Science.gov

Sample records for 2d6-mediated dextromethorphan o-demethylation

  1. Anaerobic O-demethylation of phenylmethylethers

    SciTech Connect

    Frazer, A.C.; Young, L.Y.

    1990-01-01

    Anaerobic O-demethylation (AOD) of phenylmethylethers is a process of both basic and applied significance. The aryl-O-methyl ethers are abundant in natural products, particularly as components of lignin. They are present as methoxylated lignin monomers in anaerobic environments and can be completely degraded there by mixed microbial populations. AOD is an essential early step in this process, and it is also a key reaction in the utilization of the O-methyl substituent as a C-one substrate by acetogens. An understanding of the AOD reaction mechanism might suggest new ways in which chemicals could be derived from lignocellulosic materials. The biochemical mechanism for the anaerobic cleavage of the aryl-O-methyl ether bond is an intriguing, but relatively unexplored process. In contrast to aerobic O-demethylating enzymes, AOD appears to involve methyl group transfer. Thus, novel biochemical information on an important biotransformation reaction will be gained from the research proposed. Recently, we have shown that AOD activity is inducible and have developed an assay for detecting AOD activity in cell-free extracts of Acetobacterium woodii. AOD activity is stimulated in vitro by the addition of ATP (1mM) and pyruvate (30 mM), the K{sub M} for vanillate being 0.4 mM. In collaboration with protein purification experts, we proposed to purify the AOD enzyme and characterize the protein(s) and the enzymatic reaction involved. 8 figs., 5 tabs.

  2. Biochemistry and Occurrence of O-Demethylation in Plant Metabolism

    PubMed Central

    Hagel, Jillian M.; Facchini, Peter J.

    2010-01-01

    Demethylases play a pivitol role in numerous biological processes from covalent histone modification and DNA repair to specialized metabolism in plants and microorganisms. Enzymes that catalyze O- and N-demethylation include 2-oxoglutarate (2OG)/Fe(II)-dependent dioxygenases, cytochromes P450, Rieske-domain proteins and flavin adenine dinucleotide (FAD)-dependent oxidases. Proposed mechanisms for demethylation by 2OG/Fe(II)-dependent enzymes involve hydroxylation at the O- or N-linked methyl group followed by formaldehyde elimination. Members of this enzyme family catalyze a wide variety of reactions in diverse plant metabolic pathways. Recently, we showed that 2OG/Fe(II)-dependent dioxygenases catalyze the unique O-demethylation steps of morphine biosynthesis in opium poppy, which provides a rational basis for the widespread occurrence of demethylases in benzylisoquinoline alkaloid metabolism. PMID:21423357

  3. Dextromethorphan and Quinidine

    MedlinePlus

    ... in a class of medications called antiarrhythmics. When combined with dextromethorphan, quinidine works by increasing the amount ... itraconazole (Sporanox); ketoconazole (Nizoral); certain medications for human immunodeficiency virus (HIV) such as atazanavir (Reyataz), amprenavir (Agenerase), ...

  4. Dextromethorphan Abuse in Adolescence

    PubMed Central

    Bryner, Jodi K.; Wang, Uerica K.; Hui, Jenny W.; Bedodo, Merilin; MacDougall, Conan; Anderson, Ilene B.

    2008-01-01

    Objectives To analyze the trend of dextromethorphan abuse in California and to compare these findings with national trends. Design A 6-year retrospective review. Setting California Poison Control System (CPCS), American Association of Poison Control Centers (AAPCC), and Drug Abuse Warning Network (DAWN) databases from January 1, 1999, to December 31, 2004. Participants All dextromethorphan abuse cases reported to the CPCS, AAPCC, and DAWN. The main exposures of dextromethorphan abuse cases included date of exposure, age, acute vs long-term use, coingestants, product formulation, and clinical outcome. Main Outcome Measure The annual proportion of dextromethorphan abuse cases among all exposures reported to the CPCS, AAPCC, and DAWN databases. Results A total of 1382 CPCS cases were included in the study. A 10-fold increase in CPCS dextromethorphan abuse cases from 1999 (0.23 cases per 1000 calls) to 2004 (2.15 cases per 1000 calls) (odds ratio, 1.48; 95% confidence interval, 1.43–1.54) was identified. Of all CPCS dextromethorphan abuse cases, 74.5% were aged 9 to 17 years; the frequency of cases among this age group increased more than 15-fold during the study (from 0.11 to 1.68 cases per 1000 calls). Similar trends were seen in the AAPCC and DAWN databases. The highest frequency of dextromethorphan abuse occurred among adolescents aged 15 and 16 years. The most commonly abused product was Coricidin HBP Cough & Cold Tablets. Conclusions Our study revealed an increasing trend of dextromethorphan abuse cases reported to the CPCS that is paralleled nationally as reported to the AAPCC and DAWN. This increase was most evident in the adolescent population. PMID:17146018

  5. Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers

    SciTech Connect

    Berman, M.H.; Frazer, A.C. )

    1992-03-01

    DL-Tetrahydrofolate (THF) and ATP were necessary for the anaerobic O-demethylation of phenylmethylethers in cell extracts of the type strain (ATCC 29683) of the homoacetogen Acetobacterium woodii. The reactants for this enzymatic activity have not been previously demonstrated in any system, nor has the mediating enzyme been studied. An assay using reaction mixtures containing 1 mM THF, 2 mM ATP, and 2 mM hydroferulate (i.e., 4-hydroxy,3-methoxyphenylpropionate) was developed and was performed under stringent anaerobic conditions. Pyridine nucleotides and several other possible cofactors were tested but had no effect on the activity. After centrifugation of disrupted cells at 27,000 x g, the activity was found primarily in the supernatant, which had a specific activity of 14.2 {plus minus} 0.5 nmol/min/mg of protein. At saturating levels of each of the other two substrates, apparent K{sub m} values for the variable substrate were 0.65 mM hydroferulate, 0.27 mM ATP, and 0.17 mM THF. Activity was significantly decreased when extract was preincubated at 60C and was completely lost after preincubation in air for 30 min. Thus, the soluble anaerobic O-demethylating enzyme system of A. woodii is oxygen sensitive. The THF- and ATP-dependent activity measurable in the soluble fraction of cell extracts constituted about 34% of the activity seen with intact cells.

  6. Inhalant Abuse and Dextromethorphan.

    PubMed

    Storck, Michael; Black, Laura; Liddell, Morgan

    2016-07-01

    Inhalant abuse is the intentional inhalation of a volatile substance for the purpose of achieving an altered mental state. As an important, yet underrecognized form of substance abuse, inhalant abuse crosses all demographic, ethnic, and socioeconomic boundaries, causing significant morbidity and mortality in school-aged and older children. This review presents current perspectives on epidemiology, detection, and clinical challenges of inhalant abuse and offers advice regarding the medical and mental health providers' roles in the prevention and management of this substance abuse problem. Also discussed is the misuse of a specific "over-the-counter" dissociative, dextromethorphan.

  7. Pharmacokinetic Effects of Isavuconazole Coadministration With the Cytochrome P450 Enzyme Substrates Bupropion, Repaglinide, Caffeine, Dextromethorphan, and Methadone in Healthy Subjects.

    PubMed

    Yamazaki, Takao; Desai, Amit; Goldwater, Ronald; Han, David; Howieson, Corrie; Akhtar, Shahzad; Kowalski, Donna; Lademacher, Christopher; Pearlman, Helene; Rammelsberg, Diane; Townsend, Robert

    2017-01-01

    This report describes phase 1 clinical trials performed to assess interactions of oral isavuconazole at the clinically targeted dose (200 mg, administered as isavuconazonium sulfate 372 mg, 3 times a day for 2 days; 200 mg once daily [QD] thereafter) with single oral doses of the cytochrome P450 (CYP) substrates: bupropion hydrochloride (CYP2B6; 100 mg; n = 24), repaglinide (CYP2C8/CYP3A4; 0.5 mg; n = 24), caffeine (CYP1A2; 200 mg; n = 24), dextromethorphan hydrobromide (CYP2D6/CYP3A4; 30 mg; n = 24), and methadone (CYP2B6/CYP2C19/CYP3A4; 10 mg; n = 23). Compared with each drug alone, coadministration with isavuconazole changed the area under the concentration-time curves (AUC∞ ) and maximum concentrations (Cmax ) as follows: bupropion, AUC∞ reduced 42%, Cmax reduced 31%; repaglinide, AUC∞ reduced 8%, Cmax reduced 14%; caffeine, AUC∞ increased 4%, Cmax reduced 1%; dextromethorphan, AUC∞ increased 18%, Cmax increased 17%; R-methadone, AUC∞ reduced 10%, Cmax increased 3%; S-methadone, AUC∞ reduced 35%, Cmax increased 1%. In all studies, there were no deaths, 1 serious adverse event (dextromethorphan study; perioral numbness, numbness of right arm and leg), and adverse events leading to study discontinuation were rare. Thus, isavuconazole is a mild inducer of CYP2B6 but does not appear to affect CYP1A2-, CYP2C8-, or CYP2D6-mediated metabolism.

  8. An effective O-demethylation of some C19-diterpenoid alkaloids with HBr-glacial acetic acid.

    PubMed

    Zou, Chun-Lan; Ji, Hong; Xie, Guang-Bo; Chen, Dong-Lin; Wang, Feng-Peng

    2008-01-01

    The aconitine-type alkaloids talatisamine (1), 8,14-diacetyltalatisamine (11), and compound 3, the lycoctonine-type alkaloid deltaline (5), and the 7,17-seco C(19)-diterpenoid alkaloids 7 and 9 were treated with HBr-glacial acetic acid to give useful O-demethylated derivatives 2, 2, 4, 6, 8, and 10 respectively in good to high yields (49-90%).

  9. O-Demethylation and Successive Oxidative Dechlorination of Methoxychlor by Bradyrhizobium sp. Strain 17-4, Isolated from River Sediment

    PubMed Central

    Masuda, Minoru; Sato, Kiyoshi

    2012-01-01

    O-Demethylation of insecticide methoxychlor is well known as a phase I metabolic reaction in various eukaryotic organisms. Regarding prokaryotic organisms, however, no individual species involved in such reaction have been specified and characterized so far. Here we successfully isolated a bacterium that mediates oxidative transformation of methoxychlor, including O-demethylation and dechlorination, from river sediment. The isolate was found to be closely related to Bradyrhizobium elkanii at the 16S rRNA gene sequence level (100% identical). However, based on some differences in the physiological properties of this bacterium, we determined that it was actually a different species, Bradyrhizobium sp. strain 17-4. The isolate mediated O-demethylation of methoxychlor to yield a monophenolic derivative [Mono-OH; 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane] as the primary degradation product. The chiral high-performance liquid chromatography (HPLC) analysis revealed that the isolate possesses high enantioselectivity favoring the formation of (S)-Mono-OH (nearly 100%). Accompanied by the sequential O-demethylation to form the bis-phenolic derivative Bis-OH [1,1,1-trichloro-2,2-bis(4-hydroxyphenyl)ethane], oxidative dechlorination of the side chain proceeded, and monophenolic carboxylic acid accumulated, followed by the formation of multiple unidentified polar degradation products. The breakdown proceeded more rapidly when reductively dechlorinated (dichloro-form) methoxychlor was applied as the initial substrate. The resultant carboxylic acids and polar degradation products are likely further biodegraded by ubiquitous bacteria. The isolate possibly plays an important role for complete degradation (mineralization) of methoxychlor by providing the readily biodegradable substrates. PMID:22635993

  10. Cytochrome P4502D6 catalyzes the O-demethylation of the psychoactive alkaloid ibogaine to 12-hydroxyibogamine.

    PubMed

    Obach, R S; Pablo, J; Mash, D C

    1998-08-01

    Ibogaine is a psychoactive alkaloid that possesses potential as an agent to treat opiate and cocaine addiction. The primary metabolite arises via O-demethylation at the 12-position to yield 12-hydroxyibogamine. In this report, evidence is presented that the O-demethylation of ibogaine observed in human hepatic microsomes is catalyzed primarily by the polymorphically expressed cytochrome P-4502D6 (CYP2D6). An enzyme kinetic examination of ibogaine O-demethylase activity in pooled human liver microsomes suggested that two (or more) enzymes are involved in this reaction: one with a low KMapp (1.1 microM) and the other with a high KMapp (>200 microM). The low KMapp activity comprised >95% of total intrinsic clearance. Human liver microsomes from three individual donors demonstrated similar enzyme kinetic parameters (mean KMapp = 0.55 +/- 0.09 microM and 310 +/- 10 microM for low and high KM activities, respectively). However, a fourth human microsome sample that appeared to be a phenotypic CYP2D6 poor metabolizer possessed only the high KMapp activity. In hepatic microsomes from a panel of human donors, the low KMapp ibogaine O-demethylase activity correlated with CYP2D6-catalyzed bufuralol 1'-hydroxylase activity but not with other P450 isoform-specific activities. Quinidine, a CYP2D6-specific inhibitor, inhibited ibogaine O-demethylase (IC50 = 0.2 microM), whereas other P450 isoform-specific inhibitors did not inhibit this activity. Also, of a battery of recombinant heterologously expressed human P450 isoforms, only rCYP2D6 possessed significant ibogaine O-demethylase activity. Thus, it is concluded that ibogaine O-demethylase is catalyzed by CYP2D6 and that this isoform is the predominant enzyme of ibogaine O-demethylation in humans. The potential pharmacological implications of these findings are discussed.

  11. H(2)-CO(2)-Dependent Anaerobic O-Demethylation Activity in Subsurface Sediments and by an Isolated Bacterium.

    PubMed

    Liu, S; Suflita, J M

    1993-05-01

    The ability of microorganisms in sediments from the Atlantic Coastal Plain to biodegrade methoxylated aromatic compounds was examined. O-demethylation activity was detected in deep (121- and 406-m) sediments, as well as in the surface soil. A syringate-demethylating consortium, containing at least three types of bacteria, was enriched from a deep-sediment sample in a medium containing syringate as the sole organic carbon source and with a N(2)-CO(2) atmosphere. An isolate which demethylated syringate was obtained from the enrichment on an agar medium incubated under a H(2)-CO(2) but not a N(2)-CO(2) or N(2) atmosphere. O demethylation of syringate of this isolate was dependent on the presence of both H(2) and CO(2) in the gas phase. The metabolism of syringate occurred in a sequential manner: methylgallate accumulated transiently before it was converted to gallate. Mass balance analysis suggests that the stoichiometry of the reaction in this isolate proceeds in accordance with the following generalized equation: C(7)H(3)O(3)(OCH(3))(n) + nHCO(3) + nH(2) --> C(7)H(3)O(3)(OH)(n) + nCH(3)COO + nH(2)O.

  12. The continuous kinetic determination of p-nitroanisole O-demethylation in hemoglobin-free perfused rat liver.

    PubMed

    Thurman, R G; Marazzo, D P; Jones, L S; Kauffman, F C

    1977-05-01

    P-Nitroanisole O-demethylation by perfused rat liver based on the spectral properties of the product, p-nitrophenolate, was determined continuously. Rates of p-nitrophenol production in this system were sensitive to inhibition by CO. p-Nitrophenolate production by livers of normal animals was linear for up to 30 minutes; however, rates were only linear for 1 to 2 minutes followed by a steady decline in induced (6-fold) livers from phenobarbital-treated rats. Only a small portion (24%) of this steady decline could be accounted for by the formation of conjugation products. Additionally, infusion of p-nitrophenol (14 micronM) was not associated with a decline in rate. The decline in rate in induced livers was reversed by glucose, suggesting that an intimate relationship may exist between drug and carbohydrate metabolism in the intact liver. Alteration in rates of p-nitroanisole metabolism with various inducing agents of the mixed-function oxidation system (phenobarbital; ethanol) produced parallel changes in rates of hepatic lactate production, most likely reflecting the aciton of p-nitrophenol to uncouple oxidative phosphorylation. The data support the hypothesis that the decline in rate in p-nitroanisole O-demethylation in livers from phenobarbital-treated rats is due to reduced availability of NADPH for mixed-function oxidation.

  13. Dextromethorphan and quinidine combination for heroin detoxification.

    PubMed

    Akerele, Evaristo; Bisaga, Adam; Sullivan, Maria A; Garawi, Fatima; Comer, Sandra D; Thomas, Anil A; Nunes, Edward V; Kleber, Herbert D

    2008-01-01

    Dextromethorphan (DM) is a low-affinity, non-competitive NMDA receptor antagonist that has shown promise in preclinical and preliminary clinical studies for the reduction of opioid withdrawal symptoms, but when used at higher doses, it is associated with deleterious side effects attributed to its metabolite, dextrorphan. A clinical trial was therefore conducted to test the withdrawal-suppressant effect of a combination of dextromethorphan with quinidine (DM/Q). Quinidine inhibits the metabolism of dextromethorphan, reducing dextrorphan levels. Opioid-dependent patients were admitted to an inpatient unit, stabilized for three days on morphine (25 mg, sc, every six hours), and randomly assigned on day 2 to DM/Q (30 mg/30 mg, twice a day) (n = 22) or matching placebo (n = 9) prior to the discontinuation of morphine on day 4. Withdrawal symptoms, measured with the Modified Himmelsbach Opioid Withdrawal Scale (MHOWS), increased significantly on days 4 and 5 (Z = 3.70, p = .0002), and by day 6, 90% of the sample (28/31) had dropped out of the study. There were no differences between treatment groups on either outcome measure. The combination of dextromethorphan and quinidine appears ineffective as a primary treatment for opioid withdrawal. Future studies should examine dextromethorphan as an adjunct to other anti-withdrawal medications and focus more on the relationship between dextrorphan levels and withdrawal suppression.

  14. Dextromethorphan

    MedlinePlus

    (dex troe meth or' fan)FDA Intends to Remove Some Unapproved Cough, Cold, and Allergy Drugs from the MarketThis safety alert does not apply to ... it at room temperature and away from excess heat and moisture (not in the ... Talk to your pharmacist about the proper disposal of your medication.

  15. Intramolecular Oxidative O-Demethylation of an Oxoferryl Porphyrin Complexed with a Per-O-methylated β-Cyclodextrin Dimer.

    PubMed

    Kitagishi, Hiroaki; Kurosawa, Shun; Kano, Koji

    2016-11-22

    The intramolecular oxidation of ROCH3 to ROCH2 OH, where the latter compound spontaneously decomposed to ROH and HCHO, was observed during the reaction of the supramolecular complex (met-hemoCD3) with cumene hydroperoxide in aqueous solution. Met-hemoCD3 is composed of meso-tetrakis(4-sulfonatophenyl)porphinatoiron(III) (Fe(III) TPPS) and a per-O-methylated β-cyclodextrin dimer having an -OCH2 PyCH2 O- linker (Py=pyridine-3,5-diyl). The O=Fe(IV) TPPS complex was formed by the reaction of met-hemoCD3 with cumene hydroperoxide, and isolated by gel-filtration chromatography. Although the isolated O=Fe(IV) TPPS complex in the cyclodextrin cage was stable in aqueous solution at 25 °C, it was gradually converted to Fe(II) TPPS (t1/2 =7.6 h). This conversion was accompanied by oxidative O-demethylation of an OCH3 group in the cyclodextrin dimer. The results indicated that hydrogen abstraction by O=Fe(IV) TPPS from ROCH3 yields HO-Fe(III) TPPS and ROCH2(.) . This was followed by radical coupling to afford Fe(II) TPPS and ROCH2 OH. The hemiacetal (ROCH2 OH) immediately decomposed to ROH and HCHO. This study revealed the ability of oxoferryl porphyrin to induce two-electron oxidation.

  16. Dioxygenases catalyze O-demethylation and O,O-demethylenation with widespread roles in benzylisoquinoline alkaloid metabolism in opium poppy.

    PubMed

    Farrow, Scott C; Facchini, Peter J

    2013-10-04

    In opium poppy, the antepenultimate and final steps in morphine biosynthesis are catalyzed by the 2-oxoglutarate/Fe(II)-dependent dioxygenases, thebaine 6-O-demethylase (T6ODM) and codeine O-demethylase (CODM). Further investigation into the biochemical functions of CODM and T6ODM revealed extensive and unexpected roles for such enzymes in the metabolism of protopine, benzo[c]phenanthridine, and rhoeadine alkaloids. When assayed with a wide range of benzylisoquinoline alkaloids, CODM, T6ODM, and the functionally unassigned paralog DIOX2, renamed protopine O-dealkylase, showed novel and efficient dealkylation activities, including regio- and substrate-specific O-demethylation and O,O-demethylenation. Enzymes catalyzing O,O-demethylenation, which cleave a methylenedioxy bridge leaving two hydroxyl groups, have previously not been reported in plants. Similar cleavage of methylenedioxy bridges on substituted amphetamines is catalyzed by heme-dependent cytochromes P450 in mammals. Preferred substrates for O,O-demethylenation by CODM and protopine O-dealkylase were protopine alkaloids that serve as intermediates in the biosynthesis of benzo[c]phenanthridine and rhoeadine derivatives. Virus-induced gene silencing used to suppress the abundance of CODM and/or T6ODM transcripts indicated a direct physiological role for these enzymes in the metabolism of protopine alkaloids, and they revealed their indirect involvement in the formation of the antimicrobial benzo[c]phenanthridine sanguinarine and certain rhoeadine alkaloids in opium poppy.

  17. Trial of Naltrexone and Dextromethorphan for Gulf War Veterans Illnesses

    DTIC Science & Technology

    2011-07-01

    W81XWH-09-2-0065 TITLE: Trial of Naltrexone and Dextromethorphan for Gulf War Veterans Illnesses PRINCIPAL INVESTIGATOR: William J. Meggs, MD...2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Trial of Naltrexone and Dextromethorphan for Gulf War Veterans’ Illness 5b. GRANT NUMBER W81XWH-09...that many with Gulf War Illness could enter either the naltrexone or dextromethorphan arm but not both. We are applying to allow subjects to enter

  18. Dextromethorphan psychosis, dependence and physical withdrawal.

    PubMed

    Miller, Shannon C

    2005-12-01

    As part of a synthesis of evidence regarding the abuse and addiction liability of dextromethorphan (DM), an over-the-counter cough medicine available in over 140 preparations, an uncommonly published case of dextromethorphan dependence (addiction) is described, with specific, rarely published complications. The individual was interviewed and several medical databases were also reviewed (Medline, 1966-present; PubMed) for all content relating to the Keywords: dextromethorphan, abuse, dependence, cough medicine, addiction, withdrawal, psychosis. The patient evidenced history suggesting substance dependence, substance-induced psychosis and substance withdrawal in relation to DM. A literature review revealed that DM has specific serotonergic and sigma-1 opioidergic properties. Dextrorphan (DOR), the active metabolite of DM, has similar properties; however, DOR is a weaker sigma opioid receptor agonist, and a stronger NMDA receptor antagonist. DM and DOR display specific biological features of addiction, and are capable of inducing specific psychiatric sequelae. A specific, reproducible toxidrome with significant psychiatric effects occurred, when DM was abused at greater than indicated doses, with more profound and potentially life-threatening effects at even higher doses. DM withdrawal appears evident. DM's active metabolite, DOR, has pharmacodynamic properties and intoxication effects similar to dissociatives, and may be more responsible for the dissociative effect that this DM abuser sought. However, it is this same metabolite that may be fraught with the potentially life-threatening psychoses and dissociative-induced accidents, as well as addiction. While DM has been hypothesized as the most commonly abused dissociative, health-care providers seem largely unaware of its toxidrome and addiction liability.

  19. Combined dextromethorphan and chlorpheniramine intoxication in impaired drivers.

    PubMed

    Logan, Barry K

    2009-09-01

    Dextromethorphan is a nonprescription antitussive which has been gaining in popularity as an abused drug, because of the hallucinogenic, dissociative, and intoxicating effects it produces at high doses. This report describes a series of eight drivers arrested for driving under the influence of the combined effects of dextromethorphan and chlorpheniramine, and a further four drivers under the influence of dextromethorphan alone. In the combined dextromethorphan/chlorpheniramine cases, blood dextromethorphan concentrations ranged from 150 to 1220 ng/mL (n = 8; mean 676 ng/mL, median 670 ng/mL), and chlorpheniramine concentrations ranged from 70 to 270 ng/mL (n = 8; mean 200 ng/mL, median 180 ng/mL). The four cases without chlorpheniramine present had blood dextromethorphan concentrations between 190 and 1000 ng/mL (mean 570 ng/mL, median 545 ng/mL). Some drivers had therapeutic concentrations of other drugs present. Drivers generally displayed symptoms of central nervous system (CNS) depressant intoxication, and there was gross evidence of impairment in their driving, including weaving, leaving the lane of travel, failing to obey traffic signals, and involvement in collisions. Drug Recognition Expert opinions confirmed that the subjects were under the influence of a drug in the CNS-depressant category.

  20. Trial of Naltrexone and Dextromethorphan for Gulf War Veterans’ Illness

    DTIC Science & Technology

    2010-07-01

    09-2-0065 TITLE: Trial of Naltrexone and Dextromethorphan for Gulf War Veterans’ Illness PRINCIPAL INVESTIGATOR: William Joel Meggs, MD, PhD...From - To) 1 JUL 2009 - 30 JUN 2010 4. TITLE AND SUBTITLE Trial of Naltrexone and Dextromethorphan for Gulf War Veteravns’ Illness 5a...dextromethorphan & naltrexone for gulf war illness. 15. SUBJECT TERMS Dextromethorphan, naltexone, gulf war illness 16. SECURITY CLASSIFICATION OF

  1. Marmoset cytochrome P450 2D8 in livers and small intestines metabolizes typical human P450 2D6 substrates, metoprolol, bufuralol and dextromethorphan.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Hagihira, Yuya; Murayama, Norie; Shimizu, Makiko; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2015-01-01

    1. Although the New World non-human primate, the common marmoset (Callithrix jacchus), is a potentially useful animal model, comprehensive understanding of drug metabolizing enzymes is insufficient. 2. A cDNA encoding a novel cytochrome P450 (P450) 2D8 was identified in marmosets. The amino acid sequence deduced from P450 2D8 cDNA showed a high sequence identity (83-86%) with other primate P450 2Ds. Phylogenetic analysis showed that marmoset P450 2D8 was closely clustered with human P450 2D6, unlike P450 2Ds of miniature pig, dog, rabbit, guinea pig, mouse or rat. 3. Marmoset P450 2D8 mRNA was predominantly expressed in the liver and small intestine among the tissues types analyzed, whereas marmoset P450 2D6 mRNA was expressed predominantly in the liver where P450 2D protein was detected by immunoblotting. 4. By metabolic assays using marmoset P450 2D8 protein heterologously expressed in Escherichia coli, although P450 2D8 exhibits lower catalytic efficiency compared to marmoset and human P450 2D6 enzymes, P450 2D8 mediated O-demethylations of metoprolol and dextromethorphan and bufuralol 1'-hydroxylation. 5. These results suggest that marmoset P450 2D8 (also expressed in the extrahepatic tissues) has potential roles in drug metabolism in a similar manner to those of human and marmoset P450 2D6.

  2. Trial of Naltrexone and Dextromethorphan for Gulf War Veterans’ Illness

    DTIC Science & Technology

    2012-07-01

    AD_________________ Award Number: W81XWH-09-2-0065 TITLE: Trial of Naltrexone and Dextromethorphan...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Trial of Naltrexone and Dextromethorphan for Gulf War Veterans’ Illness 5b. GRANT NUMBER W81XWH-09-2-0065...ABSTRACT Approval to separate the study into a separate dextromethorphan arm and naltrexone arm from the Department of Defense Institutional Review

  3. Trial of Naltrexone and Dextromethorphan for Gulf War Veterans’ Illness

    DTIC Science & Technology

    2013-07-01

    AD_________________ Award Number: W81XWH-09-2-0065 TITLE: Trial of Naltrexone and Dextromethorphan...AND SUBTITLE 5a. CONTRACT NUMBER Trial of Naltrexone and Dextromethorphan for Gulf War Veterans’ Illness 5b. GRANT NUMBER W81XWH-09-2-0065 5c...Sciences has demonstrated that Morphine-related analogs, including Naltrexone and Dextromethorphan, have great potency in anti-inflammation and

  4. Neuromodulatory effects of the dorsal hippocampal endocannabinoid system in dextromethorphan/morphine-induced amnesia.

    PubMed

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2017-01-05

    Dextromethorphan which is an active ingredient in many cough medicines has been previously shown to potentiate amnesic effect of morphine in rats. However, the effect of dextromethorphan, that is also a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, in combination with morphine on hippocampus-based long term memory has not been well characterized. The aim of the present study was to assess the possible role of endocannabinoid system of the dorsal hippocampus in dextromethorphan /morphine-induced amnesia. Our results showed that intraperitoneal (i.p.) injection of morphine (5mg/kg) or dextromethorphan (5-15mg/kg) before testing the passive avoidance learning induced amnesia. Combination of ineffective doses of dextromethorphan (7.5mg/kg, i.p.) and morphine (2mg/kg, i.p.) also produced amnesia, suggesting the enhancing effects of the drugs. To assess the effect of the activation or inhibition of the dorsal hippocampal cannabinoid CB1 receptors on this amnesia, ACPA or AM251 as selective receptor agonists or antagonists were respectively injected into the CA1 regions before systemic injection of dextromethorphan and morphine. Interestingly, intra-CA1 microinjection of ACPA (0.5-1ng/rat) improved the amnesic effect of dextromethorphan /morphine combination. The microinjection of AM251 into the CA1 region enhanced the response of the combination of dextromethorphan /morphine in inducing amnesia. Moreover, Intra-CA1 microinjection of AM251 inhibited the improving effect of ACPA on dextromethorphan /morphine-induced amnesia. It is important to note that intra-CA1 microinjection of the same doses of the agonist or antagonist by itself had no effects on memory formation. Thus, it can be concluded that the dorsal hippocampal endocannabinoid system, via CB1 receptor-dependent mechanism, may be involved in morphine/dextromethorphan -induced amnesia.

  5. In silico and in vivo evaluation of flavonoid extracts on CYP2D6-mediated herb-drug interaction.

    PubMed

    Su, Zhe; Zhang, Bo; Zhu, Wenliang; Du, Zhimin

    2012-10-01

    Flavonoid extracts are widely used for preventing and treating ischemic heart disease. However, because many flavonoid extracts have been verified to inhibit CYP2D6 the main metabolic enzyme for the majority of antiarrhythmics and beta-blockers, co-administration of flavonoid extracts with these drugs may cause adverse herb-drug interaction in clinic. Here, we evaluated 43 common flavonoids on CYP2D6 inhibition in sillico and four commercial flavonoid extracts in vivo on the pharmacokinetics and pharmacodynamics of metoprolol in rats. Surprisingly, we found that the core skeletons of flavonoids instead of their substituents determine the extent of inhibiting CYP2D6 by a flavonoid extract. Isoflavones are less likely to inhibit CYP2D6, compared with other categories of flavonoids. Consistently, co-administration of soy extract that mainly contains isoflavones did not significantly increase plasma concentration of metoprolol and alter the systolic blood pressure of rats. Our results have implication in rationally selecting flavonoid extracts for therapeutic application.

  6. Differential Consequences of Tramadol in Overdosing: Dilemma of a Polymorphic Cytochrome P450 2D6-Mediated Substrate.

    PubMed

    Srinivas, Nuggehally R

    2015-09-01

    Tramadol is a centrally acting opioid analgesic that is prone to polymorphic metabolism via cytochrome P450 (CYP) 2D6. The generation of the active metabolite, O-desmethyltramadol, which occurs through the CYP 2D6 pathway, significantly contributes to the drug's activity. However, dosage adjustments of tramadol are typically not practiced in the clinic when treating patients who are homozygous extensive metabolizers, heterozygous extensive metabolizers, or poor metabolizers. In the event of a tramadol overdose, the consequences may be influenced importantly by the genotype or phenotype status of the subject. Depending on the individual subject's CYP 2D6 status, one may see excessive miotic-related toxicity driven by the excessive availability of O-desmethyltramadol or one may manifest mydriatic-related toxicity driven by the excessive availability of tramadol. This report provides pharmacokinetic perspectives in situations of tramadol overdosing.

  7. Signs & Symptoms of Dextromethorphan Exposure from YouTube

    PubMed Central

    Chary, Michael; Park, Emily H.; McKenzie, Andrew; Sun, Julia; Manini, Alex F.; Genes, Nicholas

    2014-01-01

    Detailed data on the recreational use of drugs are difficult to obtain through traditional means, especially for substances like Dextromethorphan (DXM) which are available over-the-counter for medicinal purposes. In this study, we show that information provided by commenters on YouTube is useful for uncovering the toxicologic effects of DXM. Using methods of computational linguistics, we were able to recreate many of the clinically described signs and symptoms of DXM ingestion at various doses, using information extracted from YouTube comments. Our study shows how social networks can enhance our understanding of recreational drug effects. PMID:24533044

  8. Dextromethorphan interactions with histaminergic and serotonergic treatments to reduce nicotine self-administration in rats.

    PubMed

    Briggs, Scott A; Hall, Brandon J; Wells, Corinne; Slade, Susan; Jaskowski, Paul; Morrison, Margaret; Rezvani, Amir H; Rose, Jed E; Levin, Edward D

    2016-03-01

    Combining effective treatments with diverse mechanisms of action for smoking cessation may provide better therapy by targeting multiple points of control in the neural circuits underlying addiction. Previous research in a rat model has shown that dextromethorphan, which has α3β4 nicotinic and NMDA glutamatergic antagonist actions, significantly decreases nicotine self-administration. We have found in the rat model that the H1 histamine antagonist pyrilamine and the serotonin 5HT2C agonist lorcaserin also significantly reduce nicotine self-administration. The current studies were conducted to determine the interactive effects of dextromethorphan with pyrilamine and lorcaserin on nicotine self-administration in rats. Young adult female rats were fitted with jugular IV catheters and trained to self-administer a nicotine infusion dose of 0.03-mg/kg/infusion. In an initial dose-effect function study of dextromethorphan, we found a monotonic decrease in nicotine self-administration over a dose range of 1 to 30-mg/kg with the lowest effective dose of 3-mg/kg. Then, with two separate cohorts of rats, dextromethorphan (0, 3.3, and 10-mg/kg) interactions with pyrilamine (0, 4.43, and 13.3-mg/kg) were investigated as well as interactions with lorcaserin (0, 0.3125 and 0.625-mg/kg). In the pyrilamine-dextromethorphan interaction study, an acute dose of pyrilamine (13.3-mg/kg) as well as an acute dose of dextromethorphan caused a significant decrease in nicotine self-administration. There were mutually augmenting effects of these two drugs. The combination of dextromethorphan (10-mg/kg) and pyrilamine (13.3-mg/kg) significantly lowered nicotine self-administration relative to either 10-mg/kg of dextromethorphan alone (p<0.05) or 13.3-mg/kg of pyrilamine alone (p<0.0005). In the lorcaserin-dextromethorphan study, an acute dose of lorcaserin (0.312-mg/kg) as well as an acute dose of dextromethorphan (10-mg/kg) caused a significant decrease in nicotine self

  9. Efficacy and tolerability of levodropropizine in adult patients with non-productive cough. Comparison with dextromethorphan.

    PubMed

    Catena, E; Daffonchio, L

    1997-01-01

    The results of a double-blind, randomized clinical trial involving 209 adult patients of either sex with moderate non-productive cough are reported. The therapeutic efficacy and the tolerability of levodropropizine syrup (60 mg t.i.d. for 5 days) was evaluated in comparison with dextromethorphan syrup (15 mg t.i.d. for 5 days). Efficacy was assessed by the number of coughing spells in a 6h period, the cough frequency classes, the cough intensity and the night awakenings due to cough. Tolerability was evaluated by laboratory results, vital signs and any adverse event occurred during the clinical trial, including presence or absence of somnolence. Independently from the underlying pathology and from the degree of baseline cough severity, the number of coughing spells was significantly (P < 0.05) reduced by both levodropropizine and dextromethorphan already after the 2nd day of treatment, the effect and its time of onset being similar for both drugs. Cough intensity was significantly (P < 0.01) reduced by both drugs throughout the treatment, at an earlier time with levodropropizine than with dextromethorphan. Concurrently with the relief of cough, the number of night awakenings was decreased remarkably and significantly (P < 0.05), with levodropropizine displaying an improvement significantly higher (P < 0.05) than dextromethorphan. No change in laboratory tests values was considered clinically relevant and vital signs were not clinically affected by the study drugs. The number of patients reporting adverse events was significantly higher (P < 0.05) in the dextromethorphan (12.1%) than in the levodropropizine (3.6%) group. Overall, somnolence was reported for a low percentage of patients with both drugs, with the percentage of patients experiencing this side effect being one half in the group treated with levodropropizine (4.6%) as compared with dextromethorphan (10.4%). These results confirm the antitussive effectiveness of levodropropizine and point out a more

  10. Autoradiographic Distribution and Applied Pharmacological Characteristics of Dextromethorphan and Related Antitissue/Anticonvulsant Drugs and Novel Analogs

    DTIC Science & Technology

    1991-11-01

    dextromethorphan, and its receptor, in normal and abnormal brain. Dextromethorphan is a non-opioid cough suppressant. It is as potent as codeine, but has the...at least one pharmacological effect in common with certain opioids in itc antitussive action and naloxone has been Shown to posAC3s neuroprotective

  11. Autoradiographic Distribution and Applied Pharmacological Characteristics of Dextromethorphan and Related Antitissue/Anticonvulsant Drugs and Novel Analogs.

    DTIC Science & Technology

    1994-10-01

    Maximum 200 words) Dextromethorphan is an antitussive compound with anticonvulsant and neuroprotective propertie arising from actions within the...BRAIN Introduction Dextromethorphan (DM) is a non-opioid cough suppressant which is the dextrorotatory isomer of the opioid levorphanol. However, it

  12. Perioperative Dextromethorphan as an Adjunct for Postoperative Pain: a Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    King, Michael R.; Ladha, Karim S.; Gelineau, Amanda M.; Anderson, T. Anthony

    2015-01-01

    Background N-methyl-D-aspartate (NMDA) receptor antagonists have been shown to reduce perioperative pain and opioid use. We performed a meta-analysis to determine whether the use of perioperative dextromethorphan lowers opioid consumption or pain scores. Methods PubMed, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, pubget, and Embase were searched. Studies were included if they were randomized, double-blinded, placebo controlled trials written in English, performed on patients ≥12 years. For comparison of opioid use, included studies tracked total consumption of intravenous or intramuscular opioids over 24 to 48 hours. Pain score comparisons were performed at 1 hour, 4 to 6 hours, and 24 hours postoperatively. Difference in means (MD) was used for effect size. Results Forty studies were identified and 21 were eligible for one or more comparisons. In 848 patients from 14 trials, opioid consumption favored dextromethorphan (MD -10.51 mg intravenous morphine equivalents; 95% confidence interval [CI]: -16.48 mg to -4.53 mg; p = 0.0006). In 884 patients from 13 trials, pain at 1 hour favored dextromethorphan (MD -1.60; 95% CI: -1.89 to -1.31; p < 0.00001). In 950 patients from 13 trials, pain at 4-6 hours favored dextromethorphan (MD -0.89; 95% CI: -1.11 to -0.66; p < 0.00001). In 797 patients from 12 trials, pain at 24 hours favored dextromethorphan (MD -0.92; 95% CI: -1.24 to -0.60; p < 0.00001). Conclusions This meta-analysis suggests dextromethorphan use perioperatively reduces postoperative opioid consumption at 24-48 hours and pain scores at 1, 4-6, and 24 hours. PMID:26587683

  13. Dextromethorphan- and pseudoephedrine-induced agitated psychosis and ataxia: case report.

    PubMed

    Roberge, R J; Hirani, K H; Rowland, P L; Berkeley, R; Krenzelok, E P

    1999-01-01

    Pseudoephedrine and dextromethorphan are therapeutic constituents of numerous commonly used, over-the-counter cough and cold preparations. Although this drug combination is generally considered quite safe if utilized in recommended doses, overmedication or overdose can result in serious neurologic and cardiovascular abnormalities that occasionally can be life-threatening. We present a case of a 2-year-old child who developed hyperirritability, psychosis, and ataxia after being overmedicated with a pseudoephedrine/dextromethorphan combination cough preparation, and discuss probable mechanisms of toxicity and risk factors for adverse events.

  14. Analysis of Dextromethorphan in Cough Drops and Syrups: A Medicinal Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hamilton, Todd M.; Wiseman, Frank L., Jr.

    2009-01-01

    Fluorescence spectroscopy is used to determine the quantity of dextromethorphan hydrobromide (DM) in over-the-counter (OTC) cough drops and syrups. This experiment is appropriate for an undergraduate medicinal chemistry laboratory course when studying OTC medicines and active ingredients. Students prepare the cough drops and syrups for analysis,…

  15. A Placebo Double-Blind Pilot Study of Dextromethorphan for Problematic Behaviors in Children with Autism

    ERIC Educational Resources Information Center

    Woodard, Cooper; Groden, June; Goodwin, Matthew; Bodfish, James

    2007-01-01

    We used a mixed group/single-case, double-blind, placebo-controlled, ABAB design to examine the safety and efficacy of the glutamate antagonist dextromethorphan for the treatment of problematic behaviors and core symptoms in eight children diagnosed with autism. All participants had increased levels of irritability at baseline as measured by the…

  16. Spectrophotometric determination of pipazethate HCl, dextromethorphan HBr and drotaverine HCl in their pharmaceutical preparations.

    PubMed

    Amin, Alaa S; El-Sheikh, Ragaa; Zahran, Faten; Gouda, Ayman Abou El-fetouh

    2007-07-01

    A simple, accurate and highly sensitive spectrophotometric method is proposed for the rapid determination of pipazethate hydrochloride, dextromethorphan hydrobromide and drotaverine hydrochloride using chromotrope 2B (C2B) and chromotrope 2R (C2R). The method consists of extracting the formed ion-associates into chloroform in the case of pipazethate HCl and dextromethorphan HBr or into methylene chloride in the case of drotaverine HCl. The ion-associates exhibit absorption maxima at 528, 540 and 532 nm with C2B and at 526, 517 and 522 nm with C2R for pipazethate HCl, dextromethorphan HBr and drotaverine HCl, respectively. The calibration curves resulting from the measurements of absorbance-concentration relations (at the optimum reaction conditions) of the extracted ion-pairs are linear over the concentration range 4.36-52.32 microg mL(-1) for pipazethate, 3.7-48.15 microg mL(-1) for dextromethorphan and 4.34-60.76 microg mL(-1) for drotaverine, respectively. The effect of acidity, reagent concentration, time, solvent and stoichiometric ratio of the ion-associates were estimated. The molar absorptivity and Sandell sensitivity of the reaction products were calculated. Statistical treatment of the results reflects that the procedure is precise, accurate and easily applied for the determination of the drugs under investigation in pure form and in their pharmaceutical preparations.

  17. The Treatment of the Behavioral Sequelae of Autism with Dextromethorphan: A Case Report

    ERIC Educational Resources Information Center

    Woodard, Cooper; Groden, June; Goodwin, Matthew; Shanower, Cori; Bianco, Joanne

    2005-01-01

    Dextromethorphan is the d-isomer of levorphenol, and an ingredient in antitussive preparations. A 10 year-old male diagnosed with Autistic Disorder, Pervasive Developmental Disorder, and Generalized Anxiety Disorder was administered this medication initially to treat a medical condition. This became a quasi-experimental ABAB design (A = baseline,…

  18. The Therapeutic Effect of Adding Dextromethorphan to Clonidine for Reducing Symptoms of Opioid Withdrawal: A Randomized Clinical Trial

    PubMed Central

    Malek, Ayyoub; Amiri, Shahrokh; Habibi Asl, Bohlool

    2013-01-01

    Background. Dextromethorphan is a noncompetitive N-methyl D-aspartate receptor antagonist that is clinically feasible for relieving the opioid withdrawal symptoms. This study compares the efficacy of a combination therapy with dextromethorphan and clonidine to treatment with clonidine alone. Methods and Materials. In this double-blind randomized clinical trial, patients were selected from inpatients of detox and rehabilitation ward of Razi Hospital, Tabriz, Iran. They were randomly allocated to two groups receiving either clonidine (0.4–1.2 mg/day) or clonidine and dextromethorphan (300 mg/day). Withdrawal symptoms were evaluated in the first day of admission and again 24, 48, and 72 hours later. Results. Thirty male patients completed the trial in each group. Withdrawal symptoms began to decrease in the second day in patients receiving dextromethorphan and clonidine while patients receiving clonidine experienced the more severe symptoms in 72 hours. Analysis of variance of the symptom severity score revealed a significant group × time interaction (F = 14.25; P < 0.001), so that patients receiving dextromethorphan plus clonidine had milder symptoms during three days in all of the measurements compared to clonidine group. Conclusion. Combination therapy of dextromethorphan and clonidine would result in milder opioid withdrawal symptoms compared to clonidine alone with a reduction beginning at the second day. PMID:23864983

  19. Comparison of various urine collection intervals for caffeine and dextromethorphan phenotyping in children.

    PubMed

    Kennedy, Mary Jayne; Abdel-Rahman, Susan M; Kashuba, Angela D M; Leeder, J Steven

    2004-07-01

    Caffeine and dextromethorphan have been used successfully both alone and in combination to assess phenotype and enzyme activity in children of various ages. Previous pediatric phenotyping studies with these agents have used varying durations of urine collection. However, the minimum duration required for accurate phenotypic assessment with these compounds in children remains unknown. We calculated the cumulative metabolite recoveries and molar ratios in urine collected from children for 2, 4, 6, and 8 hours after caffeine and dextromethorphan administration to determine when respective urinary molar ratios stabilize and thus likely accurately reflect enzyme activity. Subjects (n = 24, ages 3-8 years) were given 4 oz of Coca-Cola(R) ( approximately 11.5 mg caffeine) and a single oral dose of dextromethorphan (0.5 mg/kg). Urine was collected at discrete intervals (0-2, 2-4, 4-6, and 6-8 h) during an 8-hour period, and the cumulative metabolite recoveries and urinary molar ratios were calculated. CYP2D6 genotyping was also performed in 21 of 24 subjects. In CYP2D6 extensive metabolizers, the extent of recovery for relevant metabolites was equivalent by 4 hours and represented 45% to 60% of the total amount recovered in the 8-hour period. The 2-hour CYP1A2 ratio was significantly different from those of longer collection intervals. Metabolite ratios for all other enzymes (i.e., NAT-2, XO, and CYP2D6) were independent of the duration of urine collection. These data suggest that a 4-hour urine collection is adequate for the concurrent assessment of hepatic CYP1A2, NAT-2, XO, and CYP2D6 activity in children ages 3 to 8 years who are CYP2D6 extensive metabolizers, using standard caffeine and dextromethorphan phenotyping methods. Longer collection periods may be required, however, in younger children or CYP2D6 poor metabolizers.

  20. MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-07-19

    Methamphetamine causes long-term toxicity to dopamine nerve endings of the striatum. Evidence is emerging that microglia can contribute to the neuronal damage associated with disease, injury, or inflammation, but their role in methamphetamine-induced neurotoxicity has received relatively little attention. Lipopolysaccharide (LPS) and the neurotoxic HIV Tat protein, which cause dopamine neuronal toxicity after direct infusion into brain, cause activation of cultured mouse microglial cells as evidenced by increased expression of intracellular cyclooxygenase-2 and elevated secretion of tumor necrosis factor-alpha. MK-801, a non-competitive NMDA receptor antagonist that is known to protect against methamphetamine neurotoxicity, prevents microglial activation by LPS and HIV Tat. Dextromethorphan, an antitussive agent with NMDA receptor blocking properties, also prevents microglial activation. In vivo, MK-801 and dextromethorphan reduce methamphetamine-induced activation of microglia in striatum and they protect dopamine nerve endings against drug-induced nerve terminal damage. The present results indicate that the ability of MK-801 and dextromethorphan to protect against methamphetamine neurotoxicity is related to their common property as blockers of microglial activation.

  1. Dextromethorphan Addiction Mediated Through the NMDA System: Common Pathways With Alcohol?

    PubMed

    Roy, A Kenison; Hsieh, Chenen; Crapanzano, Kathleen

    2015-01-01

    Dextromethorphan, an antitussive (cough suppressant) drug of the morphinan class with sedative and dissociative properties found in cough syrup and other over-the-counter products, is also a substance of abuse, seen primarily in young adults all over the world. A case of dextromethorphan use disorder is presented in a 45-year-old women. Her repeated attempts at abstinence were unsuccessful secondary to continued intense cravings. Treatment with topiramate resulted in complete resolution of her cravings. Topiramate was chosen empirically because of a common action with dextromethorphan in the NMDA system. Genetic testing was obtained and the patient was found to be a carrier of the GRIK1 rs2832407(C:C) allele. The (C:C) allele has been associated with an increased risk of alcohol use disorder and a treatment response of patients with heavy drinking to topiramate. This case provides an opportunity to discuss personalized medicine (treatment options aided by the use of genetic testing) and the possible shared genetic susceptibility for dependence in 2 substances of abuse.

  2. Determination of dextromethorphan in human plasma using pipette tip solid-phase extraction and gas chromatography-mass spectrometry.

    PubMed

    Hasegawa, Chika; Kumazawa, Takeshi; Uchigasaki, Seisaku; Lee, Xiao-Pen; Sato, Keizo; Terada, Masaru; Kurosaki, Kunihiko

    2011-10-01

    Dextromethorphan was extracted from human plasma samples (100 μL) using MonoTip C(18) tips, which are packed with C(18)-bonded monolithic silica gel that is attached to the inside of the tip. The samples, which contained dextromethorphan and trimeprazine as an internal standard (IS), were mixed with 200 μL of distilled water and 50 μL of 1 mol/L glycine-sodium hydroxide buffer (pH 10). The mixture was extracted to the C(18) phase of the tip by 20 sequential aspirating/dispensing cycles using a manual micropipettor. The analytes retained on the C(18) phase were then eluted with methanol by five sequential aspirating/dispensing cycles. The eluate was injected directly into a gas chromatograph and detected by a mass spectrometer with selected ion monitoring in positive electron ionization mode. An Equity-5 fused silica capillary column (30 m × 0.32 mm i.d., film thickness 0.5 μm) gave adequate separation of the dextromethorphan, IS, and impurities. The recoveries of dextromethorphan and the IS spiked into plasma were >87.4%. The regression equation for dextromethorphan showed excellent linearity from 2.5 to 320 ng/mL of plasma, and the limit of detection was 1.25 ng/mL of plasma. The intraday and interday coefficients of variation were less than 10.5% and 14.7%, respectively. The accuracy ranged from 91.9% to 107%. The validated method was successfully used to quantify the plasma concentration of dextromethorphan in a human subject after oral administration of the drug.

  3. New potentiometric and spectrophotometric methods for the determination of dextromethorphan in pharmaceutical preparations.

    PubMed

    Elmosallamy, Mohamed A F; Amin, Alaa S

    2014-01-01

    New, simple and convenient potentiometric and spectrophotometric methods are described for the determination of dextromethorphan hydrobromide (DXM) in pharmaceutical preparations. The potentiometric technique is based on developing a potentiometric sensor incorporating the dextromethorphan tetrakis(p-chlorophenyl)borate ion-pair complex as an electroactive species in a plasticized PVC matrix membrane with o-nitophenyl octyl ether or dioctyl phthalate. The sensor shows a rapid near Nernstian response of over 1 × 10(-5) - 1 × 10(-2) mol L(-1) dextromethorphan in the pH range of 3.0 - 9.0. The detection limit is 2 × 10(-6) mol L(-1) DXM and the response time is instantaneous (2 s). The proposed spectrophotometric technique involves the reaction of DXM with eriochrom black T (EBT) to form an ion-associate complex. Solvent extraction is used to improve the selectivity of the method. The optimal extraction and reaction conditions have been studied, and the analytical characteristics of the method have been obtained. Linearity is obeyed in the range of 7.37 - 73.7 × 10(-5) mol L(-1) DXM, and the detection limit of the method is 1.29 × 10(-5) mol L(-1). The relative standard deviation (RSD) and relative error for six replicate measurements of 3.685 × 10(-4) mol L(-1) are 0.672 and 0.855%, respectively. The interference effect of some excepients has also been tested. The drug contents in pharmaceutical preparations were successfully determined by the proposed methods by applying the standard-addition technique.

  4. The Abuse of Dextromethorphan-Based Cough Syrup: A Pilot Study of the Community of Waynesboro, Pennsylvania.

    ERIC Educational Resources Information Center

    Momodou, N. Darboe; And Others

    1996-01-01

    Discusses the emergence of a new type of abused drug, dextromethorphan, which is used in cough syrup. Presents the results of the first phase of a comprehensive investigation of this phenomenon in the Waynesboro, Pa. school district. Survey data indicate abuse of cough syrup has increased over the years and is increasingly perceived as a problem…

  5. Simultaneous determination of pseudoephedrine hydrochloride, chlorpheniramine maleate, and dextromethorphan hydrobromide by second-derivative photodiode array spectroscopy.

    PubMed

    Murtha, J L; Julian, T N; Radebaugh, G W

    1988-08-01

    The simultaneous determination of the active ingredients in multicomponent pharmaceutical products normally requires the use of a separation technique, such as HPLC or GC, followed by quantitation. Presented here is a rapid, validated, analytical method that does not require prior separation for the simultaneous determination of three drugs, pseudoephedrine hydrochloride, chlorpheniramine maleate, and dextromethorphan hydrobromide, in a tablet formulation. A diode array spectrophotometer, capable of multicomponent analysis, was used for the quantitation. The utility of this method was demonstrated in two ways: the analysis of a chewable pediatric tablet (formulation CP) containing 7.5 mg of pseudoephedrine hydrochloride, 0.5 mg of chlorpheniramine maleate, and 2.5 mg of dextromethorphan hydrobromide, and the dissolution analysis of a hydroxypropyl methylcellulose-based sustained-release tablet (formulation SR) containing 120 mg of pseudoephedrine hydrochloride, 8 mg of chlorpheniramine maleate, and 60 mg of dextromethorphan hydrobromide. The sensitivity of this assay is 7.5 micrograms/mL for pseudoephedrine hydrochloride, 1.0 micrograms/mL for chlorpheniramine maleate, and 5.0 micrograms/mL for dextromethorphan hydrobromide, using the second-derivative spectra of the absorbance with respect to wavelength. Determinations were made in 0.1 M sodium acetate buffer at pH 5.0 using a 1-cm quartz cell. Absorbance spectra, and their first and second derivatives, from 240 to 300 nm were used for the determination. The results obtained by this method compared favorably with the results obtained by a validated HPLC method.

  6. Simultaneous quantitative analysis of dextromethorphan, dextrorphan and chlorphenamine in human plasma by liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Ding, Ying; Huang, Kai; Chen, Lan; Yang, Jie; Xu, Wen-Yan; Xu, Xue-Jiao; Duan, Ru; Zhang, Jing; He, Qing

    2014-03-01

    A sensitive and accurate HPLC-MS/MS method was developed for the simultaneous determination of dextromethorphan, dextrorphan and chlorphenamine in human plasma. Three analytes were extracted from plasma by liquid-liquid extraction using ethyl acetate and separated on a Kromasil 60-5CN column (3 µm, 2.1 × 150 mm) with mobile phase of acetonitrile-water (containing 0.1% formic acid; 50:50, v/v) at a flow rate of 0.2 mL/min. Quantification was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using positive electrospray ionization. The calibration curve was linear over the range of 0.01-5 ng/mL for dextromethorphan, 0.02-5 ng/mL for dextrorphan and 0.025-20 ng/mL for chlorphenamine. The lower limits of quantification for dextromethorphan, dextrorphan and chlorphenamine were 0.01, 0.02 and 0.025 ng/mL, respectively. The intra- and inter-day precisions were within 11% and accuracies were in the range of 92.9-102.5%. All analytes were proved to be stable during sample storage, preparation and analytic procedures. This method was first applied to the pharmacokinetic study in healthy Chinese volunteers after a single oral dose of the formulation containing dextromethorphan hydrobromide (18 mg) and chlorpheniramine malaeate (8 mg).

  7. Effects of dextromethorphan on rats' acquisition of responding with delayed reinforcement.

    PubMed

    Morgan, Thomas; Porritt, Matthew; Poling, Alan

    2006-11-01

    Separate groups of 16 rats received 0, 40, 60, or 80 mg/kg dextromethorphan prior to a 2-h response-acquisition session during which responses on one lever produced food (reinforcement lever, RL, responses) after a 15-s resetting delay and responses on the other lever cancelled food deliveries earned by RL responses, but otherwise had no programmed consequences. When compared to the 0 mg/kg dose, the 40, 60, and 80 mg/kg doses significantly decreased the latency to the tenth RL response, which has been used previously as an index of response acquisition [Pallares, MA, Nadal, RA, Silvestro, JS, Ferre, NS. Effects of ketamine, a noncompetitive NMDA antagonist, on the acquisition of the lever-press response in rats. Physio Behav 1995; 57:389-392.]. Only the 80 mg/kg dose, however, significantly reduced the total number of food pellets earned, the total number of RL responses, or the total number of rats that met the criterion for response acquisition. The present results indicate that dextromethorphan can disrupt initial response acquisition (i.e., learning) with positive reinforcement, although the dose that did so depended on the measure used to index performance. Moreover, the effects of the drug did not appear to reflect specific learning impairment, but rather more general disruption of behavior.

  8. Simultaneous determination of dextromethorphan, diphenhydramine and phenylephrine in expectorant and decongestant syrups by capillary electrophoresis.

    PubMed

    Gomez, María R; Olsina, Roberto A; Martínez, Luis D; Silva, María F

    2002-10-15

    The separation of basic nitrogenous compounds commonly used as active ingredients in cold medicine formulations by micellar electrokinetic capillary chromatography and capillary zone electrophoresis with direct absorptiometric detection was investigated. The type and composition of the background electrolyte (BGE) were investigated with respect to separation selectivity and BGE stability. BGE of 10 mM sodium dihydrogenphosphate-sodium tetraborate buffer containing 10 mM SDS and 10% acetonitrile, pH 9.0 was found to be optimal. Dextromethorphan hydrobhromide, diphenhydramine hydrochloride and phenylephrine hydrochloride were baseline-separated in less than 11 min, giving separation efficiencies of up to 494,000 theoretical plates, reproducibility of corrected peaks areas below 3% relative standard deviation and concentration detection limits from 2.5 to 5.5 microg ml(-1). Detection was performed at 196 and 214 nm.

  9. Dextromethorphan and caffeine as probes for simultaneous determination of debrisoquin-oxidation and N-acetylation phenotypes in children.

    PubMed

    Evans, W E; Relling, M V; Petros, W P; Meyer, W H; Mirro, J; Crom, W R

    1989-05-01

    The feasibility and reliability of simultaneously determining debrisoquin oxidation and N-acetylation phenotypes was assessed in children with use of two innocuous substrate probes given by mouth, 30 mg dextromethorphan (Pertussin ES) and 25 to 46 mg caffeine (Coca-Cola beverage). Twenty-six children and adolescents (aged 3 to 21 years) were studied three times, once with each substrate given alone and once with the two substrates given together. Urine was collected for 4 hours, and the molar urinary metabolic ratios for dextromethorphan:dextrorphan and for two caffeine metabolites (AFMU:1X) were determined by HPLC ultraviolet assays. The urinary metabolic ratios for both substrates were not significantly different when the substrates were given alone compared with when they were given together. There also was no difference in either the oxidation or acetylation phenotype assignments when the two substrates were given alone and when they were given together. No adverse effects were observed. We conclude that dextromethorphan and caffeine can be given together to simultaneously determine oxidation and acetylation phenotypes and can thereby provide an innocuous, noninvasive method for the assessment of polymorphic drug metabolism in various pediatric populations.

  10. A randomized placebo controlled trial to evaluate the effects of butamirate and dextromethorphan on capsaicin induced cough in healthy volunteers

    PubMed Central

    Faruqi, Shoaib; Wright, Caroline; Thompson, Rachel; Morice, Alyn H

    2014-01-01

    Aims The examination of cough reflex sensitivity through inhalational challenge can be utilized to demonstrate pharmacological end points. Here we compare the effect of butamirate, dextromethorphan and placebo on capsaicin-induced cough in healthy volunteers. Methods In this randomized, placebo-controlled, six way crossover study the effect of dextromethrophan 30 mg, four doses of butamirate and placebo was evaluated on incremental capsaicin challenges performed at baseline and 2, 4, 6, 8, 12 and 24 h following dosing. The primary end point was the area under the curve (AUC(0,12h)) of log10 C5 from pre-dose to 12 h after dosing. Plasma butamirate metabolites were analyzed to evaluate pharmacokinetic and pharmacodynamic relationships. Results Thirty-four subjects (13 males, median age 25 years) completed the study. Cough sensitivity decreased from baseline in all arms of the study. Dextromethorphan was superior to placebo (P = 0.01) but butamirate failed to show significant activity with maximum attenuation at the 45 mg dose. There was no apparent relationship between pharmacokinetic and pharmacodynamic parameters for butamirate. Conclusions We have demonstrated for the first time that dextromethorphan attenuates capsaicin challenge confirming its broad activity on the cough reflex. The lack of efficacy of butamirate could be due to formulation issues at higher doses. PMID:24995954

  11. Anti-dyskinetic mechanisms of amantadine and dextromethorphan in the 6-OHDA rat model of Parkinson's disease: role of NMDA vs. 5-HT1A receptors.

    PubMed

    Paquette, Melanie A; Martinez, Alex A; Macheda, Teresa; Meshul, Charles K; Johnson, Steven W; Berger, S Paul; Giuffrida, Andrea

    2012-11-01

    Amantadine and dextromethorphan suppress levodopa (L-DOPA)-induced dyskinesia (LID) in patients with Parkinson's disease (PD) and abnormal involuntary movements (AIMs) in the unilateral 6-hydroxydopamine (6-OHDA) rat model. These effects have been attributed to N-methyl-d-aspartate (NMDA) antagonism. However, amantadine and dextromethorphan are also thought to block serotonin (5-HT) uptake and cause 5-HT overflow, leading to stimulation of 5-HT(1A) receptors, which has been shown to reduce LID. We undertook a study in 6-OHDA rats to determine whether the anti-dyskinetic effects of these two compounds are mediated by NMDA antagonism and/or 5-HT(1A) agonism. In addition, we assessed the sensorimotor effects of these drugs using the Vibrissae-Stimulated Forelimb Placement and Cylinder tests. Our data show that the AIM-suppressing effect of amantadine was not affected by the 5-HT(1A) antagonist WAY-100635, but was partially reversed by the NMDA agonist d-cycloserine. Conversely, the AIM-suppressing effect of dextromethorphan was prevented by WAY-100635 but not by d-cycloserine. Neither amantadine nor dextromethorphan affected the therapeutic effects of L-DOPA in sensorimotor tests. We conclude that the anti-dyskinetic effect of amantadine is partially dependent on NMDA antagonism, while dextromethorphan suppresses AIMs via indirect 5-HT(1A) agonism. Combined with previous work from our group, our results support the investigation of 5-HT(1A) agonists as pharmacotherapies for LID in PD patients.

  12. Dextromethorphan overdose

    MedlinePlus

    ... Blurred vision Coma Constipation Convulsions (seizures) Drowsiness Dizziness Hallucinations High or low blood pressure Muscle twitches Nausea ... this medicine to "feel good" and to have hallucinations. Like other drugs of abuse, this can be ...

  13. Polymeric membrane sensors for the selective determination of dextromethorphan in pharmaceutical preparations.

    PubMed

    El-Naby, Eman H

    2008-01-01

    The construction and electrochemical response characteristics of poly(vinyl chloride) matrix ion-selective electrodes (ISEs) for dextromethorphan (DXM) hydrobromide are described. The membranes incorporate ion-association complexes of DXM with reineckate salt {[Cr(NH3)2(SCN)4]NH4} or phosphomolybdic acid [H3(PMo12O40)], as electroactive materials and dioctylphthalate or dibutylsebacate as a plasticizing solvent mediator. The sensors display a fast, stable and linear response with slopes of 54.4 to 59.5 mV/decade at pH 2.5-6.5 and a detection limit of 1.0 x 10(-6) M. Moreover, the sensors exhibit very good selectivity for DXM over opiate alkaloids, as well as organic and inorganic cations. The sensors proved to be useful for the determination of 5.0 x 10(-5)-1.0 x 10(-3) M DXM hydrobromide in pure as well as in dosage forms by direct potentiometry and standard addition methods. Determination of 5.0 x 10(-4) M DXM using the standard addition method and a sensor based on phosphomolybdate and dioctylphthalate shows an average recovery of 99.8% and a relative standard deviation (RSD) of 0.4%.

