxifen steady-state trough levels after 5, 8, and 9 days. IMs receiving the same fixed-dose combination demonstrated re-established endoxifen steady-state trough levels after 7, 10, and 11 days. Discussion: The PBPK model impressively demonstrates the impact of drug holidays in different CYP2D6 genotypes on PK. Population simulation results indicate that drug holidays of more than 2 weeks cause a tremendous decrease of plasma levels despite the long half-life of tamoxifen. To improve therapeutic success, PBPK modeling allows identifying genotype-specific differences in PK following drug holidays and adequate treatment with loading doses. PMID:28382001

  18. Differential time course of cytochrome P450 2D6 enzyme inhibition by fluoxetine, sertraline, and paroxetine in healthy volunteers.

    PubMed

    Liston, Heidi L; DeVane, C Lindsay; Boulton, David W; Risch, Samuel C; Markowitz, John S; Goldman, Juliet

    2002-04-01

    The selective serotonin reuptake inhibitors (SSRIs) paroxetine, sertraline, and fluoxetine have varying degrees of potency in inhibiting the hepatic cytochrome P450 (CYP) 2D6 enzyme. However, the time course for maximum inhibition to occur or for inhibition to dissipate when dosing is discontinued, requires clarification. In an open label, parallel group study of 45 healthy volunteers, the time course of CYP2D6 inhibition of the above SSRIs was evaluated. Subjects were randomized to receive paroxetine at 20 mg/day for 10 days; sertraline at 50 mg/day for 3 days, followed by sertraline at 100 mg/day for 10 days; or fluoxetine at 20 mg/day for 28 days. CYP2D6 activity was assessed using the dextromethorphan metabolic ratio (DMR) on antidepressant days 5 and 10 for sertraline and paroxetine and at weekly intervals for fluoxetine. Following SSRI discontinuation, calculation of a CYP2D6 inhibition half-life (t(1/2)inh) revealed the time course of fluoxetine inhibition (t(1/2)inh = 7.0 +/- 1.5 days) to be significantly longer than either paroxetine (t(1/2)inh = 2.9 +/- 1.9) or sertraline (t(1/2)inh = 3.0 +/- 3.0) (p < 0.01), but the latter were not significantly different from each other (p > 0.05). Time for the extrapolated DMR versus time log-linear plots to return to baseline was significantly different between fluoxetine (63.2 +/- 5.6 days) and both paroxetine (20.3 +/- 6.4 days) and sertraline (25.0 +/- 11.0 days) (p < 0.01), making the rank order (from longest to shortest) of time for CYP2D6 inhibition to dissipate: fluoxetine > sertraline >or= paroxetine. Differences between mean baseline DMR values and measured values obtained after drug discontinuation for each drug group became nonsignificant on discontinuation day 5 for both paroxetine and sertraline and on discontinuation day 42 for fluoxetine. These data define the time course of a persistent effect that fluoxetine, sertraline, and paroxetine have on CYP2D6 following drug discontinuation and should be

  19. In vivo effects of goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2, 2D6, 2E1, and 3A4 phenotypes

    PubMed Central

    Gardner, Stephanie F.; Hubbard, Martha A.; Williams, D. Keith; Gentry, W. Brooks; Khan, Ikhlas A.; Shah., Amit

    2007-01-01

    Objectives Phytochemical-mediated modulation of cytochrome P-450 activity may underlie many herb-drug interactions. Single time-point, phenotypic metabolic ratios were used to determine whether long-term supplementation of goldenseal (Hydrastis canadensis), black cohosh (Cimicifuga racemosa), kava kava (Piper methysticum), or valerian (Valeriana officinalis) extracts affected CYP1A2, CYP2D6, CYP2E1, or CYP3A4/5 activity. Methods Twelve healthy volunteers (6 females) were randomly assigned to receive goldenseal, black cohosh, kava kava, or valerian for 28 days. For each subject, a 30-day washout period was interposed between each supplementation phase. Probe drug cocktails of midazolam and caffeine, followed 24 hours later by chlorzoxazone and debrisoquine were administered before (baseline) and at the end of supplementation. Pre- and post-supplementation phenotypic trait measurements were determined for CYP3A4/5, CYP1A2, CYP2E1, and CYP2D6 using 1-hydroxymidazolam/midazolam serum ratios (1-hour sample), paraxanthine/caffeine serum ratios (6-hour sample), 6-hydroxychlorzoxazone/chlorzoxazone serum ratios (2-hour sample), and debrisoquine urinary recovery ratios (8-hour collection), respectively. The content of purported “active” phytochemicals was determined for each supplement. Results Comparisons of pre- and post-supplementation phenotypic ratio means revealed significant inhibition (~40%) of CYP2D6 (difference = −0.228; 95% CI = −0.268 to −0.188) and CYP3A4/5 (difference = −1.501; 95% CI = −1.840 to −1.163) activity for goldenseal. Kava produced significant reductions (~40%) in CYP2E1 only (difference = −0.192; 95% CI = −0.325 to −0.060). Black cohosh also exhibited statistically significant inhibition of CYP2D6 (difference = −0.046; 95% CI = −0.085 to −0.007), but the magnitude of the effect (~7%) did not appear clinically relevant. No significant changes in phenotypic ratios were observed for valerian. Conclusions Botanical

  20. Metabolism of MPTP by cytochrome P4502D6 and the demonstration of 2D6 mRNA in human foetal and adult brain by in situ hybridization.

    PubMed

    Gilham, D E; Cairns, W; Paine, M J; Modi, S; Poulsom, R; Roberts, G C; Wolf, C R

    1997-01-01

    1. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a thermal breakdown product of synthetic 'street' heroin, is known to cause Parkinson's Disease-like symptoms in man. 2. The mechanism of action of this neurotoxin is thought to involve activation by the monoamine oxidase B system and subsequent toxicity by inhibition of neuronal mitochondrial respiration. The manifestation of toxicity will be a balance between the rate of activation of this compound versus its rate of inactivation through metabolism by enzymes such as the cytochrome P450-dependent monooxygenases. 3. In this report we demonstrate that MPTP N-demethylation, a detoxification pathway, is catalysed by cytochrome P450 CYP2D6 and up to 40% of the hepatic metabolism is mediated by this enzyme. 4. Perhaps more importantly we also demonstrate by in situ hybridization that CYP2D6 is localized in the pigmented neurons of the substantia nigra indicating that 2D6-mediated detoxification will occur in target cells. 5. These data present evidence that CYP2D6 will be a factor in susceptibility to MPTP neuronal toxicity and provide a biochemical rationale for the genetic observations linking a polymorphism at the CYP2D6 locus with susceptibility to Parkinson's.

  1. Metabolic regio- and stereoselectivity of cytochrome P450 2D6 towards 3,4-methylenedioxy-N-alkylamphetamines: in silico predictions and experimental validation.

    PubMed

    Keizers, Peter H J; de Graaf, Chris; de Kanter, Frans J J; Oostenbrink, Chris; Feenstra, K Anton; Commandeur, Jan N M; Vermeulen, Nico P E

    2005-09-22

    A series of 3,4-methylenedioxy-N-alkylamphetamines (MDAAs) were automatically docked and subjected to molecular dynamics (MD) simulations in a cytochrome P450 2D6 (CYP2D6) protein model. The predicted substrate binding orientations, sites of oxidation, and relative reactivities were compared to the experimental data of wild-type and Phe120Ala mutant CYP2D6. Automated docking results were not sufficient to accurately rationalize experimental binding orientations of 3,4-methylenedioxy-N-methylamphetamine (MDMA) in the two enzymes as measured with spin lattice relaxation NMR. Nevertheless, the docking results could be used as starting structures for MD simulations. Predicted binding orientations of MDMA and sites of oxidation of the MDAAs derived from MD simulations matched well with the experimental data. It appeared the experimental results were best described in MD simulations considering the nitrogen atoms of the MDAAs in neutral form. Differences in regioselectivity and stereoselectivity in the oxidative metabolism of the MDAAs by the Phe120Ala mutant CYP2D6 were correctly predicted, and the effects of the Phe120Ala mutation could be rationalized as well.

  2. Binding of 7-methoxy-4-(aminomethyl)-coumarin to wild-type and W128F mutant cytochrome P450 2D6 studied by time-resolved fluorescence spectroscopy

    PubMed Central

    Stortelder, Aike; Keizers, Peter H. J.; Oostenbrink, Chris; De Graaf, Chris; De Kruijf, Petra; Vermeulen, Nico P. E.; Gooijer, Cees; Commandeur, Jan N. M.; Van Der Zwan, Gert

    2005-01-01

    Enzyme structure and dynamics may play a main role in substrate binding and the subsequent steps in the CYP (cytochrome P450) catalytic cycle. In the present study, changes in the structure of human CYP2D6 upon binding of the substrate are studied using steady-state and time-resolved fluorescence methods, focusing not only on the emission of the tryptophan residues, but also on emission of the substrate. As a substrate, MAMC [7-methoxy-4-(aminomethyl)-coumarin] was selected, a compound exhibiting native fluorescence. As well as the wild-type, the W128F (Trp128→Phe) mutant of CYP2D6 was studied. After binding, a variety of energy transfer possibilities exist, and molecular dynamics simulations were performed to calculate distances and relative orientations of donors and acceptors. Energy transfer from Trp128 to haem appeared to be important; its emission was related to the shortest of the three average tryptophan fluorescence lifetimes observed for CYP2D6. MAMC to haem energy transfer was very efficient as well: when bound in the active site, the emission of MAMC was fully quenched. Steady-state anisotropy revealed that besides the MAMC in the active site, another 2.4% of MAMC was bound outside of the active site to wild-type CYP2D6. The tryptophan residues in CYP2D6 appeared to be less accessible for the external quenchers iodide and acrylamide in presence of MAMC, indicating a tightening of the enzyme structure upon substrate binding. However, the changes in the overall enzyme structure were not very large, since the emission characteristics of the enzyme were not very different in the presence of MAMC. PMID:16190863

  3. Multiple doses of saw palmetto (Serenoa repens) did not alter cytochrome P450 2D6 and 3A4 activity in normal volunteers.

    PubMed

    Markowitz, John S; Donovan, Jennifer L; Devane, C Lindsay; Taylor, Robin M; Ruan, Ying; Wang, Jun-Sheng; Chavin, Kenneth D

    2003-12-01

    Saw palmetto (Serenoa repens) is the most commonly used herbal preparation in the treatment of benign prostatic hyperplasia. The objective of this study was to determine whether a characterized saw palmetto product affects the activity of cytochrome P450 (CYP) 2D6 or 3A4 in healthy volunteers (6 men and 6 women). The probe substrates dextromethorphan (CYP2D6 activity) and alprazolam (CYP3A4 activity) were administered orally at baseline and again after exposure to saw palmetto (320-mg capsule once daily) for 14 days. Dextromethorphan metabolic ratios and alprazolam pharmacokinetics were determined at baseline and after saw palmetto treatment. The mean ratio of dextromethorphan to its metabolite was 0.038 +/- 0.044 at baseline and 0.048 +/- 0.080 after 14 days of saw palmetto administration (P =.704, not significant [NS]), indicating a lack of effect on CYP2D6 activity. The area under the plasma alprazolam concentration versus time curve was 476 +/- 178 h. ng. mL(-1) at baseline and 479 +/- 125 h. ng. mL(-1) after saw palmetto treatment (P =.923, NS), indicating a lack of effect on CYP3A4 activity. The elimination half-life of alprazolam was 11.4 +/- 3.1 hours at baseline and 11.6 +/- 2.7 hours after saw palmetto treatment (P =.770, NS), also indicating a lack of effect on CYP3A4 activity. Our results indicate that extracts of saw palmetto at generally recommended doses are unlikely to alter the disposition of coadministered medications primarily dependent on the CYP2D6 or CYP3A4 pathways for elimination. These conclusions must be weighed in the context of the study's limited assessments and regarded as only the initial investigation into the drug interaction potential of saw palmetto.

  4. Reversible cardiac dysfunction after venlafaxine overdose and possible influence of genotype and metabolism.

    PubMed

    Castanares-Zapatero, Diego; Gillard, Nathalie; Capron, Arnaud; Haufroid, Vincent; Hantson, Philippe

    2016-09-01

    Acute poisoning by large venlafaxine (VEN) overdoses may result in serious cardiac events like acute left ventricular dysfunction or even fatalities. In humans, venlafaxine is biotransformed for the most part by CYP2D6 and CYP2C19 isoenzymes to its major metabolite O-desmethylvenlafaxine (ODV), and in parallel to N-desmethylvenlafaxine (NDV) and N,O-didesmethylvenlafaxine (NODV) by several CYP isoenzymes, mainly including CYP3A4 and CYP2C19. The ODV concentrations must be taken into consideration along with those of VEN when relating blood concentrations to clinical effects. Herein we describe a case of reversible cardiac dysfunction following VEN self-poisoning. The peak ODV concentration (46,094ng/mL) was observed 20h post-ingestion, being one of the highest ever associated with survival. The calculated elimination half-life was 10h for VEN and 22h for ODV, and the calculated ODV/VEN metabolic ratio 12.9. Genotyping confirmed the patient to have an extensive metabolizer phenotype for CYP2D6, and an ultra-rapid metabolizer phenotype for CYP2C19. We suspect cardiotoxicity was related to sustained ODV exposure despite extensive VEN metabolism, and therefore suggest that ODV metabolism saturation may occur following large VEN overdoses.

  5. Correlation of CpG Island Methylation of the Cytochrome P450 2E1/2D6 Genes with Liver Injury Induced by Anti-Tuberculosis Drugs: A Nested Case-Control Study

    PubMed Central

    Zhang, Jinling; Zhu, Xuebin; Li, Yuhong; Zhu, Lingyan; Li, Shiming; Zheng, Guoying; Ren, Qi; Xiao, Yonghong; Feng, Fumin

    2016-01-01

    This study investigated the role of CpG island methylation of the CYP2E1 and CYP2D6 genes in liver injury induced by anti-TB drugs from an epigenetic perspective in a Chinese cohort. A 1:1 matched nested case-control study design was applied. Pulmonary tuberculosis (TB) patients, who underwent standard anti-TB therapy and developed liver injury were defined as cases, while those who did not develop liver injury were defined as control. The two groups were matched in terms of sex, treatment regimen, and age. In 114 pairs of cases, CpG island methylation levels of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of anti-TB drug-induced liver injury (ADLI), with odds ratio (OR) values of 2.429 and 3.500, respectively (p < 0.01). Moreover, through multivariate logistic regression analysis, CpG island methylation of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of ADLI, with adjusted OR values of 4.390 (95% confidence interval (CI): 1.982–9.724) and 9.193 (95% CI: 3.624–25.888), respectively (p < 0.001). These results suggest that aberrantly elevated methylation of CpG islands of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA may increase the risk of ADLI in Chinese TB patients. PMID:27490558

  6. Rough Set Theory as an Interpretable Method for Predicting the Inhibition of Cytochrome P450 1A2 and 2D6.

    PubMed

    Burton, Julien; Petit, Joachim; Danloy, Emeric; Maggiora, Gerald M; Vercauteren, Daniel P

    2013-07-01

    Early prediction of ADME properties such as the cytochrome P450 (CYP) mediated drug-drug interactions is an important challenge in the drug discovery area. In this study, we propose to couple an original data mining approach based on Rough Set Theory (RST) to a structural description of molecules. The latter was achieved by using two types of structural keys: (1) the MACCS keys and (2) a set of five in-house fingerprints based on properties of the electron density distributions of chemical groups. The compounds considered are involved in the inhibition of CYP1A2 and CYP2D6. RST allowed the extraction of rules further used as classifiers to predict the inhibitory profile of an independent set of molecules. The results reached prediction accuracies of 90.6 and 88.2 % for CYP1A2 and CYP2D6, respectively. In addition, these classifiers were analyzed to determine which structural fragments were most used for building the rules, revealing relationships between the occurrence of particular molecular fragments and CYP inhibition. The results assessed RST as a suitable tool to build strongly predictive models and infer structure-activity rules associated with potency.

  7. Effects of green tea catechins on cytochrome P450 2B6, 2C8, 2C19, 2D6 and 3A activities in human liver and intestinal microsomes.

    PubMed

    Misaka, Shingen; Kawabe, Keisuke; Onoue, Satomi; Werba, José Pablo; Giroli, Monica; Tamaki, Sekihiro; Kan, Toshiyuki; Kimura, Junko; Watanabe, Hiroshi; Yamada, Shizuo

    2013-01-01

    The effects of green tea catechins on the main drug-metabolizing enzymatic system, cytochrome P450 (CYP), have not been fully elucidated. The objective of the present study was to evaluate the effects of green tea extract (GTE, total catechins 86.5%, w/w) and (-)-epigallocatechin-3-gallate (EGCG) on the activities of CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A in vitro, using pooled human liver and intestinal microsomes. Bupropion hydroxylation, amodiaquine N-deethylation, (S)-mephenytoin 4'-hydroxylation, dextromethorphan O-demethylation and midazolam 1'-hydroxylation were assessed in the presence or absence of various concentrations of GTE and EGCG to test their effects on CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A activities, respectively. Each metabolite was quantified using UPLC/ESI-MS, and the inhibition kinetics of GTE and EGCG on CYP enzymes was analyzed. In human liver microsomes, IC50 values of GTE were 5.9, 4.5, 48.7, 25.1 and 13.8 µg/mL, for CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A, respectively. ECGC also inhibited these CYP isoforms with properties similar to those of GTE, and produced competitive inhibitions against CYP2B6 and CYP2C8, and noncompetitive inhibition against CYP3A. In human intestinal microsomes, IC50 values of GTE and EGCG for CYP3A were 18.4 µg/mL and 31.1 µM, respectively. EGCG moderately inhibited CYP3A activity in a noncompetitive manner. These results suggest that green tea catechins cause clinically relevant interactions with substrates for CYP2B6 and CYP2C8 in addition to CYP3A.

  8. Effect of cytochrome P450 enzyme polymorphisms on pharmacokinetics of venlafaxine.

    PubMed

    McAlpine, Donald E; Biernacka, Joanna M; Mrazek, David A; O'Kane, Dennis J; Stevens, Susanna R; Langman, Loralie J; Courson, Vicki L; Bhagia, Jyoti; Moyer, Thomas P

    2011-02-01

    This study examines the relationship between blood concentrations of venlafaxine and its active metabolite, O-desmethyl venlafaxine (ODV), and genetic variants of the cytochrome P450 enzymes CYP2D6 and CYP2C19 in human subjects. Trough blood concentrations were measured at steady state in patients treated with venlafaxine extended release in a clinical practice setting. CYP2D6 and CYP2C19 genotypes were converted to activity scores based on known activity levels of the two alleles comprising a genotype. After adjusting for drug dose and gender effects, higher CYP2D6 and CYP2C19 activity scores were significantly associated with lower venlafaxine concentrations (P < 0.001 for each). Only CYP2D6 was associated with the concentration of ODV (P < 0.001), in which genotypes with more active alleles were associated with higher ODV concentrations. The sum of venlafaxine plus ODV concentration showed the same pattern as venlafaxine concentrations with CYP2D6 and CYP2C19 genotypes with higher activity scores being associated with a lower venlafaxine plus ODV concentration (2D6 P = 0.01; 2C19 P < 0.001). Because allelic variants in both CYP2D6 and CYP2C19 influence the total concentration of the active compounds venlafaxine and ODV, both CYP2D6 and CYP2C19 genotypes should be considered when using pharmacogenomic information for venlafaxine dose alterations.

  9. Human liver enzymes responsible for metabolic elimination of tyramine; a vasopressor agent from daily food.

    PubMed

    Niwa, Toshiro; Murayama, Norie; Umeyama, Hiromi; Shimizu, Makiko; Yamazaki, Hiroshi

    2011-08-01

    Dietary tyramine is associated with hypertensive crises because of its ability to induce the release of catecholamines. The roles of monoamine oxidase (MAO); flavin-containing monooxygenase (FMO); and cytochrome P450 2D6 (CYP2D6) were studied in terms of the enzymatic elimination of tyramine in vitro at a substrate concentration of 1.0 µM; which is relevant to in vivo serum concentrations. Tyramine elimination by human liver supernatant fractions was decreased by ˜70% in the absence of NADPH. Pargyline; an MAO inhibitor; decreased tyramine elimination rates by ˜30%. Among recombinant P450 and FMO enzymes; CYP2D6 had a high activity in terms of tyramine elimination. Tyramine elimination rates were inhibited by quinidine and significantly correlated with bufuralol 1'-hydroxylation activities (a CYP2D6 marker). Liver microsomes genotyped for CYP2D6*10/*10 and CYP2D6*4/*4 showed low and undetectable activities; respectively; compared with the wild-type CYP2D6*1/*1. The present results suggest that tyramine is eliminated mainly by polymorphic CYP2D6. Tyramine toxicity resulting from differences in individual metabolic elimination is thus genetically determined.

  10. The CYP2C19*17 genotype is associated with lower imipramine plasma concentrations in a large group of depressed patients.

    PubMed

    Schenk, P W; van Vliet, M; Mathot, R A A; van Gelder, T; Vulto, A G; van Fessem, M A C; Verploegh-Van Rij, S; Lindemans, J; Bruijn, J A; van Schaik, R H N

    2010-06-01

    CYP2C19 converts the tricyclic antidepressant imipramine to its active metabolite desipramine, which is subsequently inactivated by CYP2D6. The novel CYP2C19*17 allele causes ultrarapid metabolism of CYP2C19 substrates. We genotyped 178 depressed patients on imipramine for CYP2C19*17, and measured steady-state imipramine and desipramine plasma concentrations. Mean dose-corrected imipramine plasma concentration was significantly dependent on CYP2C19 genotype (Kruskal-Wallis test, P=0.01), with circa 30% lower levels in CYP2C19*17/*17 individuals compared with CYP2C19*1/*1 (wild-type) patients. The mean dose-corrected imipramine+desipramine plasma concentrations and imipramine/desipramine ratios were not significantly different between genotype subgroups (Kruskal-Wallis tests, P>or=0.12). In a multivariate analysis, we found a significant, but limited effect (P=0.035, eta(2)=0.031) of the CYP2C19*17 genotype on imipramine+desipramine concentrations. Although the CYP2C19*17 allele is associated with a significantly increased metabolism of imipramine, CYP2C19*17 genotyping will, in our view, not importantly contribute to dose management of patients on imipramine therapy guided by imipramine+desipramine plasma concentrations.

  11. Expression in human prostate of drug- and carcinogen-metabolizing enzymes: association with prostate cancer risk.

    PubMed Central

    Agúndez, J. A.; Martínez, C.; Olivera, M.; Gallardo, L.; Ladero, J. M.; Rosado, C.; Prados, J.; Rodriguez-Molina, J.; Resel, L.; Benítez, J.

    1998-01-01

    The role of two common polymorphisms of enzymes involved in the metabolism of drugs and carcinogens was studied in relation to prostate cancer. The gene encoding one of these enzymes (NAT2) is located in an area where frequent allelic loss occurs in prostate cancer. Mutations at the genes CYP2D6 and NAT2 were analysed by allele-specific polymerase chain reaction and restriction mapping in DNA from 94 subjects with prostate cancer and 160 male healthy control subjects. Eleven prostate specimens were analysed for genotype and enzymatic activities NAT2, CYP2D6 and CYP3A by using the enzyme-specific substrates sulphamethazine and dextromethorphan. Enzyme activities with substrate specificities corresponding to NAT2, CYP2D6 and CYP3A are present in human prostate tissue, with mean +/-s.d. activities of 4.8+/-4.4 pmol min(-1) mg(-1) protein, 156+/-91 and 112+/-72 nmol min(-1) mg(-1) protein respectively. The Km values for the prostate CYP2D6 and CYP3A enzyme activities corresponded to that of liver CYP2D6 and CYP3A activities, and the CYP2D6 enzyme activity is related to the CYP2D6 genotype. The N-acetyltransferase, in contrast, had a higher Km than NAT2 and was independent of the NAT2 genotype. The CYP2D6 and CYP3A enzymes, and an N-acetyltransferase activity that is independent of the regulation of the NAT2 gene, are expressed in human prostate tissue. The presence of carcinogen-metabolizing enzymes in human prostate with a high interindividual variability may be involved in the regulation of local levels of carcinogens and mutagens and may underlie interindividual differences in cancer susceptibility. Images Figure 1 PMID:9823980

  12. Impact of Tetrahydropalmatine on the Pharmacokinetics of Probe Drugs for CYP1A2, 2D6 and 3A Isoenzymes in Beagle Dogs.

    PubMed

    Zhao, Yong; Liang, Aihua; Zhang, Yushi; Li, Chunying; Yi, Yan; Nilsen, Odd Georg

    2016-06-01

    Tetrahydropalmatine (Tet) exhibit multiple pharmacological activities and is used frequently by clinical practitioners. In this study, we evaluate the in vivo effects of single and repeated oral Tet administrations on CYP1A2, 2D6 and 3A activities in six beagle dogs in a randomized, controlled, open-label, crossover study. A cocktail approach, with dosages of the probe drugs caffeine (3.0 mg/kg), metoprolol (2.33 mg/kg) and midazolam (0.45 mg/kg), was used to measure cytochrome P450 (CYP) metabolic activities. The cocktail was administered orally as a single dose (12 mg/kg) 1 day prior to and 4 days after repeated oral Tet administrations (12 mg/kg three times daily). The probe drugs and their metabolites in plasma were quantified simultaneously by a validated HPLC technique, and non-compartmental parameters were used to evaluate metabolic variables for assessment of CYP inhibition or induction. Tet had no or minor impact on the pharmacokinetics and metabolism of the probe drugs caffeine and metoprolol, CYP1A2 and CYP2D6 substrates, respectively. However, Tet increased AUC0-24 h and decreased AUCratio(0-24 h) (1-hydroxymidazolam/midazolam ratio) for midazolam statistically significant, both in single or multiple dosing of Tet, with up to 39 or 57% increase for AUC0-24 h and 29% or 22 decrease for AUCratio(0-24 h), respectively, in line with previous in vitro findings for its CYP3A4 inhibition. The extensive use of Tet and herbal medicines containing Tet makes Tet a candidate for further evaluation of CYP3A-mediated herb-drug interactions. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Direct analysis of unphased SNP genotype data in population-based association studies via Bayesian partition modelling of haplotypes.

    PubMed

    Morris, Andrew P

    2005-09-01

    We describe a novel method for assessing the strength of disease association with single nucleotide polymorphisms (SNPs) in a candidate gene or small candidate region, and for estimating the corresponding haplotype relative risks of disease, using unphased genotype data directly. We begin by estimating the relative frequencies of haplotypes consistent with observed SNP genotypes. Under the Bayesian partition model, we specify cluster centres from this set of consistent SNP haplotypes. The remaining haplotypes are then assigned to the cluster with the "nearest" centre, where distance is defined in terms of SNP allele matches. Within a logistic regression modelling framework, each haplotype within a cluster is assigned the same disease risk, reducing the number of parameters required. Uncertainty in phase assignment is addressed by considering all possible haplotype configurations consistent with each unphased genotype, weighted in the logistic regression likelihood by their probabilities, calculated according to the estimated relative haplotype frequencies. We develop a Markov chain Monte Carlo algorithm to sample over the space of haplotype clusters and corresponding disease risks, allowing for covariates that might include environmental risk factors or polygenic effects. Application of the algorithm to SNP genotype data in an 890-kb region flanking the CYP2D6 gene illustrates that we can identify clusters of haplotypes with similar risk of poor drug metaboliser (PDM) phenotype, and can distinguish PDM cases carrying different high-risk variants. Further, the results of a detailed simulation study suggest that we can identify positive evidence of association for moderate relative disease risks with a sample of 1,000 cases and 1,000 controls.

  14. Drug & Gene Interaction Risk Analysis With & Without Genetic Testing Among Patients Undergoing MTM

    ClinicalTrials.gov

    2017-02-22

    Cytochrome P450 CYP2D6 Enzyme Deficiency; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Extensive Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Cytochrome P450 CYP2C9 Enzyme Deficiency; Cytochrome P450 CYP2C19 Enzyme Deficiency; Drug Metabolism, Poor, CYP2D6-RELATED; Drug Metabolism, Poor, CYP2C19-RELATED; CYP2D6 Polymorphism

  15. Dry-reagent disposable biosensor for visual genotyping of single nucleotide polymorphisms by oligonucleotide ligation reaction: application to pharmacogenetic analysis.

