Toward Scientific Numerical Modeling
NASA Technical Reports Server (NTRS)
Kleb, Bil
2007-01-01
Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.
Toward Scientific Numerical Modeling
NASA Technical Reports Server (NTRS)
Kleb, Bil
2007-01-01
Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.
Numerical models in hydrodynamics
NASA Astrophysics Data System (ADS)
Belotserkovskii, Oleg Mikhailovich
The use of numerical models in fluid mechanics is examined with emphasis on separated flows at high Reynolds numbers. Topics discussed include the splitting method, homogeneous difference schemes, calculation of the nonstationary motion of ordered and large-scale structures, and numerical modeling of the stochastic component of turbulent shear flow. Attention is also given to motion in wake flows, the problem of turbulent spot breakup, and stability problems.
Numerical Modeling of Airblast.
1987-06-01
REPORT SAIC 87/1701 June 1987 Dr.. Submitted to: cp Dr. Jay Boris Laboratory for Computational Physics Accet F4,r Naval Research Laboratory I...boundary layer physical assumptions provides an unsteady prediction of the mass flux emerging from the ground. This model was first proposed by Mirels...the physics modeled will be explained. High explosive dust cloud simulation provides a research path when combined with numerical calculations can lead
NASA Astrophysics Data System (ADS)
Kavka, P.; Jeřábek, J.; Strouhal, L.
2016-12-01
The contribution presents a numerical model SMODERP that is used for calculation and prediction of surface runoff and soil erosion from agricultural land. The physically based model includes the processes of infiltration (Phillips equation), surface runoff routing (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D version of the model was introduced in last years. The script uses ArcGIS system tools for data preparation. The physical relations are implemented through Python scripts. The main computing part is stand alone in numpy arrays. Flow direction is calculated by Steepest Descent algorithm and in multiple flow algorithm. Sheet flow is described by modified kinematic wave equation. Parameters for five different soil textures were calibrated on the set of hundred measurements performed on the laboratory and filed rainfall simulators. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Development of the rills is based on critical shear stress and critical velocity. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Flow in the ditches and streams are also computed. Numerical stability of the model is controled by Courant criterion. Spatial scale is fixed. Time step is dynamic and depends on the actual discharge. The model is used in the framework of the project "Variability of Short-term Precipitation and Runoff in Small Czech Drainage Basins and its Influence on Water Resources Management". Main goal of the project is to elaborate a methodology and online utility for deriving short-term design precipitation series, which could be utilized by a broad community of scientists, state administration as well as design planners. The methodology will account for
Numerical Modeling Experiments
1974-09-01
presence of clouds is associated with the occurvence of condensation in the atmospheric models. Cloudiness 3t a particulat grid point is introduced -4...when saturation is predicted as a result of either large-scale moisture flux convergence or vertical convective adjustment. In most models such clouds ... cloud top, cloud thickness, and liquid-water content. In some general circulation models the local fractional convective cloud amountv tre taken
Numerical Modelling of Cavitation
2006-11-01
effort then consists in determining a formulation of the source term Γv. 2.2.2.1 Use of the Rayleigh - Plesset Equation The Rayleigh - Plesset equation ...in mind that the Rayleigh - Plesset equation is not solved and that the reference to bubbles is artificial: the most basic expression of Rayleigh ... Plesset equation is simply used to formulate a source term for vaporisation in the frame of a single fluid model. 2.2.2.2 Empirical Modelling of the
Numerical modeling of preburner flowfield
NASA Astrophysics Data System (ADS)
Chow, A. S.; Mo, J. D.; Jin, K. R.
1993-06-01
This work is intended to numerically predict the flowfields inside the preburner of the Space Shuttle Main Engine. The computer code (FDNS) based on pressure correction method is modified and adapted with an elliptic grid generator. The original configuration of the preburner in conjunction with downstream gas turbines has been simplified geometrically and numerically modeled at its full power in this work. The computational results are presented and qualitatively discussed with test data collected in NASA/MSFC.
Numerical modeling of Waianae Harbor
Mader, C.L.; Lucas, S.
1985-01-01
The Waianae harbor problem is an example of the use of numerical modeling techniques available at JTRE of the University of Hawaii to assist in the evaluation of oceanographic fluid dynamic flow problems. The numerical techniques are available to assist in the modeling of many problems of interest to the Hawaii Ocean Experiment. One application that has received considerable effort is the formation, propagation, and run-up of tsunami waves. The interaction of tsunami waves with the island chain is an important problem that needs more study. The models can be used to study storm surge interaction with the Hawaii islands and current and circulation around and through the islands. It is important that the modeling not be limited to the usual nonlinear shallow-water models, since they are inappropriate for many of the problems of interest to the Hawaii Ocean Experiment. 6 references, 5 figures.
Numerical Modeling of LCROSS experiment
NASA Astrophysics Data System (ADS)
Sultanov, V. G.; Kim, V. V.; Matveichev, A. V.; Zhukov, B. G.; Lomonosov, I. V.
2009-06-01
The mission objectives of the Lunar Crater Observation and Sensing Satellite (LCROSS) include confirming the presence or absence of water ice in a permanently shadowed crater in the Moon's polar regions. In this research we present results of numerical modeling of forthcoming LCROSS experiment. The parallel FPIC3D gas dynamic code with implemented realistic equations of state (EOS) and constitutive relations [1] was used. New wide--range EOS for lunar ground was developed. We carried out calculations of impact of model body on the lunar surface at different angels. Situations of impact on dry and water ice--contained lunar ground were also taken into account. Modeling results are given for crater's shape and size along with amount of ejecta. [4pt] [1] V.E. Fortov, V.V. Kim, I.V. Lomonosov, A.V. Matveichev, A.V. Ostrik. Numerical modeling of hypervelocity impacts, Intern J Impact Engeneering, 33, 244-253 (2006)
Numerical Modelling of Gelating Aerosols
Babovsky, Hans
2008-09-01
The numerical simulation of the gel phase transition of an aerosol system is an interesting and demanding task. Here, we follow an approach first discussed in [6, 8] which turns out as a useful numerical tool. We investigate several improvements and generalizations. In the center of interest are coagulation diffusion systems, where the aerosol dynamics is supplemented with diffusive spreading in physical space. This leads to a variety of scenarios (depending on the coagulation kernel and the diffusion model) for the spatial evolution of the gelation area.
Moore's Law and Numerical Modeling
NASA Astrophysics Data System (ADS)
Voller, V. R.; Porté-Agel, F.
2002-07-01
An estimate of the rate of increase in numerical simulation grid sizes with time is obtained by counting the grids (measured in terms of number of node points) reported in the nine volumes of an established proceedings on the numerical modeling of solidification phenomena dating back to 1980. It is shown that the largest grids used in a given year increase at a rate consistent with the well-known Moore's law on computing power, i.e., the number of nodes in the grids double every 18 months. From this observation, approximate bounds on the available grid size in a current year are established. This approximation is used to provide projections as to when, assuming Moore's law continues to hold, direct simulations of physical phenomena, which resolve to the smallest scale present, will be achievable.
Numerical modeling of mesospheric bores
NASA Astrophysics Data System (ADS)
Laughman, Brian Joseph
Mesospheric bores were first observed in 1993 and since then there have been few efforts to characterize them. Early results invoked weakly nonlinear hydraulic theory to explain these observed bores and numerical results have reproduced the essential nonlinearities of bore evolution. Internal bores have been demonstrated to exist in density stratified fluids, such as the oceanic thermocline and tropospheric inversion layers, and have been approximated by the Benjamin-Davis-Ono (BDO) equation (the KdV analogue for internal waves). This thesis considers these earlier theories and explores the limits of their validity with two numerical models. The first is a one-dimensional solver of the KdV and BDO equations. The second model describes the nonlinear incompressible dynamics of the Navier-Stokes equations for thermal ducting environments. The results of both models are directly compared to constrain the validity of the weakly nonlinear theory. These results are also compared with spatial and velocity scales of airglow observations and demonstrate the viability of simple mesopausal thermal ducting environments to support realistic bore evolution. Based on observations and on the dependence of the dispersion relationship on the mean horizontal wind, Doppler ducting structures are posed and also demonstrate nonlinear bore evolution. The direction of future studies is then discussed, including extensions to more complex and realistic ducting environments characteristic of the mesosphere and lower thermosphere (MLT), the viability of forcing mechanisms beyond the long wave perturbations considered in these studies, and applications to observed bore events.
Numerical Model for Hydrovolcanic Explosions.
NASA Astrophysics Data System (ADS)
Mader, Charles; Gittings, Michael
2007-03-01
A hydrovolcanic explosion is generated by the interaction of hot magma with ground water. It is called Surtseyan after the 1963 explosive eruption off Iceland. The water flashes to steam and expands explosively. Liquid water becomes water gas at constant volume and generates pressures of about 3GPa. The Krakatoa hydrovolcanic explosion was modeled using the full Navier-Stokes AMR Eulerian compressible hydrodynamic code called SAGE [1] which includes the high pressure physics of explosions. The water in the hydrovolcanic explosion was described as liquid water heated by magma to 1100 K. The high temperature water is treated as an explosive with the hot liquid water going to water gas. The BKW [2] steady state detonation state has a peak pressure of 8.9 GPa, a propagation velocity of 5900 meters/sec and the water is compressed to 1.33 g/cc. [1] Numerical Modeling of Water Waves, Second Edition, Charles L. Mader, CRC Press 2004. [2] Numerical Modeling of Explosions and Propellants, Charles L. Mader, CRC Press 1998.
Numerical methods used in fusion science numerical modeling
NASA Astrophysics Data System (ADS)
Yagi, M.
2015-04-01
The dynamics of burning plasma is very complicated physics, which is dominated by multi-scale and multi-physics phenomena. To understand such phenomena, numerical simulations are indispensable. Fundamentals of numerical methods used in fusion science numerical modeling are briefly discussed in this paper. In addition, the parallelization technique such as open multi processing (OpenMP) and message passing interface (MPI) parallel programing are introduced and the loop-level parallelization is shown as an example.
Numerical models of complex diapirs
NASA Astrophysics Data System (ADS)
Podladchikov, Yu.; Talbot, C.; Poliakov, A. N. B.
1993-12-01
Numerically modelled diapirs that rise into overburdens with viscous rheology produce a large variety of shapes. This work uses the finite-element method to study the development of diapirs that rise towards a surface on which a diapir-induced topography creeps flat or disperses ("erodes") at different rates. Slow erosion leads to diapirs with "mushroom" shapes, moderate erosion rate to "wine glass" diapirs and fast erosion to "beer glass"- and "column"-shaped diapirs. The introduction of a low-viscosity layer at the top of the overburden causes diapirs to develop into structures resembling a "Napoleon hat". These spread lateral sheets.
A numerical model for durotaxis.
Stefanoni, Filippo; Ventre, Maurizio; Mollica, Francesco; Netti, Paolo A
2011-07-07
Cell migration is a phenomenon that is involved in several physiological processes. In the absence of external guiding factors it shares analogies with Brownian motion. The presence of biochemical or biophysical cues, on the other hand, can influence cell migration transforming it in a biased random movement. Recent studies have shown that different cell types are able to recognise the mechanical properties of the substratum over which they move and that these properties direct the motion through a process called durotaxis. In this work a 2D mathematical model for the description of this phenomenon is presented. The model is based on the Langevin equation that has been modified to take into account the local mechanical properties of the substratum perceived by the cells. Numerical simulations of the model provide individual cell tracks, whose characteristics can be compared with experimental observations directly. The present model is solved for two important cases: an isotropic substratum, to check that random motility is recovered as a subcase, and a biphasic substratum, to investigate durotaxis. The degree of agreement is satisfactory in both cases. The model can be a useful tool for quantifying relevant parameters of cell migration as a function of the substratum mechanical properties. Copyright © 2011 Elsevier Ltd. All rights reserved.
Numerical experiments in geomagnetic modeling
NASA Technical Reports Server (NTRS)
Cain, Joseph C.; Holter, Bill; Sandee, Daan
1990-01-01
Numerical tests were made, using least squares fitting of a spherical harmonic model, to a selection of Magsat data to determine the practical limits of this technique with modern computers. The resulting (M102189) model, whose coefficients were adjusted up to n = 50, was compared with M07AV6, a previous model which used least squares (on vector data) for coefficients up to n = 29, and Gauss-Legendre quadrature (on Z residuals) to adjust the coefficients up to n = 63. For the new least squares adjustment to n = 50 a condition number of 115 was obtained for the solution matrix, with a resulting precision of 11 significant figures. The M102189 model shows a lower and more Gaussian residual distribution than did M07AV6, though the Gaussian envelope fits to the residual distributions, even for the scalar field, gives "standard deviations' never lower than 6 nT, a factor of three higher than the estimated Magsat observational errors. Ionospheric currents are noted to have a significant effect on the coefficients of the internal potential functions.
Numerical Modeling of Nanoelectronic Devices
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Oyafuso, Fabiano; Bowen, R. Chris; Boykin, Timothy
2003-01-01
Nanoelectronic Modeling 3-D (NEMO 3-D) is a computer program for numerical modeling of the electronic structure properties of a semiconductor device that is embodied in a crystal containing as many as 16 million atoms in an arbitrary configuration and that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantummechanical behavior of the device resolved to the atomistic level of granularity. The system of electrons in the device is represented by a sparse Hamiltonian matrix that contains hundreds of millions of terms. NEMO 3-D solves the matrix equation on a Beowulf-class cluster computer, by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. In a recent update of NEMO 3-D, a new strain treatment, parameterized for bulk material properties of GaAs and InAs, was developed for two tight-binding submodels. The utility of the NEMO 3-D was demonstrated in an atomistic analysis of the effects of disorder in alloys and, in particular, in bulk In(x)Ga(l-x)As and in In0.6Ga0.4As quantum dots.
Equivalent beam modeling using numerical reduction techniques
NASA Technical Reports Server (NTRS)
Chapman, J. M.; Shaw, F. H.
1987-01-01
Numerical procedures that can accomplish model reductions for space trusses were developed. Three techniques are presented that can be implemented using current capabilities within NASTRAN. The proposed techniques accomplish their model reductions numerically through use of NASTRAN structural analyses and as such are termed numerical in contrast to the previously developed analytical techniques. Numerical procedures are developed that permit reductions of large truss models containing full modeling detail of the truss and its joints. Three techniques are presented that accomplish these model reductions with various levels of structural accuracy. These numerical techniques are designated as equivalent beam, truss element reduction, and post-assembly reduction methods. These techniques are discussed in detail.
Numerical Modelling of Electrical Discharges
NASA Astrophysics Data System (ADS)
Durán-Olivencia, F. J.; Pontiga, F.; Castellanos, A.
2014-03-01
The problem of the propagation of an electrical discharge between a spherical electrode and a plane has been solved by means of finite element methods (FEM) using a fluid approximation and assuming weak ionization and local equilibrium with the electric field. The numerical simulation of this type of problems presents the usual difficulties of convection-diffusion-reaction problems, in addition to those associated with the nonlinearities of the charged species velocities, the formation of steep gradients of the electric field and particle densities, and the coexistence of very different temporal scales. The effect of using different temporal discretizations for the numerical integration of the corresponding system of partial differential equations will be here investigated. In particular, the so-called θ-methods will be used, which allows to implement implicit, semi-explicit and fully explicit schemes in a simple way.
Numerical modelling of hydration reactions
NASA Astrophysics Data System (ADS)
Vrijmoed, Johannes C.; John, Timm
2017-04-01
Mineral reactions are generally accompanied by volume changes. Observations in rocks and thin section indicate that this often occurred by replacement reactions involving a fluid phase. Frequently, the volume of the original rock or mineral seems to be conserved. If the density of the solid reaction products is higher than the reactants, the associated solid volume decrease generates space for a fluid phase. In other words, porosity is created. The opposite is true for an increase in solid volume during reaction, which leads to a porosity reduction. This slows down and may even stop the reaction if it needs fluid as a reactant. Understanding the progress of reactions and their rates is important because reaction generally changes geophysical and rock mechanical properties which will therefore affect geodynamical processes and seismic properties. We studied the case of hydration of eclogite to blueschist in a subduction zone setting. Eclogitized pillow basalt structures from the Tian-Shan orogeny are transformed to blueschist on the rims of the pillow (van der Straaten et al., 2008). Fluid pathways existed between the pillow structures. The preferred hypothesis of blueschist formation is to supply the fluid for hydration from the pillow margins progressing inward. Using numerical modelling we simulate this coupled reaction-diffusion process. Porosity and fluid pressure evolution are coupled to local thermodynamic equilibrium and density changes. The first rim of blueschist that forms around the eclogite pillow increases volume to such a degree that the system is clogged and the reaction stops. Nevertheless, the field evidence suggests the blueschist formation continued. To prevent the system from clogging, a high incoming pore fluid pressure on the pillow boundaries is needed along with removal of mass from the system to accommodate the volume changes. The only other possibility is to form blueschist from any remaining fluid stored in the core of the pillow
Numerical approaches to combustion modeling
Oran, E.S.; Boris, J.P. )
1991-01-01
This book presents a series of topics ranging from microscopic combustion physics to several aspects of macroscopic reactive-flow modeling. As the reader progresses into the book, the successive chapters generally include a wider range of physical and chemical processes in the mathematical model. Including more processes, however, usually means that they will be represented phenomenologically at a cruder level. In practice the detailed microscopic models and simulations are often used to develop and calibrate the phenomenologies used in the macroscopic models. The book first describes computations of the most microscopic chemical processes, then considers laminar flames and detonation modeling, and ends with computations of complex, multiphase combustion systems.