  14. Spectrophotometric Determination of Pipazethate HCl and Dextromethorphan HBr using Potassium Permanganate.

    PubMed

    Gouda, Ayman Abou El-Fetouh; El-Sheikh, Ragaa; El Shafey, Zeineb; Hossny, Nagda; El-Azzazy, Rham

    2008-12-01

    Rapid, simple and sensitive validated spectrophotometric methods have been described for the assay of pipazethate HCl (PiCl) and dextromethorphan HBr (DEX) either in pure form or in pharmaceutical formulations. The proposed methods were based on the oxidation of the studied drugs by a known excess of potassium permanganate in acidic medium and estimating the unreacted permanganate with amaranth dye (method A), acid orange II (method B), indigocarmine (method C) and methylene blue (method D), in the same acid medium at a suitable λmax=521, 485, 610 and 664 nm, respectively. Beer's law is obeyed in the concentration range of 2.0-16 and 2.0-15 μg mL(-1) for PiCl and DEX, respectively with correlation coefficient (n=6) ≥ 0.9993. The apparent molar absorptivity and sandell sensitivity values are in the range 1.062-1.484 × 10(4), 3.35-4.51 × 10(4) L mol(-1) cm(-1) and 29.36-41.03, 8.21-11.06 ng cm(-2) for PiCl and DEX, respectively. Different variables affecting the reaction were studied and optimized. The proposed methods were applied successfully to the determination of the examined drugs either in a pure or pharmaceutical dosage forms with good accuracy and precision. No interferences were observed from excipients and the results obtained were in good agreement with those obtained using the official methods.

  15. Fluorescent bovine serum albumin interacting with the antitussive quencher dextromethorphan: a spectroscopic insight.

    PubMed

    Durgannavar, Amar K; Patgar, Manjanath B; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2016-05-01

    The interaction of dextromethorphan hydrobromide (DXM) with bovine serum albumin (BSA) is studied by using fluorescence spectra, UV-vis absorption, synchronous fluorescence spectra (SFS), 3D fluorescence spectra, Fourier transform infrared (FTIR) spectroscopy and circular dichroism under simulated physiological conditions. DXM effectively quenched the intrinsic fluorescence of BSA. Values of the binding constant, K(A), are 7.159 × 10(3), 9.398 × 10(3) and 16.101 × 10(3)  L/mol; the number of binding sites, n, and the corresponding thermodynamic parameters ΔG°, ΔH° and ΔS° between DXM and BSA were calculated at different temperatures. The interaction between DXM and BSA occurs through dynamic quenching and the effect of DXM on the conformation of BSA was analyzed using SFS. The average binding distance, r, between the donor (BSA) and acceptor (DXM) was determined based on Förster's theory. The results of fluorescence spectra, UV-vis absorption spectra and SFS show that the secondary structure of the protein has been changed in the presence of DXM.

  16. Involvement of AMPA receptors in the antidepressant-like effects of dextromethorphan in mice.

    PubMed

    Nguyen, Linda; Matsumoto, Rae R

    2015-12-15

    Dextromethorphan (DM) is an antitussive with rapid acting antidepressant potential based on pharmacodynamic similarities to ketamine. Building upon our previous finding that DM produces antidepressant-like effects in the mouse forced swim test (FST), the present study aimed to establish the antidepressant-like actions of DM in the tail suspension test (TST), another well-established model predictive of antidepressant efficacy. Additionally, using the TST and FST, we investigated the role of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors in the antidepressant-like properties of DM because accumulating evidence suggests that AMPA receptors play an important role in the pathophysiology of depression and may contribute to the efficacy of antidepressant medications, including that of ketamine. We found that DM displays antidepressant-like effects in the TST similar to the conventional and fast acting antidepressants characterized by imipramine and ketamine, respectively. Moreover, decreasing the first-pass metabolism of DM by concomitant administration of quinidine (CYP2D6 inhibitor) potentiated antidepressant-like actions, implying DM itself has antidepressant efficacy. Finally, in both the TST and FST, pretreatment with the AMPA receptor antagonist NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide) significantly attenuated the antidepressant-like behavior elicited by DM. Together, the data show that DM exerts antidepressant-like actions through AMPA receptors, further suggesting DM may act as a safe and effective fast acting antidepressant drug.

  17. Separation and determination of pseudoephedrine, dextromethorphan, diphenhydramine and chlorpheniramine in cold medicines by nonaqueous capillary electrophoresis.

    PubMed

    Dong, Yuming; Chen, Xiaofeng; Chen, Yonglei; Chen, Xingguo; Hu, Zhide

    2005-09-01

    An easy, rapid and simple nonaqueous capillary electrophoresis (NACE) method was developed for the identification and determination of four basic nitrogenous compounds, i.e. pseudoephedrine (PE), dextromethorphan (DXM), diphenhydramine (DHM) and chlorpheniramine (CLP). The most suitable running buffer was composed of 40 mM ammonium acetate, 10% acetonitrile (ACN) in methanol with a fused-silica capillary column (47 cm x 75 microm i.d.), 25 kV applied voltage and 25 degrees C capillary temperature. The calibration curves revealed linear relationships between the peak area for each analyte and its concentration (correlation coefficients: 0.9993 for PE, 0.9971 for DXM, 0.9991 for DHM, and 0.9995 for CLP, respectively). The relative standard deviations of the migration time and peak area of the four compounds were 0.37, 3.90, 0.73 and 0.68, and 2.80, 3.50, 1.60 and 3.70%, respectively. The method was successfully applied to determine the four compounds in five cold medicines, the recoveries of the four constituents ranging between 91 and 109%.

  18. Comparative Effects of Triflusal, S-Adenosylmethionine, and Dextromethorphan over Intestinal Ischemia/Reperfusion Injury

    PubMed Central

    Cámara-Lemarroy, Carlos R.; Guzmán-de la Garza, Francisco J.; Cordero-Pérez, Paula; Alarcón-Galván, Gabriela; Torres-Gonzalez, Liliana; Muñoz-Espinosa, Linda E.; Fernández-Garza, Nancy E.

    2011-01-01

    Ischemia/reperfusion (I/R) is a condition that stimulates an intense inflammatory response. No ideal treatment exists. Triflusal is an antiplatelet salicylate derivative with anti-inflammatory effects. S-adenosylmethionine is a metabolic precursor for glutathione, an endogenous antioxidant. Dextromethorphan is a low-affinity N-methyl-D-aspartate receptor inhibitor. There is evidence that these agents modulate some of the pathways involved in I/R physiopathology. Intestinal I/R was induced in rats by clamping the superior mesenteric artery for 60 minutes, followed by 60 minutes of reperfusion. Rats either received saline or the drugs studied. At the end of the procedure, serum concentrations of tumor necrosis factor-alpha (TNF-alpha), malonaldehyde (MDA), and total antioxidant capacity (TAC) were determined and intestinal morphology analyzed. I/R resulted in tissue damage, serum TNF-alpha and MDA elevations, and depletion of TAC. All drugs showed tissue protection. Only triflusal reduced TNF-alpha levels. All drugs lowered MDA levels, but only triflusal and S-adenosylmethionine maintained the serum TAC. PMID:22125445

  19. Multi-Modal Preemptive Analgesia With Pregabalin, Acetaminophen, Naproxen, and Dextromethorphan in Radical Neck Dissection Surgery: A Randomized Clinical Trial

    PubMed Central

    Amiri, Hamid Reza; Mirzaei, Mojtaba; Beig Mohammadi, Mohammad Taghi; Tavakoli, Farhad

    2016-01-01

    Background Preemptive analgesia may be considered as a method not only to alleviate postoperative pain but also to decrease analgesic consumption. Different regimens are suggested, but there is currently no standard. Objectives The aim was to measure the efficacy of preemptive analgesia with pregabalin, acetaminophen, naproxen, and dextromethorphan in radical neck dissection surgery for reducing the intensity of pain and morphine consumption. Patients and Methods This study was conducted as a randomized double-blind clinical trial. Eighty adult patients (18 to 60 years of age) under the American society of anesthesiologists (ASA) physical status I and II undergoing elective radical neck dissection were enrolled. Patients were randomized into two groups of 40 with a simple randomization method. The case group received a combination of 15 mg/kg acetaminophen, 2.5 mg/kg pregabalin, 7 mg/kg naproxen, and 0.3 mg/kg dextromethorphan administered orally one hour prior to surgery. Postoperative pain was assessed with the universal pain assessment tool (UPAT) at 0, 2, 4, 6, 12, and 24 hours after surgery. Subjects received morphine based on postoperative pain control protocol. Total administered morphine doses were noted. Results Postoperative pain rates at 0, 2, 4, 6, 12, and 24 hours after surgery were significantly lower for the case group than the control group (P values = 0.014, 0.003, 0.00, 0.00, and 0.00, respectively). Total morphine doses for the preemptive analgesia group were 45% lower than those of the other group. Side effects were similar for both groups. Conclusions A single preoperative oral dose of pregabalin, acetaminophen, dextromethorphan, and naproxen one hour before surgery is an effective method for reducing postoperative pain and morphine consumption in patients undergoing radical neck dissection. PMID:27843771

  20. Normal-phase LC method for simultaneous analysis of pseudophedrine hydrochloride, dextromethorphan hydrobromide, chlorpheniramine maleate, and paracetamol in tablet formulations.

    PubMed

    Al-Rimawi, Fuad

    2010-04-01

    A simple, precise, and accurate method is developed and validated for the analysis of pseudophedrine hydrochloride, dextromethorphan hydrobromide, chlorpheniramine maleate, and paracetamol in tablet formulations. The method has shown adequate separation of the four ingredients from each other. Separation was achieved on a silica column (5 μm, 125 × 4.6 mm inner diameter) using a mobile phase consisting of methanol/ammonium dihydrogen phosphate buffer (90:10, v/v) at a flow rate of 1.0 ml/min and UV detection at 220 nm. This new method is validated in accordance with USP requirements for new methods for assay determination, which include accuracy, precision, selectivity, linearity and range, robustness and ruggedness. The current method demonstrates good linearity over the range of 0.15-0.45 mg/ml of pseudophedrine hydrochloride with r (2) of 0.996, and in the range of 0.075-0.225 mg/ml of dextromethorphan hydrobromide with r (2) of 0.992, and in the range of 0.01-0.03 mg/ml of chlorpheniramine maleate with r (2) of 0.994, and in the range of 0.25-0.75 mg/ml of paracetamol with r (2) of 0.991. The average recovery of the method is 99.7%, 98.6%, 98.1%, and 99.2% for pseudophedrine hydrochloride, dextromethorphan hydrobromide, chlorpheniramine maleate, and paracetamol, respectively. The degree of reproducibility of the results obtained as a result of small deliberate variations in the method parameters and by changing analytical operator has proven that the method is robust and rugged.

  1. High doses of dextromethorphan, an NMDA antagonist, produce effects similar to classic hallucinogens

    PubMed Central

    Carter, Lawrence P.; Johnson, Matthew W.; Mintzer, Miriam Z.; Klinedinst, Margaret A.; Griffiths, Roland R.

    2013-01-01

    Rationale Although reports of dextromethorphan (DXM) abuse have increased recently, few studies have examined the effects of high doses of DXM. Objective This study in humans evaluated the effects of supratherapeutic doses of DXM and triazolam. Methods Single, acute, oral doses of DXM (100, 200, 300, 400, 500, 600, 700, 800 mg/70 kg), triazolam (0.25, 0.5 mg/70kg), and placebo were administered to twelve healthy volunteers with histories of hallucinogen use, under double-blind conditions, using an ascending dose run-up design. Subjective, behavioral, and physiological effects were assessed repeatedly after drug administration for 6 hours. Results Triazolam produced dose-related increases in subject-rated sedation, observer-rated sedation, and behavioral impairment. DXM produced a profile of dose-related physiological and subjective effects differing from triazolam. DXM effects included increases in blood pressure, heart rate, and emesis, increases in observer-rated effects typical of classic hallucinogens (e.g. distance from reality, visual effects with eyes open and closed, joy, anxiety), and participant ratings of stimulation (e.g. jittery, nervous), somatic effects (e.g. tingling, headache), perceptual changes, end-of-session drug liking, and mystical-type experience. After 400 mg/70kg DXM, 11 of 12 participants indicated on a pharmacological class questionnaire that they thought they had received a classic hallucinogen (e.g. psilocybin). Drug effects resolved without significant adverse effects by the end of the session. In a 1-month follow up volunteers attributed increased spirituality and positive changes in attitudes, moods, and behavior to the session experiences. Conclusions High doses of DXM produced effects distinct from triazolam and had characteristics that were similar to the classic hallucinogen psilocybin. PMID:22526529

  2. Simultaneous determination of pseudoephdrine, pheniramine, guaifenisin, pyrilamine, chlorpheniramine and dextromethorphan in cough and cold medicines by high performance liquid chromatography.

    PubMed

    Louhaichi, M R; Jebali, S; Loueslati, M H; Adhoum, N; Monser, L

    2009-05-15

    A new simple, rapid and sensitive liquid chromatographic method has been developed and validated for the simultaneous determination of pseudoephdrine, pheniramine, guaifenisin, pyrilamine, chlorpheniramine and dextromethorphan in cough and cold pharmaceuticals. The separation of these compounds was achieved within 13 min on a Kromasil C18 column using an isocratic mobile phase consisting of methanol-dihydrogenphosphate buffer at pH 3 (45:55, v/v). The analysis was performed at a flow rate of 1 mL min(-1) and at a detection wavelength of 220 nm. The selectivity, linearity of calibration, accuracy, within and between-days precision and recovery were examined as parts of the method validation. The concentration-response relationship was linear over a concentration range of 5-50 microg mL(-1) for pseudoephdrine, pheniramine, chlorpheniramine and 50-600 microg mL(-1) for guaifenisin, pyrilamine, dextromethorphan, methylparaben and sodium benzoate with correlation coefficients better than 0.998. The standard deviations of the intraday and interday were all less than 2%. The proposed liquid chromatographic method was successfully applied for the routine analysis of these compounds in different cough and cold pharmaceutical preparations such as syrups, capsules, tablets and sachets. The presence of preservatives (sodium benzoate and methylparaben) and other excipients did not show any significant interference on the determination of these compounds.

  3. Characterization of cytochrome P-450 2D1 activity in rat brain: high-affinity kinetics for dextromethorphan.

    PubMed

    Tyndale, R F; Li, Y; Li, N Y; Messina, E; Miksys, S; Sellers, E M

    1999-08-01

    We investigated the enzymatic function, stability, and regional distribution of rat brain cytochrome P-450 (CYP) 2D1 activity. CYP2D1 is the homolog of human CYP2D6, a genetically variable enzyme that activates or inactivates many clinical drugs acting on the central nervous system (e.g., antidepressants, monoamine oxidase inhibitors, serotonin uptake inhibitors, and neuroleptics), drugs of abuse (e.g., amphetamine and codeine), neurotoxins (e.g., 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1,2,3, 4-tetrahydroquinoline), and endogenous neurochemicals (e.g., tryptamine). The CYP2D family has been identified in rodent, canine, and primate brain. Conversion of dextromethorphan to dextrorphan by rat brain membranes was assayed by HPLC and was dependent on NADPH, protein concentration, and incubation time. Significant loss of activity was observed in some homogenizing buffers and after freezing of whole tissues or membrane preparations. Dextromethorphan (0.5-640 microM) metabolism was mediated by high- and low-affinity enzyme systems; K(m1) was 2.7 +/- 2.6 and K(m2) was 757 +/- 156 microM (n = 3 rats, mean +/- S.E.). The enzyme activity was significantly (p <.01) and stereoselectively inhibited by CYP2D1 inhibitors quinine and quinidine (not by CYP2C or CYP3A inhibitors), and by anti-CYP2D6 peptide antiserum (not by anti-CYP2C, -CYP2B, or -CYP3A antibodies). The enzymatic activity demonstrated significant brain regional variation (n = 10 regions, p <.001). These data characterize CYP2D1-mediated dextromethorphan metabolism in rat brain and suggest that localized metabolism of other CYP2D1 substrates (drugs, neurotoxins, and possibly endogenous compounds) within the brain will occur. In humans, CYP2D6 is genetically polymorphic; the variable expression of brain CYP2D6 may result in interindividual differences in central drug and neurotoxin metabolism, possibly contributing to interindividual differences in drug effects and neurotoxicity.

  4. Simultaneous determination of dextromethorphan, dextrorphan and doxylamine in human plasma by HPLC coupled to electrospray ionization tandem mass spectrometry: application to a pharmacokinetic study.

    PubMed

    Donato, J L; Koizumi, F; Pereira, A S; Mendes, G D; De Nucci, G

    2012-06-15

    In the present study, a fast, sensitive and robust method to quantify dextromethorphan, dextrorphan and doxylamine in human plasma using deuterated internal standards (IS) is described. The analytes and the IS were extracted from plasma by a liquid-liquid extraction (LLE) using diethyl-ether/hexane (80/20, v/v). Extracted samples were analyzed by high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Chromatographic separation was performed by pumping the mobile phase (acetonitrile/water/formic acid (90/9/1, v/v/v) during 4.0min at a flow-rate of 1.5 mL min⁻¹ into a Phenomenex Gemini® C18, 5 μm analytical column (150 × 4.6 mm i.d.). The calibration curve was linear over the range from 0.2 to 200 ng mL⁻¹ for dextromethorphan and doxylamine and 0.05 to 10 ng mL⁻¹ for dextrorphan. The intra-batch precision and accuracy (%CV) of the method ranged from 2.5 to 9.5%, and 88.9 to 105.1%, respectively. Method inter-batch precision (%CV) and accuracy ranged from 6.7 to 10.3%, and 92.2 to 107.1%, respectively. The run-time was for 4 min. The analytical procedure herein described was used to assess the pharmacokinetics of dextromethorphan, dextrorphan and doxylamine in healthy volunteers after a single oral dose of a formulation containing 30 mg of dextromethorphan hydrobromide and 12.5mg of doxylamine succinate. The method has high sensitivity, specificity and allows high throughput analysis required for a pharmacokinetic study.

  5. Combination With Low-dose Dextromethorphan Improves the Effect of Amlodipine Monotherapy in Clinical Hypertension

    PubMed Central

    Yin, Wei-Hsian; Chen, Pei; Yeh, Hung-I; Wang, Kuo-Yang; Hung, Yi-Jen; Tseng, Wei-Kung; Wen, Ming-Shien; Wu, Tao-Cheng; Wu, Chau-Chung; Cheng, Shu-Meng; Chen, Jaw-Wen

    2016-01-01

    Abstract The combination of low rather than high dose of dextromethorphan (DXM) with amlodipine (AM) could improve blood pressure (BP) reduction in hypertensive animals. The study aimed to evaluate the feasibility of different doses of DXM combined with standard AM treatment in clinical hypertension. This was a prospective, 14-week, dose-escalation, multicenter study. After 2-week run-in period with AM 5 mg/day, hypertensive patients who got the BP goal of 140/90 mmHg kept receiving AM monotherapy for another 12 weeks. The nonresponders, while kept on AM 5 mg/day, received additional DXM treatment for 3 sequential dose-titrated periods with initially 2.5 mg/day, followed by 7.5 mg/day, and finally 30 mg/day. Each period was for 4 weeks. The patients at BP goal after each treatment period were defined as the responders and kept on the same combination till the end of the study. The responder rate of each treatment period was recorded. The changes of BP and serum antioxidant/endothelial markers between week 14 and week 2 were evaluated. Of the 103 patients initially enrolled, 89 entered the treatment period. In the 78 patients completing the study, 31 (40%) at BP goal after 2-week AM run-in kept on AM monotherapy (DXM0). The addition of 2.5 (DXM2.5) and 7.5 mg/day (DXM7.5) of DXM enabled BP goal achievement in 22 (47%) nonresponders to AM monotherapy including 16 (29%) with DXM2.5 and 6 (18%) with DXM7.5. Only 4 patients (16%) reached BP goal with the combination of DXM 30 mg/day (DXM30). Overall, 73% of the 78 patients reached BP goal at the end of the 14-week study. Mean systolic BP was reduced by 7.9% ± 7.0% with DXM2.5 (P < 0.001) and by 5.4% ± 2.4% with DXM7.5 (P = 0.003) respectively at week 14 from that at week 2, which was unchanged in either DXM0 or DXM30 group. Besides, the effects of combination treatment were particularly significant in the patients with impaired endothelial function suggested by reduced serum NOx level

  6. Pharmacokinetic Effects of Isavuconazole Coadministration With the Cytochrome P450 Enzyme Substrates Bupropion, Repaglinide, Caffeine, Dextromethorphan, and Methadone in Healthy Subjects

    PubMed Central

    Yamazaki, Takao; Desai, Amit; Goldwater, Ronald; Han, David; Howieson, Corrie; Akhtar, Shahzad; Kowalski, Donna; Lademacher, Christopher; Pearlman, Helene; Rammelsberg, Diane

    2016-01-01

    Abstract This report describes phase 1 clinical trials performed to assess interactions of oral isavuconazole at the clinically targeted dose (200 mg, administered as isavuconazonium sulfate 372 mg, 3 times a day for 2 days; 200 mg once daily [QD] thereafter) with single oral doses of the cytochrome P450 (CYP) substrates: bupropion hydrochloride (CYP2B6; 100 mg; n = 24), repaglinide (CYP2C8/CYP3A4; 0.5 mg; n = 24), caffeine (CYP1A2; 200 mg; n = 24), dextromethorphan hydrobromide (CYP2D6/CYP3A4; 30 mg; n = 24), and methadone (CYP2B6/CYP2C19/CYP3A4; 10 mg; n = 23). Compared with each drug alone, coadministration with isavuconazole changed the area under the concentration‐time curves (AUC∞) and maximum concentrations (Cmax) as follows: bupropion, AUC∞ reduced 42%, Cmax reduced 31%; repaglinide, AUC∞ reduced 8%, Cmax reduced 14%; caffeine, AUC∞ increased 4%, Cmax reduced 1%; dextromethorphan, AUC∞ increased 18%, Cmax increased 17%; R‐methadone, AUC∞ reduced 10%, Cmax increased 3%; S‐methadone, AUC∞ reduced 35%, Cmax increased 1%. In all studies, there were no deaths, 1 serious adverse event (dextromethorphan study; perioral numbness, numbness of right arm and leg), and adverse events leading to study discontinuation were rare. Thus, isavuconazole is a mild inducer of CYP2B6 but does not appear to affect CYP1A2‐, CYP2C8‐, or CYP2D6‐mediated metabolism. PMID:27273149

  7. Binding of bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine to wild-type and F120A mutant cytochrome P450 2D6 studied by resonance Raman spectroscopy

    SciTech Connect

    Bonifacio, Alois . E-mail: zwan@few.vu.nl

    2006-05-12

    Cytochrome P450 2D6 (CYP2D6) is one of the most important drug-metabolizing enzymes in humans. Resonance Raman data, reported for First time for CYP2D6, show that the CYP2D6 heme is found to be in a six-coordinated low-spin state in the absence of substrates, and it is perturbed to different extents by bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine (MDMA). Dextromethorphan and MDMA induce in CYP2D6 a significant amount of five-coordinated high-spin heme species and reduce the polarity of its heme-pocket, whereas bufuralol does not. Spectra of the F120A mutant CYP2D6 suggest that Phe{sup 12} is involved in substrate-binding of dextromethorphan and MDMA, being responsible for the spectral differences observed between these two compounds and bufuralol. These differences could be explained postulating a different substrate mobility for each compound in the CYP2D6 active site, consistently with the role previously suggested for Phe{sup 12} in binding dextromethorphan and MDMA.

  8. Treatment Resistant Depression with Loss of Antidepressant Response: Rapid—Acting Antidepressant Action of Dextromethorphan, A Possible Treatment Bridging Molecule

    PubMed Central

    Lauterbach, Edward C.

    2016-01-01

    Dextromethorphan (DM) may have ketamine—like rapid—acting, treatment—resistant, and conventional antidepressant effects.1,2 This reports our initial experience with DM in unipolar Major Depressive Disorder (MDD). A patient with treatment—resistant MDD (failing adequate trials of citalopram and vortioxetine) with loss of antidepressant response (to fluoxetine and bupropion) twice experienced a rapid—acting antidepressant effect within 48 hours of DM administration and lasting 7 days, sustained up to 20 days with daily administration, then gradually developing labile loss of antidepressant response over the ensuing 7 days. Upon full relapse in DSM-5 MDD while taking 600 mg/day of the strong CYP2D6 inhibitor bupropion XL, a 300 mg oral loading dose of DM was given, followed by 60 mg po bid after an additional dose—finding period, without side effects. DM exhibited a ketamine—like rapid—acting antidepressant effect, thought to be mediated by mTOR activation (related to NMDA PCP site antagonism, sigma-1 and beta adrenergic receptor stimulation) and 5HTT inhibition, resulting in AMPA receptor trafficking, and dendritogenesis, spinogenesis, synaptogenesis, and increased neuronal survival (related to NMDA antagonism and sigma-1 and mTOR signaling). This report appears to be the first report of a rapid—acting effect in unipolar MDD and adds to antidepressant effects observed in the retrospective chart review of 77 patients with Bipolar II Disorder (Kelly and Lieberman 2014). If replicated, there is some reason to think that the administration of other agents with DM, such as lithium or D-cycloserine, might prolong the duration of the rapid-antidepressant effect. PMID:27738380

  9. Influence of Carbopol 71G-NF on the release of dextromethorphan hydrobromide from extended-release matrix tablets.

    PubMed

    Fayed, Mohamed H; Mahrous, Gamal M; Ibrahim, Mohamed A; Sakr, Adel

    2013-01-01

    The objective of this study was to evaluate the potential of Carbopol(®) 71G-NF on the release of dextromethorphan hydrobromide (DM) from matrix tablets in comparison with hydroxypropyl methylcellulose (HPMC(®) K15M) and Eudragit(®) L100-55 polymers. Controlled release DM matrix tablets were prepared using Carbopol 71G-NF, HPMC K15M, and Eudragit L100-55 at different drug to polymer ratios by direct compression technique. The mechanical properties of the tablets as tested by crushing strength and friability tests were improved as the concentration of Carbopol, HPMC, and Eudragit increased. However, Carbopol-based tablets showed a significantly (P<0.05) higher crushing strength and a lower friability than HPMC and Eudragit tablets. No significant differences in weight uniformity and thickness values were observed between the different formulations. It was also found that Carbopol significantly (P<0.05) delayed the release of DM in comparison with HPMC K15M and Eudragit L100-55. A combination of HPMC K15M and Eudragit L100-55 in a 1:1 ratio at 20 and 30% significantly (P<0.05) delayed the release of DM than Eudragit L100-55 alone. Moreover, blends of Carbopol and HPMC at a 1:1 ratio at the 10, 20, and 30% total polymer concentration were investigated. The blend of Carbopol and HPMC at 10% level significantly (P<0.05) slowed the release of DM than Carbopol or HPMC alone, whereas blends at 20 and 30% level significantly (P<0.05) delayed the release of DM compared with HPMC or Carbopol alone. The results with these polymer blends showed that it was possible to reduce the total amount of polymers when used as a combination in formulation.

  10. Role of hippocampal and prefrontal cortical signaling pathways in dextromethorphan effect on morphine-induced memory impairment in rats.

    PubMed

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2016-02-01

    Evidence suggests that dextromethorphan (DM), an NMDA receptor antagonist, induces memory impairment. Considering that DM is widely used in cough-treating medications, and the co-abuse of DM with morphine has recently been reported, the aims of the present study was (1) to investigate whether there is a functional interaction between morphine and DM in passive avoidance learning and (2) to assess the possible role of the hippocampal and prefrontal cortical (PFC) signaling pathways in the effects of the drugs on memory formation. Our findings indicated that post-training or pre-test administration of morphine (2 and 6 mg/kg) or DM (10-30 mg/kg) impaired memory consolidation and retrieval which was associated with the attenuation of the levels of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (p-CAMKII) and cAMP responsive element-binding protein (p-CREB) in the targeted sites. Moreover, the memory impairment induced by post-training administration of morphine was reversed by pre-test administration of the same dose of morphine or DM (30 mg/kg), indicating state-dependent learning (SDL) and a cross-SDL between the drugs. It is important to note that the levels of p-CAMKII/CAMKII and p-CREB/CREB in the hippocampus and the PFC increased in drugs-induced SDL. In addition, DM administration potentiated morphine-induced SDL which was related to the enhanced levels of hippocampal and PFC CAMKII-CREB signaling pathways. It can be concluded that there is a relationship between the hippocampus and the PFC in the effect of DM and/or morphine on memory retrieval. Moreover, a cross SDL can be induced between the co-administration of DM and morphine. Interestingly, CAMKII-CREB signaling pathways also mediate the drugs-induced SDL.

  11. SKF 525-A and cytochrome P-450 ligands inhibit with high affinity the binding of ( sup 3 H)dextromethorphan and. sigma. ligands to guinea pig brain

    SciTech Connect

    Klein, M.; Canoll, P.D.; Musacchio, J.M. )

    1991-01-01

    The DM{sub 1}/{sigma}{sub 1} site binds dextromethorphan (DM) and {sigma} receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of ({sup 3}H)dextromethorphan, ({sup 3}H)3- (3-Hydroxyphenyl) -N- (1-propyl) piperidine and (+)-({sup 3}H)1,3-Di-o-tolyl-guanidine (({sup 3}H)DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drug has identical nM K{sub i} values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM{sub 1}{sigma}{sub 1} site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed K{sub i} values of 9-13 and 3-4 {mu}M respectively against the three labeled ligands. These results, the broad specificity of the DM{sub 1}/{sigma}{sub 1} binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor.

  12. Effect of Curcuma longa on CYP2D6- and CYP3A4-mediated metabolism of dextromethorphan in human liver microsomes and healthy human subjects.

    PubMed

    Al-Jenoobi, Fahad Ibrahim; Al-Thukair, Areej A; Alam, Mohd Aftab; Abbas, Fawkeya A; Al-Mohizea, Abdullah M; Alkharfy, Khalid M; Al-Suwayeh, Saleh A

    2015-03-01

    Effect of Curcuma longa rhizome powder and its ethanolic extract on CYP2D6 and CYP3A4 metabolic activity was investigated in vitro using human liver microsomes and clinically in healthy human subjects. Dextromethorphan (DEX) was used as common probe for CYP2D6 and CYP3A4 enzymes. Metabolic activity of CYP2D6 and CYP3A4 was evaluated through in vitro study; where microsomes were incubated with NADPH in presence and absence of Curcuma extract. In clinical study phase-I, six healthy human subjects received a single dose (30 mg) of DEX syrup, and in phase-II DEX syrup was administered with Curcuma powder. The enzyme CYP2D6 and CYP3A4 mediated O- and N-demethylation of dextromethorphan into dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. Curcuma extract significantly inhibited the formation of DOR and 3-MM, in a dose-dependent and linear fashion. The 100 μg/ml dose of curcuma extract produced highest inhibition, which was about 70 % for DOR and 80 % for 3-MM. Curcuma significantly increases the urine metabolic ratio of DEX/DOR but the change in DEX/3-MM ratio was statistically insignificant. Present findings suggested that curcuma significantly inhibits the activity of CYP2D6 in in vitro as well as in vivo; which indicates that curcuma has potential to interact with CYP2D6 substrates.

  13. The role of NMDA receptor and nitric oxide/cyclic guanosine monophosphate pathway in the antidepressant-like effect of dextromethorphan in mice forced swimming test and tail suspension test.

    PubMed

    Sakhaee, Ehsan; Ostadhadi, Sattar; Khan, Muhammad Imran; Yousefi, Farbod; Norouzi-Javidan, Abbas; Akbarian, Reyhaneh; Chamanara, Mohsen; Zolfaghari, Samira; Dehpour, Ahmad-Reza

    2017-01-01

    Depression is a devastating disorder which has a high impact on the wellbeing of overall society. As such, need for innovative therapeutic agents are always there. Most of the researchers focused on N-methyl-d-aspartate receptor to explore the antidepressant like activity of new therapeutic agents. Dextromethorphan is a cough suppressant agent with potential antidepressant activity reported in mouse force swimming test. Considering N-methyl-d-aspartate as a forefront in exploring antidepressant agents, here we focused to unpin the antidepressant mechanism of dextromethorphan targeting N-methyl-d-aspartate receptor induced nitric oxide-cyclic guanosine monophosphate signaling. Dextromethorphan administered at a dose of 10 and 30mg/kg i.p significantly reduced the immobility time. Interestingly, this effect of drug (30mg/kg) was inhibited when the animals were pretreated either with N-methyl-d-aspartate (75mg/kg), or l-arginine (750mg/kg) as a nitric oxide precursor and/or sildenafil (5mg/kg) as a phosphodiesterase 5 inhibitor. However, the antidepressant effect of Dextromethorphan subeffective dose (3mg/kg) was augmented when the animals were administered with either L-NG-Nitroarginine methyl ester (10mg/kg) non-specific nitric oxide synthase inhibitor, 7-Nitroindazole (30mg/kg) specific neural nitric oxide synthase inhibitor, MK-801 (0.05mg/kg) an N-methyl-d-aspartate receptor antagonist but not aminoguanidine (50mg/kg) which is specific inducible nitric oxide synthase inhibitor as compared to the drugs when administered alone. No remarkable effect on locomotor activity was observed during open field test when the drugs were administered at the above mentioned doses. Therefore, it is evident that the antidepressant like effect of Dextromethorphan is owed due to its inhibitory effect on N-methyl-d-aspartate receptor and NO- Cyclic guanosine monophosphate pathway.

  14. Therapeutic Approach of a High Functioning Individual With Traumatic Brain Injury and Subsequent Emotional Volatility With Features of Pathological Laughter and Crying With Dextromethorphan/Quinidine

    PubMed Central

    Garcia-Baran, Dynela; Johnson, Thomas M.; Wagner, Joyce; Shen, Joann; Geers, Michelle

    2016-01-01

    Abstract Pathological laughing and crying, or pseudobulbar affect (PBA), has been described in patients with neurological disorders such as multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, stroke, and traumatic brain injury (TBI) since the 19th century (Schiffer 2005). The syndrome is characterized by inappropriate episodes of laughing or crying after minor stimuli. It was first coined a disinhibition of cortical control by Kinnier Wilson in 1924. It was observed in brain disease and seen with mild TBI. It can impair social and occupational function and is largely underrecognized in clinical settings. PBA is usually treated with antidepressants and dopaminergic agents. In this case we treated a military recruit with TBI with Nuedexta—a dextromethorphan/Quinidine derivative with a subsequent decrease in his episodes. PMID:27015166

  15. Therapeutic Approach of a High Functioning Individual With Traumatic Brain Injury and Subsequent Emotional Volatility With Features of Pathological Laughter and Crying With Dextromethorphan/Quinidine.

    PubMed

    Garcia-Baran, Dynela; Johnson, Thomas M; Wagner, Joyce; Shen, Joann; Geers, Michelle

    2016-03-01

    Pathological laughing and crying, or pseudobulbar affect (PBA), has been described in patients with neurological disorders such as multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, stroke, and traumatic brain injury (TBI) since the 19th century (Schiffer 2005). The syndrome is characterized by inappropriate episodes of laughing or crying after minor stimuli. It was first coined a disinhibition of cortical control by Kinnier Wilson in 1924. It was observed in brain disease and seen with mild TBI. It can impair social and occupational function and is largely underrecognized in clinical settings. PBA is usually treated with antidepressants and dopaminergic agents. In this case we treated a military recruit with TBI with Nuedexta-a dextromethorphan/Quinidine derivative with a subsequent decrease in his episodes.

  16. Alterations of postsynaptic density proteins in the hippocampus of rat offspring from the morphine-addicted mother: Beneficial effect of dextromethorphan.

    PubMed

    Yang, San Nan; Liu, Chieh-An; Chung, Mei-Yung; Huang, Hsin-Chun; Yeh, Geng-Chang; Wong, Chih-Shung; Lin, Wei-Wen; Yang, Chun-Hua; Tao, Pao-Luh

    2006-01-01

    Infants passively exposed to morphine or heroin through their addicted mothers usually develop characteristic withdrawal syndrome of morphine after birth. In such early life, the central nervous system exhibits significant plasticity and can be altered by various prenatal influences, including prenatal morphine exposure. Here we studied the effects of prenatal morphine exposure on postsynaptic density protein 95 (PSD-95), an important cytoskeletal specialization involved in the anchoring of the NMDAR and neuronal nitric oxide synthase (nNOS), of the hippocampal CA1 subregion from young offspring at postnatal day 14 (P14). We also evaluated the therapeutic efficacy of dextromethorphan, a widely used antitussive drug with noncompetitive antagonistic effects on NMDARs, for such offspring. The results revealed that prenatal morphine exposure caused a maximal decrease in PSD-95 expression at P14 followed by an age-dependent improvement. In addition, prenatal morphine exposure reduced not only the expression of nNOS and the phosphorylation of cAMP responsive element-binding protein at serine 133 (CREB(Serine-133)), but also the magnitude of long-term depression (LTD) at P14. Subsequently, the morphine-treated offspring exhibited impaired performance in long-term learning and memory at later ages (P28-29). Prenatal coadministration of dextromethorphan with morphine during pregnancy and throughout lactation could significantly attenuate the adverse effects as described above. Collectively, the study demonstrates that maternal exposure to morphine decreases the magnitude of PSD-95, nNOS, the phosphorylation of CREB(Serine-133), and LTD expression in hippocampal CA1 subregion of young offspring (e.g., P14). Such alterations within the developing brain may play a role for subsequent neurological impairments (e.g., impaired performance of long-term learning and memory). The results raise a possibility that postsynaptic density proteins could serve an important role, at least

  17. Floating matrix dosage form for dextromethorphan hydrobromide based on gas forming technique: in vitro and in vivo evaluation in healthy volunteers.

    PubMed

    Hu, Liandong; Li, Li; Yang, Xun; Liu, Wei; Yang, Jianxue; Jia, Yanhong; Shang, Chuang; Xu, Hongxin

    2011-01-18

    The objective of this study was to develop the dextromethorphan hydrobromide sustained-release (DMB-SR) tablets using floating technique to prolong the gastric residence time and compared their pharmacokinetic behavior with conventional sustained release tablets. DMB-SR floating tablets were prepared employing hydroxypropyl methylcellulose (HPMC) as hydrophilic gel material, sodium bicarbonate as gas-generating agent and hexadecanol as floating assistant agent. An orthogonal experiment design method was used to select the optimized formulation. The floating tablets were evaluated for uniformity of weight, hardness, friability, drug content, floating characteristics, in vitro release and in vivo bioavailability. The optimized tablets were prepared with HPMC K4M 25 mg, sodium bicarbonate 20 mg and hexadecanol 18 mg. The prepared tablets could float within 3 min and maintain for more than 24 h. The data of physical parameters were all lie within the limits. Drug release at 12 h was more than 85%. The comparative pharmacokinetic study was performed by administration of the DMB-SR floating tablets and conventional DMB-SR tablets. The area under curve of plasma concentration-time (AUC) of floating tablets was slightly higher than that of reference tablets, T(max) was prolonged apparently. The results showed the floating tablets are a feasible approach for the sustained-release preparation of drugs, which have limited absorption sites in the stomach.

  18. Attenuation by dextromethorphan on the higher liability to morphine-induced reward, caused by prenatal exposure of morphine in rat offspring.

    PubMed

    Wu, Ling-Yi; Chen, Jain-Fang; Tao, Pao-Luh; Huang, Eagle Yi-Kung

    2009-11-25

    Co-administration of dextromethorphan (DM) with morphine during pregnancy and throughout lactation has been found to reduce morphine physical dependence and tolerance in rat offspring. No evidence was presented, however, for the effect of DM co-administered with morphine during pregnancy on morphine-induced reward and behavioral sensitization (possibly related to the potential to induce morphine addiction) in morphine-exposed offspring. Conditioned place preference and locomotor activity tests revealed that the p60 male offspring of chronic morphine-treated female rats were more vulnerable to morphine-induced reward and behavioral sensitization. The administration of a low dose of morphine (1 mg/kg, i.p.) in these male offspring also increased the dopamine and serotonin turnover rates in the nucleus accumbens, which implied that they were more sensitive to morphine. Co-administration of DM with morphine in the dams prevented this adverse effect of morphine in the offspring rats. Thus, DM may possibly have a great potential in the prevention of higher vulnerability to psychological dependence of morphine in the offspring of morphine-addicted mothers.

  19. Effects of dextromethorphan on MDMA-induced serotonergic aberration in the brains of non-human primates using [123I]-ADAM/SPECT

    PubMed Central

    Ma, Kuo-Hsing; Liu, Tsung-Ta; Weng, Shao-Ju; Chen, Chien-Fu F.; Huang, Yuahn-Sieh; Chueh, Sheau-Huei; Liao, Mei-Hsiu; Chang, Kang-Wei; Sung, Chi-Chang; Hsu, Te-Hung; Huang, Wen-Sheng; Cheng, Cheng-Yi

    2016-01-01

    3,4-Methylenedioxymethamphetamine (MDMA), a common recreational drug, is known to cause serotonergic neurotoxicity in the brain. Dextromethorphan (DM) is a widely used antitussive reported to exert anti-inflammatory effect in vivo. In this study, we examined the long-term effect of MDMA on the primate serotonergic system and the protective property of DM against MDMA-induced serotonergic abnormality using single photon emission computed tomography (SPECT). Nine monkeys (Macaca cyclopis) were divided into three groups, namely control, MDMA and co-treatment (MDMA/DM). [123I]-ADAM was used as the radioligand for serotonin transporters (SERT) in SPECT scans. SERT levels of the brain were evaluated and presented as the uptake ratios (URs) of [123I]-ADAM in several regions of interest of the brain including midbrain, thalamus and striatum. We found that the URs of [123I]-ADAM were significantly lower in the brains of MDMA than control group, indicating lower brain SERT levels in the MDMA-treated monkeys. This MDMA-induced decrease in brain SERT levels could persist for over four years. However, the loss of brain SERT levels was not observed in co-treatment group. These results suggest that DM may exert a protective effect against MDMA-induced serotonergic toxicity in the brains of the non-human primate. PMID:27941910

  20. Role of hypothermia in the mechanism of protection against serotonergic toxicity. II. Experiments with methamphetamine, p-chloroamphetamine, fenfluramine, dizocilpine and dextromethorphan.

    PubMed

    Farfel, G M; Seiden, L S

    1995-02-01

    Several amphetamine analogs, when administered in high-dose regimens, have been shown to cause long-lasting depletions of central serotonin (5-HT), which are indicative of neuronal toxicity. These depletions and the resulting toxicity can be attenuated pharmacologically or by lowering ambient temperature. The noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine (DZ) blocks depletion of 5-HT induced by methamphetamine (METH) and p-chloroamphetamine (PCA), but not fenfluramine (FEN). This study investigated whether the effects of DZ and another calcium channel antagonist, dextromethorphan (DEX), are due to induction of hypothermia. Male Sprague-Dawley rats were injected with either saline (SAL), DZ (1 or 2 injections of 2.5 mg/kg), or DEX (75.0 mg/kg) followed by either SAL, METH (4 injections of 10.0 mg/kg), PCA (1 injection of 10.0 mg/kg) or FEN (2 or 4 injections of 12.5 mg/kg). Core body temperature (TEMP) was monitored for 4 h or longer with radiotelemetry. Base-line TEMP was between 37.0 and 37.6 degrees C. SAL/METH caused a significant increase in TEMP which peaked at 40.8 +/- 0.50 degrees C after the last injection. Coadministration of DZ with METH caused TEMP to decrease to 33.8 +/- 0.30 degrees C within 2 h of the first injection and lasting more than 3 h, and protected against depletion of 5-HT. SAL/PCA caused a small increase in TEMP to 37.7 +/- 0.36 degrees C, whereas coadministration of DZ with PCA decreased TEMP to 35.2 +/- 0.50 degrees C, lasting 2 h, in a dose regimen which has been shown to be neuroprotective.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. An open-label multicenter study to assess the safety of dextromethorphan/quinidine in patients with pseudobulbar affect associated with a range of underlying neurological conditions

    PubMed Central

    Pattee, Gary L.; Wymer, James P.; Lomen-Hoerth, Catherine; Appel, Stanley H.; Formella, Andrea E.; Pope, Laura E.

    2014-01-01

    Abstract Background: Pseudobulbar affect (PBA) is associated with neurological disorders or injury affecting the brain, and characterized by frequent, uncontrollable episodes of crying and/or laughing that are exaggerated or unrelated to the patient’s emotional state. Clinical trials establishing dextromethorphan and quinidine (DM/Q) as PBA treatment were conducted in patients with amyotrophic lateral sclerosis (ALS) or multiple sclerosis (MS). This trial evaluated DM/Q safety in patients with PBA secondary to any neurological condition affecting the brain. Objective: To evaluate the safety and tolerability of DM/Q during long-term administration to patients with PBA associated with multiple neurological conditions. Methods: Fifty-two-week open-label study of DM/Q 30/30 mg twice daily. Safety measures included adverse events (AEs), laboratory tests, electrocardiograms (ECGs), vital signs, and physical examinations. Clinical trial registration: #NCT00056524. Results: A total of 553 PBA patients with >30 different neurological conditions enrolled; 296 (53.5%) completed. The most frequently reported treatment-related AEs (TRAEs) were nausea (11.8%), dizziness (10.5%), headache (9.9%), somnolence (7.2%), fatigue (7.1%), diarrhea (6.5%), and dry mouth (5.1%). TRAEs were mostly mild/moderate, generally transient, and consistent with previous controlled trials. Serious AEs (SAEs) were reported in 126 patients (22.8%), including 47 deaths, mostly due to ALS progression and respiratory failure. No SAEs were deemed related to DM/Q treatment by investigators. ECG results suggested no clinically meaningful effect of DM/Q on myocardial repolarization. Differences in AEs across neurological disease groups appeared consistent with the known morbidity of the primary neurological conditions. Study interpretation is limited by the small size of some disease groups, the lack of a specific efficacy measure and the use of a DM/Q dose higher than the eventually approved dose

  2. Multivariate optimization and validation of a capillary electrophoresis method for the simultaneous determination of dextromethorphan hydrobromur, phenylephrine hydrochloride, paracetamol and chlorpheniramine maleate in a pharmaceutical preparation using response surface methodology.

    PubMed

    Palabiyik, I Murat; Onur, Feyyaz

    2010-01-01

    A fast, accurate, precise and sensitive capillary electrophoresis method for the simultaneous determination of dextromethorphan hydrobromide, phenylephrine hydrochloride, paracetamol and chlorpheniramine maleate has been developed. Response surface methodology with a central composite design was used for optimization of the concentration of the buffer, pH of the buffer and applied voltage. Therefore, working with Na(2)HPO(4) buffer (pH 8.00, 0.01 M) at 20 kV as an applied voltage in the capillary electrophoresis method were found to be suitable; under these optimal conditions, these four active ingredients were separated in about 7 min. This developed method was validated and successfully applied to a pharmaceutical preparation, sugar-coated tablet, and the results were compared with a high-performance liquid chromatographic method developed by us.

  3. Development and validation of a sensitive UHPLC-MS/MS method for the simultaneous analysis of tramadol, dextromethorphan chlorpheniramine and their major metabolites in human plasma in forensic context: application to pharmacokinetics.

    PubMed

    Heneedak, Hala M; Salama, Ismail; Mostafa, Samia; El-Kady, Ehab; El-Sadek, Mohamed

    2015-07-01

    The prerequisites for forensic confirmatory analysis by LC/MS/MS with respect to European Union guidelines are chromatographic separation, a minimum number of two MS/MS transitions to obtain the required identification points and predefined thresholds for the variability of the relative intensities of the MS/MS transitions (MRM transitions) in samples and reference standards. In the present study, a fast, sensitive and robust method to quantify tramadol, chlorpheniramine, dextromethorphan and their major metabolites, O-desmethyltramadol, dsmethyl-chlorpheniramine and dextrophan, respectively, in human plasma using ibuprofen as internal standard (IS) is described. The analytes and the IS were extracted from plasma by a liquid-liquid extraction method using ethyl acetate-diethyl-ether (1:1). Extracted samples were analyzed by ultra-high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS). Chromatographic separation was performed by pumping the mobile phase containing acetonitrile, water and formic acid (89.2:11.7:0.1) for 2.0 min at a flow rate of 0.25 μL/min into a Hypersil-Gold C18 column, 20 × 2.0 mm (1.9 µm) from Thermoscientific, New York, USA. The calibration curve was linear for the six analytes. The intraday precision (RSD) and accuracy (RE) of the method were 3-9.8 and -1.7-4.5%, respectively. The analytical procedure herein described was used to assess the pharmacokinetics of the analytes in 24 healthy volunteers after a single oral dose containing 50 mg of tramadol hydrochloride, 3 mg chlorpheniramine maleate and 15 mg of dextromethorphan hydrobromide.

  4. Dextromethorphan Distribution Act of 2009

    THOMAS, 111th Congress

    Rep. Upton, Fred [R-MI-6

    2009-03-03

    04/01/2009 Received in the Senate and Read twice and referred to the Committee on Health, Education, Labor, and Pensions. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  5. Effects of dextromethorphan as add-on to sitagliptin on blood glucose and serum insulin concentrations in individuals with type 2 diabetes mellitus: a randomized, placebo-controlled, double-blinded, multiple crossover, single-dose clinical trial.

    PubMed

    Marquard, J; Stirban, A; Schliess, F; Sievers, F; Welters, A; Otter, S; Fischer, A; Wnendt, S; Meissner, T; Heise, T; Lammert, E

    2016-01-01

    In this clinical trial, we investigated the blood glucose (BG)-lowering effects of 30, 60 and 90 mg dextromethorphan (DXM) as well as 100 mg sitagliptin alone versus combinations of DXM and sitagliptin during an oral glucose tolerance test (OGTT) in 20 men with T2DM. The combination of 60 mg DXM plus 100 mg sitagliptin was observed to have the strongest effect in the OGTT. It lowered maximum BG concentrations and increased the baseline-adjusted area under the curve for serum insulin concentrations in the first 30 min of the OGTT (mean ± standard deviation 240 ± 47 mg/dl and 8.1 ± 6.1 mU/l/h, respectively) to a significantly larger extent than did 100 mg sitagliptin alone (254 ± 50 mg/dl and 5.8 ± 2.5 mU/l/h, respectively; p < 0.05) and placebo (272 ± 49 mg/dl and 3.9 ± 3.0 mU/l/h, respectively; p < 0.001). All study drugs were well tolerated, alone and in combination, without serious adverse events or hypoglycaemia. Long-term clinical trials are now warranted to investigate the potential of the combination of 30 or 60 mg DXM and dipeptidyl peptidase-4 inhibitors in the treatment of individuals with T2DM, in particular as preclinical studies have identified the β-cell protective properties of DXM.

  6. Pharmacogenetic determination of the effects of codeine and prediction of drug interactions.

    PubMed

    Caraco, Y; Sheller, J; Wood, A J

    1996-09-01

    To define the differences in codeine pharmacodynamics in extensive (EMs) and poor (PMs) metabolizers of debrisoquin and to determine whether the inhibition of codeine's metabolism by quinidine produces phenotypically dependent pharmacodynamic changes, we studied 16 healthy nonsmoking males, 10 EMs and 6 PMs of debrisoquin. The subjects received in random double-blind fashion 120 mg of codeine plus placebo, 120 mg of codeine plus 100 mg of quinidine and 100 mg of quinidine plus placebo. Blood was obtained over 24 hr and urine was collected for 48 hr. Respiratory, psychomotor and pupillary effects of codeine were greater in the EMs than in the PMs (P < .01). Morphine and morphine metabolites were detectable only in plasma from EMs. Codeine metabolic clearance by O-demethylation was almost 200-fold greater in the EMs than in the PMs. After coadministration of quinidine, morphine and morphine metabolites were not detectable in the plasma of either phenotype and mean (+/- S.E.M.) O-demethylation clearance was reduced in the EMs from 162.7 +/- 36.6 to 17.0 +/- 5.0 ml/min (P < .003), but not in the PMs. The diminished production of morphine in the EMs was associated with significantly reduced respiratory, psychomotor and pupillary effects (P < .01). Thus, CYP2D6 mediated O-demethylation of codeine to morphine is central to its pharmacodynamic effects. Patients who lack CYP2D6 or whose CYP2D6 is inhibited would not be expected to benefit from codeine. Thus, phenotyping for CYP2D6 and the avoidance of CYP2D6 inhibitors is justified in patients with chronic path before initiating long-term therapy with analgesics whose in vivo activation is dependent on CYP2D6 activity (i.e., codeine, hydrocodone and oxycodone.

  7. Selective inhibition of the cytochrome P450 isoform by hyperoside and its potent inhibition of CYP2D6.

    PubMed

    Song, Min; Hong, Miri; Lee, Min Young; Jee, Jun-Goo; Lee, You Mie; Bae, Jong-Sup; Jeong, Tae Cheon; Lee, Sangkyu

    2013-09-01

    Hyperoside, quercetin-3-O-galactoside, is a flavonoid isolated from Oenanthe javanica. In the present study, we investigated potential herb-drug inhibitory effects of hyperoside on nine cytochrome P450 (CYP) isoforms in pooled human liver microsomes (HLMs) and human recombinant cDNA expressed CYP using a cocktail probe assay. Hyperoside strongly inhibited CYP2D6-catalyzed dextromethorphan O-demethylation, with IC₅₀ values of 1.2 and 0.81 μM after 0 and 15 min of preincubation, and a Ki value of 2.01 μM in HLMs, respectively. Hyperoside strongly decreased CYP2D6 activity dose-, but not time-, dependently in HLMs. In addition, the Lineweaver-Burk and Secondary plots for the inhibition of CYP2D6 in HLMs fitted a competitive inhibition mode. Furthermore, hyperoside decreased CYP2D6-catalyzed dextromethorphan O-demethylation activity of human recombinant cDNA-expressed CYP2D6, with an IC₅₀ value of 3.87 μM. However, other CYPs were not inhibited significantly by hyperoside. In conclusion, our data demonstrate that hyperoside is a potent selective CYP2D6 inhibitor in HLMs, and suggest that hyperoside might cause herb-drug interactions when co-administrated with CYP2D substrates.

  8. Dextromethorphan Abuse Reduction Act of 2009

    THOMAS, 111th Congress

    Sen. Durbin, Richard [D-IL

    2009-06-25

    06/25/2009 Read twice and referred to the Committee on the Judiciary. (text of measure as introduced: CR S7098-7099) (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  9. Appetite suppressant drugs as inhibitors of human cytochromes P450: in vitro inhibition of P450-2D6 by D- and L-fenfluramine, but not phentermine.

    PubMed

    von Moltke, L L; Greenblatt, D J; Ciraulo, D A; Grassi, J M; Granda, B W; Duan, S X; Harmatz, J S; Shader, R I

    1998-08-01

    The activity of D-fenfluramine, L-fenfluramine, and phentermine as inhibitors of five human cytochromes P450 was evaluated using human liver microsomes in vitro. All three compounds produced negligible inhibition of P450-1A2, -2C9, -2E1, and -3A. Phentermine also did not inhibit P450-2D6. However, D- and L-fenfluramine significantly inhibited P450-2D6 activity as measured by dextromethorphan O-demethylation, with mean 50% inhibitory concentrations (15.1 microM) within one order of magnitude of that for fluoxetine (2.7 microM). Findings from the in vitro assay are consistent with clinical studies showing significant inhibition of desipramine clearance by coadministration of fenfluramine.

  10. Rapid and accurate liquid chromatography and tandem mass spectrometry method for the simultaneous quantification of ten metabolic reactions catalyzed by hepatic cytochrome P450 enzymes.

    PubMed

    Shi, Rong; Ma, Bingliang; Wu, Jiasheng; Wang, Tianming; Ma, Yueming

    2015-10-01

    The hepatic cytochrome P450 enzymes play a central role in the biotransformation of endogenous and exogenous substances. A sensitive high-throughput liquid chromatography with tandem mass spectrometry assay was developed and validated for the simultaneous quantification of the products of ten metabolic reactions catalyzed by hepatic cytochrome P450 enzymes. After the substrates were incubated separately, the samples were pooled and analyzed by liquid chromatography with tandem mass spectrometry using an electrospray ionization source in the positive and negative ion modes. The method exhibited linearity over a broad concentration range, insensitivity to matrix effects, and high accuracy, precision, and stability. The novel method was successfully applied to study the kinetics of phenacetin-O deethylation, coumarin-7 hydroxylation, bupropion hydroxylation, taxol-6 hydroxylation, omeprazole-5 hydroxylation, dextromethorphan-O demethylation, tolbutamide-4 hydroxylation, chlorzoxazone-6 hydroxylation, testosterone-6β hydroxylation, and midazolam-1 hydroxylation in rat liver microsomes.

  11. The inhibitory effect of tannic acid on cytochrome P450 enzymes and NADPH-CYP reductase in rat and human liver microsomes.

    PubMed

    Yao, Hsien-Tsung; Chang, Yi-Wei; Lan, Shih-Jung; Yeh, Teng-Kuang

    2008-02-01

    Tannic acid has been shown to decrease mutagenicity and/or carcinogenicity of several amine derivatives and polycyclic aromatic hydrocarbons in rodents. The purpose of this study was to evaluate the effect of tannic acid on cytochrome P450 (CYP)-catalyzed oxidations using rat liver microsomes (RLM) and human liver microsomes (HLM) as the enzyme sources. In RLM, tannic acid showed a non-selective inhibitory effect on 7-methoxyresorufin O-demethylation (MROD), 7-ethoxyresorufin O-deethylation (EROD), tolbutamide hydroxylation, p-nitrophenol hydroxylation and testosterone 6beta-hydroxylation activities with IC(50) values ranged from 14.9 to 27.4 microM. In HLM, tannic acid inhibited EROD, MROD and phenacetin O-deethylation activities with IC(50) values ranged from 5.1 to 7.5 microM, and diclofenac 4-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and testosterone 6beta-hydroxylation with IC(50) values ranged from 20 to 77 microM. In baculovirus-insect cell-expressed human CYP 1A1 and 1A2, the IC(50) values of tannic acid for CYP 1A1- and 1A2-catalyzed EROD activities were 23.1 and 2.3 microM, respectively, indicating that tannic acid preferably inhibited the activity of CYP1A2. Tannic acid inhibited human CYP1A2 non-competitively with a Ki value of 4.8 microM. Tannic acid was also found to inhibit NADPH-CYP reductase in RLM and HLM with IC(50) values of 11.8 and 17.4 microM, respectively. These results suggested that the inhibition of CYP enzyme activities by tannic acid may be partially attributed to its inhibition of NADPH-CYP reductase activity.

  12. In vitro metabolism studies of new adenosine A 2A receptor antagonists.

    PubMed

    Marucci, Gabriella; Finaurini, Sara; Buccioni, Michela; Lammi, Carmen; Kandhavelu, Meenakshisundaram; Volpini, Rosaria; Ricciutelli, Massimo; Angeli, Piero; Commandeur, Jan N M; Cristalli, Gloria

    2008-12-01

    Evidence, obtained in rodent and primate models of Parkinson's disease (PD) and in preliminary clinical trials, indicates that adenosine A(2A) receptor antagonists might represent a promising non-dopaminergic therapeutic tool for the treatment of PD. Recently, we have reported the biological evaluation of 8-substituted 9-ethyladenines (ANR) as new A(2A) receptor antagonists, three of which (ANR 82, ANR 94, and ANR 152) showed high efficacy in in vivo models for Parkinson's. Understanding the metabolic pathways of new drug candidates is an important aspect of drug discovery. The ANR compounds have been investigated in order to clarify their activity on rat liver microsomes, and more specifically on recombinant human cytochrome P450 2D6 (CYP2D6). The metabolites of all three compounds were detected by liquid chromatography/tandem mass spectrometry (LC-MS/MS). The results indicate that this class of 9-ethyladenines is metabolized only to a fraction of 1.5-5%. These compounds also act as potent mechanism-based inhibitors of CYP450 and in particular of human isoform CYP2D6. Kinetic-analysis of enzyme inactivation was used to describe the effect of these time-dependent inhibitors and to derive the inhibition parameters K(inact) and K(i) defined with respect to the O-demethylation of dextromethorphan.

  13. Application of a higher throughput approach to derive apparent Michaelis-Menten constants of isoform-selective p450-mediated biotransformation reactions in human hepatocytes.

    PubMed

    Li, Albert P; Schlicht, Kari E

    2014-01-01

    A higher throughput platform was developed for the determination of K(M) values for isoformselective P450 substrates in human hepatocytes via incubation of the hepatocytes with substrates in 384- well plates and metabolite quantification by RapidFire™ mass spectrometry. Isoform-selective P450 substrates were incubated at 8 concentrations in triplicate with cryopreserved human hepatocytes from 16 donors. The metabolic pathways examined were the CYP1A2-catalyzed tacrine 1-hydroxylation, CYP2B6-catalyzed bupropion hydroxylation, CYP2C8-catalyzed amodiaquine N-deethylation, CYP2C9- catalyzed diclofenac 4'-hydroxylation, CYP2D6-catalyzed dextromethorphan O-demethylation, and CYP3A4-catalyzed midazolam 1'-hydroxylation. Typical saturation enzyme kinetics was observed for all the pathways evaluated. Individual differences in the apparent V(max) and K(M) values were observed among the human hepatocytes from each of the 16 individual donors, with no statistically significant gender- or age-associated differences. A "composite" K(M) value was calculated for each of the pathways via normalizing the individual activities to their respective V(max) values to develop "relative activities" followed by Michaelis-Menten analysis of the mean relative activities of the 16 donors at each of the 8 substrate concentrations. The resulting "composite" K(M) values for the P450 substrates may be used to guide in vitro P450 inhibition and induction studies and kinetic modeling of in vivo drug-drug interaction.

  14. CYP2D6 Is Inducible by Endogenous and Exogenous Corticosteroids.

    PubMed

    Farooq, Muhammad; Kelly, Edward J; Unadkat, Jashvant D

    2016-05-01

    Although cytochrome P450 (CYP) 2D6 has been widely considered to be noninducible on the basis of human hepatocyte studies, in vivo data suggests that it is inducible by endo- and xenobiotics. Therefore, we investigated if the experimental conditions routinely used in human hepatocyte studies may be a confounding factor in the lack of in vitro induction of CYP2D6. Sandwich cultured human hepatocytes (SCHH) were preincubated with or without dexamethasone (100 nM) for 72 hours before incubation with 1μM endogenous (cortisol or corticosterone) or exogenous (dexamethasone or prednisolone) corticosteroids. At 72 hours, CYP2D6 mRNA, protein, and activity were quantified by real-time quantitative polymerase chain reaction, quantitative proteomics, and formation of dextrorphan from dextromethorphan, respectively. In the absence of supplemental dexamethasone, CYP2D6 activity, mRNA, and protein were significantly and robustly (>10-fold) induced by all four corticosteroids. However, this CYP2D6 induction was abolished in cells preincubated with supplemental dexamethasone. These data show, for the first time, that CYP2D6 is inducible in vitro but the routine presence of 100 nM dexamethasone in the culture medium masks this induction. Our cortisol data are in agreement with the clinical observation that CYP2D6 is inducible during the third trimester of pregnancy when the plasma concentrations of cortisol increase to ∼1μM. These findings, if confirmed in vivo, have implications for predicting CYP2D6-mediated drug-drug interactions and call for re-evaluation of regulatory guidelines on screening for CYP2D6 induction by xenobiotics. Our findings also suggest that cortisol may be a causative factor in the in vivo induction of CYP2D6 during pregnancy.

  15. Novel Anticonvulsant Analogs of Dextromethorphan: Improved Efficacy, Potency, Duration and Side-Effect Profile

    DTIC Science & Technology

    1994-02-01

    which is a more potent anticonvul- cough suppressants, exhibits a broad-spectrum anticonvulsant sant (Tortella et al., 1988a; Wong et al, 1988; Aram et... cough sup- A- ANI-037 pressant like DM, we studied the anticonvulsant efficacy and 20 acute behavioral toxicity of DM and a series of novel DM analogs in...AND BRAITMAN, D. J.: Effects of non-opioid antitussives on epileptiform activity and NMDA responses in hippocampal and olfactory cortex mechanism of

  16. Trial of Naltrexone and Dextromethorphan for Gulf War Veterans’ Illnesses

    DTIC Science & Technology

    2014-07-01

    Hom J. Is there a Gulf War Syndrome? Searching for syndromes by factor analysis of symptoms. JAMA. 1997;277:215-22. Erratum in: JAMA 1997 Aug 6;278(5...388. 2. Haley RW, Hom J, Roland PS, Bryan WW, Van Ness PC, Bonte FJ, Devous MD Sr, Mathews D, Fleckenstein JL, Wians FH Jr, Wolfe GI, Kurt TL

  17. Trial of Naltrexone and Dextromethorphan for Gulf War Veterens’ Illness

    DTIC Science & Technology

    2016-03-01

    modification that individuals who had developed co-morbidities such as diabetes mellitus who were excluded in the original criteria were not excluded. This...too restrictive. The exclusion criteria excluded patients who had diabetes and other conditions that are distinct from GWI. The inclusion criteria...clinical trial. J Clin Psychopharmacol. 2007 Feb;27(1):67-70. 24 Rauck RL, Shaibani A, Biton V, Simpson J, Koch B. Lacosamide in Painful Diabetic

  18. Guanfu base A, an antiarrhythmic alkaloid of Aconitum coreanum, Is a CYP2D6 inhibitor of human, monkey, and dog isoforms.