    PubMed

    Toubanaki, Dimitra K; Christopoulos, Theodore K; Ioannou, Penelope C; Gravanis, Achille

    2008-08-01

    Most genotyping methods for known single-nucleotide polymorphisms (SNPs) are based on hybridization with allele-specific probes, oligonucleotide ligation reaction (OLR), primer extension or invasive cleavage. OLR offers superior specificity because it involves two recognition events; namely, the hybridization of an allele-specific probe and a common probe to adjacent positions on target DNA. OLR products can be detected by microtiter well-based colorimetric, time-resolved fluorimetric or chemiluminometric assays, electrophoresis, microarrays, microspheres, and homogeneous fluorimetric or colorimetric assays. We have developed a simple, robust, and low-cost disposable biosensor in dry-reagent format, which allows visual genotyping with no need for instrumentation. The OLR mixture contains a biotinylated common probe and an allele-specific probe with a (dA)(20) segment at the 3'-end. OLR products are denatured and applied to the biosensor next to gold nanoparticles that are decorated with oligo(dT) strands. The sensor is immersed in the appropriate buffer and all components migrate by capillary action. The OLR product is captured by immobilized streptavidin at the test zone (TZ) of the sensor and hybridizes with the oligo(dT) strands of the nanoparticles. A characteristic red line is generated due to the accumulation of nanoparticles. The excess nanoparticles are captured by immobilized oligo(dA) at the control zone of the strip, giving a second red line. We have applied successfully the proposed OLR-dipstick assay to the genotyping of four SNPs in the drug-metabolizing enzyme genes CYP2D6 ((*)3 and (*)4) and CYP2C19 ((*)2 and (*)3). The results were in agreement with direct sequencing.

  16. Association of GSTT1 non-null and NAT1 slow/rapid genotypes with von Hippel-Lindau tumour suppressor gene transversions in sporadic renal cell carcinoma.

    PubMed

    Gallou, C; Longuemaux, S; Deloménie, C; Méjean, A; Martin, N; Martinet, S; Palais, G; Bouvier, R; Droz, D; Krishnamoorthy, R; Junien, C; Béroud, C; Dupret, J M

    2001-08-01

    The von Hippel-Lindau (VHL) tumour suppressor gene is commonly mutated in renal cell carcinoma of clear cell type (CCRCC). We investigated the possible relationship between VHL mutations in sporadic CCRCC and polymorphism of genes encoding enzymes involved in carcinogen metabolism: two cytochrome P450 monooxygenases (CYP1A1 and CYP2D6), one NAD[P]H:quinone oxidoreductase (NQO1), three glutathione S-transferases (GSTM1, GSTT1 and GSTP1) and two arylamine N-acetyltransferases (NAT1 and NAT2). We analysed DNA from tumour and nontumoural kidney tissue from 195 CCRCC patients. Single VHL mutations were identified in 88 patients and double mutations were present in two patients. Nine of 18 transversions were GC to TA, four were AT to TA, four were GC to CG and one was AT to CG. Ten of 19 transitions were GC to AT and nine were AT to GC. We also identified 53 frameshifts and two GC to AT at CpG. An excess of transversions was observed in a subset of patients with active GSTT1 [GSTT1 (+) genotype] and probably defective NAT1 (NAT1 S/R variant genotype). All 18 transversions were in GSTT1 (+) patients, whereas only 76% of transitions (P = 0.05) and 81% of the other mutations (P = 0.06) occurred in this genotype. We found that 28% of the transversions were in the NAT1 S/R genotype versus 12% of the transitions (P = 0.40) and 4% of the other mutations (P = 0.01). This suggests that pharmacogenetic polymorphisms may be associated with the type of acquired VHL mutation, which may modulate CCRCC development.

  17. Cytochrome P450 dependent metabolism of the new designer drug 1-(3-trifluoromethylphenyl)piperazine (TFMPP). In vivo studies in Wistar and Dark Agouti rats as well as in vitro studies in human liver microsomes.

    PubMed

    Staack, Roland F; Paul, Liane D; Springer, Dietmar; Kraemer, Thomas; Maurer, Hans H

    2004-01-15

    1-(3-Trifluoromethylphenyl)piperazine (TFMPP) is a designer drug with serotonergic properties. Previous studies with male Wistar rats (WI) had shown, that TFMPP was metabolized mainly by aromatic hydroxylation. In the current study, it was examined whether this reaction may be catalyzed by cytochrome P450 (CYP)2D6 by comparing TFMPP vs. hydroxy TFMPP ratios in urine from female Dark Agouti rats, a model of the human CYP2D6 poor metabolizer phenotype (PM), male Dark Agouti rats, an intermediate model, and WI, a model of the human CYP2D6 extensive metabolizer phenotype. Furthermore, the human hepatic CYPs involved in TFMPP hydroxylation were identified using cDNA-expressed CYPs and human liver microsomes. Finally, TFMPP plasma levels in the above mentioned rats were compared. The urine studies suggested that TFMPP hydroxylation might be catalyzed by CYP2D6 in humans. Studies using human CYPs showed that CYP1A2, CYP2D6 and CYP3A4 catalyzed TFMPP hydroxylation, with CYP2D6 being the most important enzyme accounting for about 81% of the net intrinsic clearance, calculated using the relative activity factor approach. The hydroxylation was significantly inhibited by quinidine (77%) and metabolite formation in poor metabolizer genotype human liver microsomes was significantly lower (63%) compared to pooled human liver microsomes. Analysis of the plasma samples showed that female Dark Agouti rats exhibited significantly higher TFMPP plasma levels compared to those of male Dark Agouti rats and WI. Furthermore, pretreatment of WI with the CYP2D inhibitor quinine resulted in significantly higher TFMPP plasma levels. In conclusion, the presented data give hints for possible differences in pharmacokinetics in human PM and human CYP2D6 extensive metabolizer phenotype subjects relevant for risk assessment.

  18. Factors affecting the development of adverse drug reactions to β-blockers in hospitalized cardiac patient population.

    PubMed

    Mugoša, Snežana; Djordjević, Nataša; Djukanović, Nina; Protić, Dragana; Bukumirić, Zoran; Radosavljević, Ivan; Bošković, Aneta; Todorović, Zoran

    2016-01-01

    The aim of the present study was to undertake a study on the prevalence of cytochrome P450 2D6 (CYP2D6) poor metabolizer alleles (*3, *4, *5, and *6) on a Montenegrin population and its impact on developing adverse drug reactions (ADRs) of β-blockers in a hospitalized cardiac patient population. A prospective study was conducted in the Cardiology Center of the Clinical Center of Montenegro and included 138 patients who had received any β-blocker in their therapy. ADRs were collected using a specially designed questionnaire, based on the symptom list and any signs that could point to eventual ADRs. Data from patients' medical charts, laboratory tests, and other available parameters were observed and combined with the data from the questionnaire. ADRs to β-blockers were observed in 15 (10.9%) patients. There was a statistically significant difference in the frequency of ADRs in relation to genetically determined enzymatic activity (P<0.001), with ADRs' occurrence significantly correlating with slower CYP2D6 metabolism. Our study showed that the adverse reactions to β-blockers could be predicted by the length of hospitalization, CYP2D6 poor metabolizer phenotype, and the concomitant use of other CYP2D6-metabolizing drugs. Therefore, in hospitalized patients with polypharmacy CYP2D6 genotyping might be useful in detecting those at risk of ADRs.

  19. Factors affecting the development of adverse drug reactions to β-blockers in hospitalized cardiac patient population

    PubMed Central

    Mugoša, Snežana; Djordjević, Nataša; Djukanović, Nina; Protić, Dragana; Bukumirić, Zoran; Radosavljević, Ivan; Bošković, Aneta; Todorović, Zoran

    2016-01-01

    The aim of the present study was to undertake a study on the prevalence of cytochrome P450 2D6 (CYP2D6) poor metabolizer alleles (*3, *4, *5, and *6) on a Montenegrin population and its impact on developing adverse drug reactions (ADRs) of β-blockers in a hospitalized cardiac patient population. A prospective study was conducted in the Cardiology Center of the Clinical Center of Montenegro and included 138 patients who had received any β-blocker in their therapy. ADRs were collected using a specially designed questionnaire, based on the symptom list and any signs that could point to eventual ADRs. Data from patients’ medical charts, laboratory tests, and other available parameters were observed and combined with the data from the questionnaire. ADRs to β-blockers were observed in 15 (10.9%) patients. There was a statistically significant difference in the frequency of ADRs in relation to genetically determined enzymatic activity (P<0.001), with ADRs’ occurrence significantly correlating with slower CYP2D6 metabolism. Our study showed that the adverse reactions to β-blockers could be predicted by the length of hospitalization, CYP2D6 poor metabolizer phenotype, and the concomitant use of other CYP2D6-metabolizing drugs. Therefore, in hospitalized patients with polypharmacy CYP2D6 genotyping might be useful in detecting those at risk of ADRs. PMID:27536078

  20. In Vitro Inhibition of Human CYP450s 1A2, 2C9, 3A4/5, 2D6 and 2E1 by Grandisin.

    PubMed

    Habenschus, Maísa Daniela; Moreira, Fernanda de Lima; Lopes, Norberto Peporine; de Oliveira, Anderson R M

    2017-01-10

    Grandisin, a lignan isolated from many species of plants, such as Virola surinamensis, is a potential drug candidate due to its biological properties, highlighted by its antitumor and trypanocidal activities. In this study, the inhibitory effects of grandisin on the activities of human cytochrome P450 enzymes were investigated by using human liver microsomes. Results showed that grandisin is a competitive inhibitor of CYP2C9 and a competitive and mechanism-based inhibitor of CYP3A4/5. The apparent Ki value for CYP2C9 was 50.60 µM and those for CYP3A4/5 were 48.71 µM and 31.25 µM using two different probe substrates, nifedipine and midazolam, respectively. The apparent KI, kinact, and kinact/KI ratio for the mechanism-based inhibition of CYP3A4/5 were 6.40 µM, 0.037 min(-1), and 5.78 mL · min(-1) µmol(-1), respectively, by examining nifedipine oxidation, and 31.53 µM, 0.049 min(-1), and 1.55 mL · min(-1) µmol(-1), respectively, by examining midazolam 1'-hydroxylation. These apparent kinact/KI values were comparable to or even higher than those for several therapeutic drugs that act as mechanism-based inhibitors of CYP3A4/5. CYP1A2 and CYP2D6 activities, in turn, were not substantially inhibited by grandisin (IC50 > 200 µM and 100 µM, respectively). In contrast, from a concentration of 4 µM, grandisin significantly stimulated CYP2E1 activity. These results improve the prediction of grandisin-drug interactions, suggesting that the risk of interactions with drugs metabolized by CYP3A4/5 and CYP2E1 cannot be overlooked.

  1. Pharmacogenetic testing affects choice of therapy among women considering tamoxifen treatment

    PubMed Central

    2011-01-01

    Background Pharmacogenetic testing holds major promise in allowing physicians to tailor therapy to patients based on genotype. However, there is little data on the impact of pharmacogenetic test results on patient and clinician choice of therapy. CYP2D6 testing among tamoxifen users offers a potential test case of the use of pharmacogenetic testing in the clinic. We evaluated the effect of CYP2D6 testing in clinical practice to determine whether genotype results affected choice of hormone therapy in a prospective cohort study. Methods Women planning to take or currently taking tamoxifen were considered eligible. Participants were enrolled in an informational session that reviewed the results of studies of CYP2D6 genotype on breast cancer recurrence. CYP2D6 genotyping was offered to participants using the AmpliChip CYP450 Test. Women were classified as either poor, intermediate, extensive or ultra-rapid metabolizers. Results were provided to clinicians without specific treatment recommendations. Follow-up was performed with a structured phone interview 3 to 6 months after testing to evaluate changes in medication. Results A total of 245 women were tested and 235 completed the follow-up survey. Six of 13 (46%) women classified as poor metabolizers reported changing treatment compared with 11 of 218 (5%) classified as intermediate, extensive or ultra-rapid metabolizers (P < 0.001). There was no difference in treatment choices between women classified as intermediate and extensive metabolizers. In multi-variate models that adjusted for age, race/ethnicity, educational status, method of referral into the study, prior knowledge of CYP2D6 testing, the patients' CYP2D6 genotype was the only significant factor that predicted a change in therapy (odds ratio 22.8; 95% confidence interval 5.2 to 98.8). Genetic testing did not affect use of co-medications that interact with CYP2D6. Conclusions CYP2D6 genotype testing led to changes in therapy among poor metabolizers, even in

  2. Comparison of various urine collection intervals for caffeine and dextromethorphan phenotyping in children.

    PubMed

    Kennedy, Mary Jayne; Abdel-Rahman, Susan M; Kashuba, Angela D M; Leeder, J Steven

    2004-07-01

    Caffeine and dextromethorphan have been used successfully both alone and in combination to assess phenotype and enzyme activity in children of various ages. Previous pediatric phenotyping studies with these agents have used varying durations of urine collection. However, the minimum duration required for accurate phenotypic assessment with these compounds in children remains unknown. We calculated the cumulative metabolite recoveries and molar ratios in urine collected from children for 2, 4, 6, and 8 hours after caffeine and dextromethorphan administration to determine when respective urinary molar ratios stabilize and thus likely accurately reflect enzyme activity. Subjects (n = 24, ages 3-8 years) were given 4 oz of Coca-Cola(R) ( approximately 11.5 mg caffeine) and a single oral dose of dextromethorphan (0.5 mg/kg). Urine was collected at discrete intervals (0-2, 2-4, 4-6, and 6-8 h) during an 8-hour period, and the cumulative metabolite recoveries and urinary molar ratios were calculated. CYP2D6 genotyping was also performed in 21 of 24 subjects. In CYP2D6 extensive metabolizers, the extent of recovery for relevant metabolites was equivalent by 4 hours and represented 45% to 60% of the total amount recovered in the 8-hour period. The 2-hour CYP1A2 ratio was significantly different from those of longer collection intervals. Metabolite ratios for all other enzymes (i.e., NAT-2, XO, and CYP2D6) were independent of the duration of urine collection. These data suggest that a 4-hour urine collection is adequate for the concurrent assessment of hepatic CYP1A2, NAT-2, XO, and CYP2D6 activity in children ages 3 to 8 years who are CYP2D6 extensive metabolizers, using standard caffeine and dextromethorphan phenotyping methods. Longer collection periods may be required, however, in younger children or CYP2D6 poor metabolizers.

  3. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine

    SciTech Connect

    Johansson, I.; Lundqvist, E.; Ingelman-Sundberg, M. ); Bertilsson, L.; Dahl, M.L.; Sjoeqvist, F. )

    1993-11-15

    Deficient hydroxylation of debrisoquine is an autosomal recessive trait that affects [approx]7% of the Caucasian population. These individuals (poor metabolizers) carry deficient:CYP2D6 gene variants and have an impaired metabolism of several commonly used drugs. The opposite phenomenon also exists, and certain individuals metabolize the drugs very rapidly, resulting in subtherapeutic plasma concentrations at normal doses. In the present study, the authors have investigated the molecular genetic basis for ultrarapid metabolism of debrisoquine. Restriction fragment length polymorphism analysis of the CYP2D locus in two families with very rapid metabolism of debrisoquine [metabolic ratio (MR) for debrisoquine = 0.01-0.1] revealed the variant CYP2D6 gene CYP2D6L. EcoRI RFLP and Xba I pulsed-field gel electrophoresis analyses showed that this gene had been amplified 12-fold in three members (father and his two children) of one of the families, and two copies were present among members of the other family. The CYP2D6L gene had an open reading frame and carried two mutations causing amino acid substitutions: one in exon 6, yielding an Arg-296[yields]Cys exchange and one in exon 9 causing Ser-486[yields]Thr. The MR of subjects carrying one copy of the CYP2D6L gene did not significantly differ from that of those with the wild-type gene, indicating that the structural alterations were not of importance for the catalytic properties of the gene product. Examination of the MR among subjects carrying wild-type CYP2D6, CYP2D6L, or deficient alleles revealed a relationship between the number of active genes and MR. The data show the principle of inherited amplification of an active gene. Furthermore, the finding of a specific haplotype with two or more active CYP2D6 genes allows genotyping for ultrarapid drug metabolizers. This genotyping could be of predictive value for individualized and more efficient drug therapy.

  4. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma.

    PubMed

    Mürdter, T E; Schroth, W; Bacchus-Gerybadze, L; Winter, S; Heinkele, G; Simon, W; Fasching, P A; Fehm, T; Eichelbaum, M; Schwab, M; Brauch, H

    2011-05-01

    The therapeutic effect of tamoxifen depends on active metabolites, e.g., cytochrome P450 2D6 (CYP2D6) mediated formation of endoxifen. To test for additional relationships, 236 breast cancer patients were genotyped for CYP2D6, CYP2C9, CYP2B6, CYP2C19, CYP3A5, UGT1A4, UGT2B7, and UGT2B15; also, plasma concentrations of tamoxifen and 22 of its metabolites, including the (E)-, (Z)-, 3-, and 4'-hydroxymetabolites as well as their glucuronides, were quantified using liquid chromatography-tandem mass spectrometry (MS). The activity levels of the metabolites were measured using an estrogen response element reporter assay; the strongest estrogen receptor inhibition was found for (Z)-endoxifen and (Z)-4-hydroxytamoxifen (inhibitory concentration 50 (IC50) 3 and 7 nmol/l, respectively). CYP2D6 genotypes explained 39 and 9% of the variability of steady-state concentrations of (Z)-endoxifen and (Z)-4-hydroxytamoxifen, respectively. Among the poor metabolizers, 93% had (Z)-endoxifen levels below IC90 values, underscoring the role of CYP2D6 deficiency in compromised tamoxifen bioactivation. For other enzymes tested, carriers of reduced-function CYP2C9 (*2, *3) alleles had lower plasma concentrations of active metabolites (P < 0.004), pointing to the role of additional pathways.

  5. Crystal Structure of Human Cytochrome P450 2D6 with Prinomastat Bound*

    PubMed Central

    Wang, An; Savas, Uzen; Hsu, Mei-Hui; Stout, C. David; Johnson, Eric F.

    2012-01-01

    Human cytochrome P450 2D6 contributes to the metabolism of >15% of drugs used in clinical practice. This study determined the structure of P450 2D6 complexed with a substrate and potent inhibitor, prinomastat, to 2.85 Å resolution by x-ray crystallography. Prinomastat binding is well defined by electron density maps with its pyridyl nitrogen bound to the heme iron. The structure of ligand-bound P450 2D6 differs significantly from the ligand-free structure reported for the P450 2D6 Met-374 variant (Protein Data Bank code 2F9Q). Superposition of the structures reveals significant differences for β sheet 1, helices A, F, F′, G″, G, and H as well as the helix B-C loop. The structure of the ligand complex exhibits a closed active site cavity that conforms closely to the shape of prinomastat. The closure of the open cavity seen for the 2F9Q structure reflects a change in the direction and pitch of helix F and introduction of a turn at Gly-218, which is followed by a well defined helix F′ that was not observed in the 2F9Q structure. These differences reflect considerable structural flexibility that is likely to contribute to the catalytic versatility of P450 2D6, and this new structure provides an alternative model for in silico studies of substrate interactions with P450 2D6. PMID:22308038

  6. Analysis of Genetic Variation in CYP450 Genes for Clinical Implementation

    PubMed Central

    Goh, Liuh Ling; Lim, Chia Wei; Sim, Wey Cheng; Toh, Li Xian; Leong, Khai Pang

    2017-01-01

    Background Genetic determinants of drug response remain stable throughout life and offer great promise to patient-tailored drug therapy. The adoption of pharmacogenetic (PGx) testing in patient care requires accurate, cost effective and rapid genotyping with clear guidance on the use of the results. Hence, we evaluated a 32 SNPs panel for implementing PGx testing in clinical laboratories. Methods We designed a 32-SNP panel for PGx testing in clinical laboratories. The variants were selected using the clinical annotations of the Pharmacogenomics Knowledgebase (PharmGKB) and include polymorphisms of CYP2C9, CYP2C19, CYP2D6, CYP3A5 and VKORC1 genes. The CYP2D6 gene allele quantification was determined simultaneously with TaqMan copy number assays targeting intron 2 and exon 9 regions. The genotyping results showed high call rate accuracy according to concordance with genotypes identified by independent analyses on Sequenome massarray and droplet digital PCR. Furthermore, 506 genomic samples across three major ethnic groups of Singapore (Malay, Indian and Chinese) were analysed on our workflow. Results We found that 98% of our study subjects carry one or more CPIC actionable variants. The major alleles detected include CYP2C9*3, CYP2C19*2, CYP2D6*10, CYP2D6*36, CYP2D6*41, CYP3A5*3 and VKORC1*2. These translate into a high percentage of intermediate (IM) and poor metabolizer (PM) phenotypes for these genes in our population. Conclusion Genotyping may be useful to identify patients who are prone to drug toxicity with standard doses of drug therapy in our population. The simplicity and robustness of this PGx panel is highly suitable for use in a clinical laboratory. PMID:28046094

  7. Use of high doses of quetiapine in bipolar disorder episodes are not linked to high activity of cytochrome P4503A4 and/or cytochrome P4502D6.

    PubMed

    Khazaal, Yasser; Preisig, Martin; Chatton, Anne; Kaufmann, Nadine; Bilancioni, Romain; Eap, Chin B

    2013-09-01

    The use of quetiapine for treatment of bipolar disorders at a higher dosage than the licensed range is not unusual in clinical practice. Quetiapine is predominantly metabolised by cytochrome P450 3A4 (CYP3A4) and to a lesser extent by CYP2D6. The large interindividual variability of those isozyme activities could contribute to the variability observed in quetiapine dosage. The aim of the present study is to evaluate if the use of high dosages of quetiapine in some patients, as compared to patients treated with a dosage in the licensed range (up to 800 mg/day), could be explained by a high activity of CYP3A4 and/or of CYP2D6. CYP3A4 activities were determined using the midazolam metabolic ratio in 21 bipolar and schizoaffective bipolar patients genotyped for CYP2D6. 9 patients were treated with a high quetiapine dosage (mean ± SD, median; range: 1467 ± 625, 1200; 1000-3000 mg/day) and 11 with a normal quetiapine dosage (433 ± 274, 350; 100-800 mg/day). One patient in the high dose and one patient in the normal dose groups were genotyped as CYP2D6 ultrarapid metabolizers. CYP3A4 activities were not significantly different between the two groups (midazolam metabolic ratio: 9.4 ± 8.2; 6.2; 1.7-26.8 vs 3.9 ± 2.3; 3.8; 1.5-7.6, in the normal dose group as compared to the high dose group, respectively, NS). The use of high quetiapine dosage for the patients included in the present study cannot be explained by variations in pharmacokinetics parameters such as a high activity of CYP3A4 and/or of CYP2D6.

  8. Institutional profile: University of Florida Health Personalized Medicine Program.

    PubMed

    Cavallari, Larisa H; Weitzel, Kristin W; Elsey, Amanda R; Liu, Xinyue; Mosley, Scott A; Smith, Donald M; Staley, Benjamin J; Winterstein, Almut G; Mathews, Carol A; Franchi, Francesco; Rollini, Fabiana; Angiolillo, Dominick J; Starostik, Petr; Clare-Salzler, Michael J; Nelson, David R; Johnson, Julie A

    2017-04-01

    The University of Florida (UF) Health Personalized Medicine Program launched in 2012 with CYP2C19 genotyping for clopidogrel response at UF Health Shands Hospital. We have since expanded CYP2C19 genotyping to UF Health Jacksonville and established the infrastructure at UF Health to support clinical implementation for five additional gene-drug pairs: TPMT-thiopurines, IFNL3 (IL28B)-PEG IFN-α-based regimens, CYP2D6-opioids, CYP2D6/CYP2C19-antidepressants and CYP2C19-proton pump inhibitors. We are contributing to the evidence based on outcomes with genotype-guided therapy through pragmatic studies of our clinical implementations. In addition, we have developed a broad array of educational programs for providers, trainees and students that incorporate personal genotype evaluation to enhance participant learning.

  9. Structural and magnetic properties of DyMn(2)D(6) synthesized under high deuterium pressure.

    PubMed

    Paul-Boncour, V; Filipek, S M; Wierzbicki, R; André, G; Bourée, F; Guillot, M

    2009-01-07

    DyMn(2)D(6) has been prepared by applying high gaseous deuterium pressure on DyMn(2). This phase is isostructural with other RMn(2)D(6) (R = Y, Er) compounds and crystallizes with a K(2)PtCl(6) type structure having an ordered anion and a partially disordered cation arrangement because Dy and half the Mn atoms are randomly substituted in the same 8c site. The reverse susceptibility follows a Curie-Weiss law with an effective moment of 10 μ(B) similar to that of DyMn(2). Short range magnetic order, corresponding to ferromagnetic correlations, is observed in the neutron patterns up to 10 K and can be attributed to Dy-Dy interactions. The decomposition of the deuteride into Mn and DyD(2), studied by thermal gravimetric analysis, occurs between 470 and 650 K. A further deuterium desorption takes place above 920 K.

  10. Infrared and Ultraviolet Spectra of Diborane(6): B2H6 and B2D6.

    PubMed

    Peng, Yu-Chain; Chou, Sheng-Lung; Lo, Jen-Iu; Lin, Meng-Yeh; Lu, Hsiao-Chi; Cheng, Bing-Ming; Ogilvie, J F

    2016-07-21

    We recorded absorption spectra of diborane(6), B2H6 and B2D6, dispersed in solid neon near 4 K in both mid-infrared and ultraviolet regions. For gaseous B2H6 from 105 to 300 nm, we report quantitative absolute cross sections; for solid B2H6 and for B2H6 dispersed in solid neon, we measured ultraviolet absorbance with relative intensities over a wide range. To assign the mid-infrared spectra to specific isotopic variants, we applied the abundance of (11)B and (10)B in natural proportions; we undertook quantum-chemical calculations of wavenumbers associated with anharmonic vibrational modes and the intensities of the harmonic vibrational modes. To aid an interpretation of the ultraviolet spectra, we calculated the energies of electronically excited singlet and triplet states and oscillator strengths for electronic transitions from the electronic ground state.