Survey of numerical electrostimulation models
NASA Astrophysics Data System (ADS)
Reilly, J. Patrick
2016-06-01
This paper evaluates results of a survey of electrostimulation models of myelinated nerve. Participants were asked to determine thresholds of excitation for 18 cases involving different characteristics of the neuron, the stimulation waveform, and the electrode arrangement. Responses were received from 7 investigators using 10 models. Excitation thresholds differed significantly among these models. For example, with a 2 ms monophasic stimulus pulse and an electrode/fiber distance of 1 cm, thresholds from the least to greatest value differed by a factor of 8.3; with a 5 μs pulse, thresholds differed by the factor 3.8. Significant differences in reported simulations point to the need for experimental validation. Additional efforts are needed to develop computational models for unmyelinated C-fibers, A-delta fibers, CNS neurons, and CNS Synapses.
Survey of numerical electrostimulation models.
Reilly, J Patrick
2016-06-21
This paper evaluates results of a survey of electrostimulation models of myelinated nerve. Participants were asked to determine thresholds of excitation for 18 cases involving different characteristics of the neuron, the stimulation waveform, and the electrode arrangement. Responses were received from 7 investigators using 10 models. Excitation thresholds differed significantly among these models. For example, with a 2 ms monophasic stimulus pulse and an electrode/fiber distance of 1 cm, thresholds from the least to greatest value differed by a factor of 8.3; with a 5 μs pulse, thresholds differed by the factor 3.8. Significant differences in reported simulations point to the need for experimental validation. Additional efforts are needed to develop computational models for unmyelinated C-fibers, A-delta fibers, CNS neurons, and CNS Synapses.
Numerical tsunami modeling and the bottom relief
NASA Astrophysics Data System (ADS)
Kulikov, E. A.; Gusiakov, V. K.; Ivanova, A. A.; Baranov, B. V.
2016-11-01
The effect of the quality of bathymetric data on the accuracy of tsunami-wave field calculation is considered. A review of the history of the numerical tsunami modeling development is presented. Particular emphasis is made on the World Ocean bottom models. It is shown that the modern digital bathymetry maps, for example, GEBCO, do not adequately simulate the sea bottom in numerical models of wave propagation, leading to considerable errors in estimating the maximum tsunami run-ups on the coast.
Numerical modelling of torn boudinage
NASA Astrophysics Data System (ADS)
Dabrowski, Marcin; Grasemann, Bernhard
2017-04-01
The seminal text book by J.G. Ramsay outlines the importance of the progressive development of torn boudinage structures because the shape of boudins may vary greatly and is mainly dependent on the viscosity contrast between the more competent layer and the enclosing material and the values of the principal extensions of the finite strain ellipsoid. In this work we demonstrate that another parameter, the initial boudin separation, has a significant influence on the progressive development of the finite boudin shape. We use finite element simulations to study the shape evolution of torn boudins under pure and simple shear. The boudins are initially rectangular and the gaps between them are prescribed. The boudin interfaces are resolved with high-resolution, body-fitting, unstructured computational meshes and a second-order ODE integrator is used to ensure the numerical accuracy of the results. Both the boudins and the host are treated as either linear or non-linear viscous fluids. We neglect any recrystallization processes and the boudin interfaces are considered as fully coherent. We were able to reproduce the typical shape of fish-mouth boudins for a wide range of viscosity ratios between the highly viscous boudins and the host. We have systematically studied the effects due to the boudin-host viscosity ratio and the fluid stress exponents. Our results show that the initial separation can have a profound effect on the final shape of the boudins and we document the formation of hitherto undescribed complex boudin shapes for an initially narrow gap width.
Numerical Modeling for Large Scale Hydrothermal System
NASA Astrophysics Data System (ADS)
Sohrabi, Reza; Jansen, Gunnar; Malvoisin, Benjamin; Mazzini, Adriano; Miller, Stephen A.
2017-04-01
Moderate-to-high enthalpy systems are driven by multiphase and multicomponent processes, fluid and rock mechanics, and heat transport processes, all of which present challenges in developing realistic numerical models of the underlying physics. The objective of this work is to present an approach, and some initial results, for modeling and understanding dynamics of the birth of large scale hydrothermal systems. Numerical modeling of such complex systems must take into account a variety of coupled thermal, hydraulic, mechanical and chemical processes, which is numerically challenging. To provide first estimates of the behavior of this deep complex systems, geological structures must be constrained, and the fluid dynamics, mechanics and the heat transport need to be investigated in three dimensions. Modeling these processes numerically at adequate resolution and reasonable computation times requires a suite of tools that we are developing and/or utilizing to investigate such systems. Our long-term goal is to develop 3D numerical models, based on a geological models, which couples mechanics with the hydraulics and thermal processes driving hydrothermal system. Our first results from the Lusi hydrothermal system in East Java, Indonesia provide a basis for more sophisticated studies, eventually in 3D, and we introduce a workflow necessary to achieve these objectives. Future work focuses with the aim and parallelization suitable for High Performance Computing (HPC). Such developments are necessary to achieve high-resolution simulations to more fully understand the complex dynamics of hydrothermal systems.
Numerical noise in ocean and estuarine models
Walters, R.; Carey, G.F.
1984-01-01
Approximate methods for solving the shallow water equations may lead to solutions exhibiting large fictitious, numerically-induced oscillations. The analysis of the discrete dispersion relation and modal solutions of small wavelengths provides a powerful technique for assessing the sensitivity of alternative numerical schemes to irregular data which may lead to such oscillatory numerical noise. For those schemes where phase speed vanishes at a finite wavenumber or there are multiple roots for wavenumber, oscillation modes can exist which are uncoupled from the dynamics of the problem. The discrete modal analysis approach is used here to identify two classes of spurious oscillation modes associated respectively with the two different asymptotic limits corresponding to estuarine and large scale ocean models. The analysis provides further insight into recent numerical results for models which include large spatial scales and Coriolis acceleration. ?? 1984.
Numerical Modeling of Ablation Heat Transfer
NASA Technical Reports Server (NTRS)
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
Numerical FEM modeling in dental implantology
NASA Astrophysics Data System (ADS)
Roateşi, Iulia; Roateşi, Simona
2016-06-01
This paper is devoted to a numerical approach of the stress and displacement calculation of a system made up of dental implant, ceramic crown and surrounding bone. This is the simulation of a clinical situation involving both biological - the bone tissue, and non-biological - the implant and the crown, materials. On the other hand this problem deals with quite fine technical structure details - the threads, tapers, etc with a great impact in masticatory force transmission. Modeling the contact between the implant and the bone tissue is important to a proper bone-implant interface model and implant design. The authors proposed a three-dimensional numerical model to assess the biomechanical behaviour of this complex structure in order to evaluate its stability by determining the risk zones. A comparison between this numerical analysis and clinical cases is performed and a good agreement is obtained.
Reduced-order modelling numerical homogenization.
Abdulle, A; Bai, Y
2014-08-06
A general framework to combine numerical homogenization and reduced-order modelling techniques for partial differential equations (PDEs) with multiple scales is described. Numerical homogenization methods are usually efficient to approximate the effective solution of PDEs with multiple scales. However, classical numerical homogenization techniques require the numerical solution of a large number of so-called microproblems to approximate the effective data at selected grid points of the computational domain. Such computations become particularly expensive for high-dimensional, time-dependent or nonlinear problems. In this paper, we explain how numerical homogenization method can benefit from reduced-order modelling techniques that allow one to identify offline and online computational procedures. The effective data are only computed accurately at a carefully selected number of grid points (offline stage) appropriately 'interpolated' in the online stage resulting in an online cost comparable to that of a single-scale solver. The methodology is presented for a class of PDEs with multiple scales, including elliptic, parabolic, wave and nonlinear problems. Numerical examples, including wave propagation in inhomogeneous media and solute transport in unsaturated porous media, illustrate the proposed method.
Numerical modeling techniques for flood analysis
NASA Astrophysics Data System (ADS)
Anees, Mohd Talha; Abdullah, K.; Nawawi, M. N. M.; Ab Rahman, Nik Norulaini Nik; Piah, Abd. Rahni Mt.; Zakaria, Nor Azazi; Syakir, M. I.; Mohd. Omar, A. K.
2016-12-01
Topographic and climatic changes are the main causes of abrupt flooding in tropical areas. It is the need to find out exact causes and effects of these changes. Numerical modeling techniques plays a vital role for such studies due to their use of hydrological parameters which are strongly linked with topographic changes. In this review, some of the widely used models utilizing hydrological and river modeling parameters and their estimation in data sparse region are discussed. Shortcomings of 1D and 2D numerical models and the possible improvements over these models through 3D modeling are also discussed. It is found that the HEC-RAS and FLO 2D model are best in terms of economical and accurate flood analysis for river and floodplain modeling respectively. Limitations of FLO 2D in floodplain modeling mainly such as floodplain elevation differences and its vertical roughness in grids were found which can be improve through 3D model. Therefore, 3D model was found to be more suitable than 1D and 2D models in terms of vertical accuracy in grid cells. It was also found that 3D models for open channel flows already developed recently but not for floodplain. Hence, it was suggested that a 3D model for floodplain should be developed by considering all hydrological and high resolution topographic parameter's models, discussed in this review, to enhance the findings of causes and effects of flooding.
Numerical Modelling of Ground Penetrating Radar Antennas
NASA Astrophysics Data System (ADS)
Giannakis, Iraklis; Giannopoulos, Antonios; Pajewski, Lara
2014-05-01
Numerical methods are needed in order to solve Maxwell's equations in complicated and realistic problems. Over the years a number of numerical methods have been developed to do so. Amongst them the most popular are the finite element, finite difference implicit techniques, frequency domain solution of Helmontz equation, the method of moments, transmission line matrix method. However, the finite-difference time-domain method (FDTD) is considered to be one of the most attractive choice basically because of its simplicity, speed and accuracy. FDTD first introduced in 1966 by Kane Yee. Since then, FDTD has been established and developed to be a very rigorous and well defined numerical method for solving Maxwell's equations. The order characteristics, accuracy and limitations are rigorously and mathematically defined. This makes FDTD reliable and easy to use. Numerical modelling of Ground Penetrating Radar (GPR) is a very useful tool which can be used in order to give us insight into the scattering mechanisms and can also be used as an alternative approach to aid data interpretation. Numerical modelling has been used in a wide range of GPR applications including archeology, geophysics, forensic, landmine detection etc. In engineering, some applications of numerical modelling include the estimation of the effectiveness of GPR to detect voids in bridges, to detect metal bars in concrete, to estimate shielding effectiveness etc. The main challenges in numerical modelling of GPR for engineering applications are A) the implementation of the dielectric properties of the media (soils, concrete etc.) in a realistic way, B) the implementation of the geometry of the media (soils inhomogeneities, rough surface, vegetation, concrete features like fractures and rock fragments etc.) and C) the detailed modelling of the antenna units. The main focus of this work (which is part of the COST Action TU1208) is the accurate and realistic implementation of GPR antenna units into the FDTD
Benchmarking numerical models of brittle thrust wedges
NASA Astrophysics Data System (ADS)
Buiter, Susanne J. H.; Schreurs, Guido; Albertz, Markus; Gerya, Taras V.; Kaus, Boris; Landry, Walter; le Pourhiet, Laetitia; Mishin, Yury; Egholm, David L.; Cooke, Michele; Maillot, Bertrand; Thieulot, Cedric; Crook, Tony; May, Dave; Souloumiac, Pauline; Beaumont, Christopher
2016-11-01
We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the stable wedge test, showing negligible internal deformation and maintaining the initial surface slope upon horizontal translation over a frictional interface. Eight codes participated in the unstable wedge test that examines the evolution of a wedge by thrust formation from a subcritical state to the critical taper geometry. The critical taper is recovered, but the models show two deformation modes characterised by either mainly forward dipping thrusts or a series of thrust pop-ups. We speculate that the two modes are caused by differences in effective basal boundary friction related to different algorithms for modelling boundary friction. The third experiment examines stacking of forward thrusts that are translated upward along a backward thrust. The results of the seven codes that run this experiment show variability in deformation style, number of thrusts, thrust dip angles and surface slope. Overall, our experiments show that numerical models run with different numerical techniques can successfully simulate laboratory brittle thrust wedge models at the cm-scale. In more detail, however, we find that it is challenging to reproduce sandbox-type setups numerically, because of frictional boundary conditions and velocity discontinuities. We recommend that future numerical-analogue comparisons use simple boundary conditions and that the numerical Earth Science community defines a plasticity test to resolve the variability in model shear zones.
Teaching ANOVA Models via Miniature Numerical Samples
ERIC Educational Resources Information Center
Bolton, Brian
1975-01-01
On the premise that the more formal algebraic presentation of statistics must be placed in a concrete context to facilitate student understanding, the author presents a pedagogical device involving the construction of miniature numerical examples that illustrate how the statistical model imposes structure on empirical data. (JT)
Numerical modeling of eastern connecticut's visual resources
Daniel L. Civco
1979-01-01
A numerical model capable of accurately predicting the preference for landscape photographs of selected points in eastern Connecticut is presented. A function of the social attitudes expressed toward thirty-two salient visual landscape features serves as the independent variable in predicting preferences. A technique for objectively assigning adjectives to landscape...
Microplastics elutriation system. Part A: Numerical modeling.
Kedzierski, Mikaël; Le Tilly, Véronique; Bourseau, Patrick; Bellegou, Hervé; César, Guy; Sire, Olivier; Bruzaud, Stéphane
2017-06-30
The elutriation process has shown its efficiency to extract microplastics from sand and began to spread in the scientific community. This extraction technic requires knowing with accuracy the extraction velocities of particles. This study aims to test whether numerical modeling could help to calculate these velocities. From hydrodynamic equations, a numerical model has been developed and the outputs are compared to experimental extraction data. The results show, for the calculated velocities, the experimental plastic extraction yields will be higher than 90% for <10% of sand contamination. The model also allows determining that, with the actual protocol, the maximum plastic density which can be extracted is about 1450kg·m(-3) whereas the detrimental resuspension, which may occur during the column filling step, is highlighted. From model calculations, it arises that changes in the column dimensioning and the protocol operations need to be considered. Copyright © 2017 Elsevier Ltd. All rights reserved.
Numerical modeling tools for chemical vapor deposition
NASA Technical Reports Server (NTRS)
Jasinski, Thomas J.; Childs, Edward P.
1992-01-01
Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.
Numerical modeling of the solar wind turbulence
Kryukov, I.A.; Pogorelov, N.V.; Zank, G.P.; ...
2012-05-21
Here we describe an extension of the Multi-Scale Fluid-Kinetic Simulation Suite (MSFLUKSS) by adding a solar wind turbulence model and a fluid treatment of pickup ions. Numerical results are presented of the time-dependent solar wind modeling with the boundary conditions provided by the OMNI data. The distributions of plasma properties and interplanetary magnetic field are compared with the Voyager 2 observations in the distant solar wind.
Numerical modeling of nonintrusive inspection systems
Hall, J.; Morgan, J.; Sale, K.
1992-12-01
A wide variety of nonintrusive inspection systems have been proposed in the past several years for the detection of hidden contraband in airline luggage and shipping containers. The majority of these proposed techniques depend on the interaction of radiation with matter to produce a signature specific to the contraband of interest, whether drugs or explosives. In the authors` role as diagnostic specialists in the Underground Test Program over the past forty years, L-Division of the Lawrence Livermore National Laboratory has developed a technique expertise in the combined numerical and experimental modeling of these types of system. Based on their experience, they are convinced that detailed numerical modeling provides a much more accurate estimate of the actual performance of complex experiments than simple analytical modeling. Furthermore, the construction of detailed numerical prototypes allows experimenters to explore the entire region of parameter space available to them before committing their ideas to hardware. This sort of systematic analysis has often led to improved experimental designs and reductions in fielding costs. L-Division has developed an extensive suite of computer codes to model proposed experiments and possible background interactions. These codes allow one to simulate complex radiation sources, model 3-dimensional system geometries with {open_quotes}real world{close_quotes} complexity, specify detailed elemental distributions, and predict the response of almost any type of detector. In this work several examples are presented illustrating the use of these codes in modeling experimental systems at LLNL and their potential usefulness in evaluating nonintrusive inspection systems is discussed.
Numerical Modeling of Weld Joint Corrosion
NASA Astrophysics Data System (ADS)
Lu, Yongxin; Jing, Hongyang; Han, Yongdian; Xu, Lianyong
2016-03-01
A numerical model is presented in this work that predicts the corrosion rate of weld joint. The model is able to track moving boundary of the corroding constituent of weld joint. The corrosion rates obtained from the model are compared with those estimated from mixed potential theory and two experimental techniques, namely immersion test and constant potential polarization test. The corrosion rate predicted using the model is within 10% of the estimate from the mixed potential theory, within 20% of that got from the immersion experiment and within 10% of that got from the constant potential polarization experiment for weld joint.
Theoretical Modeling for Numerical Weather Prediction
NASA Technical Reports Server (NTRS)
Somerville, R. C. J.
1984-01-01
The goal is to utilize predictability theory and numerical experimentation to identify and understand some of the dynamical processes which must be modeled more realistically if large-scale numerical weather predictions are to be improved. The emphasis is on the use of relatively simple models to exlore the properties of physically comprehensive general circulation models (GCM's). A global linear quasi-geostrophic model and the Goddard Laboratory for Atmospheric Sciences (GLAS) GCM were used to investigate several mechanisms which are responsible for the decay of large-scale forecast skill in mid-latitude numerical weather predictions. Five-day forecasts for an ensemble of cases were made using First GARP Global Experiment data. It was found that forecast skill depends crucially on the specification of the stationary forcing. A lack of stationary forcing leads to spurious westwad propagation of the ultralong waves. Forecasts made with stationary forcings derived from climatological data are superior to those using forcings inferred from observations immediately preceding the forecast period. Interhemispheric forecast differences were analyzed, and the model errors were compared to errors of a simple persistence-damped-to-climatology scheme and to errors of the GLAS GCM.