    PubMed

    Sun, Jianguo; Peng, Ying; Wu, Hui; Zhang, Xueyuan; Zhong, Yunxi; Xiao, Yanan; Zhang, Fengyi; Qi, Huanhuan; Shang, Lili; Zhu, Jianping; Sun, Yue; Liu, Ke; Liu, Jinghan; A, Jiye; Ho, Rodney J Y; Wang, Guangji

    2015-05-01

    Guanfu base A (GFA) is a novel heterocyclic antiarrhythmic drug isolated from Aconitum coreanum (Lèvl.) rapaics and is currently in a phase IV clinical trial in China. However, no study has investigated the influence of GFA on cytochrome P450 (P450) drug metabolism. We characterized the potency and specificity of GFA CYP2D inhibition based on dextromethorphan O-demethylation, a CYP2D6 probe substrate of activity in human, mouse, rat, dog, and monkey liver microsomes. In addition, (+)-bufuralol 1'-hydroxylation was used as a CYP2D6 probe for the recombinant form (rCYP2D6), 2D1 (rCYP2D1), and 2D2 (rCYP2D2) activities. Results show that GFA is a potent noncompetitive inhibitor of CYP2D6, with inhibition constant Ki = 1.20 ± 0.33 μM in human liver microsomes (HLMs) and Ki = 0.37 ± 0.16 μM for the human recombinant form (rCYP2D6). GFA is also a potent competitive inhibitor of CYP2D in monkey (Ki = 0.38 ± 0.12 μM) and dog (Ki = 2.4 ± 1.3 μM) microsomes. However, GFA has no inhibitory activity on mouse or rat CYP2Ds. GFA did not exhibit any inhibition activity on human recombinant CYP1A2, 2A6, 2C8, 2C19, 3A4, or 3A5, but showed slight inhibition of 2B6 and 2E1. Preincubation of HLMs and rCYP2D6 resulted in the inactivation of the enzyme, which was attenuated by GFA or quinidine. Beagle dogs treated intravenously with dextromethorphan (2 mg/ml) after pretreatment with GFA injection showed reduced CYP2D metabolic activity, with the Cmax of dextrorphan being one-third that of the saline-treated group and area under the plasma concentration-time curve half that of the saline-treated group. This study suggests that GFA is a specific CYP2D6 inhibitor that might play a role in CYP2D6 medicated drug-drug interaction.

  19. Effects of green tea catechins on cytochrome P450 2B6, 2C8, 2C19, 2D6 and 3A activities in human liver and intestinal microsomes.

    PubMed

    Misaka, Shingen; Kawabe, Keisuke; Onoue, Satomi; Werba, José Pablo; Giroli, Monica; Tamaki, Sekihiro; Kan, Toshiyuki; Kimura, Junko; Watanabe, Hiroshi; Yamada, Shizuo

    2013-01-01

    The effects of green tea catechins on the main drug-metabolizing enzymatic system, cytochrome P450 (CYP), have not been fully elucidated. The objective of the present study was to evaluate the effects of green tea extract (GTE, total catechins 86.5%, w/w) and (-)-epigallocatechin-3-gallate (EGCG) on the activities of CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A in vitro, using pooled human liver and intestinal microsomes. Bupropion hydroxylation, amodiaquine N-deethylation, (S)-mephenytoin 4'-hydroxylation, dextromethorphan O-demethylation and midazolam 1'-hydroxylation were assessed in the presence or absence of various concentrations of GTE and EGCG to test their effects on CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A activities, respectively. Each metabolite was quantified using UPLC/ESI-MS, and the inhibition kinetics of GTE and EGCG on CYP enzymes was analyzed. In human liver microsomes, IC50 values of GTE were 5.9, 4.5, 48.7, 25.1 and 13.8 µg/mL, for CYP2B6, CYP2C8, CYP2C19, CYP2D6 and CYP3A, respectively. ECGC also inhibited these CYP isoforms with properties similar to those of GTE, and produced competitive inhibitions against CYP2B6 and CYP2C8, and noncompetitive inhibition against CYP3A. In human intestinal microsomes, IC50 values of GTE and EGCG for CYP3A were 18.4 µg/mL and 31.1 µM, respectively. EGCG moderately inhibited CYP3A activity in a noncompetitive manner. These results suggest that green tea catechins cause clinically relevant interactions with substrates for CYP2B6 and CYP2C8 in addition to CYP3A.

  20. Suppressive effect of the ethanolic extract of adlay bran on cytochrome P-450 enzymes in rat liver and lungs.

    PubMed

    Yao, Hsien-Tsung; Lin, Jia-Hsuan; Chiang, Meng-Tsan; Chiang, Wenchang; Luo, Mei-Nin; Lii, Chong-Kuei

    2011-04-27

    Adlay ( Coix lachryma-jobi L. var. ma-yuen Stapf) is a grass crop and is reported to protect against various diseases such as cancer. To investigate the effect of the ethanolic extract of adlay bran (ABE) on drug-metabolizing enzymes and glutathione-related antioxidant enzymes in rats, three groups of eight male Sprague-Dawley rats each were fed a control diet or a diet containing 5 or 10% ABE for 4 weeks. Significant decreases in microsomal cytochrome P-450 (CYP) 1A1-catalyzed ethoxyresorufin O-deethylation, CYP2C-catalyzed diclofenac 4-hydroxylation, CYP2D-catalyzed dextromethorphan O-demethylation, and CYP3A-catalyzed testosterone 6β-hydroxylation in the liver and CYP1A1-catalyzed ethoxyresorufin O-deethylation in the lungs of rats fed ABE were observed. Immunoblot analyses also showed decreases of CYP1A1, 1A2, 2C6, 2C11, 2D1, 2E1, 3A1, and 3A2 in the liver and CYP1A1 in the lungs. Furthermore, rats fed the 10% ABE diet had a higher glutathione content and glutathione peroxidase, glutathione reductase, and glutathione S-transferase activities in the lungs, but such an increase was not noted in the liver. Inhibition of various CYP-catalyzed enzyme reactions by ABE in rat and human liver microsomes had also been shown. The results of this study indicate that ABE feeding may suppress CYP enzyme activities and CYP protein expression in the liver and lungs of rats. Moreover, the increase of the antioxidant potential by ABE is tissue-specific.

  1. Effect of antipsychotic drugs on human liver cytochrome P-450 (CYP) isoforms in vitro: preferential inhibition of CYP2D6.

    PubMed

    Shin, J G; Soukhova, N; Flockhart, D A

    1999-09-01

    The ability of antipsychotic drugs to inhibit the catalytic activity of five cytochrome P-450 (CYP) isoforms was compared using in vitro human liver microsomal preparations to evaluate the relative potential of these drugs to inhibit drug metabolism. The apparent kinetic parameters for enzyme inhibition were determined by nonlinear regression analysis of the data. All antipsychotic drugs tested competitively inhibited dextromethorphan O-demethylation, a selective marker for CYP2D6, in a concentration-dependent manner. Thioridazine and perphenazine were the most potent, with IC(50) values (2.7 and 1.5 microM) that were comparable to that of quinidine (0.52 microM). The estimated K(i) values for CYP2D6-catalyzing dextrorphan formation were ranked in the following order: perphenazine (0.8 microM), thioridazine (1.4 microM), chlorpromazine (6.4 microM), haloperidol (7.2 microM), fluphenazine (9.4 microM), risperidone (21.9 microM), clozapine (39.0 microM), and cis-thiothixene (65.0 microM). No remarkable inhibition of other CYP isoforms was observed except for moderate inhibition of CYP1A2-catalyzed phenacetin O-deethylation by fluphenazine (K(i) = 40.2 microM) and perphenazine (K(i) = 65.1). The estimated K(i) values for the inhibition of CYP2C9, 2C19, and 3A were >300 microM in almost all antipsychotics tested. These results suggest that antipsychotic drugs exhibit a striking selectivity for CYP2D6 compared with other CYP isoforms. This may reflect a remarkable commonality of structure between the therapeutic targets for these drugs, the transporters, and metabolic enzymes that distribute and eliminate them. Clinically, coadministration of these medicines with drugs that are primarily metabolized by CYP2D6 may result in significant drug interactions.

  2. Abuse of Dextromethorphan-Based Cough Syrup as a Substitute for Licit and Illicit Drugs: A Theoretical Framework.

    ERIC Educational Resources Information Center

    Darboe, Momodou N.

    1996-01-01

    Discusses the emergence of new types of abused drugs in the United States. Notes that young persons often search for substitutes for better-known substances. It is unclear, however, what factors determine the choice of drug or substance for experimentation, considering the wide range of choices. This paper attempts to delineate the factors that…

  3. Hallucinogens and Dissociative Drugs, Including LSD, PCP, Ketamine, Dextromethorphan. National Institute on Drug Abuse Research Report Series.

    ERIC Educational Resources Information Center

    National Inst. on Drug Abuse (DHHS/PHS), Rockville, MD.

    Research is developing a clearer picture of the dangers of mind-altering drugs. The goal of this report is to present the latest information to providers to help them strengthen their prevention and treatment efforts. A description is presented of dissociative drugs, and consideration is given as to why people take hallucinogens. The physical…

  4. Identification of metabolic pathways involved in the biotransformation of tolperisone by human microsomal enzymes.

    PubMed

    Dalmadi, Balázs; Leibinger, János; Szeberényi, Szabolcs; Borbás, Tímea; Farkas, Sándor; Szombathelyi, Zsolt; Tihanyi, Károly

    2003-05-01

    The in vitro metabolism of tolperisone, 1-(4-methyl-phenyl)-2-methyl-3-(1-piperidino)-1-propanone-hydrochloride, a centrally acting muscle relaxant, was examined in human liver microsomes (HLM) and recombinant enzymes. Liquid chromatography-mass spectrometry measurements revealed methyl-hydroxylation (metabolite at m/z 261; M1) as the main metabolic route in HLM, however, metabolites of two mass units greater than the parent compound and the hydroxy-metabolite were also detected (m/z 247 and m/z 263, respectively). The latter was identified as carbonyl-reduced M1, the former was assumed to be the carbonyl-reduced parent compound. Isoform-specific cytochrome P450 (P450) inhibitors, inhibitory antibodies, and experiments with recombinant P450s pointed to CYP2D6 as the prominent enzyme in tolperisone metabolism. CYP2C19, CYP2B6, and CYP1A2 are also involved to a smaller extent. Hydroxymethyl-tolperisone formation was mediated by CYP2D6, CYP2C19, CYP1A2, but not by CYP2B6. Tolperisone competitively inhibited dextromethorphan O-demethylation and bufuralol hydroxylation (K(i) = 17 and 30 microM, respectively). Tolperisone inhibited methyl p-tolyl sulfide oxidation (K(i) = 1200 microM) in recombinant flavin-containing monooxygenase 3 (FMO3) and resulted in a 3-fold (p < 0.01) higher turnover number using rFMO3 than that of control microsomes. Experiments using nonspecific P450 inhibitors-SKF-525A, 1-aminobenzotriazole, 1-benzylimidazole, and anti-NADPH-P450-reductase antibodies-resulted in 61, 47, 49, and 43% inhibition of intrinsic clearance in HLM, respectively, whereas hydroxymethyl-metabolite formation was inhibited completely by nonspecific chemical inhibitors and by 80% with antibodies. Therefore, it was concluded that tolperisone undergoes P450-dependent and P450-independent microsomal biotransformations to the same extent. On the basis of metabolites formed and indirect evidences of inhibition studies, a considerable involvement of a microsomal reductase is

  5. Berberine

    MedlinePlus

    ... in the body and could possible cause side effects.MajorDo not take this combination.Dextromethorphan (Robitussin DM, and others)The body breaks down dextromethorphan (Robitussin DM, others) to get ...

  6. Identifying Drugs

    MedlinePlus

    ... Flakka (alpha-PVP) Amphetamines Barbiturates Bath Salts Benzodiazepines Cocaine DXM (Dextromethorphan) Ecstasy or MDMA (also known as ... Flakka (alpha-PVP) Amphetamines Barbiturates Bath Salts Benzodiazepines Cocaine DXM (Dextromethorphan) Ecstasy or MDMA (also known as ...

  7. A Comparison of the Effects of Preemptive Oral Dextromethorphan on Perceived Postoperative Pain in Male and Female Patients Undergoing Arthroscopic Knee surgery

    DTIC Science & Technology

    2003-12-01

    subjects were randomly assigned to either a treatment group receiving . lmg/kg ketimine or a control group receiving a placebo of .9% saline. The study... Postoperative pain leads to increased morbidity, length of stay, and health care costs. Several studies have shown that preemptively administered N...methyl-D-aspartate (NMDA) antagonists, such as ketimine, are effective in decreasing perception of postoperative pain. To date, there have not been any

  8. The identification of the urinary metabolites of 3-(4-methoxybenzoyl)-1-pentylindole (RCS-4), a novel cannabimimetic, by gas chromatography-mass spectrometry.

    PubMed

    Kavanagh, Pierce; Grigoryev, Andrej; Melnik, Aleksandra; Simonov, Anton

    2012-06-01

    3-(4-Methoxybenzoyl)-1-pentylindole (RCS-4), a synthetic indole-derived cannabimimetic, was first reported to the European Monitoring Centre for Drugs and Drug Addiction via the Early Warning System by Hungarian authorities in 2010 and later identified in head shop test purchases in Ireland. Using gas chromatography-mass spectrometry, we have identified a series of RCS-4 metabolites in urine samples from individuals admitted to hospitals with symptoms of drug intoxication. The metabolites were tentatively identified as products of (i) aromatic monohydroxylation; (ii) dihydroxylation; (iii) aromatic hydroxylation/oxidation of the N-pentyl chain to a ketone; (iv) O-demethylation; (v) O-demethylation/monohydroxylation of N-pentyl chain; (vi) O-demethylation/oxidation of the N-pentyl chain to a ketone; (vii) O-demethylation/aromatic hydroxylation/oxidation of the N-pentyl chain to a ketone; (viii) N-depentylation/aromatic monohydroxylation; and (ix) N and O-dealkylation. The parent compound was not detected. The O-demethylated metabolites were found to be the most useful metabolic markers for the identification of RCS-4 ingestion.

  9. Neuroprotective Treatment of Laser-Induced Retinal Injuries

    DTIC Science & Technology

    2001-10-01

    to evaluate the neuroprotective effect of dextromethorphan, memantine and brimonidine in our rat model of laser- induced retinal-lesions Methods: Argon...dextromethorphan, memantine or brimonidine . The control groups (18 rats for each compound) received the solvent at the same volume and schedule as...size and the magnitude of photoreceptor nuclei loss within the lesions. Conclusions: Systemic treatments with dextromethorphan, memantine or brimonidine

  10. Phenylephrine

    MedlinePlus

    ... Formula® (as a combination product containing Aspirin, Dextromethorphan, Doxylamine, Phenylephrine) ... Sinus Relief® (as a combination product containing Acetaminophen, Doxylamine, Phenylephrine)

  11. Biosynthesis of glycosylated derivatives of tylosin in Streptomyces venezuelae.

    PubMed

    Han, Ah Reum; Park, Sung Ryeol; Park, Je Won; Lee, Eun Yeol; Kim, Dong-Myung; Kim, Byung-Gee; Yoon, Yeo Joon

    2011-06-01

    Streptomyces venezuelae YJ028, bearing a deletion of the entire biosynthetic gene cluster encoding the pikromycin polyketide synthases and desosamine biosynthetic enzymes, was used as a bioconversion system for combinatorial biosynthesis of glycosylated derivatives of tylosin. Two engineered deoxysugar biosynthetic pathways for the biosynthesis of TDP-3-O-demethyl-D-chalcose or TDP-Lrhamnose in conjunction with the glycosyltransferaseauxiliary protein pair DesVII/DesVIII were expressed in a S. venezuelae YJ028 mutant strain. Supplementation of each mutant strain capable of producing TDP-3-O-demethyl- D-chalcose or TDP-L-rhamnose with tylosin aglycone tylactone resulted in the production of the 3-O-demethyl- D-chalcose, D-quinovose, or L-rhamnose-glycosylated tylactone.

  12. Metabolism of melatonin by cytochrome P-450s in rat liver mitochondria and microsomes

    PubMed Central

    Semak, Igor; Korik, Elena; Antonova, Maria; Wortsman, Jacobo; Slominski, Andrzej

    2008-01-01

    In the present study we provide direct evidence for the involvement of rat microsomal cytochrome P450s in melatonin O-demethylation and hydroxylation at two different positions: 2 and 6, as well as generation of N1-acetyl-N2-formyl-5-methoxy-kynuramine (AFMK) and two unknown products. Moreover, we found that mitochondrial cytochrome P450s also converts melatonin into AFMK, N-acetylserotonin (NAS), 2-hydroxymelatonin, 6-hydroxymelatonin and the same two unknown products. Eadie-Hofstee plots for 6-hydroxylation and O-demethylation reactions were curvilinear for all tested fractions, suggestive of involvement of at least two components, one with a high affinity and low capacity, and another with a low affinity and high capacity. Mitochondrial cytochrome P450s exhibited higher affinity (suggesting lower Km value) and higher Vmax for melatonin 6-hydroxylation and O-demethylation for both high-affinity and low-affinity components as compared to microsomal enzymes. The intrinsic clearance for melatonin hydroxylation by high- and low-affinity components displayed the highest values in all tested fractions, indicating that both mitochondrial and microsomal cytochrome P-450s metabolize melatonin principally by 6-hydroxylation, with O-demethylation representing a minor metabolic pathway. PMID:18717775

  13. Metabolism of melatonin by cytochrome P450s in rat liver mitochondria and microsomes.

    PubMed

    Semak, Igor; Korik, Elena; Antonova, Maria; Wortsman, Jacobo; Slominski, Andrzej

    2008-11-01

    In the present study we provide direct evidence for the involvement of rat microsomal cytochrome P450s in melatonin O-demethylation and hydroxylation at two different positions: 2 and 6, as well as generation of N(1)-acetyl-N(2)-formyl-5-methoxy-kynuramine (AFMK) and two unknown products. Moreover, we found that mitochondrial cytochrome P450s also converts melatonin into AFMK, N-acetylserotonin, 2-hydroxymelatonin, 6-hydroxymelatonin and the same two unknown products. Eadie-Hofstee plots for 6-hydroxylation and O-demethylation reactions were curvilinear for all tested fractions, suggestive of involvement of at least two components, one with a high affinity and low capacity, and another with a low affinity and high capacity. Mitochondrial cytochrome P450s exhibited higher affinity (suggesting lower K(m) value) and higher V(max) for melatonin 6-hydroxylation and O-demethylation for both high-affinity and low-affinity components as compared with microsomal enzymes. The intrinsic clearance for melatonin hydroxylation by high- and low-affinity components displayed the highest values in all tested fractions, indicating that both mitochondrial and microsomal cytochrome P450s metabolize melatonin principally by 6-hydroxylation, with O-demethylation representing a minor metabolic pathway.

  14. Hydrocodone

    MedlinePlus

    ... any of the following symptoms: irritability, hyperactivity, abnormal sleep, high-pitched cry, uncontrollable shaking of a part ... Cordarone, Nexterone, Pacerone); azithromycin (Zithromax, Zmax); butorphanol; ... (Celexa); cyclobenzaprine (Amrix); dextromethorphan (found in many cough ...

  15. Codeine

    MedlinePlus

    ... and carisoprodol; and as an ingredient in many cough and cold medications. This monograph only includes information ... the following: cyclobenzaprine (Amrix); dextromethorphan (found in many cough medications; in Nuedexta); lithium (Lithobid); medications for cough, ...

  16. Guaifenesin

    MedlinePlus

    Little Remedies Little Colds Mucus Relief Expectorant Melt Aways® ... Nature Fusion® (as a combination product containing Dextromethorphan, Guaifenesin) ... best for your symptoms. Check nonprescription cough and cold product labels carefully before using two or more ...

  17. Fentanyl Transdermal Patch

    MedlinePlus

    ... dextromethorphan (found in many cough medications; in Nuedexta); lithium (Lithobid); medications for migraine headaches such as almotriptan ( ... pressure; or thyroid, heart, liver, pancreas, gallbladder, or kidney disease.tell your doctor if you are breastfeeding.you ...

  18. Toxicological Findings of Pilots Involved in Aviation Accidents Operated under 14 CFR Part 135

    DTIC Science & Technology

    2009-08-01

    pilots), dextromethorphan (2 pilots), doxylamine (1 pilot), naphazoline (1 pilot), and theophylline (1 pilot) . Other medications found in these 33...aviation accidents between 1997 and 2007. 6 pseudoephedrine, phenylpropanolamine, dextrometho- rphan, doxylamine , and dextrorphan . Finally, lidocaine

  19. Identification of metabolites of selected benzophenanthridine alkaloids and their toxicity evaluation.

    PubMed

    Sandor, Roman; Midlik, Adam; Sebrlova, Kristyna; Dovrtelova, Gabriela; Noskova, Kristyna; Jurica, Jan; Slaninova, Iva; Taborska, Eva; Pes, Ondrej

    2016-03-20

    Selected benzo[c]phenathridine alkaloids were biotransformed using rat liver microsomes and identified by liquid chromatography and mass spectrometry. While the metabolites of commercially available sanguinarine and chelerythrine have been studied in detail, data about the metabolism of the minor alkaloids remained unknown. Reactions involved in transformation include single and/or double O-demethylation, demethylenation, reduction, and hydroxylation. Two metabolites, when isolated, purified and tested for toxicity, were found to be less toxic than the original compounds.

  20. 40 CFR 180.449 - Avermectin B1 and its delta-8,9-isomer; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Avermectin B1 and its delta-8,9-isomer... Tolerances § 180.449 Avermectin B1 and its delta-8,9-isomer; tolerances for residues. (a) General. Tolerances... (5-O-demethyl-25-de(1-methylpropyl)-25-(1-methylethyl) avermectin A1) and its delta-8,9-isomer in...

  1. 40 CFR 180.449 - Avermectin B1 and its delta-8,9-isomer; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Avermectin B1 and its delta-8,9-isomer... Tolerances § 180.449 Avermectin B1 and its delta-8,9-isomer; tolerances for residues. (a) General. Tolerances... (5-O-demethyl-25-de(1-methylpropyl)-25-(1-methylethyl) avermectin A1) and its delta-8,9-isomer in...

  2. Identification of novel and improved antimitotic agents derived from noscapine.

    PubMed

    Anderson, James T; Ting, Anthony E; Boozer, Sherry; Brunden, Kurt R; Crumrine, Chris; Danzig, Joel; Dent, Tom; Faga, Laurel; Harrington, John J; Hodnick, William F; Murphy, Steven M; Pawlowski, Gary; Perry, Robert; Raber, Amy; Rundlett, Stephen E; Stricker-Krongrad, Alain; Wang, Jianmin; Bennani, Youssef L

    2005-11-17

    Analogues of the natural product noscapine were synthesized and their potential as antitumor agents evaluated. The discovery of a novel regioselective O-demethylation facilitated the synthesis of the potent aniline 6, which arrests mammalian cells in the G2/M phase of the cell cycle at 0.1 microM and also affects tubulin polymerization. Aniline 6 is orally bioavailable and is 250-fold more potent than noscapine in reducing cell proliferation in rapidly dividing cells.

  3. Abuse of nutmeg (Myristica fragrans Houtt.): studies on the metabolism and the toxicologic detection of its ingredients elemicin, myristicin, and safrole in rat and human urine using gas chromatography/mass spectrometry.

    PubMed

    Beyer, Jochen; Ehlers, Dorothea; Maurer, Hans H

    2006-08-01

    Seeds of nutmeg are used as spice, but they are also abused because of psychotropic effects described after ingestion of large doses. It was postulated that these effects could be attributable to metabolic formation of amphetamine derivatives from the main nutmeg ingredients elemicin (EL), myristicin (MY), and safrole (SA). In a case of a suspected nutmeg abuse, neither such amphetamine derivatives nor the main nutmeg ingredients could be detected in urine. The metabolites of EL, MY, and SA were identified using gas chromatography-mass spectrometry in rat urine and their presence in human urine of the nutmeg abuser was confirmed. The identified metabolites indicated that EL, MY, and SA were once and twice hydroxylated at the side chain. In addition, EL was O-demethylated at 2 positions followed by side chain hydroxylation. MY and SA were demethylenated and subsequently methylated. In the human urine sample, the following metabolites could be identified: O-demethyl elemicin, O-demethyl dihydroxy elemicin, demethylenyl myristicin, dihydroxy myristicin, and demethylenyl safrole. As in the human urine sample, neither amphetamine derivatives nor the main nutmeg ingredients could be detected in the rat urine samples. Finally, toxicologic detection of nutmeg abuse was possible by identification of the described metabolites of the EL, MY, and SA in urine applying the authors' systematic toxicologic analysis procedure using full-scan gas chromatography-mass spectrometry after acid hydrolysis, liquid-liquid extraction of analytes, and microwave-assisted acetylation of extracted analytes.

  4. Structure of the cobalamin-binding protein of a putative O-demethylase from Desulfitobacterium hafniense DCB-2

    SciTech Connect

    Sjuts, Hanno; Dunstan, Mark S.; Fisher, Karl; Leys, David

    2013-08-01

    The first crystal structure of the vitamin B12-binding protein from a three-component O-demethylase enzyme system is reported. During O-demethylation methyl groups are transferred from phenyl methyl ethers to tetrahydrofolate via methyl-B12 intermediates. This study describes the identification and the structural and spectroscopic analysis of a cobalamin-binding protein (termed CobDH) implicated in O-demethylation by the organohalide-respiring bacterium Desulfitobacterium hafniense DCB-2. The 1.5 Å resolution crystal structure of CobDH is presented in the cobalamin-bound state and reveals that the protein is composed of an N-terminal helix-bundle domain and a C-terminal Rossmann-fold domain, with the cobalamin coordinated in the base-off/His-on conformation similar to other cobalamin-binding domains that catalyse methyl-transfer reactions. EPR spectroscopy of CobDH confirms cobalamin binding and reveals the presence of a cob(III)alamin superoxide, indicating binding of oxygen to the fully oxidized cofactor. These data provide the first structural insights into the methyltransferase reactions that occur during O-demethylation by D. hafniense.

  5. Neuropsychopharmacological understanding for therapeutic application of morphinans.

    PubMed

    Shin, Eun-Joo; Hong, Jau-Shyong; Kim, Hyoung-Chun

    2010-10-01

    Morphinans are a class of compounds containing the basic structure of morphine. It is well-known that morphinans possess diverse pharmacological effects on the central nervous system. This review will demonstrate novel neuroprotective effects of several morphinans such as, dextromethorphan, its analogs and naloxone on the models of multiple neurodegenerative disease by modulating glial activation associated with the production of a host of proinflammatory and neurotoxic factors, although dextromethorphan possesses neuropsychotoxic potentials. The neuroprotective effects and the therapeutic potential for the treatment of excitotoxic and inflammatory neurodegenerative diseases, and underlying mechanism of morphinans are discussed.

  6. Impact of ethnic origin and quinidine coadministration on codeine's disposition and pharmacodynamic effects.

    PubMed

    Caraco, Y; Sheller, J; Wood, A J

    1999-07-01

    CYP2D6 is polymorphically distributed so that in poor metabolizers enzyme activity is missing. The goal of this study was to compare the pharmacokinetics and pharmacodynamics of codeine with and without quinidine between Caucasian and Chinese extensive metabolizers of debrisoquin. Nine Caucasians and eight Chinese subjects received in random, double blind fashion, on two occasions, codeine 120 mg. with placebo or with quinidine 100 mg. Pharmacodynamic effects were determined over 6 h. Codeine-apparent clearance and partial metabolic clearance by O-demethylation were significantly greater in the Caucasian than in the Chinese subjects (1939 +/- 175 ml/min versus 1301 +/- 193 ml/min, p <.03 and 162.7 +/- 36.6 ml/min versus 52.7 +/- 12.7 ml/min, p <.02, respectively). Codeine's respiratory effects (except on resting ventilation) were significantly greater in the Caucasian than in the Chinese subjects (p <.05), but no interethnic differences were noted in codeine's effect on the digit symbol substitution test and pupillary ratio. No morphine or morphine metabolites were detected in plasma when codeine was coadministered with quinidine. Codeine O-demethylation was significantly reduced after quinidine in both ethnic groups; however, the absolute decrease was greater in Caucasians (115.8 +/- 25.9 ml/min versus 46.8 +/- 10.6 ml/min, respectively, p <.03). The diminished production of morphine after quinidine was associated in the Caucasians, but not in the Chinese, with a marked reduction in codeine's effects (p <.01). In conclusion, Chinese produce less morphine from codeine, exhibit reduced sensitivity to that morphine, and therefore might experience reduced analgesic effect in response to codeine. In addition, quinidine induced inhibition of codeine O-demethylation is ethnically dependent with the reduction being greater in Caucasians.

  7. Application of a deuterium replacement strategy to modulate the pharmacokinetics of 7-(3,5-dimethyl-1H-1,2,4-triazol-1-yl)-3-(4-methoxy-2-methylphenyl)-2,6-dimethylpyrazolo[5,1-b]oxazole, a novel CRF1 antagonist.

    PubMed

    Stringer, Rowan A; Williams, Gareth; Picard, Franck; Sohal, Bindi; Kretz, Olivier; McKenna, Jeff; Krauser, Joel A

    2014-05-01

    Deuterium isotope effects were evaluated as a strategy to optimize the pharmacokinetics of 7-(3,5-dimethyl-1H-1,2,4-triazol-1-yl)-3-(4-methoxy-2-methylphenyl)-2,6-dimethylpyrazolo[5,1-b]oxazole (NVS-CRF38), a novel corticotropin-releasing factor receptor 1 (CRF1) antagonist. In an attempt to suppress O-demethylation of NVS-CRF38 without losing activity against the CRF1 receptor, the protons at the site of metabolism were replaced with deuterium. For in vitro and in vivo studies, intrinsic primary isotope effects (KH/KD) were determined by the ratio of intrinsic clearance (CLint) obtained for NVS-CRF38 and deuterated NVS-CRF38. In vitro kinetic isotope effects (KH/KD) were more pronounced when CLint values were calculated based on the rate of formation of the O-desmethyl metabolite (KH/KD ∼7) compared with the substrate depletion method (KH/KD ∼2). In vivo isotope effects were measured in rats after intravenous (1 mg/kg) and oral (10 mg/kg) administration. For both administration routes, isotope effects calculated from in vivo CLint corresponding to all biotransformation pathways were lower (KH/KD ∼2) compared with CLint values calculated from the O-demethylation reaction alone (KH/KD ∼7). Comparative metabolite identification studies were undertaken using rat and human microsomes to explore the potential for metabolic switching. As expected, a marked reduction of the O-demethylated metabolite was observed for NVS-CRF38; however, levels of NVS-CRF38's other metabolites increased, compensating to some extent for the isotope effect.

  8. (-)-Arctigenin as a lead compound for anticancer agent.

    PubMed

    Chen, Gui-Rong; Li, Hong-Fu; Dou, De-Qiang; Xu, Yu-Bin; Jiang, Hong-Shuai; Li, Fu-Rui; Kang, Ting-Guo

    2013-01-01

    (-)-Arctigenin, an important active constituent of the traditional Chinese herb Fructus Arctii, was found to exhibit various bioactivities, so it can be used as a good lead compound for further structure modification in order to find a safer and more potent medicine. (-)-Arctigenin derivatives 1-5 of (-)-arctingen were obtained by modifying with ammonolysis at the lactone ring and sulphonylation at C (6') and C (6″) and O-demethylation at CH3O-C (3'), CH3O-C (3″) and CH3O-C (4″), and their anticancer bioactivities were examined.

  9. Mu receptor binding of some commonly used opioids and their metabolites

    SciTech Connect

    Chen, Zhaorong; Irvine, R.J. ); Somogyi, A.A.; Bochner, F. Royal Adelaide Hospital )

    1991-01-01

    The binding affinity to the {mu} receptor of some opioids chemically related to morphine and some of their metabolites was examined in rat brain homogenates with {sup 3}H-DAMGO. The chemical group at position 6 of the molecule had little effect on binding. Decreasing the length of the alkyl group at position 3 decreased the K{sub i} values (morphine < codeine < ethylmorphine < pholcodine). Analgesics with high clinical potency containing a methoxyl group at position 3 had relatively weak receptor binding, while their O-demethylated metabolites had much stronger binding. Many opioids may exert their pharmacological actions predominantly through metabolites.

  10. Microbial transformation of N-methylcolchiceinamide.

    PubMed Central

    Davis, P J

    1981-01-01

    Seventy-seven microorganisms were examined for their ability to metabolize the antineoplastic agent N-methylcolchiceinamide, an analog of colchicine. Five streptomycetes exhibited significant metabolism, and Streptomyces griseus NRRL B-599 completely converted the substrate to three metabolites. In preparative-scale studies, N-dealkylation resulted in the production of colchiceinamide, the major metabolite (65%), which was characterized by chemical, spectroscopic, and chromatographic comparisons with the standard compound. Two phenolic metabolites resulting from )-dealkylation were also isolated and identified as 2 and 3-O-demethyl-N-methylcolchiceinamide. PMID:6787979

  11. Physiologically Based Pharmacokinetic Predictions of Tramadol Exposure Throughout Pediatric Life: an Analysis of the Different Clearance Contributors with Emphasis on CYP2D6 Maturation.

    PubMed

    T'jollyn, Huybrecht; Snoeys, Jan; Vermeulen, An; Michelet, Robin; Cuyckens, Filip; Mannens, Geert; Van Peer, Achiel; Annaert, Pieter; Allegaert, Karel; Van Bocxlaer, Jan; Boussery, Koen

    2015-11-01

    This paper focuses on the retrospective evaluation of physiologically based pharmacokinetic (PBPK) techniques used to mechanistically predict clearance throughout pediatric life. An intravenous tramadol retrograde PBPK model was set up in Simcyp® using adult clearance values, qualified for CYP2D6, CYP3A4, CYP2B6, and renal contributions. Subsequently, the model was evaluated for mechanistic prediction of total, CYP2D6-related, and renal clearance predictions in very early life. In two in vitro pediatric human liver microsomal (HLM) batches (1 and 3 months), O-desmethyltramadol and N-desmethyltramadol formation rates were compared with CYP2D6 and CYP3A4 activity, respectively. O-desmethyltramadol formation was mediated only by CYP2D6, while N-desmethyltramadol was mediated in part by CYP3A4. Additionally, the clearance maturation of the PBPK model predictions was compared to two in vivo maturation models (Hill and exponential) based on plasma concentration data, and to clearance estimations from a WinNonlin® fit of plasma concentration and urinary excretion data. Maturation of renal and CYP2D6 clearance is captured well in the PBPK model predictions, but total tramadol clearance is underpredicted. The most pronounced underprediction of total and CYP2D6-mediated clearance was observed in the age range of 2-13 years. In conclusion, the PBPK technique showed to be a powerful mechanistic tool capable of predicting maturation of CYP2D6 and renal tramadol clearance in early infancy, although some underprediction occurs between 2 and 13 years for total and CYP2D6-mediated tramadol clearance.

  12. In vitro inhibition of methadone and oxycodone cytochrome P450-dependent metabolism: reversible inhibition by H2-receptor agonists and proton-pump inhibitors.

    PubMed

    Moody, David E; Liu, Fenyun; Fang, Wenfang B

    2013-10-01

    In vitro inhibition of oxycodone metabolism to noroxycodone and oxymorphone and R- and S-methadone metabolism to R- and S-2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) was measured for four H2-receptor antagonists and five proton-pump inhibitors (PPIs) using human liver microsomes (HLM) and cDNA-expressed human cytochrome P450s (rCYPs). Inhibitors were first incubated with HLM at three concentrations with and without preincubation of inhibitor, enzyme source and reducing equivalents to also screen for time-dependent inhibition (TDI). Cimetidine and famotidine (10-1,000 µM) inhibited all the four pathways >50%. Nizatidine and ranitidine did not. All the five PPIs (1-200 µM) inhibited one or more pathways >50%. Half maximal inhibitory concentrations (IC50s) were then determined using rCYPs. Cimetidine and famotidine both inhibited CYP3A4-mediated formation of noroxycodone and CYP2D6-mediated formation of oxymorphone, and famotidine inhibited CYP3A4-mediated formation of R- and S-EDDP, but IC50s were so high that only >10× therapeutic concentrations may have potential for reversible in vivo inhibition. The PPIs were more potent inhibitors; many have the potential for reversible in vivo inhibition at therapeutic concentrations. Omeprazole, esomeprazole and pantoprazole had greater effects on CYP3A4-mediated reactions, whereas lansoprazole was selective for CYP2D6-mediated formation of oxymorphone. Preincubation enhanced cimetidine inhibition of noroxycodone formation and rabeprazole inhibition of all pathways. Future studies will explore irreversible TDI.

  13. Crystal structures of bis-[(9S,13S,14S)-3-meth-oxy-17-methyl-morphinanium] tetra-chlorido-cobaltate and tetra-chlorido-cuprate.

    PubMed

    Gauchat, Eric; Nazarenko, Alexander Y

    2017-01-01

    (9S,13S,14S)-3-Meth-oxy-17-methyl-morphinan (dextromethorphan) forms two isostructural salts with (a) tetra-chlorido-cobaltate, namely bis-[(9S,13S,14S)-3-meth-oxy-17-methyl-morphinanium] tetra-chlorido-cobaltate, (C18H26NO)2[CoCl4], and (b) tetra-chlorido-cuprate, namely bis-[(9S,13S,14S)-3-meth-oxy-17-methyl-morphinanium] tetra-chlorido-cuprate, (C18H26NO)2[CuCl4]. The distorted tetra-hedral anions are located on twofold rotational axes. The dextromethorphan cation can be described as being composed of two ring systems, a tetra-hydro-naphthalene system A+B and a deca-hydro-isoquinolinium subunit C+D, that are nearly perpendicular to one another: the angle between mean planes of the A+B and C+D moieties is 78.8 (1)° for (a) and 79.0 (1)° for (b). Two symmetry-related cations of protonated dextromethorphan are connected to the tetra-chlorido-cobaltate (or tetra-chlorido-cuprate) anions via strong N-H⋯Cl hydrogen bonds, forming neutral ion associates. These associates are packed in the (001) plane with no strong attractive bonding between them. Both compounds are attractive crystalline forms for unambiguous identification of the dextromethorphan and, presumably, of its optical isomer, levomethorphan.

  14. Photochemical N-demethylation of alkaloids.

    PubMed

    Ripper, J A; Tiekink, E R; Scammells, P J

    2001-02-26

    Certain alkaloids were observed to undergo N-demethylation processes under photochemical conditions. Tropine, acetyltropine, tropinone, and atropine were cleanly N-demethylated upon treatment with tetraphenylporphin, oxygen, and light. Dextromethorphan also underwent a N-demethylation reaction, but reacted further to afford an imine. In contrast, 14-acyloxycodeinones underwent a photochemically induced tandem N-demethylation acyl migration.

  15. VA and DoD Operating as One

    DTIC Science & Technology

    2011-01-25

    Dextromethorphan Hydrobromide U UD ŕ RFO DoD Menthol + Cetylpyridinium Chloride, lozenge, I USE AS DIRECTED FOR COUGH I DoD ACETAMINOPHEN. 325 MG. TABLET...ORAL TAKE 1·2 TABS EVERY 4-6HOUR DoD BISMUTH SU8SAUCYLATE. 262 MG. TAB C~ CHEW 2 TABS EVERY 1/2 HOUR DoD Menthol + Cetylpyridinium Chloride

  16. 75 FR 23782 - Drug Safety and Risk Management Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... HUMAN SERVICES Food and Drug Administration Drug Safety and Risk Management Advisory Committee; Notice... be open to the public. Name of Committee: Drug Safety and Risk Management Advisory Committee. General... risks of dextromethorphan use as a cough suppressant in prescription and nonprescription drug...

  17. Epidemiology of Toxicological Factors in Civil Aviation Accident Pilot Fatalities, 1999-2003

    DTIC Science & Technology

    2005-11-01

    central nervous system (5−7). For example, fi rst-generation antihistaminics—brompheniramine, chlorpheniramine, diphenhydramine, and doxylamine — cause...11 18 31 Dextromethorphan/Metabolite(s) 1 7 9 20 Doxylamine 0 8 11 19 Ephedrine 9 24 41 74 Meclizine 0 0 1 1 (–)-Methamphetamine 1 4 3 8

  18. Antitussives and substance abuse

    PubMed Central

    Burns, Jarrett M; Boyer, Edward W

    2013-01-01

    Abuse of antitussive preparations is a continuing problem in the United States and throughout the world. Illicit, exploratory, or recreational use of dextromethorphan and codeine/promethazine cough syrups is widely described. This review describes the pharmacology, clinical effects, and management of toxicity from commonly abused antitussive formulations. PMID:24648790

  19. 76 FR 33727 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Form; and OMB Number: A Trial of Dextromethorphan and Naltrexone for Gulf War illness. Associated Form... collection requirement is necessary in order to contact veterans of the Gulf War to see if they are interested and qualified to participate in a research study. Affected Public: Gulf War Veterans....

  20. Reactive Intermediates Produced from Metabolism of the Vanilloid Ring of Capsaicinoids by P450 Enzymes

    PubMed Central

    Reilly, Christopher A.; Henion, Fred; Bugni, Tim S.; Ethirajan, Manivannan; Stockmann, Chris; Pramanik, Kartick C.; Srivastava, Sanjay K.; Yost, Garold S.

    2012-01-01

    This study characterized electrophilic and radical products derived from metabolism of capsaicin by cytochrome P450 and peroxidase enzymes. Multiple glutathione and β-mercaptoethanol conjugates (a.k.a., adducts), derived from trapping of quinone methide and quinone intermediates of capsaicin, its analogue nonivamide, and O-demethylated and aromatic hydroxylated metabolites thereof, were produced by human liver microsomes and individual recombinant human P450 enzymes. Conjugates derived from concomitant dehydrogenation of the alkyl terminus of capsaicin, were also characterized. Modifications to the 4-OH substituent of the vanilloid ring of capsaicinoids largely prevented the formation of electrophilic intermediates, consistent with the proposed structures and mechanisms of formation for the various conjugates. 5,5’-Dicapsaicin, presumably arising from bi-molecular coupling of free radical intermediates, was also characterized. Finally, the analysis of hepatic glutathione conjugates and urinary N-acetylcysteine conjugates from mice dosed with capsaicin confirmed the formation of glutathione conjugates of O-demethylated, quinone methide, and 5-OH-capsaicin in vivo. These data demonstrated that capsaicin and structurally similar analogues are converted to reactive intermediates by certain P450 enzymes, which may partially explain conflicting reports related to the cytotoxic, pro-carcinogenic, and chemoprotective effects of capsaicinoids in different cells and/or organ systems. PMID:23088752

  1. Metabolism of eupatilin in rats using liquid chromatography/electrospray mass spectrometry.

    PubMed

    Ji, Hye Young; Lee, Hye Won; Shim, Hyun Joo; Kim, Soon Hoe; Kim, Won Bae; Lee, Hye Suk

    2004-04-01

    Eupatilin (5,7-dihydroxy-3',4',6-trimethoxy flavone) is an active ingredient of an ethanol extract of Artemisia asiatica (DA-9601) that is used in the treatment of gastritis. In vitro and in vivo metabolism of eupatilin in the rats has been studied by LC-electrospray mass spectrometry. Rat liver microsomal incubation of eupatilin in the presence of NADPH and UDPGA resulted in the formation of four metabolites (M1-M4). M1, M2, M3 and M4 were tentatively identified as 3'- or 4'-O-demethyl-eupatilin glucuronide, eupatilin glucuronide, 6-O-demethyleupatilin and 3'- or 4'-O-demethyl-eupatilin, respectively. Those metabolites from in vitro study were also characterized in bile, plasma or urine samples after an intravenous administration of eupatilin to rats. In rat bile, plasma and urine samples, eupatilin glucuronide (M2) was a major metabolite, whereas M3, M4 and M4 glucuronide (M1) were the minor metabolites.

  2. Influence of amino acid residue 374 of cytochrome P-450 2D6 (CYP2D6) on the regio- and enantio-selective metabolism of metoprolol.

    PubMed Central

    Ellis, S W; Rowland, K; Ackland, M J; Rekka, E; Simula, A P; Lennard, M S; Wolf, C R; Tucker, G T

    1996-01-01

    Cytochrome P-450 2D6 (CYP2D6) is an important human drug-metabolizing enzyme responsible for the oxidation of more than 30 widely used therapeutic agents. The enzymes encoded by the published genomic [Kimura, Umeno, Skoda, Meyer and Gonzalez (1989) Am. J. Hum. Genet. 45, 889-904] and cDNA [Gonzalez, Skoda, Kimura, Umeno, Zanger, Nebert, Gelboin, Hardwick and Meyer (1988) Nature 331, 442-446] sequences of CYP2D6, and presumed to represent wild-type sequences, differ at residue 374 and encode valine (CYP2D6-Val) and methionine (CYP2D6-Met) respectively. The influence of this amino acid difference on cytochrome P-450 expression, ligand binding, catalysis and stereoselective oxidation of metoprolol was investigated by the heterologous expression of the corresponding cDNAs in the yeast Saccharomyces cerevisiae. The level of expression of apo- and holo-protein was similar with each form of CYP2D6 cDNA, and the binding affinities of a series of ligands to CYP2D6-Val and CYP2D6-Met were identical. The enantioselective O-demethylation and alpha-hydroxylation of metoprolol were also similar with each form of CYP2D6, O-demethylation being R-(+)- enantioselective (CYP2D6-Val: R/S, 1.6; CYP2D6-Met: R/S, 1.4), whereas alpha-hydroxylation showed a preference for S-(-)-metoprolol (CYP2D6-Val: R/S, 0.7; CYP2D6-Met: R/S, 0.8). However, although the favoured regiomer overall was O-demethylmetoprolol (ODM), the regioselectivity for O-demethylation of each metoprolol enantiomer was significantly greater for CYP2D6-Val [R-(+)-: ODM/alpha-hydroxymetoprolol (alpha OH), 5.9; S-(-)-: ODM/alpha OH, 2.5) than that observed for CYP2D6-Met [R-(+)-: ODM/alpha OH, 2.2; S-(-)-: ODM/alpha OH, 1.4]. The stereoselective properties of CYP2D6-Val were consistent with those observed for CYP2D6 in human liver microsomes. The difference in the stereoselective properties of CYP2D6-Val and CYP2D6-Met were rationalized with respect to a homology model of the active site of CYP2D6 based on an alignment with

  3. Separation of cold medicine ingredients by capillary electrophoresis.

    PubMed

    Suntornsuk, L

    2001-01-01

    This study demonstrates the separation of cold medicine ingredients (e.g., phenylpropanolamine, dextromethorphan, chlorpheniramine maleate, and paracetamol) by capillary zone electrophoresis and micellar electrokinetic chromatography. Factors affecting their separations were the buffer pH and the concentrations of buffer, surfactant and organic modifiers. Optimum results were obtained with a 10 mM sodium dihydrogen-phosphate-sodium tetraborate buffer containing 50 mM sodium dodecyl sulfate (SDS) and 5% methanol (MeOH), pH 9.0. The carrier electrolyte gave a baseline separation of phenylpropanolamine, dextromethorphan, chlorpheniramine maleate, and paracetamol with a resolution of 1.2, and the total migration time was 11.38 min.

  4. The pathogenetic role of adulterants in 5 cases of drug addicts with a fatal outcome.

    PubMed

    Barbera, Nunziata; Busardò, Francesco Paolo; Indorato, Francesca; Romano, Guido

    2013-04-10

    The purpose of the present study is to determine the role of lidocaine, caffeine and dextromethorphan, used as adulterant substances, in five cases of drug overdose which have come to our attention. Taking into account the pharmacological mechanism, blood concentration and route of administration (intravenous) we evaluated the hypothesis that these substances could act with a synergistic effect - or at least additive - with the illicit drugs on the central nervous system and cardiovascular system.

  5. Crystal structures of bis­[(9S,13S,14S)-3-meth­oxy-17-methyl­morphinanium] tetra­chlorido­cobaltate and tetra­chlorido­cuprate

    PubMed Central

    Gauchat, Eric; Nazarenko, Alexander Y.

    2017-01-01

    (9S,13S,14S)-3-Meth­oxy-17-methyl­morphinan (dextromethorphan) forms two isostructural salts with (a) tetra­chlorido­cobaltate, namely bis­[(9S,13S,14S)-3-meth­oxy-17-methyl­morphinanium] tetra­chlorido­cobaltate, (C18H26NO)2[CoCl4], and (b) tetra­chlorido­cuprate, namely bis­[(9S,13S,14S)-3-meth­oxy-17-methyl­morphinanium] tetra­chlorido­cuprate, (C18H26NO)2[CuCl4]. The distorted tetra­hedral anions are located on twofold rotational axes. The dextromethorphan cation can be described as being composed of two ring systems, a tetra­hydro­naphthalene system A+B and a deca­hydro­isoquinolinium subunit C+D, that are nearly perpendicular to one another: the angle between mean planes of the A+B and C+D moieties is 78.8 (1)° for (a) and 79.0 (1)° for (b). Two symmetry-related cations of protonated dextromethorphan are connected to the tetra­chlorido­cobaltate (or tetra­chlorido­cuprate) anions via strong N—H⋯Cl hydrogen bonds, forming neutral ion associates. These associates are packed in the (001) plane with no strong attractive bonding between them. Both compounds are attractive crystalline forms for unambiguous identification of the dextromethorphan and, presumably, of its optical isomer, levomethorphan. PMID:28083138

  6. Toxicity and use of over-the-counter cough and cold medication in the pediatric population.

    PubMed

    Montgomery, Emily J; Wasserman, Gary S

    2008-01-01

    Discussions of the efficacy and toxicity of over-the-counter cough and cold medication have been circulating in the pediatric literature for years. Adverse effects of these medications and the lack of evidence of their efficacy in children make their use a serious matter. An additional consideration for physicians is the recreational use of over-the-counter medications, including adolescent abuse of dextromethorphan. The recent increase in media attention to these issues warrants further review.

  7. Biochemical Markers of Brain Injury: An Integrated Proteomics-Based Approach

    DTIC Science & Technology

    2011-12-01

    pharmacological therapy was evaluated. BODY: The specific aims, overall, were not altered. SOW 1: will employ global, high throughput proteomic and...levels to track the effects of Dextromethorphan therapy and correlation to histopathology and neurological outcome. 6 First we tested whether...drug therapies for PBBI. All these experiments were all done with one injury magnitude (10% PBBI). First we tested a derivative of glycine-proline

  8. Laser electrospray mass spectrometry of adsorbed molecules at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Judge, Elizabeth J.; Simon, Kuriakose; Levis, Robert J.

    2010-02-01

    Atmospheric pressure mass analysis of solid phase biomolecules is performed using laser electrospray mass spectrometry (LEMS). A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect a complex molecule (irinotecan HCl), a complex mixture (cold medicine formulation with active ingredients: acetaminophen, dextromethorphan HBr and doxylamine succinate), and a biological building block (deoxyguanosine) deposited on steel surfaces without a matrix molecule.

  9. Activities of cytochrome P450 1A2, N-acetyltransferase 2, xanthine oxidase, and cytochrome P450 2D6 are unaltered in children with cystic fibrosis.

    PubMed

    Kennedy, Mary Jayne; Scripture, Charity D; Kashuba, Angela D M; Scott, Christy S; Gaedigk, Andrea; Kearns, Gregory L

    2004-03-01

    The activities of hepatic cytochrome P450 (CYP) 1A2, N-acetyltransferase 2 (NAT-2), xanthine oxidase (XO), and CYP2D6 were evaluated in 12 young children (aged 3-8 years) with mild cystic fibrosis (CF) and 12 age-matched healthy control subjects by use of standard caffeine and dextromethorphan phenotyping methods. Subjects were given 4 oz of Coca-Cola (approximately 35 mg caffeine) (The Coca-Cola Company, Atlanta, Ga) and a single 0.5-mg/kg dose of dextromethorphan. Urine was collected for 8 hours after biomarker administration, and enzyme activity was assessed by use of previously validated caffeine and dextromethorphan molar ratios. CYP2D6 genotyping was also performed in 10 of 12 subjects with CF and 11 of 12 control subjects. There were no significant differences in the urinary molar ratios for any of the enzyme systems evaluated. These data suggest that CF does not alter the activities of CYP1A2, NAT-2, XO, and CYP2D6. Altered biotransformation of drugs in this patient population is likely enzyme- and isoform-specific and thus is apparent for only selected compounds that are substrates for enzymes other than CYP1A2, NAT-2, XO, and CYP2D6.

  10. Methane production from coal by a single methanogen

    NASA Astrophysics Data System (ADS)

    Mayumi, Daisuke; Mochimaru, Hanako; Tamaki, Hideyuki; Yamamoto, Kyosuke; Yoshioka, Hideyoshi; Suzuki, Yuichiro; Kamagata, Yoichi; Sakata, Susumu

    2016-10-01

    Coal-bed methane is one of the largest unconventional natural gas resources. Although microbial activity may greatly contribute to coal-bed methane formation, it is unclear whether the complex aromatic organic compounds present in coal can be used for methanogenesis. We show that deep subsurface-derived Methermicoccus methanogens can produce methane from more than 30 types of methoxylated aromatic compounds (MACs) as well as from coals containing MACs. In contrast to known methanogenesis pathways involving one- and two-carbon compounds, this “methoxydotrophic” mode of methanogenesis couples O-demethylation, CO2 reduction, and possibly acetyl-coenzyme A metabolism. Because MACs derived from lignin may occur widely in subsurface sediments, methoxydotrophic methanogenesis would play an important role in the formation of natural gas not limited to coal-bed methane and in the global carbon cycle.

  11. Papaverine 7-O-demethylase, a novel 2-oxoglutarate/Fe(2+)-dependent dioxygenase from opium poppy.

    PubMed

    Farrow, Scott C; Facchini, Peter J

    2015-09-14

    Opium poppy (Papaver somniferum) produces several pharmacologically important benzylisoquinoline alkaloids including the vasodilator papaverine. Pacodine and palaudine are tri-O-methylated analogs of papaverine, which contains four O-linked methyl groups. However, the biosynthetic origin of pacodine and palaudine has not been established. Three members of the 2-oxoglutarate/Fe(2+)-dependent dioxygenases (2ODDs) family in opium poppy display widespread O-dealkylation activity on several benzylisoquinoline alkaloids with diverse structural scaffolds, and two are responsible for the antepenultimate and ultimate steps in morphine biosynthesis. We report a novel 2ODD from opium poppy catalyzing the efficient substrate- and regio-specific 7-O-demethylation of papaverine yielding pacodine. The occurrence of papaverine 7-O-demethylase (P7ODM) expands the enzymatic scope of the 2ODD family in opium poppy and suggests an unexpected biosynthetic route to pacodine.

  12. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.

    PubMed

    Zhao, Shou; Abu-Omar, Mahdi M

    2015-07-13

    Biobased epoxy nanocomposites were synthesized based on 2-methoxy-4-propylphenol (dihydroeugenol, DHE), a molecule that has been obtained from the lignin component of biomass. To increase the content of hydroxyl groups, DHE was o-demethylated using aqueous HBr to yield propylcatechol (DHEO), which was subsequently glycidylated to epoxy monomer. Optimal conditions in terms of yield and epoxy equivalent weight were found to be 60 °C with equal NaOH/phenolic hydroxyl molar ratio. The structural evolution from DHE to cured epoxy was followed by (1)H NMR and Fourier transform infrared spectroscopy. The nano-montmorillonite modified DHEO epoxy exhibited improved storage modulus and thermal stability as determined from dynamic mechanical analysis and thermogravimetric analysis. This study widens the synthesis routes of biobased epoxy thermosets from lignin-based molecules.

  13. Use of 13C NMR and ftir for elucidation of degradation pathways during natural litter decomposition and composting I. early stage leaf degradation

    USGS Publications Warehouse

    Wershaw, R. L.; Leenheer, J.A.; Kennedy, K.R.; Noyes, T.I.

    1996-01-01

    Oxidative degradation of plant tissue leads to the formation of natural dissolved organic carbon (DOC) and humus. Infrared (IR) and 13C nuclear magnetic resonance (NMR) spectrometry have been used to elucidate the chemical reactions of the early stages of degradation that give rise to DOC derived from litter and compost. The results of this study indicate that oxidation of the lignin components of plant tissue follows the sequence of O-demethylation, and hydroxylation followed by ring-fission, chain-shortening, and oxidative removal of substituents. Oxidative ring-fission leads to the formation of carboxylic acid groups on the cleaved ends of the rings and, in the process, transforms phenolic groups into aliphatic alcoholic groups. The carbohydrate components are broken down into aliphatic hydroxy acids and aliphatic alcohols.

  14. Ethylene glycol monomethyl ether and propylene glycol monomethyl ether: metabolism, disposition, and subchronic inhalation toxicity studies

    SciTech Connect

    Miller, R.R.; Hermann, E.A.; Young, J.T.; Landry, T.D.; Calhoun, L.L.

    1984-08-01

    Short-term and subchronic vapor inhalation studies have shown that there are pronounced differences in the toxicological properties of ethylene glycol monomethyl ether (EGME) and propylene glycol monomethyl ether (PGME). Overexposure to EGME has resulted in adverse effects on testes, bone marrow and lymphoid tissues in laboratory animals. PGME does not affect these tissues, and instead, overexposure to PGME has been associated with increases in liver weight and central nervous system depression. EGME is primarily oxidized to methoxyacetic acid in male rats, while PGME apparently undergoes O-demethylation to form propylene glycol. Since methoxyacetic acid has been shown to have the same spectrum of toxicity as EGME in male rats, the observed differences in the toxicological properties of EGME and PGME are thought to be due to the fact that the two materials are biotransformed via different routes to different types of metabolites. 6 references, 3 figures, 12 tables.

  15. Cellular reactions of O6-methylguanine, a product of some alkylating carcinogens

    PubMed Central

    Miller, Carolyn Thatcher; Lawley, Philip D.; Shah, Sudhirkumar A.

    1973-01-01

    Cultures of a purine-requiring mutant of Chinese hamster ovary cells (CHO-104b), randomly bred hamster embryo cells, or Escherichia coli Bs−1 were treated with non-toxic doses of 3H-labelled O6-methylguanine. DNA and RNA were isolated and subjected to enzymic digestion to nucleosides at pH8. The products of digestion were analysed by ion-exchange chromatography on columns of Dowex 50 (NH4+ form) at pH8.9. No 3H-labelled O6-methylguanosine was detected in nucleic acid digests. 3H-labelled O6-methylguanine was O-demethylated yielding [3H]guanine in CHO-104b cells. Radioactivity in nucleic acid digests was associated with thymidine, guanosine, deoxyguanosine and an unidentified early-eluting product. Reports of similar unidentified products from nucleic acids labelled with various agents are discussed. PMID:4590203

  16. Methane production from coal by a single methanogen.

    PubMed

    Mayumi, Daisuke; Mochimaru, Hanako; Tamaki, Hideyuki; Yamamoto, Kyosuke; Yoshioka, Hideyoshi; Suzuki, Yuichiro; Kamagata, Yoichi; Sakata, Susumu

    2016-10-14

    Coal-bed methane is one of the largest unconventional natural gas resources. Although microbial activity may greatly contribute to coal-bed methane formation, it is unclear whether the complex aromatic organic compounds present in coal can be used for methanogenesis. We show that deep subsurface-derived Methermicoccus methanogens can produce methane from more than 30 types of methoxylated aromatic compounds (MACs) as well as from coals containing MACs. In contrast to known methanogenesis pathways involving one- and two-carbon compounds, this "methoxydotrophic" mode of methanogenesis couples O-demethylation, CO2 reduction, and possibly acetyl-coenzyme A metabolism. Because MACs derived from lignin may occur widely in subsurface sediments, methoxydotrophic methanogenesis would play an important role in the formation of natural gas not limited to coal-bed methane and in the global carbon cycle.

  17. Metabolic pathways of the psychotropic-carboline alkaloids, harmaline and harmine, by liquid chromatography/mass spectrometry and NMR spectroscopy.

    PubMed

    Zhao, Ting; Zheng, Shan-Song; Zhang, Bin-Feng; Li, Yuan-Yuan; Bligh, S W Annie; Wang, Chang-Hong; Wang, Zheng-Tao

    2012-09-15

    The β-carboline alkaloids, harmaline and harmine, are present in hallucinogenic plants Ayahuasca and Peganum harmala, and in a variety of foods. In order to establish the metabolic pathway and bioactivities of endogenous and xenobiotic bioactive β-carbolines, high-performance liquid chromatography, coupled with mass spectrometry, was used to identify these metabolites in human liver microsomes (HLMs) in vitro and in rat urine and bile samples after oral administration of the alkaloids. Three metabolites of harmaline and two of harmine were found in the HLMs. Nine metabolites for harmaline and seven metabolites for harmine, from the rat urine and bile samples, were identified. Among them, four in vivo metabolites were isolated and fully characterised by NMR analysis. For the first time, harmaline is shown transforming to harmine by oxidative dehydrogenation in rat. Five metabolic pathways were therefore proposed, namely, oxidative dehydrogenation, 7-O-demethylation, hydroxylation, O-glucuronide conjugation and O-sulphate conjugation.

  18. Metabolic patterns of JWH-210, RCS-4, and THC in pig urine elucidated using LC-HR-MS/MS: Do they reflect patterns in humans?

    PubMed

    Schaefer, Nadine; Helfer, Andreas G; Kettner, Mattias; Laschke, Matthias W; Schlote, Julia; Ewald, Andreas H; Meyer, Markus R; Menger, Michael D; Maurer, Hans H; Schmidt, Peter H

    2016-06-22

    The knowledge of pharmacokinetic (PK) properties of synthetic cannabinoids (SCs) is important for interpretation of analytical results found for example in intoxicated individuals. In the absence of human data from controlled studies, animal models elucidating SC PK have to be established. Pigs providing large biofluid sample volumes were tested for prediction of human PK data. In this context, the metabolic fate of two model SCs, namely 4-ethylnaphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-210) and 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4), was elucidated in addition to Δ(9) -tetrahydrocannabinol (THC). After intravenous administration of the compounds, hourly collected pig urine was analyzed by liquid chromatography-high resolution mass spectrometry. The following pathways were observed: for JWH-210, hydroxylation at the ethyl side chain or pentyl chain and combinations of them followed by glucuronidation; for RCS-4, hydroxylation at the methoxyphenyl moiety or pentyl chain followed by glucuronidation as well as O-demethylation followed by glucuronidation or sulfation; for THC, THC glucuronidation, 11-hydroxylation, followed by carboxylation and glucuronidation. For both SCs, parent compounds could not be detected in urine in contrast to THC. These results were consistent with those obtained from human hepatocyte and/or human case studies. Urinary markers for the consumption of JWH-210 were the glucuronide of the N-hydroxypentyl metabolite (detectable for 3-4 h) and of RCS-4 the glucuronides of the N-hydroxypentyl, hydroxy-methoxyphenyl (detectable for at least 6 h), and the O-demethyl-hydroxy metabolites (detectable for 4 h). Copyright © 2016 John Wiley & Sons, Ltd.

  19. Cytochrome P450 CYP81A12 and CYP81A21 Are Associated with Resistance to Two Acetolactate Synthase Inhibitors in Echinochloa phyllopogon1[W

    PubMed Central

    Iwakami, Satoshi; Endo, Masaki; Saika, Hiroaki; Okuno, Junichi; Nakamura, Naoki; Yokoyama, Masao; Watanabe, Hiroaki; Toki, Seiichi; Uchino, Akira; Inamura, Tatsuya

    2014-01-01

    Previous studies have demonstrated multiple herbicide resistance in California populations of Echinochloa phyllopogon, a noxious weed in rice (Oryza sativa) fields. It was suggested that the resistance to two classes of acetolactate synthase-inhibiting herbicides, bensulfuron-methyl (BSM) and penoxsulam (PX), may be caused by enhanced activities of herbicide-metabolizing cytochrome P450. We investigated BSM metabolism in the resistant (R) and susceptible (S) lines of E. phyllopogon, which were originally collected from different areas in California. R plants metabolized BSM through O-demethylation more rapidly than S plants. Based on available information about BSM tolerance in rice, we isolated and analyzed P450 genes of the CYP81A subfamily in E. phyllopogon. Two genes, CYP81A12 and CYP81A21, were more actively transcribed in R plants compared with S plants. Transgenic Arabidopsis (Arabidopsis thaliana) expressing either of the two genes survived in media containing BSM or PX at levels at which the wild type stopped growing. Segregation of resistances in the F2 generation from crosses of R and S plants suggested that the resistance to BSM and PX were each under the control of a single regulatory element. In F6 recombinant inbred lines, BSM and PX resistances cosegregated with increased transcript levels of CYP81A12 and CYP81A21. Heterologously produced CYP81A12 and CYP81A21 proteins in yeast (Saccharomyces cerevisiae) metabolized BSM through O-demethylation. Our results suggest that overexpression of the two P450 genes confers resistance to two classes of acetolactate synthase inhibitors to E. phyllopogon. The overexpression of the two genes could be regulated simultaneously by a single trans-acting element in the R line of E. phyllopogon. PMID:24760819

  20. Identification of human hepatic cytochrome P450 enzymes involved in the metabolism of 8-prenylnaringenin and isoxanthohumol from hops (Humulus lupulus L.).