  11. A preliminary 3D model for cytochrome P450 2D6 constructed by homology model building.

    PubMed

    Koymans, L M; Vermeulen, N P; Baarslag, A; Donné-Op den Kelder, G M

    1993-06-01

    A homology model building study of cytochrome P450 2D6 has been carried out based on the crystal structure of cytochrome P450 101. The primary sequences of P450 101 and P450 2D6 were aligned by making use of an automated alignment procedure. This alignment was adjusted manually by matching alpha-helices (C, D, G, I, J, K and L) and beta-sheets (beta 3/beta 4) of P450 101 that are proposed to be conserved in membrane-bound P450s (Ouzounis and Melvin [Eur. J. Biochem., 198 (1991) 307]) to the corresponding regions in the primary amino acid sequence of P450 2D6. Furthermore, alpha-helices B, B' and F were found to be conserved in P450 2D6. No significant homology between the remaining regions of P450 101 and P450 2D6 could be found and these regions were therefore deleted. A 3D model of P450 2D6 was constructed by copying the coordinates of the residues from the crystal structure of P450 101 to the corresponding residues in P450 2D6. The regions without a significant homology with P450 101 were not incorporated into the model. After energy-minimization of the resulting 3D model of P450 2D6, possible active site residues were identified by fitting the substrates debrisoquine and dextrometorphan into the proposed active site. Both substrates could be positioned into a planar pocket near the heme region formed by residues Val370, Pro371, Leu372, Trp316, and part of the oxygen binding site of P450 2D6. Furthermore, the carboxylate group of either Asp100 or Asp301 was identified as a possible candidate for the proposed interaction with basic nitrogen atom(s) of the substrates.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Novel pathway analysis of genomic polymorphism-cancer risk interaction in the Breast Cancer Prevention Trial

    PubMed Central

    Dunn, Barbara K; Greene, Mark H; Kelley, Jenny M; Costantino, Joseph P; Clifford, Robert J; Hu, Ying; Tang, Gong; Kazerouni, Neely; Rosenberg, Philip S; Meerzaman, Daoud M; Buetow, Kenneth H

    2010-01-01

    Purpose: Tamoxifen was approved for breast cancer risk reduction in high-risk women based on the National Surgical Adjuvant Breast and Bowel Project's Breast Cancer Prevention Trial (P-1:BCPT), which showed 50% fewer breast cancers with tamoxifen versus placebo, supporting tamoxifen's efficacy in preventing breast cancer. Poor metabolizing CYP2D6 variants are currently the subject of intensive scrutiny regarding their impact on clinical outcomes in the adjuvant setting. Our study extends to variants in a wider spectrum of tamoxifen-metabolizing genes and applies to the prevention setting. Methods: Our case-only study, nested within P-1:BCPT, explored associations of polymorphisms in estrogen/tamoxifen-metabolizing genes with responsiveness to preventive tamoxifen. Thirty-nine candidate polymorphisms in 17 candidate genes were genotyped in 249 P-1:BCPT cases. Results: CVP2D6_C1111T, individually and within a CYP2D6 haplotype, showed borderline significant association with treatment arm. Path analysis of the entire tamoxifen pathway gene network showed that the tamoxifen pathway model was consistent with the pattern of observed genotype variability within the placebo-arm dataset. However, correlation of variations in genes in the tamoxifen arm differed significantly from the predictions of the tamoxifen pathway model. Strong correlations between allelic variation in the tamoxifen pathway at CYP1A1-CYP3A4, CYP3A4-CYP2C9, and CYP2C9-SULT1A2, in addition to CYP2D6 and its adjacent genes, were seen in the placebo-arm but not the tamoxifen-arm. In conclusion, beyond reinforcing a role for CYP2D6 in tamoxifen response, our pathway analysis strongly suggests that specific combinations of allelic variants in other genes make major contributions to the tamoxifen-resistance phenotype. PMID:21152245

  13. Machine Learning Energies of 2 Million Elpasolite (A B C2D6) Crystals

    NASA Astrophysics Data System (ADS)

    Faber, Felix A.; Lindmaa, Alexander; von Lilienfeld, O. Anatole; Armiento, Rickard

    2016-09-01

    Elpasolite is the predominant quaternary crystal structure (AlNaK2F6 prototype) reported in the Inorganic Crystal Structure Database. We develop a machine learning model to calculate density functional theory quality formation energies of all ˜2 ×106 pristine A B C2D6 elpasolite crystals that can be made up from main-group elements (up to bismuth). Our model's accuracy can be improved systematically, reaching a mean absolute error of 0.1 eV /atom for a training set consisting of 10 ×103 crystals. Important bonding trends are revealed: fluoride is best suited to fit the coordination of the D site, which lowers the formation energy whereas the opposite is found for carbon. The bonding contribution of the elements A and B is very small on average. Low formation energies result from A and B being late elements from group II, C being a late (group I) element, and D being fluoride. Out of 2 ×106 crystals, 90 unique structures are predicted to be on the convex hull—among which is NFAl2Ca6, with a peculiar stoichiometry and a negative atomic oxidation state for Al.

  14. Population pharmacokinetics of the 5-hydroxymethyl metabolite of tolterodine after administration of fesoterodine sustained release tablet in Western and East Asian populations.

    PubMed

    Oishi, Masayo; Tomono, Yoshiro; Yamagami, Hidetomi; Malhotra, Bimal

    2014-08-01

    This analysis was conducted to investigate factors that affect 5-hydroxymethyl tolterodine (5-HMT) pharmacokinetics after administration of fesoterodine sustained release tablets to Westerners and East Asians. Ten pharmacokinetic studies and three efficacy/safety studies in overactive bladder (OAB) patients were pooled for the population pharmacokinetic analysis. The plasma 5-HMT concentration data were described by a 1-compartment model with first order absorption and a lag time. Creatinine clearance (CLCR), hepatic impairment, CYP2D6 genotype, and concomitant medication with CYP3A inhibitor/inducer were identified as influential covariates. It was estimated that decreasing of CLCR from 80 to 15 mL/min resulted in a 39.5% reduction in 5-HMT apparent oral clearance (CL/F). Hepatic impairment, CYP2D6 poor metabolizer, and CYP3A inhibitor were estimated to reduce CL/F by about 60%, 40%, and 50%, respectively. CYP3A inducer resulted in about fourfold increase in CL/F. Although sex and Japanese ethnicity were selected as covariates on CL/F, each resulted in only about 10% decrease and increase of CL/F, respectively. Of the influential covariates of 5-HMT CL/F, CLCR, hepatic impairment, CYP2D6 genotype, and concomitant medication with CYP3A inhibitor/inducer were of significance, whereas sex and Japanese ethnicity covariates were considered not to have clinically significant impact on exposures of 5-HMT.

  15. Novel Single Nucleotide Polymorphism Markers for Low Dose Aspirin-Associated Small Bowel Bleeding

    PubMed Central

    Shiotani, Akiko; Murao, Takahisa; Fujita, Yoshihiko; Fujimura, Yoshinori; Sakakibara, Takashi; Nishio, Kazuto; Haruma, Ken

    2013-01-01

    Background Aspirin-induced enteropathy is now increasingly being recognized although the pathogenesis of small intestinal damage induced by aspirin is not well understood and related risk factors have not been established. Aim To investigate pharmacogenomic profile of low dose aspirin (LDA)-induced small bowel bleeding. Methods Genome-wide analysis of single nucleotide polymorphisms (SNPs) was performed using the Affymetrix DMET™ Plus Premier Pack. Genotypes of candidate genes associated with small bowel bleeding were determined using TaqMan SNP Genotyping Assay kits and direct sequencing. Results In the validation study in overall 37 patients with small bowel bleeding and 400 controls, 4 of 27 identified SNPs: CYP4F11 (rs1060463) GG (p=0.003), CYP2D6 (rs28360521) GG (p=0.02), CYP24A1 (rs4809957) T allele (p=0.04), and GSTP1 (rs1695) G allele (p=0.04) were significantly more frequent in the small bowel bleeding group compared to the controls. After adjustment for significant factors, CYP2D6 (rs28360521) GG (OR 4.11, 95% CI. 1.62 -10.4) was associated with small bowel bleeding. Conclusions CYP4F11 and CYP2D6 SNPs may identify patients at increased risk for aspirin-induced small bowel bleeding. PMID:24367646

  16. Impacts of the Glucuronidase Genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on Tamoxifen Metabolism in Breast Cancer Patients.

    PubMed

    Romero-Lorca, Alicia; Novillo, Apolonia; Gaibar, María; Bandrés, Fernando; Fernández-Santander, Ana

    2015-01-01

    Tamoxifen is used to prevent and treat estrogen-dependent breast cancer. It is described as a prodrug since most of its antiestrogen effects are exerted through its hydroxylated metabolites 4-OH-tamoxifen and endoxifen. In prior work, we correlated optimal plasma levels of these metabolites with certain genotypes of CYP2D6 and SULT1A2. This descriptive study examines correlations between concentrations of tamoxifen's glucuronide metabolites and genotypes UGT1A4 Pro24Thr, UGT1A4 Leu48Val, UGT2B7 His268Tyr, UGT2B15 Asp85YTyr UGT2B15 Lys523Thr and UGT2B17del in 132 patients with estrogen receptor-positive breast cancer under treatment with tamoxifen. Patients were genotyped by real-time and conventional PCR-RFLP. The glucuronides 4-OH-tamoxifen-N-glucuronide, 4-OH-tamoxifen-O-glucuronide and endoxifen-O-glucuronide were isolated from blood plasma and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Individuals who were homozygous for UGT1A448VAL showed significantly lower mean concentrations of both glucuronide metabolites compared to subjects genotyped as wt/wt plus wt/48Val (p=0.037 and p=0.031, respectively). Women homozygous for UGT2B7268Tyr also showed mean substrate/product ratios of 4-OH-tamoxifen/4-OH-tamoxifen-O-glucuronide and 4-OH-tamoxifen/4-OH-tamoxifen-N-glucuronide indicative of reduced glucuronidase activity compared to wt homozygotes or to heterozygotes for the polymorphism (p=0.005 and p=0.003, respectively). In contrast, UGT2B15 Lys523Thr and UGT2B17del were associated with possibly increased enzyme activity. Patients with at least one variant allele UGT2B15523Thr showed significantly higher 4-OH-tamoxifen-O-glucuronide and endoxifen-glucuronide levels (p=0.023 and p=0.025, respectively) indicating a variant gene-dose effect. Higher 4-OH-tamoxifen-N-glucuronide levels observed in UGT2B17del genotypes (p=0.042) could be attributed to a mechanism that compensates for the greater expression of other genes in UGT2B

  17. Impacts of the Glucuronidase Genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on Tamoxifen Metabolism in Breast Cancer Patients

    PubMed Central

    Romero-Lorca, Alicia; Novillo, Apolonia; Gaibar, María; Bandrés, Fernando; Fernández-Santander, Ana

    2015-01-01

    Tamoxifen is used to prevent and treat estrogen-dependent breast cancer. It is described as a prodrug since most of its antiestrogen effects are exerted through its hydroxylated metabolites 4-OH-tamoxifen and endoxifen. In prior work, we correlated optimal plasma levels of these metabolites with certain genotypes of CYP2D6 and SULT1A2. This descriptive study examines correlations between concentrations of tamoxifen's glucuronide metabolites and genotypes UGT1A4 Pro24Thr, UGT1A4 Leu48Val, UGT2B7 His268Tyr, UGT2B15 Asp85YTyr UGT2B15 Lys523Thr and UGT2B17del in 132 patients with estrogen receptor-positive breast cancer under treatment with tamoxifen. Patients were genotyped by real-time and conventional PCR-RFLP. The glucuronides 4-OH-tamoxifen-N-glucuronide, 4-OH-tamoxifen-O-glucuronide and endoxifen-O-glucuronide were isolated from blood plasma and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Individuals who were homozygous for UGT1A448VAL showed significantly lower mean concentrations of both glucuronide metabolites compared to subjects genotyped as wt/wt plus wt/48Val (p=0.037 and p=0.031, respectively). Women homozygous for UGT2B7268Tyr also showed mean substrate/product ratios of 4-OH-tamoxifen/4-OH-tamoxifen-O-glucuronide and 4-OH-tamoxifen/4-OH-tamoxifen-N-glucuronide indicative of reduced glucuronidase activity compared to wt homozygotes or to heterozygotes for the polymorphism (p=0.005 and p=0.003, respectively). In contrast, UGT2B15 Lys523Thr and UGT2B17del were associated with possibly increased enzyme activity. Patients with at least one variant allele UGT2B15523Thr showed significantly higher 4-OH-tamoxifen-O-glucuronide and endoxifen-glucuronide levels (p=0.023 and p=0.025, respectively) indicating a variant gene-dose effect. Higher 4-OH-tamoxifen-N-glucuronide levels observed in UGT2B17del genotypes (p=0.042) could be attributed to a mechanism that compensates for the greater expression of other genes in UGT2B

  18. Applications of CYP450 testing in the clinical setting.

    PubMed

    Samer, C F; Lorenzini, K Ing; Rollason, V; Daali, Y; Desmeules, J A

    2013-06-01

    Interindividual variability in drug response is a major clinical problem. Polymedication and genetic polymorphisms modulating drug-metabolising enzyme activities (cytochromes P450, CYP) are identified sources of variability in drug responses. We present here the relevant data on the clinical impact of the major CYP polymorphisms (CYP2D6, CYP2C19 and CYP2C9) on drug therapy where genotyping and phenotyping may be considered, and the guidelines developed when available. CYP2D6 is responsible for the oxidative metabolism of up to 25% of commonly prescribed drugs such as antidepressants, antipsychotics, opioids, antiarrythmics and tamoxifen. The ultrarapid metaboliser (UM) phenotype is recognised as a cause of therapeutic inefficacy of antidepressant, whereas an increased risk of toxicity has been reported in poor metabolisers (PMs) with several psychotropics (desipramine, venlafaxine, amitriptyline, haloperidol). CYP2D6 polymorphism influences the analgesic response to prodrug opioids (codeine, tramadol and oxycodone). In PMs for CYP2D6, reduced analgesic effects have been observed, whereas in UMs cases of life-threatening toxicity have been reported with tramadol and codeine. CYP2D6 PM phenotype has been associated with an increased risk of toxicity of metoprolol, timolol, carvedilol and propafenone. Although conflicting results have been reported regarding the association between CYP2D6 genotype and tamoxifen effects, CYP2D6 genotyping may be useful in selecting adjuvant hormonal therapy in postmenopausal women. CYP2C19 is responsible for metabolising clopidogrel, proton pump inhibitors (PPIs) and some antidepressants. Carriers of CYP2C19 variant alleles exhibit a reduced capacity to produce the active metabolite of clopidogrel, and are at increased risk of adverse cardiovascular events. For PPIs, it has been shown that the mean intragastric pH values and the Helicobacter pylori eradication rates were higher in carriers of CYP2C19 variant alleles. CYP2C19 is

  19. Pharmacogenetic Testing Among Home Health Patients

    ClinicalTrials.gov

    2016-09-20

    Adverse Drug Events; Adverse Drug Reactions; Drug Interaction Potentiation; Drug Metabolism, Poor, CYP2D6-RELATED; Drug Metabolism, Poor, CYP2C19-RELATED; Cytochrome P450 Enzyme Deficiency; Cytochrome P450 CYP2D6 Enzyme Deficiency; Cytochrome P450 CYP2C9 Enzyme Deficiency; Cytochrome P450 CYP2C19 Enzyme Deficiency; Cytochrome P450 CYP3A Enzyme Deficiency; Poor Metabolizer Due to Cytochrome P450 CYP2C9 Variant; Poor Metabolizer Due to Cytochrome p450 CYP2C19 Variant; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  20. YouScript IMPACT Registry

    ClinicalTrials.gov

    2017-02-27

    Adverse Drug Events; Adverse Drug Reactions; Drug Interaction Potentiation; Drug Metabolism, Poor, CYP2D6-RELATED; Drug Metabolism, Poor, CYP2C19-RELATED; Cytochrome P450 Enzyme Deficiency; Cytochrome P450 CYP2D6 Enzyme Deficiency; Cytochrome P450 CYP2C9 Enzyme Deficiency; Cytochrome P450 CYP2C19 Enzyme Deficiency; Cytochrome P450 CYP3A Enzyme Deficiency; Poor Metabolizer Due to Cytochrome P450 CYP2C9 Variant; Poor Metabolizer Due to Cytochrome P450 CYP2C19 Variant; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  1. American Pharmacists Association

    MedlinePlus

    ... ago Posted in: APhA Residency Directors & Preceptors Community Hi all, I thought I would follow up what ... 1 day ago Posted in: Medication Management SIG Hi Krystalyn,Had the students research CYP2D6 with common ...

  2. Biotransformation and pharmacokinetics of ethylmorphine after a single oral dose.

    PubMed Central

    Aasmundstad, T A; Xu, B Q; Johansson, I; Ripel, A; Bjørneboe, A; Christophersen, A S; Bodd, E; Mørland, J

    1995-01-01

    1. The pharmacokinetics of ethylmorphine after administration of a single dose of the cough mixture Cosylan were investigated in 10 healthy subjects. 2. The median urinary recovery of ethylmorphine and measured metabolites was 77% over 48 h. The median tmax of unchanged ethylmorphine was 45 min, and the terminal elimination t1/2 was 2 h. Ethylmorphine-6-glucuronide was found to be the major metabolite. 3. Two subjects had significantly lower urinary recovery (0.48 h) of morphine and morphine-glucuronides than the remainder. Furthermore, these two had urinary metabolic ratios (MRO) and partial metabolic clearances (CLmO) for O-deethylation of ethylmorphine tentatively classifying them phenotypically as poor metabolisers of the debrisoquine/sparteine type. 4. Genotyping for cytochrome P450 (CYP) 2D6 alleles revealed five homozygote (wt/wt) and five heterozygote subjects. Two subjects phenotypically classified as poor metabolisers were genotypically CYP2D6A/wt and CYP2D6D/wt, respectively. 5. Serum and urine samples taken more than 8 and 24 h after administration of ethyl-morphine respectively, contained morphine and morphine-glucuronides, but no ethylmorphine, ethylmorphine-6-glucuronide or (serum only) norethylmorphine. Norethylmorphine could be detected after hydrolysis of urine samples in all subjects. The urinary recovery of the active metabolites morphine and morphine-6-glucuronide after administration of ethylmorphine varied by a factor of 9 between individuals. 6. The wide variation in recovery of morphine and morphine-glucuronides after oral administration of ethylmorphine could not be explained simply by a difference in CYP2D6 genotype. Constitutional variation in other enzymatic pathways involved in ethylmorphine metabolism is probably crucial. Ratios of morphine to parent drug cannot be used to distinguish the source of morphine after administration of ethylmorphine. Norethylmorphine should be included in urine assays for opiates in forensic toxicology

  3. Marmoset cytochrome P450 2D8 in livers and small intestines metabolizes typical human P450 2D6 substrates, metoprolol, bufuralol and dextromethorphan.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Hagihira, Yuya; Murayama, Norie; Shimizu, Makiko; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2015-01-01

    1. Although the New World non-human primate, the common marmoset (Callithrix jacchus), is a potentially useful animal model, comprehensive understanding of drug metabolizing enzymes is insufficient. 2. A cDNA encoding a novel cytochrome P450 (P450) 2D8 was identified in marmosets. The amino acid sequence deduced from P450 2D8 cDNA showed a high sequence identity (83-86%) with other primate P450 2Ds. Phylogenetic analysis showed that marmoset P450 2D8 was closely clustered with human P450 2D6, unlike P450 2Ds of miniature pig, dog, rabbit, guinea pig, mouse or rat. 3. Marmoset P450 2D8 mRNA was predominantly expressed in the liver and small intestine among the tissues types analyzed, whereas marmoset P450 2D6 mRNA was expressed predominantly in the liver where P450 2D protein was detected by immunoblotting. 4. By metabolic assays using marmoset P450 2D8 protein heterologously expressed in Escherichia coli, although P450 2D8 exhibits lower catalytic efficiency compared to marmoset and human P450 2D6 enzymes, P450 2D8 mediated O-demethylations of metoprolol and dextromethorphan and bufuralol 1'-hydroxylation. 5. These results suggest that marmoset P450 2D8 (also expressed in the extrahepatic tissues) has potential roles in drug metabolism in a similar manner to those of human and marmoset P450 2D6.

  4. Importance of pharmacogenetics in the treatment of children with attention deficit hyperactive disorder: a case report.

    PubMed

    Tan-Kam, Teerarat; Suthisisang, Chutamanee; Pavasuthipaisit, Chosita; Limsila, Penkhae; Puangpetch, Apichaya; Sukasem, Chonlaphat

    2013-01-01

    This case report highlights the importance of pharmacogenetic testing in the treatment of attention deficit hyperactive disorder (ADHD). A 6-year-old boy diagnosed with ADHD was prescribed methylphenidate 5 mg twice daily (7 am and noon) and the family was compliant with administration of this medication. On the first day of treatment, the patient had an adverse reaction, becoming disobedient, more mischievous, erratic, resistant to discipline, would not go to sleep until midnight, and had a poor appetite. The All-In-One PGX (All-In-One Pharmacogenetics for Antipsychotics test for CYP2D6, CYP2C19, and CYP2C9) was performed using microarray-based and real-time polymerase chain reaction techniques. The genotype of our patient was identified to be CYP2D6*2/*10, with isoforms of the enzyme consistent with a predicted cytochrome P450 2D6 intermediate metabolizer phenotype. Consequently, the physician adjusted the methylphenidate dose to 2.5 mg once daily in the morning. At this dosage, the patient had a good response without any further adverse reactions. Pharmacogenetic testing should be included in the management plan for ADHD. In this case, cooperation between the medical team and the patients' relatives was key to successful treatment.

  5. Trends in co-prescribing of antidepressants and tamoxifen among women with breast cancer, 2004-2010.

    PubMed

    Dusetzina, Stacie B; Alexander, G Caleb; Freedman, Rachel A; Huskamp, Haiden A; Keating, Nancy L

    2013-01-01

    Nearly a decade ago, researchers identified a potential interaction between tamoxifen and strong CYP2D6 inhibitors, including several frequently used antidepressants. Based on evidence available at that time, a United States Food and Drug Administration advisory committee recommended tamoxifen's label be changed in October 2006, noting that postmenopausal women with estrogen receptor-positive breast cancer who are poor CYP2D6 metabolizers by genotype or drug interactions may be at increased risk of cancer recurrence. The impact of accumulating drug risk information on antidepressant use is unknown. We conducted a retrospective, longitudinal cohort study of 13,205 women aged 50-95 with breast cancer initiating tamoxifen between July 2004 and December 2009. We evaluated trends in strong, moderate, and weak CYP2D6-inhibitor antidepressants and tamoxifen co-prescribing and factors associated with ongoing strong inhibitor use. A propensity score matched control group (aromatase inhibitor initiators) was used to estimate changes in co-prescribing, accounting for secular trends. In each month, approximately 24 % of tamoxifen and aromatase inhibitor users were prescribed antidepressants. Among women using tamoxifen and antidepressants, 34 % used strong inhibitors between 2004 and 2006 versus 15 % in 2010. Strong inhibitor use decreased more among tamoxifen users than aromatase inhibitor users (difference-in-differences [DD] -0.09; 95 % confidence interval [CI] -0.15, -0.03). Weak inhibitor use increased among tamoxifen users from 32 % between 2004 and 2006 to 52 % in 2010, more rapidly than among aromatase inhibitor users (DD 0.15; CI 0.08, 0.23). The factor most strongly associated with strong inhibitor and tamoxifen co-prescribing after 2006 was prior strong inhibitor use (RR 4.73; CI 3.62-6.18). In conclusion, there were substantial declines in strong CYP2D6-inhibitor use among tamoxifen users following dissemination of information suggesting a potential for increased

  6. Diversity in mechanisms of substrate oxidation by cytochrome P450 2D6. Lack of an allosteric role of NADPH-cytochrome P450 reductase in catalytic regioselectivity.

    PubMed

    Hanna, I H; Krauser, J A; Cai, H; Kim, M S; Guengerich, F P

    2001-10-26

    Cytochrome P450 (P450) 2D6 was first identified as the polymorphic human debrisoquine hydroxylase and subsequently shown to catalyze the oxidation of a variety of drugs containing a basic nitrogen. Differences in the regioselectivity of oxidation products formed in systems containing NADPH-P450 reductase/NADPH and the model oxidant cumene hydroperoxide have been proposed by others to be due to an allosteric influence of the reductase on P450 2D6 (Modi, S., Gilham, D. E., Sutcliffe, M. J., Lian, L.-Y., Primrose, W. U., Wolf, C. R., and Roberts, G. C. K. (1997) Biochemistry 36, 4461-4470). We examined the differences in the formation of oxidation products of N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, metoprolol, and bufuralol between reductase-, cumene hydroperoxide-, and iodosylbenzene-supported systems. Catalytic regioselectivity was not influenced by the presence of the reductase in any of the systems supported by model oxidants, ruling out allosteric influences. The presence of the reductase had little effect on the affinity of P450 2D6 for any of these three substrates. The addition of the reaction remnants of the model oxidants (cumyl alcohol and iodobenzene) to the reductase-supported system did not affect reaction patterns, arguing against steric influences of these products on catalytic regioselectivity. Label from H(2)18O was quantitatively incorporated into 1'-hydroxybufuralol in the iodosylbenzene- but not in the reductase- or cumene hydroperoxide-supported reactions. We conclude that the P450 systems utilizing NADPH-P450 reductase, cumene hydroperoxide, and iodosylbenzene use similar but distinct chemical mechanisms. These differences are the basis for the variable product distributions, not an allosteric influence of the reductase.

  7. Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human liver microsomes.

    PubMed

    Yoshii, K; Kobayashi, K; Tsumuji, M; Tani, M; Shimada, N; Chiba, K

    2000-01-01

    Studies to identify the cytochrome P450 (CYP) isoform(s) involved in chlorpromazine 7-hydroxylation were performed using human liver microsomes and cDNA-expressed human CYPs. The kinetics of chlorpromazine 7-hydroxylation in human liver microsomes showed a simple Michaelis-Menten behavior. The apparent Km and Vmax values were 3.4+/-1.0 microM and 200.5+/-83.7 pmol/min/mg, respectively. The chlorpromazine 7-hydroxylase activity in human liver microsomes showed good correlations with desipramine 2-hydroxylase activity (r = 0.763, p < 0.05), a marker activity for CYP2D6, and phenacetin O-deethylase activity (r = 0.638, p < 0.05), a marker activity for CYP1A2. Quinidine (an inhibitor of CYP2D6) completely inhibited while alpha-naphthoflavone (an inhibitor of CYP1A2) marginally inhibited the chlorpromazine 7-hydroxylase activity in a human liver microsomal sample showing high CYP2D6 activity. On the other hand, alpha-naphthoflavone inhibited the chlorpromazine 7-hydroxylase activity to 55-65% of control in a human liver microsomal sample showing low CYP2D6 activity. Among eleven cDNA-expressed CYPs studied, CYP2D6 and CYP1A2 exhibited significant activity for the chlorpromazine 7-hydroxylation. The Km values for the chlorpromazine 7-hydroxylation of both cDNA-expressed CYP2D6 and CYP1A2 were in agreement with the Km values of human liver microsomes. These results suggest that chlorpromazine 7-hydroxylation is catalyzed mainly by CYP2D6 and partially by CYP1A2.

  8. Contribution of Cytochrome P450 and ABCB1 Genetic Variability on Methadone Pharmacokinetics, Dose Requirements, and Response

    PubMed Central

    Fonseca, Francina; de la Torre, Rafael; Díaz, Laura; Pastor, Antonio; Cuyàs, Elisabet; Pizarro, Nieves; Khymenets, Olha; Farré, Magí; Torrens, Marta

    2011-01-01

    Although the efficacy of methadone maintenance treatment (MMT) in opioid dependence disorder has been well established, the influence of methadone pharmacokinetics in dose requirement and clinical outcome remains controversial. The aim of this study is to analyze methadone dosage in responder and nonresponder patients considering pharmacogenetic and pharmacokinetic factors that may contribute to dosage adequacy. Opioid dependence patients (meeting Diagnostic and Statistical Manual of Mental Disorders, [4th Edition] criteria) from a MMT community program were recruited. Patients were clinically assessed and blood samples were obtained to determine plasma concentrations of (R,S)-, (R) and (S)- methadone and to study allelic variants of genes encoding CYP3A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, and P-glycoprotein. Responders and nonresponders were defined by illicit opioid consumption detected in random urinalysis. The final sample consisted in 105 opioid dependent patients of Caucasian origin. Responder patients received higher doses of methadone and have been included into treatment for a longer period. No differences were found in terms of genotype frequencies between groups. Only CYP2D6 metabolizing phenotype differences were found in outcome status, methadone dose requirements, and plasma concentrations, being higher in the ultrarapid metabolizers. No other differences were found between phenotype and responder status, methadone dose requirements, neither in methadone plasma concentrations. Pharmacokinetic factors could explain some but not all differences in MMT outcome and methadone dose requirements. PMID:21589866

  9. Genetic factors affecting statin concentrations and subsequent myopathy: a HuGENet systematic review.

    PubMed

    Canestaro, William J; Austin, Melissa A; Thummel, Kenneth E

    2014-11-01

    Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors, have proven efficacy in both lowering low-density-lipoprotein levels and preventing major coronary events, making them one of the most commonly prescribed drugs in the United States. Statins exhibit a class-wide side effect of muscle toxicity and weakness, which has led regulators to impose both dosage limitations and a recall. This review focuses on the best-characterized genetic factors associated with increased statin muscle concentrations, including the genes encoding cytochrome P450 enzymes (CYP2D6, CYP3A4, and CYP3A5), a mitochondrial enzyme (GATM), an influx transporter (SLCO1B1), and efflux transporters (ABCB1 and ABCG2). A systematic literature review was conducted to identify relevant research evaluating the significance of genetic variants predictive of altered statin concentrations and subsequent statin-related myopathy. Studies eligible for inclusion must have incorporated genotype information and must have associated it with some measure of myopathy, either creatine kinase levels or self-reported muscle aches and pains. After an initial review, focus was placed on seven genes that were adequately characterized to provide a substantive review: CYP2D6, CYP3A4, CYP3A5, GATM, SLCO1B1, ABCB1, and ABCG2. All statins were included in this review. Among the genetic factors evaluated, statin-related myopathy appears to be most strongly associated with variants in SLCO1B1.