Quantifying Numerical Model Accuracy and Variability
NASA Astrophysics Data System (ADS)
Montoya, L. H.; Lynett, P. J.
2015-12-01
The 2011 Tohoku tsunami event has changed the logic on how to evaluate tsunami hazard on coastal communities. Numerical models are a key component for methodologies used to estimate tsunami risk. Model predictions are essential for the development of Tsunami Hazard Assessments (THA). By better understanding model bias and uncertainties and if possible minimizing them, a more accurate and reliable THA will result. In this study we compare runup height, inundation lines and flow velocity field measurements between GeoClaw and the Method Of Splitting Tsunami (MOST) predictions in the Sendai plain. Runup elevation and average inundation distance was in general overpredicted by the models. However, both models agree relatively well with each other when predicting maximum sea surface elevation and maximum flow velocities. Furthermore, to explore the variability and uncertainties in numerical models, MOST is used to compare predictions from 4 different grid resolutions (30m, 20m, 15m and 12m). Our work shows that predictions of particular products (runup and inundation lines) do not require the use of high resolution (less than 30m) Digital Elevation Maps (DEMs). When predicting runup heights and inundation lines, numerical convergence was achieved using the 30m resolution grid. On the contrary, poor convergence was found in the flow velocity predictions, particularly the 1 meter depth maximum flow velocities. Also, runup height measurements and elevations from the DEM were used to estimate model bias. The results provided in this presentation will help understand the uncertainties in model predictions and locate possible sources of errors within a model.
Automated Calibration For Numerical Models Of Riverflow
NASA Astrophysics Data System (ADS)
Fernandez, Betsaida; Kopmann, Rebekka; Oladyshkin, Sergey
2017-04-01
Calibration of numerical models is fundamental since the beginning of all types of hydro system modeling, to approximate the parameters that can mimic the overall system behavior. Thus, an assessment of different deterministic and stochastic optimization methods is undertaken to compare their robustness, computational feasibility, and global search capacity. Also, the uncertainty of the most suitable methods is analyzed. These optimization methods minimize the objective function that comprises synthetic measurements and simulated data. Synthetic measurement data replace the observed data set to guarantee an existing parameter solution. The input data for the objective function derivate from a hydro-morphological dynamics numerical model which represents an 180-degree bend channel. The hydro- morphological numerical model shows a high level of ill-posedness in the mathematical problem. The minimization of the objective function by different candidate methods for optimization indicates a failure in some of the gradient-based methods as Newton Conjugated and BFGS. Others reveal partial convergence, such as Nelder-Mead, Polak und Ribieri, L-BFGS-B, Truncated Newton Conjugated, and Trust-Region Newton Conjugated Gradient. Further ones indicate parameter solutions that range outside the physical limits, such as Levenberg-Marquardt and LeastSquareRoot. Moreover, there is a significant computational demand for genetic optimization methods, such as Differential Evolution and Basin-Hopping, as well as for Brute Force methods. The Deterministic Sequential Least Square Programming and the scholastic Bayes Inference theory methods present the optimal optimization results. keywords: Automated calibration of hydro-morphological dynamic numerical model, Bayesian inference theory, deterministic optimization methods.
Numerical Modelling Of Pumpkin Balloon Instability
NASA Astrophysics Data System (ADS)
Wakefield, D.
Tensys have been involved in the numerical formfinding and load analysis of architectural stressed membrane structures for 15 years. They have recently broadened this range of activities into the `lighter than air' field with significant involvement in aerostat and heavy-lift hybrid airship design. Since early 2004 they have been investigating pumpkin balloon instability on behalf of the NASA ULDB programme. These studies are undertaken using inTENS, an in-house finite element program suite based upon the Dynamic Relaxation solution method and developed especially for the non-linear analysis and patterning of membrane structures. The paper describes the current state of an investigation that started with a numerical simulation of the lobed cylinder problem first studied by Calladine. The influence of material properties and local geometric deformation on stability is demonstrated. A number of models of complete pumpkin balloons have then been established, including a 64-gore balloon with geometry based upon Julian Nott's Endeavour. This latter clefted dramatically upon initial inflation, a phenomenon that has been reproduced in the numerical model. Ongoing investigations include the introduction of membrane contact modelling into inTENS and correlation studies with the series of large-scale ULDB models currently in preparation.
Lattice Boltzmann model for numerical relativity.
Ilseven, E; Mendoza, M
2016-02-01
In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
A Numerical Model for Atomtronic Circuit Analysis
Chow, Weng W.; Straatsma, Cameron J. E.; Anderson, Dana Z.
2015-07-16
A model for studying atomtronic devices and circuits based on finite-temperature Bose-condensed gases is presented. The approach involves numerically solving equations of motion for atomic populations and coherences, derived using the Bose-Hubbard Hamiltonian and the Heisenberg picture. The resulting cluster expansion is truncated at a level giving balance between physics rigor and numerical demand mitigation. This approach allows parametric studies involving time scales that cover both the rapid population dynamics relevant to nonequilibrium state evolution, as well as the much longer time durations typical for reaching steady-state device operation. This model is demonstrated by studying the evolution of a Bose-condensed gas in the presence of atom injection and extraction in a double-well potential. In this configuration phase locking between condensates in each well of the potential is readily observed, and its influence on the evolution of the system is studied.
Lattice Boltzmann model for numerical relativity
NASA Astrophysics Data System (ADS)
Ilseven, E.; Mendoza, M.
2016-02-01
In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
Infrared radiation parameterizations in numerical climate models
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Kratz, David P.; Ridgway, William
1991-01-01
This study presents various approaches to parameterizing the broadband transmission functions for utilization in numerical climate models. One-parameter scaling is applied to approximate a nonhomogeneous path with an equivalent homogeneous path, and the diffuse transmittances are either interpolated from precomputed tables or fit by analytical functions. Two-parameter scaling is applied to parameterizing the carbon dioxide and ozone transmission functions in both the lower and middle atmosphere. Parameterizations are given for the nitrous oxide and methane diffuse transmission functions.
Avoiding numerical pitfalls in social force models
NASA Astrophysics Data System (ADS)
Köster, Gerta; Treml, Franz; Gödel, Marion
2013-06-01
The social force model of Helbing and Molnár is one of the best known approaches to simulate pedestrian motion, a collective phenomenon with nonlinear dynamics. It is based on the idea that the Newtonian laws of motion mostly carry over to pedestrian motion so that human trajectories can be computed by solving a set of ordinary differential equations for velocity and acceleration. The beauty and simplicity of this ansatz are strong reasons for its wide spread. However, the numerical implementation is not without pitfalls. Oscillations, collisions, and instabilities occur even for very small step sizes. Classic solution ideas from molecular dynamics do not apply to the problem because the system is not Hamiltonian despite its source of inspiration. Looking at the model through the eyes of a mathematician, however, we realize that the right hand side of the differential equation is nondifferentiable and even discontinuous at critical locations. This produces undesirable behavior in the exact solution and, at best, severe loss of accuracy in efficient numerical schemes even in short range simulations. We suggest a very simple mollified version of the social force model that conserves the desired dynamic properties of the original many-body system but elegantly and cost efficiently resolves several of the issues concerning stability and numerical resolution.
Numerical modeling of the acoustic guitar
NASA Astrophysics Data System (ADS)
Chaigne, Antoine; Derveaux, Grégoire; Joly, Patrick; Bécache, Eliane
2003-10-01
An interactive DVD has been created, based on a numerical model of the acoustic guitar. In a first chapter, the retained physical model is described and illustrated, from the pluck to the 3D radiation field. The second chapter is devoted to the presentation of the numerical tools used for solving the equations of the model. Numerical simulations of plate vibrations and radiated sound pressure are shown in the third chapter. A number of simulated sounds are presented and analyzed in the fourth chapter. In addition, the DVD includes a discussion between a guitar maker, an acoustician, a guitar player and a mathematician. This discussion is entitled ``towards a common language.'' Its aim is to show the interest of simulations with respect to complementary professional approaches of the instrument. This DVD received the Henri Poincaré Prize from the 8th Research Film Festival of Nancy (June 2003), sponsored by the CNRS, in the category ``Documents for the scientific community and illustrations of the research for teaching purpose.''
Advanced Numerical Model for Irradiated Concrete
Giorla, Alain B.
2015-03-01
In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some
Numerical modeling of bacteria propelled micromotors
NASA Astrophysics Data System (ADS)
Angelani, L.; Di Leonardo, R.
2011-09-01
We describe a numerical model for simulating micro-objects immersed in a bath of self-propelled organisms. By using simplified models for swimming cells (2 beads rigidly connected and subject to a self-propelling force) and taking into account various interaction terms (collisions, hydrodynamics), we simulate different shaped devices immersed in the bacterial bath. Considering rotating cog-wheels and translating shuttles we demonstrate the emergence of unidirectional motions, whose efficiency depends on the object shape as well as on bacterial properties. The role of tumbling mechanism and hydrodynamic interactions is analyzed.
a Numerical Model for Subsonic Acoustic Choking.
NASA Astrophysics Data System (ADS)
Walkington, Noel John
In aircraft turbofan inlets, fan generated noise is observed experimentally to be significantly attenuated at high subsonic inlet Mach numbers. This phenomenon cannot be predicted by linear acoustic theory. In order to study the physical process by which this may occur, a numerical algorithm has been developed to solve a related nonlinear problem in one dimensional gas dynamics. The nonlinear solution admits the possibility of wave steepening and shock waves. Approximate solutions are obtained using several finite difference schemes. The boundary conditions required to model an acoustic source and an anechoic termination are developed. The numerical solutions agree closely with those obtained using the method of matched asymptotic expansions. Solutions involving shock waves exhibit a large reduction in the ratio of transmitted to incident power. This offers an explanation for acoustic choking. The results indicate that more power is dissipated as the Mach number, sound amplitude and frequency are increased. These observations are in agreement with those observed experimentally.
Constraining Numerical Geodynamo Modeling with Surface Observations
NASA Technical Reports Server (NTRS)
Kuang, Weijia; Tangborn, Andrew
2006-01-01
Numerical dynamo solutions have traditionally been generated entirely by a set of self-consistent differential equations that govern the spatial-temporal variation of the magnetic field, velocity field and other fields related to dynamo processes. In particular, those solutions are obtained with parameters very different from those appropriate for the Earth s core. Geophysical application of the numerical results therefore depends on correct understanding of the differences (errors) between the model outputs and the true states (truth) in the outer core. Part of the truth can be observed at the surface in the form of poloidal magnetic field. To understand these differences, or errors, we generate new initial model state (analysis) by assimilating sequentially the model outputs with the surface geomagnetic observations using an optimal interpolation scheme. The time evolution of the core state is then controlled by our MoSST core dynamics model. The final outputs (forecasts) are then compared with the surface observations as a means to test the success of the assimilation. We use the surface geomagnetic data back to year 1900 for our studies, with 5-year forecast and 20-year analysis periods. We intend to use the result; to understand time variation of the errors with the assimilation sequences, and the impact of the assimilation on other unobservable quantities, such as the toroidal field and the fluid velocity in the core.
Testing Numerical Dynamo Models Against Experimental Results
NASA Astrophysics Data System (ADS)
Gissinger, C. J.; Fauve, S.; Dormy, E.
2007-12-01
Significant progress has been achieved over the past few years in describing the geomagnetic field using computer models for dynamo action. Such models are so far limited to parameter regimes which are very remote from actual values relevant to the Earth core or any liquid metal (the magnetic Prandtl number is always over estimated by a factor at least 104). While existing models successfully reproduce many of the magnetic observations, it is difficult to assert their validity. The recent success of an experimental homogeneous unconstrained dynamo (VKS) provides a new way to investigate dynamo action in turbulent conducting flows, but it also offers a chance to test the validity of exisiting numerical models. We use a code originaly written for the Geodynamo (Parody) and apply it to the experimental configuration. The direct comparison of simulations and experiments is of great interest to test the predictive value of numerical simulations for dynamo action. These turbulent simulations allow us to approach issues which are very relevant for geophysical dynamos, especially the competition between different magnetic modes and the dynamics of reversals.
Numerical modelling of mixed-sediment consolidation
NASA Astrophysics Data System (ADS)
Grasso, Florent; Le Hir, Pierre; Bassoullet, Philippe
2015-04-01
Sediment transport modelling in estuarine environments, characterised by cohesive and non-cohesive sediment mixtures, has to consider a time variation of erodibility due to consolidation. Generally, validated by settling column experiments, mud consolidation is now fairly well simulated; however, numerical models still have difficulty to simulate accurately the sedimentation and consolidation of mixed sediments for a wide range of initial conditions. This is partly due to the difficulty to formulate the contribution of sand in the hindered settling regime when segregation does not clearly occur. Based on extensive settling experiments with mud-sand mixtures, the objective of this study was to improve the numerical modelling of mixed-sediment consolidation by focusing on segregation processes. We used constitutive relationships following the fractal theory associated with a new segregation formulation based on the relative mud concentration. Using specific sets of parameters calibrated for each test—with different initial sediment concentration and sand content—the model achieved excellent prediction skills for simulating sediment height evolutions and concentration vertical profiles. It highlighted the model capacity to simulate properly the segregation occurrence for mud-sand mixtures characterised by a wide range of initial conditions. Nevertheless, calibration parameters varied significantly, as the fractal number ranged from 2.64 to 2.77. This study investigated the relevance of using a common set of parameters, which is generally required for 3D sediment transport modelling. Simulations were less accurate but remained satisfactory in an operational approach. Finally, a specific formulation for natural estuarine environments was proposed, simulating correctly the sedimentation-consolidation processes of mud-sand mixtures through 3D sediment transport modelling.
Posttraumatic orbital emphysema: a numerical model.
Skorek, Andrzej; Kłosowski, Paweł; Plichta, Lukasz; Raczyńska, Dorota; Zmuda Trzebiatowski, Marcin; Lemski, Paweł
2014-01-01
Orbital emphysema is a common symptom accompanying orbital fracture. The pathomechanism is still not recognized and the usually assumed cause, elevated pressure in the upper airways connected with sneezing or coughing, does not always contribute to the occurrence of this type of fracture. Observations based on the finite model (simulating blowout type fracture) of the deformations of the inferior orbital wall after a strike in its lower rim. Authors created a computer numeric model of the orbit with specified features-thickness and resilience modulus. During simulation an evenly spread 14400 N force was applied to the nodular points in the inferior rim (the maximal value not causing cracking of the outer rim, but only ruptures in the inferior wall). The observation was made from 1 · 10(-3) to 1 · 10(-2) second after a strike. Right after a strike dislocations of the inferior orbital wall toward the maxillary sinus were observed. Afterwards a retrograde wave of the dislocation of the inferior wall toward the orbit was noticed. Overall dislocation amplitude reached about 6 mm. Based on a numeric model of the orbit submitted to a strike in the inferior wall an existence of a retrograde shock wave causing orbital emphysema has been found.
Posttraumatic Orbital Emphysema: A Numerical Model
Skorek, Andrzej; Kłosowski, Paweł; Plichta, Łukasz; Zmuda Trzebiatowski, Marcin; Lemski, Paweł
2014-01-01
Orbital emphysema is a common symptom accompanying orbital fracture. The pathomechanism is still not recognized and the usually assumed cause, elevated pressure in the upper airways connected with sneezing or coughing, does not always contribute to the occurrence of this type of fracture. Observations based on the finite model (simulating blowout type fracture) of the deformations of the inferior orbital wall after a strike in its lower rim. Authors created a computer numeric model of the orbit with specified features—thickness and resilience modulus. During simulation an evenly spread 14400 N force was applied to the nodular points in the inferior rim (the maximal value not causing cracking of the outer rim, but only ruptures in the inferior wall). The observation was made from 1 · 10−3 to 1 · 10−2 second after a strike. Right after a strike dislocations of the inferior orbital wall toward the maxillary sinus were observed. Afterwards a retrograde wave of the dislocation of the inferior wall toward the orbit was noticed. Overall dislocation amplitude reached about 6 mm. Based on a numeric model of the orbit submitted to a strike in the inferior wall an existence of a retrograde shock wave causing orbital emphysema has been found. PMID:25309749
A numerical method to model excitable cells.
Joyner, R W; Westerfield, M; Moore, J W; Stockbridge, N
1978-01-01
We have extended a fast, stable, and accurate method for the numerical solution of cable equations to include changes in geometry and membrane properties in order to model a single excitable cell realistically. In addition, by including the provision that the radius may be a function of distance along an axis, we have achieved a general and powerful method for simulating a cell with any number of branched processes, any or all of which may be nonuniform in diameter, and with no restriction on the branching pattern. PMID:656539
Objective calibration of numerical weather prediction models
NASA Astrophysics Data System (ADS)
Voudouri, A.; Khain, P.; Carmona, I.; Bellprat, O.; Grazzini, F.; Avgoustoglou, E.; Bettems, J. M.; Kaufmann, P.