    PubMed

    Guo, Jian; Nikolic, Dejan; Chadwick, Lucas R; Pauli, Guido F; van Breemen, Richard B

    2006-07-01

    The female flowers of hops (Humulus lupulus L.) are used in the brewing of beer and are under investigation for use in dietary supplements for the management of menopausal symptoms in women. Hop extracts contain the weakly estrogenic compound isoxanthohumol (IX), proestrogenic xanthohumol, and the potent estrogen 8-prenylnaringenin (8PN). Because IX can be metabolized in the human liver to form 8PN, the specific cytochrome P450 (P450) enzymes responsible for this O-demethylation reaction were identified. In addition, the enzymes that convert IX and 8PN to their most abundant metabolites were identified because these metabolic pathways might also affect the estrogenicity of hop preparations. Specifically, the P450 enzymes that catalyze the oxidation of the prenyl side chains of IX and 8PN into trans- or cis-alcohols were investigated. Human liver microsomes and monoclonal antibodies that inhibit specific P450 enzymes were used in combination with liquid chromatography/mass spectrometry to identify the enzymes responsible for these transformations. CYP2C19 was found to catalyze the formation of both cis- and trans-alcohols of the prenyl side chain of 8PN with K(m) values of 14.8 +/- 3.2 and 16.6 +/- 4.6 microM, respectively. CYP2C8 converted 8PN regioselectively to the trans-alcohol of the prenyl group with a K(m) of 3.7 +/- 0.9 microM. Finally, CYP1A2 was found to catalyze the O-demethylation of IX to generate 8PN, with a K(m) value of 17.8 +/- 3.7 microM. These results suggest that the estrogenicity of hop constituents in vivo will depend in part on metabolic conversion that may show individual variation.

  1. Identifying a Selective Substrate and Inhibitor Pair for the Evaluation of CYP2J2 Activity

    PubMed Central

    Lee, Caroline A.; Jones, J. P.; Katayama, Jonathan; Kaspera, Rüdiger; Jiang, Ying; Freiwald, Sascha; Smith, Evan; Walker, Gregory S.

    2012-01-01

    CYP2J2, an arachidonic acid epoxygenase, is recognized for its role in the first-pass metabolism of astemizole and ebastine. To fully assess the role of CYP2J2 in drug metabolism, a selective substrate and potent specific chemical inhibitor are essential. In this study, we report amiodarone 4-hydoxylation as a specific CYP2J2-catalyzed reaction with no CYP3A4, or other drug-metabolizing enzyme, involvement. Amiodarone 4-hydroxylation enabled the determination of liver relative activity factor and intersystem extrapolation factor for CYP2J2. Amiodarone 4-hydroxylation correlated with astemizole O-demethylation but not with CYP2J2 protein content in a sample of human liver microsomes. To identify a specific CYP2J2 inhibitor, 138 drugs were screened using terfenadine and astemizole as probe substrates with recombinant CYP2J2. Forty-two drugs inhibited CYP2J2 activity by ≥50% at 30 μM, but inhibition was substrate-dependent. Of these, danazol was a potent inhibitor of both hydroxylation of terfenadine (IC50 = 77 nM) and O-demethylation of astemizole (Ki = 20 nM), and inhibition was mostly competitive. Danazol inhibited CYP2C9, CYP2C8, and CYP2D6 with IC50 values of 1.44, 1.95, and 2.74 μM, respectively. Amiodarone or astemizole were included in a seven-probe cocktail for cytochrome P450 (P450) drug-interaction screening potential, and astemizole demonstrated a better profile because it did not appreciably interact with other P450 probes. Thus, danazol, amiodarone, and astemizole will facilitate the ability to determine the metabolic role of CYP2J2 in hepatic and extrahepatic tissues. PMID:22328583

  2. Identifying a selective substrate and inhibitor pair for the evaluation of CYP2J2 activity.

    PubMed

    Lee, Caroline A; Jones, J P; Katayama, Jonathan; Kaspera, Rüdiger; Jiang, Ying; Freiwald, Sascha; Smith, Evan; Walker, Gregory S; Totah, Rheem A

    2012-05-01

    CYP2J2, an arachidonic acid epoxygenase, is recognized for its role in the first-pass metabolism of astemizole and ebastine. To fully assess the role of CYP2J2 in drug metabolism, a selective substrate and potent specific chemical inhibitor are essential. In this study, we report amiodarone 4-hydoxylation as a specific CYP2J2-catalyzed reaction with no CYP3A4, or other drug-metabolizing enzyme, involvement. Amiodarone 4-hydroxylation enabled the determination of liver relative activity factor and intersystem extrapolation factor for CYP2J2. Amiodarone 4-hydroxylation correlated with astemizole O-demethylation but not with CYP2J2 protein content in a sample of human liver microsomes. To identify a specific CYP2J2 inhibitor, 138 drugs were screened using terfenadine and astemizole as probe substrates with recombinant CYP2J2. Forty-two drugs inhibited CYP2J2 activity by ≥50% at 30 μM, but inhibition was substrate-dependent. Of these, danazol was a potent inhibitor of both hydroxylation of terfenadine (IC(50) = 77 nM) and O-demethylation of astemizole (K(i) = 20 nM), and inhibition was mostly competitive. Danazol inhibited CYP2C9, CYP2C8, and CYP2D6 with IC(50) values of 1.44, 1.95, and 2.74 μM, respectively. Amiodarone or astemizole were included in a seven-probe cocktail for cytochrome P450 (P450) drug-interaction screening potential, and astemizole demonstrated a better profile because it did not appreciably interact with other P450 probes. Thus, danazol, amiodarone, and astemizole will facilitate the ability to determine the metabolic role of CYP2J2 in hepatic and extrahepatic tissues.

  3. Study on the stereoselective excretion of tetrahydropalmatine enantiomers in rats and identification of in vivo metabolites by liquid chromatography-tandem mass spectrometry.

    PubMed

    Hong, Zhanying; Wen, Jun; Zhang, Quanlong; Fan, Guorong; Chai, Yifeng; Wu, Yutian

    2010-03-01

    The objective of this work was to study the stereoselectivity in excretion of tetrahydropalmatine (THP) enantiomers by rats and identify the metabolites of racemic THP (rac-THP) in rat urine. Urine and bile samples were collected at various time intervals after a single oral dose of rac-THP. The concentrations of THP enantiomers in rat urine and bile were determined using a modification of an achiral-chiral high-performance liquid chromatographic (HPLC) method that had been previously published. The cumulative urinary excretion over 96 h of (-)-THP and (+)-THP was found to be 55.49 +/- 36.9 microg and 18.33 +/- 9.7 microg, respectively. The cumulative biliary excretion over 24 h of (-)-THP and (+)-THP was 19.19 +/- 14.6 microg and 12.53 +/- 10.4 microg, respectively. The enantiomeric (-/+) concentration ratios of THP changed from 2.80 to 5.15 in urine, and from 1.36 to 1.80 in bile. The mean cumulative amount of (-)-THP was significantly higher than that of (+)-THP both in urine and bile samples. However, the enantiomeric (-/+) concentration ratios in rat urine and bile were significantly lower than those ratios in rat plasma. These findings suggested the excretion of THP enantiomers was stereoselective rather than a reflection of chiral pharmacokinetic aspects in plasma and (-)-THP was preferentially excreted in rat urine and bile. Three O-demethylation metabolites and the parent drug rac-THP were detected by liquid chromatography-tandem mass spectrometry in rat urine. One metabolite was obtained by preparative HPLC and identified as 10-O-demethyl-THP.

  4. Monitoring of kratom or Krypton intake in urine using GC-MS in clinical and forensic toxicology.

    PubMed

    Philipp, Anika A; Meyer, Markus R; Wissenbach, Dirk K; Weber, Armin A; Zoerntlein, Siegfried W; Zweipfenning, Peter G M; Maurer, Hans H

    2011-04-01

    The Thai medicinal plant Mitragyna speciosa (kratom) is misused as a herbal drug. Besides this, a new herbal blend has appeared on the drugs of abuse market, named Krypton, a mixture of O-demethyltramadol (ODT) and kratom. Therefore, urine drug screenings should include ODT and focus on the metabolites of the kratom alkaloids mitragynine (MG), paynantheine (PAY), speciogynine (SG), and speciociliatine (SC). The aim of this study was to develop a full-scan gas chromatography-mass spectrometry procedure for monitoring kratom or Krypton intake in urine after enzymatic cleavage of conjugates, solid-phase extraction, and trimethylsilylation. With use of reconstructed mass chromatography with the ions m/z 271, 286, 329, 344, 470, 526, 528, and 586, the presence of MG, 16-carboxy-MG, 9-O-demethyl-MG, and/or 9-O-demethyl-16-carboxy-MG could be indicated, and in case of Krypton, with m/z 58, 84, 116, 142, 303, 361, 393, and 451, the additional presence of ODT and its nor metabolite could be indicated. Compounds were identified by comparison with their respective reference spectra. Depending on the plant type, dose, administration route, and/or sampling time, further metabolites of MG, PAY, SG, and SC could be detected. The limits of detection (signal-to-noise ratio of 3) were 100 ng/ml for the parent alkaloids and 50 ng/ml for ODT. As mainly metabolites of the kratom alkaloids were detected in urine, the detectability of kratom was tested successfully using rat urine after administration of a common user's dose of MG. As the metabolism in humans was similar, this procedure should be suitable to prove an intake of kratom or Krypton.

  5. Metabolism and disposition of N,N-dimethyltryptamine and harmala alkaloids after oral administration of ayahuasca.

    PubMed

    Riba, Jordi; McIlhenny, Ethan H; Valle, Marta; Bouso, José Carlos; Barker, Steven A

    2012-01-01

    Ayahuasca is an Amazonian psychotropic plant tea obtained from Banisteriopsis caapi, which contains β-carboline alkaloids, chiefly harmine, harmaline and tetrahydroharmine. The tea usually incorporates the leaves of Psychotria viridis or Diplopterys cabrerana, which are rich in N,N-dimethyltryptamine (DMT), a psychedelic 5-HT(2A/1A/2C) agonist. The β-carbolines reversibly inhibit monoamine-oxidase (MAO), effectively preventing oxidative deamination of the orally labile DMT and allowing its absorption and access to the central nervous system. Despite increased use of the tea worldwide, the metabolism and excretion of DMT and the β-carbolines has not been studied systematically in humans following ingestion of ayahuasca. In the present work, we used an analytical method involving high performance liquid chromatography (HPLC)/electrospray ionization (ESI)/selected reaction monitoring (SRM)/tandem mass spectrometry(MS/MS) to characterize the metabolism and disposition of ayahuasca alkaloids in humans. Twenty-four-hour urine samples were obtained from 10 healthy male volunteers following administration of an oral dose of encapsulated freeze-dried ayahuasca (1.0 mg DMT/kg body weight). Results showed that less than 1% of the administered DMT dose was excreted unchanged. Around 50% was recovered as indole-3-acetic acid but also as DMT-N-oxide (10%) and other MAO-independent compounds. Recovery of DMT plus metabolites reached 68%. Harmol, harmalol, and tetrahydroharmol conjugates were abundant in urine. However, recoveries of each harmala alkaloid plus its O-demethylated metabolite varied greatly between 9 and 65%. The present results show the existence in humans of alternative metabolic routes for DMT other than biotransformation by MAO. Also that O-demethylation plus conjugation is an important but probably not the only metabolic route for the harmala alkaloids in humans.

  6. Clinical inhibition of CYP2D6-catalysed metabolism by the antianginal agent perhexiline

    PubMed Central

    Davies, Benjamin J L; Coller, Janet K; James, Heather M; Gillis, David; Somogyi, Andrew A; Horowitz, John D; Morris, Raymond G; Sallustio, Benedetta C

    2004-01-01

    Aims Perhexiline is an antianginal agent that displays both saturable and polymorphic metabolism via CYP2D6. The aim of this study was to determine whether perhexiline produces clinically significant inhibition of CYP2D6-catalysed metabolism in angina patients. Methods The effects of perhexiline on CYP2D6-catalysed metabolism were investigated by comparing urinary total dextrorphan/dextromethorphan metabolic ratios following a single dose of dextromethorphan (16.4 mg) in eight matched control patients not taking perhexiline and 24 patients taking perhexiline. All of the patients taking perhexiline had blood drawn for CYP2D6 genotyping as well as to measure plasma perhexiline and cis-OH-perhexiline concentrations. Results Median (range) dextrorphan/dextromethorphan metabolic ratios were significantly higher (P < 0.0001) in control patients, 271.1 (40.3–686.1), compared with perhexiline-treated patients, 5.0 (0.3–107.9). In the perhexiline-treated group 10/24 patients had metabolic ratios consistent with poor metabolizer phenotypes; however, none was a genotypic poor metabolizer. Interestingly, 89% of patients who had phenocopied to poor metabolizers had only one functional CYP2D6 gene. There was a significant negative linear correlation between the log of the dextrorphan/dextromethorphan metabolic ratio and plasma perhexiline concentrations (r2 = 0.69, P < 0.0001). Compared with patients with at least two functional CYP2D6 genes, those with one functional gene were on similar perhexiline dosage regimens but had significantly higher plasma perhexiline concentrations, 0.73 (0.21–1.00) vs. 0.36 (0.04–0.69) mg l−1 (P = 0.04), lower cis-OH-perhexiline/perhexiline ratios, 2.85 (0.35–6.10) vs. 6.51 (1.84–11.67) (P = 0.03), and lower dextrorphan/dextromethorphan metabolic ratios, 2.51 (0.33–39.56) vs. 11.80 (2.90–36.93) (P = 0.005). Conclusions Perhexiline significantly inhibits CYP2D6-catalysed metabolism in angina patients. The plasma cis

  7. Altered expression of small heterodimer partner governs cytochrome P450 (CYP) 2D6 induction during pregnancy in CYP2D6-humanized mice.

    PubMed

    Koh, Kwi Hye; Pan, Xian; Shen, Hong-Wu; Arnold, Samuel L M; Yu, Ai-Ming; Gonzalez, Frank J; Isoherranen, Nina; Jeong, Hyunyoung

    2014-02-07

    Substrates of a major drug-metabolizing enzyme CYP2D6 display increased elimination during pregnancy, but the underlying mechanisms are unknown in part due to a lack of experimental models. Here, we introduce CYP2D6-humanized (Tg-CYP2D6) mice as an animal model where hepatic CYP2D6 expression is increased during pregnancy. In the mouse livers, expression of a known positive regulator of CYP2D6, hepatocyte nuclear factor 4α (HNF4α), did not change during pregnancy. However, HNF4α recruitment to CYP2D6 promoter increased at term pregnancy, accompanied by repressed expression of small heterodimer partner (SHP). In HepG2 cells, SHP repressed HNF4α transactivation of CYP2D6 promoter. In transgenic (Tg)-CYP2D6 mice, SHP knockdown led to a significant increase in CYP2D6 expression. Retinoic acid, an endogenous compound that induces SHP, exhibited decreased hepatic levels during pregnancy in Tg-CYP2D6 mice. Administration of all-trans-retinoic acid led to a significant decrease in the expression and activity of hepatic CYP2D6 in Tg-CYP2D6 mice. This study provides key insights into mechanisms underlying altered CYP2D6-mediated drug metabolism during pregnancy, laying a foundation for improved drug therapy in pregnant women.

  8. Effect of a New Prokinetic Agent DA-9701 Formulated with Corydalis Tuber and Pharbitidis Semen on Cytochrome P450 and UDP-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    PubMed Central

    Ji, Hye Young; Liu, Kwang Hyeon; Jeong, Ji Hyeon; Lee, Dae-Young; Shim, Hyun Joo; Son, Miwon; Lee, Hye Suk

    2012-01-01

    DA-9701 is a new botanical drug composed of the extracts of Corydalis tuber and Pharbitidis semen, and it is used as an oral therapy for the treatment of functional dyspepsia in Korea. The inhibitory potentials of DA-9701 and its component herbs, Corydalis tuber and Pharbitidis semen, on the activities of seven major human cytochrome P450 (CYP) enzymes and four UDP-glucuronosyltransferase (UGT) enzymes in human liver microsomes were investigated using liquid chromatography-tandem mass spectrometry. DA-9701 and Corydalis tuber extract slightly inhibited UGT1A1-mediated etoposide glucuronidation, with 50% inhibitory concentration (IC50) values of 188 and 290 μg/mL, respectively. DA-9701 inhibited CYP2D6-catalyzed bufuralol 1′-hydroxylation with an inhibition constant (Ki) value of 6.3 μg/mL in a noncompetitive manner. Corydalis tuber extract competitively inhibited CYP2D6-mediated bufuralol 1′-hydroxylation, with a Ki value of 3.7 μg/mL, whereas Pharbitidis semen extract showed no inhibition. The volume in which the dose could be diluted to generate an IC50 equivalent concentration (volume per dose index) value of DA-9701 for inhibition of CYP2D6 activity was 1.16 L/dose, indicating that DA-9701 may not be a potent CYP2D6 inhibitor. Further clinical studies are warranted to evaluate the in vivo extent of the observed in vitro interactions. PMID:22548118

  9. Metabolism of MPTP by cytochrome P4502D6 and the demonstration of 2D6 mRNA in human foetal and adult brain by in situ hybridization.

    PubMed

    Gilham, D E; Cairns, W; Paine, M J; Modi, S; Poulsom, R; Roberts, G C; Wolf, C R

    1997-01-01

    1. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a thermal breakdown product of synthetic 'street' heroin, is known to cause Parkinson's Disease-like symptoms in man. 2. The mechanism of action of this neurotoxin is thought to involve activation by the monoamine oxidase B system and subsequent toxicity by inhibition of neuronal mitochondrial respiration. The manifestation of toxicity will be a balance between the rate of activation of this compound versus its rate of inactivation through metabolism by enzymes such as the cytochrome P450-dependent monooxygenases. 3. In this report we demonstrate that MPTP N-demethylation, a detoxification pathway, is catalysed by cytochrome P450 CYP2D6 and up to 40% of the hepatic metabolism is mediated by this enzyme. 4. Perhaps more importantly we also demonstrate by in situ hybridization that CYP2D6 is localized in the pigmented neurons of the substantia nigra indicating that 2D6-mediated detoxification will occur in target cells. 5. These data present evidence that CYP2D6 will be a factor in susceptibility to MPTP neuronal toxicity and provide a biochemical rationale for the genetic observations linking a polymorphism at the CYP2D6 locus with susceptibility to Parkinson's.

  10. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma.

    PubMed

    Mürdter, T E; Schroth, W; Bacchus-Gerybadze, L; Winter, S; Heinkele, G; Simon, W; Fasching, P A; Fehm, T; Eichelbaum, M; Schwab, M; Brauch, H

    2011-05-01

    The therapeutic effect of tamoxifen depends on active metabolites, e.g., cytochrome P450 2D6 (CYP2D6) mediated formation of endoxifen. To test for additional relationships, 236 breast cancer patients were genotyped for CYP2D6, CYP2C9, CYP2B6, CYP2C19, CYP3A5, UGT1A4, UGT2B7, and UGT2B15; also, plasma concentrations of tamoxifen and 22 of its metabolites, including the (E)-, (Z)-, 3-, and 4'-hydroxymetabolites as well as their glucuronides, were quantified using liquid chromatography-tandem mass spectrometry (MS). The activity levels of the metabolites were measured using an estrogen response element reporter assay; the strongest estrogen receptor inhibition was found for (Z)-endoxifen and (Z)-4-hydroxytamoxifen (inhibitory concentration 50 (IC50) 3 and 7 nmol/l, respectively). CYP2D6 genotypes explained 39 and 9% of the variability of steady-state concentrations of (Z)-endoxifen and (Z)-4-hydroxytamoxifen, respectively. Among the poor metabolizers, 93% had (Z)-endoxifen levels below IC90 values, underscoring the role of CYP2D6 deficiency in compromised tamoxifen bioactivation. For other enzymes tested, carriers of reduced-function CYP2C9 (*2, *3) alleles had lower plasma concentrations of active metabolites (P < 0.004), pointing to the role of additional pathways.

  11. Multiple doses of saw palmetto (Serenoa repens) did not alter cytochrome P450 2D6 and 3A4 activity in normal volunteers.

    PubMed

    Markowitz, John S; Donovan, Jennifer L; Devane, C Lindsay; Taylor, Robin M; Ruan, Ying; Wang, Jun-Sheng; Chavin, Kenneth D

    2003-12-01

    Saw palmetto (Serenoa repens) is the most commonly used herbal preparation in the treatment of benign prostatic hyperplasia. The objective of this study was to determine whether a characterized saw palmetto product affects the activity of cytochrome P450 (CYP) 2D6 or 3A4 in healthy volunteers (6 men and 6 women). The probe substrates dextromethorphan (CYP2D6 activity) and alprazolam (CYP3A4 activity) were administered orally at baseline and again after exposure to saw palmetto (320-mg capsule once daily) for 14 days. Dextromethorphan metabolic ratios and alprazolam pharmacokinetics were determined at baseline and after saw palmetto treatment. The mean ratio of dextromethorphan to its metabolite was 0.038 +/- 0.044 at baseline and 0.048 +/- 0.080 after 14 days of saw palmetto administration (P =.704, not significant [NS]), indicating a lack of effect on CYP2D6 activity. The area under the plasma alprazolam concentration versus time curve was 476 +/- 178 h. ng. mL(-1) at baseline and 479 +/- 125 h. ng. mL(-1) after saw palmetto treatment (P =.923, NS), indicating a lack of effect on CYP3A4 activity. The elimination half-life of alprazolam was 11.4 +/- 3.1 hours at baseline and 11.6 +/- 2.7 hours after saw palmetto treatment (P =.770, NS), also indicating a lack of effect on CYP3A4 activity. Our results indicate that extracts of saw palmetto at generally recommended doses are unlikely to alter the disposition of coadministered medications primarily dependent on the CYP2D6 or CYP3A4 pathways for elimination. These conclusions must be weighed in the context of the study's limited assessments and regarded as only the initial investigation into the drug interaction potential of saw palmetto.

  12. Pharmacological and neurophysiological aspects of space/motion sickness

    NASA Technical Reports Server (NTRS)

    Lucot, James B.; Crampton, George H.

    1991-01-01

    A motorized motion testing device modeled after a Ferris wheel was constructed to perform motion sickness tests on cats. Details of the testing are presented, and some of the topics covered include the following: xylazine-induced emesis; analysis of the constituents of the cerebrospinal fluid (CSF) during motion sickness; evaluation of serotonin-1A (5-HT sub 1A) agonists; other 5HT receptors; antimuscarinic mechanisms; and antihistaminergic mechanisms. The ability of the following drugs to reduce motion sickness in the cats was examined: amphetamines, adenosinergic drugs, opioid antagonists, peptides, cannabinoids, cognitive enhancers (nootropics), dextromethorphan/sigma ligands, scopolamine, and diphenhydramine.

  13. Inhibitory effects of psychotomimetic sigma ligands on nicotine-induced K+ flux from differentiated PC12 cells.

    PubMed

    Yamamoto, H; Sagi, N; Yamamoto, T; Goji, Y; Okuwa, M; Yoshii, M; Moroji, T

    1992-11-23

    In NGF-treated PC12 cells, nicotine-induced K+ release was measured with a K(+)-sensitive microelectrode. The K+ outflow via nicotinic ACh receptor cation channels was inhibited by various psychotomimetic sigma ligands in the sequence of PCP, dextromethorphan > DTG, MK 801, (+)SKF10047 > (+)3-PPP. The K+ release was not affected by the neuroleptic sigma ligand haloperidol nor by the calcium antagonist nifedipine. The results suggest that psychotomimetic sigma ligands inhibit nicotine-stimulated K+ flux by interacting with nicotinic, rather than via sigma 2 receptors.

  14. Nanosilver particle effects on drug metabolism in vitro.

    PubMed

    Lamb, John G; Hathaway, Laura B; Munger, Mark A; Raucy, Judy L; Franklin, Michael R

    2010-12-01

    Nanosilver particles are present in consumer and health care products. Their effects on human microsomal cytochrome P450 (P450) activities and induction in luciferase reporter-engineered Caco-2 (MDR1.C) and HepG2 (DPX2 and 1A2DRE) cells have been investigated. The LD(50) values were ∼ 4 μg silver/ml for HepG2 and 5 μg/ml for Caco-2 cells. At silver concentrations that showed no decreased cell viability (<1 μg silver/ml), the pregnane X receptor (PXR)-driven 4.5-fold induction response of MDR1.C cells to 50 μM omeprazole was unaffected. In DPX2 cells, the PXR-driven 5.5- and 6.5-fold induction responses to omeprazole and 10 μM rifampicin were attenuated to 4- and 3.5-fold, respectively. Nanosilver particles alone showed no induction. In 1A2DRE cells, the aryl hydrocarbon receptor-driven 5.5-fold induction response to omeprazole was attenuated to 4-fold. In 1A2DRE cells, nanosilver alone elicited slight induction at 1 μg/ml. The inhibition of human P450-selective activities by nanosilver particles in vitro was proportional to the silver/microsomal protein ratio. At a fixed (0.5 mg/ml) protein concentration, P450-selective activities differed in sensitivity (IC(50) value). Coumarin 7-hydroxylation and 7-ethoxy-4-trifluoromethylcoumarin O-deethylation exhibited the highest IC(50) values (33.5 and 31.9 μM, respectively) and S-mephenytoin 4-hydroxylation exhibited the lowest (6.4 μM). Other IC(50) values were, in ascending order, 8.0 to 9.3 μM (testosterone 6β-hydroxylation, 7-benzyloxyquinoline debenzylation, and diclofenac 4-hydroxylation), 16.0 μM (chlorzoxazone 6-hydroxylation), 21.2 μM [7-methoxy-4-(aminomethyl)-coumarin O-demethylation], and 24.4 μM (7-methoxyresorufin O-demethylation). An investigation of 70 μM nanosilver particles showed that microsomal NADPH cytochrome c reductase activities were inhibited <12%. From our in vitro observations, we extrapolated that nanosilver particles reaching the liver may be a potential source of drug

  15. Pharmacokinetics and metabolism of (R,R)-methoxyfenoterol in rat.

    PubMed

    Siluk, D; Mager, D E; Kim, H S; Wang, Y; Furimsky, A M; Ta, A; Iyer, L V; Green, C E; Wainer, I W

    2010-03-01

    (R,R)-fenoterol (Fen), a beta(2)-adrenoceptor agonist, is under clinical investigation in the treatment of congestive heart disease. The pharmacokinetics and metabolism of the 4-methoxyphenyl derivative of (R,R)-Fen, (R,R)-MFen, have been determined following intravenous and oral administration to the rat and compared with corresponding results obtained with (R,R)-Fen. Results from the study suggest that (R,R)-MFen can offer pharmacokinetic and metabolic advantages in comparison to an earlier (R,R)-Fen. The oral administration revealed that the net exposure of (R,R)-MFen was about three-fold higher than that of (R,R)-Fen (7.2 versus 2.3 min x nmol ml(-1)), while intravenous administration proved that the clearance was significantly reduced, 48 versus 146 ml min(-1) kg(-1), the T(1/2) was significantly longer, 152.9 versus 108.9 min, and the area under the curve (AUC) was significantly increased, 300 versus 119 min x nmol ml(-1). (R,R)-MFen was primarily cleared by glucuronidation associated with significant presystemic glucuronidation of the compound. After intravenous and oral administration of (R,R)-MFen, (R,R)-Fen and (R,R)-Fen-G were detected in the urine samples indicating that (R,R)-MFen was O-demethylated and subsequently conjugated to (R,R)-Fen-G. The total (R,R)-Fen and (R,R)-Fen-G as a percentage of the dose after intravenous administration was 3.6%, while after oral administration was 0.3%, indicating that only a small fraction of the drug escaped presystemic glucuronidation and was available for O-demethylation. The glucuronidation pattern was confirmed by the results from in vitro studies where incubation of (R,R)-MFen with rat hepatocytes produced (R,R)-MFen-G, (R,R)-Fen and (R,R)-Fen-G, while incubation with rat intestinal microsomes only resulted in the formation of (R,R)-MFen-G.

  16. Effects of monoamine oxidase inhibitor and cytochrome P450 2D6 status on 5-methoxy-N,N-dimethyltryptamine metabolism and pharmacokinetics.

    PubMed

    Shen, Hong-Wu; Wu, Chao; Jiang, Xi-Ling; Yu, Ai-Ming

    2010-07-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural psychoactive indolealkylamine drug that has been used for recreational purpose. Our previous study revealed that polymorphic cytochrome P450 2D6 (CYP2D6) catalyzed 5-MeO-DMT O-demethylation to produce active metabolite bufotenine, while 5-MeO-DMT is mainly inactivated through deamination pathway mediated by monoamine oxidase (MAO). This study, therefore, aimed to investigate the impact of CYP2D6 genotype/phenotype status and MAO inhibitor (MAOI) on 5-MeO-DMT metabolism and pharmacokinetics. Enzyme kinetic studies using recombinant CYP2D6 allelic isozymes showed that CYP2D6.2 and CYP2D6.10 exhibited 2.6- and 40-fold lower catalytic efficiency (V(max)/K(m)), respectively, in producing bufotenine from 5-MeO-DMT, compared with wild-type CYP2D6.1. When co-incubated with MAOI pargyline, 5-MeO-DMT O-demethylation in 10 human liver microsomes showed significantly strong correlation with bufuralol 1'-hydroxylase activities (R(2)=0.98; P<0.0001) and CYP2D6 contents (R(2)=0.77; P=0.0007), whereas no appreciable correlations with enzymatic activities of other P450 enzymes. Furthermore, concurrent MAOI harmaline sharply reduced 5-MeO-DMT depletion and increased bufotenine formation in human CYP2D6 extensive metabolizer hepatocytes. In vivo studies in wild-type and CYP2D6-humanized (Tg-CYP2D6) mouse models showed that Tg-CYP2D6 mice receiving the same dose of 5-MeO-DMT (20mg/kg, i.p.) had 60% higher systemic exposure to metabolite bufotenine. In addition, pretreatment of harmaline (5mg/kg, i.p.) led to 3.6- and 4.4-fold higher systemic exposure to 5-MeO-DMT (2mg/kg, i.p.), and 9.9- and 6.1-fold higher systemic exposure to bufotenine in Tg-CYP2D6 and wild-type mice, respectively. These findings indicate that MAOI largely affects 5-MeO-DMT metabolism and pharmacokinetics, as well as bufotenine formation that is mediated by CYP2D6.

  17. Serum flecainide S/R ratio reflects the CYP2D6 genotype and changes in CYP2D6 activity.

    PubMed

    Doki, Kosuke; Sekiguchi, Yukio; Kuga, Keisuke; Aonuma, Kazutaka; Homma, Masato

    2015-08-01

    The aims of this study were to clarify whether the ratio of S- to R-flecainide (S/R ratio) in the serum flecainide concentration was associated with the stereoselectivity of flecainide metabolism, and to investigate the effects of the cytochrome P450 (CYP) 2D6 (CYP2D6) genotype and CYP2D6 inhibitor on the serum flecainide S/R ratio. In vitro studies using human liver microsomes and cDNA-expressed CYP isoforms suggested that variability in the serum flecainide S/R ratio was associated with the stereoselectivity of CYP2D6-mediated flecainide metabolism. We examined the serum flecainide S/R ratio in 143 patients with supraventricular tachyarrhythmia. The S/R ratio was significantly lower in intermediate metabolizers and poor metabolizers (IMs/PMs) than in extensive metabolizers (EMs) identified by the CYP2D6 genotype. The cut-off value for the S/R ratio to allow the discrimination between CYP2D6 EMs and IMs/PMs was 0.99. The S/R ratio in patients with co-administration of bepridil, a potent CYP2D6 inhibitor, was lower than 0.99, regardless of the CYP2D6 genotype status. Other factors, including age, sex, body weight, and renal function, did not affect the serum flecainide S/R ratio. This study suggests that the serum flecainide S/R ratio reflects the CYP2D6 genotype and changes in CYP2D6 activity on co-administration of a CYP2D6 inhibitor.

  18. Viscerosomatic Facilitation in a Subset of IBS Patients, an Effect Mediated by N-Methyl-D-Aspartate Receptors

    PubMed Central

    Verne, G. Nicholas; Price, Donald D; Callam, Christopher S.; Zhang, Buyi; Peck, Josh; Zhou, QiQi

    2012-01-01

    Irritable bowel syndrome (IBS) is a common gastrointestinal disorder in which the pathophysiological mechanisms of the pain and hypersensitivity are incompletely understood. IBS patients frequently complain of pain in body regions somatotopically distinct from the gut, suggesting involvement of central hyperalgesic mechanisms. We tested the role of tonic peripheral impulse input by using both repetitive thermal stimuli to the leg and repetitive stimuli to the rectum. Changes in thermal/visceral pain sensitivity after nociceptive thermal/visceral repetitive stimulation were determined. A subset of IBS patients showed enhanced rectal/thermal pain sensitivity after repetitive thermal/rectal stimulation respectively. IBS patients then received 60 mg dextromethorphan and placebo (Benadryl) in a randomized, double-blind, crossover trial. The results showed: (1) a subset of IBS patients had increased visceral/cutaneous hypersensitivity following a series of repetitive nociceptive stimuli (2) This increased pain sensitivity was blocked by administration of dextromethorphan. This is the first human study that indicates repetitive stimulation enhances a bidirectional mechanism of secondary hyperalgesia due to viscerosomatic facilitation in IBS patients. These unique findings elucidate mechanisms of somatic hypersensitivity in IBS patients and support an etiologic basis for abnormal NMDA receptor mechanisms that may be the target of future therapies for IBS. PMID:22958874

  19. Inhibitory effects of kale ingestion on metabolism by cytochrome P450 enzymes in rats.

    PubMed

    Yamasaki, Izumi; Yamada, Masayoshi; Uotsu, Nobuo; Teramoto, Sachiyuki; Takayanagi, Risa; Yamada, Yasuhiko

    2012-01-01

    Kale (Brassica oleracea L. var acephala DC) is a leafy green vegetable belonging to the cabbage family (Brassicaceae) that contains a large amount of health-promoting phytochemicals. There are any reports about the effects of kale ingestion on the chemoprevention function and mechanism, but the interactions between kale and drugs have not been researched. We investigated the effects of kale intake on cytochrome P450 (CYP) metabolism by using cocktail probe drugs, including midazolam (for CYP3A4), caffeine (for CYP1A2), dextromethorphan (for CYP2D6), tolbutamide (for CYP2C9), omeprazole (for CYP2C19), and chlorzoxazone (for CYP2E1). Cocktail drugs were administered into rats treated with kale and cabbage (2000 mg/kg) for a week. The results showed that kale intake induced a significant increase in plasma levels and the AUC of midazolam, caffeine, and dextromethorphan. In addition, the plasma concentration and AUC of omeprazole tended to increase. Additionally, no almost differences in the mRNA expression levels of CYP enzymes in the liver were observed. In conclusion, kale ingestion was considered to have an inhibitory effect on the activities of CYP3A4, 1A2, 2D6, and 2C19 for a reason competitive inhibition than inhibitory changes in the mRNA expressions.

  20. In vitro functional assessment of 22 newly identified CYP2D6 allelic variants in the Chinese population.

    PubMed

    Dai, Da-Peng; Geng, Pei-Wu; Wang, Shuang-Hu; Cai, Jie; Hu, Li-Ming; Nie, Jing-Jing; Hu, Ji-Hong; Hu, Guo-Xin; Cai, Jian-Ping

    2015-07-01

    Cytochrome P450 2D6 (CYP2D6) is one of the most widely investigated CYPs related to genetic polymorphisms and is responsible for one-quarter of the currently used clinical drugs. We previously detected 22 novel, non-synonymous, mutated sites in the Chinese population, but nothing is known about the functional effects of these mutations in terms of specific CYP2D6 substrates. In this study, wild-type CYP2D6, two common allelic variants and 22 newly reported CYP2D6 isoforms were transiently expressed in 293FT cells, and the enzymatic activities of these variants were systematically assessed using dextromethorphan and bufuralol as the probing substrates. Consequently, 19 and 21 allelic variants were found to exhibit significantly decreased enzymatic activities for dextromethorphan and bufuralol, respectively. Of 22 novel CYP2D6 variants, six allelic isoforms (CYP2D6.89, CYP2D6.92, CYP2D6.93, CYP2D6.96, E215K and R440C) exhibited absent or extremely reduced metabolic activities compared with those observed for the wild-type enzyme. Our in vitro functional data can be useful for CYP2D6 phenotype prediction and provide valuable information for the study of clinical impact of these newly found CYP2D6 variants in China.

  1. Human plasma concentrations of cytochrome P450 probes extrapolated from pharmacokinetics in cynomolgus monkeys using physiologically based pharmacokinetic modeling.

    PubMed

    Shida, Satomi; Utoh, Masahiro; Murayama, Norie; Shimizu, Makiko; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-01-01

    1. Cynomolgus monkeys are widely used in preclinical studies as non-human primate species. Pharmacokinetics of human cytochrome P450 probes determined in cynomolgus monkeys after single oral or intravenous administrations were extrapolated to give human plasma concentrations. 2. Plasma concentrations of slowly eliminated caffeine and R-/S-warfarin and rapidly eliminated omeprazole and midazolam previously observed in cynomolgus monkeys were scaled to human oral biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Results of the simplified human PBPK models were consistent with reported experimental PK data in humans or with values simulated by a fully constructed population-based simulator (Simcyp). 3. Oral administrations of metoprolol and dextromethorphan (human P450 2D probes) in monkeys reportedly yielded plasma concentrations similar to their quantitative detection limits. Consequently, ratios of in vitro hepatic intrinsic clearances of metoprolol and dextromethorphan determined in monkeys and humans were used with simplified PBPK models to extrapolate intravenous PK in monkeys to oral PK in humans. 4. These results suggest that cynomolgus monkeys, despite their rapid clearance of some human P450 substrates, could be a suitable model for humans, especially when used in conjunction with simple PBPK models.

  2. Rheological characterization and drug release studies of gum exudates of Terminalia catappa Linn.

    PubMed

    Kumar, Sadhis V; Sasmal, Dinakar; Pal, Subodh C

    2008-01-01

    The present study was undertaken to evaluate the gum exudates of Terminalia catappa Linn. (TC gum) as a release retarding excipient in oral controlled drug delivery system. The rheological properties of TC gum were studied and different formulation techniques were used to evaluate the comparative drug release characteristics. The viscosity was found to be dependent on concentration and pH. Temperature up to 60 degrees C did not show significant effect on viscosity. The rheological kinetics evaluated by power law, revealed the shear thinning behavior of the TC gum dispersion in water. Matrix tablets of TC gum were prepared with the model drug dextromethorphan hydrobromide (DH) by direct compression, wet granulation and solid dispersion techniques. The dissolution profiles of the matrix tablets were compared with the pure drug containing capsules using the USP Basket apparatus with 500 ml phosphate buffer of pH 6.8 as a dissolution medium. The drug release from the compressed tablets containing TC gum was comparatively sustained than pure drug containing capsules. Even though all the formulation techniques showed reduction of dissolution rate, aqueous wet granulation showed the maximum sustained release of more than 8 h. The release kinetics estimated by the power law revealed that the drug release mechanism involved in the dextromethorphan matrix is anomalous transport as indicated by the release exponent n values. Thus the study confirmed that the TC gum might be used in the controlled drug delivery system as a release-retarding polymer.

  3. Pharmacokinetic and metabolism studies of the antiarrhythmic drug meobentine (N-(4-methoxybenzyl)-N prime , N double prime -dimethylguanidine) and its N-(4-trifluoromethyoxybenzyl)-N prime , N double prime - dimethylguanidine analogue, fluorobentine in the rat, dog and man

    SciTech Connect

    Warren, J.T.

    1988-01-01

    A radioimmunoassay (RIA) was developed that was able to detect 40 pg meobentine (M) in 0.1 ml plasma. Cross-reactivity of suspected M metabolites was very low. This RIA was later also used to assay for fluorobentine (F), a fluorine analogue of M. M exhibits three-compartment open model iv kinetics in the rat, dog, and man. Terminal drug half-life in the rat, dog, and man; total-body clearance in the rat, dog, and man; and terminal-phase volume of distribution in the rat, dog, and man were determined. (14C)-M absorption is essentially complete in the rat and dog, but this parameter could not be directly ascertained in man. Relative oral drug bioavailability is linear in the rat and dog but falls off between 5-10 mg/kg in man. F was synthesized in an attempt to counteract suspected problems with M's poor absorption or extensive metabolism that might be affecting its efficacy in humans. F would likely be unavailable for O-demethylation, might well be more lipophilic than M, and yet still be active.

  4. The effect of pH on horseradish peroxidase-catalyzed oxidation of melatonin: production of N1-acetyl-N2-5-methoxykynuramine versus radical-mediated degradation.

    PubMed

    Ximenes, Valdecir F; Fernandes, João Roberto; Bueno, Vânia B; Catalani, Luiz H; de Oliveira, Georgino H; Machado, Rosângela G P

    2007-04-01

    There is a growing body of evidence that melatonin and its oxidation product, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK), have anti-inflammatory properties. From a nutritional point of view, the discovery of melatonin in plant tissues emphasizes the importance of its relationship with plant peroxidases. Here we found that the pH of the reaction mixture has a profound influence in the reaction rate and products distribution when melatonin is oxidized by the plant enzyme horseradish peroxidase. At pH 5.5, 1 mm of melatonin was almost completely oxidized within 2 min, whereas only about 3% was consumed at pH 7.4. However, the relative yield of AFMK was higher in physiological pH. Radical-mediated oxidation products, including 2-hydroxymelatonin, a dimer of 2-hydroxymelatonin and O-demethylated dimer of melatonin account for the fast consumption of melatonin at pH 5.5. The higher production of AFMK at pH 7.4 was explained by the involvement of compound III of peroxidases as evidenced by spectral studies. On the other hand, the fast oxidative degradation at pH 5.5 was explained by the classic peroxidase cycle.

  5. Pathways of reductive 2,4-dinitroanisole (DNAN) biotransformation in sludge.

    PubMed

    Olivares, Christopher; Liang, Jidong; Abrell, Leif; Sierra-Alvarez, Reyes; Field, Jim A

    2013-06-01

    As the use of the insensitive munition compound 2,4-dinitroanisole (DNAN) increases, releases to the environment may pose a threat to local ecosystems. Little is known about the environmental fate of DNAN and the conversions caused by microbial activity. We studied DNAN biotransformation rates in sludge under aerobic, microaerophilic, and anaerobic conditions, detected biotransformation products, and elucidated their chemical structures. The biotransformation of DNAN was most rapid under anaerobic conditions with H2 as a cosubstrate. The results showed that the ortho nitro group in DNAN is regioselectively reduced to yield 2-methoxy-5-nitroaniline (MENA), and then the para nitro group is reduced to give 2,4-diaminoanisole (DAAN). Both MENA and DAAN were identified as important metabolites in all redox conditions. Azo and hydrazine dimer derivatives formed from the coupling of DNAN reduction products in anaerobic conditions. Secondary pathways included acetylation and methylation of amine moieties, as well as the stepwise O-demethylation and dehydroxylation of methoxy groups. Seven unique metabolites were identified which enabled elucidation of biotransformation pathways. The results taken as a whole suggest that reductive biotransformation is an important fate of DNAN leading to the formation of aromatic amines as well as azo and hydrazine dimeric metabolites.

  6. (Bio)transformation of 2,4-dinitroanisole (DNAN) in soils.

    PubMed

    Olivares, Christopher I; Abrell, Leif; Khatiwada, Raju; Chorover, Jon; Sierra-Alvarez, Reyes; Field, Jim A

    2016-03-05

    Recent studies have begun to assess the environmental fate and toxicity of 2,4-dinitroanisole (DNAN), an insensitive munition compound of interest to defense agencies. Aerobic and anaerobic DNAN biotransformation in soils was evaluated in this study. Under aerobic conditions, there was little evidence of transformation; most observed removal was attributed to adsorption and subsequent slow chemical reactions. Under anaerobic conditions, DNAN was reductively (bio)transformed and the rate of the transformation was positively correlated with soil organic carbon (OC) up to a threshold of 2.07% OC. H2 addition enhanced the nitroreduction rate compared to endogenous treatments lacking H2. Heat-killed treatments provided rates similar to the endogenous treatment, suggesting that abiotic factors play a role in DNAN reduction. Ten (bio)transformation products were detected by high-resolution mass spectrometry. The proposed transformation pathway involves reduction of DNAN to aromatic amines, with putative reactive nitroso-intermediates coupling with the amines to form azo dimers. Secondary reactions include N-alkyl substitution, O-demethylation (sometimes followed by dehydroxylation), and removal of an N-containing group. Globally, our results suggest that the main reaction DNAN undergoes in anaerobic soils is nitroreduction to 2-methoxy-5-nitroaniline (MENA) and 2,4-diaminoanisole (DAAN), followed by anaerobic coupling reactions yielding azo-dimers. The dimers were subsequently subject to further (bio)transformations.

  7. Degradation of 2,4-dinitroanisole (DNAN) by metabolic cooperative activity of Pseudomonas sp. strain FK357and Rhodococcus imtechensis strain RKJ300.

    PubMed

    Khan, Fazlurrahman; Pal, Deepika; Ghosh, Anuradha; Cameotra, Swaranjit Singh

    2013-11-01

    2,4-Dinitroanisole (DNAN) is an insensitive explosive ingredient used by many defense agencies as a replacement for 2,4,6-trinitrotoluene. Although the biotransformation of DNAN under anaerobic condition has been reported, aerobic microbial degradation pathway has not been elucidated. An n-methyl-4-nitroaniline degrading bacterium Pseudomonas sp. strain FK357 transformed DNAN into 2,4-dinitrophenol (2,4-DNP) as an end product. Interestingly, when strain FK357 was co-cultured with a 2,4-DNP degrading Rhodococcus imtechensis strain RKJ300, complete and high rate of DNAN degradation was observed with no accumulation of intermediates. Enzyme assay using cell extracts of strain FK357 demonstrated that O-demethylation reaction is the first step of DNAN degradation with formation of 2,4-DNP and formaldehyde as intermediates. Subsequently, 2,4-DNP was degraded by strain RKJ300 via the formation of hydride-Meisenheimer complex. The present study clearly demonstrates that complete degradation of DNAN occurs as a result of the metabolic cooperative activity of two members within a bacterial consortium.

  8. Influence of CYP2D6 and CYP2C19 genotypes on venlafaxine metabolic ratios and stereoselective metabolism in forensic autopsy cases.

    PubMed

    Karlsson, L; Zackrisson, A-L; Josefsson, M; Carlsson, B; Green, H; Kugelberg, F C

    2015-04-01

    We investigated whether polymorphisms in the CYP2D6 and CYP2C19 genes influence the metabolic ratios and enantiomeric S/R ratios of venlafaxine (VEN) and its metabolites O-desmethylvenlafaxine (ODV), N-desmethylvenlafaxine (NDV) and N,O-didesmethylvenlafaxine (DDV) in blood from forensic autopsy cases. In all, 94 postmortem cases found positive for VEN during toxicological screening were included. The CYP2D6 genotype was shown to significantly influence the ODV/VEN (P=0.003), DDV/NDV (P=0.010) and DDV/ODV (P=0.034) ratios. The DDV/ODV (P=0.013) and DDV/VEN (P=0.021) ratios were significantly influenced by the CYP2C19 genotype. The S/R ratios of VEN were significantly influenced by both CYP2D6 and CYP2C19 genotypes. CYP2D6 poor metabolizers (PMs) had lower S/R VEN ratios and CYP2C19 PMs had high S/R ratios of VEN in comparison. Our results show that the CYP2D6 genotype influences the O-demethylation whereas CYP2C19 influences the N-demethylation of VEN and its metabolites. In addition, we show a stereoselective metabolism where CYP2D6 favours the R-enantiomer whereas CYP2C19 favours the S-enantiomer.

  9. Identification of Manganese Superoxide Dismutase from Sphingobacterium sp. T2 as a Novel Bacterial Enzyme for Lignin Oxidation.

    PubMed

    Rashid, Goran M M; Taylor, Charles R; Liu, Yangqingxue; Zhang, Xiaoyang; Rea, Dean; Fülöp, Vilmos; Bugg, Timothy D H

    2015-10-16

    The valorization of aromatic heteropolymer lignin is an important unsolved problem in the development of a biomass-based biorefinery, for which novel high-activity biocatalysts are needed. Sequencing of the genomic DNA of lignin-degrading bacterial strain Sphingobacterium sp. T2 revealed no matches to known lignin-degrading genes. Proteomic matches for two manganese superoxide dismutase proteins were found in partially purified extracellular fractions. Recombinant MnSOD1 and MnSOD2 were both found to show high activity for oxidation of Organosolv and Kraft lignin, and lignin model compounds, generating multiple oxidation products. Structure determination revealed that the products result from aryl-Cα and Cα-Cβ bond oxidative cleavage and O-demethylation. The crystal structure of MnSOD1 was determined to 1.35 Å resolution, revealing a typical MnSOD homodimer harboring a five-coordinate trigonal bipyramidal Mn(II) center ligated by three His, one Asp, and a water/hydroxide in each active site. We propose that the lignin oxidation reactivity of these enzymes is due to the production of a hydroxyl radical, a highly reactive oxidant. This is the first demonstration that MnSOD is a microbial lignin-oxidizing enzyme.

  10. The effects of flubendazole and mebendazole on cytochromes P4501A in pheasant hepatocytes.

    PubMed

    Savlík, M; Polásková, P; Szotáková, B; Lamka, J; Skálová, L

    2005-10-01

    Many benzimidazoles are known inducers of cytochromes P4501A (CYP1A) in laboratory animals and cell lines. As flubendazole and mebendazole are benzimidazole anthelmintics often used in a pheasant, in the present study an effect of these drugs in primary cultures of pheasant (Phasianus colchicus) hepatocytes was investigated. After 48 h incubation of the hepatocytes with the benzimidazoles (0.2-5 microM), CYP1A activities -- ethoxyresorufin O-deethylation (EROD) and methoxyresorufin O-demethylation (MROD) activities were measured and the CYP1A protein levels were determined by Western blotting. None of the tested benzimidazoles influenced the CYP1A protein content. No pharmacologically significant enhancement of CYP1A after exposure of the hepatocytes to flubendazole and mebendazole was found. Inhibition of the EROD/MROD activities caused by both tested substances was observed only at the highest concentration (5 microM). From a point of view of CYP1A induction or inhibition, the treatment of pheasants by both anthelmintics tested seems to be safe. Our study demonstrates the inter-species differences in CYP1A inducibility and the importance of induction/inhibition studies on target animals.

  11. Characterization of metabolites of leonurine (SCM-198) in rats after oral administration by liquid chromatography/tandem mass spectrometry and NMR spectrometry.

    PubMed

    Zhu, Qing; Zhang, Jinlian; Yang, Ping; Tan, Bo; Liu, Xinhua; Zheng, Yuanting; Cai, Weimin; Zhu, Yizhun

    2014-01-01

    Leonurine, a major bioactive component from Herba Leonuri, shows therapeutic potential for cardiovascular disease and stroke prevention in some preclinical experiments. The aim of this study is to characterize metabolites of leonurine in rats using high performance liquid chromatography coupled with tandem mass spectrometry (HPLC/MS/MS). The chromatographic separation was performed on an Agilent ZORBAX SB-C18 column using a gradient elution with acetonitrile/ammonium acetate buffer (10 mM, pH 4.0) solvent system. An information dependent acquisition (IDA) method was developed for screening and identifying metabolites of leonurine under positive ion mode. Compared with control, the interesting compound in the extracted ion chromatogram (XIC) of the in vivo samples was chosen and further identified by analyzing their retention times, changes in observed mass (Δm/z), and spectral patterns of product ion utilizing advanced software tool. For the first time, a total of three metabolites were identified, including two phase II metabolites generated by glucuronidation (M1) and sulfation (M2) and one phase I metabolite formed by O-demethylation (M3). Finally, the lead metabolite M1 was isolated from urine and its structure was characterized as leonurine-10-O- β-D-glucuronide by NMR spectroscopy (¹H, ¹³C, HMBC, and HSQC).

  12. Biotransformation of colchicinoids into their corresponding 3-O-glucosyl derivatives by selected strains of Bacillus megaterium.

    PubMed

    Ponzone, Cesare; Berlanda, Davide; Donzelli, Fabio; Acquati, Valter; Ciulla, Rosalba; Negrini, Alberto; Rovati, Marco; Evangelista, Douglas; Fata, Emilio; Ciceri, Daniele; Perterlongo, Federico; Cabri, Walter

    2014-07-01

    Natural colchicinoids and their semisynthetic derivatives are important active ingredients for pharmaceutical applications. Thiocolchicoside (3-demethoxy-3-glucosyloxythiocolchicine) is used in several countries as standard therapy for the treatment of diseases of the muscle-skeletal system, due to its potent antiinflammatory and myorelaxant properties. Manufacturing of thiocolchicoside requires a key step, the regioselective demethylation and glucosylation of chemically derivative thiocolchicine. High selectivity and efficiency of this transformation cannot be achieved in a satisfactory way with a chemical approach. In particular, the chemical demethylation, a part from requiring toxic and aggressive reagents, generates a complex mixture of products with no industrial usefulness. We report herein an efficient, direct and green biotransformation of thiocolchicine into thiocolchicoside, performed by a specific strain of Bacillus megaterium. The same process, with minor modifications, can be used to convert the by-product 3-O-demethyl-thiocolchicine into thiocolchicoside. In addition, we describe the B. megaterium strain selection process and the best conditions for this effective double biotransformation. The final product has a pharmaceutical quality, and the process has been industrialised.

  13. Jacobsen catalyst as a cytochrome P450 biomimetic model for the metabolism of monensin A.

    PubMed

    Rocha, Bruno Alves; de Oliveira, Anderson Rodrigo Moraes; Pazin, Murilo; Dorta, Daniel Junqueira; Rodrigues, Andresa Piacezzi Nascimento; Berretta, Andresa Aparecida; Peti, Ana Paula Ferranti; de Moraes, Luiz Alberto Beraldo; Lopes, Norberto Peporine; Pospíšil, Stanislav; Gates, Paul Jonathan; Assis, Marilda das Dores

    2014-01-01

    Monensin A is a commercially important natural product isolated from Streptomyces cinnamonensins that is primarily employed to treat coccidiosis. Monensin A selectively complexes and transports sodium cations across lipid membranes and displays a variety of biological properties. In this study, we evaluated the Jacobsen catalyst as a cytochrome P450 biomimetic model to investigate the oxidation of monensin A. Mass spectrometry analysis of the products from these model systems revealed the formation of two products: 3-O-demethyl monensin A and 12-hydroxy monensin A, which are the same ones found in in vivo models. Monensin A and products obtained in biomimetic model were tested in a mitochondrial toxicity model assessment and an antimicrobial bioassay against Staphylococcus aureus, S. aureus methicillin-resistant, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. Our results demonstrated the toxicological effects of monensin A in isolated rat liver mitochondria but not its products, showing that the metabolism of monensin A is a detoxification metabolism. In addition, the antimicrobial bioassay showed that monensin A and its products possessed activity against Gram-positive microorganisms but not for Gram-negative microorganisms. The results revealed the potential of application of this biomimetic chemical model in the synthesis of drug metabolites, providing metabolites for biological tests and other purposes.

  14. Absorption and disposition of LY127210, an orally effective hypotensive agent, in laboratory animals

    SciTech Connect

    Turner, J.C.; White, J.F.; Sullivan, H.R.

    1986-03-05

    The disposition, pharmacokinetics, and metabolic fate of LY127210, 7,8-dimethoxy-(1H)-3-benzazepin-2-amine hydrochloride, have been studied in mice, rats, dogs and monkeys. Pharmacokinetic and bioavailability studies in dogs and monkeys showed it to be well absorbed orally with maximum plasma levels of drug obtained within 4 hr. Following administration of /sup 14/C-LY127210, the plasma half-lives of parent and radiocarbon in rat were 11 hr and 45 hr (..beta..-phase), respectively. In dogs and monkeys parent half-lives were 11 hr (..beta..-phase) and 5.2 hr (monophasic) while half-lives of total radiocarbon were 145 hr (..beta..-phase) and 299 hr (..beta..-phase), respectively. Plasma concentrations of parent compound in rat, dog, and monkey following oral administration accounted for approximately 15% of circulating radiocarbon. Renal excretion was the major route of elimination. The major urinary species was LY127210; metabolic mechanisms included oxidative O-demethylation and deamination, aliphatic oxidation, and reduction. Radiocarbon tissue level studies in rat indicated wide distribution of drug and/or metabolites. Similar studies in monkeys indicated that the half-life of radiocarbon in tissues was equal to or greater than that in plasma and red blood cells. The long half-life of radiocarbon in blood was due to irreversible dose dependent binding of drug and/or metabolites to plasma albumin and to cellular hemoglobin.

  15. Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil.

    PubMed

    Kato, Souichiro; Chino, Kanako; Kamimura, Naofumi; Masai, Eiji; Yumoto, Isao; Kamagata, Yoichi

    2015-09-24

    Anaerobic degradation of lignin-derived aromatics is an important metabolism for carbon and nutrient cycles in soil environments. Although there are some studies on degradation of lignin-derived aromatics by nitrate- and sulfate-reducing bacteria, knowledge on their degradation under methanogenic conditions are quite limited. In this study, methanogenic microbial communities were enriched from rice paddy field soil with lignin-derived methoxylated monoaromatics (vanillate and syringate) and their degradation intermediates (protocatechuate, catechol, and gallate) as the sole carbon and energy sources. Archaeal community analysis disclosed that both aceticlastic (Methanosarcina sp.) and hydrogenotrophic (Methanoculleus sp. and Methanocella sp.) methanogens dominated in all of the enrichments. Bacterial community analysis revealed the dominance of acetogenic bacteria (Sporomusa spp.) only in the enrichments on the methoxylated aromatics, suggesting that Sporomusa spp. initially convert vanillate and syringate into protocatechuate and gallate, respectively, with acetogenesis via O-demethylation. As the putative ring-cleavage microbes, bacteria within the phylum Firmicutes were dominantly detected from all of the enrichments, while the dominant phylotypes were not identical between enrichments on vanillate/protocatechuate/catechol (family Peptococcaceae bacteria) and on syringate/gallate (family Ruminococcaceae bacteria). This study demonstrates the importance of cooperation among acetogens, ring-cleaving fermenters/syntrophs and aceticlastic/hydrogenotrophic methanogens for degradation of lignin-derived aromatics under methanogenic conditions.

  16. Reductive dechlorination of methoxychlor and DDT by human intestinal bacterium Eubacterium limosum under anaerobic conditions.

    PubMed

    Yim, You-Jin; Seo, Jiyoung; Kang, Su-Il; Ahn, Joong-Hoon; Hur, Hor-Gil

    2008-04-01

    Methoxychlor [1,1,1-trichloro-2,2-bis(p-methoxyphenyl)ethane], a substitute for 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), is a compound of environmental concern because of potential long-term health risks related to its endocrine-disrupting and carcinogenic potency. In order to determine the metabolic fate of methoxychlor and DDT in the human intestinal gut, Eubacterium limosum (ATCC 8486), a strict anaerobe isolated from the human intestine that is capable of O-demethylation toward O-methylated isoflavones, was used as a model intestinal microbial organism. Under anaerobic incubation conditions, E. limosum completely transformed methoxychlor and DDT in 16 days. Based on gas chromatography-mass chromatography analyses, the metabolites produced from methoxychlor and DDT by E. limosum were confirmed to be 1,1-dichloro-2,2-bis(p-methoxyphenyl)ethane (methoxydichlor) and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD), respectively. This study suggests that E. limosum in the human intestinal gut might be a participant in the reductive dechlorination of methoxychlor to the more antiandrogenic active methoxydichlor.

  17. Involvement of cytochrome P-450 enzyme activity in the selectivity and safening action of pyrazosulfuron-ethyl.

    PubMed

    Yun, M S; Shim, I S; Usui, K

    2001-03-01

    To investigate the selectivity and safening action of the sulfonylurea herbicide pyrazosulfuron-ethyl (PSE), pyrazosulfuron-ethyl O-demethylase (PSEOD) activity involving oxidative metabolism by cytochrome P-450 was studied in rice (Oryza sativa L cv Nipponbare) and Cyperus serotinus Rottb. Cytochrome P-450-dependent activity was demonstrated by the use of the inducers 1,8-naphthalic anhydride and ethanol, the herbicides PSE, bensulfuron-methyl, dimepiperate and dymron, or the inhibitor piperonyl butoxide (PBO). Growth inhibition in C serotinus seedlings was more severe than that in rice seedlings. O-Dealkylation activities of PSE were induced differently in rice and in C serotinus, with distinctly higher activity in rice seedlings. The induced PSEOD activities were slightly inhibited by PBO in rice seedlings, whereas they were strongly inhibited in C serotinus seedlings. Dimepiperate and dymron were effective safeners of rice against PSE treatment. Treatments with herbicide alone resulted in less induction of PSEOD activity compared with combined treatments of the herbicide and safener. PSEOD activity in rice seedlings induced with herbicide alone was strongly inhibited by PBO, whereas it was weakly inhibited in rice seedlings induced with combinations of PSE and two safeners. These results suggest that O-demethylation by cytochrome P-450 enzymes may be involved in the metabolism of PSE and may contribute to its selectivity and safening action. Furthermore, these results suggest the existence of a multiple form of cytochrome P-450 in plants.

  18. Biotransformation pathways of biocides and pharmaceuticals in freshwater crustaceans based on structure elucidation of metabolites using high resolution mass spectrometry.

    PubMed

    Jeon, Junho; Kurth, Denise; Hollender, Juliane

    2013-03-18

    So far, there is limited information on biotransformation mechanisms and products of polar contaminants in freshwater crustaceans. In the present study, metabolites of biocides and pharmaceuticals formed in Gammarus pulex and Daphnia magna were identified using liquid chromatography-high resolution mass spectrometry. Different confidence levels were assigned to the identification of metabolites without reference standards using a framework based on the background evidence used for structure elucidation. Twenty-five metabolites were tentatively identified for irgarol, terbutryn, tramadol, and venlafaxine in G. pulex (21 via oxidation and 4 via conjugation reactions) and 11 metabolites in D. magna (7 via oxidation and 4 via conjugation reactions), while no evidence of metabolites for clarithromycin and valsartan was found. Of the 360 metabolites predicted for the four parent compounds using pathway prediction systems and expert knowledge, 23 products were true positives, while 2 identified metabolites were unexpected products. Observed oxidative reactions included N- and O-demethylation, hydroxylation, and N-oxidation. Glutathione conjugation of selected biocides followed by subsequent reactions forming cysteine conjugates was described for the first time in freshwater invertebrates.

  19. Parallel Post-Polyketide Synthase Modification Mechanism Involved in FD-891 Biosynthesis in Streptomyces graminofaciens A-8890.

    PubMed

    Kudo, Fumitaka; Kawamura, Koichi; Furuya, Takashi; Yamanishi, Hiroto; Motegi, Atsushi; Komatsubara, Akiko; Numakura, Mario; Miyanaga, Akimasa; Eguchi, Tadashi

    2016-02-02

    To isolate a key polyketide biosynthetic intermediate for the 16-membered macrolide FD-891 (1), we inactivated two biosynthetic genes coding for post-polyketide synthase (PKS) modification enzymes: a methyltransferase (GfsG) and a cytochrome P450 (GfsF). Consequently, FD-892 (2), which lacks the epoxide moiety at C8-C9, the hydroxy group at C10, and the O-methyl group at O-25 of FD-891, was isolated from the gfsF/gfsG double-knockout mutant. In addition, 25-O-methyl-FD-892 (3) and 25-O-demethyl-FD-891 (4) were isolated from the gfsF and gfsG mutants, respectively. We also confirmed that GfsG efficiently catalyzes the methylation of 2 and 4 in vitro. Further, GfsF catalyzed the epoxidation of the double bond at C8-C9 of 2 and 3 and subsequent hydroxylation at C10, to afford 4 and 1, respectively. These results suggest that a parallel post-PKS modification mechanism is involved in FD-891 biosynthesis.

  20. Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil

    PubMed Central

    Kato, Souichiro; Chino, Kanako; Kamimura, Naofumi; Masai, Eiji; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Anaerobic degradation of lignin-derived aromatics is an important metabolism for carbon and nutrient cycles in soil environments. Although there are some studies on degradation of lignin-derived aromatics by nitrate- and sulfate-reducing bacteria, knowledge on their degradation under methanogenic conditions are quite limited. In this study, methanogenic microbial communities were enriched from rice paddy field soil with lignin-derived methoxylated monoaromatics (vanillate and syringate) and their degradation intermediates (protocatechuate, catechol, and gallate) as the sole carbon and energy sources. Archaeal community analysis disclosed that both aceticlastic (Methanosarcina sp.) and hydrogenotrophic (Methanoculleus sp. and Methanocella sp.) methanogens dominated in all of the enrichments. Bacterial community analysis revealed the dominance of acetogenic bacteria (Sporomusa spp.) only in the enrichments on the methoxylated aromatics, suggesting that Sporomusa spp. initially convert vanillate and syringate into protocatechuate and gallate, respectively, with acetogenesis via O-demethylation. As the putative ring-cleavage microbes, bacteria within the phylum Firmicutes were dominantly detected from all of the enrichments, while the dominant phylotypes were not identical between enrichments on vanillate/protocatechuate/catechol (family Peptococcaceae bacteria) and on syringate/gallate (family Ruminococcaceae bacteria). This study demonstrates the importance of cooperation among acetogens, ring-cleaving fermenters/syntrophs and aceticlastic/hydrogenotrophic methanogens for degradation of lignin-derived aromatics under methanogenic conditions. PMID:26399549

  1. (Bio)transformation of 2,4-dinitroanisole (DNAN) in Soils

    PubMed Central

    Olivares, Christopher I.; Abrell, Leif; Khatiwada, Raju; Chorover, Jon; Sierra-Alvarez, Reyes; Field, Jim A.