  10. Construction of Metabolism Prediction Models for CYP450 3A4, 2D6, and 2C9 Based on Microsomal Metabolic Reaction System

    PubMed Central

    He, Shuai-Bing; Li, Man-Man; Zhang, Bai-Xia; Ye, Xiao-Tong; Du, Ran-Feng; Wang, Yun; Qiao, Yan-Jiang

    2016-01-01

    During the past decades, there have been continuous attempts in the prediction of metabolism mediated by cytochrome P450s (CYP450s) 3A4, 2D6, and 2C9. However, it has indeed remained a huge challenge to accurately predict the metabolism of xenobiotics mediated by these enzymes. To address this issue, microsomal metabolic reaction system (MMRS)—a novel concept, which integrates information about site of metabolism (SOM) and enzyme—was introduced. By incorporating the use of multiple feature selection (FS) techniques (ChiSquared (CHI), InfoGain (IG), GainRatio (GR), Relief) and hybrid classification procedures (Kstar, Bayes (BN), K-nearest neighbours (IBK), C4.5 decision tree (J48), RandomForest (RF), Support vector machines (SVM), AdaBoostM1, Bagging), metabolism prediction models were established based on metabolism data released by Sheridan et al. Four major biotransformations, including aliphatic C-hydroxylation, aromatic C-hydroxylation, N-dealkylation and O-dealkylation, were involved. For validation, the overall accuracies of all four biotransformations exceeded 0.95. For receiver operating characteristic (ROC) analysis, each of these models gave a significant area under curve (AUC) value >0.98. In addition, an external test was performed based on dataset published previously. As a result, 87.7% of the potential SOMs were correctly identified by our four models. In summary, four MMRS-based models were established, which can be used to predict the metabolism mediated by CYP3A4, 2D6, and 2C9 with high accuracy. PMID:27735849

  11. CYP2D60 and Clinical Response to Atomoxetine in Children and Adolescents with ADHD

    ERIC Educational Resources Information Center

    Michelson, David; Read, Holly A.; Ruff, Dustin D.; Witcher, Jennifer; Zhang, Shuyu; McCracken, James

    2007-01-01

    Background: Atomoxetine, a selective norepinephrine reuptake inhibitor effective in the treatment of attention-deficit/hyperactivity disorder (ADHD), is metabolized through the cytochrome P-450 2D6 (CYP2D6) enzyme pathway, which is genetically polymorphic in humans. Variations in plasma atomoxetine exposures can occur because of genetic variation…

  12. Localization of the CYP2D gene locus to human chromosome 22q13. 1 by polymerase chain reaction, in situ hybridization, and linkage analysis

    SciTech Connect

    Gouch, A.C.; Howell, S.M.; Bryant, S.P.; Spurr, N.K. ); Smith, C.A.D.; Wolf, C.R. )

    1993-02-01

    Using a combination of somatic cell hybrids, in situ hybridization, and linkage mapping, we have been able to localize the cytochrome P450 CYP2D6 gene to chromosome 22 in the region q13.1. Linkage analysis, using locus-specific primers, showed a maximum sex-average lod score of 8.12 ([theta] = 0.00) between the marker pH130 (D22S64) and CYPsD6, of 6.92 ([theta] - 0.00) between the marker KI839 (D22S95) and CYP2D6, and 4.80 ([theta] = 0.036) between the platelet-derived growth factor [beta] subunit gene (PDGFB) and CYP2D6. 16 refs., 2 figs.

  13. Pharmacogenetic determination of the effects of codeine and prediction of drug interactions.

    PubMed

    Caraco, Y; Sheller, J; Wood, A J

    1996-09-01

    To define the differences in codeine pharmacodynamics in extensive (EMs) and poor (PMs) metabolizers of debrisoquin and to determine whether the inhibition of codeine's metabolism by quinidine produces phenotypically dependent pharmacodynamic changes, we studied 16 healthy nonsmoking males, 10 EMs and 6 PMs of debrisoquin. The subjects received in random double-blind fashion 120 mg of codeine plus placebo, 120 mg of codeine plus 100 mg of quinidine and 100 mg of quinidine plus placebo. Blood was obtained over 24 hr and urine was collected for 48 hr. Respiratory, psychomotor and pupillary effects of codeine were greater in the EMs than in the PMs (P < .01). Morphine and morphine metabolites were detectable only in plasma from EMs. Codeine metabolic clearance by O-demethylation was almost 200-fold greater in the EMs than in the PMs. After coadministration of quinidine, morphine and morphine metabolites were not detectable in the plasma of either phenotype and mean (+/- S.E.M.) O-demethylation clearance was reduced in the EMs from 162.7 +/- 36.6 to 17.0 +/- 5.0 ml/min (P < .003), but not in the PMs. The diminished production of morphine in the EMs was associated with significantly reduced respiratory, psychomotor and pupillary effects (P < .01). Thus, CYP2D6 mediated O-demethylation of codeine to morphine is central to its pharmacodynamic effects. Patients who lack CYP2D6 or whose CYP2D6 is inhibited would not be expected to benefit from codeine. Thus, phenotyping for CYP2D6 and the avoidance of CYP2D6 inhibitors is justified in patients with chronic path before initiating long-term therapy with analgesics whose in vivo activation is dependent on CYP2D6 activity (i.e., codeine, hydrocodone and oxycodone.

  14. Cytochrome P4502D6 catalyzes the O-demethylation of the psychoactive alkaloid ibogaine to 12-hydroxyibogamine.

    PubMed

    Obach, R S; Pablo, J; Mash, D C

    1998-08-01

    Ibogaine is a psychoactive alkaloid that possesses potential as an agent to treat opiate and cocaine addiction. The primary metabolite arises via O-demethylation at the 12-position to yield 12-hydroxyibogamine. In this report, evidence is presented that the O-demethylation of ibogaine observed in human hepatic microsomes is catalyzed primarily by the polymorphically expressed cytochrome P-4502D6 (CYP2D6). An enzyme kinetic examination of ibogaine O-demethylase activity in pooled human liver microsomes suggested that two (or more) enzymes are involved in this reaction: one with a low KMapp (1.1 microM) and the other with a high KMapp (>200 microM). The low KMapp activity comprised >95% of total intrinsic clearance. Human liver microsomes from three individual donors demonstrated similar enzyme kinetic parameters (mean KMapp = 0.55 +/- 0.09 microM and 310 +/- 10 microM for low and high KM activities, respectively). However, a fourth human microsome sample that appeared to be a phenotypic CYP2D6 poor metabolizer possessed only the high KMapp activity. In hepatic microsomes from a panel of human donors, the low KMapp ibogaine O-demethylase activity correlated with CYP2D6-catalyzed bufuralol 1'-hydroxylase activity but not with other P450 isoform-specific activities. Quinidine, a CYP2D6-specific inhibitor, inhibited ibogaine O-demethylase (IC50 = 0.2 microM), whereas other P450 isoform-specific inhibitors did not inhibit this activity. Also, of a battery of recombinant heterologously expressed human P450 isoforms, only rCYP2D6 possessed significant ibogaine O-demethylase activity. Thus, it is concluded that ibogaine O-demethylase is catalyzed by CYP2D6 and that this isoform is the predominant enzyme of ibogaine O-demethylation in humans. The potential pharmacological implications of these findings are discussed.

  15. Characterization of 137 Genomic DNA Reference Materials for 28 Pharmacogenetic Genes

    PubMed Central

    Pratt, Victoria M.; Everts, Robin E.; Aggarwal, Praful; Beyer, Brittany N.; Broeckel, Ulrich; Epstein-Baak, Ruth; Hujsak, Paul; Kornreich, Ruth; Liao, Jun; Lorier, Rachel; Scott, Stuart A.; Smith, Chingying Huang; Toji, Lorraine H.; Turner, Amy; Kalman, Lisa V.

    2017-01-01

    Pharmacogenetic testing is increasingly available from clinical laboratories. However, only a limited number of quality control and other reference materials are currently available to support clinical testing. To address this need, the Centers for Disease Control and Prevention–based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, has characterized 137 genomic DNA samples for 28 genes commonly genotyped by pharmacogenetic testing assays (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP4F2, DPYD, GSTM1, GSTP1, GSTT1, NAT1, NAT2, SLC15A2, SLC22A2, SLCO1B1, SLCO2B1, TPMT, UGT1A1, UGT2B7, UGT2B15, UGT2B17, and VKORC1). One hundred thirty-seven Coriell cell lines were selected based on ethnic diversity and partial genotype characterization from earlier testing. DNA samples were coded and distributed to volunteer testing laboratories for targeted genotyping using a number of commercially available and laboratory developed tests. Through consensus verification, we confirmed the presence of at least 108 variant pharmacogenetic alleles. These samples are also being characterized by other pharmacogenetic assays, including next-generation sequencing, which will be reported separately. Genotyping results were consistent among laboratories, with most differences in allele assignments attributed to assay design and variability in reported allele nomenclature, particularly for CYP2D6, UGT1A1, and VKORC1. These publicly available samples will help ensure the accuracy of pharmacogenetic testing. PMID:26621101

  16. Non-linear pharmacokinetics of MDMA (‘ecstasy’) in humans

    PubMed Central

    de la Torre, R; Farré, M; Ortuño, J; Mas, M; Brenneisen, R; Roset, P N; Segura, J; Camí, J

    2000-01-01

    doses compatible with its recreational use) is a more general phenomenon as it concerns the whole population independent of their CYP2D6 genotype. It implies that relatively small increases in the dose of MDMA ingested are translated to disproportionate rises in MDMA plasma concentrations and hence subjects are more prone to develop acute toxicity. PMID:10671903

  17. Frequencies of 23 Functionally Significant Variant Alleles Related with Metabolism of Antineoplastic Drugs in the Chilean Population: Comparison with Caucasian and Asian Populations

    PubMed Central

    Roco, Ángela; Quiñones, Luis; Agúndez, José A. G.; García-Martín, Elena; Squicciarini, Valentina; Miranda, Carla; Garay, Joselyn; Farfán, Nancy; Saavedra, Iván; Cáceres, Dante; Ibarra, Carol; Varela, Nelson

    2012-01-01

    Cancer is a leading cause of death worldwide. The cancer incidence rate in Chile is 133.7/100,000 inhabitants and it is the second cause of death, after cardiovascular diseases. Most of the antineoplastic drugs are metabolized to be detoxified, and some of them to be activated. Genetic polymorphisms of drug-metabolizing enzymes can induce deep changes in enzyme activity, leading to individual variability in drug efficacy and/or toxicity. The present research describes the presence of genetic polymorphisms in the Chilean population, which might be useful in public health programs for personalized treatment of cancer, and compares these frequencies with those reported for Asian and Caucasian populations, as a contribution to the evaluation of ethnic differences in the response to chemotherapy. We analyzed 23 polymorphisms in a group of 253 unrelated Chilean volunteers from the general population. The results showed that CYP2A6*2, CYP2A6*3, CYP2D6*3, CYP2C19*3, and CYP3A4*17 variant alleles are virtually absent in Chileans. CYP1A1*2A allele frequency (0.37) is similar to that of Caucasians and higher than that reported for Japanese people. Allele frequencies for CYP3A5*3(0.76) and CYP2C9*3(0.04) are similar to those observed in Japanese people. CYP1A1*2C(0.32), CYP1A2*1F(0.77), CYP3A4*1B(0.06), CYP2D6*2(0.41), and MTHFR T(0.52) allele frequencies are higher than the observed either in Caucasian or in Japanese populations. Conversely, CYP2C19*2 allelic frequency (0.12), and genotype frequencies for GSTT1 null (0.11) and GSTM1 null (0.36) are lower than those observed in both populations. Finally, allele frequencies for CYP2A6*4(0.04), CYP2C8*3(0.06), CYP2C9*2(0.06), CYP2D6*4(0.12), CYP2E1*5B(0.14), CYP2E1*6(0.19), and UGT2B7*2(0.40) are intermediate in relation to those described in Caucasian and in Japanese populations, as expected according to the ethnic origin of the Chilean population. In conclusion, our findings support the idea that ethnic variability must be

  18. Pharmacogenomics in Alzheimer's disease.

    PubMed

    Cacabelos, Ramón

    2008-01-01

    Pharmacological treatment in Alzheimer's disease (AD) accounts for 10-20% of direct costs, and fewer than 20% of AD patients are moderate responders to conventional drugs (donepezil, rivastigmine, galantamine, memantine), with doubtful cost-effectiveness. Both AD pathogenesis and drug metabolism are genetically regulated complex traits in which hundreds of genes cooperatively participate. Structural genomics studies demonstrated that more than 200 genes might be involved in AD pathogenesis regulating dysfunctional genetic networks leading to premature neuronal death. The AD population exhibits a higher genetic variation rate than the control population, with absolute and relative genetic variations of 40-60% and 0.85-1.89%, respectively. AD patients also differ in their genomic architecture from patients with other forms of dementia. Functional genomics studies in AD revealed that age of onset, brain atrophy, cerebrovascular hemodynamics, brain bioelectrical activity, cognitive decline, apoptosis, immune function, lipid metabolism dyshomeostasis, and amyloid deposition are associated with AD-related genes. Pioneering pharmacogenomics studies also demonstrated that the therapeutic response in AD is genotype-specific, with apolipoprotein E (APOE) 4/4 carriers the worst responders to conventional treatments. About 10-20% of Caucasians are carriers of defective cytochrome P450 (CYP) 2D6 polymorphic variants that alter the metabolism and effects of AD drugs and many psychotropic agents currently administered to patients with dementia. There is a moderate accumulation of AD-related genetic variants of risk in CYP2D6 poor metabolizers (PMs) and ultrarapid metabolizers (UMs), who are the worst responders to conventional drugs. The association of the APOE-4 allele with specific genetic variants of other genes (e.g., CYP2D6, angiotensin-converting enzyme [ACE]) negatively modulates the therapeutic response to multifactorial treatments affecting cognition, mood, and behavior

  19. Detection of DNA sequence polymorphisms in carcinogen metabolism genes by polymerase chain reaction

    SciTech Connect

    Bell, D.A. )

    1991-01-01

    The glutathione transferase mu gene (GST1) and the debrisoquine hydroxylase gene (CYP2D6) are known to be polymorphic in the human population and have been associated with increased susceptibility to cancer. Smokers with low lymphocyte GST mu activity are at higher risk for lung cancer, while low debrisoquine hydroxylase activity has been correlated with lower risk for lung and bladder cancer. Phenotypic characterization of these polymorphisms by lymphocyte enzyme activity (GST) and urine metabolite ratios (debrisoquine) is cumbersome for population studies. Recent cloning and sequencing of the mutant alleles of these genes has allowed genotyping via the polymerase chain reaction (PCR). Advantages of PCR approaches are speed, technical simplicity, and minimal sample requirements. This article reviews the PCR-based methods for detection of genetic polymorphisms in human cancer susceptibility genes.

  20. Do single nucleotide polymorphisms in xenobiotic metabolizing genes determine breast cancer susceptibility and treatment outcomes?

    PubMed

    Singh, Virendra; Parmar, Devendra; Singh, Mahendra Pratap

    2008-10-01

    SNPs in CYP1A1, CYP2A1, CYP2B6, CYP2C, CYP2D6, CYP3A, GSTM1, GSTT1, GSTP1, SULT1A1, SULT1A2, UGT, and MTHFR are associated with breast cancer susceptibility; however, lack of such associations are also reported in some populations. The contradictory findings are explained on the basis of ethnic variation among populations and due to lack of proper sample size, detailed genotype-phenotype combinations and validation of gene expression studies at protein level. In this review, SNPs in these genes that have tremendous potential in identification of susceptible individuals, development of preventive strategies, treatment outcomes and their limitations are discussed.

  1. Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions.

    PubMed

    Shen, Hong-Wu; Jiang, Xi-Ling; Winter, Jerrold C; Yu, Ai-Ming

    2010-10-01

    5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) belongs to a group of naturally-occurring psychoactive indolealkylamine drugs. It acts as a nonselective serotonin (5-HT) agonist and causes many physiological and behavioral changes. 5-MeO-DMT is O-demethylated by polymorphic cytochrome P450 2D6 (CYP2D6) to an active metabolite, bufotenine, while it is mainly inactivated through the deamination pathway mediated by monoamine oxidase A (MAO-A). 5-MeO-DMT is often used with MAO-A inhibitors such as harmaline. Concurrent use of harmaline reduces 5-MeO-DMT deamination metabolism and leads to a prolonged and increased exposure to the parent drug 5-MeO-DMT, as well as the active metabolite bufotenine. Harmaline, 5-MeO-DMT and bufotenine act agonistically on serotonergic systems and may result in hyperserotonergic effects or serotonin toxicity. Interestingly, CYP2D6 also has important contribution to harmaline metabolism, and CYP2D6 genetic polymorphism may cause considerable variability in the metabolism, pharmacokinetics and dynamics of harmaline and its interaction with 5-MeO-DMT. Therefore, this review summarizes recent findings on biotransformation, pharmacokinetics, and pharmacological actions of 5-MeO-DMT. In addition, the pharmacokinetic and pharmacodynamic drug-drug interactions between harmaline and 5-MeO-DMT, potential involvement of CYP2D6 pharmacogenetics, and risks of 5-MeO-DMT intoxication are discussed.

  2. Appetite suppressant drugs as inhibitors of human cytochromes P450: in vitro inhibition of P450-2D6 by D- and L-fenfluramine, but not phentermine.

    PubMed

    von Moltke, L L; Greenblatt, D J; Ciraulo, D A; Grassi, J M; Granda, B W; Duan, S X; Harmatz, J S; Shader, R I

    1998-08-01

    The activity of D-fenfluramine, L-fenfluramine, and phentermine as inhibitors of five human cytochromes P450 was evaluated using human liver microsomes in vitro. All three compounds produced negligible inhibition of P450-1A2, -2C9, -2E1, and -3A. Phentermine also did not inhibit P450-2D6. However, D- and L-fenfluramine significantly inhibited P450-2D6 activity as measured by dextromethorphan O-demethylation, with mean 50% inhibitory concentrations (15.1 microM) within one order of magnitude of that for fluoxetine (2.7 microM). Findings from the in vitro assay are consistent with clinical studies showing significant inhibition of desipramine clearance by coadministration of fenfluramine.

  3. CYP2B6 SNPs are associated with methadone dose required for effective treatment of opioid addiction.

    PubMed

    Levran, Orna; Peles, Einat; Hamon, Sara; Randesi, Matthew; Adelson, Miriam; Kreek, Mary Jeanne

    2013-07-01

    Adequate methadone dosing in methadone maintenance treatment (MMT) for opioid addiction is critical for therapeutic success. One of the challenges in dose determination is the inter-individual variability in dose-response. Methadone metabolism is attributed primarily to cytochrome P450 enzymes CYP3A4, CYP2B6 and CYP2D6. The CYP2B6*6 allele [single nucleotide polymorphisms (SNPs) 785A>G (rs2279343) and 516G>T (rs3745274)] was associated with slow methadone metabolism. To explore the effects of CYP2B6*6 allele on methadone dose requirement, it was genotyped in a well-characterized sample of 74 Israeli former heroin addicts in MMT. The sample is primarily of Middle Eastern/European ancestry, based on ancestry informative markers (AIMs). Only patients with no major co-medication that may affect methadone metabolism were included. The stabilizing daily methadone dose in this sample ranges between 13 and 260mg (mean 140±52mg). The mean methadone doses required by subjects homozygous for the variant alleles of the CYP2B6 SNPs 785A>G and 516G>T (88, 96mg, respectively) were significantly lower than those of the heterozygotes (133, 129mg, respectively) and the non-carriers (150, 151mg, respectively) (nominal P=0.012, 0.048, respectively). The results remain significant after controlling for age, sex and the ABCB1 SNP 1236C>T (rs1128503), which was previously shown to be associated with high methadone dose requirement in this population (P=0.006, 0.030, respectively). An additional 77 CYP2B6, CYP3A4 and CYP2D6 SNPs were genotyped. Of these, 24 SNPs were polymorphic and none showed significant association with methadone dose. Further studies are necessary to replicate these preliminary findings in additional subjects and other populations.

  4. Changes in CYP1A2 activity in humans after 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) administration using caffeine as a probe drug.

    PubMed

    Yubero-Lahoz, Samanta; Pardo, Ricardo; Farre, Magí; Mathuna, Brian Ó; Torrens, Marta; Mustata, Cristina; Perez-Mañá, Clara; Langohr, Klaus; Carbó, Marcel Lí; de la Torre, Rafael

    2012-01-01

    3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is a ring-substituted amphetamine widely used for recreational purposes. MDMA is predominantly O-demethylenated in humans by cytochrome P450 (CYP) 2D6, and is also a potent mechanism-based inhibitor of the enzyme. After assessing the inhibition and recovery of CYP2D6 in a previous study, the aim of this work was to study in humans the activity of CYP1A2 in vivo after CYP2D6 had been inhibited by MDMA, using caffeine as a probe drug. Twelve male and nine female recreational MDMA users were included. In session 1, 100 mg of caffeine was given at 0 h. In session 2, a 1.5 mg/kg MDMA dose (range 75-100 mg) was given at 0 h followed by a 100 mg dose of caffeine 4 h later. Aliquots of plasma were assayed for caffeine (137X) and paraxanthine (17X) and statistically significant differences were assessed with a one-way ANOVA. There were significant gender differences at basal condition, which persisted after MDMA administration. CYP1A2 activity was higher in both genders after drug administration, with an increase in 40% in females and 20% in males. Results show an increase in CYP1A2 activity when CYP2D6 is inhibited by MDMA in both genders, being more pronounced in females.

  5. Effect of a New Prokinetic Agent DA-9701 Formulated with Corydalis Tuber and Pharbitidis Semen on Cytochrome P450 and UDP-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    PubMed Central

    Ji, Hye Young; Liu, Kwang Hyeon; Jeong, Ji Hyeon; Lee, Dae-Young; Shim, Hyun Joo; Son, Miwon; Lee, Hye Suk

    2012-01-01

    DA-9701 is a new botanical drug composed of the extracts of Corydalis tuber and Pharbitidis semen, and it is used as an oral therapy for the treatment of functional dyspepsia in Korea. The inhibitory potentials of DA-9701 and its component herbs, Corydalis tuber and Pharbitidis semen, on the activities of seven major human cytochrome P450 (CYP) enzymes and four UDP-glucuronosyltransferase (UGT) enzymes in human liver microsomes were investigated using liquid chromatography-tandem mass spectrometry. DA-9701 and Corydalis tuber extract slightly inhibited UGT1A1-mediated etoposide glucuronidation, with 50% inhibitory concentration (IC50) values of 188 and 290 μg/mL, respectively. DA-9701 inhibited CYP2D6-catalyzed bufuralol 1′-hydroxylation with an inhibition constant (Ki) value of 6.3 μg/mL in a noncompetitive manner. Corydalis tuber extract competitively inhibited CYP2D6-mediated bufuralol 1′-hydroxylation, with a Ki value of 3.7 μg/mL, whereas Pharbitidis semen extract showed no inhibition. The volume in which the dose could be diluted to generate an IC50 equivalent concentration (volume per dose index) value of DA-9701 for inhibition of CYP2D6 activity was 1.16 L/dose, indicating that DA-9701 may not be a potent CYP2D6 inhibitor. Further clinical studies are warranted to evaluate the in vivo extent of the observed in vitro interactions. PMID:22548118

  6. Application of substrate depletion assay to evaluation of CYP isoforms responsible for stereoselective metabolism of carvedilol.

    PubMed

    Iwaki, Masahiro; Niwa, Toshiro; Bandoh, Saya; Itoh, Megumi; Hirose, Hitomi; Kawase, Atsushi; Komura, Hiroshi

    2016-12-01

    To evaluate the relative contribution of cytochrome P450 (CYP) isoforms responsible for carvedilol (CAR) oxidation, enantioselective metabolism of CAR was investigated in human liver microsomes (HLMs) and recombinant human CYPs by using the substrate depletion assay. CYP2D6 exhibited the highest contribution to the metabolism of R-CAR, followed by CYP3A4, CYP1A2, and CYP2C9, whereas the metabolism of the S-enantiomer was mainly mediated by CYP1A2, followed by CYP2D6 and CYP3A4. In HLMs, metabolism of R- and S-CAR was markedly inhibited by quinidine; R-CAR metabolism (57-61% decrease) was more inhibited than S-CAR metabolism (37-43% decrease), and furafylline and ketoconazole almost equally inhibited metabolism of both enantiomers by 25-32% and 30-50%, respectively. The absence of CYP2D6 in a mixture of five major recombinant CYP isoforms at the approximate ratio as in HLMs resulted in a 42% and 25% decrease in the metabolic activities for R- and S-CAR, respectively. Moreover, the absence of CYP1A2 in the mixture resulted in a 16% and 39% decrease in the metabolic activities for R- and S-CAR, respectively. Our results suggest the stereoselective metabolism of CAR is determined by not only the activity of CYP2D6 but also of CYP1A2 and CYP3A4.

  7. Anti-LKM-1 antibodies determined by use of recombinant P450 2D6 in ELISA and western blot and their association with anti-HCV and HCV-RNA.

    PubMed Central

    Seelig, R; Renz, M; Bünger, G; Schröter, H; Seelig, H P

    1993-01-01

    Several subtypes of anti-liver-kidney microsome antibodies (LKM) are known. LKM-1 antibodies associated with autoimmune chronic active hepatitis recognize P450 2D6, a cytochrome P450 mono-oxygenase. The frequent association of anti-LKM-1 antibodies and hepatitis C virus (HCV) infections and the probable existence of an infectious and autoimmune form of anti-LKM-1-associated hepatitis, requiring different therapeutical strategies, necessitates the exact determination of anti-LKM-1 specificities. Therefore, we compared various antibody tests (immunofluorescence, ELISA with recombinant P450 2D6, and Western blot with recombinant and natural antigens and agargel double diffusion) with sera of 27 anti-LKM-1-positive chronic active hepatitis (CAH) patients, with 61 sera harbouring anti-mitochondrial antibodies, 100 sera each from HCV-RNA-positive and HCV-RNA-negative patients, and 50 sera of healthy persons. Western blot techniques using recombinant MS2-polymerase P450 2D6 fusion protein were found to be the most sensitive and specific method for anti-LKM-1 antibody determination in routine laboratory. The recently recognized association of anti-LKM-1 antibody and HCV infection was confirmed by the results of this study. In anti-HCV and HCV-RNA-positive patients with anti-LKM-1 antibodies there was a preponderance of males with higher mean age and lower antibody titres. The results support the hypothesis of the existence of an autoimmune as well as an infectious (HCV triggered) subgroup of anti-LKM-1-positive hepatitis. Images Fig. 1 PMID:8390333

  8. The Influence of Genetic and Environmental Factors among MDMA Users in Cognitive Performance

    PubMed Central

    Cuyàs, Elisabet; Verdejo-García, Antonio; Fagundo, Ana Beatriz; Khymenets, Olha; Rodríguez, Joan; Cuenca, Aida; de Sola Llopis, Susana; Langohr, Klaus; Peña-Casanova, Jordi; Torrens, Marta; Martín-Santos, Rocío; Farré, Magí; de la Torre, Rafael

    2011-01-01

    This study is aimed to clarify the association between MDMA cumulative use and cognitive dysfunction, and the potential role of candidate genetic polymorphisms in explaining individual differences in the cognitive effects of MDMA. Gene polymorphisms related to reduced serotonin function, poor competency of executive control and memory consolidation systems, and high enzymatic activity linked to bioactivation of MDMA to neurotoxic metabolites may contribute to explain variations in the cognitive impact of MDMA across regular users of this drug. Sixty ecstasy polydrug users, 110 cannabis users and 93 non-drug users were assessed using cognitive measures of Verbal Memory (California Verbal Learning Test, CVLT), Visual Memory (Rey-Osterrieth Complex Figure Test, ROCFT), Semantic Fluency, and Perceptual Attention (Symbol Digit Modalities Test, SDMT). Participants were also genotyped for polymorphisms within the 5HTT, 5HTR2A, COMT, CYP2D6, BDNF, and GRIN2B genes using polymerase chain reaction and TaqMan polymerase assays. Lifetime cumulative MDMA use was significantly associated with poorer performance on visuospatial memory and perceptual attention. Heavy MDMA users (>100 tablets lifetime use) interacted with candidate gene polymorphisms in explaining individual differences in cognitive performance between MDMA users and controls. MDMA users carrying COMT val/val and SERT s/s had poorer performance than paired controls on visuospatial attention and memory, and MDMA users with CYP2D6 ultra-rapid metabolizers performed worse than controls on semantic fluency. Both MDMA lifetime use and gene-related individual differences influence cognitive dysfunction in ecstasy users. PMID:22110616

  9. Pharmacogenetic profile of xenobiotic enzyme metabolism in survivors of the Spanish toxic oil syndrome.

    PubMed Central

    Ladona, M G; Izquierdo-Martinez, M; Posada de la Paz, M P; de la Torre, R; Ampurdanés, C; Segura, J; Sanz, E J

    2001-01-01

    In 1981, the Spanish toxic oil syndrome (TOS) affected more than 20,000 people, and over 300 deaths were registered. Assessment of genetic polymorphisms on xenobiotic metabolism would indicate the potential metabolic capacity of the victims at the time of the disaster. Thus, impaired metabolic pathways may have contributed to the clearance of the toxicant(s) leading to a low detoxification or accumulation of toxic metabolites contributing to the disease. We conducted a matched case-control study using 72 cases (54 females, 18 males) registered in the Official Census of Affected Patients maintained by the Spanish government. Controls were nonaffected siblings (n =72) living in the same household in 1981 and nonaffected nonrelatives (n = 70) living in the neighborhood at that time, with no ties to TOS. Genotype analyses were performed to assess the metabolic capacity of phase I [cytochrome P450 1A1 (CYP1A1), CYP2D6] and phase II [arylamine N-acetyltransferase-2 (NAT2), GSTM1 (glutathione S-transferase M1) and GSTT1] enzyme polymorphisms. The degree of association of the five metabolic pathways was estimated by calculating their odds ratios (ORs) using conditional logistic regression analysis. In the final model, cases compared with siblings (72 pairs) showed no differences either in CYP2D6 or CYP1A1 polymorphisms, or in conjugation enzyme polymorphisms, whereas cases compared with the unrelated controls (70 pairs) showed an increase in NAT2 defective alleles [OR = 6.96, 95% confidence interval (CI), 1.46-33.20] adjusted by age and sex. Glutathione transferase genetic polymorphisms (GSTM1, GSTT1) showed no association with cases compared with their siblings or unrelated controls. These findings suggest a possible role of impaired acetylation mediating susceptibility in TOS. PMID:11335185

  10. Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 allele.