2017-07-01
Numerical weather prediction (NWP) and climate models use parameterization schemes for physical processes, which often include free or poorly confined parameters. Model developers normally calibrate the values of these parameters subjectively to improve the agreement of forecasts with available observations, a procedure referred as expert tuning. A practicable objective multi-variate calibration method build on a quadratic meta-model (MM), that has been applied for a regional climate model (RCM) has shown to be at least as good as expert tuning. Based on these results, an approach to implement the methodology to an NWP model is presented in this study. Challenges in transferring the methodology from RCM to NWP are not only restricted to the use of higher resolution and different time scales. The sensitivity of the NWP model quality with respect to the model parameter space has to be clarified, as well as optimize the overall procedure, in terms of required amount of computing resources for the calibration of an NWP model. Three free model parameters affecting mainly turbulence parameterization schemes were originally selected with respect to their influence on the variables associated to daily forecasts such as daily minimum and maximum 2 m temperature as well as 24 h accumulated precipitation. Preliminary results indicate that it is both affordable in terms of computer resources and meaningful in terms of improved forecast quality. In addition, the proposed methodology has the advantage of being a replicable procedure that can be applied when an updated model version is launched and/or customize the same model implementation over different climatological areas.
NUMERICAL MODELING OF CATHODE CONTACT MATERIAL DENSIFICATION
Koeppel, Brian J.; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.
2011-11-01
Numerical modeling was used to simulate the constrained sintering process of the cathode contact layer during assembly of solid oxide fuel cells (SOFCs). A finite element model based on the continuum theory for sintering of porous bodies was developed and used to investigate candidate low-temperature cathode contact materials. Constitutive parameters for various contact materials under investigation were estimated from dilatometry screening tests, and the influence of processing time, processing temperature, initial grain size, and applied compressive stress on the free sintering response was predicted for selected candidate materials. The densification behavior and generated stresses within a 5-cell planar SOFC stack during sintering, high temperature operation, and room temperature shutdown were predicted. Insufficient constrained densification was observed in the stack at the proposed heat treatment, but beneficial effects of reduced grain size, compressive stack preload, and reduced thermal expansion coefficient on the contact layer densification and stresses were observed.
Convecting reference frames and invariant numerical models
NASA Astrophysics Data System (ADS)
Bihlo, Alexander; Nave, Jean-Christophe
2014-09-01
In the recent paper by Bernardini et al. [1] the discrepancy in the performance of finite difference and spectral models for simulations of flows with a preferential direction of propagation was studied. In a simplified investigation carried out using the viscous Burgers equation the authors attributed the poorer numerical results of finite difference models to a violation of Galilean invariance in the discretization and propose to carry out the computations in a reference frame moving with the bulk velocity of the flow. Here we further discuss this problem and relate it to known results on invariant discretization schemes. Non-invariant and invariant finite difference discretizations of Burgers equation are proposed and compared with the discretization using the remedy proposed by Bernardini et al.
Adaptive Numerical Algorithms in Space Weather Modeling
NASA Technical Reports Server (NTRS)
Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2010-01-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical
Adaptive numerical algorithms in space weather modeling
NASA Astrophysics Data System (ADS)
Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2012-02-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit
Global Tectonics of Enceladus: Numerical Model
NASA Astrophysics Data System (ADS)
Czechowski, Leszek
2016-10-01
Introduction: Enceladus, a satellite of Saturn, is the smallest celestial body in the Solar System where volcanic and tectonic activities are observed. Every second, the mass of 200 kg is ejected into space from the South Polar Terrain (SPT) - [1]. The loss of matter from the body's interior should lead to global compression of the crust. Typical effects of compression are: thrust faults, folding and subduction. However, such forms are not dominant on Enceladus. We propose here special tectonic process that could explain this paradox. Our hypotheses states that the mass loss from SPT is the main driving mechanism of the following tectonic processes: subsidence of SPT, flow in the mantle and motion of adjacent tectonic plates. The hypotheses is presented in [2], [3] and[4].We suggest that the loss of the volatiles results in a void, an instability, and motion of solid matter to fill the void. The motion is presented at the Fig.1 and includes:Subsidence of the 'lithosphere' of SPT.Flow of the matter in the mantle.Motion of plates adjacent to SPT towards the active regionMethods and results: The numerical model of processes presented is developed. It is based on the equations of continuous media..If emerging void is being filled by the subsidence of SPT only, then the velocity of subsidence is 0.05 mmyr-1. However, numerical calculations indicate that all three types of motion are usually important. The role of a given motion depends on the viscosity distribution. Generally, for most of the models the subsidence is 0.02 mmyr-1, but mantle flow and plates' motion also play a role in filling the void. The preliminary results of the numerical model indicate also that the velocity of adjacent plates could be 0.02 mmyr-1 for the Newtonian rheology.Note that in our model the reduction of the crust area is not a result of compression but it is a result of the plate sinking. Therefore the compressional surface features do not have to be dominant. The SPT does not have to be
Numerical modeling of volcanic arc development
NASA Astrophysics Data System (ADS)
Gerya, T.; Gorczyk, W.; Nikolaeva, K.
2007-05-01
We have created a new coupled geochemical-petrological-thermomechanical numerical model of subduction associated with volcanic arc development. The model includes spontaneous slab bending, subducted crust dehydration, aqueous fluid transport, mantle wedge melting and melt extraction resulting in crustal growth. Two major volcanic arc settings are modeled so far: active continental margins, and intraoceanic subduction. In case of Pacific-type continental margin two fundamentally different regimes of melt productivity are observed in numerical experiments which are in line with natural observations: (1) During continuous convergence with coupled plates highest amounts of melts are formed immediately after the initiation of subduction and then decrease rapidly with time due to the steepening of the slab inclination angle precluding formation of partially molten mantle wedge plumes; (2) During subduction associated with slab delamination and trench retreat resulting in the formation of a pronounced back arc basin with a spreading center in the middle melt production increases with time due to shallowing/stabilization of slab inclination associated with upward asthenospheric mantle flow toward the extension region facilitating propagation of hydrous partially molten plumes from the slab. In case of spontaneous nucleation of retreating oceanic subduction two scenarios of tecono-magmatic evolution are distinguished: (1) decay and, ultimately, the cessation of subduction and related magmatic activity, (2) increase in subduction rate (to up to ~12 cm/yr) and stabilization of subduction and magmatic arc growth. In the first case the duration of subduction correlates positively with the intensity of melt extraction: the period of continued subduction increases from 15,4 Myrs to 47,6 Myrs with the increase of melt extraction threshold from 1% to 9%. In scenario (1) the magmatic arc crust includes large amounts of rocks formed by melting of subducted crust atop the thermally
Modeling and numerical simulations of the influenced Sznajd model
NASA Astrophysics Data System (ADS)
Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep
2017-08-01
This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.
Numerical Modeling of Glaciers in Martian Paleoclimates
NASA Technical Reports Server (NTRS)
Colaprete, A.; Haberle, R. M.; Montmessin, F.; Scheaffer, J.
2004-01-01
Numerous geologic features suggest the presence of ice flow on the surface of mars. These features include lobate debris aprons, concentric crater fill, and lineated valley fill. The lateral extent of these features can range from 100 meters to over 20 km. Previous work has demonstrated that these features could not have formed in current Martian conditions. It has long been speculated that changes in Mars orbital properties, namely its obliquity, eccentricity, and argument of perihelion, can result in dramatic changes to climate. Recent climate model studies have shown that at periods of increased obliquity north polar water ice is mobilized southward and deposited at low ad mid latitudes. Mid latitude accumulation of ice would provide the necessary conditions for rock glaciers to form. A time-marching, finite element glacier model is used to demonstrate the ability of ice and ice-rock mixtures to flow under Martian paleoclimate conditions. Input to this model is constrained by the NASA Ames Mars General Circulation Model (MGCM).
Oblique Impact and Its Ejecta: Numerical Modeling
NASA Astrophysics Data System (ADS)
Artemieva, N.; Pierazzo, E.
2003-01-01
It is well known that impact events strike planetary surfaces at an angle from the surface. Assuming an isotropic flux of projectiles, probability theory indicates that the most likely angle of impact is 45 regardless of the body's gravitational field. While crater rims appear circular down to low impact angles, the distribution of ejecta around the crater is sensitive to the angle of impact and currently serves as the best guide to obliquity of impacts. A fair amount of numerical modeling of vertical impacts has been carried out from the early 60-s to the present time and references herein]. In vertical impacts, the axial symmetry of the process allows the simplification of the model to two dimensions (2D). Oblique impact modeling requires 3D hydro-codes and, hence, much more powerful computers. The first documented detailed oblique impact studies were carried out at Sandia National Labs' supercomputers less than 10 years ago to describe the 1994 collision of comet SL9 with Jupiter. Since then, substantial progress in computer science has made 3D modeling a reachable objective for the scientific community.
Anisotropic halo model: implementation and numerical results
NASA Astrophysics Data System (ADS)
Sgró, Mario A.; Paz, Dante J.; Merchán, Manuel
2013-07-01
In the present work, we extend the classic halo model for the large-scale matter distribution including a triaxial model for the halo profiles and their alignments. In particular, we derive general expressions for the halo-matter cross-correlation function. In addition, by numerical integration, we obtain instances of the cross-correlation function depending on the directions given by halo shape axes. These functions are called anisotropic cross-correlations. With the aim of comparing our theoretical results with the simulations, we compute averaged anisotropic correlations in cones with their symmetry axis along each shape direction of the centre halo. From these comparisons we characterize and quantify the alignment of dark matter haloes on the Λcold dark matter context by means of the presented anisotropic halo model. Since our model requires multidimensional integral computation we implement a Monte Carlo method on GPU hardware which allows us to increase the precision of the results and it improves the performance of the computation.
Numerical Modeling of Glaciers in Martian Paleoclimates
NASA Technical Reports Server (NTRS)
Colaprete, A.; Haberle, R. M.; Montmessin, F.; Scheaffer, J.
2004-01-01
Numerous geologic features suggest the presence of ice flow on the surface of mars. These features include lobate debris aprons, concentric crater fill, and lineated valley fill. The lateral extent of these features can range from 100 meters to over 20 km. Previous work has demonstrated that these features could not have formed in current Martian conditions. It has long been speculated that changes in Mars orbital properties, namely its obliquity, eccentricity, and argument of perihelion, can result in dramatic changes to climate. Recent climate model studies have shown that at periods of increased obliquity north polar water ice is mobilized southward and deposited at low ad mid latitudes. Mid latitude accumulation of ice would provide the necessary conditions for rock glaciers to form. A time-marching, finite element glacier model is used to demonstrate the ability of ice and ice-rock mixtures to flow under Martian paleoclimate conditions. Input to this model is constrained by the NASA Ames Mars General Circulation Model (MGCM).
Numerical Modeling of Ocular Dysfunction in Space
NASA Technical Reports Server (NTRS)
Nelson, Emily S.; Mulugeta, Lealem; Vera, J.; Myers, J. G.; Raykin, J.; Feola, A. J.; Gleason, R.; Samuels, B.; Ethier, C. R.
2014-01-01
Upon introduction to microgravity, the near-loss of hydrostatic pressure causes a marked cephalic (headward) shift of fluid in an astronaut's body. The fluid shift, along with other factors of spaceflight, induces a cascade of interdependent physiological responses which occur at varying time scales. Long-duration missions carry an increased risk for the development of the Visual Impairment and Intracranial Pressure (VIIP) syndrome, a spectrum of ophthalmic changes including posterior globe flattening, choroidal folds, distension of the optic nerve sheath, kinking of the optic nerve and potentially permanent degradation of visual function. In the cases of VIIP found to date, the initial onset of symptoms occurred after several weeks to several months of spaceflight, by which time the gross bodily fluid distribution is well established. We are developing a suite of numerical models to simulate the effects of fluid shift on the cardiovascular, central nervous and ocular systems. These models calculate the modified mean volumes, flow rates and pressures that are characteristic of the altered quasi-homeostatic state in microgravity, including intracranial and intraocular pressures. The results of the lumped models provide initial and boundary data to a 3D finite element biomechanics simulation of the globe, optic nerve head and retrobulbar subarachnoid space. The integrated set of models will be used to investigate the evolution of the biomechanical stress state in the ocular tissues due to long-term exposure to microgravity.
Transient Numerical Modeling of Catalytic Channels
NASA Technical Reports Server (NTRS)
Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.
2007-01-01
This paper presents a transient model of catalytic combustion suitable for isolated channels and monolith reactors. The model is a lumped two-phase (gas and solid) model where the gas phase is quasi-steady relative to the transient solid. Axial diffusion is neglected in the gas phase; lateral diffusion, however, is accounted for using transfer coefficients. The solid phase includes axial heat conduction and external heat loss due to convection and radiation. The combustion process utilizes detailed gas and surface reaction models. The gas-phase model becomes a system of stiff ordinary differential equations while the solid phase reduces, after discretization, into a system of stiff ordinary differential-algebraic equations. The time evolution of the system came from alternating integrations of the quasi-steady gas and transient solid. This work outlines the numerical model and presents some sensitivity studies on important parameters including internal transfer coefficients, catalytic surface site density, and external heat-loss (if applicable). The model is compared to two experiments using CO fuel: (1) steady-state conversion through an isothermal platinum (Pt) tube and (2) transient propagation of a catalytic reaction inside a small Pt tube. The model requires internal mass-transfer resistance to match the experiments at lower residence times. Under mass-transport limited conditions, the model reasonably predicted exit conversion using global mass-transfer coefficients. Near light-off, the model results did not match the experiment precisely even after adjustment of mass-transfer coefficients. Agreement improved for the first case after adjusting the surface kinetics such that the net rate of CO adsorption increased compared to O2. The CO / O2 surface mechanism came from a sub-set of reactions in a popular CH4 / O2 mechanism. For the second case, predictions improved for lean conditions with increased external heat loss or adjustment of the kinetics as in the
Numerical linearized MHD model of flapping oscillations
NASA Astrophysics Data System (ADS)
Korovinskiy, D. B.; Ivanov, I. B.; Semenov, V. S.; Erkaev, N. V.; Kiehas, S. A.
2016-06-01
Kink-like magnetotail flapping oscillations in a Harris-like current sheet with earthward growing normal magnetic field component Bz are studied by means of time-dependent 2D linearized MHD numerical simulations. The dispersion relation and two-dimensional eigenfunctions are obtained. The results are compared with analytical estimates of the double-gradient model, which are found to be reliable for configurations with small Bz up to values ˜ 0.05 of the lobe magnetic field. Coupled with previous results, present simulations confirm that the earthward/tailward growth direction of the Bz component acts as a switch between stable/unstable regimes of the flapping mode, while the mode dispersion curve is the same in both cases. It is confirmed that flapping oscillations may be triggered by a simple Gaussian initial perturbation of the Vz velocity.
Numerical Modeling of Supra-Arcade Downflows
NASA Astrophysics Data System (ADS)
Huang, Y. M.; Bhattacharjee, A.; Guo, L.; Innes, D.
2015-12-01
Abstract Supra-arcade downflows (SADs) are elongated features usually observed above post-eruption flare arcades, with low emission, low density, and high temperature. Although SADs have been observed and studied extensively, their physical interpretation and mechanism remain not well understood and controversial. In our recent numerical and observational studies, we suggest that SADs may be due to Rayleigh-Taylor type instabilities occurring at the front of reconnection outflow jets as they encounter the underlying arcades (Innes et al. Astrophys. J. 796, 27; Guo et al. Astrophys. J. Lett., 796, L29). In this work, we further improve our three-dimensional magnetohydrodynamic model of SADs by incorporating viscous and resistive heating, anisotropic heat conduction, as well as line-tied lower boundary conditions. Synthetic SDO AIA emission measure profiles are calculated from simulation data and compared with observations.
Numerical modelling of ion transport in flames
NASA Astrophysics Data System (ADS)
Han, Jie; Belhi, Memdouh; Bisetti, Fabrizio; Mani Sarathy, S.
2015-11-01
This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model's predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018.
Modeling Biodegradation and Reactive Transport: Analytical and Numerical Models
Sun, Y; Glascoe, L
2005-06-09
The computational modeling of the biodegradation of contaminated groundwater systems accounting for biochemical reactions coupled to contaminant transport is a valuable tool for both the field engineer/planner with limited computational resources and the expert computational researcher less constrained by time and computer power. There exists several analytical and numerical computer models that have been and are being developed to cover the practical needs put forth by users to fulfill this spectrum of computational demands. Generally, analytical models provide rapid and convenient screening tools running on very limited computational power, while numerical models can provide more detailed information with consequent requirements of greater computational time and effort. While these analytical and numerical computer models can provide accurate and adequate information to produce defensible remediation strategies, decisions based on inadequate modeling output or on over-analysis can have costly and risky consequences. In this chapter we consider both analytical and numerical modeling approaches to biodegradation and reactive transport. Both approaches are discussed and analyzed in terms of achieving bioremediation goals, recognizing that there is always a tradeoff between computational cost and the resolution of simulated systems.
Benchmarking numerical freeze/thaw models
NASA Astrophysics Data System (ADS)
Rühaak, Wolfram; Anbergen, Hauke; Molson, John; Grenier, Christophe; Sass, Ingo
2015-04-01
The modeling of freezing and thawing of water in porous media is of increasing interest, and for which very different application areas exist. For instance, the modeling of permafrost regression with respect to climate change issues is one area, while others include geotechnical applications in tunneling and for borehole heat exchangers which operate at temperatures below the freezing point. The modeling of these processes requires the solution of a coupled non-linear system of partial differential equations for flow and heat transport in space and time. Different code implementations have been developed in the past. Analytical solutions exist only for simple cases. Consequently, an interest has arisen in benchmarking different codes with analytical solutions, experiments and purely numerical results, similar to the long-standing DECOVALEX and the more recent "Geothermal Code Comparison" activities. The name for this freezing/ thawing benchmark consortium is INTERFROST. In addition to the well-known so-called Lunardini solution for a 1D case (case T1), two different 2D problems will be presented, one which represents melting of a frozen inclusion (case TH2) and another which represents the growth or thaw of permafrost around a talik (case TH3). These talik regions are important for controlling groundwater movement within a mainly frozen ground. First results of the different benchmark results will be shown and discussed.