    2015-01-01

    Recent studies have begun to assess the environmental fate and toxicity of 2,4-dinitroanisole (DNAN), an insensitive munition compound of interest to defense agencies. Aerobic and anaerobic DNAN biotransformation in soils was evaluated in this study. Under aerobic conditions, there was little evidence of transformation; most observed removal was attributed to adsorption and subsequent slow chemical reactions. Under anaerobic conditions, DNAN was reductively (bio)transformed and the rate of the transformation was positively correlated with soil organic carbon (OC) up to a threshold of 2.07% OC. H2 addition enhanced the nitroreduction rate compared to endogenous treatments lacking H2. Heat-killed treatments provided rates similar to the endogenous treatment, suggesting that abiotic factors play a role in DNAN reduction. Ten (bio)transformation products were detected by high-resolution mass spectrometry. The proposed transformation pathway involves reduction of DNAN to aromatic amines, with putative reactive nitroso-intermediates coupling with the amines to form azo dimers. Secondary reactions include N-alkyl substitution, O-demethylation (sometimes followed by dehydroxylation), and removal of an N-containing group. Globally, our results suggest that the main reaction DNAN undergoes in anaerobic soils is nitroreduction to 2-methoxy-5-nitroaniline (MENA) and 2,4-diaminoanisole (DAAN), followed by anaerobic coupling reactions yielding azo-dimers. The dimers were subsequently subject to further (bio)transformations. PMID:26551225

  2. Liquid chromatography-tandem mass spectrometry for the identification of L-tetrahydropalmatine metabolites in Penicillium janthinellum and rats.

    PubMed

    Li, Li; Ye, Min; Bi, Kaishun; Guo, Dean

    2006-01-01

    L-tetrahydropalmatine (L-THP) is an active alkaloid from Stephania ainiaca Diels. In order to compare the similarities and differences of microbial and mammalian metabolisms of L-THP, the microbial transformation by Penicillium janthinellum and metabolism in rats were investigated. Biotransformation of L-THP by Penicillium janthinellum AS 3.510 resulted in the formation of three metabolites. Their structures were identified as L-corydalmine, L-corypalmine and 9-O-desmethyl-L-THP, respectively, by comprehensive nuclear magnetic resonance and mass spectrometry (MS) analysis. Six metabolites (M1-M6) were detected from the in vivo study in rats and three of which (L-corydalmine, L-corypalmine and 9-O-desmethyl-L-THP) were identified as the same compounds as those obtained from microbial metabolism by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and comparison with reference standards obtained from microbial metabolism. The structures of the additional three metabolites were tentatively deduced as 2-O-desmethyl-L-THP and two di-O-demethylated L-THP by LC-MS/MS analysis. Time courses of microbial and rat metabolisms of L-THP were also investigated.

  3. Carbon-Carbon Bond Cleavage in Activation of the Prodrug Nabumetone

    PubMed Central

    Varfaj, Fatbardha; Zulkifli, Siti N. A.; Park, Hyoung-Goo; Challinor, Victoria L.; De Voss, James J.

    2014-01-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs. PMID:24584631

  4. Metabolite profiling of RCS-4, a novel synthetic cannabinoid designer drug, using human hepatocyte metabolism and TOF-MS

    PubMed Central

    Gandhi, Adarsh S; Zhu, Mingshe; Pang, Shaokun; Wohlfarth, Ariane; Scheidweiler, Karl B; Huestis, Marilyn A

    2014-01-01

    Background Since 2009, scheduling legislation of synthetic cannabinoids prompted new compound emergence to circumvent legal restrictions. 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4) is a potent cannabinoid receptor agonist sold in herbal smoking blends. Absence of parent synthetic cannabinoids in urine suggests the importance of metabolite identification for detecting RCS-4 consumption in clinical and forensic investigations. Materials & methods & Results With 1 h human hepatocyte incubation and TOF high-resolution MS, we identified 18 RCS-4 metabolites, many not yet reported. Most metabolites were hydroxylated with or without demethylation, carboxylation and dealkylation followed by glucuronidation. One additional sulfated metabolite was also observed. O-demethylation was the most common biotransformation and generated the major metabolite. Conclusion For the first time, we present a metabolic scheme of RCS-4 obtained from human hepatocytes, including Phase I and II metabolites. Metabolite structural information and associated high-resolution mass spectra can be employed for developing clinical and forensic laboratory RCS-4 urine screening methods. PMID:25046048

  5. Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions.

    PubMed

    Shen, Hong-Wu; Jiang, Xi-Ling; Winter, Jerrold C; Yu, Ai-Ming

    2010-10-01

    5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) belongs to a group of naturally-occurring psychoactive indolealkylamine drugs. It acts as a nonselective serotonin (5-HT) agonist and causes many physiological and behavioral changes. 5-MeO-DMT is O-demethylated by polymorphic cytochrome P450 2D6 (CYP2D6) to an active metabolite, bufotenine, while it is mainly inactivated through the deamination pathway mediated by monoamine oxidase A (MAO-A). 5-MeO-DMT is often used with MAO-A inhibitors such as harmaline. Concurrent use of harmaline reduces 5-MeO-DMT deamination metabolism and leads to a prolonged and increased exposure to the parent drug 5-MeO-DMT, as well as the active metabolite bufotenine. Harmaline, 5-MeO-DMT and bufotenine act agonistically on serotonergic systems and may result in hyperserotonergic effects or serotonin toxicity. Interestingly, CYP2D6 also has important contribution to harmaline metabolism, and CYP2D6 genetic polymorphism may cause considerable variability in the metabolism, pharmacokinetics and dynamics of harmaline and its interaction with 5-MeO-DMT. Therefore, this review summarizes recent findings on biotransformation, pharmacokinetics, and pharmacological actions of 5-MeO-DMT. In addition, the pharmacokinetic and pharmacodynamic drug-drug interactions between harmaline and 5-MeO-DMT, potential involvement of CYP2D6 pharmacogenetics, and risks of 5-MeO-DMT intoxication are discussed.

  6. Carbon-carbon bond cleavage in activation of the prodrug nabumetone.

    PubMed

    Varfaj, Fatbardha; Zulkifli, Siti N A; Park, Hyoung-Goo; Challinor, Victoria L; De Voss, James J; Ortiz de Montellano, Paul R

    2014-05-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs.

  7. Distribution of the antifungal agents sordarins across filamentous fungi.

    PubMed

    Vicente, Francisca; Basilio, Angela; Platas, Gonzalo; Collado, Javier; Bills, Gerald F; González del Val, Antonio; Martín, Jesús; Tormo, José R; Harris, Guy H; Zink, Deborah L; Justice, Michael; Kahn, Jennifer Nielsen; Peláez, Fernando

    2009-01-01

    Sordarins are a class of natural antifungal agents which act by specifically inhibiting fungal protein synthesis through their interaction with the elongation factor 2, EF2. A number of natural sordarins produced by diverse fungi of different classes have been reported in the literature. We have run an exhaustive search of sordarin-producing fungi using two different approaches consecutively, the first one being a differential sensitivity screen using a sordarin-resistant mutant yeast strain run in parallel with a wild type strain, and the second one an empiric screen against Candida albicans followed by early detection of sordarins by LC-MS analysis. Using these two strategies we have detected as many as 22 new strains producing a number of different sordarin analogues, either known (sordarin, xylarin, zofimarin) or novel (isozofimarin and 4'-O-demethyl sordarin). Sordarin and xylarin were the most frequently found compounds in the class. The producing strains were subjected to sequencing of the ITS region to determine their phylogenetic affinities. All the strains were shown to belong to the Xylariales, being distributed across three families in this order, the Xylariaceae, the Amphisphaeriaceae, and the Diatrypaceae. Despite being screened in large numbers, we did not find sordarin production in any other fungal group, including those orders where sordarin producing fungi are known to exist (i.e., Sordariales, Eurotiales, and Microascales), suggesting that the production of sordarin is a trait more frequently associated to members of the Xylariales than to any other fungal order.

  8. In vitro Phase I and Phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol.

    PubMed

    Negreira, Noelia; Erratico, Claudio; Kosjek, Tina; van Nuijs, Alexander L N; Heath, Ester; Neels, Hugo; Covaci, Adrian

    2015-07-01

    The aim of the present study was to identify the in vitro Phase I and Phase II metabolites of three new psychoactive substances: α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV), and methedrone, using human liver microsomes and human liver cytosol. Accurate-mass spectra of metabolites were obtained using liquid chromatography-quadrupole time-of-flight mass spectrometry. Six Phase I metabolites of α-PVP were identified, which were formed involving reduction, hydroxylation, and pyrrolidine ring opening reactions. The lactam compound was the major metabolite observed for α-PVP. Two glucuronidated metabolites of α-PVP, not reported in previous in vitro studies, were further identified. MDPV was transformed into 10 Phase I metabolites involving reduction, hydroxylation, and loss of the pyrrolidine ring. Also, six glucuronidated and two sulphated metabolites were detected. The major metabolite of MDPV was the catechol metabolite. Methedrone was transformed into five Phase I metabolites, involving N- and O-demethylation, hydroxylation, and reduction of the ketone group. Three metabolites of methedrone are reported for the first time. In addition, the contribution of individual human CYP enzymes in the formation of the detected metabolites was investigated.

  9. A novel incubation direct injection LC/MS/MS technique for in vitro drug metabolism screening studies involving the CYP 2D6 and the CYP 3A4 isozymes.

    PubMed

    Bhoopathy, S; Xin, B; Unger, S E; Karnes, H T

    2005-04-01

    A direct injection LC/MS/MS method involving a novel incubation technique was developed for the inhibition screening of CYP 2D6 and CYP 3A4 isoenzymes using dextromethorphan and midazolam as probe substrates. Both assays were performed using an electrospray ionization source in the positive ion mode. Direct injection was possible by using a short C 18, LC column (2 mm x 20 mm) with large particle diameter packing (10 microm). Analytical characteristics of the direct injection technique were studied by examining matrix effects, which showed suppression of the ESI signal between 0.20 and 0.65 min. The retention times for analytes were adjusted to approximately 0.8 min (k'>3), resulting in no matrix effect. Column lifetime was evaluated and determined to be approximately 160 direct injections of the matrix. The precision and accuracy of the control samples for the quantitation of dextromethorphan was between -0.53 and -12.80, and 3.73 and 6.69% respectively. Unlike conventional incubation techniques, incubations were carried out in an autosampler equipped with a heating accessory. This novel incubation method, which involved no stirring of the incubation mixture, estimated the Cl(int in vitro) for dextromethorphan and midazolam in human liver microsomes to be 1.65+/-0.22 ml/(hmg) and 0.861 ml/(min mg) respectively. The autosampler tray maintained uniform temperature and was sensitive to changes in temperature between 33 and 41 degrees C. High-throughput screening was performed using known inhibitors of the CYP 2D6 isozyme, and the system was evaluated for its ability to differentiate between these inhibitors. The strong inhibitor quinidine resulted in a 25.6% increase in t(1/2), the medium potency inhibitor chlorpromazine resulted in an increase of 6.14% and the weak inhibitor primaquine had no significant effect on half-life. This technique involves no sample preparation, demonstrated run times of 2 min per injection and can be fully automated. The method should

  10. Selective involvement of kappa opioid and phencyclidine receptors in the analgesic and motor effects of dynorphin-A-(1-13)-Tyr-Leu-Phe-Asn-Gly-Pro.

    PubMed

    Shukla, V K; Bansinath, M; Dumont, M; Lemaire, S

    1992-09-18

    Dynorphin A-(1-13)-Tyr-Leu-Phe-Asn-Gly-Pro (Dyn Ia; 1-8 nmol) injected intracerebroventricularly in the mouse produces two independent behavioral effects: (1) a norbinaltorphimine (kappa opioid antagonist)-reversible analgesia in the acetic acid-induced writhing test and (2) motor dysfunction characterized by wild running, pop-corn jumping, hindlimb jerking and barrel rolling and antagonized by the irreversible phencyclidine (PCP) and sigma (sigma) receptor antagonist, metaphit and the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists, dextromethorphan and ketamine. The specific involvement of the PCP receptor in the motor effects of Dyn Ia is supported by the direct competitive interaction of the peptide with the binding of [3H]MK-801 (Ki: 0.63 microM) and [3H]TCP (Ki: 4.6 microM) to mouse brain membrane preparations.

  11. Cyanide Suicide After Deep Web Shopping: A Case Report.

    PubMed

    Le Garff, Erwan; Delannoy, Yann; Mesli, Vadim; Allorge, Delphine; Hédouin, Valéry; Tournel, Gilles

    2016-09-01

    Cyanide is a product that is known for its use in industrial or laboratory processes, as well as for intentional intoxication. The toxicity of cyanide is well described in humans with rapid inhibition of cellular aerobic metabolism after ingestion or inhalation, leading to severe clinical effects that are frequently lethal. We report the case of a young white man found dead in a hotel room after self-poisoning with cyanide ordered in the deep Web. This case shows a probable complex suicide kit use including cyanide, as a lethal tool, and dextromethorphan, as a sedative and anxiolytic substance. This case is an original example of the emerging deep Web shopping in illegal drug procurement.

  12. Efficacy of levodropropizine in pediatric cough.

    PubMed

    De Blasio, Francesco; Dicpinigaitis, Peter V; De Danieli, Gianluca; Lanata, Luigi; Zanasi, Alessando

    2012-10-01

    Cough in children is among the most common problems managed by pediatricians, and occurs more frequently in preschool than in older children. Most acute episodes of cough are due to viral upper respiratory tract infections. The morbidity associated with acute cough in a child extends also to parents, teachers, and other family members and caregivers. Unfortunately, therapeutic options for acute cough in children are severely limited due to the absence of drugs shown to be effective antitussives with an acceptable safety profile. Agents used in the management of adult cough, such as narcotics (codeine, hydrocodone), the non-narcotic opioid dextromethorphan, first-generation, potentially sedating antihistamines, and decongestants such as pseudoephedrine, have all been deemed inadequate for treatment of acute pediatric cough on a risk/benefit basis. A growing body of evidence suggests that the peripherally acting antitussive, levodropropizine, may be an attractive alternative for the treatment of bothersome acute cough in children.

  13. Therapeutic options for acute cough due to upper respiratory infections in children.

    PubMed

    Paul, Ian M

    2012-02-01

    Cough due to upper respiratory tract infections (URIs) is one of the most frequent complaints encountered by pediatric health-care providers, and one of the most disruptive symptoms for children and families. Despite the frequency of URIs, there is limited evidence to support the few therapeutic agents currently available in the United States (US) to treat acute cough due to URI. Published, well-designed, contemporary research supporting the efficacy of narcotics (codeine, hydrocodone) and US Food and Drug Administration (FDA)-approved over-the-counter (OTC) oral antitussives and expectorants (dextromethorphan, diphenhydramine, chlophedianol, and guaifenesin) is absent for URI-associated pediatric cough. Alternatively, honey and topically applied vapor rubs may be effective antitussives.

  14. Analysis of pharmaceutical preparations containing antihistamine drugs by micellar liquid chromatography.

    PubMed

    Martínez-Algaba, C; Bermúdez-Saldaña, J M; Villanueva-Camañas, R M; Sagrado, S; Medina-Hernández, M J

    2006-02-13

    Rapid chromatographic procedures for analytical quality control of pharmaceutical preparations containing antihistamine drugs, alone or together with other kind of compounds are proposed. The method uses C18 stationary phases and micellar mobile phases of cetyltrimethylammonium bromide (CTAB) with either 1-propanol or 1-butanol as organic modifier. The proposed procedures allow the determination of the antihistamines: brompheniramine, chlorcyclizine, chlorpheniramine, diphenhydramine, doxylamine, flunarizine, hydroxyzine, promethazine, terfenadine, tripelennamine and triprolidine, in addition to caffeine, dextromethorphan, guaifenesin, paracetamol and pyridoxine in different pharmaceutical presentations (tablets, capsules, suppositories, syrups and ointments). The methods require minimum handling sample and are rapid (between 3 and 12 min at 1 mLmin(-1) flow rate) and reproducible (R.S.D. values<5%). Limits of detection are lower than 1 microgmL(-1) and the recoveries of the analytes in the pharmaceutical preparations are in the range 100+/-10%.

  15. Anti-Yo Mediated Paraneoplastic Cerebellar Degeneration Associated with Pseudobulbar Affect in a Patient with Breast Cancer

    PubMed Central

    Martin, Allison N.; Jones, David E.; Brenin, David R.; Lapides, David A.

    2017-01-01

    Paraneoplastic cerebellar degeneration (PCD) is a rare anti-Yo mediated paraneoplastic syndromes rarely that is infrequently associated with breast cancer. We present a case of a 52-year-old female presenting with diplopia, gait instability, dysarthria, dysphagia, nystagmus, and, most notably, new onset paroxysmal episodes of uncontrollable crying concerning for pseudobulbar affect (PBA). Serologic testing showed anti-Yo antibodies. The patient was found to have stage IIIA breast cancer as the inciting cause of the paraneoplastic syndrome. The patient was treated with neoadjuvant chemotherapy, modified radical mastectomy, adjuvant Herceptin, and pertuzumab. She was given IVIG for paraneoplastic syndrome, antidepressants, and dextromethorphan-quinidine (Nuedexta), the first FDA-approved therapy for PBA. With multimodality therapy, she demonstrated significant improvement in neurologic and mood symptoms associated with PCD and PBA. PMID:28377827

  16. Detection of an endogenous urinary biomarker associated with CYP2D6 activity using global metabolomics

    PubMed Central

    Tay-Sontheimer, Jessica; Shireman, Laura M; Beyer, Richard P; Senn, Taurence; Witten, Daniela; Pearce, Robin E; Gaedigk, Andrea; Fomban, Cletus L Gana; Lutz, Justin D; Isoherranen, Nina; Thummel, Kenneth E; Fiehn, Oliver; Leeder, J Steven; Lin, Yvonne S

    2015-01-01

    Aim We sought to discover endogenous urinary biomarkers of human CYP2D6 activity. Patients & methods Healthy pediatric subjects (n = 189) were phenotyped using dextromethorphan and randomized for candidate biomarker selection and validation. Global urinary metabolomics was performed using liquid chromatography quadrupole time-of-flight mass spectrometry. Candidate biomarkers were tested in adults receiving fluoxetine, a CYP2D6 inhibitor. Results A biomarker, M1 (m/z 444.3102) was correlated with CYP2D6 activity in both the pediatric training and validation sets. Poor metabolizers had undetectable levels of M1, whereas it was present in subjects with other phenotypes. In adult subjects, a 9.56-fold decrease in M1 abundance was observed during CYP2D6 inhibition. Conclusion Identification and validation of M1 may provide a noninvasive means of CYP2D6 phenotyping. PMID:25521354

  17. Drugs and Alcohol in Civil Aviation Accident Pilot Fatalities from 2004-2008

    DTIC Science & Technology

    2011-09-01

    1989 Doxylamine 8 0.4 15 0.9 19 1.2 12 0.9 FDA 򒾅 Ephedrine 1 0.1 47 2.8 74 4.7 29 2.1 FDA 򒾅 Guaiphenesin 0 0.0 1 0.1 0 0.0 0 0.0 FDA...Dextromethorphan/Metabolites 4 0.2 26 1.5 20 1.3 16 1.2 FDA 򒾅 Doxylamine 8 0.4 15 0.9 19 1.2 12 0.9 FDA 򒾅 Ephedrine 1 0.1 47 2.8 74 4.7 29 2.1 FDA

  18. Separation of cold medicine ingredients using a precise MEKC method at elevated pH.

    PubMed

    Hasemann, Phillip; ter Balk, Marieke; Preu, Lutz; Wätzig, Hermann

    2007-06-01

    An MEKC method was developed in order to separate a cold medicine formulation containing acetaminophen, ephedrine sulfate, doxylamine succinate, and dextromethorphan hydrobromide as active pharmaceutical ingredients. Because of their similar physical and chemical properties, it was a challenge to separate the basic compounds without sample pretreatment. In addition, the high content of alcohol and sucrose together with the variety of further excipients had to be considered. Thus, the complex matrix required several optimization steps. These included the search for the optimum pH and for a suitable sodium dodecyl sulfate concentration to avoid matrix-capillary wall interaction and to ensure precision. As a second developing step, an internal standard (benzocaine) was chosen to guarantee a high level of quantitative performance. An RSD% value of the peak areas between 1.0 and 2.0 was reached. The employed method development strategy can be generalized to similar separation approaches in the future.

  19. High-sensitivity liquid chromatography-tandem mass spectrometry for the simultaneous determination of five drugs and their cytochrome P450-specific probe metabolites in human plasma.

    PubMed

    Oh, Kyung-Suk; Park, Su-Jin; Shinde, Dhananjay D; Shin, Jae-Gook; Kim, Dong-Hyun

    2012-05-01

    A sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method with electrospray ionization was developed for the simultaneous quantitation of five probe drugs and their metabolites in human plasma for assessing the in vivo activities of cytochrome P450 (CYP). CYP isoform specific substrates and their metabolites of CYP1A2 (caffeine), CYP2C9 (losartan), CYP2C19 (omeprazole), CYP2D6 (dextromethorphan) and CYP3A (midazolam) were all simultaneously analyzed using LC-MS/MS after administration of a mixture of five drugs (i.e., a "cocktail approach") to healthy volunteers. The assay uses propranolol as an internal standard; dual liquid extraction; a Xbridge MS C(18) (100 mm × 2.1mm, 3.5 μm) column; a gradient mobile phase of 0.1% formic acid/acetonitrile (7/3→3/7); mass spectrometric detection in positive ion mode. The method was validated from 5 to 500 ng/mL for caffeine and paraxanthine, 0.1-40 ng/mL for losartan and EXP3174, 0.05-20 ng/mL for omeprazole and 5-hydroxyomeprazole, 0.008-0.8 ng/mL for dextromethorphan and dextrorphan, 0.01-1.0 ng/mL for midazolam, and 0.04-4 ng/mL for 1'-hydroxymidazolam. The intra- and inter-day precision over the concentration ranges for all analytes were lower than 12.5% and 13.8% (relative standard deviation, %RSD), and accuracy was between 86.5% and 108.4% and between 87.0% and 107.0%, respectively. This highly sensitive and quantitative method allowed a pharmacokinetic study in subjects receiving doses 10-100 times lower than typical therapeutic doses.

  20. Effect of memantine on cough reflex sensitivity: translational studies in guinea pigs and humans.

    PubMed

    Dicpinigaitis, Peter V; Canning, Brendan J; Garner, Rachel; Paterson, Blake

    2015-03-01

    Cough is the most common complaint for which outpatients in the United States seek medical attention, and yet available therapeutic options for cough lack proven efficacy and are further limited by safety and abuse liabilities. Thus, safe and effective cough suppressants are needed. Recent preclinical studies described the antitussive effects of memantine, an N-methyl-d-aspartate receptor channel blocker used in the treatment of Alzheimer's disease. The goals of the present study were to compare the antitussive effects of memantine, dextromethorphan, and codeine in guinea pigs; to relate the dose-dependent actions of memantine in these studies to peak plasma concentrations achieved following oral administration; and to provide the first ever evaluation of the antitussive effect of memantine in humans. In guinea pigs, memantine and codeine were comparable in efficacy and potency but both were superior to dextromethorphan in the citric acid cough challenge model. The pharmacokinetic analyses suggest that memantine was active in guinea pigs at micromolar plasma concentrations. Subsequently, 14 healthy volunteers as well as 14 otherwise healthy adults with acute viral upper respiratory tract infection (URI) underwent capsaicin cough challenges 6 hours after ingestion of 20 mg memantine and matched placebo in a randomized, double-blind, crossover fashion. In healthy volunteers, memantine significantly inhibited cough reflex sensitivity (P = 0.034). In subjects with URI, responsiveness to capsaicin was markedly increased, and in these patients, the inhibition of cough reflex sensitivity by memantine relative to placebo did not reach statistical significance (P = 0.088). These data support further research to investigate the potential of memantine as a clinically useful antitussive.

  1. Current and future centrally acting antitussives☆

    PubMed Central

    Bolser, Donald C.

    2011-01-01

    The purpose of this review is to highlight some important issues regarding current centrally acting antitussive drugs as well as discuss the implications of these matters on the development of future cough suppressants. Drugs that act in the central nervous system to inhibit cough are termed centrally acting and this designation is based exclusively on evidence obtained from animal models. This classification can include drugs that act both at peripheral and central sites following systemic administration. These drugs are intended to reduce the frequency and/or intensity of coughing resulting from disorders of any etiology. There are a number of central cough suppressants identified by their efficacy in animal models and the most prominent of these are codeine and dextromethorphan. Although the exact neural elements on which these drugs act are currently unknown, they are thought to inhibit a functionally identified component of the central system for cough known as the gating mechanism. The efficacy of codeine and dextromethorphan in humans has recently been questioned. These drugs are less effective on cough induced by upper airway disorders than in pathological conditions involving the lower airways in humans. The reasons for this difference in antitussive sensitivity are not clear. We propose that sensory afferents from different regions of the airways actuate coughing in humans by antitussive sensitive and insensitive control elements in the central nervous system. This hypothesis is consistent with results from an animal model in which laryngeal and tracheobronchial cough had different sensitivities to codeine. Other factors that may be very important in the action of central antitussive drugs in humans include the role of sensations produced by a tussigenic stimulus as well as plasticity of central pathways in response to airway inflammation. Resolution of these issues in the human will be a challenging process, but one which will lay the foundation for the

  2. Chronic Enhancement of Serotonin Facilitates Excitatory Transcranial Direct Current Stimulation-Induced Neuroplasticity.

    PubMed

    Kuo, Hsiao-I; Paulus, Walter; Batsikadze, Giorgi; Jamil, Asif; Kuo, Min-Fang; Nitsche, Michael A

    2016-04-01

    Serotonin affects memory formation via modulating long-term potentiation (LTP) and depression (LTD). Accordingly, acute selective serotonin reuptake inhibitor (SSRI) administration enhanced LTP-like plasticity induced by transcranial direct current stimulation (tDCS) in humans. However, it usually takes some time for SSRI to reduce clinical symptoms such as anxiety, negative mood, and related symptoms of depression and anxiety disorders. This might be related to an at least partially different effect of chronic serotonergic enhancement on plasticity, as compared with single-dose medication. Here we explored the impact of chronic application of the SSRI citalopram (CIT) on plasticity induced by tDCS in healthy humans in a partially double-blinded, placebo (PLC)-controlled, randomized crossover study. Furthermore, we explored the dependency of plasticity induction from the glutamatergic system via N-methyl-D-aspartate receptor antagonism. Twelve healthy subjects received PLC medication, combined with anodal or cathodal tDCS of the primary motor cortex. Afterwards, the same subjects took CIT (20 mg/day) consecutively for 35 days. During this period, four additional interventions were performed (CIT and PLC medication with anodal/cathodal tDCS, CIT and dextromethorphan (150 mg) with anodal/cathodal tDCS). Plasticity was monitored by motor-evoked potential amplitudes elicited by transcranial magnetic stimulation. Chronic application of CIT increased and prolonged the LTP-like plasticity induced by anodal tDCS for over 24 h, and converted cathodal tDCS-induced LTD-like plasticity into facilitation. These effects were abolished by dextromethorphan. Chronic serotonergic enhancement results in a strengthening of LTP-like glutamatergic plasticity, which might partially explain the therapeutic impact of SSRIs in depression and other neuropsychiatric diseases.

  3. Characterization of pulmonary sigma receptors by radioligand binding

    PubMed Central

    Lever, John R.; Litton, Tyler P.; Fergason-Cantrell, Emily A.

    2015-01-01

    This study establishes the expression of appreciable populations of sites on mouse lung membranes that exhibit radioligand binding properties and pharmacology consistent with assignment as sigma1 and sigma2 receptors. Specific binding of the sigma1 receptor radioligand [3H](+)-pentazocine reached steady state within 6 h at 37 °C. Saturation studies revealed high affinity binding to a single class of sites (Kd 1.36 ± 0.04 nM; Bmax 967 ± 11 fmol / mg protein). Inhibition studies showed appropriate sigma1 receptor pharmacology, including higher affinity for (+)-N-allylnormetazocine with respect to the (−)-enantiomer, and positive allosteric modulation of dextromethorphan binding by phenytoin. Using [3H]1,3-di(2-tolyl)guanidine in the presence of (+)-pentazocine to assess sigma2 receptor binding, steady state was achieved within 2 min at 25 °C. Cold saturation studies revealed one high affinity, low capacity binding site (Kd 31.8 ± 8.3 nM; Bmax 921 ± 228 fmol / mg protein) that displayed sigma2 receptor pharmacology. A very low affinity, high capacity interaction also was observed that represents saturable, but not sigma receptor specific, binding. A panel of ligands showed rank order inhibition of radioligand binding appropriate for the sigma2 receptor, with ifenprodil displaying the highest apparent affinity. In vivo, dextromethorphan inhibited the specific binding of a radioiodinated sigma1 receptor ligand in lung with an ED50 of 1.2 µmol / kg, a value near the recommended dosage for the drug as a cough suppressant. Overall, the present work provides a foundation for studies of drug interactions with pulmonary sigma1 and sigma2 receptors in vitro and in vivo. PMID:26004528

  4. High-throughput screening to estimate single or multiple enzymes involved in drug metabolism: microtitre plate assay using a combination of recombinant CYP2D6 and human liver microsomes.

    PubMed

    Yamamoto, T; Suzuki, A; Kohno, Y

    2003-08-01

    1. The purpose of this study was to estimate readily involvement of single or multiple enzymes in the metabolism of a drug through inhibitory assessment. Inhibitory effects of various compounds on CYP2D6 activity assayed by formation of fluorescent metabolite from 3-[2-(N,N-diethyl-N-methyl-ammonium)ethyl]-7-methoxy-4-methyl-coumarin (AMMC) were assessed using microtitre plate (MTP) assays with a combination of recombinant CYP2D6 and human liver microsomes (HLM). 2. Among various compounds studied, antipsychotic drugs extensively inhibited recombinant CYP2D6 activity and the IC50 values were generally lower than those of antidepressants and antiarrhythmic drugs. 3. After pre-incubation, the IC50 values of mianserin, chlorpromadine, risperidone, thioridazine, alprenolol, propafenone and dextromethorphan increased but the values of timolol, S-metoprolol and propranolol substantially decreased compared with those in case of co-incubation. 4. The IC50 values of typical substrates of CYP2D6 (bufuralol and dextromethorphan at lower substrate concentration) in inhibition studies using HLM, were similar to those in the case of recombinant CYP2D6, but the values of the compounds that are metabolized by multiple CYP forms (perphenazine and chlorpromazine) in HLM were much larger. 5. If the ratio (HLM/rCYP ratio) of IC50 values between HLM and recombinant CYP2D6 exceeds approximately 2, it suggests that other CYP forms in addition to CYP2D6 might be involved in the metabolism of the test compounds. From the advantage such as speed, high throughput and ease of the technique, the MTP assay using a combination of the recombinant CYP2D6 and HLM is useful to estimate the involvement of single or multiple enzymes in the metabolism of drugs at the stage of drug discovery.

  5. Possible role of pseudoephedrine and other over-the-counter cold medications in the deaths of very young children.

    PubMed

    Wingert, William E; Mundy, Lisa A; Collins, Gary L; Chmara, Edward S

    2007-03-01

    The Philadelphia Medical Examiners Office has reported a series of 15 deaths between February 1999 and June 2005 of infants and toddlers 16 months and younger in which drugs commonly found in over-the-counter (OTC) cold medications were present. A total of 10 different drugs were detected: pseudoephedrine, dextromethorphan, acetaminophen, brompheniramine, carbinoxamine, chlorpheniramine, ethanol, doxylamine and the anticonvulsants, phenobarbital, and phenytoin. The drugs were confirmed and quantified by gas chromatography (GC)-mass spectrometry, with the exception of ethanol, which was analyzed by headspace GC and of phenobarbital and phenytoin that were quantified by GC with a nitrogen phosphorus detector. The most predominant drug was pseudoephedrine, which was found in all of the cases (blood concentration, n=14, range=0.10-17.0 mg/L, mean=3.34 mg/L) and was the sole drug detected in three cases. Acetaminophen was detected in blood from each of the five cases with sufficient sample. Other drugs (with frequency of detection) were dextromethorphan (five cases), carbinoxamine (four cases), chlorpheniramine (two cases) and brompheniramine, doxylamine, and ethanol (one case each). In the majority of the cases, toxicity from drugs found in easily available OTC medications was listed either as the direct cause of death or as a contributory factor. The manner of death was determined to be natural in only two of the cases. This postmortem study supports previous evidence that the administration of OTC cold medications to infants may, under some circumstances, be an unsafe practice and in some cases may even be fatal. The treating physicians and the general public need to be made more aware of the dangers of using OTC cold medications to treat very young children so that these types of tragedies might be avoided.

  6. CYP2D6*2 Polymorphism as a Predictor of Failed Outpatient Tramadol Therapy in Postherpetic Neuralgia Patients.

    PubMed

    Nasare, Namita Vilas; Banerjee, Basu Dev; Suryakantrao Deshmukh, Pravin; Mediratta, Pramod Kumari; Saxena, Ashok Kumar; Ahmed, Rafat Sultana; Bhattacharya, Sambit Nath

    2016-01-01

    Human cytochrome P4502D6 (CYP2D6) gene is highly polymorphic, leading to wide interindividual ethnic differences in CYP2D6-mediated drug metabolism. Its activity ranges from complete deficiency to excessive activity, potentially causing toxicity of the medication or therapeutic failure with recommended drug dosages. The aim of the study was to find the association of CYP2D6*2 polymorphisms with demographic characters (age, sex, and weight), pain intensity scales [numerical rating scale (NRS) sleep, global perceived effect (GPE)], and adverse drug effects in postherpetic neuralgia (PHN) patients receiving tramadol. The study comprised 246 patients [including 123 nonresponders (NRs) and 123 responders (Rs)] with PHN undergoing analgesic treatment at the pain clinic, Out Patient Department, University College of Medical Sciences, Guru Teg Bahadur Hospital, Delhi, India. Patients with any history of diabetes mellitus, human immunodeficiency virus, malignancy, hematological or liver disease, psychiatric illness, alcohol abuse, and tramadol sensitivity were excluded from the study. The NRSs of (resting and movement), NRS-sleep, and GPE were evaluated by the treating physician. Adverse drug effects during the time of the study were recorded. All samples were analyzed for CYP2D6*2 polymorphism using the polymerase chain reaction-restriction fragment length polymorphism method. The genotype distribution did not vary significantly among genders [NR (P = 0.723); R (P = 0.947)] and different age groups in NRs (P = 0.763) and Rs (P = 0.268). Clinically, statistically significant (P < 0.001) results were obtained in both the groups when compared with baseline in the NRS-sleep and GPE scores, whereas no association was found between NRS-sleep and GPE scores when compared with CYP2D6*2 genotype (P > 0.05). In addition, CYP2D6*2 genotype was not related to the adverse effects of analgesic therapy. The overall results suggested that CYP2D6*2 polymorphism plays no role in the PHN

  7. A novel approach to the prediction of drug-drug interactions in humans based on the serum incubation method.

    PubMed

    Shibata, Yoshihiro; Takahashi, Hiroyuki; Chiba, Masato; Ishii, Yasuyuki

    2008-01-01

    A novel method for the prediction of drug-drug interaction has been established based on the in vitro metabolic stability in the "serum incubation method" using cryopreserved human hepatocytes suspended in 100% human serum. As a novel approach, the inhibitory effect of inhibitors on the metabolism of substrates during the first-pass elimination process in the liver (hepatic availability) and in the elimination process from the systemic circulation (hepatic clearance) were separately predicted with the anticipated inhibitor/substrate concentrations during absorption and in the systemic circulation, respectively. Ketoconazole strongly inhibited CYP3A4-mediated terfenadine metabolism in vitro, and the method predicted 6- to 37-fold increase of terfenadine AUC by the concomitant dosing of ketoconazole, which reasonably well agreed with the observed 13- to 59-fold increase of AUC in clinical studies. The CYP3A4-mediated metabolism of indinavir was also subject to the inhibition by ketoconazole in vitro at the lower indinavir concentration (2 microM), whereas no substantial inhibition was observed at 12 microM due to the saturation of indinavir metabolism. Predicted no interaction between ketoconazole and indinavir was consistent with the minimal increase (1.3-fold increase) of indinavir AUC by ketoconazole observed in clinical study. In addition, the method was applied to the CYP2D6-mediated desipramine-quinidine interaction: the predicted 6.4-fold increase of desipramine AUC by quinidine was consistent with the observed 6.7-fold increase of AUC in the clinical drug-drug interaction study. On the other hand, desipramine metabolism was little affected by ketoconazole in vitro, and consequently, it predicted no drug-drug interaction between desipramine and ketoconazole in humans, which agreed with the negligible interaction observed in clinical study. The accuracy of predictions for drug-drug interaction by the serum incubation method was evaluated by comparing the

  8. Cytochrome b5 is a major determinant of human cytochrome P450 CYP2D6 and CYP3A4 activity in vivo.

    PubMed

    Henderson, Colin J; McLaughlin, Lesley A; Scheer, Nico; Stanley, Lesley A; Wolf, C Roland

    2015-04-01

    The cytochrome P450-dependent mono-oxygenase system is responsible for the metabolism and disposition of chemopreventive agents, chemical toxins and carcinogens, and >80% of therapeutic drugs. Cytochrome P450 (P450) activity is regulated transcriptionally and by the rate of electron transfer from P450 reductase. In vitro studies have demonstrated that cytochrome b5 (Cyb5) also modulates P450 function. We recently showed that hepatic deletion of Cyb5 in the mouse (HBN) markedly alters in vivo drug pharmacokinetics; a key outstanding question is whether Cyb5 modulates the activity of the major human P450s in drug disposition in vivo. To address this, we crossed mice humanized for CYP2D6 or CYP3A4 with mice carrying a hepatic Cyb5 deletion. In vitro triazolam 4-hydroxylation (probe reaction for CYP3A4) was reduced by >50% in hepatic microsomes from CYP3A4-HBN mice compared with controls. Similar reductions in debrisoquine 4-hydroxylation and metoprolol α-hydroxylation were observed using CYP2D6-HBN microsomes, indicating a significant role for Cyb5 in the activity of both enzymes. This effect was confirmed by the concentration-dependent restoration of CYP3A4-mediated triazolam turnover and CYP2D6-mediated bufuralol and debrisoquine turnover on addition of Escherichia coli membranes containing recombinant Cyb5. In vivo, the peak plasma concentration and area under the concentration time curve from 0 to 8 hours (AUC0-8 h) of triazolam were increased 4- and 5.7-fold, respectively, in CYP3A4-HBN mice. Similarly, the pharmacokinetics of bufuralol and debrisoquine were significantly altered in CYP2D6-HBN mice, the AUC0-8 h being increased ∼1.5-fold and clearance decreased by 40-60%. These data demonstrate that Cyb5 can be a major determinant of CYP3A4 and CYP2D6 activity in vivo, with a potential impact on the metabolism, efficacy, and side effects of numerous therapeutic drugs.

  9. Pharmacokinetic changes in the elderly. Do they contribute to drug abuse and dependence?

    PubMed

    Ozdemir, V; Fourie, J; Busto, U; Naranjo, C A

    1996-11-01

    The elderly frequently use psychoactive drugs including alcohol (ethanol), benzodiazepines and opioid analgesics, which have a propensity to cause abuse and dependence. Theoretically, the changes in pharmacokinetics of these agents in the elderly may modify their abuse and dependence potential. In the elderly, blood alcohol concentrations following an oral dose are higher, alcohol withdrawal syndrome follows a more severe and protracted clinical course and requires treatment with higher doses of chlordiazepoxide than needed for younger adults. However, there is no direct evidence that supports an increased direct abuse and dependence potential of alcohol because of its altered kinetics in the elderly. In the case of oxidatively metabolised benzodiazepine, both age-related pharmacokinetics and pharmacodynamic changes may increase their clinical effects in the elderly. The hypothesis that benzodiazepines have an increased abuse and dependence potential in the elderly has not been tested. Many of the benzodiazepines (e.g. alprazolam, triazolam and midazolam) are metabolised by the cytochrome P450 (CYP)3A subfamily. The pharmacokinetics of these agents may be modified by inhibition of CYP3A due to concurrently administered medications such as selective serotonin reuptake inhibitors. Unfortunately, data on the direct measures of abuse and dependence potential of benzodiazepines are not available in the elderly. Thus, a conclusive statement on the contribution of age-related pharmacokinetic changes to benzodiazepine abuse and dependence cannot be made at the present time. The clinical effects of codeine do not appear to change with age. Codeine is O-demethylated to its active metabolite morphine by the genetically polymorphic CYP2D6 isozyme. The activity of this isozyme is unaltered by age, gender or smoking habits; however, it is subject to potent inhibition by some of the frequently used medications in the elderly, such as the antidepressants paroxetine and fluoxetine

  10. Degradation of Triazine-2-(14)C Metsulfuron-Methyl in Soil from an Oil Palm Plantation.

    PubMed

    Ismail, B S; Eng, O K; Tayeb, M A

    2015-01-01

    Triazine-2-(14)C metsulfuron-methyl is a selective, systemic sulfonylurea herbicide. Degradation studies in soils are essential for the evaluation of the persistence of pesticides and their breakdown products. The purpose of the present study was to investigate the degradation of triazine-2-(14)C metsulfuron-methyl in soil under laboratory conditions. A High Performance Liquid Chromatograph (HPLC) equipped with an UV detector and an on-line radio-chemical detector, plus a Supelco Discovery column (250 x 4.6 mm, 5 μm), and PRP-1 column (305 x 7.0 mm, 10 μm) was used for the HPLC analysis. The radioactivity was determined by a Liquid Scintillation Counter (LSC) in scintillation fluid. The soil used was both sterilized and non-sterilized in order to observe the involvement of soil microbes. The estimated DT50 and DT90 values of metsulfuron-methyl in a non-sterile system were observed to be 13 and 44 days, whereas in sterilized soil, the DT50 and DT90 were 31 and 70 days, respectively. The principal degradation product after 60 days was CO2. The higher cumulative amount of (14)CO2 in (14)C-triazine in the non-sterilized soil compared to that in the sterile system suggests that biological degradation by soil micro-organisms significantly contributes to the dissipation of the compound. The major routes of degradation were O-demethylation, sulfonylurea bridge cleavage and the triazine "ring-opened."

  11. Pharmacokinetic properties, in vitro metabolism and plasma protein binding of govaniadine an alkaloid isolated from Corydalis govaniana Wall.

    PubMed

    Marques, Lucas M M; Callejon, Daniel R; Pinto, Larissa G; de Campos, Michel L; de Oliveira, Anderson R M; Vessecchi, Ricardo; Adhikari, Achyut; Shrestha, Ram L S; Peccinini, Rosangela G; Lopes, Norberto P

    2016-11-30

    Govaniadine (GOV) is an alkaloid isolated from Corydalis govaniana Wall. It has been reported to show a different number of biological activities including anti-urease, leishmanicidal and antinociceptive. The present study aims to characterize the GOV in vitro metabolism after incubation with rat and human liver microsomes (RLM and HLM, respectively) and to evaluate its pharmacokinetic properties. The identification of GOV metabolites was conducted by different mass analyzers: a micrOTOF II-ESI-ToF Bruker Daltonics(®) and an amaZon-SL ion trap (IT) Bruker Daltonics(®). For the pharmacokinetic study of GOV in rats after intravenous administration, a LC-MS/MS method was developed and applied to. The analyses were performed using an Acquity UPLC(®) coupled to an Acquity TQD detector equipped with an ESI interface. The liver microsomal incubation resulted in new O-demethylated, di-hydroxylated and mono-hydroxylated compounds. Regarding the method validation, the calibration curve was linear over the concentration range of 2.5-3150.0ngmL(-1), with a lower limit of quantitation (LLOQ) of 2.5ngmL(-1). This method was successfully applied to a pharmacokinetic study. The profile was best fitted to a two-compartment model, the first phase with a high distribution rate constant (α) 0.139±0.086min(-1), reflected by the short distribution half-life (t1/2α) 9.2±8.9min and the later one, with an elimination half-life (t1/2β) 55.1±37.9min. The main plasma protein binding was 96.1%. This is a first report in this field and it will be useful for further development of govaniadine as a drug candidate.

  12. Kinetics and selectivity of mechanism-based inhibition of guinea pig hepatic and pulmonary cytochrome P450 by N-benzyl-1-aminobenzotriazole and N-alpha-methylbenzyl-1-aminobenzotriazole.

    PubMed

    Sinal, C J; Bend, J R

    1996-09-01

    The time dependence for mechanism-based inactivation of cytochrome P450 (P450)-dependent 7-pentoxyresorufin O-depentylation (PROD), 7-ethoxyresorufin O-deethylation (EROD), and 7-methoxyresorufin O-demethylation (MROD) activities by N-benzyl-1-aminobenzotriazole (BBT) and N-alpha-methylbenzyl-1-aminobenzotriazole (alpha MB) was investigated in hepatic and pulmonary microsomes from phenobarbital-treated guinea pigs. In the presence of NADPH, both compounds inhibited P450-dependent catalytic activity in a time- and concentration-dependent manner. Inactivation of hepatic PROD activity was more rapid (t1/2 = 13.2 vs. 155 min) for 0.1 microM alpha MB when compared with equimolar BBT. On the other hand, hepatic EROD inactivation was more rapid (t1/2 = 8.1 vs. 11 min) with 0.1 microM BBT, compared with equimolar alpha MB. Inactivation of pulmonary PROD activity was the most rapid and potent, with an apparent half-life for inactivation of t1/2 = 0.94 and 32.2 min for 0.025 microM alpha MB and BBT, respectively. Incubation of hepatic microsomes for 45 min in the presence of NADPH and 10 microM BBT or alpha MB resulted in > 90% inhibition of PROD, EROD, and MROD activities. After washing by repeated sedimentation and resuspension, inhibition of PROD (78%; 93% for BBT and alpha MB, respectively), EROD (80% and 50%), and MROD (15% and 3%) activities was reversed to varying degrees. We conclude that BBT and alpha MB are rapidly metabolized to products that inhibit individual P450 isozymes by both mechanism-based (P4502B and P4501A1) and reversible (P4501A2) mechanisms. Of the two inhibitors, alpha MB is relatively more potent and selective for guinea pig lung P4502B isozyme(s).

  13. A Unified Strategy toward the Synthesis of Acerogenin-Type Macrocycles: Total Syntheses of Acerogenins A, B, C, and L and Aceroside IV.

    PubMed

    Gonzalez, Gabriela Islas; Zhu, Jieping

    1999-02-05

    A general strategy for the synthesis of acerogenin-type diarylheptanoids containing an endocyclic biaryl ether bond has been developed, and convergent total syntheses of acerogenin A, B, C, and L and aceroside IV have been accomplished. Cycloetherification of the linear diarylheptanoid 1-(4-fluoro-3-nitrophenyl)-7-(3-hydroxy-4-methoxyphenyl)heptan-3-one (18) under mild conditions (CsF, DMF, 0.01 M, rt, 5 h) gave the macrocycle 4-methoxy-17-nitro-2-oxatricyclo[13.2.2(3,7)]eicosa-1(18),3,5,7(20),15(19),16-hexaen-12-one (19) in 95% yield. Removal of the nitro group followed by O-demethylation gave acerogenin C (2), whose reduction afforded acerogenin A (1). Glucosidation of 2 with 2,3,4,6-alpha-D-tetrabenzoylglucopyranosyl bromide followed by saponification gave aceroside IV (3) in excellent overall yield. Acerogenins B (4) and L (5) were synthesized in a similar fashion featuring a key intramolecular S(N)Ar reaction of linear compound 29. The entropy driving force resulting from the preorganization of cyclization precursors in favor of the bent conformation was proposed to contribute significantly to the efficiency of this cyclization. Both computational studies and spectroscopic data (NOE) supported this hypothesis. Experimentally, it was observed that even at high concentration (1 M of 18 in DMF) the analytically pure macrocycle 19 could still be obtained in 45-50% isolated yield. Furthermore, when the cyclization of 18 was carried out in the presence of an external nucleophile (4-methoxyphenol, 33) or an electrophile (4-fluoro-3-nitrotoluene, 34), only the 15-membered cyclophane 19 was isolable. This provides experimental evidence that compound 18 is indeed preorganized in such a way that intramolecular reaction was highly competitive with the alternative intermolecular process.

  14. Isoxanthohumol--Biologically active hop flavonoid.

    PubMed

    Żołnierczyk, Anna Katarzyna; Mączka, Wanda Krystyna; Grabarczyk, Małgorzata; Wińska, Katarzyna; Woźniak, Edyta; Anioł, Mirosław

    2015-06-01

    Isoxanthohumol (IXN), apart from xanthohumol (XN) and 8-prenylnaringenin (8PN), is one of the most important prenylflavonoids found in hops. Another natural source of this compound is a shrub Sophora flavescens, used in traditional Chinese medicine. Main dietary source of IXN is beer, and the compound is produced from XN during wort boiling. In the human body, the compound is O-demethylated to 8PN, the strongest known phytoestrogen. This process takes place in the liver and in the intestine, where it is mediated by local microflora. It has been reported in some studies that even though beer contains small amounts of hops and its preparations, these compounds may affect the functioning of the human body. IXN exhibits an antiproliferative activity against human cell lines typical for breast cancer (MCF-7), ovarian cancer (A-2780), prostate cancer (DU145 and PC-3), and colon cancer (HT-29 and SW620) cells. It strongly inhibits the activation of the following carcinogens: 2-amino-3-methylimidazol-[4,5-f]quinoline and aflatoxin B1 (AFB1) via human cytochrome P450 (CYP1A2). It also inhibits the production of prostate specific antigen (PSA). IXN significantly reduces the expression of transforming growth factor-β (TGF-β) in the case of invasive breast cancer MDA-MB-231. It interferes with JAK/STAT signaling pathway and inhibits the expression of pro1inflammatory genes in the monoblastic leukemia cell line (MonoMac6). It activates apoptosis in human umbilical vein endothelial cells (HUVEC) and human aortic smooth muscle cells (HASMCs). In addition, IXN shows an antiviral activity towards herpes viruses (HSV1 and HSV2) and bovine viral diarrhea virus (BVDV).

  15. Anti-austeric activity of phenolic constituents of seeds of Arctium lappa.

    PubMed

    Tezuka, Yasuhiro; Yamamoto, Keiichi; Awale, Suresh; Lia, Feng; Yomoda, Satoshi; Kadota, Shigetoshi

    2013-04-01

    From seeds of Arctium lappa L. (Asteraceae) we obtained arctigenin (1), arctiin (2), chlorogenic acid (3), 4,5-dicaffeoylquinic acid (4), 3,5-dicaffeoylquinic acid (5), 3,4-dicaffeoylquinic acid (6), matairesinol (11), isolappaol A (12), lappaol F (14), and lappaol B (15), together with 1:1 mixtures of isolappaol C (7) and lappaol C (8), arctignan E (9) and arctignan D (10), and 12 and lappaol A (13), while 3,3',4'-tri-O-demethylarctigenin (16), 3,3'-di-O-demethyl-4'-dehydroxyarctigenin (17), and 3-O-demethylarctigenin (18) were obtained by anaerobic microbiological metabolism of 1. Then, we evaluated the in vitro preferential cytotoxic activity of these pure compounds and 1:1 mixtures, together with enterodiol (19) and enterolactone (20), against human pancreatic cancer PANC-1 cells in nutrient-deprived medium (NDM). Among them, 1 and 18 showed potent activity, with PC50 values of 1.75 and 4.38 microM, respectively, while 11, 15, and 17 showed mild activity with PC50 values of 31.1, 30.9, and 38.7 microM, respectively. By comparing their structures and PC50 values, the following structural moieties could be concluded to be important for the preferential cytotoxicity of 1: 1) the 3-hydroxy-4-methoxyphenyl group at the 2-position on the gamma-butyrolactone ring, 2) the less polar substituent at the 3-position on the gamma-butyrolactone ring, and 3) the gamma-butyrolactone ring.

  16. Activation of proestrogens from hops (Humulus lupulus L.) by intestinal microbiota; conversion of isoxanthohumol into 8-prenylnaringenin.

    PubMed

    Possemiers, Sam; Heyerick, Arne; Robbens, Veerle; De Keukeleire, Denis; Verstraete, Willy

    2005-08-10

    Hop, an essential ingredient in most beers, contains a number of prenylflavonoids, among which 8-prenylnaringenin (8-PN) would be the most potent phytoestrogen currently known. Although a number of health effects are attributed to these compounds, only a few reports are available about the bioavailability of prenylflavonoids and the transformation potency of the intestinal microbial community. To test these transformations, four fecal samples were incubated with xanthohumol, isoxanthohumol (IX), and 8-PN. Upon incubation with IX, present in strong ales up to 4 mg/L, 36% was converted into 8-PN in one fecal sample and the estrogenic properties of the sample drastically increased. In an experiment with 12 fecal cultures, this conversion was observed in one-third of the samples, indicating the importance of interindividual variability in the intestinal microbial community. Eubacterium limosum was identified to be capable of this conversion (O-demethylation) of IX into 8-PN, and after strain selection, a conversion efficiency of 90% was achieved. Finally, strain supplementation to a nonconverting fecal sample led to rapid and high 8-PN production at only 1% (v/v) addition. Up to now, the concentration of 8-PN in beer was considered too low to affect human health. However, these results show that the activity of the intestinal microbial community could more than 10-fold increase the exposure concentration. Because prenylflavonoids are present in many beers with IX being the major constituent, the results raise the question whether moderate beer consumption might contribute to increased in vivo levels of 8-PN and even influence human health.

  17. Metabolism of melatonin in the skin: Why is it important?

    PubMed

    Slominski, Andrzej T; Semak, Igor; Fischer, Tobias W; Kim, Tae-Kang; Kleszczyński, Konrad; Hardeland, Ruediger; Reiter, Russel J

    2016-09-13

    Melatonin is produced in almost all living taxa and is probably 2-3 billion years old. Its pleiotropic activities are related to its local concentration that is secondary to its local synthesis, delivery from distant sites and metabolic or non-enzymatic consumption. This consumption generates metabolites through indolic, kynuric and cytochrome P450 (CYP) mediated hydroxylations and O-demethylation or non-enzymatic processes, with potentially diverse phenotypic effects. While melatonin acts through receptor-dependent and receptor-independent mechanisms, receptors for melatonin metabolites remain to be identified, while their receptor-independent activities are well documented. The human skin with its main cellular components including malignant cells can both produce and rapidly metabolize melatonin in cell-type and context-dependent fashion. The predominant metabolism in human skin occurs through indolic, CYP-mediated and kynuric pathways with main metabolites represented by 6-hydroxymelatonin, N(1) -acetyl-N(2) -formyl-5-methoxykynuramine (AFMK), N(1) -acetyl-5-methoxykynuramine (AMK), 5-methoxytryptamine, 5-methoxytryptophol and 2-hydroxymelatonin. AFMK, 6-hydroxymelatonin, 2-hydroxymelatonin and probably 4-hydroxymelatonin can potentially be produced in epidermis through UVB-induced non-enzymatic melatonin transformation. The skin metabolites are also the same as those produced in lower organisms and plants indicating phylogenetic conservation across diverse species and adaptation by skin of the primordial defense mechanism. As melatonin and its metabolites counteract or buffer environmental stresses to maintain its homeostasis through broad-spectrum activities, both melatoninergic and degradative pathways must be precisely regulated, because the nature of phenotypic regulations will depend on local concentration of melatonin and its metabolites. These can be receptor-mediated or represent non-receptor regulatory mechanisms.

  18. Metabolism of the new psychoactive substances N,N-diallyltryptamine (DALT) and 5-methoxy-DALT and their detectability in urine by GC-MS, LC-MSn, and LC-HR-MS-MS.

    PubMed

    Michely, Julian A; Helfer, Andreas G; Brandt, Simon D; Meyer, Markus R; Maurer, Hans H

    2015-10-01

    N,N-Diallyltryptamine (DALT) and 5-methoxy-DALT (5-MeO-DALT) are synthetic tryptamine derivatives commonly referred to as so-called new psychoactive substances (NPS). They have psychoactive effects that may be similar to those of other tryptamine derivatives. The objectives of this work were to study the metabolic fate and detectability, in urine, of DALT and 5-MeO-DALT. For metabolism studies, rat urine obtained after high-dose administration was prepared by precipitation and analyzed by liquid chromatography-high-resolution mass spectrometry (LC-HR-MS-MS). On the basis of the metabolites identified, several aromatic and aliphatic hydroxylations, N-dealkylation, N-oxidation, and combinations thereof are proposed as the main metabolic pathways for both compounds. O-Demethylation of 5-MeO-DALT was also observed, in addition to extensive glucuronidation or sulfation of both compounds after phase I transformation. The cytochrome P450 (CYP) isoenzymes predominantly involved in DALT metabolism were CYP2C19, CYP2D6, and CYP3A4; those mainly involved in 5-MeO-DALT metabolism were CYP1A2, CYP2C19, CYP2D6, and CYP3A4. For detectability studies, rat urine was screened by GC-MS, LC-MS(n), and LC-HR-MS-MS after administration of low doses. LC-MS(n) and LC-HR-MS-MS were deemed suitable for monitoring consumption of both compounds. The most abundant targets were a ring hydroxy metabolite of DALT, the N,O-bis-dealkyl metabolite of 5-MeO-DALT, and their glucuronides. GC-MS enabled screening of DALT by use of its main metabolites only.

  19. Silicon surface biofunctionalization with dopaminergic tetrahydroisoquinoline derivatives

    NASA Astrophysics Data System (ADS)

    Lucena-Serrano, A.; Lucena-Serrano, C.; Contreras-Cáceres, R.; Díaz, A.; Valpuesta, M.; Cai, C.; López-Romero, J. M.

    2016-01-01

    In this work we grafted vinyl- and azido-terminated tetrahydroisoquinolines (compounds 1 and 2, respectively) onto Hsbnd Si(1 1 1) silicon wafers obtaining highly stable modified surfaces. A double bond was incorporated into the tetrahydroisoquinoline structure of 1 to be immobilized by a light induced hydrosilylation reaction on hydrogen-terminated Si(1 1 1). The best results were obtained employing a polar solvent (DMSO), rather than a non-polar solvent (toluene). The azide derivative 2 was grafted onto alkenyl-terminated silicon substrates with copper-catalyzed azide-alkyne cycloaddition (CuAAC). Atomic force microscopy (AFM), contact angle goniometry (CA) and X-ray photoemission spectroscopy (XPS) were used to demonstrate the incorporation of 1 and 2 into the surfaces, study the morphology of the modified surfaces and to calculate the yield of grafting and surface coverage. CA measurements showed the increase in the surface hydrophobicity when 1 or 2 were incorporated into the surface. Moreover, compounds 1 and 2 were prepared starting from 1-(p-nitrophenyl)tetrahydroisoquinoline 3 under smooth conditions and in good yields. The structures of 1 and 2 were designed with a reduced A-ring, two substituents at positions C-6 and C-7, an N-methyl group and a phenyl moiety at C-1 in order to provide a high affinity against dopaminergic receptors. Moreover, O-demethylation of 1 was carried out once it was adsorbed onto the surface by treatment with BBr3. The method presented constitutes a simple, easily reproducible and high yielding approach for grafting complex organic biomolecules with dopaminergic properties onto silicon surfaces.

  20. In vitro metabolism of a novel antithrombotic compound, S002-333, and its enantiomers: quantitative cytochrome P450 phenotyping, metabolic profiling and enzyme kinetic studies.

    PubMed

    Saxena, Amrita; Jain, Girish K; Siddiqui, Hefazat H; Bhunia, Shom S; Saxena, Anil K; Gayen, Jiaur R

    2014-04-01

    1. S002-333, (2-(4'-methoxy-benzenesulfonyl)-2,3,4,9-tetrahydro-1H-pyrido (3,4-b) indole-3-carboxylic acid amide) is a novel potent antithrombotic molecule currently under development phase. It is the racemic mixture of two enantiomers, namely S004-1032 (R-form) and S007-1558 (S-form). 2. The contribution of five major isoenzymes, namely CYP2B6, 2C9, 2C19, 2D6 and 3A4 was quantified using recombinant P450s in the phase-I metabolism through relative activity factor approach. CYP2C19 was found to be the major contributor for S002-333 and S007-1558, while CYP3A4 showed greater involvement in S004-1032 metabolism. Chemical inhibition and immunoinhibition studies reconfirmed the results in human liver microsomes (HLM). 3. Four major phase-I metabolites of S002-333; M-1 and M-3 (oxidative), M-2 (O-demethylated) and M-4 (dehydrogenated) were characterized in HLM. These metabolites constituted 11.2, 11.3 and 21.5% of the parent in comparison with the net phase-I metabolism of 29.9, 31.4 and 38.3% of S002-333, S004-1032 and S007-1558, respectively. 4. Among CYP2C9, 2C19 and 3A4, the relative contribution of CYP2C9 was found to be maximum during M-1 through M-4 formation. Enzyme kinetic analysis for detected metabolites indicated that M-1 to M-3 followed classical hyperbolic kinetics, whereas M-4 showed evidence of autoactivation. In conclusion, the results suggest prominent role of CYP2C9, 2C19 and 3A4 isoforms for enantioselective disposition of S002-333 in vitro.

  1. The synthesis and biological evaluation of multifunctionalised derivatives of noscapine as cytotoxic agents.

    PubMed

    Debono, Aaron J; Mistry, Sarah J; Xie, Jinhan; Muthiah, Divya; Phillips, Jackson; Ventura, Sabatino; Callaghan, Richard; Pouton, Colin W; Capuano, Ben; Scammells, Peter J

    2014-02-01

    Noscapine, a phthalideisoquinoline alkaloid derived from Papaver somniferum, is a well-known antitussive drug that has a relatively safe in vitro toxicity profile. Noscapine is also known to possess weak anticancer efficacy, and since its discovery, efforts have been made to design derivatives with improved potency. Herein, the synthesis of a series of noscapine analogues, which have been modified in the 6', 9', 1 and 7-positions, is described. In a previous study, replacement of the naturally occurring N-methyl group in the 6'-position with an N-ethylaminocarbonyl was shown to promote cell-cycle arrest and cytotoxicity against three cancer cell lines. Here, this modification has been combined with other structural changes that have previously been shown to improve anticancer activity, namely halo substitution in the 9'-position, regioselective O-demethylation to reveal a free phenol in the 7-position, and reduction of the lactone to the corresponding cyclic ether in the 1-position. The incorporation of new aryl substituents in the 9'-position was also investigated. The study identified interesting new compounds able to induce G2/M cell-cycle arrest and that possess cytotoxic activity against the human prostate carcinoma cell line PC3, the human breast adenocarcinoma cell line MCF-7, and the human pancreatic epithelioid carcinoma cell line PANC-1. In particular, the ethyl urea cyclic ether noscapinoids and a compound containing a 6'-ethylaminocarbonyl along with 9'-chloro, 7-hydroxy and lactone moieties exhibited the most promising biological activities, with EC50 values in the low micromolar range against all three cancer cell lines, and these derivatives warrant further investigation.

  2. Isolation and characterization of two new homoacetogenic hydrogen-utilizing bacteria from the human intestinal tract that are closely related to Clostridium coccoides.

    PubMed Central

    Kamlage, B; Gruhl, B; Blaut, M

    1997-01-01

    Two gram-positive, strictly anoxic, coccoid- to rod-shaped strains of bacteria, Clostridium coccoides 1410 and C. coccoides 3110, were isolated from human feces on the typical homoacetogenic substrates formate plus H2 plus CO2 (strain 1410) and vanillate plus H2 plus CO2 (strain 3110) in the presence of 2-bromoethanesulfonate to inhibit methanogenesis. On the basis of 16S rRNA sequencing, DNA-DNA hybridization, and physiological and morphological parameters, both isolates are closely related to C. coccoides DSM 935T. The G+C contents of the DNA were 46.1 and 46.2 mol% for C. coccoides 1410 and C. coccoides 3110, respectively. Cytochromes could not be detected. Formate was degraded exclusively to acetate, whereas vanillate was O-demethylated, resulting in acetate and 3,4-dihydroxybenzoate, the latter being further decarboxylated to catechol. In the presence of organic substrates, H2 was cometabolized to acetate, but both strains failed to grow autotrophically. Lactose, lactulose, sorbitol, glucose, and various other carbohydrates supported growth as well. Untypical of homoacetogens, glucose and sorbitol were fermented not exclusively to acetate; instead, considerable amounts of succinate and D-lactate were produced. H2 was evolved from carbohydrates only in negligible traces. Acetogenesis from formate plus H2 plus CO2 or vanillate plus H2 plus CO2 was constitutive, whereas utilization of carbohydrates was inducible. Hydrogenase, CO dehydrogenase, formate dehydrogenase, and all of the tetrahydrofolic acid-dependent, C1 compound-converting enzymes of the acetyl-coenzyme A pathway of homoacetogenesis were present in cell extracts. PMID:9143110

  3. Identification of new oxycodone metabolites in human urine by capillary electrophoresis-multiple-stage ion-trap mass spectrometry.