    PubMed

    Kidd, R S; Straughn, A B; Meyer, M C; Blaisdell, J; Goldstein, J A; Dalton, J T

    1999-02-01

    Genetic polymorphisms in the cytochrome P450 (CYP) family are widely known to contribute to interindividual differences in the pharmacokinetics of many drugs. Several alleles for the CYP2C9 gene have been reported. Individuals homozygous for the Leu359 variant (CYP2C9*3) have been shown to have significantly lower drug clearances compared with Ile359 (CYP2C9*1) homozygous individuals. A male Caucasian who participated in six bioavailability studies in our laboratory over a period of several years showed extremely low clearance of two drugs: phenytoin and glipizide (both substrates of CYP2C9), but not for nifedipine (a CYP3A4 substrate) and chlorpheniramine (a CYP2D6 substrate). His oral clearance of phenytoin was 21% of the mean of the other 11 individuals participating in the study, and his oral clearance of glipizide, a second generation sulfonylurea structurally similar to tolbutamide, was only 188% of the mean of the other 10 individuals. However, his oral clearance of nifedipine and chlorpheniramine did not differ from individuals in other studies performed at our laboratories. An additional blood sample was obtained from this individual to determine if he possessed any of the known CYP2C9 or CYP2C19 allelic variants that would account for his poor clearance of the CYP2C9 substrates (phenytoin and glipizide) compared with the CYP3A4 (nifedipine) and CYP2D6 (chlorpheniramine) substrates. The results of the genotype testing showed that this individual was homozygous for the CYP2C9*3 allele and did not possess any of the known defective CYP2C19 alleles. This study establishes that the Leu359 mutation is responsible for the phenytoin and glipizide/tolbutamide poor metabolizer phenotype.

  11. A Case of Codeine Induced Anaphylaxis via Oral Route

    PubMed Central

    Yoo, Hye-Soo; Yang, Eun-Mi; Kim, Mi-Ae; Hwang, Sun-Hyuk; Shin, Yoo-Seob; Ye, Young-Min; Nahm, Dong-Ho

    2014-01-01

    Codeine is widely prescribed in clinical settings for the relief of pain and non-productive coughs. Common adverse drug reactions to codeine include constipation, euphoria, nausea, and drowsiness. However, there have been few reports of serious adverse reactions after codeine ingestion in adults. Here, we present a case of severe anaphylaxis after oral ingestion of a therapeutic dose of codeine. A 30-year-old Korean woman complained of the sudden onset of dyspnea, urticaria, chest tightness, and dizziness 10 minutes after taking a 10-mg dose of codeine to treat a chronic cough following a viral infection. She had previously experienced episodes of asthma exacerbation following upper respiratory infections, and had non-atopic rhinitis and a food allergy to seafood. A skin prick test showed a positive response to 1-10 mg/mL of codeine extract, with a mean wheal size of 3.5 mm, while negative results were obtained in 3 healthy adult controls. A basophil histamine release test showed a notable dose-dependent increase in histamine following serial incubations with codeine phosphate, while there were minimal changes in the healthy controls. Following a CYP2D6 genotype analysis, the patient was found to have the CYP2D6*1/*10 allele, indicating she was an intermediate metabolizer. An open label oral challenge test was positive. To the best of our knowledge, this is the first report of a patient presenting with severe anaphylaxis after the ingestion of a therapeutic dose of codeine, which may be mediated by the direct release of histamine by basophils following exposure to codeine. PMID:24404400

  12. Quantitative monitoring of tamoxifen in human plasma extended to 40 metabolites using liquid-chromatography high-resolution mass spectrometry: new investigation capabilities for clinical pharmacology.

    PubMed

    Dahmane, Elyes; Boccard, Julien; Csajka, Chantal; Rudaz, Serge; Décosterd, Laurent; Genin, Eric; Duretz, Bénédicte; Bromirski, Maciej; Zaman, Khalil; Testa, Bernard; Rochat, Bertrand

    2014-04-01

    Liquid-chromatography (LC) high-resolution (HR) mass spectrometry (MS) analysis can record HR full scans, a technique of detection that shows comparable selectivity and sensitivity to ion transitions (SRM) performed with triple-quadrupole (TQ)-MS but that allows de facto determination of "all" ions including drug metabolites. This could be of potential utility in in vivo drug metabolism and pharmacovigilance studies in order to have a more comprehensive insight in drug biotransformation profile differences in patients. This simultaneous quantitative and qualitative (Quan/Qual) approach has been tested with 20 patients chronically treated with tamoxifen (TAM). The absolute quantification of TAM and three metabolites in plasma was realized using HR- and TQ-MS and compared. The same LC-HR-MS analysis allowed the identification and relative quantification of 37 additional TAM metabolites. A number of new metabolites were detected in patients' plasma including metabolites identified as didemethyl-trihydroxy-TAM-glucoside and didemethyl-tetrahydroxy-TAM-glucoside conjugates corresponding to TAM with six and seven biotransformation steps, respectively. Multivariate analysis allowed relevant patterns of metabolites and ratios to be associated with TAM administration and CYP2D6 genotype. Two hydroxylated metabolites, α-OH-TAM and 4'-OH-TAM, were newly identified as putative CYP2D6 substrates. The relative quantification was precise (<20 %), and the semiquantitative estimation suggests that metabolite levels are non-negligible. Metabolites could play an important role in drug toxicity, but their impact on drug-related side effects has been partially neglected due to the tremendous effort needed with previous MS technologies. Using present HR-MS, this situation should evolve with the straightforward determination of drug metabolites, enlarging the possibilities in studying inter- and intra-patients drug metabolism variability and related effects.

  13. Fast Versus Slow Strategy of Switching Patients With Schizophrenia to Aripiprazole From Other Antipsychotics.

    PubMed

    Hwang, Tzung-Jeng; Lo, Wei-Ming; Chan, Hung-Yu; Lin, Ching-Feng; Hsieh, Ming H; Liu, Chen-Chun; Liu, Chih-Min; Hwu, Hai-Gwo; Kuo, Ching-Hua; Chen, Wei J

    2015-12-01

    This study aimed to compare strategies differing in the speed of switching schizophrenic patients to aripiprazole from other antipsychotic agents, with dual administration for 2 weeks and then tapering off the current antipsychotic in fast (within 1 week) versus slow (within 4 weeks) strategies. This 8-week, open-label, randomized, parallel study assigned patients with a primary Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, diagnosis of schizophrenia or schizoaffective disorder to either the fast-switching (n = 38) or slow-switching (n = 41) group. Efficacy assessments at 5 time points included Positive and Negative Syndrome Scale and Clinical Global Impression scale. Safety assessments included extrapyramidal symptoms, metabolic profile, serum prolactin level, QTc interval, and adverse events. Drug concentrations and cytochrome P450 CYP2D6 and CYP3A4 genotypes were also measured. The fast- and slow-switching groups were comparable in demographical and clinical features at baseline and dropout rate. In the intention-to-treat analysis using mixed-effects models, there were significant within-group decreases over time in the Positive and Negative Syndrome Scale total scores (P = 0.03) and its subscores except for positive subscores, whereas no between-group differences were found. A reduction in body weight (P = 0.01) and lower levels of total cholesterol (P = 0.03), triglycerides (P = 0.03), and prolactin (P = 0.01) were noted in both groups but no increase in extrapyramidal symptoms or prolongation of QTc. The blood concentrations of aripiprazole in all patients were in a therapeutic range at day 56, with CYP2D6*10 polymorphisms being associated with aripiprazole concentrations. In conclusion, there is no significant difference between the fast- and slow-switching strategy in terms of improvements in clinical symptoms and metabolic profile in this 8-week study.

  14. Propranolol hydroxylation and N-desisopropylation by cytochrome P4502D6: studies using the yeast-expressed enzyme and NADPH/O2 and cumene hydroperoxide-supported reactions.

    PubMed

    Bichara, N; Ching, M S; Blake, C L; Ghabrial, H; Smallwood, R A

    1996-01-01

    We have studied the enantioselectivity and regioselectivity of ring-hydroxylation and N-desisopropylation of R(+)- and S(-)-propranolol in microsomes from yeast expressing cytochrome P4502D6 (CYP2D6), using both NADPH and molecular oxygen (NADPH/O2) and cumene hydroperoxide-supported reactions. With NADPH/O2-supported reactions, CYP2D6 catalyzed 4- and 5-ring-hydroxylation, as well as N-desisopropylation of propranolol, although Vmax was considerably greater for ring-hydroxylation, compared with N-desisopropylation. The R/S ratios for KM and Vmax were less than unity for all three pathways. In contrast, using cumene hydroperoxide-supported reactions, CYP2D6 catalyzed 4- and 5-ring-hydroxylation, and there was negligible N-desisopropylation of propranolol. The R/S ratio for KM was less than unity, but the R/S ratio for Vmax was close to unity. The cumyl group of cumene hydroperoxide did not seem to be a selective inhibitor of N-desisopropylation, because i) cumyl alcohol (a nonalkylhydroperoxide analog of cumene hydroperoxide) did not inhibit N-desisopropylation in NADPH/O2-supported reactions, and ii) the use of t-butyl hydroperoxide (a noncumyl alkylhydroperoxide) to support CYP2D6 catalysis resulted in ring-hydroxylation, but not N-desisopropylation. At a propranolol concentration near KM, quinidine inhibited both ring-hydroxylation and N-desisopropylation in an equipotent manner in NADPH/O2-supported reactions. However, in cumene hydroperoxide-supported reactions, the IC50 of inhibition of ring-hydroxylation by quinidine was an order of magnitude less potent than in NADPH/O2-supported reactions. Our study shows that recombinant CYP2D6 cannot only catalyze 4- and 5-ring-hydroxylation of propranolol, but also N-desisopropylation. The lack of propranolol N-desisopropylation observed in cumene hydroperoxide-supported reactions highlights the need for caution when using alkyhydroperoxides to study CYP2D6 catalysis.

  15. Application of physiologically based pharmacokinetic modeling in predicting drug–drug interactions for sarpogrelate hydrochloride in humans

    PubMed Central

    Min, Jee Sun; Kim, Doyun; Park, Jung Bae; Heo, Hyunjin; Bae, Soo Hyeon; Seo, Jae Hong; Oh, Euichaul; Bae, Soo Kyung

    2016-01-01

    Background Evaluating the potential risk of metabolic drug–drug interactions (DDIs) is clinically important. Objective To develop a physiologically based pharmacokinetic (PBPK) model for sarpogrelate hydrochloride and its active metabolite, (R,S)-1-{2-[2-(3-methoxyphenyl)ethyl]-phenoxy}-3-(dimethylamino)-2-propanol (M-1), in order to predict DDIs between sarpogrelate and the clinically relevant cytochrome P450 (CYP) 2D6 substrates, metoprolol, desipramine, dextromethorphan, imipramine, and tolterodine. Methods The PBPK model was developed, incorporating the physicochemical and pharmacokinetic properties of sarpogrelate hydrochloride, and M-1 based on the findings from in vitro and in vivo studies. Subsequently, the model was verified by comparing the predicted concentration-time profiles and pharmacokinetic parameters of sarpogrelate and M-1 to the observed clinical data. Finally, the verified model was used to simulate clinical DDIs between sarpogrelate hydrochloride and sensitive CYP2D6 substrates. The predictive performance of the model was assessed by comparing predicted results to observed data after coadministering sarpogrelate hydrochloride and metoprolol. Results The developed PBPK model accurately predicted sarpogrelate and M-1 plasma concentration profiles after single or multiple doses of sarpogrelate hydrochloride. The simulated ratios of area under the curve and maximum plasma concentration of metoprolol in the presence of sarpogrelate hydrochloride to baseline were in good agreement with the observed ratios. The predicted fold-increases in the area under the curve ratios of metoprolol, desipramine, imipramine, dextromethorphan, and tolterodine following single and multiple sarpogrelate hydrochloride oral doses were within the range of ≥1.25, but <2-fold, indicating that sarpogrelate hydrochloride is a weak inhibitor of CYP2D6 in vivo. Collectively, the predicted low DDIs suggest that sarpogrelate hydrochloride has limited potential for causing

  16. Metabolism and transport of tamoxifen in relation to its effectiveness: new perspectives on an ongoing controversy.

    PubMed

    Cronin-Fenton, Deirdre P; Damkier, Per; Lash, Timothy L

    2014-01-01

    Tamoxifen reduces the rate of breast cancer recurrence by approximately a half. Tamoxifen is metabolized to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6). Tamoxifen is a substrate for ATP-binding cassette transporter proteins. We review tamoxifen's clinical pharmacology and use meta-analyses to evaluate the clinical epidemiology studies conducted to date on the association between CYP2D6 inhibition and tamoxifen effectiveness. Our findings indicate that the effect of both drug-induced and/or gene-induced inhibition of CYP2D6 activity is likely to be null or small, or at most moderate in subjects carrying two reduced function alleles. Future research should examine the effect of polymorphisms in genes encoding enzymes in tamoxifen's complete metabolic pathway, should comprehensively evaluate other biomarkers that affect tamoxifen effectiveness, such as the transport enzymes, and focus on subgroups of patients, such as premenopausal breast cancer patients, for whom tamoxifen is the only guideline endocrine therapy.

  17. Variation in Human Cytochrome P-450 Drug-Metabolism Genes: A Gateway to the Understanding of Plasmodium vivax Relapses

    PubMed Central

    Silvino, Ana Carolina Rios; Costa, Gabriel Luiz; de Araújo, Flávia Carolina Faustino; Ascher, David Benjamin; Pires, Douglas Eduardo Valente; Fontes, Cor Jesus Fernandes; Carvalho, Luzia Helena; de Brito, Cristiana Ferreira Alves; Sousa, Tais Nobrega

    2016-01-01

    Although Plasmodium vivax relapses are classically associated with hypnozoite activation, it has been proposed that a proportion of these cases are due to primaquine (PQ) treatment failure caused by polymorphisms in cytochrome P-450 2D6 (CYP2D6). Here, we present evidence that CYP2D6 polymorphisms are implicated in PQ failure, which was reinforced by findings in genetically similar parasites, and may explain a number of vivax relapses. Using a computational approach, these polymorphisms were predicted to affect the activity of CYP2D6 through changes in the structural stability that could lead to disruption of the PQ-enzyme interactions. Furthermore, because PQ is co-administered with chloroquine (CQ), we investigated whether CQ-impaired metabolism by cytochrome P-450 2C8 (CYP2C8) could also contribute to vivax recurrences. Our results show that CYP2C8-mutated patients frequently relapsed early (<42 days) and had a higher proportion of genetically similar parasites, suggesting the possibility of recrudescence due to CQ therapeutic failure. These results highlight the importance of pharmacogenetic studies as a tool to monitor the efficacy of antimalarial therapy. PMID:27467145

  18. Personalized medicine in psychiatry: new technologies and approaches.

    PubMed

    Costa e Silva, Jorge A

    2013-01-01

    Psychiatric patients tend to exhibit significant interindividual variability in their responses to psychoactive drugs, as well as an irregular clinical course. For these (and other) reasons, increasing numbers of psychiatrists are turning to genotyping for help in selecting the psychopharmacologic agents best suited to an individual patient's distinctive metabolic characteristics and clinical presentation. Fortunately, routine genotyping is already available for gene variations that code for proteins involved in neurotransmission, and for drug-metabolizing enzymes involved in the elimination of many medications. Thus, genotyping-based personalized psychiatry is now in sight. Increasing numbers of clinically useful DNA microarrays are in the development stage, including a simplified procedure for genotyping patients for CYP2D6, which metabolizes a high proportion of the currently prescribed antidepressants and antipsychotics. It has been pointed out that psychiatric disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of complex intracellular networks in the brain. Thus, analysis of functional neuronal networks is becoming an essential component of drug development strategies. The integrated use of technologies such as electroencephalography, magnetoencephalography, functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI), in combination with pharmacogenetics, promises to transform our understanding of the mechanisms of psychiatric disorders and their treatment. The concept of network medicine envisions a time to come when drugs will be used to target a neural network rather than simply components within the network. Personalized medicine in psychiatry is still at an early stage, but it has a very promising future.

  19. Prolonged Drug-Drug Interaction between Terbinafine and Perphenazine.

    PubMed

    Park, Young-Min

    2012-12-01

    I report here an elderly woman receiving perphenazine together with terbinafine. After 1 week of terbinafine treatment she experienced extrapyramidal symptoms and, in particular, akathisia. Her symptoms did not disappear for 6 weeks, and so at 2 weeks prior to this most recent admission she had stopped taking terbinafine. However, these symptoms persisted for 3 weeks after discontinuing terbinafine. It is well known that terbinafine inhibits CYP2D6 and that perphenazine is metabolized mainly by CYP2D6. Thus, when terbinafine and perphenazine are coadministrated, the subsequent increase in the concentration of perphenazine may induce extrapyramidal symptoms. Thus, terbinafine therapy may be associated with the induction and persistence of extrapyramidal symptoms, including akathisia. This case report emphasizes the importance of monitoring drug-drug interactions in patients undergoing terbinafine and perphenazine therapy.

  20. Single-shot analytical assay based on graphene-oxide-modified surface acoustic wave biosensor for detection of single-nucleotide polymorphisms.

    PubMed

    Liu, Xiang; Wang, Jia-Ying; Mao, Xiao-Bing; Ning, Yong; Zhang, Guo-Jun

    2015-09-15

    The combination of a surface acoustic wave (SAW) biosensor with graphene oxide (GO) provides a promising perspective for detecting DNA mutation. The GO-modified SAW biosensor was prepared by conjugating GO onto the SAW chip surface via electrostatic interaction. Afterward, the probe was immobilized on the GO surface, and detection of DNA mutation was realized by hybridization. The hybridization with a variety of targets would yield different mass and conformational changes on the chip surface, causing the different SAW signals in real time. A total of 137 clinical samples were detected by a single-shot analytical assay based on GO-modified SAW biosensor and direct sequencing in parallel. The diagnostic performance (both sensitivity and specificity) of the assay was evaluated with the direct sequencing as a reference testing method. The phase-shift value of three genotypes in 137 clinical samples was significantly different (p < 0.001). Furthermore, testing of diagnostic performance yielded diagnostic sensitivity and specificity of 100% and 88.6% for identifying CT and CC genotype, 98.0% and 96.2% for identifying CT and TT genotype, respectively. The single-shot analytical assay based on the GO-modified SAW biosensor could be exploited as a potential useful tool to identify CYP2D6*10 polymorphisms in clinical practice of personalized medicine.

  1. Identification of cytochrome p450 enzymes involved in the metabolism of 4'-methyl-alpha-pyrrolidinopropiophenone, a novel scheduled designer drug, in human liver microsomes.

    PubMed

    Springer, Dietmar; Paul, Liane D; Staack, Roland F; Kraemer, Thomas; Maurer, Hans H

    2003-08-01

    4'-Methyl-alpha-pyrrolidinopropiophenone (MPPP) is a new drug of abuse. It is believed to have an abuse potential similar to that of amphetamines. Previous studies with Wistar rats had shown that MPPP was metabolized mainly by hydroxylation in position 4' followed by dehydrogenation to the corresponding carboxylic acid. The aim of the study presented here was to identify the human hepatic cytochrome p450 (p450) enzymes involved in the biotransformation of MPPP to 4'-hydroxymethyl-pyrrolidinopropiophenone. Baculovirus-infected insect cell microsomes and human liver microsomes were used for this purpose. Only CYP2C19 and CYP2D6 catalyzed this hydroxylation. The apparent Km and Vmax values for the latter were 9.8 +/- 2.5 microM and 13.6 +/- 0.7 pmol/min/pmol p450, respectively. CYP2C19 was not saturable over the tested substrate range (2-1000 microM) and interestingly showed a biphasic kinetic profile with apparent Km,1 and Vmax,1 values of 47.2 +/- 12.5 microM and 8.1 +/- 1.4 pmol/min/pmol p450, respectively. Experiments with pooled human liver microsomes also revealed biphasic nonsaturable kinetics with apparent Km,1 and Vmax,1 values of 57.0 +/- 20.9 microM and 199.7 +/- 59.7 pmol/min/mg of protein for the high affinity enzyme, respectively. Incubation of 2 microM MPPP with 3 microM of the CYP2D6-specific inhibitor quinidine resulted in significant (p < 0.01) turnover inhibition (11.8 +/- 1.6% of control). Based on kinetic data corrected for the relative activity factors, CYP2D6 is the enzyme mainly responsible for MPPP hydroxylation, confirmed by CYP2D6 inhibition studies.

  2. The Use of In Vitro Data and Physiologically-Based Pharmacokinetic Modeling to Predict Drug Metabolite Exposure: Desipramine Exposure in Cytochrome P4502D6 Extensive and Poor Metabolizers Following Administration of Imipramine.

    PubMed

    Nguyen, Hoa Q; Callegari, Ernesto; Obach, R Scott

    2016-10-01

    Major circulating drug metabolites can be as important as the drugs themselves in efficacy and safety, so establishing methods whereby exposure to major metabolites following administration of parent drug can be predicted is important. In this study, imipramine, a tricyclic antidepressant, and its major metabolite desipramine were selected as a model system to develop metabolite prediction methods. Imipramine undergoes N-demethylation to form the active metabolite desipramine, and both imipramine and desipramine are converted to hydroxylated metabolites by the polymorphic enzyme CYP2D6. The objective of the present study is to determine whether the human pharmacokinetics of desipramine following dosing of imipramine can be predicted using static and dynamic physiologically-based pharmacokinetic (PBPK) models from in vitro input data for CYP2D6 extensive metabolizer (EM) and poor metabolizer (PM) populations. The intrinsic metabolic clearances of parent drug and metabolite were estimated using human liver microsomes (CYP2D6 PM and EM) and hepatocytes. Passive diffusion clearance of desipramine, used in the estimation of availability of the metabolite, was predicted from passive permeability and hepatocyte surface area. The predicted area under the curve (AUCm/AUCp) of desipramine/imipramine was 12- to 20-fold higher in PM compared with EM subjects following i.v. or oral doses of imipramine using the static model. Moreover, the PBPK model was able to recover simultaneously plasma profiles of imipramine and desipramine in populations with different phenotypes of CYP2D6. This example suggested that mechanistic PBPK modeling combined with information obtained from in vitro studies can provide quantitative solutions to predict in vivo pharmacokinetics of drugs and major metabolites in a target human population.

  3. Identification of cytochrome P450 enzymes involved in the metabolism of 3',4'-methylenedioxy-alpha-pyrrolidinopropiophenone (MDPPP), a designer drug, in human liver microsomes.

    PubMed

    Springer, D; Staack, R F; Paul, L D; Kraemer, T; Maurer, H H

    2005-03-01

    The metabolism of 3',4'-methylenedioxy-a-pyrrolidinopropiophenone (MDPPP), a novel designer drug, to its demethylenated major metabolite 3',4'-dihydroxy-pyrrolidinopropiophenone (di-HO-PPP) was studied in pooled human liver microsomes (HLM) and in cDNA-expressed human hepatic cytochrome P450 (CYP) enzymes. CYP2C19 catalysed the demethylenation with apparent Km and Vmax values of 120.0+/-13.4 microM and 3.2+/-0.1 pmol/min/pmol CYP, respectively (mean+/-standard deviation). CYP2D6 catalysed the demethylenation with apparent Km and Vmax values of 13.5+/-1.5 microM and 1.3+/-0.1 pmol/min/pmol CYP, respectively. HLM exhibited a clear biphasic profile with an apparent Km,1 value of 7.6+/-9.0 and a Vmax,1 value of 11.1+/-3.6 pmol/min/mg protein, respectively. Percentages of intrinsic clearances of MDPPP by specific CYPs were calculated using the relative activity factor (RAF) approach with (S)-mephenytoin-4'-hydroxylation or bufuralol-1'-hydroxylation as index reactions for CYP2C19 or CYP2D6, respectively. MDPPP, di-HO-PPP and the standard 4'-methyl-pyrrolidinohexanophenone (MPHP) were separated and analysed by liquid chromatography-mass spectrometry in the selected-ion monitoring (SIM) mode. The CYP2D6-specific chemical inhibitor quinidine (3 microM) significantly (p<0.001) inhibited di-HO-PPP formation by 75.8%+/-1.7% (mean+/-standard error of the mean) in incubation mixtures with HLM and 2 microM MDPPP. It can be concluded from the data obtained from kinetic and inhibition studies that polymorphically expressed CYP2D6 and CYP2C19 are almost equally responsible for MDPPP demethylenation.

  4. Neurotoxins and Neurodegenerative Disorders in Japanese-American Men Living in Hawaii

    DTIC Science & Technology

    2007-04-01

    in a case control study aimed at determining polymorphisms of the CYP2D6, dopamine transporter, CYP1A2, parkin, adenosine receptor, dopamine D2 ...adulthood: potential mouse model for parkinsonism. Mol Cell Biol 2001; 21(16):5321-5331. 14. Wang J, Liu ZL, Chen B. Association study of dopamine D2 ... D3 receptor gene polymorphisms with motor fluctuations in PD. Neurology 2001; 56(12):1757- 1759. 15. Park M, Ross GW, Petrovitch H, White LR

  5. Cytochrome P450-mediated changes in oxycodone pharmacokinetics/pharmacodynamics and their clinical implications.

    PubMed

    Söderberg Löfdal, Karin C; Andersson, Marine L; Gustafsson, Lars L

    2013-05-01

    In recent years the use of the opioid oxycodone has increased markedly and replacing morphine as the first-line choice of opioid in several countries. There are formulations for oral immediate, oral extended release and intravenous use. The bioavailability is higher than for morphine and less variable. Oxycodone is primarily metabolized in the liver by the cytochrome P450 (CYP) enzymes with CYP3A as the major metabolic pathway and CYP2D6 as the minor metabolic pathway to noroxycodone, oxymorphone and noroxymorphone. Oxycodone exerts its analgesic effect via the µ-opioid receptor. The metabolism of CYP2D6 substrates varies to a large degree between individuals as a result of allele functionality. Poor metabolizers (PM) have two non-functional alleles, extensive metabolizers (EM) are homozygous with two functional alleles or heterozygous with one functional allele and ultrarapid metabolizers (UM) have more than two functional alleles. There are pronounced interethnic differences in the allele distribution. On the basis of studies performed thus far, oxycodone concentrations in comparison with EM are similar in PM and reduced in UM. The pharmacokinetics in UM are insufficiently investigated. Simultaneous inhibition of both CYP3A and CYP2D6 results in increased oxycodone concentrations and such a combination should be avoided. A similar effect is to be expected with use of a CYP3A inhibitor in CYP2D6 PM. Concomitant use of enzyme inducers such as rifampicin, St John's wort and carbamazepine should be avoided because of the risk of subtherapeutic concentrations of oxycodone. When the dosage of morphine may result in unpredictable bioavailability, like in patients with severe hepatic cirrhosis, oxycodone might be beneficial because it has higher and less variability in bioavailability between patients than morphine.