Impact of numerical models on fragmentation processes
NASA Astrophysics Data System (ADS)
Renouf, Mathieu; Gezahengn, Belien; Abbas, Micheline; Bourgeois, Florent
2013-06-01
Simulated fragmentation process in granular assemblies is a challenging problem which date back the beginning of the 90'. If first approaches have focus on the fragmentation on a single particle, with the development of robust, fast numerical method is is possible today to simulated such process in a large collection of particles. But the question of the fragmentation problem is still open: should the fragmentation be done dynamically (one particle becoming two fragments) and according which criterion or should the fragment paths be defined initially and which is the impact of the discretization and the model of fragments? The present contribution proposes to investigate the second aspect i.e. the impact of fragment modeling on the fragmentation processes. First to perform such an analysis, the geometry of fragments (disks/sphere or polygon/polyhedra), their behavior (rigid/deformable) and the law governing their interactions are investigated. Then such model will be used in a grinding application where the evolution of fragments and impact on the behavior of the whole packing are investigate.
A numerical forecast model for road meteorology
NASA Astrophysics Data System (ADS)
Meng, Chunlei
2017-05-01
A fine-scale numerical model for road surface parameters prediction (BJ-ROME) is developed based on the Common Land Model. The model is validated using in situ observation data measured by the ROSA road weather stations of Vaisala Company, Finland. BJ-ROME not only takes into account road surface factors, such as imperviousness, relatively low albedo, high heat capacity, and high heat conductivity, but also considers the influence of urban anthropogenic heat, impervious surface evaporation, and urban land-use/land-cover changes. The forecast time span and the update interval of BJ-ROME in vocational operation are 24 and 3 h, respectively. The validation results indicate that BJ-ROME can successfully simulate the diurnal variation of road surface temperature both under clear-sky and rainfall conditions. BJ-ROME can simulate road water and snow depth well if the artificial removing was considered. Road surface energy balance in rainy days is quite different from that in clear-sky conditions. Road evaporation could not be neglected in road surface water cycle research. The results of sensitivity analysis show solar radiation correction coefficient, asphalt depth, and asphalt heat conductivity are important parameters in road interface temperatures simulation. The prediction results could be used as a reference of maintenance decision support system to mitigate the traffic jam and urban water logging especially in large cities.
Foehn wind detection using numerical modelling
NASA Astrophysics Data System (ADS)
Irimescu, A.; Caian, M.
2010-09-01
In Romania, foehn is a short-lived atmospheric phenomenon, of a low to average intensity, not always highlighted by weather station observations. When such situations occur additional data are resorted to, rendering a continuous, aggregate image, in comparison to the punctual information yielded by weather stations. This paper aims to describe how foehn is detected in northern Oltenia (the Inner Carpathian-Balkan Curvature), using numerical modelling. Results generated by the RegCM3 Regional Climatic Model thus represent an undisputed tool, their most important advantage being the 10-km spatial resolution. The presence of foehn in northern Oltenia and its climatic peculiarities have been disclosed through the analysis in time and space of the meteorological elements specific to the phenomenon (air temperature, wind speed and direction etc) over a 40-year interval (1961-2000). The paper presents a new methodology that can be used to estimate the probability of production and the foehn characteristics (intensity, duration etc.). Interpretation of the RegCM3 model results has led to the statistical analysis of foehn occurrences within the studied area during the cold season (December, January and February). The resulted climatology, with fine resolution, can be used in foehn forecast of predictability.
Numerical Modeling of Suspension HVOF Spray
NASA Astrophysics Data System (ADS)
Jadidi, M.; Moghtadernejad, S.; Dolatabadi, A.
2016-02-01
A three-dimensional two-way coupled Eulerian-Lagrangian scheme is used to simulate suspension high-velocity oxy-fuel spraying process. The mass, momentum, energy, and species equations are solved together with the realizable k-ɛ turbulence model to simulate the gas phase. Suspension is assumed to be a mixture of solid particles [mullite powder (3Al2O3·2SiO2)], ethanol, and ethylene glycol. The process involves premixed combustion of oxygen-propylene, and non-premixed combustion of oxygen-ethanol and oxygen-ethylene glycol. One-step global reaction is used for each mentioned reaction together with eddy dissipation model to compute the reaction rate. To simulate the droplet breakup, Taylor Analogy Breakup model is applied. After the completion of droplet breakup, and solvent evaporation/combustion, the solid suspended particles are tracked through the domain to determine the characteristics of the coating particles. Numerical simulations are validated against the experimental results in the literature for the same operating conditions. Seven or possibly eight shock diamonds are captured outside the nozzle. In addition, a good agreement between the predicted particle temperature, velocity, and diameter, and the experiment is obtained. It is shown that as the standoff distance increases, the particle temperature and velocity reduce. Furthermore, a correlation is proposed to determine the spray cross-sectional diameter and estimate the particle trajectories as a function of standoff distance.
Numerical modeling of polar mesocyclones generation mechanisms
NASA Astrophysics Data System (ADS)
Sergeev, Dennis; Stepanenko, Victor
2013-04-01
parameters, lateral boundary conditions are varied in the typically observed range. The approach is fully nonlinear: we use a three-dimensional non-hydrostatic mesoscale model NH3D_MPI [1] coupled with one-dimensional water body model LAKE. A key method used in the present study is the analysis of eddy kinetic and available potential energy budgets. References 1. Mikushin, D.N., and Stepanenko, V.M., The implementation of regional atmospheric model numerical algorithms for CBEA-based clusters. Lecture Notes in Computer Science, Parallel Processing and Applied Mathematics, 2010, vol. 6067, p. 525-534. 2. Rasmussen, E., and Turner, J. (eds), Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge: Cambridge University Press, 2003, 612 pp. 3. Yanase, W., and Niino, H., Dependence of Polar Low Development on Baroclinicity and Physical Processes: An Idealized High-Resolution Experiment, J. Atmos. Sci., 2006, vol. 64, p. 3044-3067.
Numerical Models of Ophiolite Genesis and Obduction
NASA Astrophysics Data System (ADS)
Guilmette, C.; Beaumont, C.; Jamieson, R.
2013-12-01
Ophiolites are relics of oceanic lithosphere tectonically emplaced in continental settings. They are diagnostic features of continental suture zones, where they mark past plate boundaries. Even after having been studied for more than 40 years, the mechanisms involved in the genesis and subsequent obduction of ophiolites over continental margins are still debated. We present the results of 2D thermal-mechanical numerical models that successfully reproduce characteristics of natural examples like the Semail, Bay of Islands, Yarlung-Zangbo, and Coast Range ophiolites. The numerical models are upper mantle scale and use pressure-, temperature- and strain-dependent viscous-plastic rheologies. Both divergent and convergent velocity boundary conditions are used and tectonic boundary forces are monitored. The models start with the rifting of a stable continent, followed by development of an ocean ridge and accretion of oceanic lithosphere at a total rate of 3 cm/y. Once a specified ocean size/age is achieved, the velocity boundary conditions are reversed leading to convergence and the spontaneous inception of a suduction zone at the mid-ocean ridge. We present results for models including different ages of oceans (40 to 90 Ma) and different convergence velocities (5 to 15 cm/y). The interaction between the lower plate passive margin and the oceanic upper plate results in 5 different tectonic styles. These differ mainly by the presence or absence of oceanic spreading in the upper plate (back-arc basin), leading to supra-subduction zone ophiolites vs. MORB-type, and by the behaviour of the oceanic slab, e.g., slab rollback vs. breakoff. The evolution of effective slab pull is interpreted to be the major control on the resulting tectonic style. Low effective slab pull models (young oceans and fast convergence rates) fail to obduct an ophiolite. Strong effective slab pull models (old oceans and lower convergence rates) result in subduction zone retreat and spontaneous oceanic
Numerical modeling of landslide generated seismic waves
NASA Astrophysics Data System (ADS)
Favreau, P.; Mangeney, A.; Lucas, A.; Shapiro, N. M.; Crosta, G. B.; Bouchut, F.; Hungr, O.
2009-12-01
Gravitational instabilities such as debris flows, landslides or avalanches play a key role in erosion processes at the surface of the Earth and other telluric planets. On Earth, they represent one of the major natural hazards threatening population and infrastructure in volcanic, mountainous, seismic and coastal areas. One of the main issues in terms of risk assessment is to produce tools for detection of natural instabilities and for prediction of velocity and runout extent of rapid landslides. The lack of field measurements of the dynamics of natural landslides due to their unpredictability and destructive power, prevents investigating the mechanical properties of the flowing material that appears to be very different from experimental granular flows in the laboratory. In this context, the analysis of the seismic signal generated by natural instabilities provides a unique paradigm to study flow dynamics and discriminate the physical processes at play during their emplacement along the slope. Potentially, it is possible to infer information about the “landslide source” from the seismic signal produced during the initial collapse and the subsequent flow along the natural terrain. However, the process of reverse dynamic analysis is complex and must take into consideration the role of topography, mass of the landslide, flow dynamics, and wave propagation on the recorded signal. We use here numerical modeling of the landslide and of the generated seismic waves to address this issue. We show that (i) numerical simulation of landslide and generated seismic waves well match the observed low frequency seismic signal, (ii) topography effects on landslide dynamics play a key role in the observed seismic signal, (iii) simulation of the seismic wave makes it possible to discriminate between the alternative possible scenario of flow dynamics and to provide estimates of the rheological parameters during the flow. As a result, unique data on natural flow dynamics could be
Numerical Modelling of Seismic Slope Stability
NASA Astrophysics Data System (ADS)
Bourdeau, Céline; Havenith, Hans-Balder; Fleurisson, Jean-Alain; Grandjean, Gilles
Earthquake ground-motions recorded worldwide have shown that many morphological and geological structures (topography, sedimentary basin) are prone to amplify the seismic shaking (San Fernando, 1971 [Davis and West 1973] Irpinia, 1980 [Del Pezzo et al. 1983]). This phenomenon, called site effects, was again recently observed in El Salvador when, on the 13th of January 2001, the country was struck by a M = 7.6 earthquake. Indeed, while horizontal accelerations on a rock site at Berlin, 80 km from the epicentre, did not exceed 0.23 g, they reached 0.6 g at Armenia, 110 km from the epicentre. Armenia is located on a small hill underlaid by a few meters thick pyroclastic deposits. Both the local topography and the presence of surface layers are likely to have caused the observed amplification effects, which are supposed to have contributed to the triggering of some of the hundreds of landslides related to this seismic event (Murphy et al. 2002). In order to better characterize the way site effects may influence the triggering of landslides along slopes, 2D numerical elastic and elasto-plastic models were developed. Various geometrical, geological and seismic conditions were analysed and the dynamic behaviour of the slope under these con- ditions was studied in terms of creation and location of a sliding surface. Preliminary results suggest that the size of modelled slope failures is dependent on site effects.
Frustration in model glass systems: Numerical investigations
NASA Astrophysics Data System (ADS)
Jullien, Rémi; Jund, Philippe; Caprion, Didier; Sadoc, Jean-François
1999-11-01
Numerical Voronoï tessellation is used to investigate the mechanisms of frustration in some model glass systems. First, random packings of 8192 hard spheres of increasing volume fraction c are built using an efficient computer algorithm. Their Voronoï statistics evolves with c as if the system would like to reach a pure icosahedral order when extrapolating the volume fraction above the Bernal limit cb≃0.645. Second, super-cooled liquid and glass samples of 1000 atoms are generated at different temperatures T after a quench from the liquid state, using classical micro-canonical molecular dynamics with a simple soft-sphere potential. When decreasing T, the ideal icosahedral order appears again as an extrapolated situation which cannot be realized due to geometrical frustration. Third, a model silica glass of 648 atoms is studied using the potential of van Beest, Kramer and van Santen and a quite similar quenching procedure is performed. As in the soft-sphere case the structural freezing following upon the glass transition is noticeable in all the geometrical characteristics of the Voronoï cells and again a possible interpretation in terms of geometrical frustration is proposed.
Numerical Modeling of a Magnetic Nozzle
NASA Astrophysics Data System (ADS)
Tushentsov, Mikhail; Breizman, Boris; Arefiev, Alexey
2007-11-01
We present computational study of a magnetic nozzle, which is a component of the VASIMR (Variable Specific Impulse Magnetoplasma Rocket) plasma-based propulsion system for a space vehicle. The magnetic nozzle transforms ion gyromotion into directed axial motion, adiabatically accelerating the plasma, and enabling plasma detachment from the spaceship via self-consistent magnetic field modification. VASIMR employs ion cyclotron resonance heating to deposit rf-power directly to the plasma ions created by the low energy plasma source. We have developed a numerical code to model the axisymmetric nozzle within the framework of collisionless MHD with an azimuthal ion velocity spread. The code implements a reduced model that consists of truncated steady-state equations for the velocity space moments of the ion distribution function and takes advantage of the plasma flow paraxiality. This makes it possible to study the conversion of the ion gyro-energy at the nozzle entrance into the energy of the directed flow at the exhaust. The magnetic field in the vacuum, which is not assumed to be paraxial, is calculated using a given magnetic coil configuration in the presence of plasma. From the computed steady-state flow configuration, the code evaluates magnetic nozzle efficiency, defined as the ratio of the axial momentum flux in the outgoing flow to the axial momentum flux in the incoming flow.
Numerical modeling of the Amazon River plume
NASA Astrophysics Data System (ADS)
Nikiema, Oumarou; Devenon, Jean-Luc; Baklouti, Malika
2007-04-01
Marine circulation above the northern Brazilian continental shelf is subject to energetic forcing factors of various origins: high water buoyancy fluxes induced by the Amazon River freshwater discharge, a strong coastal current associated with a mesoscale current (North Brazil Current (NBC)), a forcing by semidiurnal tide and by Northeast or Southeast trade winds according to the season. Using a three-dimensional (3-D) hydrodynamic numerical model (MOBEEHDYCS), and realistic bathymetry and coastline of the northern Brazilian shelf, this paper aims at studying the influence of some specific physical processes on the morphology of the Amazon plume. The very large volume discharge (180 000 m 3/s on average) and the weak effect of Coriolis force are additional characteristics of the studied system, which induce a particular dynamics. The various forcing factors are successively introduced into the model in order to simulate and to determine their respective influences upon the plume extent and the hydrodynamics at the shelf scale. Simulation reveal that the coastal current is at the origin of the permanent northwestward Amazon plume extension while wind effect can either reinforce or moderate this situation. The tide intervenes also to modify the position of the salinity front: a horizontal migration of salinity front is observed under its action.
Numerical models of wind-driven circulation in lakes
Cheng, R.T.; Powell, T.M.; Dillon, T.M.
1976-01-01
The state-of-the-art of numerical modelling of large-scale wind-driven circulation in lakes is presented. The governing equations which describe this motion are discussed along with the appropriate numerical techniques necessary to solve them in lakes. The numerical models are categorized into three large primary groups: the layered models, the Ekman-type models, and the other three-dimensional models. Discussions and comparison of models are given and future research directions are suggested. ?? 1976.
Understanding Etna flank instability through numerical models
NASA Astrophysics Data System (ADS)
Apuani, Tiziana; Corazzato, Claudia; Merri, Andrea; Tibaldi, Alessandro
2013-02-01
As many active volcanoes, Mount Etna shows clear evidence of flank instability, and different mechanisms were suggested to explain this flank dynamics, based on the recorded deformation pattern and character. Shallow and deep deformations, mainly associated with both eruptive and seismic events, are concentrated along recognised fracture and fault systems, mobilising the eastern and south-eastern flank of the volcano. Several interacting causes were postulated to control the phenomenon, including gravity force, magma ascent along the feeding system, and a very complex local and/or regional tectonic activity. Nevertheless, the complexity of such dynamics is still an open subject of research and being the volcano flanks heavily urbanised, the comprehension of the gravitative dynamics is a major issue for public safety and civil protection. The present research explores the effects of the main geological features (in particular the role of the subetnean clays, interposed between the Apennine-Maghrebian flysch and the volcanic products) and the role of weakness zones, identified by fracture and fault systems, on the slope instability process. The effects of magma intrusions are also investigated. The problem is addressed by integrating field data, laboratory tests and numerical modelling. A bi- and tri-dimensional stress-strain analysis was performed by a finite difference numerical code (FLAC and FLAC3D), mainly aimed at evaluating the relationship among geological features, volcano-tectonic structures and magmatic activity in controlling the deformation processes. The analyses are well supported by dedicated structural-mechanical field surveys, which allowed to estimate the rock mass strength and deformability parameters. To take into account the uncertainties which inevitably occur in a so complicated model, many efforts were done in performing a sensitivity analysis along a WNW-ESE section crossing the volcano summit and the Valle del Bove depression. This was
Numerical model of circumpolar Antarctic ice shelves
Johnson, R.C.
1985-01-01
Extensive floating ice shelves in the Antarctic have been proposed to explain the discrepancies between Pleistocene high sea levels shown by dated coral reefs and coeval low sea levels inferred from glacial ice volumes calculated from oxygen isotope ratios in deep sea cores. A numerical model using the floating shelf creep analysis of Weertman (1957) has provided a plausible basis for the acceptance of such shelves. Shelf outer limits were set at 55/sup 0/S in East Antarctica and 58/sup 0/S in West Antarctica, based in part on diatom-deficient deep sea sediments deposited prior to the Holocene. Precipitation varied from 10 gm cm/sup -2/yr/sup -1/ at 75/sup 0/S to 80 gm cm/sup -2/yr/sup -1/ at 55/sup 0/S. Mean air temperatures varied from -35/sup 0/C at the 75/sup 0/S coast to -17/sup 0/C at the outer limits. Isotope ratios were those of present Antarctic precipitation at corresponding model shelf temperatures. In the calculation, a steady state is assumed. Integration begins at the coast with summation over successive years as creep and continental ice discharge move the integration element to the outer limits. The oceanic oxygen isotope ratio change required by the discrepancies in the record is 0.40 to 0.50 ppmil. Using the flow law constant of 4.2 and a creep activation energy of 134 kjoules mol/sup -1/, the resulting change is 0.44 ppmil. Difference results reflect the uncertainties associated with the critical creep constants used in the modeling. Nevertheless, the results suggest that a quantity of Antarctic shelf ice comparable to ice volumes in major Northern glacial areas existed at times during the Pleistocene.