    PubMed

    Baldacci, A; Caslavska, J; Wey, A B; Thormann, W

    2004-10-08

    Capillary electrophoresis-electrospray ionization multiple-stage ion-trap mass spectrometry (CE-MSn) and computer simulation of fragmentation are demonstrated to be effective tools to detect and identify phase I and phase II metabolites of oxycodone (OCOD) in human urine. OCOD is a strong analgesic used for the management of moderate to severe mainly postoperative or cancer-related pain whose metabolism in man is largely unknown. Using an aqueous pH 9 ammonium acetate buffer and CE-MSn (n < or = 5), OCOD and its phase I metabolites produced by O-demethylation, N-demethylation, 6-ketoreduction and N-oxidation (such as oxymorphone, noroxycodone, noroxymorphone, 6-oxycodol, nor-6-oxycodol, oxycodone-N-oxide and 6-oxycodol-N-oxide) and phase II conjugates with glucuronic acid of several of these compounds could be detected in alkaline solid-phase extracts of a patient urine that was collected during a pharmacotherapy episode with daily ingestion of 240-320 mg of OCOD chloride. The data for three known OCOD metabolites for which the standards had to be synthesized in-house, 6-oxycodol, nor-6-oxycodol and oxycodone-N-oxide, were employed to identify two new metabolites, the N-oxidized derivative of 6-oxycodol and an O-glucuronide of this compound. CE-MSn and computer simulation of fragmentation also led to the identification of the N-glucuronide of noroxymorphone, another novel OCOD metabolite for which no standard compound or mass spectra library data were available.

  4. Forensic drug testing for opiates. VI. Urine testing for hydromorphone, hydrocodone, oxymorphone, and oxycodone with commercial opiate immunoassays and gas chromatography-mass spectrometry.

    PubMed

    Smith, M L; Hughes, R O; Levine, B; Dickerson, S; Darwin, W D; Cone, E J

    1995-01-01

    Opiate testing for morphine and codeine is performed routinely in forensic urine drug-testing laboratories in an effort to identify illicit opiate abusers. In addition to heroin, the 6-keto-opioids, including hydromorphone, hydrocodone, oxymorphone, and oxycodone, have high abuse liability and are self-administered by opiate abusers, but only limited information is available on detection of these compounds by current immunoassay and gas chromatographic-mass spectrometric (GC-MS) methods. In this study, single doses of hydromorphone, hydrocodone, oxymorphone, and oxycodone were administered to human subjects, and urine samples were collected before and periodically after dosing. Opiate levels were determined in a quantitative mode with four commercial immunoassays, TDx opiates (TDx), Abuscreen radioimmunoassay (ABUS), Coat-A-Count morphine in urine (CAC), and EMIT d.a.u. opiate assay (EMIT), and by GC-MS. GC-MS assay results indicated that hydromorphone, hydrocodone, oxymorphone, and oxycodone administration resulted in rapid excretion of parent drug and O-demethylated metabolites in urine. Peak concentrations occurred within 8 h after drug administration and declined below 300 ng/mL within 24-48 h. Immunoassay testing indicated that hydromorphone, hydrocodone, and oxycodone, but not oxymorphone, were detectable in urine by TDx and EMIT (300-ng/mL cutoff) for 6-24 h. ABUS detected only hydrocodone, and CAC failed to detect any of the four 6-keto-opioid analgesics. Generally, immunoassays for opiates in urine displayed substantially lower sensitivities for 6-keto-opioids compared with GC-MS. Consequently, urine samples containing low to moderate concentrations of hydromorphone, hydrocodone, oxymorphone, and oxycodone will likely go undetected when tested by conventional immunoassays.

  5. Determination of N,N-dimethyltryptamine and beta-carboline alkaloids in human plasma following oral administration of Ayahuasca.

    PubMed

    Yritia, Mercedes; Riba, Jordi; Ortuño, Jordi; Ramirez, Ariel; Castillo, Araceli; Alfaro, Yolanda; de la Torre, Rafael; Barbanoj, Manel J

    2002-11-05

    Ayahuasca is a South American psychotropic beverage prepared from plants native to the Amazon River Basin. It combines the hallucinogenic agent and 5-HT(2A/2C) agonist N,N-dimethyltryptamine (DMT) with beta-carboline alkaloids showing monoamine oxidase-inhibiting properties. In the present paper, an analytical methodology for the plasma quantification of the four main alkaloids present in ayahuasca plus two major metabolites is described. DMT was extracted by liquid-liquid extraction with n-pentane and quantified by gas chromatography with nitrogen-phosphorus detection. Recovery was 74%, and precision and accuracy were better than 9.9%. The limit of quantification (LOQ) was 1.6 ng/ml. Harmine, harmaline, and tetrahydroharmine (THH), the three main beta-carbolines present in ayahuasca, and harmol and harmalol (O-demethylation metabolites of harmine and harmaline, respectively) were measured in plasma by means of high-performance liquid chromatography (HPLC) with fluorescence detection. Sample preparation was accomplished by solid-phase extraction, which facilitated the automation of the process. All five beta-carbolines were measured using a single detector by switching wavelengths. Separation of harmol and harmalol required only slight changes in the chromatographic conditions. Method validation demonstrated good recoveries, above 87%, and accuracy and precision better than 13.4%. The LOQ was 0.5 ng/ml for harmine, 0.3 ng/ml for harmaline, 1.0 ng/ml for THH, and 0.3 ng/ml for harmol and harmalol. Good linearity was observed in the concentration ranges evaluated for DMT (2.5-50 ng/ml) and the beta-carbolines (0.3-100 ng/ml). The gas chromatography and HPLC methods described allowed adequate characterization of the pharmacokinetics of the four main alkaloids present in ayahuasca, and also of two major beta-carboline metabolites not previously described in the literature.

  6. Novel Three-Component Rieske Non-Heme Iron Oxygenase System Catalyzing the N-Dealkylation of Chloroacetanilide Herbicides in Sphingomonads DC-6 and DC-2

    PubMed Central

    Chen, Qing; Wang, Cheng-Hong; Deng, Shi-Kai; Wu, Ya-Dong; Li, Yi; Yao, Li; Jiang, Jian-Dong; Yan, Xin; Li, Shun-Peng

    2014-01-01

    Sphingomonads DC-6 and DC-2 degrade the chloroacetanilide herbicides alachlor, acetochlor, and butachlor via N-dealkylation. In this study, we report a three-component Rieske non-heme iron oxygenase (RHO) system catalyzing the N-dealkylation of these herbicides. The oxygenase component gene cndA is located in a transposable element that is highly conserved in the two strains. CndA shares 24 to 42% amino acid sequence identities with the oxygenase components of some RHOs that catalyze N- or O-demethylation. Two putative [2Fe-2S] ferredoxin genes and one glutathione reductase (GR)-type reductase gene were retrieved from the genome of each strain. These genes were not located in the immediate vicinity of cndA. The four ferredoxins share 64 to 72% amino acid sequence identities to the ferredoxin component of dicamba O-demethylase (DMO), and the two reductases share 62 to 65% amino acid sequence identities to the reductase component of DMO. cndA, the four ferredoxin genes, and the two reductases genes were expressed in Escherichia coli, and the recombinant proteins were purified using Ni-affinity chromatography. The individual components or the components in pairs displayed no activity; the enzyme mixture showed N-dealkylase activities toward alachlor, acetochlor, and butachlor only when CndA-His6 was combined with one of the four ferredoxins and one of the two reductases, suggesting that the enzyme consists of three components, a homo-oligomer oxygenase, a [2Fe-2S] ferredoxin, and a GR-type reductase, and CndA has a low specificity for the electron transport component (ETC). The N-dealkylase utilizes NADH, but not NADPH, as the electron donor. PMID:24928877

  7. Midostaurin, a Novel Protein Kinase Inhibitor for the Treatment of Acute Myelogenous Leukemia: Insights from Human Absorption, Metabolism and Excretion Studies of a BDDCS II Drug.

    PubMed

    He, Handan; Tran, Phi; Gu, Helen; Tedesco, Vivienne; Zhang, Jin; Lin, Wen; Gatlik, Ewa; Klein, Kai; Heimbach, Tycho

    2017-03-07

    The absorption, metabolism and excretion of midostaurin, a potent class III tyrosine protein kinase inhibitor for acute myelogenous leukemia, were evaluated in healthy subjects. A microemulsion formulation was chosen to optimize absorption. After a 50 mg [14C]midostaurin dose, oral absorption was high (> 90%) and relatively rapid. In plasma, the major circulating components were midostaurin (22%), CGP52421 (32.7%), and CGP62221 (27.7%). Long plasma half-lives were observed for midostaurin (20.3 h), CGP52421 (495 h), and CGP62221 (33.4 h). Through careful mass-balance study design, the recovery achieved was good (81.6%), despite the long radioactivity half-lives. Most of the radioactive dose was recovered in feces (77.6%) mainly as metabolites; as only 3.43% was unchanged, suggesting mainly hepatic metabolism. Renal elimination was minor (4%). Midostaurin metabolism pathways involved hydroxylation, O demethylation, amide hydrolysis and N demethylation. High plasma CGP52421 and CGP62221 exposures in humans, along with relatively potent cell-based IC50 for FLT3-ITD inhibition, suggested that the antileukemic activity in AML patients may also be maintained by the metabolites. Very high plasma protein binding (>99%) required equilibrium gel filtration to identify differences between humans and animals. As midostaurin, CGP52421 and CGP62221 are metabolized mainly by CYP3A4 and are inhibitors/inducers for CYP3A, potential drug-drug interactions with mainly CYP3A4 modulators/CYP3A substrates could be expected. Given its low aqueous solubility, high oral absorption and extensive metabolism (> 90%), midostaurin is a BCS/BDDCS class II drug in human, consistent with rat BDDCS in vivo data showing high absorption (>90%) and extensive metabolism (>90%).

  8. Effects of Aprepitant on the Pharmacokinetics of Controlled-Release Oral Oxycodone in Cancer Patients

    PubMed Central

    Fujiwara, Yutaka; Toyoda, Masanori; Chayahara, Naoko; Kiyota, Naomi; Shimada, Takanobu; Imamura, Yoshinori; Mukohara, Toru; Minami, Hironobu

    2014-01-01

    Purpose Oxycodone is a µ-opioid receptor agonist widely used in the treatment of cancer pain. The predominant metabolic pathway of oxycodone is CYP3A4-mediated N-demethylation to noroxycodone, while a minor proportion undergoes 3-O-demethylation to oxymorphone by CYP2D6. The aim of this study was to investigate the effects of the mild CYP3A4 inhibitor aprepitant on the pharmacokinetics of orally administered controlled-release (CR) oxycodone. Method This study design was an open-label, single-sequence with two phases in cancer patients with pain who continued to be administered orally with multiple doses of CR oxycodone every 8 or 12 hours. Plasma concentration of oxycodone and its metabolites were measured up to 8 hours after administration as follows: on day 1, CR oxycodone was administered alone; on day 2, CR oxycodone was administered with aprepitant (125 mg, at the same time of oxycodone dosing in the morning). The steady-state trough concentrations (Css) were measured from day 1 to day 3. Results Aprepitant increased the area under the plasma concentration-time curve (AUC0–8) of oxycodone by 25% (p<0.001) and of oxymorphone by 34% (p<0.001), as well as decreased the AUC0–8 of noroxycodone by 14% (p<0.001). Moreover, aprepitant increased Css of oxycodone by 57% (p = 0.001) and of oxymorphone by 36% (p<0.001) and decreased Css of noroxycodone by 24% (p = 0.02) at day 3 compared to day 1. Conclusions The clinical use of aprepitant in patients receiving multiple doses of CR oxycodone for cancer pain significantly altered plasma concentration levels, but would not appear to need modification of the CR oxycodone dose. Trial Registration UMIN.ac.jp UMIN000003580. PMID:25121773

  9. 4-Methoxy-α-PVP: in silico prediction, metabolic stability, and metabolite identification by human hepatocyte incubation and high-resolution mass spectrometry.

    PubMed

    Ellefsen, Kayla N; Wohlfarth, Ariane; Swortwood, Madeleine J; Diao, Xingxing; Concheiro, Marta; Huestis, Marilyn A

    Novel psychoactive substances are continuously developed to circumvent legislative and regulatory efforts. A new synthetic cathinone, 4-methoxy-α-PVP, was identified for the first time in illegal products; however, the metabolism of this compound is not known. Complete metabolic profiles are needed for these novel psychoactive substances to enable identification of their intake and to link adverse effects to the causative agent. This study assessed 4-methoxy-α-PVP metabolic stability with human liver microsomes (HLMs) and identified its metabolites after HLM and hepatocyte incubations followed by high-resolution mass spectrometry (HRMS). A Thermo QExactive high-resolution mass spectrometer (HRMS) was used with full scan data-dependent mass spectrometry, with (1) and without (2) an inclusion list of predicted metabolite, and with full scan and all-ion fragmentation (3) to identify potential unexpected metabolites. In silico predictions were performed and compared to in vitro results. Scans were thoroughly mined with different data processing algorithms using WebMetabase (Molecular Discovery). 4-Methoxy-α-PVP exhibited a long half-life of 79.7 min in HLM, with an intrinsic clearance of 8.7 µL min(-1) mg(-1). In addition, this compound is predicted to be a low-clearance drug with an estimated human hepatic clearance of 8.2 mL min(-1) kg(-1). Eleven 4-methoxy-α-PVP metabolites were identified, generated by O-demethylation, hydroxylation, oxidation, ketone reduction, N-dealkylation, and glucuronidation. The most dominant metabolite in HLM and human hepatocyte samples was 4-hydroxy-α-PVP, also predicted as the #1 in silico metabolite, and is suggested to be a suitable analytical target in addition to the parent compound.

  10. Synthesis and resolution of (+-)-7-chloro-8-hydroxy-1-(3'-iodophenyl)-3-methyl-2,3,4,5-tetrahydro- 1H-3- benzazepine (TISCH): A high affinity and selective iodinated ligand for CNS D1 dopamine receptor

    SciTech Connect

    Chumpradit, S.; Kung, M.P.; Billings, J.J.; Kung, H.F. )

    1991-03-01

    The synthesis and resolution of (+-)-7-chloro-8-hydroxy-1-(3'-iodophenyl)-3-methyl-2,3,4,5-tetrahydro-1 H-3- benzazepine, (+/-)-TISCH (8) has been achieved by resolution of intermediate 4, the O-methoxyl, 3'-bromo derivative, as the diastereomeric camphor sulfonate salt. The final products, R-(+)-8 and S-(-)-8, were prepared by treatment of R-(+)- or S-(-)-7, the 3'-tributyltin intermediates, with iodine in chloroform, followed by O-demethylation. By using HPLC with a chiral column, the optical purity (greater than 99%) of the intermediates and the final compounds was determined. Radioiodination was achieved by an iodo-destannylation reaction with sodium (125I)iodide and hydrogen peroxide. As expected, the R-(+)-(125I)-8 (the active isomer) displayed high affinity and selectivity to the CNS D-1 receptor in rat striatum tissue preparation (Kd = 0.205 nM). The rank order of potency was as follows: SCH-23390 (1a) greater than (+/-)-8 greater than (+)-butaclamol greater than spiperone, WB4101 greater than dopamine, 5-HT. After an iv injection, the R-(+)-(125I)-8 penetrated the blood-brain barrier with ease and displayed specific regional distribution corresponding to the D-1 receptor density, while the S-(-)-(125I)-8 showed no specific uptake. The data suggest that the ligand may be useful as a pharmacological tool for characterizing the D-1 dopamine receptor. When labeled with I-123, this ligand is a potential agent for in vivo imaging of CNS D-1 dopamine receptor.

  11. Repurposing psychiatric medicines to target activated microglia in anxious mild cognitive impairment and early Parkinson’s disease

    PubMed Central

    Lauterbach, Edward C

    2016-01-01

    Anxiety is common in the Mild Cognitive Impairment (MCI) stage of Alzheimer’s disease (AD) and the pre-motor stages of Parkinson’s disease (PD). A concomitant and possible cause of this anxiety is microglial activation, also considered a key promoter of neurodegeneration in MCI and early PD via inflammatory mechanisms and the generation of degenerative proinflammatory cytokines. Psychiatric disorders, prevalent in AD and PD, are often treated with psychiatric drugs (psychotropics), raising the question of whether psychotropics might therapeutically affect microglial activation, MCI, and PD. The literature of common psychotropics used in treating psychiatric disorders was reviewed for preclinical and clinical findings regarding microglial activation. Findings potentially compatible with reduced microglial activation or reduced microglial inflammogen release were evident for: antipsychotics including neuroleptics (chlorpromazine, thioridazine, loxapine) and atypicals (aripiprazole, olanzapine, quetiapine, risperidone, ziprasidone); mood stabilizers (carbamazepine, valproate, lithium); antidepressants including tricyclics (amitriptyline, clomipramine, imipramine, nortriptyline), SSRIs (citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, sertraline), venlafaxine, and bupropion; benzodiazepine anxiolytics (clonazepam, diazepam); cognitive enhancers (donepezil, galantamine, memantine); and other drugs (dextromethorphan, quinidine, amantadine). In contrast, pramipexole and methylphenidate might promote microglial activation. The most promising replicated findings of reduced microglial activation are for quetiapine, valproate, lithium, fluoxetine, donepezil, and memantine but further study is needed and translation of their microglial effects to human disease still requires investigation. In AD-relevant models, risperidone, valproate, lithium, fluoxetine, bupropion, donepezil, and memantine have therapeutic microglial effects in need of replication. Limited

  12. Highly sensitive LC-MS/MS methods for the determination of seven human CYP450 activities using small oral doses of probe-drugs in human.

    PubMed

    Grangeon, Alexia; Gravel, Sophie; Gaudette, Fleur; Turgeon, Jacques; Michaud, Veronique

    2017-01-01

    Cocktails composed of several Cytochrome P450 (CYP450)-selective probe drugs have been shown of value to characterize in vivo drug-metabolism activities. Our objective was to develop and validate highly sensitive and selective LC-MS/MS assays allowing the determination of seven major human CYP450 isoenzyme activities following administration of low oral doses of a modified CYP450 probe-drug cocktail in patients. The seven-drug cocktail was composed of caffeine, bupropion, tolbutamide, omeprazole, dextromethorphan, midazolam (all administered concomitantly) and chlorzoxazone (administered separately) to phenotype for CYP1A2, 2B6, 2C9, 2C19, 2D6, 3A4/5 and 2E1, respectively. Serial plasma and urine samples were collected over an 8h period. The probe-drugs and their respective metabolites were measured in both human plasma and urine, except for omeprazole (plasma only) and chlorzoxazone (urine only). Samples were analyzed by high performance liquid chromatography with heated electrospray ionization tandem mass spectrometry (HPLC-HESI-MS/MS) using a Phenomenex Luna PFP (2) analytical column (3μm PFP(2) 150×3mm) for chromatographic separation. Optimal detection was achieved based on 3 different analytical methods; (1) isocratic elution with a mobile phase consisting of acetonitrile and water both fortified with 0.01% formic acid for the analysis of bupropion, tolbutamide, chlorzoxazone and their respective metabolites; (2) isocratic elution with a mobile phase composed of acetonitrile and ammonium formate (pH 3; 10mM) for omeprazole, dextromethorphan, midazolam and their metabolites; (3) for caffeine and paraxanthine, gradient elution using acetonitrile and 0.01% formic acid in water was used. All calibration functions were linear for all probe drugs and metabolites in both matrices over wide analytical ranges. The main advantages of our methods are the use of specific probe drugs available in most countries, the administration of small doses of probe drugs, small

  13. Effect of fermented red ginseng on cytochrome P450 and P‐glycoprotein activity in healthy subjects, as evaluated using the cocktail approach

    PubMed Central

    Kim, Min‐Gul; Kim, Yunjeong; Jeon, Ji‐Young

    2016-01-01

    Aims We assessed the drug interaction profile of fermented red ginseng with respect to the activity of major cytochrome (CYP) P450 enzymes and of a drug transporter protein, P‐glycoprotein (P‐gp), in healthy volunteers. Methods This study was an open‐label crossover study. The CYP probe cocktail drugs caffeine, losartan, dextromethorphan, omeprazole, midazolam and fexofenadine were administered before and after 2 weeks of fermented red ginseng administration. Plasma samples were collected, and tolerability was assessed. Pharmacokinetic parameters were calculated, and the 90% confidence intervals (CIs) of the geometric mean ratios of the parameters were determined from logarithmically transformed data. Values were compared between before and after fermented red ginseng administration using analysis of variance (anova). Results Fifteen healthy male subjects were evaluated, none of whom were genetically defined as a poor CYP2C9, CYP2C19 or CYP2D6 metabolizer based on genotyping. Before and after fermented red ginseng administration, the geometric least‐square mean metabolic ratio (90% CI) was 0.901 (0.830–0.979) for caffeine (CYP1A2) to paraxanthine, 0.774 (0.720–0.831) for losartan (CYP2C9) to EXP3174, 1.052 (0.925–1.197) for omeprazole (CYP2C19) to 5‐hydroxyomeprazole, 1.150 (0.860–1.538) for dextromethorphan (CYP2D6) to dextrorphan, and 0.816 (0.673–0.990) for midazolam (CYP3A4) to 1‐hydroxymidazolam. The geometric mean ratio of the area under the curve of the last sampling time (AUClast) for fexofenadine (P‐gp) was 1.322 (1.112–1.571). Conclusion No significantly different drug interactions were observed between fermented red ginseng and the CYP probe substrates following the two‐week administration of concentrated fermented red ginseng. However, the inhibition of P‐gp was significantly different between fermented red ginseng and the CYP probe substrates. The use of fermented red ginseng requires close attention due to the potential

  14. Influence of CYP2D6-dependent metabolism on the steady-state pharmacokinetics and pharmacodynamics of metoprolol and nicardipine, alone and in combination.

    PubMed Central

    Laurent-Kenesi, M A; Funck-Brentano, C; Poirier, J M; Decolin, D; Jaillon, P

    1993-01-01

    1 The metabolism of metoprolol depends in part on the genetically determined activity of the CYP2D6 isoenzyme. In vitro studies have shown that nicardipine is a potent inhibitor of CYP2D6 activity. Since the combination of metoprolol and nicardipine is likely to be used for the treatment of hypertension, we examined the interaction between these two drugs at steady-state. 2 Fourteen healthy volunteers, seven extensive and seven poor metabolisers of dextromethorphan were studied in a double-blind, randomised cross-over four-period protocol. Subjects received nicardipine 50 mg every 12 h, metoprolol 100 mg every 12 h, a combination of both drugs and placebo during 5.5 days. Steady-state pharmacokinetics of nicardipine and metoprolol were analyzed. Beta-adrenoceptor blockade was assessed as the reduction of exercise-induced tachycardia. 3 During treatment with metoprolol, alone or in combination with nicardipine, its steady-state plasma concentrations were higher in subjects of the poor metaboliser phenotype than in extensive metabolisers. Beta-adrenoceptor blockade was also more pronounced in poor metabolisers than in extensive metabolisers of dextromethorphan during treatment with metoprolol alone or in combination with nicardipine (24.0 +/- 2.4% vs 17.1 +/- 3.5% and 24.1 +/- 2.5% vs 15.4 +/- 2.7% reduction in exercise trachycardia, respectively, P < 0.01 in each case). 4 Nicardipine produced a small increase in plasma metoprolol concentration in extensive metabolisers from 35.9 +/- 16.6 to 45.8 +/- 15.4 ng ml(-1) (P < 0.02), but had no significant effect in poor metabolisers. However, nicardipine did not alter the R/S metoprolol ratio in plasma 3 h after dosing, the plasma concentration of S-(-)-metoprolol 3 h after dosing or the beta-adrenoceptor blockade produced by metoprolol in subjects of both phenotypes. The partial metabolic clearance of metoprolol to alpha-hydroxy-metoprolol was not altered significantly in extensive metabolisers. Plasma nicardipine

  15. Cytochrome P450 2D6 variants in a Caucasian population: Allele frequencies and phenotypic consequences

    SciTech Connect

    Sachse, C.; Brockmoeller, J.; Bauer, S.; Roots, I.

    1997-02-01

    Cytochrome P450 2D6 (CYP2D6) metabolizes many important drugs. CYP2D6 activity ranges from complete deficiency to ultrafast metabolism, depending on at least 16 different known alleles. Their frequencies were determined in 589 unrelated German volunteers and correlated with enzyme activity measured by phenotyping with dextromethorphan or debrisoquine. For genotyping, nested PCR-RFLP tests from a PCR amplificate of the entire CYP2D6 gene were developed. The frequency of the CYP2D6*1 allele coding for extensive metabolizer (EM) phenotype was .364. The alleles coding for slightly (CYP2D6*2) or moderately (*9 and *10) reduced activity (intermediate metabolizer phenotype [IM]) showed frequencies of .324, .018, and .015, respectively. By use of novel PCR tests for discrimination, CYP2D6 gene duplication alleles were found with frequencies of.005 (*1 x 2), .013 (* 2 x 2), and .001 (*4 x 2). Frequencies of alleles with complete deficiency (poor metabolizer phenotype [PM]) were .207 (*4), .020 (*3 and *5), .009 (*6), and .001 (*7, *15, and *16). The defective CYP2D6 alleles *8, *11, *12, *13, and *14 were not found. All 41 PMs (7.0%) in this sample were explained by five mutations detected by four PCR-RFLP tests, which may suffice, together with the gene duplication test, for clinical prediction of CYP2D6 capacity. Three novel variants of known CYP2D6 alleles were discovered: *1C (T{sub 1957}C), *2B (additional C{sub 2558}T), and *4E (additional C{sub 2938}T). Analysis of variance showed significant differences in enzymatic activity measured by the dextromethorphan metabolic ratio (MR) between carriers of EN/PM (mean MR = .006) and IM/PM (mean MR = .014) alleles and between carriers of one (mean MR = .009) and two (mean MR = .003) functional alleles. The results of this study provide a solid basis for prediction of CYP2D6 capacity, as required in drug research and routine drug treatment. 35 refs., 4 figs., 5 tabs.

  16. Application of physiologically based pharmacokinetic modeling in predicting drug–drug interactions for sarpogrelate hydrochloride in humans

    PubMed Central

    Min, Jee Sun; Kim, Doyun; Park, Jung Bae; Heo, Hyunjin; Bae, Soo Hyeon; Seo, Jae Hong; Oh, Euichaul; Bae, Soo Kyung

    2016-01-01

    Background Evaluating the potential risk of metabolic drug–drug interactions (DDIs) is clinically important. Objective To develop a physiologically based pharmacokinetic (PBPK) model for sarpogrelate hydrochloride and its active metabolite, (R,S)-1-{2-[2-(3-methoxyphenyl)ethyl]-phenoxy}-3-(dimethylamino)-2-propanol (M-1), in order to predict DDIs between sarpogrelate and the clinically relevant cytochrome P450 (CYP) 2D6 substrates, metoprolol, desipramine, dextromethorphan, imipramine, and tolterodine. Methods The PBPK model was developed, incorporating the physicochemical and pharmacokinetic properties of sarpogrelate hydrochloride, and M-1 based on the findings from in vitro and in vivo studies. Subsequently, the model was verified by comparing the predicted concentration-time profiles and pharmacokinetic parameters of sarpogrelate and M-1 to the observed clinical data. Finally, the verified model was used to simulate clinical DDIs between sarpogrelate hydrochloride and sensitive CYP2D6 substrates. The predictive performance of the model was assessed by comparing predicted results to observed data after coadministering sarpogrelate hydrochloride and metoprolol. Results The developed PBPK model accurately predicted sarpogrelate and M-1 plasma concentration profiles after single or multiple doses of sarpogrelate hydrochloride. The simulated ratios of area under the curve and maximum plasma concentration of metoprolol in the presence of sarpogrelate hydrochloride to baseline were in good agreement with the observed ratios. The predicted fold-increases in the area under the curve ratios of metoprolol, desipramine, imipramine, dextromethorphan, and tolterodine following single and multiple sarpogrelate hydrochloride oral doses were within the range of ≥1.25, but <2-fold, indicating that sarpogrelate hydrochloride is a weak inhibitor of CYP2D6 in vivo. Collectively, the predicted low DDIs suggest that sarpogrelate hydrochloride has limited potential for causing

  17. Oxidations of p-alkoxyacylanilides catalyzed by human cytochrome P450 1A2: structure-activity relationships and simulation of rate constants of individual steps in catalysis.

    PubMed

    Yun, C H; Miller, G P; Guengerich, F P

    2001-04-10

    Human cytochrome P450 (P450) 1A2 is involved in the oxidation of many important drugs and carcinogens. The prototype substrate phenacetin is oxidized to an acetol as well as the O-dealkylation product [Yun, C.-H., Miller, G. P., and Guengerich, F. P. (2000) Biochemistry 39, 11319-11329]. In an effort to improve rates of catalysis of P450 1A2 enzymes, we considered a set of p-alkoxyacylanilide analogues of phenacetin and found that variations in the O-alkyl and N-acyl substituents altered the rates of the two oxidation reactions and the ratio of acetol/phenol products. Moving one methylene group of phenacetin from the O-alkyl group to the N-acyl moiety increased rates of both oxidations approximately 5-fold and improved the coupling efficiency (oxidation products formed/NADPH consumed) from 6% to 38%. Noncompetitive kinetic deuterium isotope effects of 2-3 were measured for all O-dealkylation reactions examined with wild-type P450 1A2 and the E225I mutant, which has 6-fold higher activity. A trend of decreasing kinetic deuterium isotope effect for E225I > wild-type > mutant D320A was observed for O-demethylation of p-methoxyacetanilide, which follows the trend for k(cat). The set of O-dealkylation and acetol formation results for wild-type P450 1A2 and the E225I mutant with several of the protiated and deuterated substrates were fit to a model developed for the basic catalytic cycle and a set of microscopic rate constants in which the only variable was the rate of product formation (substrate oxygenation, including hydrogen abstraction). In this model, k(cat) is considerably less than any of the microscopic rate constants and is affected by several individual rate constants, including the rate of formation of the oxygenating species, the rate of substrate oxidation by the oxygenating species, and the rates of generation of reduced oxygen species (H(2)O(2), H(2)O). This analysis of the effects of the individual rate constants provides a framework for consideration of

  18. Microbial biotransformation of bioactive flavonoids.

    PubMed

    Cao, Hui; Chen, Xiaoqing; Jassbi, Amir Reza; Xiao, Jianbo

    2015-01-01

    The bioactive flavonoids are considered as the most important phytochemicals in food, which exert a wide range of biological benefits for human being. Microbial biotransformation strategies for production of flavonoids have attracted considerable interest because they allow yielding novel flavonoids, which do not exist in nature. In this review, we summarize the existing knowledge on the production and biotransformation of flavonoids by various microbes. The main reactions during microbial biotransformation are hydroxylation, dehydroxylation, O-methylation, O-demethylation, glycosylation, deglycosylation, dehydrogenation, hydrogenation, C ring cleavage of the benzo-γ-pyrone system, cyclization, and carbonyl reduction. Cunninghamella, Penicillium, and Aspergillus strains are very popular to biotransform flavonoids and they can perform almost all the reactions with excellent yields. Aspergillus niger is one of the most applied microorganisms in the flavonoids' biotransformation; for example, A. niger can transfer flavanone to flavan-4-ol, 2'-hydroxydihydrochalcone, flavone, 3-hydroxyflavone, 6-hydroxyflavanone, and 4'-hydroxyflavanone. The hydroxylation of flavones by microbes usually happens on the ortho position of hydroxyl group on the A ring and C-4' position of the B ring and microbes commonly hydroxylate flavonols at the C-8 position. The microorganisms tend to hydroxylate flavanones at the C-5, 6, and 4' positions; however, for prenylated flavanones, dihydroxylation often takes place on the C4α=C5α double bond on the prenyl group (the side chain of A ring). Isoflavones are usually hydroxylated at the C-3' position of the B ring by microorganisms. The microbes convert flavonoids to their 7-O-glycosides and 3-O-glycosides (when flavonoids have a hydroxyl moiety at the C-3 position). The demethylation of multimethoxyl flavonoids by microbes tends to happen at the C-3' and C-4' positions of the B ring. Multimethoxyl flavanones and isoflavone are demethylated at

  19. Effect of UV and UV/H2O2 in the presence of chloramines on NDMA formation potential of tramadol.

    PubMed

    Radjenovic, Jelena; Farré, Maria José; Gernjak, Wolfgang

    2012-08-07

    This study evaluates the effect of UV-C and UV-C/H(2)O(2) in the presence of chloramines on the N-nitrosodimethylamine formation potential (NDMA FP) of tramadol as a model precursor. The experiments were performed at high initial concentrations of TMDL (i.e., 20 mg/L) in order to elucidate the structures of TMDL byproducts. Twenty-four byproducts were identified in UV-C, UV-C/monochloramine, and UV/H(2)O(2)/monochloramine oxidation of tramadol using MS(3) capabilities of a hybrid quadrupole-linear ion trap mass spectrometer, combined with online hydrogen/deuterium (H/D) exchange experiments. Oxidative cleavage of methoxy and methoxybenzene moiety, O-demethylation, hydroxylation, and cyclohexane ring-opening were identified as major reaction mechanisms of tramadol in UV oxidation. Addition of monochloramine decreased the degradation rates of tramadol and its byproducts and yielded several monochlorinated derivatives. The oxidation rates were significantly enhanced in the presence of H(2)O(2), and byproducts of oxidative benzene ring-opening were detected. The majority of the identified byproducts are likely to have a higher NDMA FP than the parent compound due to a reduced steric hindrance and/or insertion of electron-donating hydroxyl groups in the N,N-dimethylamine side chain. This was confirmed by the results of NDMA FP tests, which showed that the formation of NDMA was enhanced up to four times depending on the process conditions in UV alone and in UV and UV/H(2)O(2) in the presence of monochloramine. Prolonged oxidation by hydroxyl radicals in UV/H(2)O(2)/monochloramine process mineralized some of the byproducts and slightly reduced the NDMA FP at the end of the treatment. The obtained degradation pathway of tramadol allowed the correlation of changes in NDMA FP during oxidation with its major oxidative transformation reactions. This manuscript demonstrates the significance of oxidation byproducts as NDMA precursors and emphasizes the need for their

  20. Using a homology model of cytochrome P450 2D6 to predict substrate site of metabolism

    NASA Astrophysics Data System (ADS)

    Unwalla, Rayomand J.; Cross, Jason B.; Salaniwal, Sumeet; Shilling, Adam D.; Leung, Louis; Kao, John; Humblet, Christine

    2010-03-01

    CYP2D6 is an important enzyme that is involved in first pass metabolism and is responsible for metabolizing 25% of currently marketed drugs. A homology model of CYP2D6 was built using X-ray structures of ligand-bound CYP2C5 complexes as templates. This homology model was used in docking studies to rationalize and predict the site of metabolism of known CYP2D6 substrates. While the homology model was generally found to be in good agreement with the recently solved apo (ligand-free) X-ray structure of CYP2D6, significant differences between the structures were observed in the B' and F-G helical region. These structural differences are similar to those observed between ligand-free and ligand-bound structures of other CYPs and suggest that these conformational changes result from induced-fit adaptations upon ligand binding. By docking to the homology model using Glide, it was possible to identify the correct site of metabolism for a set of 16 CYP2D6 substrates 85% of the time when the 5 top scoring poses were examined. On the other hand, docking to the apo CYP2D6 X-ray structure led to a loss in accuracy in predicting the sites of metabolism for many of the CYP2D6 substrates considered in this study. These results demonstrate the importance of describing substrate-induced conformational changes that occur upon binding. The best results were obtained using Glide SP with van der Waals scaling set to 0.8 for both the receptor and ligand atoms. A discussion of putative binding modes that explain the distribution of metabolic sites for substrates, as well as a relationship between the number of metabolic sites and substrate size, are also presented. In addition, analysis of these binding modes enabled us to rationalize the typical hydroxylation and O-demethylation reactions catalyzed by CYP2D6 as well as the less common N-dealkylation.

  1. Melperone but not bisoprolol or metoprolol is a clinically relevant inhibitor of CYP2D6: evidence from a therapeutic drug monitoring survey.

    PubMed

    Hefner, Gudrun; Unterecker, Stefan; Shams, Mohamed E E; Wolf, Margarete; Falter, Tanja; Haen, Ekkehard; Hiemke, Christoph

    2015-11-01

    Cytochrome P450 enzymes (CYP) can be inhibited or induced by drugs, resulting in clinically significant drug-drug interactions that can cause unanticipated adverse reactions or therapeutic failures. The objective of the study was to analyze the in vivo inhibitory potential of the beta-blockers bisoprolol and metoprolol as well as the low-potency antipsychotic melperone on CYP2D6. By utilizing a large therapeutic drug monitoring database of 2874 samples, data from patients who had been treated with venlafaxine (VEN) either without (control group) or with a concomitant medication with bisoprolol, metoprolol or melperone were evaluated retrospectively to study the CYP2D6-catalyzed O-demethylation to O-desmethylvenlafaxine (ODVEN). Dose-adjusted serum levels (C/D) of VEN and ODVEN as well as the metabolic ratios (ODVEN/VEN) were computed for the four groups and compared using Kruskal-Wallis test. In total, 381 patients could be included for analysis. No significant difference was found in the median C/D (VEN), C/D (ODVEN) or C/D of the active moiety (VEN + ODVEN) in either the metoprolol (N = 103) or bisoprolol group (N = 101), compared to the control group (N = 108). In contrast, a significantly higher median C/D (VEN) (0.79 ng/ml/mg, range 0.13-5.73 ng/ml/mg) (P < 0.01) was found in the melperone group (N = 69), compared to the control group (0.46 ng/ml/mg, range 0.02-7.39 ng/ml/mg). A significant decrease (P < 0.01) was solely found in the median metabolic ratios of ODVEN/VEN between the melperone group (0.90, range 0.14-15.15), compared to the control group (2.39, range 0.06-15.31). The results of this study provided evidence that melperone but not bisoprolol or metoprolol has a clinically relevant inhibitory potential on CYP2D6.

  2. Pharmacokinetic interactions between monoamine oxidase A inhibitor harmaline and 5-methoxy-N,N-dimethyltryptamine, and the impact of CYP2D6 status.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Mager, Donald E; Yu, Ai-Ming

    2013-05-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT or street name "5-MEO") is a newer designer drug belonging to a group of naturally occurring indolealkylamines. Our recent study has demonstrated that coadministration of monoamine oxidase A (MAO-A) inhibitor harmaline (5 mg/kg) increases systemic exposure to 5-MeO-DMT (2 mg/kg) and active metabolite bufotenine. This study is aimed at delineating harmaline and 5-MeO-DMT pharmacokinetic (PK) interactions at multiple dose levels, as well as the impact of CYP2D6 that affects harmaline PK and determines 5-MeO-DMT O-demethylation to produce bufotenine. Our data revealed that inhibition of MAO-A-mediated metabolic elimination by harmaline (2, 5, and 15 mg/kg) led to a sharp increase in systemic and cerebral exposure to 5-MeO-DMT (2 and 10 mg/kg) at all dose combinations. A more pronounced effect on 5-MeO-DMT PK was associated with greater exposure to harmaline in wild-type mice than CYP2D6-humanized (Tg-CYP2D6) mice. Harmaline (5 mg/kg) also increased blood and brain bufotenine concentrations that were generally higher in Tg-CYP2D6 mice. Surprisingly, greater harmaline dose (15 mg/kg) reduced bufotenine levels. The in vivo inhibitory effect of harmaline on CYP2D6-catalyzed bufotenine formation was confirmed by in vitro study using purified CYP2D6. Given these findings, a unified PK model including the inhibition of MAO-A- and CYP2D6-catalyzed 5-MeO-DMT metabolism by harmaline was developed to describe blood harmaline, 5-MeO-DMT, and bufotenine PK profiles in both wild-type and Tg-CYP2D6 mouse models. This PK model may be further employed to predict harmaline and 5-MeO-DMT PK interactions at various doses, define the impact of CYP2D6 status, and drive harmaline-5-MeO-DMT pharmacodynamics.

  3. Nabumetone: therapeutic use and safety profile in the management of osteoarthritis and rheumatoid arthritis.

    PubMed

    Hedner, Thomas; Samulesson, Ola; Währborg, Peter; Wadenvik, Hans; Ung, Kjell-Arne; Ekbom, Anders

    2004-01-01

    Nabumetone is a nonsteroidal anti-inflammatory prodrug, which exerts its pharmacological effects via the metabolite 6-methoxy-2-naphthylacetic acid (6-MNA). Nabumetone itself is non-acidic and, following absorption, it undergoes extensive first-pass metabolism to form the main circulating active metabolite (6-MNA) which is a much more potent inhibitor of preferentially cyclo-oxygenase (COX)-2. The three major metabolic pathways of nabumetone are O-demethylation, reduction of the ketone to an alcohol, and an oxidative cleavage of the side-chain occurs to yield acetic acid derivatives. Essentially no unchanged nabumetone and < 1% of the major 6-MNA metabolite are excreted unchanged in the urine from which 80% of the dose can be recovered and another 10% in faeces. Nabumetone is clinically used mainly for the management of patients with osteoarthritis (OA) or rheumatoid arthritis (RA) to reduce pain and inflammation. The clinical efficacy of nabumetone has also been evaluated in patients with ankylosing spondylitis, soft tissue injuries and juvenile RA. The optimum oral dosage of nabumetone for OA patients is 1 g once daily, which is well tolerated. The therapeutic response is superior to placebo and similar to nonselective COX inhibitors. In RA patients, nabumetone 1 g at bedtime is optimal, but an additional 0.5-1 g can be administered in the morning for patients with persistent symptoms. In RA, nabumetone has shown a comparable clinical efficacy to aspirin (acetylsalicylic acid), diclofenac, piroxicam, ibuprofen and naproxen. Clinical trials and a decade of worldwide safety data and long-term postmarketing surveillance studies show that nabumetone is generally well tolerated. The most frequent adverse effects are those commonly seen with COX inhibitors, which include diarrhoea, dyspepsia, headache, abdominal pain and nausea. In common with other COX inhibitors, nabumetone may increase the risk of GI perforations, ulcerations and bleedings (PUBs). However, several

  4. Metabolism and pharmacokinetics of metaclazepam (Talis), Part III: Determination of the chemical structure of metabolites in dogs, rabbits and men.

    PubMed

    Borchers, F; Achtert, G; Hausleiter, H J; Zeugner, H

    1984-01-01

    The metabolism of 7-bromo-1-methyl-2-methoxymethyl-5-(2'-chlorophenyl)-2, 3-dihydro-1H-1,4-benzodiazepine (metaclazepam, Talis) in animals and men is described. Based upon mass spectrometry fifteen metabolites could be identified. Qualitative and quantitative differences in the biotransformation products of metaclazepam in comparison with the well known metabolites of other drugs in the 1,4-benzodiazepine class could be demonstrated. Metabolites with a benzodiazepine-2-one structure representing the most characteristic feature of other 1,4-benzodiazepines and their metabolites, were found in trace amounts only. The major metabolic pathways of metaclazepam led via stepwise demethylation of the O-methyl and/or the N-methyl group to O-demethyl-metaclazepam (M 2), N-demethyl-metaclazepam (M 7) and bis-demethyl-metaclazepam (M 6). Further aromatic hydroxylation yielded the metabolite M 1. Two metabolites with amino-benzophenone structure (M 5, M 8) which are in general known to result from other 1,4-benzodiazepines could be detected. Additionally a 3-oxo-benzodiazepine (M 4) was found. Minor biotransformation pathways led to a chlorophenyl-bromo-benzodiazepine (M 9) by loss of the side chain from bis-demethyl-metaclazepam and N-demethyl-metaclazepam. By further oxidation and degradation the 2-oxo-benzodiazepine M 10 and the dihydro-quinazoline M 12 were formed. The respective N-methylated metabolites M 13 and M 16 were possibly generated by the same pathway. Still open is the formation of M 15, a 1-methyl-3-hydroxy-4-(2'-chlorophenyl)-6-bromo-1,2-dihydroquinoline and M 11, a 2-methyl-4-(2'-chlorophenyl)-6-bromo-quinazoline. The substitution of bromine by a hydroxyl group during the formation of M 14 can be explained by a NIH-shift mechanism. Quantitative investigations show that the methoxymethyl side chain in the benzodiazepine ring system of metaclazepam acts as an effective barrier with respect to the metabolic attack at position two. We assume that this barrier only

  5. In silico design of novel probes for the atypical opioid receptor MRGPRX2.

    PubMed

    Lansu, Katherine; Karpiak, Joel; Liu, Jing; Huang, Xi-Ping; McCorvy, John D; Kroeze, Wesley K; Che, Tao; Nagase, Hiroshi; Carroll, Frank I; Jin, Jian; Shoichet, Brian K; Roth, Bryan L

    2017-03-13

    The primate-exclusive MRGPRX2 G protein-coupled receptor (GPCR) has been suggested to modulate pain and itch. Despite putative peptide and small-molecule MRGPRX2 agonists, selective nanomolar-potency probes have not yet been reported. To identify a MRGPRX2 probe, we first screened 5,695 small molecules and found that many opioid compounds activated MRGPRX2, including (-)- and (+)-morphine, hydrocodone, sinomenine, dextromethorphan, and the prodynorphin-derived peptides dynorphin A, dynorphin B, and α- and β-neoendorphin. We used these to select for mutagenesis-validated homology models and docked almost 4 million small molecules. From this docking, we predicted ZINC-3573-a potent MRGPRX2-selective agonist, showing little activity against 315 other GPCRs and 97 representative kinases-along with an essentially inactive enantiomer. ZINC-3573 activates endogenous MRGPRX2 in a human mast cell line, inducing degranulation and calcium release. MRGPRX2 is a unique atypical opioid-like receptor important for modulating mast cell degranulation, which can now be specifically modulated with ZINC-3573.

  6. Automated multiple development thin-layer chromatography for separation of opiate alkaloids and derivatives.

    PubMed

    Pothier, Jacques; Galand, Nicole

    2005-07-08

    There are three types of opiate alkaloids. First, the poppy alkaloids: morphine, codeine, thebaine, noscapine and papaverine; then, the semi-synthetic and synthetic derivatives used in therapy as antitussives and analgesics, such as pholcodine, ethylmorphine and dextromethorphan; at last narcotic compounds, diacetylmorphine (heroin) and opiates employed as substitutes in treatment of addiction: buprenorphine and methadone. For classical thin-layer chromatography (TLC) of opium alkaloids, it is necessary to use complex eluents with strong alkaline substances to obtain a clean separation between morphinan and isoquinoline compounds. This study purposes the planar chromatographic analysis of these substances by the automated multiple development (AMD) compared with results obtained by classical TLC method. The aim of this work was to achieve the best separation of these opiate alkaloids and derivatives by this modern technique of planar chromatography. The AMD system provided a clean separation for each of three opiates groups studied and the best results have been obtained with universal gradient: methanol 100, methanol-dichloromethane 50/50, dichloromethane 100, dichloromethane 100, hexane 100 for opium alkaloids and with gradient A: 5% of 28% ammonia in methanol 100, acetone 100, acetone 100, ethyl acetate-dichloromethane 50/50, dichloromethane 100 for antitussives and substitutes. Two reagents were used for the detection of alkaloids by spraying: Dragendorff and iodoplatinate reagents. The detection limits with these two reagents were 1 microg for ethylmorphine, thebaine, papaverine, codeine, and 2 microg for morphine and noscapine and other alkaloids.

  7. Modulation of CYP2D6 and CYP3A4 metabolic activities by Ferula asafetida resin

    PubMed Central

    Al-Jenoobi, Fahad I.; Al-Thukair, Areej A.; Alam, Mohd Aftab; Abbas, Fawkeya A.; Al-Mohizea, Abdullah M.; Alkharfy, Khalid M.; Al-Suwayeh, Saleh A.

    2014-01-01

    Present study investigated the potential effects of Ferula asafetida resin on metabolic activities of human drug metabolizing enzymes: CYP2D6 and CYP3A4. Dextromethorphan (DEX) was used as a marker to assess metabolic activities of these enzymes, based on its CYP2D6 and CYP3A4 mediated metabolism to dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. In vitro study was conducted by incubating DEX with human liver microsomes and NADPH in the presence or absence of Asafetida alcoholic extract. For clinical study, healthy human volunteers received a single dose of DEX alone (phase-I) and repeated the same dose after a washout period and four-day Asafetida treatment (phase-II). Asafetida showed a concentration dependent inhibition on DOR formation (in vitro) and a 33% increase in DEX/DOR urinary metabolic ratio in clinical study. For CYP3A4, formation of 3-MM in microsomes was increased at low Asafetida concentrations (10, 25 and 50 μg/ml) but slightly inhibited at the concentration of 100 μg/ml. On the other hand, in vivo observations revealed that Asafetida significantly increased DEX/3-MM urinary metabolic ratio. The findings of this study suggest that Asafetida may have a significant effect on CYP3A4 metabolic activity. Therefore, using Ferula asafetida with CYP3A4 drug substrates should be cautioned especially those with narrow therapeutic index such as cyclosporine, tacrolimus and carbamazepine. PMID:25561870

  8. Screening of anti-glioma effects induced by sigma-1 receptor ligands: potential new use for old anti-psychiatric medicines.

    PubMed

    Mégalizzi, Véronique; Decaestecker, Christine; Debeir, Olivier; Spiegl-Kreinecker, Sabine; Berger, Walter; Lefranc, Florence; Kast, Richard E; Kiss, Robert

    2009-11-01

    The prognosis of glioblastoma (GBM) remains poor. Diffuse invasion of distant brain tissue by migrating cells from the primary tumour mass has already occurred at time of diagnosis. Anti-cancer effects of a selective sigma-1 agonist, 4-(N-benzylpiperidin-4-yl)-4-iodobenzamide (4-IBP), in glioblastoma were shown previously, leading to the present work where the effects on glioblastoma cells of 17 agonists or antagonists of sigma-1 receptors were studied, including currently marketed drugs fluvoxamine, dextromethorphan, donepezil, memantine and haloperidol. We first showed that established GBM cell lines, primary cultures and surgical specimens express sigma-1 receptors. In vitro analyses then focused on anti-proliferation and anti-migratory effects on human glioblastoma cell lines using quantitative videomicroscopy analyses. These cell monitoring assays revealed specific impacts on the mitotic cell process. Using an aggressive glioma model orthotopically grafted into the brains of immunocompromised mice, we showed that combining donepezil and temozolomide gave additive benefit in terms of long survivors as compared to temozolomide or donepezil alone. Clinical study is planned if further rodent dose-ranging studies of donepezil with temozolomide continue to show evidence of benefit in this model.

  9. Evidence-based guideline: Assessment and management of psychiatric disorders in individuals with MS

    PubMed Central

    Minden, Sarah L.; Feinstein, Anthony; Kalb, Rosalind C.; Miller, Deborah; Mohr, David C.; Patten, Scott B.; Bever, Christopher; Schiffer, Randolph B.; Gronseth, Gary S.; Narayanaswami, Pushpa

    2014-01-01

    Objective: To make evidence-based recommendations for screening, diagnosing, and treating psychiatric disorders in individuals with multiple sclerosis (MS). Methods: We reviewed the literature (1950 to August 2011) and evaluated the available evidence. Results and recommendations: Clinicians may consider using the Center for Neurologic Study Emotional Lability Scale to screen for pseudobulbar affect (Level C). Clinicians may consider the Beck Depression Inventory and a 2-question tool to screen for depressive disorders and the General Health Questionnaire to screen for broadly defined emotional disturbances (Level C). Evidence is insufficient to support/refute the use of other screening tools, the possibility that somatic/neurovegetative symptoms affect these tools' accuracy, or the use of diagnostic instruments or clinical evaluation procedures for identifying psychiatric disorders in MS (Level U). Clinicians may consider a telephone-administered cognitive behavioral therapy program for treating depressive symptoms (Level C). Although pharmacologic and nonpharmacologic therapies are widely used to treat depressive and anxiety disorders in individuals with MS, evidence is insufficient to support/refute the use of the antidepressants and individual and group therapies reviewed herein (Level U). For pseudobulbar affect, a combination of dextromethorphan and quinidine may be considered (Level C). Evidence is insufficient to determine the psychiatric effects in individuals with MS of disease-modifying and symptomatic therapies and corticosteroids; risk factors for suicide; and treatment of psychotic disorders (Level U). Research is needed on the effectiveness in individuals with MS of pharmacologic and nonpharmacologic treatments frequently used in the non-MS population. PMID:24376275

  10. Small Molecule Docking from Theoretical Structural Models

    NASA Astrophysics Data System (ADS)

    Novoa, Eva Maria; de Pouplana, Lluis Ribas; Orozco, Modesto

    Structural approaches to rational drug design rely on the basic assumption that pharmacological activity requires, as necessary but not sufficient condition, the binding of a drug to one or several cellular targets, proteins in most cases. The traditional paradigm assumes that drugs that interact only with a single cellular target are specific and accordingly have little secondary effects, while promiscuous molecules are more likely to generate undesirable side effects. However, current examples indicate that often efficient drugs are able to interact with several biological targets [1] and in fact some dirty drugs, such as chlorpromazine, dextromethorphan, and ibogaine exhibit desired pharmacological properties [2]. These considerations highlight the tremendous difficulty of designing small molecules that both have satisfactory ADME properties and the ability of interacting with a limited set of target proteins with a high affinity, avoiding at the same time undesirable interactions with other proteins. In this complex and challenging scenario, computer simulations emerge as the basic tool to guide medicinal chemists during the drug discovery process.

  11. New recombinant cyclohexylamine oxidase variants for deracemization of secondary amines by orthogonally assaying designed mutants with structurally diverse substrates

    PubMed Central

    Li, Guangyue; Yao, Peiyuan; Cong, Peiqian; Ren, Jie; Wang, Lei; Feng, Jinhui; Lau, Peter C.K.; Wu, Qiaqing; Zhu, Dunming

    2016-01-01

    To further expand the substrate range of the cyclohexylamine oxidase (CHAO) from Brevibacterium oxydans, a library of diverse mutants was created and assayed toward a group of structurally diverse substrates. Among them, mutants T198A and M226A exhibited enhanced activity relative to wt CHAO for most (S)-enantiomers of primary amines and some secondary amines. While mutants T198I, L199I, L199F, M226I and M226T were more active than wt CHAO toward the primary amines, mutants T198F, L199T, Y321A, Y321T, Y321I and Y321F enhanced the enzyme activity toward the secondary amines. In particular, mutant Y321I displayed an enhanced catalytic efficiency toward 1-(4-methoxybenzyl)-1, 2, 3, 4, 5, 6, 7, 8-octahydroisoquinoline (13). Whereas a double mutant, Y321I/M226T, acted on (S)-N-(prop-2-yn-1-yl)-2, 3-dihydro-1H-inden-1-amine [(S)-8]. Since (R)-8 is an irreversible inhibitor of monoamine oxidase and (S)-13 is an intermediate of dextromethorphan, a cough suppressant drug, deracemizations of 8 and 13 were carried out with crude enzyme extracts of the respective mutants. This resulted in 51% and 78% isolated yields of (R)-8 and (S)-13, respectively, each with high enantiomeric excess (93% and 99% ee). The results demonstrated the application potential of the evolved CHAO mutants in drug synthesis requiring chiral secondary amines. PMID:27138090

  12. An update on the treatment of canine atopic dermatitis.

    PubMed

    Saridomichelakis, Manolis N; Olivry, Thierry

    2016-01-01

    Canine atopic dermatitis is a common skin disease seen in veterinary clinical practice. Several factors appear to contribute to the cutaneous inflammation and pruritus. The therapeutic strategy should focus on control of those factors that can be identified and for which interventional measures are feasible; these include ectoparasites, bacterial/fungal infection and dietary hypersensitivity. Ectoparasites, particularly fleas, are not the cause of atopic dermatitis, but they are a confounding factor, which can exacerbate pruritus, and preventative measures are therefore indicated. Bacterial and yeast infections are frequently associated with atopic dermatitis and initial systemic and/or topical therapy should be considered, followed by regular topical treatment for preventing relapse. Concurrent dietary hypersensitivity should be investigated by undertaking an elimination/provocation trial, followed by feeding of a hypoallergenic diet where appropriate. Depending on the severity of the clinical signs of atopic dermatitis and the willingness and expectations of owners, symptomatic treatment and/or specific interventional therapy for environmental allergy (allergen avoidance, allergen-specific immunotherapy) may be implemented. Symptomatic treatment includes use of glucocorticoids (systemically or topically), ciclosporin and oclacitinib. Other treatment modalities of lower or less proven efficacy include antihistamines, dextromethorphan, fatty acids, feline interferon-omega, misoprostol, pentoxifylline, specific serotonin re-uptake inhibitors and tricyclic antidepressant drugs. The therapeutic approach should be reviewed at regular intervals and tailored to the individual's needs. A successful long-term outcome can usually be achieved by combining the various treatment approaches in a way that maximises their benefits and minimises their drawbacks.

  13. Physostigmine (alone and together with adjunct) pretreatment against soman, sarin, tabun and vx intoxication. (Reannouncement with new availability information)

    SciTech Connect

    Harris, L.W.; Talbot, B.G.; Lennox, W.J.; Anderson, D.R.; Solana, R.P.

    1991-12-31

    A pretreatment for organophosphorus (OP) anticholinesterase (e. g. , soman) intoxication should prevent lethality and convulsions (CNV) at 2 LD50s and be behavioral-decrement-free when given alone. Behavioral-deficit-free pretreatment regimens (PRGs) for guinea pigs consisted of Physostigmine (0.15 mg/kg, im) and adjunct. Adjuncts MG/KG, IM tested were akineton 0.25, aprophen 8, trihexyphenidyl 2, atropine 16, azaprophen 51, BENACTYZINE 1.25, cogentin 4, dextromethorphan 7.5, ethopropazine 12, kemadrin 11, MEMANTINE 5, promethazine 5, scopolamine 0.081 AND CONTROL 2. PRGs were given 30 min before soman (60 ug/kg, sc; 2 LD50S) or other OP agents. Animals were then observed and graded for signs of intoxication, including CNV at 7 time points and at 24 hr. Physostigmine alone reduced the incidence of CNV and lethality induced by 2 LD50s of soman by 42 and 60%, respectively. All of the PRGs tested abolished lethality and 12 shortened recovery time to 2 hr or less. Also, PRGs including azaprophen or atropine prevented CNV. When selected PRGs were tested against intoxication by sarin, tabun or VX, the efficacy was generally superior to that for soman. The data show that several PRGs are effective against soman intoxication in guinea pigs. Pretreatment, physostigmine, anticholinesterases, soman (GD).

  14. Odds and ends in psychopharmacology from the past 10 years.

    PubMed

    Howland, Robert H

    2015-01-01

    Seven topics previously described in this column are revisited. The use of quantitative electroencephalography has been shown in a prospective study to be effective for predicting antidepressant treatment response. A novel antidepressant drug, agomelatine, has generated much controversy, and its development for the U.S. market was discontinued. A long awaited revised system for categorizing the safety of medications during pregnancy and lactation has finally been published by the Food and Drug Administration. Dextromethorphan/quinidine, eslicarbazepine acetate, levomilnacipran, and esketamine are recent examples of drugs that were developed based on the complex concepts of chirality and stereochemistry. Lisdexamfetamine, a stimulant drug, failed to show benefit as an augmentation therapy for the treatment of depression. The combination drug naltrexone/bupropion was finally approved as a therapy for obesity, after its cardiovascular safety was confirmed in a prospective premarketing study. Further development of the glucocorticoid receptor antagonist drug mifepristone as a treatment for psychotic depression was stopped based on a large negative trial, but the drug continues to be investigated for other potential psychiatric indications. These examples illustrate how the field of psychopharmacology continues to evolve.

  15. Sigma ligands indirectly modulate the NMDA receptor-ion channel complex on intact neuronal cells via sigma 1 site.

    PubMed

    Yamamoto, H; Yamamoto, T; Sagi, N; Klenerová, V; Goji, K; Kawai, N; Baba, A; Takamori, E; Moroji, T

    1995-01-01

    To investigate the modulatory effects of sigma ligands on the N-methyl-D-aspartate (NMDA) receptor-ion channel complex in vivo, we examined the intact cell binding of 3H-N-[1-(2-thienyl)cyclohexyl]piperidine (3H-TCP) to cultured neuronal cells prepared from fetal rat telencephalon. The 3H-TCP binding was saturable, reversible, and inhibited by a selective NMDA receptor antagonist, D-amino-5-phosphonovaleric acid. MII-limolar Mg2+ inhibited 3H-TCP binding both in the absence and presence of L-glutamate. 5-Methyl-10,11-dihydro-5H-dibenzo [a,d]cyclohepten-5,10-imine maleate (MK801) inhibited 3H-TCP intact cell binding in a competitive manner, while haloperidol inhibited it in a noncompetitive manner. The effect of the test drugs to inhibit 3H-TCP intact cell binding was in the order of dextromethorphan, haloperidol > (+/-)MK 801 > (+)pentazocine > (-)pentazocine > DTG > PCP > (+)-N-allylnormetazocine [(+)SKF 10047] > (+)3-(3-hydroxyphenyl)-N- (1-propyl)piperidine [(+)3-PPP] > (-)SKF 10047 > (-)3-PPP. The IC50 values of the six sigma ligands for 3H-TCP binding were closely correlated with the Ki values of the corresponding drugs for DTG site 1 in the guinea pig brain reported by Rothman et al. (1991). These findings suggest that the sigma ligand indirectly modulates the NMDA receptor ion channel complex, presumably through sigma 1 sites in vivo as well as in vitro.

  16. Development and validation of a generic high-performance liquid chromatography for the simultaneous separation and determination of six cough ingredients: Robustness study on core-shell particles.

    PubMed

    Yehia, Ali Mohamed; Essam, Hebatallah Mohamed

    2016-09-01

    A generally applicable high-performance liquid chromatographic method for the qualitative and quantitative determination of pharmaceutical preparations containing phenylephrine hydrochloride, paracetamol, ephedrine hydrochloride, guaifenesin, doxylamine succinate, and dextromethorphan hydrobromide is developed. Optimization of chromatographic conditions was performed for the gradient elution using different buffer pH values, flow rates and two C18 stationary phases. The method was developed using a Kinetex® C18 column as a core-shell stationary phase with a gradient profile using buffer pH 5.0 and acetonitrile at 2.0 mL/min flow rate. Detection was carried out at 220 nm and linear calibrations were obtained for all components within the studied ranges. The method was fully validated in agreement with ICH guidelines. The proposed method is specific, accurate and precise (RSD% < 3%). Limits of detection are lower than 2.0 μg/mL. Qualitative and quantitative responses were evaluated using experimental design to assist the method robustness. The method was proved to be highly robust against 10% change in buffer pH and flow rate (RSD% < 10%), however, the flow rate may significantly influence the quantitative responses of phenylephrine, paracetamol, and doxylamine (RSD% > 10%). Satisfactory results were obtained for commercial combinations analyses. Statistical comparison between the proposed chromatographic and official methods revealed no significant difference.

  17. Transcranial random noise stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive

    PubMed Central

    Chaieb, Leila; Antal, Andrea; Paulus, Walter

    2015-01-01

    Background: Application of transcranial random noise stimulation (tRNS) between 0.1 and 640 Hz of the primary motor cortex (M1) for 10 min induces a persistent excitability increase lasting for at least 60 min. However, the mechanism of tRNS-induced cortical excitability alterations is not yet fully understood. Objective: The main aim of this study was to get first efficacy data with regard to the possible neuronal effect of tRNS. Methods: Single-pulse transcranial magnetic stimulation (TMS) was used to measure levels of cortical excitability before and after combined application of tRNS at an intensity of 1 mA for 10 min stimulation duration and a pharmacological agent (or sham) on eight healthy male participants. Results: The sodium channel blocker carbamazepine showed a tendency toward inhibiting MEPs 5–60 min poststimulation. The GABAA agonist lorazepam suppressed tRNS-induced cortical excitability increases at 0–20 and 60 min time points. The partial NMDA receptor agonist D-cycloserine, the NMDA receptor antagonist dextromethorphan and the D2/D3 receptor agonist ropinirole had no significant effects on the excitability increases seen with tRNS. Conclusions: In contrast to transcranial direct current stimulation (tDCS), aftereffects of tRNS are seem to be not NMDA receptor dependent and can be suppressed by benzodiazepines suggesting that tDCS and tRNS depend upon different mechanisms. PMID:25914617

  18. Effect of diet on the development of drug metabolism by cytochrome P-450 enzymes in healthy infants.

    PubMed

    Blake, Michael J; Abdel-Rahman, Susan M; Pearce, Robin E; Leeder, J Steven; Kearns, Gregory L

    2006-12-01

    Orally administered caffeine and dextromethorphan (DM) were used as pharmacologic probes to determine the effect of infant diet on acquisition of cytochrome P-450 (CYP) enzyme activity during the first 6 mo of life. The caffeine elimination rate constant (ke) was determined from serum, and concentrations of caffeine, DM, and their respective metabolites were measured in urine by high-performance liquid chromatography (HPLC). Caffeine ke was low at 2 wk and displayed a significant positive linear correlation with age (p < 0.001); increasing faster in formula-fed than in breast-fed infants (p < 0.001). This occurred concomitantly with a significant increase in urinary 1,7-dimethylxanthine (17X) and 1-methylxanthine (1X) (p < 0.001), suggesting faster acquisition of CYP1A2 activity in formula-fed infants. The urinary molar ratio of (17X + 1X)/caffeine and age strongly predicted caffeine ke (r2 = 0.65; p < 0.001) irrespective of feeding type. CYP3A4 activity, assessed as the molar ratio of 3-hydroxymorphinan/dextrorphan showed a similar marked increase with postnatal age (p < 0.001) that was also greater in formula-fed than in breast-fed infants. Formula feeding appears to accelerate maturation of caffeine and DM metabolism by increasing the activity of CYP1A2 and CYP3A4, respectively. Dietary modification of CYP activity may modulate drug biotransformation and thus alter systemic exposure to xenobiotics from a very early age.