  6. Boronic Prodrug of Endoxifen as an Effective Hormone Therapy for Breast Cancer

    PubMed Central

    Zhang, Changde; Zhong, Qiu; Zhang, Qiang; Zheng, Shilong; Miele, Lucio; Wang, Guangdi

    2015-01-01

    As a prodrug, tamoxifen is activated by the P450 enzyme CYP2D6 that is responsible for converting it to the active metabolites, 4-hydroxytamoxifen and endoxifen. Patients with genetic polymorphisms of CYP2D6 may not receive the full benefit of tamoxifen therapy. There is increasing evidence that poor metabolizer patients have lower plasma concentrations of endoxifen and suffer worse disease outcome, although some clinical studies reported no correlation between CYP2D6 polymorphism and tamoxifen therapy outcome. Endoxifen is currently undergoing clinical trials as a potentially improved and more potent SERM (Selective Estrogen Receptor Modulator) for endocrine therapy that is independent of CYP2D6 status in patients. However, direct administration of endoxifen may present the problem of low bioavailability due to its rapid first-pass metabolism via O-glucuronidation. We have designed and synthesized ZB483, a boronic prodrug of endoxifen suitable for oral administration with greatly enhanced bioavailability by increasing the concentration of endoxifen in mouse blood. Our study demonstrated that ZB483 potently inhibited growth of ER+ breast cancer cells in vitro and was efficiently converted to endoxifen in cell culture media by oxidative deboronation. In vivo this metabolic conversion is equally efficient as indicated in the pharmacokinetic study. Moreover, at the same dose, ZB483 afforded a 30-40 fold higher level endoxifen in mouse blood compared to unconjugated endoxifen administration. The significantly enhanced bioavailability of endoxifen conferred by the boronic prodrug was further validated in an in vivo efficacy study. ZB483 was demonstrated to be more efficacious than endoxifen in inhibiting xenograft tumor growth in mice at equal dosage but more so at lower dosage. Together, these preclinical studies demonstrate that ZB483 is a promising endocrine therapy agent with markedly enhanced bioavailability in systemic circulation and superior efficacy compared to

  7. Post-mortem levels and tissue distribution of codeine, codeine-6-glucuronide, norcodeine, morphine and morphine glucuronides in a series of codeine-related deaths.

    PubMed

    Frost, Joachim; Løkken, Trine Nordgård; Helland, Arne; Nordrum, Ivar Skjåk; Slørdal, Lars

    2016-05-01

    This article presents levels and tissue distribution of codeine, codeine-6-glucuronide (C6G), norcodeine, morphine and the morphine metabolites morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) in post-mortem blood (peripheral and heart blood), vitreous fluid, muscle, fat and brain tissue in a series of 23 codeine-related fatalities. CYP2D6 genotype is also determined and taken into account. Quantification of codeine, C6G, norcodeine, morphine, M3G and M6G was performed with a validated solid phase extraction LC-MS method. The series comprise 19 deaths (83%) attributed to mixed drug intoxication, 4 deaths (17%) attributed to other causes of death, and no cases of unambiguous monointoxication with codeine. The typical peripheral blood concentration pattern in individual cases was C6G≫codeine≫norcodeine>morphine, and M3G>M6G>morphine. In matrices other than blood, the concentration pattern was similar, although in a less systematic fashion. Measured concentrations were generally lower in matrices other than blood, especially in brain and fat, and in particular for the glucuronides (C6G, M3G and M6G) and, to some extent, morphine. In brain tissue, the presumed active moieties morphine and M6G were both below the LLOQ (0.0080mg/L and 0.058mg/L, respectively) in a majority of cases. In general, there was a large variability in both measured concentrations and calculated blood/tissue concentration ratios. There was also a large variability in calculated ratios of morphine to codeine, C6G to codeine and norcodeine to codeine in all matrices, and CYP2D6 genotype was not a reliable predictor of these ratios. The different blood/tissue concentration ratios showed no systematic relationship with the post-mortem interval. No coherent degradation or formation patterns for codeine, morphine, M3G and M6G were observed upon reanalysis in peripheral blood after storage.

  8. Inter- and intra-individual variability in somatic allele loss in ductal carcinoma of the breast

    SciTech Connect

    Rebbeck, T.; Godwin, A.; Rosvold, E.

    1994-09-01

    The etiology of most cancers involves both inherited genetic susceptibility and somatic genetic changes. We studied 28 ductal carcinomas of the breast to evaluate variability in loss of constitutional heterozygosity (LOH) across loci and across individuals and to assess the relationship of candidate genes with LOH. LOH was measured on 33 chromosome arms using the most telomeric, highly heterozygous tetranucleotide repeat markers from the Cooperative Human Linkage Center (CHLC). The overall mean proportion of LOH was 11%. The proportion of LOH ranged from 0% to 37% across loci. LOH > 20% was observed at chromosomes 1p, 7q, 10q, 11p, 17p, and 18q. Of these, simultaneous losses at the following locus pairs occurred more often than expected: 1p & 11p; 1p & 17p; 7q & 18q; 11p & 17p. An elevated proportion of LOH was not observed for the marker on chromosome 17q. The proportion of LOH ranged from 0% to 67% across individuals. 20 tumors showed less than 10% LOH, and 6 showed more than 20% LOH. There was no correlation between LOH and tumor stage. To examine whether variability in candidate genes was associated with LOH, allelic variability was measured at CYP1A1, CYP2D6, epoxide hydrolase (EH), HADP(H):quinone oxidoreductase (NQO1), and glutathione-S-transferase-{mu} (GST-{mu}). An elevated proportion of LOH was observed for genotypes at CYP2D6 (17% for 1/1, 1/2`s vs. 8% for 2/2`s), NQO1 (13% for 1/2, 2/2`s vs. 8% for 1/1`s), and GST-{mu} (15% for {open_quotes}null{close_quotes} genotypes vs. 7% for wild types), but not at CYP1A1 (12% for 1/2`s vs. 10% for 1/1`s) or EH (11% for 1/1`s vs. 10% for 1/2`s). Our results suggest that LOH is not randomly distributed across the genome, and that there is substantial interindividual variability in LOH. This interindividual variability may be explained by genes that metabolize environmental carcinogens or steroid hormones.

  9. Inhibition of human cytochrome P450 enzymes by the natural hepatotoxin safrole.

    PubMed

    Ueng, Yune-Fang; Hsieh, Chih-Hang; Don, Ming-Jaw

    2005-05-01

    The hepatotoxin, safrole is a methylenedioxy phenyl compound, found in sassafras oil and certain other essential oils. Recombinant cytochrome P450 (CYP, P450) and human liver microsomes were studied to investigate the selective inhibitory effects of safrole on human P450 enzymes and the mechanisms of action. Using Escherichia coli-expressed human P450, our results demonstrated that safrole was a non-selective inhibitor of CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP3A4 in the IC(50) order CYP2E1 < CYP1A2 < CYP2A6 < CYP3A4 < CYP2D6. Safrole strongly inhibited CYP1A2, CYP2A6, and CYP2E1 activities with IC(50) values less than 20 microM. Safrole caused competitive, non-competitive, and non-competitive inhibition of CYP1A2, CYP2A6 and CYP2E1 activities, respectively. The inhibitor constants were in the order CYP1A2 < CYP2E1 < CYP2A6. In human liver microsomes, 50 microM safrole strongly inhibited 7-ethoxyresorufin O-deethylation, coumarin hydroxylation, and chlorzoxazone hydroxylation activities. These results revealed that safrole was a potent inhibitor of human CYP1A2, CYP2A6, and CYP2E1. With relatively less potency, CYP2D6 and CYP3A4 were also inhibited.

  10. Metabolic interactions of central nervous system medications and selective serotonin reuptake inhibitors.

    PubMed

    Naranjo, C A; Sproule, B A; Knoke, D M

    1999-05-01

    Selective serotonin reuptake inhibitors (SSRIs) are prescribed alone and in combination with other psychotropic medications in the treatment of a variety of psychiatric disorders. Such combinations create the potential for pharmacokinetic interactions by affecting the activity of the cytochromes P450 (CYP450), drug metabolizing oxidative enzymes. SSRIs are not equivalent in their potential for interactions when combined with other central nervous system (CNS) medication. Generally citalopram and sertraline are characterized by weaker inhibition of CYP450 enzymes and, therefore, hold less potential for interaction than the other SSRIs. Paroxetine potently inhibits CYP2D6, which can result in increased neuroleptic serum concentrations, accompanied by increased CNS side-effects. Similarly, as a potent inhibitor of CYP2D6, fluoxetine can increase serum concentrations of neuroleptics and antidepressants and numerous case reports have documented concomitant adverse events. Fluoxetine also inhibits CYP3A and CYP2C19, increasing serum concentrations of some benzodiazepines. Fluvoxamine is a potent inhibitor of CYP1A2, a moderate inhibitor of CYP3A and a mild inhibitor of CYP2D6. Therefore, interactions with clozapine and benzodiazepines are evident.

  11. Polymorphism in the metabolism of drugs, including antidepressant drugs: comments on phenotyping.

    PubMed Central

    Coutts, R T

    1994-01-01

    In neurochemistry there are advantages in determining how patients are likely to react to psychoactive drugs prior to the commencement of drug therapy. Explanations of a patient's nonresponse, or unexpected adverse reactions to drugs are required. In many instances, a knowledge of the drug metabolism status of a patient can be helpful in the selection of a drug and its dosage regimen, and in the prediction of possible drug/drug interactions when two or more drugs have to be administered concomitantly. Important information on these topics may be obtained by phenotyping patients prior to drug therapy. The metabolism of various antidepressant and neuroleptic drugs is catalyzed by CYP2D6, a cytochrome P450 isozyme (also named P450IID6), whereas the metabolism of other drugs may involve different cytochromes P450. The properties of CYP2D6 and four other isozymes (CYP1A1, CYP1A2, CYP2C8/9 and CYP3A4) are described, and substrates identified. Phenotyping of patients for CYP2D6 activity and mephenytoin hydroxylase activity is described. PMID:8148364

  12. [Chronic dizziness in a pain patient--pharmacogenomic identification of tramadol as cause].

    PubMed

    Eichhorn, A; Barth, J

    2010-12-01

    This casuistic reports on a 59-year-old pain patient taking normal dosage Tramadol as analgetic drug, who suffered from chronic dizziness leading to immobilisation for more than 9 months. On admission to inpatient rehabilitation Tramadol was removed in exchange for morphine sulphate with the unexpected result of a prompt and lasting stop of dizziness. A molecular-genetic investigation showed a duplication in the CYP2D6 gene. This genetic situation caused a quick metabolizing-status for substances dependent on CYP2D6 like Tramadol, which is a prodrug. The quick metabolizing-status resulted in an increased rate of active Tramadol-metabolites which caused the chronic dizziness. Under morphine sulphate which is metabolized independently of CYP2D6, a sufficient analgetic outcome could be achieved. Dizziness did not appear in the patient any longer, and he could be mobilised during rehabilitation. Pharmacogenomic knowledge has helped develop a sustainable concept for rehabilitation of this seriously ill patient, and to put it into practise successfully.

  13. Clinical drug-drug interaction assessment of ivacaftor as a potential inhibitor of cytochrome P450 and P-glycoprotein.

    PubMed

    Robertson, Sarah M; Luo, Xia; Dubey, Neeraj; Li, Chonghua; Chavan, Ajit B; Gilmartin, Geoffrey S; Higgins, Mark; Mahnke, Lisa

    2015-01-01

    Ivacaftor is approved in the USA for the treatment of cystic fibrosis (CF) in patients with a G551D-CFTR mutation or one of eight other CFTR mutations. A series of in vitro experiments conducted early in the development of ivacaftor indicated ivacaftor and metabolites may have the potential to inhibit cytochrome P450 (CYP) 2C8, CYP2C9, CYP3A, and CYP2D6, as well as P-glycoprotein (P-gp). Based on these results, a series of clinical drug-drug interaction (DDI) studies were conducted to evaluate the effect of ivacaftor on sensitive substrates of CYP2C8 (rosiglitazone), CYP3A (midazolam), CYP2D6 (desipramine), and P-gp (digoxin). In addition, a DDI study was conducted to evaluate the effect of ivacaftor on a combined oral contraceptive, as this is considered an important comedication in CF patients. The results indicate ivacaftor is a weak inhibitor of CYP3A and P-gp, but has no effect on CYP2C8 or CYP2D6. Ivacaftor caused non-clinically significant increases in ethinyl estradiol and norethisterone exposure. Based on these results, caution and appropriate monitoring are recommended when concomitant substrates of CYP2C9, CYP3A and/or P-gp are used during treatment with ivacaftor, particularly drugs with a narrow therapeutic index, such as warfarin.

  14. Species differences in hepatic and intestinal metabolic activities for 43 human cytochrome P450 substrates between humans and rats or dogs.

    PubMed

    Nishimuta, Haruka; Nakagawa, Tetsuya; Nomura, Naruaki; Yabuki, Masashi

    2013-11-01

    1. Prediction of human pharmacokinetics might be made more precise by using species with similar metabolic activities to humans. We had previously reported the species differences in intestinal and hepatic metabolic activities of 43 cytochrome P450 (CYP) substrates between cynomolgus monkeys and humans. However, the species differences between humans and rats or dogs had not yet been determined using comparable data sets with sufficient number of compounds. 2. Here, we investigated metabolic stabilities in intestinal and liver microsomes obtained from rats, dogs and humans using 43 substrates of human CYP1A2, CYP2J2, CYP2C, CYP2D6 and CYP3A. 3. Hepatic intrinsic clearance (CLint) values for most compounds in dogs were comparable to those in humans (within 10-fold), whereas in rats, those for the human CYP2D6 substrates were much higher and showed low correlation with humans. In dog intestine, as with human intestine, CLint values for almost all human CYP1A2, CYP2C, CYP2D6 substrates were not determined because they were very low. Intestinal CLint values for human CYP3A substrates in rats and dogs appeared to be lower for most of the compounds and showed moderate correlation with those in humans. 4. In conclusion, dogs showed the most similar metabolic activity to humans.

  15. Metabolism of loratadine and further characterization of its in vitro metabolites.

    PubMed

    Ghosal, Anima; Gupta, Samir; Ramanathan, Ragu; Yuan, Yuan; Lu, Xiaowen; Su, Ai Duen Iris; Alvarez, Narciso; Zbaida, Shmuel; Chowdhury, Swapan K; Alton, Kevin B

    2009-08-01

    The present study demonstrated that in addition to CYP3A4 and CYP2D6, the metabolism of loratadine is also catalyzed by CYP1A1, CYP2C19, and to a lesser extent by CYP1A2, CYP2B6, CYP2C8, CYP2C9 and CYP3A5. The biotransformation of loratadine was associated with the formation of desloratadine (DL) and further hydroxylation of both DL and the parent drug (loratadine). Based on the inhibition and correlation studies contribution of CYP2C19 in the formation of the major circulating metabolite DL seems to be minor. Reported clinical results suggest that the steady state mean (%CV) plasma Cmax and AUC(24hr) of loratadine were 4.73 ng/ml (119%) and 24.1 ng.hr/ml (157%), respectively, after dosing with 10 mg loratadine tablets for 10 days. High inter-subject variability in loratadine steady-state data is probably due to the phenotypical characteristics of CYP2D6, CYP2C19, and CYP3A4. The relative abundance of CYP3A4 in the human liver exceeds that of CYP2C19 and CYP2D6 and therefore the contribution of CYP3A4 in the metabolism of loratadine should be major (approximately 70%).

  16. Addressing phenoconversion: the Achilles' heel of personalized medicine

    PubMed Central

    Shah, Rashmi R; Smith, Robert L

    2015-01-01

    Phenoconversion is a phenomenon that converts genotypic extensive metabolizers (EMs) into phenotypic poor metabolizers (PMs) of drugs, thereby modifying their clinical response to that of genotypic PMs. Phenoconversion, usually resulting from nongenetic extrinsic factors, has a significant impact on the analysis and interpretation of genotype-focused clinical outcome association studies and personalizing therapy in routine clinical practice. The high phenotypic variability or genotype–phenotype mismatch, frequently observed due to phenoconversion within the genotypic EM population, means that the real number of phenotypic PM subjects may be greater than predicted from their genotype alone, because many genotypic EMs would be phenotypically PMs. If the phenoconverted population with genotype–phenotype mismatch, most extensively studied for CYP2D6, is as large as the evidence suggests, there is a real risk that genotype-focused association studies, typically correlating only the genotype with clinical outcomes, may miss clinically strong pharmacogenetic associations, thus compromising any potential for advancing the prospects of personalized medicine. This review focuses primarily on co-medication-induced phenoconversion and discusses potential approaches to rectify some of the current shortcomings. It advocates routine phenotyping of subjects in genotype-focused association studies and proposes a new nomenclature to categorize study populations. Even with strong and reliable data associating patients' genotypes with clinical outcome(s), there are problems clinically in applying this knowledge into routine pharmacotherapy because of potential genotype–phenotype mismatch. Drug-induced phenoconversion during routine clinical practice remains a major public health issue. Therefore, the principal challenges facing personalized medicine, which need to be addressed, include identification of the following factors: (i) drugs that are susceptible to phenoconversion

  17. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors

    PubMed Central

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2014-01-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity. PMID:25446678

  18. Nonlinear pharmacokinetics of 5-methoxy-N,N-dimethyltryptamine in mice.

    PubMed

    Shen, Hong-Wu; Jiang, Xi-Ling; Yu, Ai-Ming

    2011-07-01

    5-Methoxy-N,N,-dimethyltryptamine (5-MeO-DMT), an abused serotonergic indolealkylamine drug, was placed into Schedule I controlled substance status in the United States as of January 19, 2011. In previous studies, we have shown the impact of monoamine oxidase A and cytochrome P450 2D6 enzymes on 5-MeO-DMT metabolism and pharmacokinetics. The aim of this study was to investigate 5-MeO-DMT pharmacokinetic properties after intravenous or intraperitoneal administration of three different doses (2, 10, and 20 mg/kg) to CYP2D6-humanized (Tg-CYP2D6) and wild-type control mice. Systemic exposure [area under the curve (AUC)] to 5-MeO-DMT was increased nonproportionally with the increase in dose. The existence of nonlinearity in serum 5-MeO-DMT pharmacokinetics was clearly manifested by dose-normalized AUC values, which were approximately 1.5- to 2.0-fold (intravenous) and 1.8- to 2.7-fold (intraperitoneal) higher in wild-type or Tg-CYP2D6 mice dosed with 10 and 20 mg/kg 5-MeO-DMT, respectively, than those in mice treated with 2 mg/kg 5-MeO-DMT. Furthermore, a two-compartment model including first-order absorption, nonlinear (Michaelis-Menten) elimination, and CYP2D6-dependent linear elimination from the central compartment was developed to characterize the intravenous and intraperitoneal pharmacokinetic data for 5-MeO-DMT in wild-type and Tg-CYP2D6 mice. In addition, 5-MeO-DMT was readily detected in mouse brain after drug treatment, and brain 5-MeO-DMT concentrations were also increased nonproportionally with the increase of dose. The results establish a nonlinear pharmacokinetic property for 5-MeO-DMT in mice, suggesting that the risk of 5-MeO-DMT intoxication may be increased nonproportionally at higher doses.

  19. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2015-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity.

  20. Pharmacogenetics of major depressive disorder: top genes and pathways toward clinical applications.

    PubMed

    Fabbri, Chiara; Serretti, Alessandro

    2015-07-01

    The pharmacogenetics of antidepressants has been not only a challenging but also frustrating research field since its birth in the 1990s. Indeed, great expectations followed the first evidence of familiar aggregation of antidepressant response. Despite the progress from candidate gene studies to genome-wide association studies (GWAS), results fell out the expectations and they were often inconsistent. Anyway, the cumulative evidence supports the involvement of some genes and molecular pathways in antidepressant efficacy. The best single genes are SLC6A4, HTR2A, BDNF, GNB3, FKBP5, ABCB1, and cytochrome P450 genes (CYP2D6 and CYP2C19). Molecular pathways involved in inflammation and neuroplasticity show the greatest support. The first studies evaluating benefits of genotype-guided antidepressant treatments provided encouraging results and confirmed the relevance of SLC6A4, HTR2A, ABCB1, and cytochrome P450 genes. Further progress in genotyping and data analysis would allow to move forward and complete the understanding of antidepressant pharmacogenetics and its translation into clinical applications.

  1. Physiogenomic analysis of CYP450 drug metabolism correlates dyslipidemia with pharmacogenetic functional status in psychiatric patients

    PubMed Central

    Ruaño, Gualberto; Villagra, David; Szarek, Bonnie; Windemuth, Andreas; Kocherla, Mohan; Gorowski, Krystyna; Berrezueta, Christopher; Schwartz, Harold I; Goethe, John

    2011-01-01

    Aims To investigate associations between novel human cytochrome P450 (CYP450) combinatory (multigene) and substrate-specific drug metabolism indices, and elements of metabolic syndrome, such as low density lipoprotein cholesterol (LDLc), high density lipoprotein cholesterol (HDLc), triglycerides and BMI, using physiogenomic analysis. Methods CYP2C9, CYP2C19 and CYP2D6 genotypes and clinical data were obtained for 150 consecutive, consenting hospital admissions with a diagnosis of major depressive disorder and who were treated with psychotropic medications. Data analysis compared clinical measures of LDLc, HDLc, triglyceride and BMI with novel combinatory and substrate-specific CYP450 drug metabolism indices. Results We found that a greater metabolic reserve index score is related to lower LDLc and higher HDLc, and that a greater metabolic alteration index score corresponds with higher LDLc and lower HLDc values. We also discovered that the sertraline drug-specific indices correlated with cholesterol and triglyceride values. Conclusions Overall, we demonstrated how a multigene approach to CYP450 genotype analysis yields more accurate and significant results than single-gene analyses. Ranking the individual with respect to the population represents a potential tool for assessing risk of dyslipidemia in major depressive disorder patients who are being treated with psychotropics. In addition, the drug-specific indices appear useful for modeling a variable of potential relevance to an individual’s risk of drug-related dyslipidemia. PMID:21861666

  2. Clinical utility of pharmacogenetic biomarkers in cardiovascular therapeutics: a challenge for clinical implementation

    PubMed Central

    Ong, Frank S; Deignan, Joshua L; Kuo, Jane Z; Bernstein, Kenneth E; Rotter, Jerome I; Grody, Wayne W; Das, Kingshuk

    2012-01-01

    In the past decade, significant strides have been made in the area of cardiovascular pharmacogenomic research, with the discovery of associations between certain genotypes and drug-response phenotypes. While the motivations for personalized and predictive medicine are promising for patient care and support a model of health system efficiency, the implementation of pharmacogenomics for cardiovascular therapeutics on a population scale faces substantial challenges. The greatest obstacle to clinical implementation of cardiovascular pharmacogenetics may be the lack of both reproducibility and agreement about the validity and utility of the findings. In this review, we present the scientific evidence in the literature for diagnostic variants for the US FDA-labeled cardiovascular therapies, namely CYP2C19 and clopidogrel, CYP2C9/VKORC1 and warfarin, and CYP2D6/ADRB1 and β-blockers. We also discuss the effect of HMGCR/LDLR in decreasing the effectiveness of low-density lipoprotein cholesterol with statin therapy, the SLCO1B1 genotype and simvastatin myotoxicity, and ADRB1/ADD1 for antihypertensive response. PMID:22380001

  3. Clinical utility of pharmacogenetic biomarkers in cardiovascular therapeutics: a challenge for clinical implementation.

    PubMed

    Ong, Frank S; Deignan, Joshua L; Kuo, Jane Z; Bernstein, Kenneth E; Rotter, Jerome I; Grody, Wayne W; Das, Kingshuk

    2012-03-01

    In the past decade, significant strides have been made in the area of cardiovascular pharmacogenomic research, with the discovery of associations between certain genotypes and drug-response phenotypes. While the motivations for personalized and predictive medicine are promising for patient care and support a model of health system efficiency, the implementation of pharmacogenomics for cardiovascular therapeutics on a population scale faces substantial challenges. The greatest obstacle to clinical implementation of cardiovascular pharmacogenetics may be the lack of both reproducibility and agreement about the validity and utility of the findings. In this review, we present the scientific evidence in the literature for diagnostic variants for the US FDA-labeled cardiovascular therapies, namely CYP2C19 and clopidogrel, CYP2C9/VKORC1 and warfarin, and CYP2D6/ADRB1 and β-blockers. We also discuss the effect of HMGCR/LDLR in decreasing the effectiveness of low-density lipoprotein cholesterol with statin therapy, the SLCO1B1 genotype and simvastatin myotoxicity, and ADRB1/ADD1 for antihypertensive response.

  4. Effect of fermented red ginseng on cytochrome P450 and P‐glycoprotein activity in healthy subjects, as evaluated using the cocktail approach

    PubMed Central

    Kim, Min‐Gul; Kim, Yunjeong; Jeon, Ji‐Young

    2016-01-01

    Aims We assessed the drug interaction profile of fermented red ginseng with respect to the activity of major cytochrome (CYP) P450 enzymes and of a drug transporter protein, P‐glycoprotein (P‐gp), in healthy volunteers. Methods This study was an open‐label crossover study. The CYP probe cocktail drugs caffeine, losartan, dextromethorphan, omeprazole, midazolam and fexofenadine were administered before and after 2 weeks of fermented red ginseng administration. Plasma samples were collected, and tolerability was assessed. Pharmacokinetic parameters were calculated, and the 90% confidence intervals (CIs) of the geometric mean ratios of the parameters were determined from logarithmically transformed data. Values were compared between before and after fermented red ginseng administration using analysis of variance (anova). Results Fifteen healthy male subjects were evaluated, none of whom were genetically defined as a poor CYP2C9, CYP2C19 or CYP2D6 metabolizer based on genotyping. Before and after fermented red ginseng administration, the geometric least‐square mean metabolic ratio (90% CI) was 0.901 (0.830–0.979) for caffeine (CYP1A2) to paraxanthine, 0.774 (0.720–0.831) for losartan (CYP2C9) to EXP3174, 1.052 (0.925–1.197) for omeprazole (CYP2C19) to 5‐hydroxyomeprazole, 1.150 (0.860–1.538) for dextromethorphan (CYP2D6) to dextrorphan, and 0.816 (0.673–0.990) for midazolam (CYP3A4) to 1‐hydroxymidazolam. The geometric mean ratio of the area under the curve of the last sampling time (AUClast) for fexofenadine (P‐gp) was 1.322 (1.112–1.571). Conclusion No significantly different drug interactions were observed between fermented red ginseng and the CYP probe substrates following the two‐week administration of concentrated fermented red ginseng. However, the inhibition of P‐gp was significantly different between fermented red ginseng and the CYP probe substrates. The use of fermented red ginseng requires close attention due to the potential

  5. "Weak" opioid analgesics. Codeine, dihydrocodeine and tramadol: no less risky than morphine.