Numerical modeling of atoll island hydrogeology.
Bailey, R T; Jenson, J W; Olsen, A E
2009-01-01
We implemented Ayers and Vachers' (1986) inclusive conceptual model for atoll island aquifers in a comprehensive numerical modeling study to evaluate the response of the fresh water lens to selected controlling climatic and geologic variables. Climatic factors include both constant and time-varying recharge rates, with particular attention paid to the effects of El Niño and the associated drought it brings to the western Pacific. Geologic factors include island width; hydraulic conductivity of the uppermost Holocene-age aquifer, which contains the fresh water lens; the depth to the contact with the underlying, and much more conductive, Pleistocene karst aquifer, which transmits tidal signals to the base of the lens; and the presence or absence of a semiconfining reef flat plate on the ocean side. Sensitivity analyses of steady-steady simulations show that lens thickness is most strongly sensitive to the depth to the Holocene-Pleistocene contact and to the hydraulic conductivity of the Holocene aquifer, respectively. Comparisons between modeling results and published observations of atoll island lens thicknesses suggest a hydraulic conductivity of approximately 50 m/d for leeward islands and approximately 400 m/d for windward islands. Results of transient simulations show that lens thickness fluctuations during average seasonal conditions and El Niño events are quite sensitive to island width, recharge rate, and hydraulic conductivity of the Holocene aquifer. In general, the depletion of the lens during drought conditions is most drastic for small, windward islands. Simulation results suggest that recovery from a 6-month drought requires about 1.5 years.
Numerical modeling of confined liquid crystal systems
NASA Astrophysics Data System (ADS)
Mkaddem, Sami
There has been much research interest in fine structures and defects of equilibrium configurations of nematic liquid crystal droplets subject to strong homeotropic anchoring and modeled by Landau-de Gennes free-energy functionals. In particular, two configurations are the center of attention. The first one is the radial hedgehog, which has an isotropic core and a spherically symmetric structure. The second one is the ring disclination, which has a ring disclination of strength 1/2 and a cylindrically symmetric structure. In this dissertation, we undertake a detailed numerical study of the two described equilibrium configurations using the imposed symmetries to simplify the problem and utilizing a high order finite element discretization to solve it. In addition to the radial hedgehog and the ring disclination, we found a new, metastable configuration, which also is axially symmetric and consists of two isotropic points along its symmetry axis narrowly separated by a line disclination. We generate phase and bifurcation diagrams of the equilibrium configurations. We also investigate the qualitative behavior and the stability of the radial hedgehog. Using a perturbation against the radial hedgehog, we show that such configurations must become unstable at sufficiently low temperatures or in sufficiently large droplets.
Impact activation of Martian permafrost: Numerical modeling
NASA Astrophysics Data System (ADS)
Ivanov, B.; Melosh, H. J.
2011-12-01
For the last decade the team of Dr. Elisabetta (Betty) Pierazzo (LPL+PSI) study physical and mechanical processes involved in impact melting of Martian permafrost. The idea is that on Mars large enough impact craters would start substantial hydrothermal activity underneath the crater for thousands of years (possibly for >1 Myr, if a crater is larger than about 200 km in diameter). Numerical efforts to predict the extent and time scale of hydrothermal activity in Martian impact craters have mostly relied on numerical simulations of impact cratering into uniform or layered ice-rock targets. We conduct a case modeling study of impact melting of permafrost on Mars to investigate the general thermal state of the rock layers modified in the formation of hyper-velocity impact craters. We model the formation of a mid-size crater, about 30 km in diameter, formed on target consisting of a mixture of large particles of H2O-ice and rock (something like ice lenses in rock fractures) and fine mix equilibrated in temperature with an ice/water content variable with depth. The model results indicate that for craters larger than about 30 km in diameter the onset of post-impact hydrothermal circulation is characterized by two stages: first, the formation of a mostly dry, hot central uplift, followed by water beginning to flow in and circulate through the initially dry and hot uplifted crustal rocks. The post-impact thermal field in the periphery of the crater is dependent on crater size: in mid-size craters, 30-50 km in diameter, crater walls are not strongly heated in the impact event, and even though ice present in the rock may initially be heated enough to melt, overall temperatures in the rock remain below melting, undermining the development of a crater-wide hydrothermal circulation. We speculate that salt deposition from supercritical water may occur immediately after impact in some locations before the normal water circulation starts. In larger craters, crater walls are heated
Numerical modelling of new rockfall interception nets
NASA Astrophysics Data System (ADS)
von Boetticher, Albrecht; Volkwein, Axel; Wendeler, Corinna
2010-05-01
The design and certification of effective rockfall protection barriers is mainly achieved through 1:1 prototype testing. In order to reduce development costs of a prototype it is recommended that pre-studies using numerical simulations are performed. A large component to modelling rockfall protection systems is the numerical simulation of the nets. To date there exist several approaches to model the different mesh types such as ring nets or diagonal meshes (Nicot 1999, Cazzani et al. 2002, Volkwein 2004). However, the consideration of chain link meshes has not yet been realised. Chain link meshes are normally found as standard fence structures. However, they also exist in setups using high-strength steel and wire bundles. These variants show an enormous capacity to retain loads e.g. rockfalls, and at the same time are very efficient due to their low demand of steel material. The increasing application of chain link mesh in barrier systems requires an accurate model is available to complete prototype studies. A new approach now aims to perform a Finite Element simulation of such chain link meshes. The main challenge herein is to achieve the net deformation behaviour that is observed in field tests also in the simulation. A simulation using simple truss elements would not work since it neglects the out-of-plane-height of the mesh construction providing important reserves for local and global high deformations. Thus addressing this, a specially developed Discrete Element is able to reconstruct the mechanical behaviour of the single chain wire (bundles). As input parameters it utilises typical properties such as longitudinal and transversal mesh widths, and break loads resulting from in-plane-tension tests and steel strength. The single chain elements then can be combined to a complete mesh (e.g. 130 x 65 mm, 3 - 4 mm wire with a strength of 1770 N-mm2). Combining these elements with a supporting structure consisting of posts, ropes and energy absorbers, enables the
Precise numerical modeling of next generation multimode fiber based links
NASA Astrophysics Data System (ADS)
Maksymiuk, L.; Stepniak, G.
2015-12-01
In order to numerically model modern multimode fiber based links we are required to take into account modal and chromatic dispersion, profile dispersion and spectral dependent coupling. In this paper we propose a complete numerical model which not only is precise but also versatile. Additionally to the detailed mathematical description of the model we provide also a bunch of numerical calculations performed with the use of the model.
Numerical models for high beta magnetohydrodynamic flow
Brackbill, J.U.
1987-01-01
The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas. 40 refs.
Numerical modeling of tunneling-induced seismicity
NASA Astrophysics Data System (ADS)
Rinaldi, Antonio Pio; Urpi, Luca
2017-04-01
Removal of rock mass in mining environment has been associated since long-time with seismic event of magnitude 3 and above, with the potential to cause damage to the infrastructures or even loss of human life. Although with similarities with mining, relatively unknown up to now are seismic events induced by tunneling. However with modern mechanized tunneling techniques, making possible to digging deeper and longer underground infrastructure, the risk is not negligible. As an example, the excavation of the 57km long Gotthard Base Tunnel has been associated more than hundred seismic events, with the largest one having magnitude of ML 2.4, damaging the tunnel infrastructures. For future scenario of deep geological storage of nuclear waste, tunneling will constitute the primary activity during site construction. Hence, it will be crucial to understand the risk associated with the underground construction operation that can reactivate seismogenic features nearby the future location of emplacement tunnels. Here we present numerical simulation aimed at understanding the potential for inducing seismicity during tunnel construction. The stress changes and their evolution during the excavation are evaluated with a finite element solver (FLAC3d). A strain-softening friction model is then used to simulate the occurrence of a sudden slip on a fault zone (if critical conditions for reactivation are reached). We also present a sensitivity analysis of the potential for inducing different seismic events by different tunnel sizes at varying distance from a nearby failure plane, with the final purpose of evaluating safety of a potential nuclear repository site on the short- and long-term.
A numerical 4D Collision Risk Model
NASA Astrophysics Data System (ADS)
Schmitt, Pal; Culloch, Ross; Lieber, Lilian; Kregting, Louise
2017-04-01
With the growing number of marine renewable energy (MRE) devices being installed across the world, some concern has been raised about the possibility of harming mobile, marine fauna by collision. Although physical contact between a MRE device and an organism has not been reported to date, these novel sub-sea structures pose a challenge for accurately estimating collision risks as part of environmental impact assessments. Even if the animal motion is simplified to linear translation, ignoring likely evasive behaviour, the mathematical problem of establishing an impact probability is not trivial. We present a numerical algorithm to obtain such probability distributions using transient, four-dimensional simulations of a novel marine renewable device concept, Deep Green, Minesto's power plant and hereafter referred to as the 'kite' that flies in a figure-of-eight configuration. Simulations were carried out altering several configurations including kite depth, kite speed and kite trajectory while keeping the speed of the moving object constant. Since the kite assembly is defined as two parts in the model, a tether (attached to the seabed) and the kite, collision risk of each part is reported independently. By comparing the number of collisions with the number of collision-free simulations, a probability of impact for each simulated position in the cross- section of the area is considered. Results suggest that close to the bottom, where the tether amplitude is small, the path is always blocked and the impact probability is 100% as expected. However, higher up in the water column, the collision probability is twice as high in the mid line, where the tether passes twice per period than at the extremes of its trajectory. The collision probability distribution is much more complex in the upper end of the water column, where the kite and tether can simultaneously collide with the object. Results demonstrate the viability of such models, which can also incorporate empirical
Simplified method for numerical modeling of fiber lasers.
Shtyrina, O V; Yarutkina, I A; Fedoruk, M P
2014-12-29
A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.
Validation of Numerical Shallow Water Models for Tidal Lagoons
Eliason, D.; Bourgeois, A.
1999-11-01
An analytical solution is presented for the case of a stratified, tidally forced lagoon. This solution, especially its energetics, is useful for the validation of numerical shallow water models under stratified, tidally forced conditions. The utility of the analytical solution for validation is demonstrated for a simple finite difference numerical model. A comparison is presented of the energetics of the numerical and analytical solutions in terms of the convergence of model results to the analytical solution with increasing spatial and temporal resolution.
Multiscale numerical modeling of the spherically symmetric cryosurgery problem
NASA Astrophysics Data System (ADS)
Kudryashov, N. A.; Shilnikov, K. E.
2017-01-01
The work is concerned with the numerical studying of the cryogenic biotissue destruction by a spherically symmetric tip. The multiscale bioheat transfer model is used for the describing of the biological solutions crystallization features. An explicit finite volume based approximation is applied for the numerical modeling of the processes taking place during the cryosurgery. The phase averaging method is applied as an computationally economic approach for the numerical modeling of the problem under study.
USDA-ARS?s Scientific Manuscript database
When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...
Numerical modelling of collapsing volcanic edifices
NASA Astrophysics Data System (ADS)
Costa, Ana; Marques, Fernando; Kaus, Boris
2017-04-01
The flanks of Oceanic Volcanic Edifice's (OVEs) can occasionally become unstable. If that occurs, they can deform in two different modes: either slowly along localization failure zones (slumps) or catastrophically as debris avalanches. Yet the physics of this process is incompletely understood, and the role of factors such as the OVE's strength (viscosity, cohesion, friction angle), dimensions, geometry, and existence of weak layers remain to be addressed. Here we perform numerical simulations to study the interplay between viscous and plastic deformation on the gravitational collapse of an OVE (diffuse deformation vs. localization of failure along discrete structures). We focus on the contribution of the edifice's strength parameters for the mode of deformation, as well as on the type of basement. Tests were performed for a large OVE (7.5 km high, 200 km long) and either purely viscous (overall volcano edifice viscosities between 1019-1023 Pa.s), or viscoplastic rheology (within a range of cohesion and friction angle values). Results show that (a) for a strong basement (no slip basal boundary condition), the deformation pattern suggests wide/diffuse "listric" deformation within the volcanic edifice, without the development of discrete plastic failure zones; (b) for a weak basement (free slip basal boundary condition), rapid collapse of the edifice through the propagation of plastic failure structures within the edifice occurs. Tests for a smaller OVE (4.5 km by 30 km) show that failure localization along large-scale listric structures occurs more readily for different combinations of cohesion and friction angles. In these tests, high cohesion values combined with small friction angles lead to focusing of deformation along a narrower band. Tests with a weak layer underlying part of the volcanic edifice base show deformation focused along discrete structures mainly dipping towards the distal sector of the volcano. These tests for a small OVE constitute a promising
Advanced in turbulence physics and modeling by direct numerical simulations
NASA Technical Reports Server (NTRS)
Reynolds, W. C.
1987-01-01
The advent of direct numerical simulations of turbulence has opened avenues for research on turbulence physics and turbulence modeling. Direct numerical simulation provides values for anything that the scientist or modeler would like to know about the flow. An overview of some recent advances in the physical understanding of turbulence and in turbulence modeling obtained through such simulations is presented.
Conceptual and Numerical Models for UZ Flow and Transport
H. Liu
2000-03-03
The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models.
NUMERICAL MODELING OF FINE SEDIMENT PHYSICAL PROCESSES.
Schoellhamer, David H.
1985-01-01
Fine sediment in channels, rivers, estuaries, and coastal waters undergo several physical processes including flocculation, floc disruption, deposition, bed consolidation, and resuspension. This paper presents a conceptual model and reviews mathematical models of these physical processes. Several general fine sediment models that simulate some of these processes are reviewed. These general models do not directly simulate flocculation and floc disruption, but the conceptual model and existing functions are shown to adequately model these two processes for one set of laboratory data.
Numerical Modeling in Geodynamics: Success, Failure and Perspective
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.
2005-12-01
A real success in numerical modeling of dynamics of the Earth can be achieved only by multidisciplinary research teams of experts in geodynamics, applied and pure mathematics, and computer science. The success in numerical modeling is based on the following basic, but simple, rules. (i) People need simplicity most, but they understand intricacies best (B. Pasternak, writer). Start from a simple numerical model, which describes basic physical laws by a set of mathematical equations, and move then to a complex model. Never start from a complex model, because you cannot understand the contribution of each term of the equations to the modeled geophysical phenomenon. (ii) Study the numerical methods behind your computer code. Otherwise it becomes difficult to distinguish true and erroneous solutions to the geodynamic problem, especially when your problem is complex enough. (iii) Test your model versus analytical and asymptotic solutions, simple 2D and 3D model examples. Develop benchmark analysis of different numerical codes and compare numerical results with laboratory experiments. Remember that the numerical tool you employ is not perfect, and there are small bugs in every computer code. Therefore the testing is the most important part of your numerical modeling. (iv) Prove (if possible) or learn relevant statements concerning the existence, uniqueness and stability of the solution to the mathematical and discrete problems. Otherwise you can solve an improperly-posed problem, and the results of the modeling will be far from the true solution of your model problem. (v) Try to analyze numerical models of a geological phenomenon using as less as possible tuning model variables. Already two tuning variables give enough possibilities to constrain your model well enough with respect to observations. The data fitting sometimes is quite attractive and can take you far from a principal aim of your numerical modeling: to understand geophysical phenomena. (vi) If the number of
Numerical bifurcation analysis of immunological models with time delays
NASA Astrophysics Data System (ADS)
Luzyanina, Tatyana; Roose, Dirk; Bocharov, Gennady
2005-12-01
In recent years, a large number of mathematical models that are described by delay differential equations (DDEs) have appeared in the life sciences. To analyze the models' dynamics, numerical methods are necessary, since analytical studies can only give limited results. In turn, the availability of efficient numerical methods and software packages encourages the use of time delays in mathematical modelling, which may lead to more realistic models. We outline recently developed numerical methods for bifurcation analysis of DDEs and illustrate the use of these methods in the analysis of a mathematical model of human hepatitis B virus infection.
Recent developments in three-dimensional numerical estuarine models
Cheng, Ralph T.; Smith, Peter E.; Casulli, Vincenzo
1993-01-01
For a fixed cost, computing power increases 5 to 10 times every five years. The readily available computing resources have inspired new modal formulations and innovative model applications. Significant progress has been advanced in three-dimensional numerical estuarine modeling within the past three or four years. This paper attempts to review and summarize properties of new 3-D estuarine hydrodynamic models. The emphasis of the review is placed on the formulation, numerical methods. The emphasis of the review is placed on the formulation, numerical methods, spatial and temporal resolution, computational efficiency, and turbulence closure of new models. Recent research has provided guidelines for the proper use of 3-D models involving in the σ-transformation. Other models resort to a fixed level discretization in the vertical. The semi-implicit treatment in time-stepping models appears to have gained momentum. Future research in three-dimensional numerical modeling remains to be on computational efficiency and turbulent closure.
Numerically Controlled Machining Of Wind-Tunnel Models
NASA Technical Reports Server (NTRS)
Kovtun, John B.