  19. [Emergent drugs (II): the Pharming phenomenon].

    PubMed

    Burillo-Putze, G; Aldea-Perona, A; Rodríguez-Jiménez, C; García-Sáiz, M M; Climent, B; Dueñas, A; Munné, P; Nogué, S; Hoffman, R S

    2013-01-01

    The use of medicines, with or without medical prescription, for recreational ends by the young population has received little attention from doctors. In the USA, one in five adolescents has used medicines for recreational purposes, and consultations in Emergency Departments for medicine abuse have exceeded those for illegal drugs. Although few data are available in Spain, such consumption is situated between 3.1 and 8.6% according to surveys. The medicines most used are dextromethorphan and methylphenidate. The former, on sale without prescription, presents a varied symptomatology, dosage and dependent metabolic action, ranging from euphoria to hallucinations. Methylphenidate, taken orally, nasally or intravenously, is used as a stimulant in substitution for cocaine and is one of the medicines most diverted onto the illicit market at the world level. In principle, other substances like modafinil and propofol present a limited incidence of non-medical use, but they have a probable abuse potential that should be borne in mind, above all in the health context. Finally, opiates like fentanyl, oxycodone and buprenorphine, with new pharmaceutical presentations, have recently become generalized in the therapeutic arsenal of many medical specialities; they are giving rise to phenomena of abuse, dependence and diversion towards the illicit market. Demands for detoxification treatment, their mixture with illegal substances, and cases of death should alert us to the abuse of these medicines.

  20. Spectrophotometric determination of some anti-tussive and anti-spasmodic drugs through ion-pair complex formation with thiocyanate and cobalt(II) or molybdenum(V)

    NASA Astrophysics Data System (ADS)

    El-Shiekh, Ragaa; Zahran, Faten; El-Fetouh Gouda, Ayman Abou

    2007-04-01

    Two rapid, simple and sensitive extractive specrophotometric methods has been developed for the determination of anti-tussive drugs, e.g., dextromethorphan hydrobromide (DEX) and pipazethate hydrochloride (PiCl) and anti-spasmodic drugs, e.g., drotaverine hydrochloride (DvCl) and trimebutine maleate (TM) in bulk and in their pharmaceutical formulations. The proposed methods depend upon the reaction of cobalt(II)-thiocyanate (method A) and molybdenum(V)-thiocyanate ions (method B) with the cited drugs to form stable ion-pair complexes which extractable with an n-butnol-dichloromethane solvent mixture (3.5:6.5) and methylene chloride for methods A and B, respectively. The blue and orange red color complexes are determined either colorimetrically at λmax 625 nm (using method A) and 467 or 470 nm for (DEX and PiCl) or (DvCl and TM), respectively (using method B). The concentration range is 20-400 and 2.5-50 μg mL -1 for methods A and B, respectively. The proposed method was successfully applied for the determination of the studied drugs in pure and in pharmaceutical formulations applying the standard additions technique and the results obtained in good agreement well with those obtained by the official method.

  1. Spectrophotometric determination of some anti-tussive and anti-spasmodic drugs through ion-pair complex formation with thiocyanate and cobalt(II) or molybdenum(V).

    PubMed

    El-Shiekh, Ragaa; Zahran, Faten; El-Fetouh Gouda, Ayman Abou

    2007-04-01

    Two rapid, simple and sensitive extractive specrophotometric methods has been developed for the determination of anti-tussive drugs, e.g., dextromethorphan hydrobromide (DEX) and pipazethate hydrochloride (PiCl) and anti-spasmodic drugs, e.g., drotaverine hydrochloride (DvCl) and trimebutine maleate (TM) in bulk and in their pharmaceutical formulations. The proposed methods depend upon the reaction of cobalt(II)-thiocyanate (method A) and molybdenum(V)-thiocyanate ions (method B) with the cited drugs to form stable ion-pair complexes which extractable with an n-butnol-dichloromethane solvent mixture (3.5:6.5) and methylene chloride for methods A and B, respectively. The blue and orange red color complexes are determined either colorimetrically at lambdamax 625 nm (using method A) and 467 or 470 nm for (DEX and PiCl) or (DvCl and TM), respectively (using method B). The concentration range is 20-400 and 2.5-50 microg mL-1 for methods A and B, respectively. The proposed method was successfully applied for the determination of the studied drugs in pure and in pharmaceutical formulations applying the standard additions technique and the results obtained in good agreement well with those obtained by the official method.

  2. Important drugs for cough in advanced cancer.

    PubMed

    Homsi, J; Walsh, D; Nelson, K A

    2001-11-01

    Cough is a defense mechanism that prevents the entry of noxious materials into the respiratory system and clears foreign materials and excess secretions from the lungs and respiratory tract. In advanced cancer, it is a common symptom that interferes with the patient's daily activity and quality of life. Empiric treatment with antitussive agents is often needed. Two classes of antitussive drugs are available: (1) centrally acting: (a) opioids and (b) non-opioids; (2) peripherally acting: (a) directly and (b) indirectly. Antitussive availability varies widely around the world. Many antitussives, such as benzonatate, codeine, hydrocodone, and dextromethorphan, were extensively studied in the acute and chronic cough settings and showed relatively high efficacy and safety profiles. Benzonatate, clobutinol, dihydrocodeine, hydrocodone, and levodropropizine were the only antitussives specifically studied in cancer and advanced cancer cough. They all have shown to be effective and safe in recommended daily dose for cough. In advanced cancer the patient's current medications, previous antitussive use, the availability of routes of administration, any history of drug abuse, the presence of other symptoms and other factors, all have a role in the selection of antitussives for prescription. A good knowledge of the pharmacokinetics, dosage, efficacy, and side effects of the available antitussives provides for better management.

  3. Antitussive and toxicological evaluation of Vitex negundo.

    PubMed

    Haq, Rizwan-ul; Shah, Azhar-ul-Haq Ali; Khan, Arif-ullah; Ullah, Zahoor; Khan, Habib-ullah; Khan, Rafeeq Alam; Malik, Abdul

    2012-01-01

    Vitex negundo Linn. (Verbenaceae) is used in traditional medical system for respiratory disorders. This study was carried out to investigate its cough-relieving potential. The antitussive effect of the butanolic extract of V. negundo (Vn) on sulphur dioxide (SO(2))-induced cough was examined in mice. Safety profile of Vn was carried out by observing acute neurotoxicity, median lethal dose (LD(50)) and behavioural signs. Vn dose-dependently (250-1000 mg kg(-1)) inhibited the cough provoked by SO(2) gas in mice and exhibited maximum protection after 60 min of administration. At 1000 mg kg(-1), Vn caused maximum cough-suppressive effects i.e. cough inhibition at 60 min was 67.4%, as compared to codeine (10 mg kg(-1)), dextromethorphan (10 mg kg(-1)) and saline having cough-inhibitory potential 75.7%, 74.7% and 0%, respectively. LD(50) value of V. negundo was found to be greater than 5000 mg kg(-1). In toxicity tests, no signs of neural impairment and acute behavioural toxicity were observed at antitussive doses and extract has been well tolerated at higher doses. These results indicate that V. negundo exhibits antitussive effect and it was found devoid of toxicity.

  4. Where are the new cough treatments: a debriefing of recent clinical proof-of-concept trials with the NOP agonist SCH 486757.

    PubMed

    McLeod, Robbie L; Tulshian, Deen B; Sadeh, Jonathan

    2011-01-01

    Cough continues to be one of the top reasons why patients seek medical attention from health care providers. The prescription antitussive market is dominated by opioids, such as codeine that produces inconsistent efficacy and is often accompanied by significant side effect liabilities. Consequently, cough represents an unmet medical need and an underserved market. Yet, against the backdrop of increasing cough research, the development of novel treatments has been exceptionally challenging with dextromethorphan being the last US drug approved for cough almost a half century ago. We support the position that an unambiguous and actionable 'road map' that clearly delineates the pathway forward for new cough suppressants from basic research to and beyond clinical proof-of-concept studies will be an important aspect for future success of this pharmacological class of drug. Pivotal to the establishment of such a road map will be the review of lessons learned from antitussive agents that have been recently progressed to proof-of-concept trials. In the present commentary, we briefly discuss observations and challenges pertaining to SCH 486757, a selective orally active NOP agonist that has recently advanced to human antitussive testing.

  5. New recombinant cyclohexylamine oxidase variants for deracemization of secondary amines by orthogonally assaying designed mutants with structurally diverse substrates

    NASA Astrophysics Data System (ADS)

    Li, Guangyue; Yao, Peiyuan; Cong, Peiqian; Ren, Jie; Wang, Lei; Feng, Jinhui; Lau, Peter C. K.; Wu, Qiaqing; Zhu, Dunming

    2016-05-01

    To further expand the substrate range of the cyclohexylamine oxidase (CHAO) from Brevibacterium oxydans, a library of diverse mutants was created and assayed toward a group of structurally diverse substrates. Among them, mutants T198A and M226A exhibited enhanced activity relative to wt CHAO for most (S)-enantiomers of primary amines and some secondary amines. While mutants T198I, L199I, L199F, M226I and M226T were more active than wt CHAO toward the primary amines, mutants T198F, L199T, Y321A, Y321T, Y321I and Y321F enhanced the enzyme activity toward the secondary amines. In particular, mutant Y321I displayed an enhanced catalytic efficiency toward 1-(4-methoxybenzyl)-1, 2, 3, 4, 5, 6, 7, 8-octahydroisoquinoline (13). Whereas a double mutant, Y321I/M226T, acted on (S)-N-(prop-2-yn-1-yl)-2, 3-dihydro-1H-inden-1-amine [(S)-8]. Since (R)-8 is an irreversible inhibitor of monoamine oxidase and (S)-13 is an intermediate of dextromethorphan, a cough suppressant drug, deracemizations of 8 and 13 were carried out with crude enzyme extracts of the respective mutants. This resulted in 51% and 78% isolated yields of (R)-8 and (S)-13, respectively, each with high enantiomeric excess (93% and 99% ee). The results demonstrated the application potential of the evolved CHAO mutants in drug synthesis requiring chiral secondary amines.

  6. Over the counter drugs (and dietary supplement) exercise: a team-based introduction to biochemistry for health professional students.

    PubMed

    Phadtare, Sangita; Abali, Emine; Brodsky, Barbara

    2013-01-01

    For successful delivery of basic science topics for health-professional students, it is critical to reduce apprehension and illustrate relevance to clinical settings and everyday life. At the beginning of the Biochemistry course for Physician Assistants, a team-based assignment was designed to develop an understanding of the mechanism of action, effectiveness, and toxicity of five common over the counter (OTC) drugs and dietary supplements, and place these familiar medicines in a political and historical context. The objectives of this exercise were to stimulate interest in biochemistry; to provide basic information on enzymes and enzyme inhibitors related to these drugs to be expanded upon later in the course; and to encourage active and interactive learning. Teams of five students were formed, and each student was given an information sheet on aspirin, alpha-galactosidase, orlistat, dextromethorphan, or simvastatin, a low dose statin, which was previously available without prescription at pharmacies in the UK. After each member of the team acquired information on one OTC drug/dietary supplement by reading an assigned information sheet, the team was asked to go through a series of questions, and then submit answers to a quiz as a group. A high rate of success on the quiz, an overwhelmingly positive response on formal course evaluations, and enthusiastic exchanges during class suggested this team-based session accomplished its goals.

  7. Using an innovative combination of quality-by-design and green analytical chemistry approaches for the development of a stability indicating UHPLC method in pharmaceutical products.

    PubMed

    Boussès, Christine; Ferey, Ludivine; Vedrines, Elodie; Gaudin, Karen

    2015-11-10

    An innovative combination of green chemistry and quality by design (QbD) approach is presented through the development of an UHPLC method for the analysis of the main degradation products of dextromethorphan hydrobromide. QbD strategy was integrated to the field of green analytical chemistry to improve method understanding while assuring quality and minimizing environmental impacts, and analyst exposure. This analytical method was thoroughly evaluated by applying risk assessment and multivariate analysis tools. After a scouting phase aimed at selecting a suitable stationary phase and an organic solvent in accordance with green chemistry principles, quality risk assessment tools were applied to determine the critical process parameters (CPPs). The effects of the CPPs on critical quality attributes (CQAs), i.e., resolutions, efficiencies, and solvent consumption were further evaluated by means of a screening design. A response surface methodology was then carried out to model CQAs as function of the selected CPPs and the optimal separation conditions were determined through a desirability analysis. Resulting contour plots enabled to establish the design space (DS) (method operable design region) where all CQAs fulfilled the requirements. An experimental validation of the DS proved that quality within the DS was guaranteed; therefore no more robustness study was required before the validation. Finally, this UHPLC method was validated using the concept of total error and was used to analyze a pharmaceutical drug product.

  8. Fluoxetine- and norfluoxetine-mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19, and CYP3A4.

    PubMed

    Sager, J E; Lutz, J D; Foti, R S; Davis, C; Kunze, K L; Isoherranen, N

    2014-06-01

    Fluoxetine and its circulating metabolite norfluoxetine comprise a complex multiple-inhibitor system that causes reversible or time-dependent inhibition of the cytochrome P450 (CYP) family members CYP2D6, CYP3A4, and CYP2C19 in vitro. Although significant inhibition of all three enzymes in vivo was predicted, the areas under the concentration-time curve (AUCs) for midazolam and lovastatin were unaffected by 2-week dosing of fluoxetine, whereas the AUCs of dextromethorphan and omeprazole were increased by 27- and 7.1-fold, respectively. This observed discrepancy between in vitro risk assessment and in vivo drug-drug interaction (DDI) profile was rationalized by time-varying dynamic pharmacokinetic models that incorporated circulating concentrations of fluoxetine and norfluoxetine enantiomers, mutual inhibitor-inhibitor interactions, and CYP3A4 induction. The dynamic models predicted all DDIs with less than twofold error. This study demonstrates that complex DDIs that involve multiple mechanisms, pathways, and inhibitors with their metabolites can be predicted and rationalized via characterization of all the inhibitory species in vitro.

  9. Altering metabolic profiles of drugs by precision deuteration: reducing mechanism-based inhibition of CYP2D6 by paroxetine.

    PubMed

    Uttamsingh, Vinita; Gallegos, Richard; Liu, Julie F; Harbeson, Scott L; Bridson, Gary W; Cheng, Changfu; Wells, David S; Graham, Philip B; Zelle, Robert; Tung, Roger

    2015-07-01

    Selective deuterium substitution as a means of ameliorating clinically relevant pharmacokinetic drug interactions is demonstrated in this study. Carbon-deuterium bonds are more stable than corresponding carbon-hydrogen bonds. Using a precision deuteration platform, the two hydrogen atoms at the methylenedioxy carbon of paroxetine were substituted with deuterium. The new chemical entity, CTP-347 [(3S,4R)-3-((2,2-dideuterobenzo[d][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidine], demonstrated similar selectivity for the serotonin receptor, as well as similar neurotransmitter uptake inhibition in an in vitro rat synaptosome model, as unmodified paroxetine. However, human liver microsomes cleared CTP-347 faster than paroxetine as a result of decreased inactivation of CYP2D6. In phase 1 studies, CTP-347 was metabolized more rapidly in humans and exhibited a lower pharmacokinetic accumulation index than paroxetine. These alterations in the metabolism profile resulted in significantly reduced drug-drug interactions between CTP-347 and two other CYP2D6-metabolized drugs: tamoxifen (in vitro) and dextromethorphan (in humans). Our results show that precision deuteration can improve the metabolism profiles of existing pharmacotherapies without affecting their intrinsic pharmacologies.

  10. Bitter taste receptor T2R1 activities were compatible with behavioral sensitivity to bitterness in chickens.

    PubMed

    Hirose, Nozomi; Kawabata, Yuko; Kawabata, Fuminori; Nishimura, Shotaro; Tabata, Shoji

    2015-05-01

    Clarification of the mechanism of the sense of taste in chickens will provide information useful for creating and improving new feedstuffs for chickens, because the character of the taste receptors in oral tissues affects feeding behavior in animals. In this study, we focused on the sensitivity to bitterness in chickens. We cloned one of the bitter taste receptors, T2R1, from the chicken palate, constructed several biosensor-cells expressing chicken T2R1 (cT2R1), and determined a highly sensitive biosensor of cT2R1 among them. By using Ca(2+) imaging methods, we identified two agonists of cT2R1, dextromethorphan (Dex) and diphenidol (Dip). Dex was a new agonist of cT2R1 that was more potent than Dip. In a behavioral drinking study, the intake volumes of solutions of these compounds were significantly lower than that of water in chickens. These aversive concentrations were identical to the concentrations that could activate cT2R1 in a cell-based assay. These results suggest that the cT2R1 activities induced by these agonists are linked to behavioral sensitivity to bitterness in chickens.

  11. Psychotropic drug effects on gene transcriptomics relevant to Alzheimer disease.

    PubMed

    Lauterbach, Edward C

    2012-01-01

    Psychotropics are widely prescribed in Alzheimer disease (AD) without regard to their pathobiological effects. Results summarize a comprehensive survey of psychotropic effects on messenger ribonucleic acid (mRNA) expression for 52 genes linked to AD. Pending future investigations, current data indicate that atypical antipsychotics, lithium, and fluoxetine reduce AD risk, whereas other drug classes promote risk. Risk may be attenuated by antipsychotics and lithium (down-regulate TNF), atypical antipsychotics (down-regulate TF), risperidone (down-regulates IL1B), olanzapine (up-regulates TFAM, down-regulates PRNP), fluoxetine (up-regulates CLU, SORCS1, NEDD9, GRN, and ECE1), and lithium coadministered with antipsychotics (down-regulates IL1B). Risk may be enhanced by neuroleptics (up-regulate TF), haloperidol (up-regulates IL1B and PION), olanzapine (down-regulates THRA and PRNP, up-regulates IL1A), and chlorpromazine, imipramine, maprotiline, fluvoxamine, and diazepam (up-regulate IL1B). There were no results for dextromethorphan-plus-quinidine. Fluoxetine effects on CLU, NEDD9, and GRN were statistically robust. Drug effects on specific variants, polymorphisms, genotypes, and other genes (CCR2, TF, and PRNP) are detailed. Translational AD risk applications and their limitations related to specific genes, mutations, variants, polymorphisms, genotypes, brain site, sex, clinical population, AD stage, and other factors are discussed. This report provides an initial summary and framework to understand the potential impact of psychotropic drugs on AD-relevant genes.

  12. Paracetamol and simvastatin: a potential interaction resulting in hepatotoxicity.

    PubMed

    Gumbrevičius, Gintautas; Sveikata, Audrius; Sveikatienė, Renata; Stankevičius, Edgaras

    2012-01-01

    The safety profile of paracetamol and simvastatin is sufficiently well known, although no interactions between these two medicinal products have been described in the scientific literature so far. A 66-year-old female patient who experienced myocardial infarction and underwent coronary artery bypass grafting 9 years ago was taking simvastatin at a daily dose of 10 mg. Liver enzyme tests were carried out regularly, and their results were always normal. Later on, the patient took 6 tablets of fixed combination medicinal product Gripex(TM) (paracetamol, pseudoephedrine, and dextromethorphan) per day due to a fever. The daily dose of paracetamol taken by the patient totaled 1.95 g. The patient developed severe jaundice, nausea, vomiting; blood bilirubin levels increased more than 3 times; alanine transaminase, more than 10 times; and asparagine transaminase, more than 5 times. Paracetamol is metabolized by CYP enzymes (CYP2E1, 1A2, 2A6, 3A4) to a reactive metabolite, N-acetyl-p-benzoquinone-imine (NAPQI). Under conditions of excessive NAPQI formation or reduction in glutathione stores by approximately 70%, NAPQI covalently binds to the cysteinyl sulfhydryl groups of cellular proteins, forming NAPQI-protein adducts. Simvastatin is a substrate of CYP3A4 enzyme. Clinical and pharmacological data, available in the published literature, allow the assumption that simvastatin may induce CYP3A4 and result in increased hepatoxicity of paracetamol.

  13. Ketogenic diet in early myoclonic encephalopathy due to non ketotic hyperglycinemia.

    PubMed

    Cusmai, Raffaella; Martinelli, Diego; Moavero, Romina; Dionisi Vici, Carlo; Vigevano, Federico; Castana, Cinzia; Elia, Mirella; Bernabei, Silvia; Bevivino, Elsa

    2012-09-01

    Non ketotic hyperglycinemia is a rare inborn error of glycine metabolism due to deficient activity of glycine cleavage system, a multienzymatic complex consisting of four protein subunits: the P-protein, the H-protein, the T-protein and the L-protein. The neonatal form of non ketotic hyperglycinemia presents in the first days of life with encephalopathy, seizures, multifocal myoclonus and characteristic "hiccups". Rapid progression may lead to intractable seizures, coma and respiratory failure requiring mechanical ventilation. Clinical trial with scavenges drugs decreasing glycine levels such as sodium benzoate, and with drugs reducing NMDA receptors excitatory properties, such as ketamine and dextromethorphan, have been tried but the outcome is usually poor; antiepileptic therapy, moreover, is unable to control epileptic seizures. Ketogenic diet has been successfully tried for refractory epilepsy in pediatric patients. We report three cases affected by neonatal non ketotic hyperglycinemia and early myoclonic encephalopathy treated with ketogenic diet. In our patients ketogenic diet, in association with standard pharmacological therapy, determined dramatic reduction of seizures and improved quality of life.

  14. Recreational use of D-lysergamide from the seeds of Argyreia nervosa, Ipomoea tricolor, Ipomoea violacea, and Ipomoea purpurea in Poland.

    PubMed

    Juszczak, Grzegorz R; Swiergiel, Artur H

    2013-01-01

    Recently, there are important changes in recreational drug use. The aim of the present study was to analyse reports published on a recreational web site by drug users who ingested seeds of plants belonging to the Convolvulaceae family and to compare them with available medical case reports. We have also included reports describing the effects induced by "druids fantasy," which is a new drug allegedly containing the same alkaloid as the seeds of A. nervosa. Our search reveals the reoccurrence of recreational use of I. tricolor and violacea (morning glory), which had not been reported in medical literature since 1968. We have also found that drug users are experimenting with other species, such as I. purpurea, whose psychoactive properties are unknown. Symptoms and doses reported by drug users were comparable with the few available medical case reports. The most worrying symptom was suicidal ideation reported by two subjects who ingested A. nervosa and Ipomoea seeds. Effects induced by druids fantasy were comparable with the effects induced by A. nervosa and various Ipomoea species. The ingestion of seeds was frequently associated with taking drugs such as cannabis and hashish, although other combinations, for example with dextromethorphan, were also reported.

  15. Patterns of Weakness, Classification of Motor Neuron Disease & Clinical Diagnosis of Sporadic ALS

    PubMed Central

    Statland, Jeffrey M.; Barohn, Richard J.; McVey, April L.; Katz, Jonathan; Dimachkie, Mazen M.

    2015-01-01

    Synopsis When approaching the patient with suspected motor neuron disease (MND) the pattern of weakness on exam helps distinguish MND from other diseases of peripheral nerves, the neuromuscular junction, or muscle. MND is a clinical diagnosis supported by findings on electrodiagnostic testing, in the absence of other abnormalities on neuroimaging or serological testing. MNDs exist on a spectrum: from a pure lower motor neuron; to mixed upper and lower motor neuron; to a pure upper motor neuron variant in addition to regional variants restricted to the arms, legs or bulbar region. Amyotrophic lateral sclerosis (ALS) is a progressive mixed upper and lower motor neuron disorder, most commonly sporadic (~85%), which is invariably fatal. The only FDA approved treatments for ALS are riluzole, which prolongs life by about 3 months, and dextromethorphan/quinidine which provides symptomatic relief for pseudobulbar affect (inappropriate bouts of laughter or crying). Here we describe a pattern approach to identifying motor neuron disease, and clinical features of sporadic ALS. PMID:26515618

  16. Mechanisms of Nicotinic Modulation of Glutamatergic Neuroplasticity in Humans.

    PubMed

    Lugon, Marcelo Di Marcello Valladão; Batsikadze, Giorgi; Fresnoza, Shane; Grundey, Jessica; Kuo, Min-Fang; Paulus, Walter; Nakamura-Palacios, Ester Miyuki; Nitsche, Michael A

    2015-10-22

    The impact of nicotine (NIC) on plasticity is thought to be primarily determined via calcium channel properties of nicotinic receptor subtypes, and glutamatergic plasticity is likewise calcium-dependent. Therefore glutamatergic plasticity is likely modulated by the impact of nicotinic receptor-dependent neuronal calcium influx. We tested this hypothesis for transcranial direct current stimulation (tDCS)-induced long-term potentiation-like plasticity, which is abolished by NIC in nonsmokers. To reduce calcium influx under NIC, we blocked N-methyl-d-aspartate (NMDA) receptors. We applied anodal tDCS combined with 15 mg NIC patches and the NMDA-receptor antagonist dextromethorphan (DMO) in 3 different doses (50, 100, and 150 mg) or placebo medication. Corticospinal excitability was monitored by single-pulse transcranial magnetic stimulation-induced motor-evoked potential amplitudes after plasticity induction. NIC abolished anodal tDCS-induced motor cortex excitability enhancement, which was restituted under medium dosage of DMO. Low-dosage DMO did not affect the impact of NIC on tDCS-induced plasticity and high-dosage DMO abolished plasticity. For DMO alone, the low dosage had no effect, but medium and high dosages abolished tDCS-induced plasticity. These results enhance our knowledge about the proposed calcium-dependent impact of NIC on plasticity in humans and might be relevant for the development of novel nicotinic treatments for cognitive dysfunction.

  17. Development of sustained release fast-disintegrating tablets using various polymer-coated ion-exchange resin complexes.

    PubMed

    Jeong, Seong Hoon; Park, Kinam

    2008-04-02

    Complex formation between drugs and ion-exchange resins was investigated and the effects of coating by various aqueous polymeric dispersions on the complexes were evaluated for developing new sustained-release fast-disintegrating tablets (FDTs). Complexes of ion-exchange resin and dextromethorphan, a model drug, were prepared using different particle sizes of the resins. Aqueous colloidal dispersions of ethylcellulose (EC) and poly(vinyl acetate) (Kollicoat SR30D) were used for fluid-bed coating. Based on drug loading, release profiles, and scanning electron microscopy (SEM) images, the coated particles were granulated with suitable tablet excipients and then compressed into the tablets. Drug release profiles and SEM pictures were compared before and after the manufacturing processes. As the particle size of resins increased, the drug loading and release rate decreased due to the reduced effective diffusion coefficient and surface area. Higher coating level decreased the release rate further. In contrast to EC, Kollicoat SR30D coated particles could be compressed into tablets without any rupture or cracks on the coating since the mechanical properties of the polymer was more resistant to the manufacturing processes. This resulted in no significant changes in release rates. SEM showed the mechanical strength of the polymers affected the morphological change after compression. When the drug release profiles were applied into Boyd model and Higuchi equation, the linear relationship was observed, indicating that the diffusion within the resin matrix is the rate-controlling step.

  18. Role of calcium, glutamate and NMDA in major depression and therapeutic application.

    PubMed

    Deutschenbaur, Lorenz; Beck, Johannes; Kiyhankhadiv, Anna; Mühlhauser, Markus; Borgwardt, Stefan; Walter, Marc; Hasler, Gregor; Sollberger, Daniel; Lang, Undine E

    2016-01-04

    Major depression is a common, recurrent mental illness that affects millions of people worldwide. Recently, a unique fast neuroprotective and antidepressant treatment effect has been observed by ketamine, which acts via the glutamatergic system. Hence, a steady accumulation of evidence supporting a role for the excitatory amino acid neurotransmitter (EAA) glutamate in the treatment of depression has been observed in the last years. Emerging evidence indicates that N-methyl-D-aspartate (NMDA), group 1 metabotropic glutamate receptor antagonists and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) agonists have antidepressant properties. Indeed, treatment with NMDA receptor antagonists has shown the ability to sprout new synaptic connections and reverse stress-induced neuronal changes. Based on glutamatergic signaling, a number of therapeutic drugs might gain interest in the future. Several compounds such as ketamine, memantine, amantadine, tianeptine, pioglitazone, riluzole, lamotrigine, AZD6765, magnesium, zinc, guanosine, adenosine aniracetam, traxoprodil (CP-101,606), MK-0657, GLYX-13, NRX-1047, Ro25-6981, LY392098, LY341495, D-cycloserine, D-serine, dextromethorphan, sarcosine, scopolamine, pomaglumetad methionil, LY2140023, LY404039, MGS0039, MPEP, 1-aminocyclopropanecarboxylic acid, all of which target this system, have already been brought up, some of them recently. Drugs targeting the glutamatergic system might open up a promising new territory for the development of drugs to meet the needs of patients with major depression.

  19. New recombinant cyclohexylamine oxidase variants for deracemization of secondary amines by orthogonally assaying designed mutants with structurally diverse substrates.

    PubMed

    Li, Guangyue; Yao, Peiyuan; Cong, Peiqian; Ren, Jie; Wang, Lei; Feng, Jinhui; Lau, Peter C K; Wu, Qiaqing; Zhu, Dunming

    2016-05-03

    To further expand the substrate range of the cyclohexylamine oxidase (CHAO) from Brevibacterium oxydans, a library of diverse mutants was created and assayed toward a group of structurally diverse substrates. Among them, mutants T198A and M226A exhibited enhanced activity relative to wt CHAO for most (S)-enantiomers of primary amines and some secondary amines. While mutants T198I, L199I, L199F, M226I and M226T were more active than wt CHAO toward the primary amines, mutants T198F, L199T, Y321A, Y321T, Y321I and Y321F enhanced the enzyme activity toward the secondary amines. In particular, mutant Y321I displayed an enhanced catalytic efficiency toward 1-(4-methoxybenzyl)-1, 2, 3, 4, 5, 6, 7, 8-octahydroisoquinoline (13). Whereas a double mutant, Y321I/M226T, acted on (S)-N-(prop-2-yn-1-yl)-2, 3-dihydro-1H-inden-1-amine [(S)-8]. Since (R)-8 is an irreversible inhibitor of monoamine oxidase and (S)-13 is an intermediate of dextromethorphan, a cough suppressant drug, deracemizations of 8 and 13 were carried out with crude enzyme extracts of the respective mutants. This resulted in 51% and 78% isolated yields of (R)-8 and (S)-13, respectively, each with high enantiomeric excess (93% and 99% ee). The results demonstrated the application potential of the evolved CHAO mutants in drug synthesis requiring chiral secondary amines.

  20. Pain in diabetic neuropathy case study: whole patient management.

    PubMed

    Marchettini, P; Teloni, L; Formaglio, F; Lacerenza, M

    2004-04-01

    Painful diabetic peripheral neuropathy (DPN) is described as a superficial burning pain associated with other positive and/or negative sensory systems affecting the feet and lower extremities. It is one of the most commonly encountered neuropathic pain syndromes in clinical practice. Presentation may be complicated by multiple symptoms, including allodynia, hyperalgesia, other less well characterized dysesthesias, and serious disruption of social functioning and mood. Peripheral nerve function may deteriorate, which can account for patient reports of diminution of pain after several years of follow-up. Although current understanding holds that the pathogenesis of DPN is multifactorial in nature, long-term studies have shown that rigorous glycemic control is the most relevant factor in clinical intervention and can delay the onset and slow the progression of neuropathy. In addition to glycemic control, other treatment approaches must be examined in order to restore quality of life for patients experiencing painful DPN. Differential diagnosis is required to isolate DPN from other unexplained chronic pain. Neurologic testing in painful DPN is an area of active research and is used to assess the neurologic pathways giving rise to the pain, the degree of neural damage and the degree of subclinical damage. Current treatment options for DPN include mainly antidepressants and anticonvulsants, with other agents such as tramadol, dextromethorphan and memantine being employed or studied. This review article includes a case study of a patient with painful DPN to demonstrate the current management strategies for this neuropathic pain syndrome.

  1. Ion mobility spectrometry for the rapid analysis of over-the-counter drugs and beverages

    PubMed Central

    Fernández-Maestre, Roberto

    2009-01-01

    In the pharmaceutical industry, there are increasing requirements for analytical methods in quality assessment for the production of drugs. In this investigation, ion mobility spectrometry (IMS) was used for the rapid qualitative separation and identification of active ingredients in generic over-the-counter drugs and food additives in beverages. The active ingredients determined in drugs were acetaminophen, aspartame, bisacodyl, caffeine, dextromethorphan, diphenhydramine, famotidine, glucosamine, guaifenesin, loratadine, niacin, phenylephrine, pyridoxine, thiamin, and tetrahydrozoline. Aspartame and caffeine were determined in beverages. Fourteen over-the-counter drugs and beverages were analyzed. Analysis times below 10 s were obtained for IMS, and reduced mobilities were reported for the first time for 12 compounds. A quadrupole mass spectrometer coupled to a mobility spectrometer was used to assure a correct peak assignation. The combination of fast analysis, low cost, and inexpensive maintenance of IMS instruments makes IMS an attractive technique for the qualitative determination of the active ingredients in over-the-counter drugs and food additives in manufacture quality control and cleaning verification for the drug and food industries. PMID:20835390

  2. The Toxicology Investigators Consortium Case Registry--the 2012 experience.

    PubMed

    Wiegand, Timothy; Wax, Paul; Smith, Eric; Hart, Katherine; Brent, Jeffrey

    2013-12-01

    fragments were administered in 109 cases or 82 % of cases in which a snake envenomation occurred. There were 57 deaths reported in the Registry in 2012. The most common associated agent alone or in combination was the non-opioid analgesic acetaminophen, being reported in 10 different cases. Other common agents and agent classes involved in death cases included ethanol, opioids, the anti-diabetic agent metformin, sedatives-hypnotics and cardiovascular agents, in particular amlodipine. There were significant trends identified during 2012. Abuse of over-the-counter medications such as dextromethorphan remains prevalent. Cases involving dextromethorphan continued to be reported at frequencies higher than other commonly abused drugs including many stimulants, phencyclidine, synthetic cannabinoids and designer amphetamines such as bath salts. And, while cases involving synthetic cannabinoids and psychoactive bath salts remained relatively constant from 2011 to 2012 several designer amphetamines and novel psychoactive substances were first reported in the Registry in 2012 including the NBOME compounds or "N-bomb" agents. LSD cases also spiked dramatically in 2012 with an 18-fold increase from 2011 although many of these cases are thought to be ultra-potent designer amphetamines misrepresented as "synthetic" LSD. The 2012 Registry included over 400 Adverse Drug Reactions (ADRs) involving 4 % of all Registry cases with 106 agents causing at least 2 ADRs. Additional data including supportive cares, decontamination, and chelating agent use are also included in the 2012 annual report. The Registry remains a valuable toxico-surveillance and research tool. The ToxIC Registry is a unique tool for identifying and characterizing confirmed cases of significant or potential toxicity or complexity to require bedside care by a medical toxicologist.

  3. Comparisons between abiotic nitration and biotransformation reactions of phenolic micropollutants in activated sludge.

    PubMed

    Jewell, Kevin S; Wick, Arne; Ternes, Thomas A

    2014-01-01

    The transformation of selected phenolic substances was investigated during biological wastewater treatment. A main emphasis was put on the relevance of abiotic processes leading to toxic nitrophenolic transformation products (TPs). Due to their environmental relevance, the antiseptic ortho-phenylphenol (OPP), the plastics additive bisphenol A (BPA) and the psychoactive drug dextrorphan have been studied. Batch experiments confirmed that nitro- and nitroso-phenolic TPs can be formed under acidic conditions when nitrite is present. HNO2, N2O3 and NO and NO2 radicals are likely involved in the abiotic process. It was found that the process was promoted by the freezing of water samples, since this can lead to an unexpected pH drop. However, under conditions present at wastewater treatment plants (neutral pH, low nitrite concentrations), the formation of appreciable concentrations is rather unlikely through this process, since HNO2 concentrations are extremely low and NO and NO2 radicals will also react with other wastewater constituents. Thus, the transformation of phenolic substances such as OPP and BPA is mainly caused by biotic transformation. In addition to hydroxylation as a common reaction under aerobic conditions, the formation of sulfate conjugates was detected with the original compounds as well as with nitrophenolic TPs. Therefore, even when nitro-phenolic substances are formed it is likely that they are further transformed to sulfate conjugates. In raw wastewater and WWTP effluent nitrated BPA and NO2-dextrorphan were not detected. Only nitro-OPP was found in the influent of a WWTP with 2.3 ng/L, but it was not identified in the WWTP effluents. The concentrations of dextrorphan increased slightly during WWTP passage, possibly due to the cleavage of the glucuronide-conjugate, its human metabolite form, or demethylation of the prodrug dextromethorphan.

  4. “Is This a Drug?” Answers From Medical Students in a Tertiary Care Teaching Hospital in Eastern India

    PubMed Central

    Kundu, Tania Sur; Sengupta, Parama; Ghosh, Arijit; Das, Nina

    2016-01-01

    Introduction World Health Organization (WHO) defines what is drug and what is not. Second year MBBS students learn the principles of Pharmacology that they use in their later clinical practice life. The aim of the survey was to determine how medical students classify a range of preparations they might encounter in their professional lives and whether a brand name or a commercial preparation of a drug would influence their decision in the categorization of the preparation as a ‘drug’ or ‘not a drug’. Aim To assess the knowledge of medical students, if a substance or product is a drug. Materials and Methods We surveyed 2 concurrent years of medical students to classify 60 candidate medicinal preparations into “drug” and “not-drug” from a validated questionnaire. The candidate preparations were named either in generic or in their commercially available forms and they were all essential drugs as per WHO definition. Results The two groups of students, A and B, included 192 and 215 students respectively. Demographically there was little difference in the two groups. Agents like Aspirin, Paracetamol, Amphetamine, Salbutamol, Atropine, Dextromethorphan, Codeine, Diazepam, Ciprofloxacin ear drops, Levonorgestrol, Neosporin eye ointment, Furosemide, Metronidazole, Penicillin, Sorbitrate, Lignocaine, Methotrexate, Penicillin, Zolpidem and Thalidomide received almost unanimous votes as drugs. Arsenic trioxide, Fentanyl and petroleum jelly were considered to be “non-drugs” by most participants. The two groups did not differ significantly in their responses. Conclusion Some major lacunae were noted in the knowledge of the participating students despite book teaching on the definition of a drug. Drugs used for prophylaxis and those used in physiological conditions or topically, were often missed. These gaps need to be filled by more emphasis on definition of a drug and its clinical applicability based on example and case based studies. PMID:27656461

  5. Therapeutic Modulation of Glutamate Receptors in Major Depressive Disorder.

    PubMed

    Jaso, Brittany A; Niciu, Mark J; Iadarola, Nicolas D; Lally, Niall; Richards, Erica M; Park, Minkyung; Ballard, Elizabeth D; Nugent, Allison C; Machado-Vieira, Rodrigo; Zarate, Carlos A

    2017-01-01

    Current pharmacotherapies for major depressive disorder (MDD) have a distinct lag of onset that can prolong distress and impairment for patients, and realworld effectiveness trials further suggest that antidepressant efficacy is limited in many patients. All currently approved antidepressant medications for MDD act primarily through monoaminergic mechanisms, e.g., receptor/reuptake agonists or antagonists with varying affinities for serotonin, norepinephrine, or dopamine. Glutamate is the major excitatory neurotransmitter in the central nervous system, and glutamate and its cognate receptors are implicated in the pathophysiology of MDD, as well as in the development of novel therapeutics for this disorder. Since the rapid and robust antidepressant effects of the N-methyl-D-aspartate (NMDA) antagonist ketamine were first observed in 2000, other NMDA receptor antagonists have been studied in MDD. These have been associated with relatively modest antidepressant effects compared to ketamine, but some have shown more favorable characteristics with increased potential in clinical practice (for instance, oral administration, decreased dissociative and/or psychotomimetic effects, and reduced abuse/diversion liability). This article reviews the clinical evidence supporting the use of glutamate receptor modulators with direct affinity for cognate receptors: 1) non-competitive NMDA receptor antagonists (ketamine, memantine, dextromethorphan, AZD6765); 2) subunit (NR2B)-specific NMDA receptor antagonists (CP- 101,606/traxoprodil, MK-0657); 3) NMDA receptor glycine-site partial agonists (D-cycloserine, GLYX- 13); and 4) metabotropic glutamate receptor (mGluR) modulators (AZD2066, RO4917523/basimglurant). Several other theoretical glutamate receptor targets with preclinical antidepressant-like efficacy, but that have yet to be studied clinically, are also briefly discussed; these include α-amino-3-hydroxyl-5-methyl-4- isoxazoleproprionic acid (AMPA) agonists, mGluR2/3 negative

  6. Evaluation of Mutual Drug-Drug Interaction within Geneva Cocktail for Cytochrome P450 Phenotyping using Innovative Dried Blood Sampling Method.

    PubMed

    Bosilkovska, Marija; Samer, Caroline; Déglon, Julien; Thomas, Aurélien; Walder, Bernhard; Desmeules, Jules; Daali, Youssef

    2016-09-01

    Cytochrome P450 (CYP) activity can be assessed using a 'cocktail' phenotyping approach. Recently, we have developed a cocktail (Geneva cocktail) which combines the use of low-dose probes with a low-invasiveness dried blood spots (DBS) sampling technique and a single analytical method for the phenotyping of six major CYP isoforms. We have previously demonstrated that modulation of CYP activity after pre-treatment with CYP inhibitors/inducer could be reliably predicted using Geneva cocktail. To further validate this cocktail, in this study, we have verified whether probe drugs contained in the latter cause mutual drug-drug interactions. In a randomized, four-way, Latin-square crossover study, 30 healthy volunteers received low-dose caffeine, flurbiprofen, omeprazole, dextromethorphan and midazolam (a previously validated combination with no mutual drug-drug interactions); fexofenadine alone; bupropion alone; or all seven drugs simultaneously (Geneva cocktail). Pharmacokinetic profiles of the probe drugs and their metabolites were determined in DBS samples using both conventional micropipette sampling and new microfluidic device allowing for self-sampling. The 90% confidence intervals for the geometric mean ratios of AUC metabolite/AUC probe for CYP probes administered alone or within Geneva cocktail fell within the 0.8-1.25 bioequivalence range indicating the absence of pharmacokinetic interaction. The same result was observed for the chosen phenotyping indices, that is metabolic ratios at 2 hr (CYP1A2, CYP3A) or 3 hr (CYP2B6, CYP2C9, CYP2C19, CYP2D6) post-cocktail administration. DBS sampling could successfully be performed using a new microfluidic device. In conclusion, Geneva cocktail combined with an innovative DBS sampling device can be used routinely as a test for simultaneous CYP phenotyping.

  7. An improved substrate cocktail for assessing direct inhibition and time-dependent inhibition of multiple cytochrome P450s

    PubMed Central

    Chen, Zhong-hua; Zhang, Su-xing; Long, Na; Lin, Li-shan; Chen, Tao; Zhang, Fei-peng; Lv, Xue-qin; Ye, Pei-zhen; Li, Ning; Zhang, Ke-zhi

    2016-01-01

    Aim: The substrate cocktail is frequently used to evaluate cytochrome P450 (CYP) enzyme-mediated drug interactions and potential interactions among the probe substrates. Here, we re-optimized the substrate cocktail method to increase the reliability and accuracy of screening for candidate compounds and expanded the method from a direct CYP inhibition assay to a time-dependent inhibition (TDI) assay. Methods: In the reaction mixtures containing human liver microsome (0.1 mg/mL), both the concentrations of a substrate cocktail (phenacetin for 1A2, coumarin for 2A6, bupropion for 2B6, diclofenac for 2C9, dextromethorphan for 2D6, and testosterone for 3A4) and the incubation time were optimized. Metabolites of the substrate probes were simultaneously analyzed by multiple-reaction monitoring (MRM) using a routine LC/MS/MS. Direct CYP inhibition was validated using 7 inhibitors (α-naphthoflavone, tranylcypromine, ticlopidine, fluconazole, quinidine, ketoconazole and 1-ABT). The time-dependent inhibition was partially validated with 5 inhibitors (ketoconazole, verapamil, quinidine, paroxetine and 1-ABT). Results: The inhibition curve profiles and IC50 values of 7 CYP inhibitors were approximate when a single substrate and the substrate cocktail were tested, and were consistent with the previously reported values. Similar results were obtained in the IC50 shifts of 5 inhibitors when a single substrate and the substrate cocktail were tested in the TDI assay. Conclusion: The 6-in-1 substrate cocktail (for 1A2, 2A6, 2B6, 2C9, 2D6 and 3A) is reliable for assessing CYP inhibition and time-dependent inhibition of drug candidates. PMID:27063220

  8. Prediction of Drug Clearance and Drug-Drug Interactions in Microscale Cultures of Human Hepatocytes.

    PubMed

    Lin, Christine; Shi, Julianne; Moore, Amanda; Khetani, Salman R

    2016-01-01

    Accurate prediction of in vivo hepatic drug clearance using in vitro assays is important to properly estimate clinical dosing regimens. Clearance of low-turnover compounds is especially difficult to predict using short-lived suspensions of unpooled primary human hepatocytes (PHHs) and functionally declining PHH monolayers. Micropatterned cocultures (MPCCs) of PHHs and 3T3-J2 fibroblasts have been shown previously to display major liver functions for several weeks in vitro. In this study, we first characterized long-term activities of major cytochrome P450 enzymes in MPCCs created from unpooled cryopreserved PHH donors. MPCCs were then used to predict the clearance of 26 drugs that exhibit a wide range of turnover rates in vivo (0.05-19.5 ml/min per kilogram). MPCCs predicted 73, 92, and 96% of drug clearance values for all tested drugs within 2-fold, 3-fold, and 4-fold of in vivo values, respectively. There was good correlation (R(2) = 0.94, slope = 1.05) of predictions between the two PHH donors. On the other hand, suspension hepatocytes and conventional monolayers created from the same donor had significantly reduced predictive capacity (i.e., 30-50% clearance values within 4-fold of in vivo), and were not able to metabolize several drugs. Finally, we modulated drug clearance in MPCCs by inducing or inhibiting P450s. Rifampin-mediated CYP3A4 induction increased midazolam clearance by 73%, while CYP3A4 inhibition with ritonavir decreased midazolam clearance by 79%. Similarly, quinidine-mediated CYP2D6 inhibition reduced clearance of dextromethorphan and desipramine by 71 and 22%, respectively. In conclusion, MPCCs created using cryopreserved unpooled PHHs can be used for drug clearance predictions and to model drug-drug interactions.

  9. Inhibitory effects of dextrorotatory morphinans on the human 5-HT(3A) receptor expressed in Xenopus oocytes: Involvement of the N-terminal domain of the 5-HT(3A) receptor.

    PubMed

    Lee, Byung-Hwan; Hwang, Sung-Hee; Choi, Sun-Hye; Shin, Tae-Joon; Kang, Jiyeon; Kim, Hyun-Joong; Kim, Hyoung-Chun; Lee, Joon-Hee; Nah, Seung-Yeol

    2012-07-05

    We previously developed a series of dextromethorphan (DM, 3-methoxy-17-methylmorphinan) analogs modified at positions 3 and 17 of the morphinan ring system. Recent reports have shown that DM attenuates abdominal pain caused by irritable bowel syndrome, and multidrug regimens that include DM prevent nausea/vomiting following cancer surgery. However, little is known regarding the molecular mechanisms underlying the beneficial effects of DM. Here, we investigated the effects of DM, 3 of its analogs (AM, 3-allyloxy-17-methoxymorphian; CM, 3-cyclopropyl-17-methoxymorphinan; and DF, 3-methyl-17-methylmorphinan), and 1 of its metabolites (HM, 3-methoxymorphinan) on the activity of the human 5-HT(3A) receptor channel expressed in Xenopus laevis oocytes, using the 2-microelectrode voltage clamp technique. We found that intra-oocyte injection of human 5-HT(3A) receptor cRNAs elicited an inward current (I(5-HT)) in the presence of 5-HT. Cotreatment with AM, CM, DF, DM, or HM inhibited I(5-HT) in a dose-dependent, voltage-independent, and reversible manner. The IC(50) values for AM, CM, DF, DM, and HM were 24.5±1.4, 21.5±4.2, 132.6±35.8, 181.3±23.5, and 191.3±31.5μM, respectively. The IC(50) values of AM and CM were 7-fold lower than that of DM, and mechanistic analysis revealed that DM, DF, HM, AM, and CM were competitive inhibitors of I(5-HT). Point mutations of Arg241 in the N-terminal, but not amino acids in the pore region, to other amino acid residues attenuated or abolished DM- and DM-analog-induced inhibition of I(5-HT). Together, these results demonstrated that dextrorotatory morphinans might regulate 5-HT(3A) receptor channel activity via interaction with its N-terminal domain.

  10. Effects of the competitive N-methyl-D-aspartate receptor antagonist, LY235959 [(-)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid], on responding for cocaine under both fixed and progressive ratio schedules of reinforcement.

    PubMed

    Allen, Richard M; Carelli, Regina M; Dykstra, Linda A; Suchey, Therese L; Everett, Carson V

    2005-10-01

    It is difficult to determine the precise role of the N-methyl-D-aspartate (NMDA) receptor system in the reinforcing effects of cocaine since uncompetitive NMDA receptor antagonists alter cocaine self-administration in different ways, depending on the antagonist examined and the behavior being measured. To increase understanding of the role of the NMDA system in cocaine's reinforcing effects, this study measured the effects of the competitive NMDA receptor antagonist, LY235959 [(-)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid], in rats that self-administered cocaine under both fixed ratio (FR) 1 and progressive ratio (PR) schedules of reinforcement. Rats were trained to self-administer cocaine (0.33 mg/infusion) under an FR1 schedule of reinforcement. Thereafter, the effects of pretreatment with LY235959, or the uncompetitive antagonists dextromethorphan and dizocilpine, were examined. The number of infusions earned during the first 10 min of responding under the FR1 schedule was analyzed separately. When rats responded for 0.33 mg/infusion cocaine under an FR1 schedule of reinforcement, 3 mg/kg LY235959 decreased cocaine self-administration only during the first 10 min of the responding. This effect was dose and time dependent and blocked by the competitive NMDA receptor agonist, NMDA. LY235959 (3 mg/kg) decreased total responding for cocaine only when the self-administered dose of cocaine was small (0.02-0.04 mg/infusion) or when responding was reinforced under the PR schedule. In contrast, dizocilpine decreased responding under the FR1 schedule but increased responding under the PR schedule. These data suggest that LY235959 decreased the reinforcing effectiveness of cocaine, a finding reported with systemically administered NMDA receptor antagonists other than dizocilpine.

  11. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability.

    PubMed

    Liebetanz, David; Nitsche, Michael A; Tergau, Frithjof; Paulus, Walter

    2002-10-01

    Weak transcranial direct current stimulation (tDCS) induces persisting excitability changes in the human motor cortex. These plastic excitability changes are selectively controlled by the polarity, duration and current strength of stimulation. To reveal the underlying mechanisms of direct current (DC)-induced neuroplasticity, we combined tDCS of the motor cortex with the application of Na(+)-channel-blocking carbamazepine (CBZ) and the N-methyl-D-aspartate (NMDA)-receptor antagonist dextromethorphan (DMO). Monitored by transcranial magnetic stimulation (TMS), motor cortical excitability changes of up to 40% were achieved in the drug-free condition. Increase of cortical excitability could be selected by anodal stimulation, and decrease by cathodal stimulation. Both types of excitability change lasted several minutes after cessation of current stimulation. DMO suppressed the post-stimulation effects of both anodal and cathodal DC stimulation, strongly suggesting the involvement of NMDA receptors in both types of DC-induced neuroplasticity. In contrast, CBZ selectively eliminated anodal effects. Since CBZ stabilizes the membrane potential voltage-dependently, the results reveal that after-effects of anodal tDCS require a depolarization of membrane potentials. Similar to the induction of established types of short- or long-term neuroplasticity, a combination of glutamatergic and membrane mechanisms is necessary to induce the after-effects of tDCS. On the basis of these results, we suggest that polarity-driven alterations of resting membrane potentials represent the crucial mechanisms of the DC-induced after-effects, leading to both an alteration of spontaneous discharge rates and to a change in NMDA-receptor activation.

  12. Expression in human prostate of drug- and carcinogen-metabolizing enzymes: association with prostate cancer risk.

    PubMed Central

    Agúndez, J. A.; Martínez, C.; Olivera, M.; Gallardo, L.; Ladero, J. M.; Rosado, C.; Prados, J.; Rodriguez-Molina, J.; Resel, L.; Benítez, J.

    1998-01-01

    The role of two common polymorphisms of enzymes involved in the metabolism of drugs and carcinogens was studied in relation to prostate cancer. The gene encoding one of these enzymes (NAT2) is located in an area where frequent allelic loss occurs in prostate cancer. Mutations at the genes CYP2D6 and NAT2 were analysed by allele-specific polymerase chain reaction and restriction mapping in DNA from 94 subjects with prostate cancer and 160 male healthy control subjects. Eleven prostate specimens were analysed for genotype and enzymatic activities NAT2, CYP2D6 and CYP3A by using the enzyme-specific substrates sulphamethazine and dextromethorphan. Enzyme activities with substrate specificities corresponding to NAT2, CYP2D6 and CYP3A are present in human prostate tissue, with mean +/-s.d. activities of 4.8+/-4.4 pmol min(-1) mg(-1) protein, 156+/-91 and 112+/-72 nmol min(-1) mg(-1) protein respectively. The Km values for the prostate CYP2D6 and CYP3A enzyme activities corresponded to that of liver CYP2D6 and CYP3A activities, and the CYP2D6 enzyme activity is related to the CYP2D6 genotype. The N-acetyltransferase, in contrast, had a higher Km than NAT2 and was independent of the NAT2 genotype. The CYP2D6 and CYP3A enzymes, and an N-acetyltransferase activity that is independent of the regulation of the NAT2 gene, are expressed in human prostate tissue. The presence of carcinogen-metabolizing enzymes in human prostate with a high interindividual variability may be involved in the regulation of local levels of carcinogens and mutagens and may underlie interindividual differences in cancer susceptibility. Images Figure 1 PMID:9823980

  13. Pharmacological profile of the NOP agonist and cough suppressing agent SCH 486757 (8-[Bis(2-Chlorophenyl)Methyl]-3-(2-Pyrimidinyl)-8-Azabicyclo[3.2.1]Octan-3-Ol) in preclinical models.

    PubMed

    McLeod, Robbie L; Tulshian, Deen B; Bolser, Donald C; Varty, Geoffrey B; Baptista, Marco; Fernandez, Xiomara; Parra, Leonard E; Zimmer, Jennifer C; Erickson, Christine H; Ho, Ginny D; Jia, Yanlin; Ng, Fay W; Korfmacher, Walter; Xu, Xiaoying; Veals, John; Smith-Torhan, April; Wainhaus, Samuel; Fawzi, Ahmad B; Austin, Theodore M; van Heek, Margaret; Hey, John A

    2010-03-25

    We describe the pharmacological and pharmacokinetic profiles of SCH 486757, a nociceptin/orphanin FQ peptide (NOP) receptor agonist that has recently entered human clinical trials for cough. SCH 486757 selectively binds human NOP receptor (K(i)=4.6+/-0.61nM) over classical opioid receptors. In a guinea pig capsaicin cough model, SCH 486757 (0.01-1mg/kg) suppressed cough at 2, 4, and 6h post oral administration with a maximum efficacy occurring at 4h equivalent to codeine, hydrocodone, dextromethorphan and baclofen. The antitussive effects of SCH 486757 (3.0mg/kg, p.o.) was blocked by the NOP receptor antagonist J113397 (12mg/kg, i.p.) but not by naltrexone (10mg/kg, p.o.). SCH 486757 does not produce tolerance to its antitussive activity after a 5-day BID dosing regimen. After acute and chronic dosing paradigms, SCH 486757 (1mg/kg) inhibited capsaicin-evoked coughing by 46+/-9% and 40+/-11%, respectively. In a feline mechanically-evoked cough model, SCH 486757 produces a maximum inhibition of cough and expiratory abdominal electromyogram amplitude of 59 and 61%, respectively. SCH 486757 did not significantly affect inspiratory electromyogram amplitude. We examined the abuse potential of SCH 486757 (10mg/kg, p.o.) in a rat conditioned place preference procedure which is sensitive to classical drugs of abuse, such as amphetamine and morphine. SCH 486757 was without effect in this model. Finally, SCH 486757 displays a good oral pharmacokinetic profile in the guinea pig, rat and dog. We conclude that SCH 486757 has a favorable antitussive profile in preclinical animal models.

  14. Pharmacological specificity of the discriminative stimulus properties of 2-amino-4,5-(1,2-cyclohexyl)-7-phosphono-heptanoic acid (NPC 12626), a competitive N-methyl-D-aspartate receptor antagonist.

    PubMed

    Bobelis, D J; Balster, R L

    1993-02-01

    A drug discrimination based upon the competitive N-methyl-D-aspartate (NMDA) antagonist 2-amino-4,5-(1,2-cyclohexyl)-7-phosphonoheptanoic acid (NPC 12626) was assessed for pharmacological specificity. Adult male Sprague-Dawley rats were trained to discriminate 20 mg/kg i.p. of NPC 12626 from saline under a standard two-lever fixed ratio 32 schedule of food reinforcement. Stimulus generalization tests were conducted to examine the similarities and differences between NPC 12626, its active (2R,4R,5S) enantiomer NPC 17742, other competitive and noncompetitive NMDA antagonists and a number of drugs representative of other classes. During test sessions, the competitive NMDA antagonists NPC 12626, CGS 19755, [1-(cis-2-carboxypiperidine-4-yl)- methyl-1-phosphonic acid], NPC 17742, CSP 37849 [DL-(E)-2-amino-4-methyl-5-phosphono-3-pen-tenoic acid] and CPPene [D-3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphonic acid] all completely substituted for the training dose of NPC 12626 with ED50 values of 18.1, 2.3, 2.1, 0.8 and 0.8 mg/kg, respectively. In contrast, drugs that failed to substitute for NPC 12626 included (+)-amphetamine, baclofen, chlorpromazine, dextromethorphan, diazepam, dizocilpine (MK-801), imipramine, (-)-ketocyclazocine, L-N6-phenylisopropyladenosine, methocarbamol, morphine, muscimol, phenytoin, physostigmine and valproate. These results provide evidence that the NPC 12626 discriminative stimulus is unique and specific, shared fully only by its active enantiomer NPC 17742 and other competitive NMDA antagonists. This specificity provides further support for the hypothesis of NMDA receptor mediation of NPC 12626 discrimination, and suggests that this is a useful model to evaluate behavioral effects of competitive NMDA antagonists.

  15. Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function

    PubMed Central

    Braun, Urs; Schäfer, Axel; Rausch, Franziska; Schweiger, Janina I.; Bilek, Edda; Erk, Susanne; Romanczuk-Seiferth, Nina; Grimm, Oliver; Geiger, Lena S.; Haddad, Leila; Otto, Kristina; Mohnke, Sebastian; Heinz, Andreas; Zink, Mathias; Walter, Henrik; Schwarz, Emanuel; Meyer-Lindenberg, Andreas; Tost, Heike

    2016-01-01

    Schizophrenia is increasingly recognized as a disorder of distributed neural dynamics, but the molecular and genetic contributions are poorly understood. Recent work highlights a role for altered N-methyl-d-aspartate (NMDA) receptor signaling and related impairments in the excitation–inhibitory balance and synchrony of large-scale neural networks. Here, we combined a pharmacological intervention with novel techniques from dynamic network neuroscience applied to functional magnetic resonance imaging (fMRI) to identify alterations in the dynamic reconfiguration of brain networks related to schizophrenia genetic risk and NMDA receptor hypofunction. We quantified “network flexibility,” a measure of the dynamic reconfiguration of the community structure of time-variant brain networks during working memory performance. Comparing 28 patients with schizophrenia, 37 unaffected first-degree relatives, and 139 healthy controls, we detected significant differences in network flexibility [F(2,196) = 6.541, P = 0.002] in a pattern consistent with the assumed genetic risk load of the groups (highest for patients, intermediate for relatives, and lowest for controls). In an observer-blinded, placebo-controlled, randomized, cross-over pharmacological challenge study in 37 healthy controls, we further detected a significant increase in network flexibility as a result of NMDA receptor antagonism with 120 mg dextromethorphan [F(1,34) = 5.291, P = 0.028]. Our results identify a potential dynamic network intermediate phenotype related to the genetic liability for schizophrenia that manifests as altered reconfiguration of brain networks during working memory. The phenotype appears to be influenced by NMDA receptor antagonism, consistent with a critical role for glutamate in the temporal coordination of neural networks and the pathophysiology of schizophrenia. PMID:27791105

  16. Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function.

    PubMed

    Braun, Urs; Schäfer, Axel; Bassett, Danielle S; Rausch, Franziska; Schweiger, Janina I; Bilek, Edda; Erk, Susanne; Romanczuk-Seiferth, Nina; Grimm, Oliver; Geiger, Lena S; Haddad, Leila; Otto, Kristina; Mohnke, Sebastian; Heinz, Andreas; Zink, Mathias; Walter, Henrik; Schwarz, Emanuel; Meyer-Lindenberg, Andreas; Tost, Heike

    2016-11-01

    Schizophrenia is increasingly recognized as a disorder of distributed neural dynamics, but the molecular and genetic contributions are poorly understood. Recent work highlights a role for altered N-methyl-d-aspartate (NMDA) receptor signaling and related impairments in the excitation-inhibitory balance and synchrony of large-scale neural networks. Here, we combined a pharmacological intervention with novel techniques from dynamic network neuroscience applied to functional magnetic resonance imaging (fMRI) to identify alterations in the dynamic reconfiguration of brain networks related to schizophrenia genetic risk and NMDA receptor hypofunction. We quantified "network flexibility," a measure of the dynamic reconfiguration of the community structure of time-variant brain networks during working memory performance. Comparing 28 patients with schizophrenia, 37 unaffected first-degree relatives, and 139 healthy controls, we detected significant differences in network flexibility [F(2,196) = 6.541, P = 0.002] in a pattern consistent with the assumed genetic risk load of the groups (highest for patients, intermediate for relatives, and lowest for controls). In an observer-blinded, placebo-controlled, randomized, cross-over pharmacological challenge study in 37 healthy controls, we further detected a significant increase in network flexibility as a result of NMDA receptor antagonism with 120 mg dextromethorphan [F(1,34) = 5.291, P = 0.028]. Our results identify a potential dynamic network intermediate phenotype related to the genetic liability for schizophrenia that manifests as altered reconfiguration of brain networks during working memory. The phenotype appears to be influenced by NMDA receptor antagonism, consistent with a critical role for glutamate in the temporal coordination of neural networks and the pathophysiology of schizophrenia.