    PubMed

    2016-02-01

    So-called weak opioid analgesics are often used to treat severe pain, or when paracetamol or a nonsteroidal anti-inflammatory drug (NSAID) proves inadequate. But are weak opioids any more effective than paracetamol or NSAIDs on nociceptive pain, and are they better tolerated than morphine? To answer these questions, we conducted a review of literature using the standard Prescrire methodology. The potency of codeine and tramadol is strongly influenced by the cytochrome P450 isoenzyme CYP2D6 genotype, which varies widely from one person to another. This explains reports of overdosing or underdosing after administration of standard doses of the two drugs. The potency of morphine and that of buprenorphine, an opioid receptor agonist-antagonist, appears to be independent of CYP2D6 activity. All "weak" opioids can have the same dose-dependent adverse effects as morphine. There is no evidence that, at equivalent analgesic efficacy, weak opioids carry a lower risk of addiction than low-dose morphine. Respiratory depression can occur in ultrarapid metabolisers after brief exposure to standard doses of codeine or tramadol. Similar cases have been reported with dihydrocodeine in patients with renal failure. In addition, tramadol can cause a serotonin syndrome, hypoglycaemia, hyponatraemia and seizures. Several trials have compared different weak opioids in patients with post-operative pain. A single dose of a weak opioid, possibly combined with paracetamol, has greater analgesic efficacy than paracetamol alone but is not more effective than an NSAID alone. There is a dearth of evidence on weak opioids in patients with chronic pain. Available trials fail to show that a weak opioid has markedly superior analgesic efficacy to paracetamol or an NSAID. Sublingual buprenorphine at analgesic doses appears less likely to cause respiratory depression, but it seems to have weak analgesic efficacy. In practice, when opioid therapy is needed, there is no evidence that codeine

  6. Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics

    PubMed Central

    Cacabelos, Ramón

    2007-01-01

    Donepezil is the leading compound for the treatment of Alzheimer’s disease (AD) in more than 50 countries. As compared with other conventional acetylcholinesterase inhibitors (AChEIs), donepezil is a highly selective and reversible piperidine derivative with AChEI activity that exhibits the best pharmacological profile in terms of cognitive improvement, responders rate (40%–58%), dropout cases (5%–13%), and side-effects (6%–13%) in AD. Although donepezil represents a non cost-effective treatment, most studies convey that this drug can provide a modest benefit on cognition, behavior, and activities of the daily living in both moderate and severe AD, contributing to slow down disease progression and, to a lesser exetnt, to delay institutionalization. Patients with vascular dementia might also benefit from donepezil in a similar fashion to AD patients. Some potential effects of donepezil on the AD brain, leading to reduced cortico-hippocampal atrophy, include the following: AChE inhibition, enhancement of cholinergic neurotransmission and putative modulation of other neurotransmitter systems, protection against glutamate-induced excitotoxicity, activation of neurotrophic mechanisms, promotion of non-amyloidodgenic pathways for APP processing, and indirect effects on cerebrovascular function improving brain perfusion. Recent studies demonstrate that the therapeutic response in AD is genotype-specific. Donepezil is metabolized via CYP-related enzymes, especially CYP2D6, CYP3A4, and CYP1A2. Approximately, 15%–20% of the AD population may exhibit an abnormal metabolism of AChEIs; about 50% of this population cluster would show an ultrarapid metabolism, requiring higher doses of AChEIs to reach a therapeutic threshold, whereas the other 50% of the cluster would exhibit a poor metabolism, displaying potential adverse events at low doses. In AD patients treated with a multifactorial therapy, including donepezil, the best responders are the CYP2D6-related extensive

  7. Clinically relevant genetic variants of drug-metabolizing enzyme and transporter genes detected in Thai children and adolescents with autism spectrum disorder

    PubMed Central

    Medhasi, Sadeep; Pasomsub, Ekawat; Vanwong, Natchaya; Ngamsamut, Nattawat; Puangpetch, Apichaya; Chamnanphon, Montri; Hongkaew, Yaowaluck; Limsila, Penkhae; Pinthong, Darawan; Sukasem, Chonlaphat

    2016-01-01

    Single-nucleotide polymorphisms (SNPs) among drug-metabolizing enzymes and transporters (DMETs) influence the pharmacokinetic profile of drugs and exhibit intra- and interethnic variations in drug response in terms of efficacy and safety profile. The main objective of this study was to assess the frequency of allelic variants of drug absorption, distribution, metabolism, and elimination-related genes in Thai children and adolescents with autism spectrum disorder. Blood samples were drawn from 119 patients, and DNA was extracted. Genotyping was performed using the DMET Plus microarray platform. The allele frequencies of the DMET markers were generated using the DMET Console software. Thereafter, the genetic variations of significant DMET genes were assessed. The frequencies of SNPs across the genes coding for DMETs were determined. After filtering the SNPs, 489 of the 1,931 SNPs passed quality control. Many clinically relevant SNPs, including CYP2C19*2, CYP2D6*10, CYP3A5*3, and SLCO1B1*5, were found to have frequencies similar to those in the Chinese population. These data are important for further research to investigate the interpatient variability in pharmacokinetics and pharmacodynamics of drugs in clinical practice. PMID:27110117

  8. The relationship between the response of clinical symptoms and plasma olanzapine concentration, based on pharmacogenetics: Juntendo University Schizophrenia Projects (JUSP).

    PubMed

    Nozawa, Motohiro; Ohnuma, Tohru; Matsubara, Yoichiro; Sakai, Yoshie; Hatano, Tokiko; Hanzawa, Ryo; Shibata, Nobuto; Arai, Heii

    2008-02-01

    The monitoring of plasma olanzapine concentrations has been found to be an important and useful tool for optimizing psychiatric treatment. The present study investigated the effect that clinical factors, such as smoking and age, and functional polymorphisms of UGT1A4, CYP1A2, and CYP2D6 genes have on plasma olanzapine concentration, as well as the effects of plasma olanzapine concentrations on Japanese schizophrenic patients' clinical symptoms. The subjects included 51 chronic schizophrenic patients whose symptoms were not controlled with chronic conventional antipsychotics and therefore were switched to olanzapine. Male smokers had a significantly lower olanzapine concentration-dose ratio and olanzapine/4'-N-desmethyl olanzapine ratio (which reflects CYP1A2 activity) than male nonsmokers and female nonsmokers. The results of a 2-way analysis of covariance showed that smoking had the main effect, rather than gender or age. The functional gene polymorphisms that were studied had no effect on the plasma olanzapine and metabolite concentrations. An improved total Brief Psychiatric Rating Scale (BPRS) score was not correlated with the plasma olanzapine concentration, but individual BPRS scores related to improvement of suspiciousness, hallucinations, and blunted affect were significantly correlated with plasma olanzapine concentration. Clinical factors, especially smoking, were more important modulators of olanzapine metabolism than the functional genotypes. Long-term olanzapine treatment with adequate plasma olanzapine concentrations could be more effective in improving some symptoms than treatment with conventional antipsychotics.

  9. Rethinking tamoxifen in the management of melanoma: New answers for an old question.

    PubMed

    Ribeiro, Mariana P C; Santos, Armanda E; Custódio, José B A

    2015-10-05

    The use of the antiestrogen tamoxifen in melanoma therapy is controversial due to the unsuccessful outcomes and a still rather unclarified mechanism of action. It seemed that the days of tamoxifen in malignant melanoma therapy were close to an end, but new evidence may challenge this fate. On one hand, it is now believed that metabolism is a major determinant of tamoxifen clinical outcomes in breast cancer patients, which is a variable that has yet to be tested in melanoma patients, since the tamoxifen active metabolite endoxifen demonstrated superior cytostatic activity over the parent drug in melanoma cells; on the other hand, new evidence has emerged regarding estrogen-mediated signaling in melanoma cells, including the methylation of the estrogen receptor-α gene promoter and the expression of the G protein coupled estrogen receptor. The expression of estrogen receptor-α and G protein coupled estrogen receptor, as well as the cytochrome P450 (CYP) 2D6 genotype, may be used as predictive biomarkers to select the patients that may respond to antiestrogens based on specific traits of their tumors. This review focused on these new evidences and how they may contribute to shed new light on this long-lasting controversy, as well as their possible implications for future investigations.

  10. Genetic studies of DRD4 and clinical response to neuroleptic medications

    SciTech Connect

    Kennedy, J.L.; Petronis, A.; Gao, J.

    1994-09-01

    Clozapine is an atypical antipsychotic drug that, like most other medications, is effective for some people and not for others. This variable response across individuals is likely significantly determined by genetic factors. An important candidate gene to investigate in clozapine response is the dopamine D4 receptor gene (DRD4). The D4 receptor has a higher affinity for clozapine than any of the other dopamine receptors. Furthermore, recent work by our consortium has shown a remarkable level of variability in the part of the gene coding for the third cytoplasmic loop. We have also identified polymorphisms in the upstream 5{prime} putative regulatory region and at two other sites. These polymorphisms were typed in a group of treatment-resistant schizophrenia subjects who were subsequently placed on clozapine (n = 60). In a logistic regression analysis, we compared genotype at the DRD4 polymorphism to response versus non-response to clozapine. Neither the exon-III nor any of the 5{prime} polymorphisms alone significantly predicted response; however, when the information from these polymorphisms was combined, more predictive power was obtained. In a correspondence analysis of the four DRD4 polymorphisms vs. response, we were able to predict 76% of the variance in response. Refinement of the analyses will include assessment of subfactors involved in clinical response phenotype and incorporation of the debrisoquine metabolizing locus (CYP2D6) into the prediction algorithm.

  11. Estimation of the duration after methamphetamine injection using a pharmacokinetic model in suspects who caused fatal traffic accidents.

    PubMed

    Matsubara, Kazuo; Asari, Masaru; Suno, Manabu; Awaya, Toshio; Sugawara, Mitsuru; Omura, Tomohiro; Yamamoto, Joe; Maseda, Chikatoshi; Tasaki, Yoshikazu; Shiono, Hiroshi; Shimizu, Keiko

    2012-07-01

    When the population parameters of drug pharmacokinetics in the human body system are known, the time-course of a certain drug in an individual can generally be estimated by pharmacokinetics. In the present two cases where methamphetamine abusers were suspected to have inflicted mortalities in traffic accidents, the time-elapse or duration immediately after methamphetamine injection to the time when the accidents occurred became points of contention. In each case, we estimated the time-course of blood methamphetamine after the self-administration in the suspects using a 2-compartment pharmacokinetic model with known pharmacokinetic parameters from the literatures. If the injected amount can be determined to a certain extent, it is easy to calculate the average time-elapse after injection by referring to reference values. However, there is considerable individual variability in the elimination rate based on genetic polymorphism and a considerably large error range in the estimated time-elapse results. To minimize estimation errors in such cases, we also analyzed genotype of CYP2D6, which influenced methamphetamine metabolism. Estimation based on two time-point blood samples would usefully benefit legal authorities in passing ruling sentences in cases involving similar personalities and circumstances as those involved in the present study.

  12. Pharmacogenomic Study Reveals New Variants of Drug Metabolizing Enzyme and Transporter Genes Associated with Steady-State Plasma Concentrations of Risperidone and 9-Hydroxyrisperidone in Thai Autism Spectrum Disorder Patients

    PubMed Central

    Medhasi, Sadeep; Pinthong, Darawan; Pasomsub, Ekawat; Vanwong, Natchaya; Ngamsamut, Nattawat; Puangpetch, Apichaya; Chamnanphon, Monpat; Hongkaew, Yaowaluck; Pratoomwun, Jirawat; Limsila, Penkhae; Sukasem, Chonlaphat

    2016-01-01

    The present study sought to investigate the genetic variants in drug metabolizing enzyme and transporter (DMET) genes associated with steady-state plasma concentrations of risperidone among Thai autism spectrum disorder (ASD) patients. ASD patients taking risperidone for at least 1 month were enrolled for this pharmacogenomic study. Genotyping profile was obtained using Affymetrix DMET Plus array interrogating 1931 variants in 231 genes. Steady-state plasma risperidone and 9-hydroxyrisperidone were measured using liquid chromatography/tandem mass spectrometry assay. The final analysis included 483 markers for 167 genes. Six variants, ABCB11 (c.3084A > G, c.∗420A > G, c.∗368G > A, and c.∗236G > A) and ADH7 (c.690G > A and c.-5360G > A), were found to be associated with plasma concentrations of risperidone. 9-Hydroxyrisperidone and the total active-moiety levels were associated with six gene variants, SCLO1B1 (c.-11187G > A and c.521T > C), SLCO1B3 (c.334G > T, c.699A > G, and c.1557G > A), and SLC7A5 c.∗438C > G. Polymorphisms in UGT2B4 c.∗448A > G and CYP2D6 (c.1661G > C, c.4180G > C, and c.-2178G > A) showed considerable but not significant associations with metabolic ratio. This pharmacogenomic study identifies new genetic variants of DMET genes in monitoring risperidone therapy. PMID:28018217

  13. APOE Genotyping, Cardiovascular Disease

    MedlinePlus

    ... high level of triglycerides in the blood, and atherosclerosis that develops at an early age. APOE genotyping ... and is associated with an increased risk of atherosclerosis . People with these genotypes could be predisposed to ...

  14. Oxidative metabolism of flunarizine and cinnarizine by microsomes from B-lymphoblastoid cell lines expressing human cytochrome P450 enzymes.

    PubMed

    Kariya, S; Isozaki, S; Uchino, K; Suzuki, T; Narimatsu, S

    1996-11-01

    The oxidative metabolism of cinnarizine [(E)-1-(diphenylmethyl)-4-(3-phenyl-2-propyl)piperazine, CZ] and flunarizine [(E)-1-[bis(4-fluorophenyl)methyl]-4-(3-phenyl-2-propyl)piperazine, FZ] was examined in microsomes from lymphoblastoid cells that expressed human cytochrome P450 (CYP) enzymes. Among 10 kinds of CYP enzymes examined, only CYP2D6 catalyzed p-hydroxylation of the cinnamyl phenyl ring of CZ (C-2 formation) and FZ (F-2 formation), and only CYP2B6 exhibited activity for p-hydroxylation (C-4 formation) of the diphenylmethyl group of CZ at a substrate concentration of 50 microM. On the other hand, CYP2C9 together with CYP1A1, -1A2 and/or -2A6 mediated N-desalkylation at the 1- and 4-positions of the piperazine ring of the two drugs that formed C-1 and C-3 from CZ and F-1 and F-3 from FZ, respectively, whereas CYP2C8, -2C19, -2E1 or -3A4 did not show detectable activity for these reactions under the conditions used. We then examined kinetics for the oxidative metabolism of CZ and FZ using CYP2B6 and -2D6 that have considerable activities. CYP2D6 with Km values of 2 to 4 microM had intrinsic clearance values (Vmax/Km) of 0.31 and 0.14 ml/min/nmol CYP for C-2 and F-2 formation, respectively, while CYP2B6 with a Km value of 17 microM exhibited the clearance value of 0.10 ml/min/nmol CYP for C-4 formation. These results suggest that CYP2D6 mainly mediates p-hydroxylation of the cinnamyl phenyl rings of CZ and FZ, and CYP2B6 mediates that of the diphenylmethyl group of CZ.

  15. Bayesian graphical models for genomewide association studies.

    PubMed

    Verzilli, Claudio J; Stallard, Nigel; Whittaker, John C

    2006-07-01

    As the extent of human genetic variation becomes more fully characterized, the research community is faced with the challenging task of using this information to dissect the heritable components of complex traits. Genomewide association studies offer great promise in this respect, but their analysis poses formidable difficulties. In this article, we describe a computationally efficient approach to mining genotype-phenotype associations that scales to the size of the data sets currently being collected in such studies. We use discrete graphical models as a data-mining tool, searching for single- or multilocus patterns of association around a causative site. The approach is fully Bayesian, allowing us to incorporate prior knowledge on the spatial dependencies around each marker due to linkage disequilibrium, which reduces considerably the number of possible graphical structures. A Markov chain-Monte Carlo scheme is developed that yields samples from the posterior distribution of graphs conditional on the data from which probabilistic statements about the strength of any genotype-phenotype association can be made. Using data simulated under scenarios that vary in marker density, genotype relative risk of a causative allele, and mode of inheritance, we show that the proposed approach has better localization properties and leads to lower false-positive rates than do single-locus analyses. Finally, we present an application of our method to a quasi-synthetic data set in which data from the CYP2D6 region are embedded within simulated data on 100K single-nucleotide polymorphisms. Analysis is quick (<5 min), and we are able to localize the causative site to a very short interval.

  16. Cytochrome P450 Drug Metabolizing Enzymes in Roma Population Samples: Systematic Review of the Literature.

    PubMed

    Szalai, Renata; Hadzsiev, Kinga; Melegh, Bela

    2016-01-01

    The cytochrome P450 drug metabolizing enzymes are highly polymorphic and show inter-individual differences in variability in drug response, which varies widely also with ethnicity. This study aims to summarize the available data on genetic polymorphisms associated with cytochrome enzymes conducted on Roma populations. Our goal was to compare the frequency of the variant alleles, genotypes and predicted phenotypes with corresponding rates from other populations. We carried out a systematic review including the papers published on the pharmacogenetically relevant variants of cytochrome P450 genes related to Roma population. The study was performed using several articles, websites and databases, including PubMed, Ensembl, dbSNP, HapMap and 1000 Genomes Project. This review attempts to summarize and discuss our current knowledge about the frequency distribution of the ever investigated 20 allelic variants of 9 cytochrome genes (CYP1A2, CYP1B1, CYP2B6, CYP2C9, CYP2C19, CYP2C8, CYP2D6, CYP3A5, CYP4F2) in Roma DNA samples and compare them with other populations. Differences between Roma and Hungarian samples are reported for 7 variant genotypes. CYP2C9 *2/*3 and CYP2C19 *2/*2 genotypes showed more than 3-fold differences. Additional differences are displayed for allele frequency of 7 variants (rs762551, rs3745274, rs1058930, rs1065852, rs3892097, rs1057910 and rs4244285) in Roma population samples. The interethnic variability in clinically relevant genetic polymorphisms of drug metabolizing enzymes, which may explain distinct drug response, highlights the need to allow for the ancestry of participants in pharmacogenetic studies.

  17. Perception of the usefulness of drug/gene pairs and barriers for pharmacogenomics in Latin America.

    PubMed

    Quinones, Luis Abel; Lavanderos, Maria Alejandra; Cayun, Juan Pablo; Garcia-Martin, Elena; Agundez, Jose Augusto; Caceres, Dante Daniel; Roco, Angela Margarita; Morales, Jorge E; Herrera, Luisa; Encina, Gonzalo; Isaza, Carlos Alberto; Redal, Maria Ana; Larovere, Laura; Soria, Nestor Walter; Eslava-Schmalbach, Javier; Castaneda-Hernandez, Gilberto; Lopez-Cortes, Andres; Magno, Luiz Alexandre; Lopez, Marisol; Chiurillo, Miguel Angel; Rodeiro, Idania; Castro de Guerra, Dinorah; Teran, Enrique; Estevez-Carrizo, Francisco; Lares-Assef, Ismael

    2014-02-01

    Pharmacogenetics and Pharmacogenomics areas are currently emerging fields focused to manage pharmacotherapy that may prevent undertreatment while avoiding associated drug toxicity in patients. Large international differences in the awareness and in the use of pharmacogenomic testing are presumed, but not well assessed to date. In the present study we review the awareness of Latin American scientific community about pharmacogenomic testing and the perceived barriers for their clinical application. In order to that, we have compiled information from 9 countries of the region using a structured survey which is compared with surveys previously performed in USA and Spain. The most relevant group of barriers was related to the need for clear guidelines for the use of pharmacogenomics in clinical practice, followed by insufficient awareness about pharmacogenomics among clinicians and the absence of regulatory institutions that facilitate the use of pharmacogenetic tests. The higher ranked pairs were TPMT/thioguanine, TPMT/azathioprine, CYP2C9/warfarin, UGT1A1/irinotecan, CYP2D6/amitriptiline, CYP2C19/citalopram and CYP2D6/clozapine. The lower ranked pairs were SLCO1B1/simvastatin, CYP2D6/metoprolol and GP6D/chloroquine. Compared with USA and Spanish surveys, 25 pairs were of lower importance for Latin American respondents. Only CYP2C19/esomeprazole, CYP2C19/omeprazole, CYP2C19/celecoxib and G6PD/dapsone were ranked higher or similarly to the USA and Spanish surveys. Integration of pharmacogenomics in clinical practice needs training of healthcare professionals and citizens, but in addition legal and regulatory guidelines and safeguards will be needed. We propose that the approach offered by pharmacogenomics should be incorporated into the decision-making plans in Latin America.

  18. Coding-noncoding gene expression in intrahepatic cholangiocarcinoma.

    PubMed

    Wang, Jianguo; Xie, Haiyang; Ling, Qi; Lu, Di; Lv, Zhen; Zhuang, Runzhou; Liu, Zhikun; Wei, Xuyong; Zhou, Lin; Xu, Xiao; Zheng, Shusen

    2016-02-01

    Recent studies have shown that long noncoding RNAs (lncRNAs) play crucial roles in human cancers. However, the function of lncRNAs and their downstream mechanisms are largely unknown in the molecular pathogenesis of intrahepatic cholangiocarcinoma (ICC). In the present study, we performed transcriptomic profiling of ICC and paired adjacent noncancerous tissues (N) by using lncRNA and messenger RNA (mRNA) microarrays. Quantitative real-time polymerase chain reaction was used to validate the microarray results. We tested for correlations between the expression levels of lncRNAs and target genes. Clinicopathologic characteristics and overall survival were compared using the t test and the Kaplan-Meier method, respectively. A total of 2773 lncRNAs were significantly upregulated in ICC tissues compared with the noncancerous tissues, whereas 2392 lncRNAs were downregulated. Bioinformatic analysis indicated that most of the genes were involved in carcinogenesis, hepatic system diseases, and signal transductions. Positive correlations were found between 4 lncRNA-mRNA pairs (RNA43085 and SULF1, RNA47504 and KDM8, RNA58630 and PCSK6, and RNA40057 and CYP2D6). When the clinicopathologic characteristics were accounted for, the cumulative overall survival rate was found to be associated with low expression levels of CYP2D6 (P = 0.005) and PCSK6 (P = 0.038). Patients with high expression levels of CYP2D6 and RNA40057 had a better prognosis (P = 0.014). Our results suggested that the lncRNA expression profiling in ICC tissues is profoundly different from that in noncancerous tissues. Thus, lncRNA may be a potential diagnostic and prognostic biomarker for ICC. Furthermore, the combined assessment of lncRNA and mRNA expressions might predict the survival of patients with ICC.

  19. Population pharmacokinetic meta-analysis of vortioxetine in healthy individuals.

    PubMed

    Areberg, Johan; Petersen, Kamilla B; Chen, Grace; Naik, Himanshu

    2014-12-01

    The objective was to describe the pharmacokinetics of vortioxetine and evaluate the effect of intrinsic and extrinsic factors in the healthy population. Data from 26 clinical pharmacology studies were pooled. A total of 21,758 vortioxetine quantifiable plasma concentrations were collected from 887 subjects with corresponding demography. The doses ranged from 2.5 to 75 mg (single dose) and 2.5-60 mg (multiple QD doses). The pharmacokinetics of vortioxetine was best characterised by a two-compartment model with first-order absorption, lag-time and linear elimination, with interindividual error terms for absorption rate constant, oral clearance and central volume of distribution. The population mean was 32.7 L/hr for oral clearance and 1.97∙10(3)  L for the central volume of distribution. The average elimination half-life was 65.8 hr. CYP2D6 inferred metabolic status (ultra, extensive, intermediate or poor metabolisers) and age on oral clearance and height on central volume of distribution were identified as statistically significant covariate-parameter relationships. For CYP2D6 poor metabolisers, CL/F was approximately 50% to that seen in CYP2D6 extensive metabolisers. The impact of height on V2/F and age on CL/F was low and not considered to be clinically relevant. The final model was found to be reliable, stable and predictive. A reliable, stable and predictive pharmacokinetic model was developed to characterise pharmacokinetics of vortioxetine in the healthy population.

  20. Procarcinogens – Determination and Evaluation by Yeast-Based Biosensor Transformed with Plasmids Incorporating RAD54 Reporter Construct and Cytochrome P450 Genes

    PubMed Central

    Bui, Van Ngoc; Nguyen, Thi Thu Huyen; Mai, Chi Thanh; Bettarel, Yvan; Hoang, Thi Yen; Trinh, Thi Thuy Linh; Truong, Nam Hai; Chu, Hoang Ha; Nguyen, Vu Thanh Thanh; Nguyen, Huu Duc

    2016-01-01

    In Vietnam, a great number of toxic substances, including carcinogens and procarcinogens, from industrial and agricultural activities, food production, and healthcare services are daily released into the environment. In the present study, we report the development of novel yeast-based biosensor systems to determine both genotoxic carcinogens and procarcinogens by cotransformation with two plasmids. One plasmid is carrying human CPR and CYP (CYP3A4, CYP2B6, or CYP2D6) genes, while the other contains the RAD54-GFP reporter construct. The three resulting coexpression systems bearing both CPR-CYP and RAD54-GFP expression cassettes were designated as CYP3A4/CYP2B6/CYP2D6 + RAD54 systems, respectively and used to detect and evaluate the genotoxic potential of carcinogens and procarcinogens by selective activation and induction of both CPR-CYP and RAD54-GFP expression cassettes in response to DNA damage. Procarcinogens were shown to be predominantly, moderately or not bioactivated by one of the CYP enzymes and thus selectively detected by the specific coexpression system. Aflatoxin B1 and benzo(a)pyrene were predominantly detected by the CYP3A4 + RAD54 system, while N-nitrosodimethylamine only moderately activated the CYP2B6 + RAD54 reporter system and none of them was identified by the CYP2D6 + RAD54 system. In contrast, the genotoxic carcinogen, methyl methanesulfonate, was detected by all systems. Our yeast-reporter system can be performed in 384-well microplates to provide efficient genotoxicity testing to identify various carcinogenic compounds and reduce chemical consumption to about 53% as compared with existing 96-well genotoxicity bioassays. In association with a liquid handling robot, this platform enables rapid, cost-effective, and high-throughput screening of numerous analytes in a fully automated and continuous manner without the need for user interaction. PMID:28006013

  1. Pharmacokinetics of venlafaxine enantiomers and their metabolites in psoriasis patients.

    PubMed

    Godoy, Ana Leonor Pardo Campos; Rocha, Adriana; da Silva Souza, Cacilda; Lanchote, Vera Lucia

    2016-05-01

    Psoriasis is a chronic inflammatory disease associated with several comorbidities, including depression. Previous studies have shown that inflammatory diseases downregulate the expression and suppress activity of CYP isoforms. Venlafaxine (VLX) is an antidepressant metabolized mainly by CYP2D6 to O-desmethylvenlafaxine (ODV), CYP3A to N-desmethylvenlafaxine (NDV), and CYP2D6 and CYP3A to N,O-didesmethylvenlafaxine (DDV). This study evaluated the influence of psoriasis on the enantioselective pharmacokinetics of VLX. Psoriasis patients (n = 13) and healthy volunteers (n = 11) phenotyped as CYP2D6 extensive (EM) or poor metabolizers (n = 1) received a single oral dose of 150 mg racemic VLX. Plasma concentrations of TNF-α, IFN-γ, IL-6, IL-8, and IL-17 cytokines were higher in EM psoriasis patients when compared with healthy volunteers. IL-6 plasma concentrations varied from 0.4 to 12.9 pg/mL (mean, 2.1 pg/mL) in healthy volunteers and from 0.4 to 29.3 pg/mL (mean, 4.2 pg/mL) in psoriatic patients. VLX pharmacokinetics are enantioselective in healthy volunteers and psoriasis patients phenotyped as EM. Higher AUC values for the (S)-VLX, (S)-NDV, and (S)-DDV enantiomers were observed in healthy volunteers, whereas higher AUC values for (S)-VLX and (R)-ODV were found in psoriasis patients phenotyped as EM. Psoriasis does not alter the pharmacokinetics of the VLX enantiomers probably because of the low levels of IL-6 plasma concentrations.