1990-01-01
New procedure for dynamic models and parts for wind-tunnel tests or radio-controlled flight tests constructed. Involves use of single-phase numerical control (NC) technique to produce highly-accurate, symmetrical models in less time.
Experimental & Numerical Modeling of Non-combusting Model Firebrands' Transport
NASA Astrophysics Data System (ADS)
Tohidi, Ali; Kaye, Nigel
2016-11-01
Fire spotting is one of the major mechanisms of wildfire spread. Three phases of this phenomenon are firebrand formation and break-off from burning vegetation, lofting and downwind transport of firebrands through the velocity field of the wildfire, and spot fire ignition upon landing. The lofting and downwind transport phase is modeled by conducting large-scale wind tunnel experiments. Non-combusting rod-like model firebrands with different aspect ratios are released within the velocity field of a jet in a boundary layer cross-flow that approximates the wildfire velocity field. Characteristics of the firebrand dispersion are quantified by capturing the full trajectory of the model firebrands using the developed image processing algorithm. The results show that the lofting height has a direct impact on the maximum travel distance of the model firebrands. Also, the experimental results are utilized for validation of a highly scalable coupled stochastic & parametric firebrand flight model that, couples the LES-resolved velocity field of a jet-in-nonuniform-cross-flow (JINCF) with a 3D fully deterministic 6-degrees-of-freedom debris transport model. The validation results show that the developed numerical model is capable of estimating average statistics of the firebrands' flight. Authors would like to thank support of the National Science Foundation under Grant No. 1200560. Also, the presenter (Ali Tohid) would like to thank Dr. Michael Gollner from the University of Maryland College Park for the conference participation support.
Software Simplifies the Sharing of Numerical Models
NASA Technical Reports Server (NTRS)
2014-01-01
To ease the sharing of climate models with university students, Goddard Space Flight Center awarded SBIR funding to Reston, Virginia-based Parabon Computation Inc., a company that specializes in cloud computing. The firm developed a software program capable of running climate models over the Internet, and also created an online environment for people to collaborate on developing such models.
Considering digits in a current model of numerical development.
Roesch, Stephanie; Moeller, Korbinian
2014-01-01
Numerical cognition has long been considered the perfect example of abstract information processing. Nevertheless, there is accumulating evidence in recent years suggesting that the representation of number magnitude may not be entirely abstract but may present a specific case of embodied cognition rooted in the sensory and bodily experiences of early finger counting and calculating. However, so far none of the existing models of numerical development considers the influence of finger-based representations. Therefore, we make first suggestions on (i) how finger-based representations may be integrated into a current model of numerical development; and (ii) how they might corroborate the acquisition of basic numerical competencies at different development levels.
Numerical MHD codes for modeling astrophysical flows
NASA Astrophysics Data System (ADS)
Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.
2016-05-01
We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.
Numerical modeling of alkali vapor lasers.
Shu, Hong; Chen, Ying; Bass, Michael; Monjardin, J Fernando; Deile, Jochen
2011-10-10
Detailed numerical analyses are presented of a continuous wave (cw), single spatial mode alkali vapor laser pumped by a diffraction-limited Ti: Sapphire laser. These analyses provide insight into the operation of alkali vapor lasers to aid in the development of high power, diode laser pumped alkali vapor lasers. It is demonstrated that in the laser considered the laser spatial pattern is significantly changed after each pass through the gain medium, and the laser spatial pattern in steady state operation is also very different from that of the passive cavity mode. According to the calculation, lasing significantly improves the pump absorption efficiency and changes the absorbed pump distribution. The effect of varying the transverse size of the pumped region is also analyzed and an optimum pump beam waist radius is demonstrated. In addition, the shift of the pump beam waist location is also studied. The computation method and its convergence behavior are also described in detail.
Cumulus clouds - Numerical models, observations and entrainment
NASA Technical Reports Server (NTRS)
Simpson, J.
1983-01-01
The first computer simulation of the organization phase of a buoyant atmospheric thermal is described. Although crude, it showed the spontaneous development of a rounded tight-gradient 'cap' and internal vortical circulation. The complexities involved in these 'field of motion' models in part motivated the development of entity models, based upon laboratory thermals. These one-dimensional models and their uses with observations are briefly described as well as their limitations. Finally, an application of Schlesinger's three-dimensional model to a GATE cumulus situation clarifies many apparently conflicting observations and postulates, thereby raising further challenging questions to be addressed jointly by the more sophisticated measuring and modeling tools available in the 1980's.
a Numerical Study on Predator Prey Model
NASA Astrophysics Data System (ADS)
Laham, Mohamed Faris; Krishnarajah, Isthrinayagy; Jumaat, Abdul Kadir
Stochastic spatial models are becoming a popular tool for understand the ecological and evolution of ecosystem problems. We consider the predator prey interactions in term of stochastic representation of this Lotka-Volterra model and explore the use of stochastic processes to extinction behavior of the interacting populations. Here, we present simulation of stochastic processes of continuous time Lotka-Volterra model. Euler method has been used to solve the predator prey system. The trajectory spiral graph has been plotted based on obtained solution to show the population cycle of predator as a function of time.
Numerical Calculation of Model Rocket Trajectories.
ERIC Educational Resources Information Center
Keeports, David
1990-01-01
Discussed is the use of model rocketry to teach the principles of Newtonian mechanics. Included are forces involved; calculations for vertical launches; two-dimensional trajectories; and variations in mass, drag, and launch angle. (CW)
On numerical modeling of one-dimensional geothermal histories
Haugerud, R.A.
1989-01-01
Numerical models of one-dimensional geothermal histories are one way of understanding the relations between tectonics and transient thermal structure in the crust. Such models can be powerful tools for interpreting geochronologic and thermobarometric data. A flexible program to calculate these models on a microcomputer is available and examples of its use are presented. Potential problems with this approach include the simplifying assumptions that are made, limitations of the numerical techniques, and the neglect of convective heat transfer. ?? 1989.
Modelling asteroid brightness variations. I - Numerical methods
NASA Technical Reports Server (NTRS)
Karttunen, H.
1989-01-01
A method for generating lightcurves of asteroid models is presented. The effects of the shape of the asteroid and the scattering law of a surface element are distinctly separable, being described by chosen functions that can easily be changed. The shape is specified by means of two functions that yield the length of the radius vector and the normal vector of the surface at a given point. The general shape must be convex, but spherical concavities producing macroscopic shadowing can also be modeled.
Mathematical and Numerical Modeling of Turbulent Flows.
Vedovoto, João M; Serfaty, Ricardo; Da Silveira Neto, Aristeu
2015-01-01
The present work is devoted to the development and implementation of a computational framework to perform numerical simulations of low Mach number turbulent flows over complex geometries. The algorithm under consideration is based on a classical predictor-corrector time integration scheme that employs a projection method for the momentum equations. The domain decomposition strategy is adopted for distributed computing, displaying very satisfactory levels of speed-up and efficiency. The Immersed Boundary Methodology is used to characterize the presence of a complex geometry. Such method demands two separate grids: An Eulerian, where the transport equations are solved with a Finite Volume, second order discretization and a Lagrangian domain, represented by a non-structured shell grid representing the immersed geometry. The in-house code developed was fully verified by the Method of Manufactured Solutions, in both Eulerian and Lagrangian domains. The capabilities of the resulting computational framework are illustrated on four distinct cases: a turbulent jet, the Poiseuille flow, as a matter of validation of the implemented Immersed Boundary methodology, the flow over a sphere covering a wide range of Reynolds numbers, and finally, with the intention of demonstrating the applicability of Large Eddy Simulations - LES - in an industrial problem, the turbulent flow inside an industrial fan.
Evaluation of wave runup predictions from numerical and parametric models
Stockdon, Hilary F.; Thompson, David M.; Plant, Nathaniel G.; Long, Joseph W.
2014-01-01
Wave runup during storms is a primary driver of coastal evolution, including shoreline and dune erosion and barrier island overwash. Runup and its components, setup and swash, can be predicted from a parameterized model that was developed by comparing runup observations to offshore wave height, wave period, and local beach slope. Because observations during extreme storms are often unavailable, a numerical model is used to simulate the storm-driven runup to compare to the parameterized model and then develop an approach to improve the accuracy of the parameterization. Numerically simulated and parameterized runup were compared to observations to evaluate model accuracies. The analysis demonstrated that setup was accurately predicted by both the parameterized model and numerical simulations. Infragravity swash heights were most accurately predicted by the parameterized model. The numerical model suffered from bias and gain errors that depended on whether a one-dimensional or two-dimensional spatial domain was used. Nonetheless, all of the predictions were significantly correlated to the observations, implying that the systematic errors can be corrected. The numerical simulations did not resolve the incident-band swash motions, as expected, and the parameterized model performed best at predicting incident-band swash heights. An assimilated prediction using a weighted average of the parameterized model and the numerical simulations resulted in a reduction in prediction error variance. Finally, the numerical simulations were extended to include storm conditions that have not been previously observed. These results indicated that the parameterized predictions of setup may need modification for extreme conditions; numerical simulations can be used to extend the validity of the parameterized predictions of infragravity swash; and numerical simulations systematically underpredict incident swash, which is relatively unimportant under extreme conditions.
A hybrid (numerical-physical) model of the left ventricle.
Ferrari, G; Kozarski, M; De Lazzari, C; Clemente, F; Merolli, M; Tosti, G; Guaragno, M; Mimmo, R; Ambrosi, D; Glapinski, J
2001-07-01
Hydraulic models of the circulation are used to test mechanical devices and for training and research purposes; when compared to numerical models, however, they are not flexible enough and rather expensive. The solution proposed here is to merge the characteristics and the flexibility of numerical models with the functions of physical models. The result is a hybrid model with numerical and physical sections connected by an electro-hydraulic interface - which is to some extent the main problem since the numerical model can be easily changed or modified. The concept of hybrid model is applied to the representation of ventricular function by a variable elastance numerical model. This prototype is an open loop circuit and the physical section is built out of a reservoir (atrium) and a modified windkessel (arterial tree). The corresponding equations are solved numerically using the variables (atrial and arterial pressures) coming from the physical circuit. Ventricular output flow is the computed variable and is sent to a servo amplifier connected to a DC motor-gear pump system. The gear pump, behaving roughly as a flow source, is the interface to the physical circuit. Results obtained under different hemodynamic conditions demonstrate the behaviour of the ventricular model on the pressure-volume plane and the time course of output flow and arterial pressure.
NASA Astrophysics Data System (ADS)
Bailey, Brian N.
2017-01-01
When Lagrangian stochastic models for turbulent dispersion are applied to complex atmospheric flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behaviour in the numerical solution. Here we discuss numerical strategies for solving the non-linear Langevin-based particle velocity evolution equation that eliminate such unphysical behaviour in both Reynolds-averaged and large-eddy simulation applications. Extremely large or `rogue' particle velocities are caused when the numerical integration scheme becomes unstable. Such instabilities can be eliminated by using a sufficiently small integration timestep, or in cases where the required timestep is unrealistically small, an unconditionally stable implicit integration scheme can be used. When the generalized anisotropic turbulence model is used, it is critical that the input velocity covariance tensor be realizable, otherwise unphysical behaviour can become problematic regardless of the integration scheme or size of the timestep. A method is presented to ensure realizability, and thus eliminate such behaviour. It was also found that the numerical accuracy of the integration scheme determined the degree to which the second law of thermodynamics or `well-mixed condition' was satisfied. Perhaps more importantly, it also determined the degree to which modelled Eulerian particle velocity statistics matched the specified Eulerian distributions (which is the ultimate goal of the numerical solution). It is recommended that future models be verified by not only checking the well-mixed condition, but perhaps more importantly by checking that computed Eulerian statistics match the Eulerian statistics specified as inputs.
Numerical Modeling of Ophthalmic Response to Space
NASA Technical Reports Server (NTRS)
Nelson, E. S.; Myers, J. G.; Mulugeta, L.; Vera, J.; Raykin, J.; Feola, A.; Gleason, R.; Samuels, B.; Ethier, C. R.
2015-01-01
To investigate ophthalmic changes in spaceflight, we would like to predict the impact of blood dysregulation and elevated intracranial pressure (ICP) on Intraocular Pressure (IOP). Unlike other physiological systems, there are very few lumped parameter models of the eye. The eye model described here is novel in its inclusion of the human choroid and retrobulbar subarachnoid space (rSAS), which are key elements in investigating the impact of increased ICP and ocular blood volume. Some ingenuity was required in modeling the blood and rSAS compartments due to the lack of quantitative data on essential hydrodynamic quantities, such as net choroidal volume and blood flowrate, inlet and exit pressures, and material properties, such as compliances between compartments.
Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling
Gunzburger, Max
2015-02-17
We have treated the modeling, analysis, numerical analysis, and algorithmic development for nonlocal models of diffusion and mechanics. Variational formulations were developed and finite element methods were developed based on those formulations for both steady state and time dependent problems. Obstacle problems and optimization problems for the nonlocal models were also treated and connections made with fractional derivative models.
A numerical model for ground temperature determination
NASA Astrophysics Data System (ADS)
Jaszczur, M.; Polepszyc, I.; Biernacka, B.; Sapińska-Śliwa, A.
2016-09-01
The ground surface temperature and the temperature with respect to depth are one of the most important issues for geotechnical and environmental applications as well as for plants and other living organisms. In geothermal systems, temperature is directly related to the energy resources in the ground and it influences the efficiency of the ground source system. The ground temperature depends on a very large number of parameters, but it often needs to be evaluated with good accuracy. In the present work, models for the prediction of the ground temperature with a focus on the surface temperature at which all or selected important ground and environmental phenomena are taken into account have been analysed. It has been found that the simplest models and the most complex model may result in a similar temperature variation, yet at a very low depth and for specific cases only. A detailed analysis shows that taking into account different types of pavement or a greater depth requires more complex and advanced models.
Gulf of Mexico numerical model. Project summary
Blumberg, A. F.; Mellor, G. L.; Herring, H. J.
1981-02-01
An efficient three-dimensional, time dependent prognostic model of the Gulf of Mexico has been developed. The model is driven by winds and surface heat flux derived from climatological, atmospheric surface data, the result of an intensive data analysis study. Mean velocity, temperature, salinity, turbulence kinetic energy and turbulence macroscale are the prognostic variables. Lateral boundary conditions for temperature and salinity and geostrophically derived velocity at the Straits of Yucatan and Florida are obtained from climatological ocean data. An analytical second moment turbulence closure scheme embedded within the model provides realistic surface mixed layer dynamics. Free surface elevation distributions are calculated with an algorithm which calculates the external (tidal) mode separately from the internal mode. The external mode, an essentially two-dimensional calculation, requires a short integrating timestep whereas the more costly, three-dimensional, internal mode can be executed with a long step. The result is a fully three-dimensional code which includes a free surface at no sacrifice in computer cost compared to rigid lid models.
Numerical Modeling of Left-Handed Metamaterials
Burke, G J; Champagne, N J; Sharpe, R M
2001-11-06
The EIGER method of moments program with periodic Green's function was used to model a periodic array of strips and split-ring resonators. Left-handed propagation due to negative index of refraction is demonstrated in a frequency band. The effective material parameters versus frequency are extracted from the EIGER solution.
Numerical modelling of instantaneous plate tectonics
NASA Technical Reports Server (NTRS)
Minster, J. B.; Haines, E.; Jordan, T. H.; Molnar, P.
1974-01-01
Assuming lithospheric plates to be rigid, 68 spreading rates, 62 fracture zones trends, and 106 earthquake slip vectors are systematically inverted to obtain a self-consistent model of instantaneous relative motions for eleven major plates. The inverse problem is linearized and solved iteratively by a maximum-likelihood procedure. Because the uncertainties in the data are small, Gaussian statistics are shown to be adequate. The use of a linear theory permits (1) the calculation of the uncertainties in the various angular velocity vectors caused by uncertainties in the data, and (2) quantitative examination of the distribution of information within the data set. The existence of a self-consistent model satisfying all the data is strong justification of the rigid plate assumption. Slow movement between North and South America is shown to be resolvable.
Analytical and numerical modeling for flexible pipes
NASA Astrophysics Data System (ADS)
Wang, Wei; Chen, Geng
2011-12-01
The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.
Geometry and Grid Modeling for Numerical Simulation
2005-06-01
three dimensional spatial region (a mesh) is a prerequisite of most computer aided engineering ( CAE ) software, including computational structural...Parasolid Parasolid [13] is a commercial solid-modeling kernel. It serves as the basis for Unigraphics and several other CAD/CAM/ CAE packages. It is...As mentioned earlier, 1D and 2D arrays of standard data types are the most complex data type permitted. This method has the advantage of
Advanced Numerical Methods for NWP Models
2008-09-30
including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the...used to study tropical wave instability with a prescribed heat source representing ITCZ near the equator. The model configuration of the experiments...understanding and improvement of the physical parameterizations. Tests of NSEAM with idealized initial conditions show the breakdown of an unstable ITCZ profile
Numerical modeling of the debris flows runout
NASA Astrophysics Data System (ADS)
Federico, Francesco; Cesali, Chiara
2017-06-01
Rapid debris flows are identified among the most dangerous of all landslides. Due to their destructive potential, the runout length has to be predicted to define the hazardous areas and design safeguarding measures. To this purpose, a continuum model to predict the debris flows mobility is developed. It is based on the well known depth-integrated avalanche model proposed by Savage and Hutter (S&H model) to simulate the dry granular materials flows. Conservation of mass and momentum equations, describing the evolving geometry and the depth averaged velocity distribution, are re-written taking into account the effects of the interstitial pressures and the possible variation of mass along the motion due to erosion/deposition processes. Furthermore, the mechanical behaviour of the debris flow is described by a recently developed rheological law, which allows to take into account the dissipative effects of the grain inelastic collisions and friction, simultaneously acting within a `shear layer', typically at the base of the debris flows. The governing PDEs are solved by applying the finite difference method. The analysis of a documented case is finally carried out.