  17. A cross-sectional examination of medicinal substance abuse and use of nonmedicinal substances among Canadian youth: findings from the 2012-2013 Youth Smoking Survey

    PubMed Central

    Leos-Toro, Cesar; Hammond, David; Manske, Stephen

    2015-01-01

    Background: Medicinal substance abuse is prevalent in Canada; however, little is known about patterns of abuse among young people. In this study, we sought to characterize the abuse of medicinal substances, such as prescription medications and selected over-the-counter substances, as well as that of licit and illicit nonmedicinal substances, using a nationally representative sample of young people. Methods: Cross-sectional, nationally representative data for children in grades 7-12 were obtained from Health Canada's 2012-2013 Youth Smoking Survey (n = 38 667). Multinomial regression analyses were conducted to examine subgroup differences in medicinal substance abuse and comorbid abuse of both medicinal and nonmedicinal substances. Results: About 5% of youth reported abusing medicinal substances in the previous year. Dextromethorphan, a substance found in many cough and cold syrups, was the most widely abused (2.9%), followed by pain medications (2.6%), sleeping medications (1.8%), stimulants (1.7%) and sedatives (1.0%). Abuse of nonmedicinal substances aside from tobacco and alcohol was reported by 21.3% of the population, and abuse of any substances was detected in 23.0% of the surveyed population. Girls at each grade level reported higher rates of abuse of medicinal substances than boys. Regional differences were seen with regard to the types of substances abused across Canada. Interpretation: A substantial minority of Canadian youth report abusing medicinal substances, including over-the-counter medications (e.g., cough syrup) and prescriptions medications (e.g., pain medication). In contrast to nonmedicinal substances, girls were more likely than boys to report abuse of medicinal substances. PMID:27570758

  18. Chronic administration of caderofloxacin, a new fluoroquinolone, increases hepatic CYP2E1 expression and activity in rats

    PubMed Central

    Liu, Li; Miao, Ming-xing; Zhong, Ze-yu; Xu, Ping; Chen, Yang; Liu, Xiao-dong

    2016-01-01

    Aim: Caderofloxacin is a new fluoroquinolone that is under phase III clinical trials in China. Here we examined the effects of caderofloxacin on rat hepatic cytochrome P450 (CYP450) isoforms as well as the potential of caderofloxacin interacting with co-administered drugs. Methods: Male rats were treated with caderofloxacin (9 mg/kg, ig) once or twice daily for 14 consecutive days. The effects of caderofloxacin on CYP3A, 2D6, 2C19, 1A2, 2E1 and 2C9 were evaluated using a “cocktail” of 6 probes (midazolam, dextromethorphan, omeprazole, theophylline, chlorzoxazone and diclofenac) injected on d 0 (prior to caderofloxacin exposure) and d 15 (after caderofloxacin exposure). Hepatic microsomes from the caderofloxacin-treated rats were used to assess CYP2E1 activity and chlorzoxazone metabolism. The expression of CYP2E1 mRNA and protein in hepatic microsomes was analyzed with RT-PCR and Western blotting, respectively. Results: Fourteen-day administration of caderofloxacin significantly increased the activity of hepatic CYP2E1, leading to enhanced metabolism of chlorzoxazone. In vitro microsomal study confirmed that CYP2E1 was a major metabolic enzyme involved in chlorzoxazone metabolism, and the 14-d administration of caderofloxacin significantly increased the activity of CYP2E1 in hepatic microsomes, resulting in increased formation of 6-hydroxychlorzoxazone. Furthermore, the 14-d administration of caderofloxacin significantly increased the expression of CYP2E1 mRNA and protein in liver microsomes, which was consistent with the pharmacokinetic results. Conclusion: Fourteen-day administration of caderofloxacin can induce the expression and activity of hepatic CYP2E1 in rats. When caderofloxacin is administered, a potential drug-drug interaction mediated by CYP2E1 induction should be considered. PMID:26838075

  19. Currently available cough suppressants for chronic cough.

    PubMed

    Chung, Kian Fan

    2008-01-01

    Chronic cough is a common symptom but only a fraction of patients seek medical attention. Addressing the causes of chronic cough may lead to control of cough; however, this approach is not always successful since there is a certain degree of failure even when the cause(s) of cough are adequately treated; in idiopathic cough, there is no cause to treat. Persistent cough may be associated with deterioration of quality of life, and treatment with cough suppressants is indicated. Currently available cough suppressants include the centrally acting opioids such as morphine, codeine, and dextromethorphan. Peripherally acting antitussives include moguisteine and levodropropizine. Early studies report success in reducing cough in patients with chronic bronchitis or COPD; however, a carefully conducted study showed no effect of codeine on cough of COPD. Success with these cough suppressants can be achieved at high doses that are associated with side effects. Slow-release morphine has been reported to be useful in controlling intractable cough with good tolerance to constipation and drowsiness. There have been case reports of the success of centrally acting drugs such as amitryptiline, paroxetine, gabapentin, and carbamezepine in chronic cough. New opioids such as nociceptin or antagonists of TRPV1 may turn out to be more effective. Efficacy of cough suppressants must be tested in double-blind randomised trials using validated measures of cough in patients with chronic cough not responding to specific treatments. Patients with chronic cough are in desperate need of effective antitussives that can be used either on demand or on a long-term basis.

  20. An evaluation of the CYP2D6 and CYP3A4 inhibition potential of metoprolol metabolites and their contribution to drug-drug and drug-herb interaction by LC-ESI/MS/MS.

    PubMed

    Borkar, Roshan M; Bhandi, Murali Mohan; Dubey, Ajay P; Ganga Reddy, V; Komirishetty, Prashanth; Nandekar, Prajwal P; Sangamwar, Abhay T; Kamal, Ahmed; Banerjee, Sanjay K; Srinivas, R

    2016-10-01

    The aim of the present study was to evaluate the contribution of metabolites to drug-drug interaction and drug-herb interaction using the inhibition of CYP2D6 and CYP3A4 by metoprolol (MET) and its metabolites. The peak concentrations of unbound plasma concentration of MET, α-hydroxy metoprolol (HM), O-desmethyl metoprolol (ODM) and N-desisopropyl metoprolol (DIM) were 90.37 ± 2.69, 33.32 ± 1.92, 16.93 ± 1.70 and 7.96 ± 0.94 ng/mL, respectively. The metabolites identified, HM and ODM, had a ratio of metabolic area under the concentration-time curve (AUC) to parent AUC of ≥0.25 when either total or unbound concentration of metabolite was considered. In vitro CYP2D6 and CYP3A4 inhibition by MET, HM and ODM study revealed that MET, HM and ODM were not inhibitors of CYP3A4-catalyzed midazolam metabolism and CYP2D6-catalyzed dextromethorphan metabolism. However, DIM only met the criteria of >10% of the total drug related material and <25% of the parent using unbound concentrations. If CYP inhibition testing is solely based on metabolite exposure, DIM metabolite would probably not be considered. However, the present study has demonstrated that DIM contributes significantly to in vitro drug-drug interaction. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Common CYP2D6 polymorphisms affecting alternative splicing and transcription: long-range haplotypes with two regulatory variants modulate CYP2D6 activity.

    PubMed

    Wang, Danxin; Poi, Ming J; Sun, Xiaochun; Gaedigk, Andrea; Leeder, J Steven; Sadee, Wolfgang

    2014-01-01

    Cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of 25% of clinically used drugs. Genetic polymorphisms cause substantial variation in CYP2D6 activity and serve as biomarkers guiding drug therapy. However, genotype-phenotype relationships remain ambiguous except for poor metabolizers carrying null alleles, suggesting the presence of yet unknown genetic variants. Searching for regulatory CYP2D6 polymorphisms, we find that a SNP defining the CYP2D6*2 allele, rs16947 [R296C, 17-60% minor allele frequency (MAF)], previously thought to convey normal activity, alters exon 6 splicing, thereby reducing CYP2D6 expression at least 2-fold. In addition, two completely linked SNPs (rs5758550/rs133333, MAF 13-42%) increase CYP2D6 transcription more than 2-fold, located in a distant downstream enhancer region (>100 kb) that interacts with the CYP2D6 promoter. In high linkage disequilibrium (LD) with each other, rs16947 and the enhancer SNPs form haplotypes that affect CYP2D6 enzyme activity in vivo. In a pediatric cohort of 164 individuals, rs16947 alone (minor haplotype frequency 28%) was associated with reduced CYP2D6 metabolic activity (measured as dextromethorphan/metabolite ratios), whereas rs5758550/rs133333 alone (frequency 3%) resulted in increased CYP2D6 activity, while haplotypes containing both rs16947 and rs5758550/rs133333 were similar to the wild-type. Other alleles used in biomarker panels carrying these variants such as CYP2D6*41 require re-evaluation of independent effects on CYP2D6 activity. The occurrence of two regulatory variants of high frequency and in high LD, residing on a long haplotype, highlights the importance of gene architecture, likely shaped by evolutionary selection pressures, in determining activity of encoded proteins.

  2. Effects of an NMDA antagonist on the auditory mismatch negativity response to transcranial direct current stimulation.

    PubMed

    Impey, Danielle; de la Salle, Sara; Baddeley, Ashley; Knott, Verner

    2016-09-13

    Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a weak constant current to alter cortical excitability and activity temporarily. tDCS-induced increases in neuronal excitability and performance improvements have been observed following anodal stimulation of brain regions associated with visual and motor functions, but relatively little research has been conducted with respect to auditory processing. Recently, pilot study results indicate that anodal tDCS can increase auditory deviance detection, whereas cathodal tDCS decreases auditory processing, as measured by a brain-based event-related potential (ERP), mismatch negativity (MMN). As evidence has shown that tDCS lasting effects may be dependent on N-methyl-D-aspartate (NMDA) receptor activity, the current study investigated the use of dextromethorphan (DMO), an NMDA antagonist, to assess possible modulation of tDCS's effects on both MMN and working memory performance. The study, conducted in 12 healthy volunteers, involved four laboratory test sessions within a randomised, placebo and sham-controlled crossover design that compared pre- and post-anodal tDCS over the auditory cortex (2 mA for 20 minutes to excite cortical activity temporarily and locally) and sham stimulation (i.e. device is turned off) during both DMO (50 mL) and placebo administration. Anodal tDCS increased MMN amplitudes with placebo administration. Significant increases were not seen with sham stimulation or with anodal stimulation during DMO administration. With sham stimulation (i.e. no stimulation), DMO decreased MMN amplitudes. Findings from this study contribute to the understanding of underlying neurobiological mechanisms mediating tDCS sensory and memory improvements.

  3. Effects of Eleutheroside B and Eleutheroside E on activity of cytochrome P450 in rat liver microsomes

    PubMed Central

    2014-01-01

    Background Chemicals of herbal products may cause unexpected toxicity or adverse effect by the potential for alteration of the activity of CYP450 when co-administered with other drugs. Eleutherococcus senticosus (ES), has been widely used as a traditional herbal medicine and popular herbal dietary supplements, and often co-administered with many other drugs. The main bioactive constituents of ES were considered to be eleutherosides including eleutheroside B (EB) and eleutheroside E (EE). This study was to investigate the effects of EB and EE on CYP2C9, CYP2D6, CYP2E1 and CYP3A4 in rat liver microsomes in vitro. Method Probe drugs of tolbutamide (TB), dextromethorphan (DM), chlorzoxazone (CLZ) and testosterone (TS) as well as eleutherosides of different concentrations were added to incubation systems of rat liver microsomes in vitro. After incubation, validated HPLC methods were used to quantify relevant metabolites. Results The results suggested that EB and EE exhibited weak inhibition against the activity of CYP2C9 and CYP2E1, but no effects on CYP2D6 and CYP3A4 activity. The IC50 values for EB and EE were calculated to be 193.20 μM and 188.36 μM for CYP2E1, 595.66 μM and 261.82 μM for CYP2C9, respectively. Kinetic analysis showed that inhibitions of CYP2E1 by EB and EE were best fit to mixed-type with Ki value of 183.95 μM and 171.63 μM, respectively. Conclusions These results indicate that EB and EE may inhibit the metabolism of drugs metabolized via CYP2C9 and CYP2E1, and have the potential to increase the toxicity of the drugs. PMID:24383621

  4. The Effects of Milk Thistle (Silybum marianum) on Human Cytochrome P450 Activity

    PubMed Central

    Kawaguchi-Suzuki, Marina; Frye, Reginald F.; Zhu, Hao-Jie; Brinda, Bryan J.; Chavin, Kenneth D.; Bernstein, Hilary J.

    2014-01-01

    Milk thistle (Silybum marianum) extracts are widely used as a complementary and alternative treatment of various hepatic conditions and a host of other diseases/disorders. The active constituents of milk thistle supplements are believed to be the flavonolignans contained within the extracts. In vitro studies have suggested that some milk thistle components may significantly inhibit specific cytochrome P450 (P450) enzymes. However, determining the potential for clinically significant drug interactions with milk thistle products has been complicated by inconsistencies between in vitro and in vivo study results. The aim of the present study was to determine the effect of a standardized milk thistle supplement on major P450 drug-metabolizing enzymes after a 14-day exposure period. CYP1A2, CYP2C9, CYP2D6, and CYP3A4/5 activities were measured by simultaneously administering the four probe drugs, caffeine, tolbutamide, dextromethorphan, and midazolam, to nine healthy volunteers before and after exposure to a standardized milk thistle extract given thrice daily for 14 days. The three most abundant falvonolignans found in plasma, following exposure to milk thistle extracts, were silybin A, silybin B, and isosilybin B. The concentrations of these three major constituents were individually measured in study subjects as potential perpetrators. The peak concentrations and areas under the time-concentration curves of the four probe drugs were determined with the milk thistle administration. Exposure to milk thistle extract produced no significant influence on CYP1A2, CYP2C9, CYP2D6, or CYP3A4/5 activities. PMID:25028567

  5. Appropriate use of antitussives and protussives. A practical review.

    PubMed

    Irwin, R S; Curley, F J; Bennett, F M

    1993-07-01

    As a symptom of an underlying condition, cough is one of the most common reasons patients see physicians. To the majority, a cough means that 'something is wrong' and it causes exhaustion and/or self-consciousness. Patients find these reasons as well as effects on lifestyle, fear of cancer and/or AIDS or tuberculosis to be the most troublesome concerns for which they seek medical attention. The treatment of cough can be divided into two main categories: (a) therapy that controls, prevents or eliminates cough (i.e. antitussive); and (b) therapy that makes cough more effective (i.e. protussive). Antitussive therapy can be either specific or nonspecific. Definitive or specific antitussive therapy depends on determining the aetiology or operant pathophysiological mechanism, and then initiating specific treatment. Since the cause of chronic cough can almost always be determined, it is possible to prescribe specific therapy that can be almost uniformly successful. Non-specific antitussive therapy is directed at the symptom; it is indicated when definitive therapy cannot be given. Practically speaking, the efficacy of nonspecific therapy must be evaluated in double-blind, placebo-controlled, randomised studies of pathological cough in humans. Such studies have demonstrated the efficacy of dextromethorphan, codeine and ipratropium bromide aerosol in patients with chronic bronchitis. While the preferred treatment for patients with cough due to angiotensin converting enzyme (ACE) inhibitor therapy is withdrawal of the offending drugs, it may be possible to ameliorate the cough by adding nifedipine, sulindac or indomethacin to the treatment regimen. The efficacy of protussive therapy has not been well documented. Although hypertonic saline aerosol and erdosteine in patients with bronchitis, and amiloride aerosol in patients with cystic fibrosis have been shown to improve mucus clearance, their clinical utility has not been adequately studied.

  6. N-acyl-2-substituted-1,3-thiazolidines, a new class of non-narcotic antitussive agents: studies leading to the discovery of ethyl 2-[(2-methoxyphenoxy)methyl]-beta-oxothiazolidine-3-propanoate.

    PubMed

    Gandolfi, C A; Di Domenico, R; Spinelli, S; Gallico, L; Fiocchi, L; Lotto, A; Menta, E; Borghi, A; Dalla Rosa, C; Tognella, S

    1995-02-03

    The synthesis of a novel class of antitussive agents is described. The compounds were examined for antitussive activity in guinea pig after cough induction by electrical or chemical stimulation. Ethyl 2-[(2-methoxyphenoxy)methyl]-beta-oxothiazolidine-3-propanoate (BBR 2173, moguisteine, 7) and other structurally related compounds showed a significant level of activity, comparable to that of codeine and dextromethorphan. The compounds presented in this paper are characterized by the N-acyl-2-substituted-1,3-thiazolidine moiety, which is a novel entry in the field of antitussive agents. The serendipitous discovery of the role played by the thiazolidine moiety in determining the antitussive effect promoted extensive investigations on these structures. This optimization process on N-acyl-2-substituted-1,3-thiazolidines led to the initial identification of 2-[(2-methoxypheoxy)methyl]-3-[2-(acetylthio)acetyl]- 1,3-thiazolidine (18a) as an interesting lead compound. The careful study of the rapid and very complicated metabolism of 18a provided further insights for the design of newer related derivatives. The observation that the metabolic oxidation on the lateral chain's sulfur of 18a to sulfoxide maintained the antitussive properties suggested the introduction of isosteric functional groups with respect to the sulfoxide moiety. Subsequent structural modifications showed that hydrolyzable malonic residues in the 3-position of the thiazolidine ring were able to assure high antitussive activity. This optimization ultimately led to the selection of moguisteine (7) as the most effective and safest representative of the series. Moguisteine is completely devoid of unwanted side effects (such as sedation and addiction), and its activity was demonstrated also in clinical studies.

  7. Variation in the inhibitory potency of terbinafine among genetic variants of CYP2D6.

    PubMed

    Akiyoshi, Takeshi; Ishiuchi, Miho; Imaoka, Ayuko; Ohtani, Hisakazu

    2015-08-01

    Cytochrome P450 2D6 (CYP2D6) is a highly polymorphic enzyme that is involved in the metabolism of many drugs. Terbinafine (TER) is a CYP2D6 inhibitor and causes persistent drug interactions in the clinical setting; however, its inhibitory mechanism and the differences in its inhibitory potency among genetic variants of CYP2D6 remain to be investigated. This study aimed to investigate the inhibitory mechanism of TER and the differences in its inhibitory potency among three CYP2D6 variants, CYP2D6.1, CYP2D6.2, and CYP2D6.10. In a competitive inhibition study, the metabolic activity of the CYP2D6 was assessed based on their demethylation of dextromethorphan in the presence or absence of TER, and the time-dependency of the inhibitory effects were examined by preincubating the enzymes with TER. TER had weaker inhibitory effects on CYP2D6.2 and CYP2D6.10 than on CYP2D6.1; i.e., TER exhibited Ki values (the concentration of inhibitor that results in half-maximal inhibition) of 0.0525, 0.355, and 1.85 μM for CYP2D6.1, CYP2D6.2, and CYP2D6.10, respectively. The inhibitory effects of TER were not time-dependent. Since TER's Ki value for CYP2D6.10 was 35.2-fold higher than its Ki value for CYP2D6.1, the CYP2D6 genotype of subjects should be taken into account when estimating the severity of drug interactions involving TER.

  8. (125I)iodoazidococaine, a photoaffinity label for the haloperidol-sensitive sigma receptor.

    PubMed Central

    Kahoun, J R; Ruoho, A E

    1992-01-01

    A carrier-free radioiodinated cocaine photo-affinity label, (-)-3-(125I)iodo-4-azidococaine [(125I)IACoc], has been synthesized and used as a probe for cocaine-binding proteins. Photoaffinity labeling with 0.5 nM (125I)IACoc resulted in selective derivatization of a 26-kDa polypeptide with the pharmacology of a sigma receptor in membranes derived from whole rat brain, rat liver, and human placenta. Covalent labeling of the 26-kDa polypeptide was inhibited by 1 microM haloperidol, di(2-tolyl)guanidine (DTG), 3-(3-hydroxyphenyl)-N-(1-propyl)piperidine (3-PPP), dextromethorphan, and carbetapentane. Stereoselective protection of (125I)IACoc photolabeling by 3-PPP [(+)-3-PPP more potent than (-)-3-PPP] was observed. (125I)IACoc labeling of the 26-kDa polypeptide was also inhibited by 10 microM imipramine, amitriptyline, fluoxetine, benztropine, and tetrabenazine. The size of the (125I)I-ACoc-labeled proteins is consistent with the size of proteins photolabeled in guinea pig brain and liver membranes by using the sigma photolabel azido-[3H]DTG. Kinetic analysis of (125I)IACoc binding to rat liver microsomes revealed two sites with Kd values of 19 and 126 pM, respectively. The presence or absence of proteolytic inhibitors during membrane preparation did not alter the size of the photolabeled sigma receptor, indicating that the 26-kDa polypeptide was not derived from a larger protein. In summary, (125I)IACoc is a potent and highly specific photoaffinity label for the haloperidol-sensitive sigma receptor and will be useful for its biochemical and molecular characterization. Images PMID:1311097

  9. A Physiologically Based Pharmacokinetic Model to Predict Disposition of CYP2D6 and CYP1A2 Metabolized Drugs in Pregnant Women

    PubMed Central

    Ke, Alice Ban; Nallani, Srikanth C.; Zhao, Ping; Rostami-Hodjegan, Amin; Isoherranen, Nina

    2013-01-01

    Conducting pharmacokinetic (PK) studies in pregnant women is challenging. Therefore, we asked if a physiologically based pharmacokinetic (PBPK) model could be used to evaluate different dosing regimens for pregnant women. We refined and verified our previously published pregnancy PBPK model by incorporating cytochrome P450 CYP1A2 suppression (based on caffeine PK) and CYP2D6 induction (based on metoprolol PK) into the model. This model accounts for gestational age–dependent changes in maternal physiology and hepatic CYP3A activity. For verification, the disposition of CYP1A2–metabolized drug theophylline (THEO) and CYP2D6–metabolized drugs paroxetine (PAR), dextromethorphan (DEX), and clonidine (CLO) during pregnancy was predicted. Our PBPK model successfully predicted THEO disposition during the third trimester (T3). Predicted mean postpartum to third trimester (PP:T3) ratios of THEO area under the curve (AUC), maximum plasma concentration, and minimum plasma concentration were 0.76, 0.95, and 0.66 versus observed values 0.75, 0.89, and 0.72, respectively. The predicted mean PAR steady-state plasma concentration (Css) ratio (PP:T3) was 7.1 versus the observed value 3.7. Predicted mean DEX urinary ratio (UR) (PP:T3) was 2.9 versus the observed value 1.9. Predicted mean CLO AUC ratio (PP:T3) was 2.2 versus the observed value 1.7. Sensitivity analysis suggested that a 100% induction of CYP2D6 during T3 was required to recover the observed PP:T3 ratios of PAR Css, DEX UR, and CLO AUC. Based on these data, it is prudent to conclude that the magnitude of hepatic CYP2D6 induction during T3 ranges from 100 to 200%. Our PBPK model can predict the disposition of CYP1A2, 2D6, and 3A drugs during pregnancy. PMID:23355638

  10. Active-site structure, binding and redox activity of the heme–thiolate enzyme CYP2D6 immobilized on coated Ag electrodes: a surface-enhanced resonance Raman scattering study

    PubMed Central

    Bonifacio, Alois; Millo, Diego; Keizers, Peter H. J.; Boegschoten, Roald; Commandeur, Jan N. M.; Vermeulen, Nico P. E.; Gooijer, Cees

    2007-01-01

    Surface-enhance resonance Raman scattering spectra of the heme–thiolate enzyme cytochrome P450 2D6 (CYP2D6) adsorbed on Ag electrodes coated with 11-mercaptoundecanoic acid (MUA) were obtained in various experimental conditions. An analysis of these spectra, and a comparison between them and the RR spectra of CYP2D6 in solution, indicated that the enzyme’s active site retained its nature of six-coordinated low-spin heme upon immobilization. Moreover, the spectral changes detected in the presence of dextromethorphan (a CYP2D6 substrate) and imidazole (an exogenous heme axial ligand) indicated that the immobilized enzyme also preserved its ability to reversibly bind a substrate and form a heme–imidazole complex. The reversibility of these processes could be easily verified by flowing alternately solutions of the various compounds and the buffer through a home-built spectroelectrochemical flow cell which contained a sample of immobilized protein, without the need to disassemble the cell between consecutive spectral data acquisitions. Despite immobilized CYP2D6 being effectively reduced by a sodium dithionite solution, electrochemical reduction via the Ag electrode was not able to completely reduce the enzyme, and led to its extensive inactivation. This behavior indicated that although the enzyme’s ability to exchange electrons is not altered by immobilization per se, MUA-coated electrodes are not suited to perform direct electrochemistry of CYP2D6. Electronic supplementary material The online version of this article (doi:10.1007/s00775-007-0303-1) contains supplementary material, which is available to authorized users. PMID:17899220

  11. Differential expression of bitter taste receptors in non-cancerous breast epithelial and breast cancer cells.

    PubMed

    Singh, Nisha; Chakraborty, Raja; Bhullar, Rajinder Pal; Chelikani, Prashen

    2014-04-04

    The human bitter taste receptors (T2Rs) are chemosensory receptors that belong to the G protein-coupled receptor superfamily. T2Rs are present on the surface of oral and many extra-oral cells. In humans 25 T2Rs are present, and these are activated by hundreds of chemical molecules of diverse structure. Previous studies have shown that many bitter compounds including chloroquine, quinidine, bitter melon extract and cucurbitacins B and E inhibit tumor growth and induce apoptosis in cancer cells. However, the existence of T2Rs in cancer cell is not yet elucidated. In this report using quantitative (q)-PCR and flow cytometry, we characterized the expression of T2R1, T2R4, T2R10, T2R38 and T2R49 in the highly metastatic breast cancer cell line MDA-MB-231, poorly metastatic cell line MCF-7, and non-cancerous mammary epithelial cell line MCF-10A. Among the 5 T2Rs analyzed by qPCR and flow cytometry, T2R4 is expressed at 40-70% in mammary epithelial cells in comparison to commonly used breast cancer marker proteins, estrogen receptor and E-cadherin. Interestingly, the expression of T2R4 was downregulated in breast cancer cells. An increase in intracellular calcium mobilization was observed after the application of bitter agonists, quinine, dextromethorphan, and phenylthiocarbamide that are specific for some of the 5 T2Rs. This suggests that the endogenous T2Rs expressed in these cells are functional. Taken together, our novel findings suggest that T2Rs are differentially expressed in mammary epithelial cells, with some T2Rs downregulated in breast cancer cells.

  12. Multidrug toxicity involving sumatriptan.

    PubMed

    Knittel, Jessica L; Vorce, Shawn P; Levine, Barry; Hughes, Rhome L; Bosy, Thomas Z

    2015-01-01

    A multidrug fatality involving sumatriptan is reported. Sumatriptan is a tryptamine derivative that acts at 5-HT(1B/1D) receptors and is used for the treatment of migraines. The decedent was a 21-year-old white female found dead in bed by her spouse. No signs of physical trauma were observed and a large number of prescription medications were discovered at the scene. Toxicological analysis of the central blood revealed sumatriptan at a concentration of 1.03 mg/L. Following therapeutic dosing guidelines, sumatriptan concentrations do not exceed 0.095 mg/L. Sumatriptan was isolated by solid-phase extraction and analyzed using liquid chromatography-tandem mass spectrometry in multiple reaction monitoring mode. A tissue distribution study was completed with the following concentrations measured: 0.61 mg/L in femoral blood, 0.56 mg/L in iliac blood, 5.01 mg/L in urine, 0.51 mg/kg in liver, 3.66 mg/kg in kidney, 0.09 mg/kg in heart, 0.32 mg/kg in spleen, 0.01 mg/kg in brain, 15.99 mg/kg in lung and 78.54 mg/45 mL in the stomach contents. Carisoprodol, meprobamate, fluoxetine, doxylamine, orphenadrine, dextromethorphan and hydroxyzine were also present in the blood at the following concentrations: 3.35, 2.36, 0.63, 0.19, 0.06, 0.55 and 0.16 mg/L. The medical examiner ruled the cause of death as acute mixed drug toxicity and the manner of death as accident.

  13. Non-opioid antitussives potentiate some behavioural and EEG effects of N-methyl-D-aspartate channel blockers.

    PubMed

    Diana, G; Scotti de Carolis, A; Popoli, P; Pezzola, A; Sagratella, S

    1993-01-01

    The effects of the non-opioid oral antitussives dextromethorphan (DM) and caramiphen (CP) were tested against the behavioural and EEG effects elicited by the N-methyl-D-aspartate (NMDA) antagonists dizocilpine (MK 801) and phencyclidine (PCP) in rats and mice. PCP (1.25-10 mg/kg i.p.) induced a dose-dependent increase/decrease of the locomotor/exploratory activity of mice. DM (25-50 mg/kg i.p.) and MK 801 (0.125-0.250 mg/kg i.p.) induced an increase of the locomotor/exploratory activity of mice, while CP (25-50 mg/kg i.p.) did not produce such an effect. CP (12.5 mg/kg i.p.) and DM (12.5 mg/kg i.p.) significantly potentiated the effects of PCP (1.25 mg/kg i.p.) and MK 801 (0.062 mg/kg i.p.) in the open field test in mice. In rats, PCP (1.25-10 mg/kg i.p.) induced three dose-dependent EEG stages: 1) increase of the cortical desynchronization periods; 2) increase of the amplitude of cortical background activity; 3) appearance of cortical slow wave-spike complexes. Even though DM (up to 100 mg/kg i.p.) only induced PCP-like EEG stage 1 by itself, and CP (up to 50 mg/kg i.p.) did not affect basal cortical EEG activity, these drugs, at the doses of 30-50 mg/kg i.p., potentiated all the EEG effects induced by PCP. These data support the view of an interaction between non-opioid antitussives and non-competitive NMDA antagonists.

  14. Development of a LC-MS/MS method to analyze 5-methoxy-N,N-dimethyltryptamine and bufotenine, and application to pharmacokinetic study.

    PubMed

    Shen, Hong-Wu; Jiang, Xi-Ling; Yu, Ai-Ming

    2009-04-01

    INTRODUCTION: 5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a psychoactive indolealkylamine substance that has been used for recreational purpose and may lead to fatal toxicity. While 5-MeO-DMT is mainly inactivated via deamination, it is O-demethylated to an active metabolite, bufotenine. Quantitation of 5-MeO-DMT and bufotenine is essential to understand the exposure to and the effects of drug and metabolite. This study, therefore, aimed to develop and validate a LC-MS/MS method for simultaneous analysis of 5-MeO-DMT and bufotenine in mouse serum. METHODS: A simple protein precipitation method coupled with an optimal gradient elution was used for sample preparation and separation. Detection of 5-MeO-DMT and bufotenine was accomplished using multiple reaction monitoring of m/z 219.2→174.2 and 205.2→160.2, respectively, in the positive ion mode. 5-Methyl-N,N-dimethyltrypamine (m/z 203.2→158.3) was used as internal standard for quantification. Accuracy and precision were determined after the analyses of quality control samples. Validated assay was then employed to determine drug and metabolite concentrations in serum samples collected from mice at different time points after intraperitoneal administration of 5-MeO-DMT (2 mg/kg). RESULTS: With a total run time of 9 min, 5-MeO-DMT and bufotenine were eluted at 2.8 and 5.6 min, respectively. The assay was linear over the range 0.90-5,890 ng/mL (1.12-7,360 pg on-column) for 5-MeO-DMT and 2.52-5,510 ng/mL (3.14-6,890 pg) for bufotenine. Intra- and inter-day precision and accuracy were within 15% for both analytes. The recovery of each analyte from 20 µL of serum containing 8.08, 72.7 and 655 ng/mL of 5-MeO-DMT and 7.56, 68.1 and 613 ng/mL of bufotenine was more than 75%. Pharmacokinetic analysis revealed that the systemic exposure (area under the curve) to metabolite bufotenine was about 1/14 of that to 5-MeO-DMT. CONCLUSION: This LC-MS/MS method is a sensitive and reliable assay for quantitation of blood 5-Me

  15. Subchronic oral toxicity and metabolite profiling of the p53 stabilizing agent, CP-31398, in rats and dogs.

    PubMed

    Johnson, William D; Muzzio, Miguel; Detrisac, Carol J; Kapetanovic, Izet M; Kopelovich, Levy; McCormick, David L

    2011-11-18

    maximum tolerated dose (MTD) for subchronic oral administration of CP-31398 is 80mg/kg/day (480mg/m(2)/day) in rats and 20mg/kg/day (400mg/m(2)/day) in dogs. Although only modest and apparently reversible toxicities (microscopic changes in rats; reductions in body weight gain and alterations in red cell parameters in dogs) were seen in the low dose groups, no observed adverse effect levels (NOAELs) for CP-31398 could not be established for either species. The toxicity of CP-31398 suggests that this agent may not be suitable for use in cancer prevention. However, should in vivo antitumor efficacy be achievable at doses that do not induce limiting toxicity, CP-31398 may have utility as a cancer therapeutic. Modification of the primary sites of CP-31398 metabolism (N-demethylation of the alkyl side chain; hydroxylation and O-demethylation of the styryl benzene group) may result in the development of CP-31398 analogs with comparable pharmacologic activity and reduced toxicity.

  16. Traditional Herbal Formulas to as Treatments for Musculoskeletal Disorders: Their Inhibitory Effects on the Activities of Human Microsomal Cytochrome P450s and UDP-glucuronosyltransferases

    PubMed Central

    Jin, Seong Eun; Seo, Chang-Seob; Shin, Hyeun-Kyoo; Ha, Hyekyung

    2016-01-01

    , CYP2C9, CYP2D6, CYP3A4, UGT1A4, and UGT2B7Ojeok-san (OJS) inhibited the CYP1A2 and CYP2D6 mediated metabolism while showing a comparatively weak inhibition against CYP2B6, CYP2C9, CYP2C19, CYP2E1, CYP3A4, and UGT1A1 in human microsomesOyaksungi-san (OYSGS) inhibited the activities of human microsomal CYP2D6, with a relatively weak inhibition on the activities of CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2E1, CYP3A4, UGT1A1, and UGT2B7OJS showed no inhibition on the activities of human microsomal UGT1A4 and UGT2B7, and OYSGS did not affect the human microsomal UGT1A4 activity. Abbreviations used: BPTSS: Bangpungtongseong-san, OJS: Ojeok-san, OYSGS: Oyaksungi-san, CYP450s: cytochrome P450s, UGTs: UDP-glucuronosyltransferases, MSDs: Musculoskeletal disorders, NSAIDs: nonsteroidal anti-inflammatory drugs, EOMCC: 7-ethoxy-methyloxy-3-cyanocoumarin, DBOMF: di(benzyloxymethoxy)fluorescein, BOMCC: 7-benzyloxy-4-trifluoromethylcoumarin, HPLC: High-performance liquid chromatography, PDA: photo diode array, SEM: standard error of the mean, UDPGA: uridine 5’-diphosphoglucuronic acid. PMID:27867264

  17. The effect of experimental ischaemia and excitatory amino acid agonists on the GABA and serotonin immunoreactivities in the rabbit retina.

    PubMed

    Osborne, N N; Herrera, A J

    1994-04-01

    The aim of the described experiments was to use immunohistochemistry to visualize the release of GABA from specific retinal amacrine cells following ischaemia and to establish the involvement of defined glutamatergic receptors. In initial experiments, rabbit retinas were exposed in vitro to excitatory amino acid agonists alone or in combination with a putative antagonist, or in physiological solution lacking oxygen and glucose, or in solution containing potassium cyanide for 45 min at 37 degrees C. The nature of the GABA immunoreactivity was then examined by immunohistochemistry. In other in vitro experiments, retinas were first allowed to accumulate exogenous serotonin before exposing the tissues to the combinations as described. These tissues were then processed immunohistochemically for the localization of serotonin. In yet other experiments, the intraocular pressure of a rabbit's eye was raised to about 110 mmHg for 60 min and a reperfusion time of 45 min allowed before dissecting the retina and processing for the localization of GABA immunoreactivity. The other eye served as a control. Of the excitatory amino acid agonists tested, only N-methyl-D-aspartate, kainate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid caused a change in the GABA immunoreactivity. The N-methyl-D-aspartate effect was specifically antagonized by dizocilpine maleate, dextromethorphan and memantine, and was characterized by a reduction in the number of GABA-immunoreactive perikarya. The GABA "staining" in the inner plexiform layer also appeared as four clear bands. The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid- and kainate-induced effects were both antagonized by 6-cyano-2,3-dihydroxy-7-nitroquinoxaline-2,3-dione and partially by kynurenic acid at the concentrations used. Here, the amount of GABA-positive perikarya was greatly reduced and three immunoreactive bands appeared in the inner plexiform layer. However, for low concentrations of alpha-amino-3-hydroxy

  18. [Effects of Schisandra chinensis (Wuweizi) constituents on the activity of hepatic microsomal CYP450 isozymes in rats detected by using a cocktail probe substrates method].

    PubMed

    Wang, Bao-Lian; Hu, Jin-Ping; Sheng, Li; Li, Yan

    2011-08-01

    Effects of constituents from Schisandra chinensis (Wuweizi) on six liver microsomal CYP450 isozymes (CYP1A2, CYP2C6, CYP2C11, CYP2D2, CYP2E1 and CYP3A1/2) were studied in rats in vivo and in vitro. The in vitro incubation was conducted using liver microsomes of rats after multiple dosing of alcoholic/water extract from Schisandra chinensis. A HPLC-MS method was applied to determine the metabolites formation of six CYP450s probe substrates (phenacetin-CYP1A2, dextromethorphan-CYP2D2, diclofenac sodium-CYP2C6, mephenytoin-CYP2C11, chlorzoxazone-CYP2E1 and midazolam-CYP3A1/2) in rat liver microsomal incubations. The activity of CYP450 isozymes were represented by the formation of metabolites. Alcoholic extract of Schisandra chinensis (28-120 microg x mL(-1)) showed significant inhibitory effect on six CYP450 isozymes to a certain extent in vitro. Multiple dosing of Schisandra chinensis alcoholic extract (1.5 g x kg(-1), qd x 7d) had significant induction on CYP2E1 and CYP3A1/2, inhibition on CYP2D2 and CYP2C11, and no effect on CYP2C6 and CYP1A2. Water extract of Schisandra chinensis (100-500 microg x mL(-1)) also exhibited inhibition on the activity of CYP450 isozymes in vitro, whereas multiple administrations (1.5 g x kg(-1), qd x 7d) had significant induction of CYP2E1 and inhibition on CYP2D2, no effect on CYP2C6, CYP3A1/2, CYP1A2 or CYP2C11. The results suggested that the constituents from Schisandra chinensis exhibited the inhibition and induction on six rat liver microsomal CYP450 isozymes to a certain extent in vivo and in vitro. The possibility of interaction between Schisandra chinensis and coadministrative drugs will be considered base on the levels and subtype of CYP450 involved in the drug metabolism.

  19. New morphinan derivatives with negligible psychotropic effects attenuate convulsions induced by maximal electroshock in mice.

    PubMed

    Kim, Hyoung-Chun; Shin, Chan Young; Seo, Dong Ook; Jhoo, Jin Hyeong; Jhoo, Wang-Kee; Kim, Won-Ki; Shin, Eun-Joo; Lee, Young-Ho; Lee, Phil Ho; Ko, Kwang Ho

    2003-03-07

    Interest in dextromethorphan (DM) has been renewed because of its anticonvulsant and neuroprotective properties. However, DM at supra-antitussive doses can produce psychotomimetic effects in humans. Recently, we demonstrated that DM exerts psychotropic effects in mice [Neurosci. Lett. 288 (2000) 76, Life Sci. 69 (2001) 615]. We synthesized a series of compounds with a modified morphinan ring system, with the intention of developing compounds that retain the anticonvulsant activity with weak psychotropic effects [Bioorg. Med. Chem. Lett. 11 (2001) 1651]. In order to extend our understanding of the pharmacological intervention of these morphinans, we assessed their behavioral effects, and then examined whether they exert protective effects on maximal electroshock convulsions (MES) in mice. Repeated treatment (20 or 40 mg/kg, i.p./day x 7) with DM or dextrorphan (a major metabolite of DM; DX) significantly enhanced locomotor activity in a dose-related manner. This locomotor stimulation was accentuated more in the animals treated with DX, and might be comparable to that of phencyclidine (PCP). By contrast, treatment with a metabolite of DM [3-methoxymorphinan (3MM) or 3-hydroxymorphinan (3HM)], 3-allyloxy-17-methylmorphinan (CPK-5), or 3-cyclopropylmethoxy-17-methylmorphinan (CPK-6) did not significantly alter locomotor activity or patterns. The behavioral effects mediated by these morphinans and PCP paralleled the effects of conditioned place preference. DM, DX, CPK-5, and CPK-6 had anticonvulsant effects against MES, while 3MM and 3HM did not show any anticonvulsant effects. We found that DM, DX, CPK-5 and CPK-6 were high-affinity ligands at sigma(1) receptors, while they all had low affinity at sigma(2) receptors. DX had relatively higher affinity for the PCP sites than DM. By contrast, CPK-5 and CPK-6 had very low affinities for PCP sites, suggesting that PCP sites are not requisites for their anticonvulsant actions. Our results suggest that the new morphinan

  20. Pharmacophore, QSAR, and binding mode studies of substrates of human cytochrome P450 2D6 (CYP2D6) using molecular docking and virtual mutations and an application to chinese herbal medicine screening.

    PubMed

    Mo, Sui-Lin; Liu, Wei-Feng; Li, Chun-Guang; Zhou, Zhi-Wei; Luo, Hai-Bin; Chew, Helen; Liang, Jun; Zhou, Shu-Feng

    2012-07-01

    The highly polymorphic human cytochrome P450 2D6 (CYP2D6) metabolizes about 25% of currently used drugs. In this study, we have explored the interaction of a large number of substrates (n = 120) with wild-type and mutated CYP2D6 by molecular docking using the CDOCKER module. Before we conducted the molecular docking and virtual mutations, the pharmacophore and QSAR models of CYP2D6 substrates were developed and validated. Finally, we explored the interaction of a traditional Chinese herbal formula, Fangjifuling decoction, with CYP2D6 by virtual screening. The optimized pharmacophore model derived from 20 substrates of CYP2D6 contained two hydrophobic features and one hydrogen bond acceptor feature, giving a relevance ratio of 76% when a validation set of substrates were tested. However, our QSAR models gave poor prediction of the binding affinity of substrates. Our docking study demonstrated that 117 out of 120 substrates could be docked into the active site of CYP2D6. Forty one out of 117 substrates (35.04%) formed hydrogen bonds with various active site residues of CYP2D6 and 53 (45.30%) substrates formed a strong π-π interaction with Phe120 (53/54), with only carvedilol showing π-π interaction with Phe483. The active site residues involving hydrogen bond formation with substrates included Leu213, Lys214, Glu216, Ser217, Gln244, Asp301, Ser304, Ala305, Phe483, and Phe484. Furthermore, the CDOCKER algorithm was further applied to study the impact of mutations of 28 active site residues (mostly non-conserved) of CYP2D6 on substrate binding modes using five probe substrates including bufuralol, debrisoquine, dextromethorphan, sparteine, and tramadol. All mutations of the residues examined altered the hydrogen bond formation and/or aromatic interactions, depending on the probe used in molecular docking. Apparent changes of the binding modes have been observed with the Glu216Asp and Asp301Glu mutants. Overall, 60 compounds out of 130 from Fangjifuling decoction

  1. The Psychostimulant Khat (Catha edulis) Inhibits CYP2D6 Enzyme Activity in Humans.

    PubMed

    Bedada, Worku; de Andrés, Fernando; Engidawork, Ephrem; Pohanka, Anton; Beck, Olof; Bertilsson, Leif; Llerena, Adrián; Aklillu, Eleni

    2015-12-01

    The use of khat (Catha edulis) while on medication may alter treatment outcome. In particular, the influence of khat on the metabolic activities of drug-metabolizing enzymes is not known. We performed a comparative 1-way crossover study to evaluate the effect of khat on cytochrome P450 (CYP)2D6 and CYP3A4 enzyme activity. After 1 week of khat abstinence, baseline CYP2D6 and CYP3A4 metabolic activities were determined in 40 Ethiopian male volunteers using 30 mg dextromethorphan (DM) as a probe drug and then repeated after 1 week of daily use of 400 g fresh khat leaves. Urinary concentrations of cathinone and cathine were determined to monitor the subjects' compliance to the study protocol. Genotyping for CYP2D6*3 and CYP2D6*4 was done. Plasma DM, dextrorphan and 3-methoxymorphinan concentrations were quantified. CYP2D6 and CYP3A4 enzyme activities were assessed by comparing plasma log DM/dextrorphan and log DM/methoxymorphinan metabolic ratio (MR) respectively in the presence and absence of khat. Cytochrome 2D6 MR was significantly increased from baseline by concurrent khat use (paired t test, P = 0.003; geometric mean ratio, 1.38; 95% confidence interval [95% CI], 1.12-1.53). Moreover, the inhibition of CYP2D6 activity by khat was more pronounced in CYP2D6*1/*1 compared with CYP2D6*1/*4 genotypes (P = 0.01). A marginal inhibition of CYP3A4 activity in the presence of khat was observed (P = 0.24). The mean percentage increase of CYP2D6 and CYP3A4 MR from baseline by khat use was 46% (95% CI, 20-72) and 31% (95% CI, 8-54), respectively. This is the first report linking khat use with significant inhibition of CYP2D6 metabolic activity in humans.

  2. The impact of experimental design on assessing mechanism-based inactivation of CYP2D6 by MDMA (Ecstasy).

    PubMed

    Van, Linh M; Heydari, Amir; Yang, Jiansong; Hargreaves, Judith; Rowland-Yeo, Karen; Lennard, Martin S; Tucker, Geoffrey T; Rostami-Hodjegan, Amin

    2006-11-01

    MDMA (3-4-methylenedioxymethamphetamine, commonly known as Ecstasy) is a potent mechanism-based inhibitor (MBI) of cytochrome P450 2D6 (CYP2D6), causing quasi-irreversible inhibition of the enzyme in vitro. An evaluation of the in vivo implications of this phenomenon depends on the accuracy of the estimates of the parameters that define the inhibition in vitro, namely k(inact) (the maximal inhibition rate) and KI (the inactivation constant). These values are determined in two steps, pre-incubation of the enzyme with the inhibitor (enzyme inactivation), followed by dilution and further incubation to measure residual enzyme activity with a probe substrate. The aim of this study was to assess the impact of different dilutions and probe substrate concentrations on the estimates of k(inact) and KI using recombinantly expressed CYP2D6. Enzyme activity was measured by the conversion of dextromethorphan (DEX) to dextrorphan (DOR). Dilution factors of 1.25, 2, 5, 10, 25 and 50 (DEX at 30 microM) gave mean (+/-SE) values of k(inact) (min-1) of 0.20+/-0.06, 0.21+/-0.05, 0.31+/-0.06, 0.37+/-0.11, 0.51+/-0.10 and 0.58+/-0.08, respectively, and KI (microM) values (after correction for non-specific microsomal binding) of 2.22+/-1.90, 2.80+/-1.34, 5.78+/-2.07, 6.36+/-2.93, 3.99+/-1.57 and 4.86+/-1.37, respectively. Accordingly, high (e.g. 50 fold) and low (e.g. 1.25 fold) dilutions were associated with statistically significant differences in kinetic values (p <0.05). Varying DEX concentration (10-100 microM) was not associated with significant changes in k(inact) and KI values when a five-fold dilution was used (with the exception of a lower KI at 10 microM DEX). High dilution was also shown to reduce non-specific microsomal binding of MDMA. The changes in the two kinetic parameters were dependent on the experimental procedure and shown to be unlikely to have a material influence on the maximum inhibition of CYP2D6 expected in vivo after typical recreational doses of MDMA (50

  3. Chronic Apocynin Treatment Attenuates Beta Amyloid Plaque Size and Microglial Number in hAPP(751)SL Mice

    PubMed Central

    Lull, Melinda E.; Levesque, Shannon; Surace, Michael J.; Block, Michelle L.

    2011-01-01

    Background NADPH oxidase is implicated in neurotoxic microglial activation and the progressive nature of Alzheimer's Disease (AD). Here, we test the ability of two NADPH oxidase inhibitors, apocynin and dextromethorphan (DM), to reduce learning deficits and neuropathology in transgenic mice overexpressing human amyloid precursor protein with the Swedish and London mutations (hAPP(751)SL). Methods Four month old hAPP(751)SL mice were treated daily with saline, 15 mg/kg DM, 7.5 mg/kg DM, or 10 mg/kg apocynin by gavage for four months. Results Only hAPP(751)SL mice treated with apocynin showed reduced plaque size and a reduction in the number of cortical microglia, when compared to the saline treated group. Analysis of whole brain homogenates from all treatments tested (saline, DM, and apocynin) demonstrated low levels of TNFα, protein nitration, lipid peroxidation, and NADPH oxidase activation, indicating a low level of neuroinflammation and oxidative stress in hAPP(751)SL mice at 8 months of age that was not significantly affected by any drug treatment. Despite in vitro analyses demonstrating that apocynin and DM ameliorate Aβ-induced extracellular superoxide production and neurotoxicity, both DM and apocynin failed to significantly affect learning and memory tasks or synaptic density in hAPP(751)SL mice. To discern how apocynin was affecting plaque levels (plaque load) and microglial number in vivo, in vitro analysis of microglia was performed, revealing no apocynin effects on beta-amyloid (Aβ) phagocytosis, microglial proliferation, or microglial survival. Conclusions Together, this study suggests that while hAPP(751)SL mice show increases in microglial number and plaque load, they fail to exhibit elevated markers of neuroinflammation consistent with AD at 8 months of age, which may be a limitation of this animal model. Despite absence of clear neuroinflammation, apocynin was still able to reduce both plaque size and microglial number, suggesting that apocynin

  4. CYP2D6 status of extensive metabolizers after multiple-dose fluoxetine, fluvoxamine, paroxetine, or sertraline.

    PubMed

    Alfaro, C L; Lam, Y W; Simpson, J; Ereshefsky, L

    1999-04-01

    The aim of this study was to evaluate the CYP2D6 inhibitory effects of four selective rerotonin re-uptake inhibitors (SSRIs). Thirty-one healthy subjects were phenotyped as extensive metabolizers using the dextromethorphan/dextrorphan (DM/DX) urinary ratio as a marker for CYP2D6 activity before and after 8 days of administration of fluoxetine 60 mg (loading dose strategy), fluvoxamine 100 mg, paroxetine 20 mg, or sertraline 100 mg in a parallel-group design. Statistical analysis was performed on log-transformed DM/DX ratios because of variability within and between treatment groups. DM/DX ratios before (DM/DX(BL)) and after (DM/DX(SSRI)) were compared within and between the four SSRI groups. DM/DX(BL) ratios were not significantly different between the four SSRI treatment groups. Comparing within groups, significant differences between DM/DX(BL) and DM/DX(SSRI) were found for the fluoxetine (p < 0.001; ratio values, 0.020 vs. 0.364) and paroxetine (p = 0.0005, ratio values 0.029 vs. 1.085) but not for the fluvoxamine or sertraline groups. Comparing between groups, significant differences in DM/DX(SSRI) ratios were found for fluoxetine versus sertraline (p = 0.0019, DM/DX = 0.364 vs. 0.057), fluoxetine versus fluvoxamine (p < 0.0001, DM/DX = 0.364 vs. 0.019), paroxetine versus sertraline (p = 0.0026, DM/DX = 1.085 vs. 0.057), and paroxetine versus fluvoxamine (p < 0.0001, DM/DX = 1.085 vs. 0.019). No significant differences were noted between the two potent CYP2D6 inhibitors, fluoxetine and paroxetine, or the two weakest inhibitors, fluvoxamine and sertraline. Five subjects in the fluoxetine and four subjects in the paroxetine groups changed to poor metabolizer phenotype (DM/DX > or = 0.3) after treatment. Although CYP2D6 inhibitory effects of fluvoxamine and sertraline did not yield significant differences from baseline, some subjects exhibited DM/DX ratio increases of 150 to 200%. One paroxetine-treated subject did not exhibit any CYP2D6 inhibition. SSRI dose and

  5. Differential time course of cytochrome P450 2D6 enzyme inhibition by fluoxetine, sertraline, and paroxetine in healthy volunteers.

    PubMed

    Liston, Heidi L; DeVane, C Lindsay; Boulton, David W; Risch, Samuel C; Markowitz, John S; Goldman, Juliet

    2002-04-01

    The selective serotonin reuptake inhibitors (SSRIs) paroxetine, sertraline, and fluoxetine have varying degrees of potency in inhibiting the hepatic cytochrome P450 (CYP) 2D6 enzyme. However, the time course for maximum inhibition to occur or for inhibition to dissipate when dosing is discontinued, requires clarification. In an open label, parallel group study of 45 healthy volunteers, the time course of CYP2D6 inhibition of the above SSRIs was evaluated. Subjects were randomized to receive paroxetine at 20 mg/day for 10 days; sertraline at 50 mg/day for 3 days, followed by sertraline at 100 mg/day for 10 days; or fluoxetine at 20 mg/day for 28 days. CYP2D6 activity was assessed using the dextromethorphan metabolic ratio (DMR) on antidepressant days 5 and 10 for sertraline and paroxetine and at weekly intervals for fluoxetine. Following SSRI discontinuation, calculation of a CYP2D6 inhibition half-life (t(1/2)inh) revealed the time course of fluoxetine inhibition (t(1/2)inh = 7.0 +/- 1.5 days) to be significantly longer than either paroxetine (t(1/2)inh = 2.9 +/- 1.9) or sertraline (t(1/2)inh = 3.0 +/- 3.0) (p < 0.01), but the latter were not significantly different from each other (p > 0.05). Time for the extrapolated DMR versus time log-linear plots to return to baseline was significantly different between fluoxetine (63.2 +/- 5.6 days) and both paroxetine (20.3 +/- 6.4 days) and sertraline (25.0 +/- 11.0 days) (p < 0.01), making the rank order (from longest to shortest) of time for CYP2D6 inhibition to dissipate: fluoxetine > sertraline >or= paroxetine. Differences between mean baseline DMR values and measured values obtained after drug discontinuation for each drug group became nonsignificant on discontinuation day 5 for both paroxetine and sertraline and on discontinuation day 42 for fluoxetine. These data define the time course of a persistent effect that fluoxetine, sertraline, and paroxetine have on CYP2D6 following drug discontinuation and should be

  6. CYP2D6 inhibition by fluoxetine, paroxetine, sertraline, and venlafaxine in a crossover study: intraindividual variability and plasma concentration correlations.

    PubMed

    Alfaro, C L; Lam, Y W; Simpson, J; Ereshefsky, L

    2000-01-01

    The authors report the CYP2D6 inhibitory effects of fluoxetine, paroxetine, sertraline, and venlafaxine in an open-label, multiple-dose, crossover design. Twelve CYP2D6 extensive metabolizers were phenotyped, using the dextromethorphan/dextrorphan (DM/DX) urinary ratio, before and after administration of fluoxetine 60 mg (loading dose strategy), paroxetine 20 mg, sertraline 100 mg, and venlafaxine 150 mg. Paroxetine, sertraline, and venlafaxine sequences were randomized with 2-week washouts between treatments; fluoxetine was the last antidepressant (AD) administered. Comparing within groups, baseline DM/DX ratios (0.017) were significantly lower than DM/DX ratios after treatment (DM/DXAD) with fluoxetine (0.313, p < 0.0001) and paroxetine (0.601, p < 0.0001) but not for sertraline (0.026, p = 0.066) or venlafaxine (0.023, p = 0.485). Between groups, DM/DXAD ratios were significantly higher for fluoxetine and paroxetine compared to sertraline and venlafaxine. No differences between DM/DXAD ratios were found for fluoxetine and paroxetine although more subjects phenocopied to PM status after receiving the latter (42% vs. 83%; chi 2 = 4.44, p = 0.049, df = 1). Similarly, no differences between DM/DXAD ratios were found for sertraline and venlafaxine. Of note, the DM/DXAD for 1 subject was much lower after treatment with paroxetine (0.058) compared to fluoxetine (0.490), while another subject exhibited a much lower ratio after treatment with fluoxetine (0.095) compared to paroxetine (0.397). Significant correlations between AD plasma concentration and DM/DXAD were found for paroxetine (r2 = 0.404, p = 0.026) and sertraline (r2 = 0.64, p = 0.002) but not fluoxetine or venlafaxine. In addition, DM/DXAD correlated with baseline isoenzyme activity for paroxetine, sertraline, and venlafaxine groups. These results demonstrate the potent, but variable, CYP2D6 inhibition of fluoxetine and paroxetine compared to sertraline and venlafaxine. CYP2D6 inhibition may be related, in

  7. Comparative bioavailability of the microemulsion formulation of cyclosporine (Neoral) with a generic dispersion formulation (Cicloral) in young healthy male volunteers.

    PubMed

    Kees, Frieder; Bucher, Michael; Schweda, Frank; Gschaidmeier, Harald; Burhenne, Juergen; Mikus, Gerd; Faerber, Lothar

    2006-06-01

    The aim of this study was to compare the bioavailability of cyclosporine (CyA) from the generic dispersion formulation Cicloral (CIC) with the microemulsion formulation Neoral (NEO) and the original Sandimmune (SIM) capsules after single doses of 100, 300, or 600 mg of drug, respectively. The study was performed according to an open 3-period cross-over design with 12 young healthy male volunteers for each dosage. The concentrations of CyA and its main metabolites were determined by high performance liquid chromatography in whole blood and urine up to 48 hours postdosing. Peak concentrations and area under the time-concentration curve were greater for the NEO and CIC formulations compared with SIM, and the mean bioavailability of CIC was significantly (P<0.05) lower compared with NEO. The bioavailability of SIM compared with NEO was 54% to 71%, in agreement with previous results. Bioequivalence was not demonstrated between CIC (test) and NEO (reference) as the 90% confidence intervals were outside the 80% to 125% guidelines based on log-transformed AUCs, and were 75.2% to 87.7% at 100 mg, 79.2% to 91.8% at 300 mg, and 76.6% to 94.5% at 600 mg doses. The respective values for Cmax were 78.9% to 94.6%, 80.7% to 95.0%, and 71.4% to 84.1%. A good correlation was demonstrated between the urinary recovery of CyA and the AUC4. Therefore, the urinary recovery of CyA may be helpful as a surrogate parameter for the systemic exposure of patients to CyA. Whereas the relative amount of hydroxylated metabolites (AM1, AM9, AM1c) was similar for all formulations and doses, the urinary recovery of the N-demethylated metabolite AM4N decreased with increasing dose indicating saturable metabolism. No relationship could be demonstrated between CYP3A activity using dextromethorphan as a probe for the metabolic clearance of CyA.

  8. Gateways to clinical trials.

    PubMed

    Bayes, M; Rabasseda, X; Prous, J R

    2005-01-01

    Gateways to Clinical Trials are a guide to the most recent clinical trials in current literature and congresses. The data in the following tables have been retrieved from the Clinical Trials Knowledge Area of Prous Science Integrity, the drug discovery and development portal, http://integrity.prous.com. This issue focuses on the following selection of drugs: (-)-Epigallocatechin gallate; ACP-103, Ad.Egr.TNF.11 D, adalimumab, AF-IL 12, AIDSVAX gp120 B/B, alefacept, alemtuzumab, a-Galactosylceramide, ALVAC vCP 1452, alvimopan hydrate, alvocidib hydrochloride, aminolevulinic acid hydrochloride, aminolevulinic acid methyl ester, anakinra, anidulafungin, antarelix, aprepitant, aripiprazole, arsenic sulfide, asoprisnil, atazanavir sulfate, atomoxetine hydrochloride; Bevacizumab, bimatoprost, BMS-184476, bortezomib, bosentan, botulinum toxin type B, BrachySil, brivudine; Caffeine, calcipotriol/betamethasone dipropionate, cannabidiol, capsaicin for injection, caspofungin acetate, CC-4047, cetuximab, CGP-36742, clofazimine, CpG-7909, Cypher; Darbepoetin alfa, dextromethorphan/quinidine sulfate, dimethylfumarate, dronabinol/cannabidiol, drotrecogin alfa (activated), duloxetine hydrochloride, dutasteride; Ecogramostim, efalizumab, eletriptan, emtricitabine, enfuvirtide, eplerenone, esomeprazole magnesium, estradiol acetate, eszopiclone, etoricoxib, exenatide, ezetimibe, ezetimibe/simvastatin; Fampridine, fondaparinux sodium, fosamprenavir calcium; Gefitinib, GPI-0100; hA 20, HTU-PA, human insulin, HuOKT 3 gamma 1(Ala 234-Ala 235), hyaluronic acid; Icatibant, imatinib mesylate, Indiplon, INKP-100, INKP-102, iodine (I131) tositumomab, istradefylline, IV gamma-globulin, ivabradine hydrochloride, ixabepilone; Lacosamide, landiolol, lanthanum carbonate, lasofoxifene tartrate, LB-80380, lenalidomide, lidocaine/tetracaine, linezolid, liposomal doxorubicin, liposomal vincristine sulfate, lopinavir, lopinavir/ritonavir, lumiracoxib, lurtotecan; Maribavir, morphine glucuronide, MVA-5 T

  9. An Impaired Driver Found to be Under the Influence of Methoxetamine.

    PubMed

    Fassette, Timothy; Martinez, Afton

    2016-10-01

    The popularity of designer drugs has increased over the past few years as users seek new, cheap and sometimes "legal" ways to get high. This case report focuses on a case that happened in the City of Henderson, Nevada, which involved the designer drug methoxetamine. Methoxetamine is a psychoactive compound that is structurally related to ketamine and reported to have similar effects. These effects include analgesia, cardiovascular and respiratory stimulation, and enhanced skeletal muscle tone. Presented here is a case of a 33-year-old female who was pulled over after almost colliding with a marked police motorcycle, causing the police officer to avoid the collision by running onto a pedestrian sidewalk. Upon stopping the vehicle and questioning the passengers, the officer learned that the driver of the vehicle had ingested methoxetamine earlier in the day. After the driver was taken into custody, a blood sample was drawn and sent to the laboratory for analysis. Initial screening of the blood sample showed presumptive positive results for the amphetamine enzyme-linked immunosorbent assay. The next day, a full scan screen of the blood sample was performed using the gas chromatography-mass spectrometry (GC/MS) and methoxetamine and dextromethorphan were detected. Since the laboratory did not have the ability to confirm methoxetamine, the sample was sent to NMS Labs for analysis. The results from NMS Labs showed a methoxetamine concentration of 160 ng/mL. To date, this is the first DUI case in the state of Nevada where methoxetamine was detected and confirmed. A short time after the NMS results were received, a full SWGTOX validation was performed on a new GC/MS method to confirm methoxetamine along with five synthetic cathinone analytes. After the GC/MS analysis validation was complete, the sample was subsequently reanalyzed for methoxetamine in the toxicology laboratory at the Henderson Police Department Forensic Science Laboratory and the result that

  10. Pharmacological agents under research for the maintenance treatment in bipolar disorder.

    PubMed

    Dimitrakopoulos, S; Konstantakopoulos, G

    2015-01-01

    The treatment of bipolar disorder is a current challenge for clinicians and despite progress in psychopharmacology, options remain limited and results are often unsatisfactory. Current research focuses on finding new pharmaceutical agents for all phases of bipolar disorder, i.e. mania, bipolar depression and maintenance. Particularly, relapse prevention and longterm stabilization is a major therapeutic target. Combination treatment and polypharmacy are the most common choices concerning relapse prevention. Furthermore, during maintenance phase patients often experience residual mood symptoms, cognitive deficits and functional decline, which altogether illustrate the inadequate effectiveness of existing treatments and the need for new, targeted, effective and safe treatments for bipolar disorder. This review focuses on active agents for maintenance treatment in bipolar disorder investigated during the last 5 years. The compounds under investigation have been tried or tested either as monotherapy or as an add-on treatment in clinical trials that have progressed up to phase 3 or in preclinical models of bipolar disorder. While awaiting the completion of many ongoing studies, the results so far indicate that paliperidone and pregabalin may have a position in the maintenance treatment of bipolar disorder. Additionally, dextromethorphan, which acts primarily as a NMDA antagonist, may be an interesting compound for further study. However, results on memantine, another NMDA antagonist, were not encouraging. The effects of omega-3 fatty acids and cytidine were not superior to placebo, although they both have neurotrophic and neuroprotective properties. Eslicarbazepine, which has antiepileptic action, provided some evidence of efficacy as monotherapy. Regarding preclinical studies in experimental models, the pharmacological agents under investigation seem to follow the neurobiological pathways related to mechanism of action of lithium, which is still the "golden standard

  11. Pharmacologic approaches to treatment resistant depression: Evidences and personal experience

    PubMed Central

    Tundo, Antonio; de Filippis, Rocco; Proietti, Luca

    2015-01-01

    AIM: To review evidence supporting pharmacological treatments for treatment-resistant depression (TRD) and to discuss them according to personal clinical experience. METHODS: Original studies, clinical trials, systematic reviews, and meta-analyses addressing pharmacological treatment for TRD in adult patients published from 1990 to 2013 were identified by data base queries (PubMed, Google Scholar e Quertle Searches) using terms: “treatment resistant depression”, “treatment refractory depression”, “partial response depression”, “non responder depression”, “optimization strategy”, “switching strategy”, “combination strategy”, “augmentation strategy”, selective serotonin reuptake inhibitors antidepressants (SSRI), tricyclic antidepressants (TCA), serotonin norepinephrine reuptake inhibitors antidepressants, mirtazapine, mianserine, bupropione, monoamine oxidase inhibitor antidepressant (MAOI), lithium, thyroid hormones, second generation antipsychotics (SGA), dopamine agonists, lamotrigine, psychostimulants, dextromethorphan, dextrorphan, ketamine, omega-3 fatty acids, S-adenosil-L-metionine, methylfolat, pindolol, sex steroids, glucocorticoid agents. Other citations of interest were further identified from references reported in the accessed articles. Selected publications were grouped by treatment strategy: (1) switching from an ineffective antidepressant (AD) to a new AD from a similar or different class; (2) combining the current AD regimen with a second AD from a different class; and (3) augmenting the current AD regimen with a second agent not thought to be an antidepressant itself. RESULTS: Switching from a TCA to another TCA provides only a modest advantage (response rate 9%-27%), while switching from a SSRI to another SSRI is more advantageous (response rate up to 75%). Evidence supports the usefulness of switching from SSRI to venlafaxine (5 positive trials out 6), TCA (2 positive trials out 3), and MAOI (2 positive trials out