  2. Interaction potential of Trigonella foenum graceum through cytochrome P450 mediated inhibition

    PubMed Central

    Ahmmed, Sk Milan; Mukherjee, Pulok K.; Bahadur, Shiv; Kar, Amit; Mukherjee, Kakali; Karmakar, Sanmoy; Bandyopadhyay, Arun

    2015-01-01

    Objective: The seeds of Trigonella foenum-graecum (TFG) (family: Leguminosae) are widely consumed both as a spice in food and Traditional Medicine in India. The present study was undertaken to evaluate the inhibitory effect of standardized extract of TFG and its major constituent trigonelline (TG) on rat liver microsome (RLM) and cytochrome P450 (CYP450) drug metabolizing isozymes (CYP3A4 and CYP2D6), which may indicate the possibility of a probable unwanted interaction. Materials and Methods: Reverse phase-high performance liquid chromatography method was developed to standardize the hydroalcoholic seed extract with standard TG. The inhibitory potential of the extract and TG was evaluated on RLM and CYP isozymes using CYP450-carbon monoxide (CYP450-CO) complex assay and fluorescence assay, respectively. Results: The content of TG in TFG was found to be 3.38% (w/w). The CYP-CO complex assay showed 23.32% inhibition on RLM. Fluorescence study revealed that the extract and the biomarker had some inhibition on CYP450 isozymes e.g. CYP3A4 and CYP2D6 (IC50 values of the extract: 102.65 ± 2.63–142.23 ± 2.61 µg/ml and TG: 168.73 ± 4.03–180.90 ± 2.49 µg/ml) which was very less compared to positive controls ketoconazole and quinidine. Inhibition potential of TFG was little higher than TG but very less compared to positive controls. Conclusions: From the present study, we may conclude that the TFG or TG has very less potential to inhibit the CYP isozymes (CYP3A4, CYP2D6), so administration of this plant extract or its biomarker TG may be safe. PMID:26600643

  3. Pharmacogenetics of Risperidone and Cardiovascular Risk in Children and Adolescents

    PubMed Central

    Dos Santos-Júnior, Amilton; Henriques, Taciane Barbosa; de Mello, Maricilda Palandi; Della Torre, Osmar Henrique; Paes, Lúcia Arisaka; Ferreira-Neto, Adriana Perez; Sewaybricker, Letícia Esposito; Fontana, Thiago Salum; Celeri, Eloisa Helena Rubello Valler; Guerra-Júnior, Gil; Dalgalarrondo, Paulo

    2016-01-01

    Objective. To identify the frequency of obesity and metabolic complications in child and adolescent users of risperidone. Potential associations with clinical parameters and SNPs of the HTR2C, DRD2, LEP, LEPR, MC4R, and CYP2D6 genes were analyzed. Methods. Samples from 120 risperidone users (8–20 years old) were collected and SNPs were analyzed, alongside assessment of chronological and bone ages, prescribed and weight-adjusted doses, use of other psychotropic drugs, waist circumference, BMI z-scores, blood pressure, HOMA-IR index, fasting levels of serum glucose, insulin, cholesterol, triglycerides, transaminases, and leptin. Results. Thirty-two (26.7%) patients were overweight and 5 (4.2%) obese. Hypertension was recorded in 8 patients (6.7%), metabolic syndrome in 6 (5%), and increased waist circumference in 20 (16.7%). The HOMA-IR was high for 22 patients (18.3%), while total cholesterol and triglycerides were high in 20 (16.7%) and 41 (34.2%) patients, respectively. SNP associations were found for LEP, HTR2C, and CYP2D6 with BMI; CYP2D6 with blood pressure, ALT, and HOMA-IR; HTR2C and LEPR with leptin levels; MC4R and DRD2 with HOMA-IR; HTR2C with WC; and LEP with ALT. Conclusions. Although not higher than in the general pediatric population, a high frequency of patients was overweight/obese, with abnormalities in metabolic parameters and some pharmacogenetic associations. PMID:26880915

  4. Pharmacokinetics and tolerability of DA-8031, a novel selective serotonin reuptake inhibitor for premature ejaculation in healthy male subjects

    PubMed Central

    Shin, Dongseong; Lee, SeungHwan; Yi, Sojeong; Yoon, Seo Hyun; Cho, Joo-Youn; Bahng, Mi Young; Jang, In-Jin; Yu, Kyung-Sang

    2017-01-01

    Objective DA-8031 is a selective serotonin reuptake inhibitor under development for the treatment of premature ejaculation. This is the first-in-human study aimed at evaluating the pharmacokinetics and tolerability of DA-8031 and its metabolites (M1, M2, M4, and M5) in the plasma and urine after administration of a single oral dose in healthy male subjects. Methods A dose block-randomized, double-blind, placebo-controlled, single ascending dose study was conducted. Subjects received either placebo or a single dose of DA-8031 at 5, 10, 20, 40, 60, 80, or 120 mg. DA-8031 and its four metabolites were analyzed in the plasma and urine for pharmacokinetic evaluation. The effect of genetic polymorphisms of cytochrome-P450 (CYP) enzymes on the pharmacokinetics of DA-8031 was evaluated. Results After a single dose, plasma DA-8031 reached the maximum concentration at a median of 2–3 h and was eliminated with terminal elimination half-life of 17.9–28.7 h. The mean renal clearance was 3.7–5.6 L/h. Dose-proportional pharmacokinetics was observed over the dose range of 20–80 mg. Among the metabolites, M4 had the greatest plasma concentration, followed by M5 and M1. Subjects with CYP2D6 intermediate metabolizer had significantly greater dose-normalized Cmax and AUC0–t of DA-8031 as well as smaller metabolic ratios than those subjects with CYP2D6 extensive metabolizer. The most common adverse events were nausea, dizziness, and headache, and no serious adverse events were reported. Conclusion In conclusion, the systemic exposure of DA-8031 was increased proportionally to the dose within 20–80 mg. Genetic polymorphisms of CYP2D6 had an effect on the systemic exposure of DA-8031. DA-8031 was well tolerated after single doses of 80 mg or less. PMID:28331291

  5. The role of human hepatic cytochrome P450 isozymes in the metabolism of racemic 3,4-methylenedioxy-methamphetamine and its enantiomers.

    PubMed

    Meyer, Markus R; Peters, Frank T; Maurer, Hans H

    2008-11-01

    The entactogen, 3,4-methylenedioxy-methamphetamine (MDMA), is a chiral drug that is mainly metabolized by N-demethylation and demethylenation. The involvement of cytochrome P450 (P450) isozymes in these metabolic steps has been studied by inhibition assays with human liver microsomes and, in part, with heterologously expressed human P450 isozymes. However, a comprehensive study on the involvement of all relevant human P450s has not been published yet. In addition, the chirality of this drug was not considered in these in vitro studies. The aim of the present work was to study the contribution of human P450 isozymes in the N-demethylation and demethylenation of racemic MDMA and its single enantiomers. MDMA and its enantiomers were incubated using heterologously expressed human P450s, and the metabolites were quantified by gas chromatography-mass spectrometry after derivatization with S-heptafluorobutyrylprolyl chloride. The highest contribution for the N-demethylation as calculated from the enzyme kinetic data, were obtained for CYP2B6 (R,S-MDMA), CYP1A2 (R-MDMA), and CYP2B6 (S-MDMA). In the case of the demethylenation, the isozyme with the highest contribution to net clearance for R,S-MDMA, R-MDMA, and S-MDMA was CYP2D6. For the first time, marked enantioselectivity was observed for N-demethylation and demethylenation by CYP2C19 with a preference for the S-enantiomers. In addition, CYP2D6 showed preference for S-MDMA in the case of demethylenation. None of the other isozymes showed major preferences for certain enantiomers. In conclusion, therefore, the different pharmacokinetic properties of the MDMA enantiomers may be caused by enantioselective metabolism by CYP2C19 and CYP2D6.

  6. In vitro cytochrome P450 inhibition potential of methylenedioxy-derived designer drugs studied with a two-cocktail approach.

    PubMed

    Dinger, Julia; Meyer, Markus R; Maurer, Hans H

    2016-02-01

    In vitro cytochrome P450 (CYP) inhibition assays are common approaches for testing the inhibition potential of drugs for predicting potential interactions. In contrast to marketed medicaments, drugs of abuse, particularly the so-called novel psychoactive substances, were not tested before distribution and consumption. Therefore, the inhibition potential of methylenedioxy-derived designer drugs (MDD) of different drug classes such as aminoindanes, amphetamines, benzofurans, cathinones, piperazines, pyrrolidinophenones, and tryptamines should be elucidated. The FDA-preferred test substrates, split in two cocktails, were incubated with pooled human liver microsomes and analysed after protein precipitation using LC-high-resolution-MS/MS. IC50 values were determined of MDD showing more than 50 % inhibition in the prescreening. Values were calculated by plotting the relative metabolite concentration formed over the logarithm of the inhibitor concentration. All MDD showed inhibition against CYP2D6 activity and most of them in the range of the clinically relevant CYP2D6 inhibitors quinidine and fluoxetine. In addition, the beta-keto compounds showed inhibition of the activity of CYP2B6, 5,6-MD-DALT of CYP1A2 and CYP3A, and MDAI of CYP2A6, all in the range of clinically relevant inhibitors. In summary, all MDD showed inhibition of the activity of CYP2D6, six of CYP1A2, three of CYP2A6, 13 of CYP2B6, two of CYP2C9, six of CYP2C19, one of CYP2E1, and six of CYP3A. These results showed that the CYP inhibition by MDD might be clinically relevant, but further studies are needed for final conclusions.

  7. Pungent ginger components modulates human cytochrome P450 enzymes in vitro

    PubMed Central

    Li, Mian; Chen, Pei-zhan; Yue, Qing-xi; Li, Jing-quan; Chu, Rui-ai; Zhang, Wei; Wang, Hui

    2013-01-01

    Aim: Ginger rhizome is used worldwide as a spicy flavor agent. This study was designed to explore the potential effects of pungent ginger components, 6-, 8-, and 10-gingerol, on human cytochrome P450 (CYP450) enzymes that are responsible for the metabolism of many prescription drugs. Methods: The activities of human CYP2C9, CYP2C19, CYP2D6, and CYP3A4 were analyzed using Vivid P450 assay kits. The mRNA expression of CYP3A4 in human hepatocellular carcinoma cell line HepG2 was measured using quantitative real-time PCR assay. Results: All three gingerols potently inhibited CYP2C9 activity, exerted moderate inhibition on CYP2C19 and CYP3A4, and weak inhibion on CYP2D6. 8-Gingerol was the most potent in inhibition of P450 enzymes with IC50 values of 6.8, 12.5, 8.7, and 42.7 μmol/L for CYP2C9, CYP2C19, CYP3A4, and CYP2D6, respectively. By comparing the effects of gingerols on CYP3A4 with three different fluorescent substrate probes, it was demonstrated that the inhibition of gingerols on CYP3A4 had no substrate-dependence. In HepG2 cells, 8-gingerol and 10-gingerol inhibited, but 6-gingerol induced mRNA expression of CYP3A4. Conclusion: 6-, 8-, and 10-gingerol suppress human cytochrome P450 activity, while 8- and 10-gingerol inhibit CYP3A4 expression. The results may have an implication for the use of ginger or ginger products when combined with therapeutic drugs that are metabolized by cytochrome P450 enzymes. PMID:23770984

  8. Development and use of active clinical decision support for preemptive pharmacogenomics

    PubMed Central

    Bell, Gillian C; Crews, Kristine R; Wilkinson, Mark R; Haidar, Cyrine E; Hicks, J Kevin; Baker, Donald K; Kornegay, Nancy M; Yang, Wenjian; Cross, Shane J; Howard, Scott C; Freimuth, Robert R; Evans, William E; Broeckel, Ulrich; Relling, Mary V; Hoffman, James M

    2014-01-01

    Background Active clinical decision support (CDS) delivered through an electronic health record (EHR) facilitates gene-based drug prescribing and other applications of genomics to patient care. Objective We describe the development, implementation, and evaluation of active CDS for multiple pharmacogenetic test results reported preemptively. Materials and methods Clinical pharmacogenetic test results accompanied by clinical interpretations are placed into the patient's EHR, typically before a relevant drug is prescribed. Problem list entries created for high-risk phenotypes provide an unambiguous trigger for delivery of post-test alerts to clinicians when high-risk drugs are prescribed. In addition, pre-test alerts are issued if a very-high risk medication is prescribed (eg, a thiopurine), prior to the appropriate pharmacogenetic test result being entered into the EHR. Our CDS can be readily modified to incorporate new genes or high-risk drugs as they emerge. Results Through November 2012, 35 customized pharmacogenetic rules have been implemented, including rules for TPMT with azathioprine, thioguanine, and mercaptopurine, and for CYP2D6 with codeine, tramadol, amitriptyline, fluoxetine, and paroxetine. Between May 2011 and November 2012, the pre-test alerts were electronically issued 1106 times (76 for thiopurines and 1030 for drugs metabolized by CYP2D6), and the post-test alerts were issued 1552 times (1521 for TPMT and 31 for CYP2D6). Analysis of alert outcomes revealed that the interruptive CDS appropriately guided prescribing in 95% of patients for whom they were issued. Conclusions Our experience illustrates the feasibility of developing computational systems that provide clinicians with actionable alerts for gene-based drug prescribing at the point of care. PMID:23978487

  9. Characterization of cytochrome P-450 2D1 activity in rat brain: high-affinity kinetics for dextromethorphan.

    PubMed

    Tyndale, R F; Li, Y; Li, N Y; Messina, E; Miksys, S; Sellers, E M

    1999-08-01

    We investigated the enzymatic function, stability, and regional distribution of rat brain cytochrome P-450 (CYP) 2D1 activity. CYP2D1 is the homolog of human CYP2D6, a genetically variable enzyme that activates or inactivates many clinical drugs acting on the central nervous system (e.g., antidepressants, monoamine oxidase inhibitors, serotonin uptake inhibitors, and neuroleptics), drugs of abuse (e.g., amphetamine and codeine), neurotoxins (e.g., 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1,2,3, 4-tetrahydroquinoline), and endogenous neurochemicals (e.g., tryptamine). The CYP2D family has been identified in rodent, canine, and primate brain. Conversion of dextromethorphan to dextrorphan by rat brain membranes was assayed by HPLC and was dependent on NADPH, protein concentration, and incubation time. Significant loss of activity was observed in some homogenizing buffers and after freezing of whole tissues or membrane preparations. Dextromethorphan (0.5-640 microM) metabolism was mediated by high- and low-affinity enzyme systems; K(m1) was 2.7 +/- 2.6 and K(m2) was 757 +/- 156 microM (n = 3 rats, mean +/- S.E.). The enzyme activity was significantly (p <.01) and stereoselectively inhibited by CYP2D1 inhibitors quinine and quinidine (not by CYP2C or CYP3A inhibitors), and by anti-CYP2D6 peptide antiserum (not by anti-CYP2C, -CYP2B, or -CYP3A antibodies). The enzymatic activity demonstrated significant brain regional variation (n = 10 regions, p <.001). These data characterize CYP2D1-mediated dextromethorphan metabolism in rat brain and suggest that localized metabolism of other CYP2D1 substrates (drugs, neurotoxins, and possibly endogenous compounds) within the brain will occur. In humans, CYP2D6 is genetically polymorphic; the variable expression of brain CYP2D6 may result in interindividual differences in central drug and neurotoxin metabolism, possibly contributing to interindividual differences in drug effects and neurotoxicity.

  10. Impact of impurities on IC50 values of P450 inhibitors.

    PubMed

    Huang, Zeqi

    2011-08-01

    During early drug discovery, the synthetic pathways for test compounds are not well defined and impurities in the test compounds are inevitable. Compounds undergo serial screening tests at this stage to assess their biological activities and drug-like properties. Impurities in the test compounds can produce false positive results and therefore complicate the interpretation of data. P450 inhibition is one of the screens used in the early drug discovery process to assess the potential of drug-drug interactions caused by the inhibition of P450 enzymes. The impact of impurities on P450 inhibition has not been investigated. In this study, the impact of impurities on CYP2D6 IC(50) values was evaluated using model compounds. Cimetidine was chosen as the test compound. Quinidine, fluoxetine, fluvoxamine, and ibuprofen were chosen to represent impurities as they inhibit CYP2D6 to varying degrees. The IC(50) values of these model impurities for CYP2D6 were 0.11 µM, 0.98 µM, 13.4 µM, and >100 µM, respectively. Impurities with potent CYP2D6 inhibition, such as quinidine, can significantly decrease the apparent IC(50) value for the mixture. With the addition of only 2% quinidine to cimetidine (mol/mol), the apparent IC(50) value of cimetidine decreased from 98 µM to 4.4 µM. With the addition of 10% quinidine, the apparent IC(50) decreased to 1.04 µM. Such a significant decrease in apparent IC(50) values can produce a false alert and cause the inappropriate elimination of good compounds at an early stage. Impur6ities with low inhibitory potential, such as fluvoxamine and ibuprofen, did not cause a significant change in apparent IC(50) values. An impurity can have a similar effect on the IC(50) values for inhibition of other biological activities. The effect of an impurity on apparent IC(50) values can be predicted by using a simulation curve if the potency of the impurity is characterized.

  11. Biological definition of multiple chemical sensitivity from redox state and cytokine profiling and not from polymorphisms of xenobiotic-metabolizing enzymes

    SciTech Connect

    De Luca, Chiara; Scordo, Maria G.; Cesareo, Eleonora; Pastore, Saveria; Mariani, Serena; Maiani, Gianluca; Stancato, Andrea; Loreti, Beatrice; Valacchi, Giuseppe; Lubrano, Carla; Raskovic, Desanka; De Padova, Luigia; Genovesi, Giuseppe; Korkina, Liudmila G.

    2010-11-01

    Background: Multiple chemical sensitivity (MCS) is a poorly clinically and biologically defined environment-associated syndrome. Although dysfunctions of phase I/phase II metabolizing enzymes and redox imbalance have been hypothesized, corresponding genetic and metabolic parameters in MCS have not been systematically examined. Objectives: We sought for genetic, immunological, and metabolic markers in MCS. Methods: We genotyped patients with diagnosis of MCS, suspected MCS and Italian healthy controls for allelic variants of cytochrome P450 isoforms (CYP2C9, CYP2C19, CYP2D6, and CYP3A5), UDP-glucuronosyl transferase (UGT1A1), and glutathione S-transferases (GSTP1, GSTM1, and GSTT1). Erythrocyte membrane fatty acids, antioxidant (catalase, superoxide dismutase (SOD)) and glutathione metabolizing (GST, glutathione peroxidase (Gpx)) enzymes, whole blood chemiluminescence, total antioxidant capacity, levels of nitrites/nitrates, glutathione, HNE-protein adducts, and a wide spectrum of cytokines in the plasma were determined. Results: Allele and genotype frequencies of CYPs, UGT, GSTM, GSTT, and GSTP were similar in the Italian MCS patients and in the control populations. The activities of erythrocyte catalase and GST were lower, whereas Gpx was higher than normal. Both reduced and oxidised glutathione were decreased, whereas nitrites/nitrates were increased in the MCS groups. The MCS fatty acid profile was shifted to saturated compartment and IFNgamma, IL-8, IL-10, MCP-1, PDGFbb, and VEGF were increased. Conclusions: Altered redox and cytokine patterns suggest inhibition of expression/activity of metabolizing and antioxidant enzymes in MCS. Metabolic parameters indicating accelerated lipid oxidation, increased nitric oxide production and glutathione depletion in combination with increased plasma inflammatory cytokines should be considered in biological definition and diagnosis of MCS.

  12. Complex Hydrocarbon Chemistry in Interstellar and Solar System Ices Revealed: A Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry Analysis of Ethane (C2H6) and D6-Ethane (C2D6) Ices Exposed to Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Abplanalp, Matthew J.; Kaiser, Ralf I.

    2016-08-01

    The irradiation of pure ethane (C2H6/C2D6) ices at 5.5 K, under ultrahigh vacuum conditions was conducted to investigate the formation of complex hydrocarbons via interaction with energetic electrons simulating the secondary electrons produced in the track of galactic cosmic rays. The chemical modifications of the ices were monitored in situ using Fourier transform infrared spectroscopy (FTIR) and during temperature-programmed desorption via mass spectrometry exploiting a quadrupole mass spectrometer with electron impact ionization (EI-QMS) as well as a reflectron time-of-flight mass spectrometer coupled to a photoionization source (PI-ReTOF-MS). FTIR confirmed previous ethane studies by detecting six molecules: methane (CH4), acetylene (C2H2), ethylene (C2H4), the ethyl radical (C2H5), 1-butene (C4H8), and n-butane (C4H10). However, the TPD phase, along with EI-QMS, and most importantly, PI-ReTOF-MS, revealed the formation of at least 23 hydrocarbons, many for the first time in ethane ice, which can be arranged in four groups with an increasing carbon-to-hydrogen ratio: C n H2n+2 (n = 3, 4, 6, 8, 10), C n H2n (n = 3-10), {{{C}}}n{{{H}}}2n-2 (n = 3-10), and {{{C}}}n{{{H}}}2n-4 (n = 4-6). The processing of simple ethane ices is relevant to the hydrocarbon chemistry in the interstellar medium, as ethane has been shown to be a major product of methane, as well as in the outer solar system. These data reveal that the processing of ethane ices can synthesize several key hydrocarbons such as C3H4 and C4H6 isomers, which ha­ve been found to synthesize polycyclic aromatic hydrocarbons like indene (C9H8) and naphtha­lene (C10H8) in the ISM and in hydrocarbon-rich atmospheres of planets and their moons such as Titan.

  13. In vitro metabolism studies of new adenosine A 2A receptor antagonists.

    PubMed

    Marucci, Gabriella; Finaurini, Sara; Buccioni, Michela; Lammi, Carmen; Kandhavelu, Meenakshisundaram; Volpini, Rosaria; Ricciutelli, Massimo; Angeli, Piero; Commandeur, Jan N M; Cristalli, Gloria

    2008-12-01

    Evidence, obtained in rodent and primate models of Parkinson's disease (PD) and in preliminary clinical trials, indicates that adenosine A(2A) receptor antagonists might represent a promising non-dopaminergic therapeutic tool for the treatment of PD. Recently, we have reported the biological evaluation of 8-substituted 9-ethyladenines (ANR) as new A(2A) receptor antagonists, three of which (ANR 82, ANR 94, and ANR 152) showed high efficacy in in vivo models for Parkinson's. Understanding the metabolic pathways of new drug candidates is an important aspect of drug discovery. The ANR compounds have been investigated in order to clarify their activity on rat liver microsomes, and more specifically on recombinant human cytochrome P450 2D6 (CYP2D6). The metabolites of all three compounds were detected by liquid chromatography/tandem mass spectrometry (LC-MS/MS). The results indicate that this class of 9-ethyladenines is metabolized only to a fraction of 1.5-5%. These compounds also act as potent mechanism-based inhibitors of CYP450 and in particular of human isoform CYP2D6. Kinetic-analysis of enzyme inactivation was used to describe the effect of these time-dependent inhibitors and to derive the inhibition parameters K(inact) and K(i) defined with respect to the O-demethylation of dextromethorphan.

  14. Boron-Based 4-Hydroxytamoxifen Bioisosteres for Treatment of de Novo Tamoxifen Resistant Breast Cancer

    PubMed Central

    2012-01-01

    Tamoxifen remains the first line therapy for estrogen receptor positive (ER+) breast cancer. However, polymorphisms of the gene encoding P450 2D6 could result in no protein expression or no CYP2D6 enzymatic activity and may significantly reduce the benefit of the hormone therapy. To address this issue, we designed and synthesized three 4-hydroxytamoxifen bioisosteres utilizing a boron-aryl carbon bond that can be oxidized under physiological conditions to yield 4-hydroxytamoxifen. We show that the bioisosteres inhibit the growth of two ER+ breast cancer cell lines, MCF-7 and T47D, with potencies comparable to or greater than that of 4-hydroxytamoxifen. We further demonstrate that after incubation with breast cancer cells, the majority of the bioisosteres has been converted to 4-hydroxytamoxifen. Our study suggests that boron-based 4-hydroxytamoxifen bioisosteres may be an effective therapeutic remedy for intrinsic tamoxifen resistance in breast cancer patients deficient in CYP2D6 metabolism. PMID:23864928

  15. Axiom turkey genotyping array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Axiom®Turkey Genotyping Array interrogates 643,845 probesets on the array, covering 643,845 SNPs. The array development was led by Dr. Julie Long of the USDA-ARS Beltsville Agricultural Research Center under a public-private partnership with Hendrix Genetics, Aviagen, and Affymetrix. The Turk...

  16. Cytochrome P450 gene polymorphism and cancer.

    PubMed

    Agundez, Jose A G

    2004-06-01

    Human cytochrome P450 (CYP) enzymes play a key role in the metabolism of drugs and environmental chemicals. Several CYP enzymes metabolically activate procarcinogens to genotoxic intermediates. Phenotyping analyses revealed an association between CYP enzyme activity and the risk to develop several forms of cancer. Research carried out in the last decade demonstrated that several CYP enzymes are polymorphic due to single nucleotide polymorphisms, gene duplications and deletions. As genotyping procedures became available for most human CYP, an impressive number of association studies on CYP polymorphisms and cancer risk were conducted. Here we review the findings obtained in these studies regarding CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP3A7, CYP8A1 and CYP21 gene polymorphisms. Consistent evidences for association between CYP polymorphisms and lung, head and neck, and liver cancer were reported. Controversial findings suggest that colorectal and prostate cancers may be associated to CYP polymorphisms, whereas no evidences for a relevant association with breast or bladder cancers were reported. We summarize the available information related to the association of CYP polymorphisms with leukaemia, lymphomas and diverse types of cancer that were investigated only for some CYP genes, including brain, esophagus, stomach, pancreas, pituitary, cervical epithelium, melanoma, ovarian, kidney, anal and vulvar cancers. This review discusses on causes of heterogeneity in the proposed associations, controversial findings on cancer risk, and identifies topics that require further investigation. In addition, some recommendations on study design, in order to obtain more conclusive findings in further studies, are provided.

  17. Interaction of the CYP1A1 gene polymorphism and smoking in non-small cell lung cancer susceptibility.

    PubMed

    Xie, Y Q; Chen, J M; Liu, Y

    2016-01-04

    Many studies have shown that genetic factors, environmental factors, and bad living habits, especially smoking, are risk factors for lung cancer. However, not all smokers develop lung cancer, which may be related to different genetic backgrounds. Currently, most research has investigated the GSTM1, XRCC1, XRCC3, CYP2D6, and C188T genes. Little research has been done on the cytochrome P450 (CYP) 1A1 gene, and results have varied. In addition, no results have been reported on the interactive effects of smoking and the CYP1A1 gene on lung cancer development. We used polymerase chain reaction restriction fragment length polymorphism to detect the CYP1A1 genotype, and investigate the effects of the CYP1A1 gene deletion and smoking alone, and in combination, on non-small cell lung cancer susceptibility. We enrolled 150 non-small cell lung cancer patients and 150 healthy control subjects. Subjects' smoking habits and CYP1A1 gene polymorphism were analyzed to investigate their role in the occurrence of lung cancer. The CYP1A1 gene deletion was found in 73.3% of non-small cell lung cancer patients and 20.0% of healthy subjects. The OR value was 2.28 (P < 0.05). Among smoking subjects, 77.8% exhibited non-small cell lung cancer, significantly higher than the 27.3% in non-smokers (P < 0.05). The OR value for the interaction of smoking and CYP1A1 gene deletion was 5.60, larger than the product of their individual OR values. The CYP1A1 gene deletion is a lung cancer risk factor, and interacts with smoking in non-small cell lung cancer development.

  18. Pharmacokinetics of metoprolol during pregnancy and lactation.

    PubMed

    Ryu, Rachel J; Eyal, Sara; Easterling, Thomas R; Caritis, Steve N; Venkataraman, Raman; Hankins, Gary; Rytting, Erik; Thummel, Kenneth; Kelly, Edward J; Risler, Linda; Phillips, Brian; Honaker, Matthew T; Shen, Danny D; Hebert, Mary F

    2016-05-01

    The objective of this study was to evaluate the steady-state pharmacokinetics of metoprolol during pregnancy and lactation. Serial plasma, urine, and breast milk concentrations of metoprolol and its metabolite, α-hydroxymetoprolol, were measured over 1 dosing interval in women treated with metoprolol (25-750 mg/day) during early pregnancy (n = 4), mid-pregnancy (n = 14), and late pregnancy (n = 15), as well as postpartum (n = 9) with (n = 4) and without (n = 5) lactation. Subjects were genotyped for CYP2D6 loss-of-function allelic variants. Using paired analysis, mean metoprolol apparent oral clearance was significantly higher in mid-pregnancy (361 ±