Preliminary 2D numerical modeling of common granular problems
NASA Astrophysics Data System (ADS)
Wyser, Emmanuel; Jaboyedoff, Michel
2017-04-01
Granular studies received an increasing interest during the last decade. Many scientific investigations were successfully addressed to acknowledge the ubiquitous behavior of granular matter. We investigate liquid impacts onto granular beds, i.e. the influence of the packing and compaction-dilation transition. However, a physically-based model is still lacking to address complex microscopic features of granular bed response during liquid impacts such as compaction-dilation transition or granular bed uplifts (Wyser et al. in review). We present our preliminary 2D numerical modeling based on the Discrete Element Method (DEM) using nonlinear contact force law (the Hertz-Mindlin model) for disk shape particles. The algorithm is written in C programming language. Our 2D model provides an analytical tool to address granular problems such as i) granular collapses and ii) static granular assembliy problems. This provides a validation framework of our numerical approach by comparing our numerical results with previous laboratory experiments or numerical works. Inspired by the work of Warnett et al. (2014) and Staron & Hinch (2005), we studied i) the axisymetric collapse of granular columns. We addressed the scaling between the initial aspect ratio and the final runout distance. Our numerical results are in good aggreement with the previous studies of Warnett et al. (2014) and Staron & Hinch (2005). ii) Reproducing static problems for regular and randomly stacked particles provides a valid comparison to results of Egholm (2007). Vertical and horizontal stresses within the assembly are quite identical to stresses obtained by Egholm (2007), thus demonstating the consistency of our 2D numerical model. Our 2D numerical model is able to reproduce common granular case studies such as granular collapses or static problems. However, a sufficient small timestep should be used to ensure a good numerical consistency, resulting in higher computational time. The latter becomes critical
Terrane accretion: Insights from numerical modelling
NASA Astrophysics Data System (ADS)
Vogt, Katharina; Gerya, Taras
2016-04-01
The oceanic crust is not homogenous, but contains significantly thicker crust than norm, i.e. extinct arcs, spreading ridges, detached continental fragments, volcanic piles or oceanic swells. These (crustal) fragments may collide with continental crust and form accretionary complexes, contributing to its growth. We analyse this process using a thermo-mechanical computer model (i2vis) of an ocean-continent subduction zone. In this model the oceanic plate can bend spontaneously under the control of visco-plastic rheologies. It moreover incorporates effects such as mineralogical phase changes, fluid release and consumption, partial melting and melt extraction. Based on our 2-D experiments we suggest that the lithospheric buoyancy of the downgoing slab and the rheological strength of crustal material may result in a variety of accretionary processes. In addition to terrane subduction, we are able to identify three distinct modes of terrane accretion: frontal accretion, basal accretion and underplating plateaus. We show that crustal fragments may dock onto continental crust and cease subduction, be scrapped off the downgoing plate, or subduct to greater depth prior to slab break off and subsequent exhumation. Direct consequences of these processes include slab break off, subduction zone transference, structural reworking, formation of high-pressure terranes, partial melting and crustal growth.
Numeric Modeling of Granular Asteroid Growth
NASA Astrophysics Data System (ADS)
Beaumont, Benjamin; Lazzati, D.
2014-01-01
It is believed that planetesimals and asteroids are created by the constructive collisions of smaller objects, loosely bound under the effect of self-gravity and/or contact forces. However, the internal dynamics of these collisions and whether they trigger growth or fragmentation are poorly understood. Prior research in the topic has established regimes for the results of constructive collisions of particles under contact forces, but neglects gravity, a critical component once particles are no longer touching, and force chains, an uneven distribution of force inherent to granular materials. We run simulations binary collisions of clusters of particles modeled as hard spheres. Our simulations take into account self-gravity, dissipation of energy, friction, and use a potential function for overlapping particles to study force chains. We present here the collision outcome for clusters with variable masses, particle counts, velocities, and impact parameter. We compare our results to other models and simulations, and find that the collisions remain constructive at higher energies than classically predicted.
Numerical analysis and modeling of atmospheric phenomena
NASA Technical Reports Server (NTRS)
Stone, Peter H.
1994-01-01
For the past 22 years Grant NGR 22-009-727 has been supporting research in the Center for Meteorology and Physical Oceanography (and its predecessors) in a wide variety of diagnostic and modeling studies of atmospheric and ocean phenomena. Professor Jule Charney was the initial Principal Investigator. Professor Peter Stone joined him as co-Principal Investigator in 1975 and became the sole Principal Investigator in 1981. During its lifetime the Grant has supported in whole or in part 11 Master's theses, 14 Ph.D. theses, and 45 papers published in refereed scientific journals. All of these theses and papers (with bibliographic references) are listed below. All but one of the theses were used to fulfill the requirements for MIT (Massachusetts Institute of Technology) degrees and are available from the MIT libraries. The one exception is F. Chen's Ph.D. thesis which was for a Harvard degree and is available from the Harvard libraries. In addition to the work described in the citations listed below, the Grant has supported Research Assistant Amy Solomon during the past two years to carry out a study of how baroclinic adjustment is affected by vertical resolution, vertical temperature structure, and dissipation. Ms. Solomon plans to use this project for her Ph.D. thesis. Support for this project will continue under NASA Grant NAG 5-2490, 'The Factors Controlling Poleward Heat Transport in Climate Models.'
Multipath diffusion: A general numerical model
NASA Astrophysics Data System (ADS)
Lee, J. K. W.; Aldama, A. A.
1992-06-01
The effect of high-diffusivity pathways on bulk diffusion of a solute in a material has been modeled previously for simple geometries such as those in tracer diffusion experiments, but not for the geometries and boundary conditions appropriate for experiments involving bulk exchange. Using a coupled system of equations for simultaneous diffusion of a solute through two families of diffusion pathways with differing diffusivities, a general 1-D finite difference model written in FORTRAN has been developed which can be used to examine the effect of high-diffusivity paths on partial and total concentration profiles within a homogeneous isotropic sphere, infinite cylinder, and infinite slab. The partial differential equations are discretized using the θ-method/central-difference scheme, and an iterative procedure analogous to the Gauss-Seidel method is employed to solve the two systems of coupled equations. Using Fourier convergence analysis, the procedure is shown to be unconditionally convergent. Computer simulations demonstrate that a multipath diffusion mechanism can enhance significantly the bulk diffusivity of a diffusing solute species through a material. The amount of solute escaping from a material is dependent strongly on the exchange coefficients, which govern the transfer of solute from the crystal lattice to the high-diffusivity paths and vice versa. In addition, the exchange coefficients ( ϰ1, and ϰ2) seem to control not only the amount of solute that is lost, but also the shape of the concentration profile. If | K1| < | K2|, concentration profiles generally are non-Fickian in shape, typically having shallow concentration gradients near the center (radius r = 0) and steep gradients towards the outer boundary of the material ( r = R). When | K1| ⩾ | K2| a concentration profile is generated which resembles a Fickian (volume) diffusion profile with an apparent bulk diffusivity between that of the crystal lattice and that of the high-diffusivity pathways
Soil remediation by heat injection: Experiments and numerical modelling
Betz, C.; Emmert, M.; Faerber, A.
1995-03-01
In order to understand physical processes of thermally enhanced soil vapor extraction methods in porous media the isothermal, multiphase formulation for the numerical model MUFTE will be extended by a non-isothermal, multiphase-multicomponent formulation. In order to verify the numerical model, comparison with analytical solutions for well defined problems will be carried out. To identify relevant processes and their interactions, the results of the simulation will be compared with well controlled experiments with sophisticated measurement equipment in three different scales. The aim is to compare the different numerical solution techniques namely Finite Element versus Integral Finite Difference technique as implemented in MUFTE and TOUGH2 [9] respectively.
Multidimensional numerical modeling of heat exchangers
NASA Astrophysics Data System (ADS)
Sha, W. T.; Yang, C. I.; Kao, T. T.; Cho, S. M.
A comprehensive, multidimensional, thermal-hydraulic model is developed for the analysis of shell-and-tube heat exchangers for liquid-metal services. For the shellside fluid, the conservation equations of mass, momentum, and energy for continuum fluids are modified using the concept of porosity, surface permeability and distributed resistance to account for the blockage effects due to the presence of heat-transfer tubes, flow baffles/shrouds, the support plates, etc. On the tubeside, the heat-transfer tubes are connected in parallel between the inlet and outlet plenums, and tubeside flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phase on the shell side and may undergo phase-change on the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reactor (LMFBR) intermediate heat exchangers (IHX) and steam generators (SG).
Experimental, Numerical and Observational Models in Geodynamics
NASA Astrophysics Data System (ADS)
Lithgow-Bertelloni, Carolina
2015-04-01
Geodynamics, the study of the forces that drives all Earth's processes is a rich field that deeply connects all aspects of geological and geophysical studies, from surface observations of the sedimentary record to knowledge of deep Earth structure from mineral physics and seismology. In the context of the solid Earth geodynamics primarily focuses on lithosphere and mantle dynamics, while core dynamics is the purview of geomagnetism. I will focus this talk on the former, its historical context and future developments. We have known the equations of motion and mechanics for ~200 years, but only relatively recently can they be solved with enough accuracy and resolution to do geology. We have made great strides since Arthur Holmes conceptual models of mantle flow, thanks to computational and experimental advances. We can know model plate boundaries globally with resolutions in the order of a few kms and image temperature and velocity simultaneously in the laboratory in 3D and non-intrusively. We have also learned a great deal about the physics of the Earth, from composition to rheology. New theories on plate boundary rheology are paving the way for self-consistent generation of plates from mantle flow. New computational methods allow for adaptive meshing, fabric development and history, so we can study deformation and compare directly to geological observations in mountain ranges and continental rifts. We can use ever more sophisticated images of mantle structure from seismic and other geophysical data to probe the relationship between melting, flow and dynamical processes. We can reconstruct landscapes and relief, plate motions and sedimentation and ask how much the mantle has contributed to drainage reversal, sedimentation and climate change. The future of the field is ever brighter.
Seismoelectric numerical modeling on a grid
Haines, S.S.; Pride, S.R.
2006-01-01
Our finite-difference algorithm provides a new method for simulating how seismic waves in arbitrarily heterogeneous porous media generate electric fields through an electrokinetic mechanism called seismoelectric coupling. As the first step in our simulations, we calculate relative pore-fluid/grain-matrix displacement by using existing poroelastic theory. We then calculate the electric current resulting from the grain/fluid displacement by using seismoelectric coupling theory. This electrofiltration current acts as a source term in Poisson's equation, which then allows us to calculate the electric potential distribution. We can safely neglect induction effects in our simulations because the model area is within the electrostatic near field for the depth of investigation (tens to hundreds of meters) and the frequency ranges (10 Hz to 1 kHz) of interest for shallow seismoelectric surveys.We can independently calculate the electric-potential distribution for each time step in the poroelastic simulation without loss of accuracy because electro-osmotic feedback (fluid flow that is perturbed by generated electric fields) is at least 105 times smaller than flow that is driven by fluid-pressure gradients and matrix acceleration, and is therefore negligible. Our simulations demonstrate that, distinct from seismic reflections, the seismoelectric interface response from a thin layer (at least as thin as one-twentieth of the seismic wavelength) is considerably stronger than the response from a single interface. We find that the interface response amplitude decreases as the lateral extent of a layer decreases below the width of the first Fresnel zone. We conclude, on the basis of our modeling results and of field results published elsewhere, that downhole and/or crosswell survey geometries and time-lapse applications are particularly well suited to the seismoelectric method. ?? 2006 Society of Exploration Geophysicists.
Numerical modeling with application to tracking marine debris.
Potemra, James T
2012-01-01
This paper describes different numerical models of ocean circulation the output of which can be applied to study patterns and pathways of drifting marine debris. The paper focuses on model output that is readily available rather than on numerical models that could be configured and run locally. These include operational models from the US Navy (the Navy Layered Ocean Model (NLOM), Coastal Ocean Model (NCOM), and Hybrid Coordinate Ocean Model (HYCOM)), data assimilating reanalysis models (the Simple Ocean Data Assimilation (SODA), the Global Ocean Data Assimilation Experiment (GODAE) models), and the European Center for Medium-Range Weather Forecasts (ECMWF) ocean reanalysis (Ocean Reanalysis System, ECMWF/ORA-S3). The paper describes the underlying physics in each model system, limitations, and where to obtain the model output.
Numerical model for learning concepts of streamflow simulation
DeLong, L.L.; ,
1993-01-01
Numerical models are useful for demonstrating principles of open-channel flow. Such models can allow experimentation with cause-and-effect relations, testing concepts of physics and numerical techniques. Four PT is a numerical model written primarily as a teaching supplement for a course in one-dimensional stream-flow modeling. Four PT options particularly useful in training include selection of governing equations, boundary-value perturbation, and user-programmable constraint equations. The model can simulate non-trivial concepts such as flow in complex interconnected channel networks, meandering channels with variable effective flow lengths, hydraulic structures defined by unique three-parameter relations, and density-driven flow.The model is coded in FORTRAN 77, and data encapsulation is used extensively to simplify maintenance and modification and to enhance the use of Four PT modules by other programs and programmers.
Squeal noise in simple numerical brake models
NASA Astrophysics Data System (ADS)
Oberst, S.; Lai, J. C. S.
2015-09-01
Since the early 1920s, automotive disc brake squeal has caused warranty issues and customer dissatisfaction. Despite a good deal of progress achieved, predicting brake squeal propensity is as difficult as ever as not all mechanisms and interactions are known owing to their highly fugitive complex nature. In recent years, research has been focused on the prediction of unstable vibration modes by the complex eigenvalue analysis (CEA) for the mode-coupling type of instability. There has been very limited consideration given to the calculation of the acoustic radiation properties due to friction contact between a pad and a rotor. Recent analyses using a forced response analysis with harmonic contact pressure excitation indicates negative dissipated energy at some pad eigenfrequencies predicted to be stable by the CEA. A transient nonlinear time domain analysis with no external excitation indicates that squeal could develop at these eigenfrequencies. Here, the acoustic radiation characteristics of those pad modes are determined by analysing the acoustic power levels and radiation efficiencies of simplified brake models in the form of a pad rubbing on a plate or on a disc using the acoustic boundary element method based on velocities extracted from the forced response analysis. Results show that unstable pad modes trigger unstable disc vibrations resulting in instantaneous mode squeal similar to those observed experimentally. Changes in the radiation efficiency with pressure variations are smaller than those with friction coefficient variations and are caused by the phase difference of the velocities out-of-plane vibration between the pad and the disc.
Quantitative analysis of numerical solvers for oscillatory biomolecular system models
Quo, Chang F; Wang, May D
2008-01-01
Background This article provides guidelines for selecting optimal numerical solvers for biomolecular system models. Because various parameters of the same system could have drastically different ranges from 10-15 to 1010, the ODEs can be stiff and ill-conditioned, resulting in non-unique, non-existing, or non-reproducible modeling solutions. Previous studies have not examined in depth how to best select numerical solvers for biomolecular system models, which makes it difficult to experimentally validate the modeling results. To address this problem, we have chosen one of the well-known stiff initial value problems with limit cycle behavior as a test-bed system model. Solving this model, we have illustrated that different answers may result from different numerical solvers. We use MATLAB numerical solvers because they are optimized and widely used by the modeling community. We have also conducted a systematic study of numerical solver performances by using qualitative and quantitative measures such as convergence, accuracy, and computational cost (i.e. in terms of function evaluation, partial derivative, LU decomposition, and "take-off" points). The results show that the modeling solutions can be drastically different using different numerical solvers. Thus, it is important to intelligently select numerical solvers when solving biomolecular system models. Results The classic Belousov-Zhabotinskii (BZ) reaction is described by the Oregonator model and is used as a case study. We report two guidelines in selecting optimal numerical solver(s) for stiff, complex oscillatory systems: (i) for problems with unknown parameters, ode45 is the optimal choice regardless of the relative error tolerance; (ii) for known stiff problems, both ode113 and ode15s are good choices under strict relative tolerance conditions. Conclusions For any given biomolecular model, by building a library of numerical solvers with quantitative performance assessment metric, we show that it is possible
Experimentation and numerical modeling of forging induced bending (FIB) process
NASA Astrophysics Data System (ADS)
Naseem, S.; van den Boogaard, A. H.
2016-10-01
Accurate prediction of the final shape using numerical modeling has been a top priority in the field of sheet and bulk forming. Better shape prediction is the result of a better estimation of the physical stress and strain state. For experimental and numerical investigations of such estimations, simple benchmark processes are used. In this paper a benchmark process involving forging (flattening) of sheet metal between punch and die with negative clearance is proposed. The introduced material flow results in bending. Easy measurability of the angle of this bend makes this process suitable for validation purpose. Physical experiments are performed to characterize this bending angle due to flattening. Furthermore a numerical model is developed to capture this phenomenon. The main focus of this paper is the validation of the numerical model in terms of accurate prediction of the physical results.
Numerical simulations of a reduced model for blood coagulation
NASA Astrophysics Data System (ADS)
Pavlova, Jevgenija; Fasano, Antonio; Sequeira, Adélia
2016-04-01
In this work, the three-dimensional numerical resolution of a complex mathematical model for the blood coagulation process is presented. The model was illustrated in Fasano et al. (Clin Hemorheol Microcirc 51:1-14, 2012), Pavlova et al. (Theor Biol 380:367-379, 2015). It incorporates the action of the biochemical and cellular components of blood as well as the effects of the flow. The model is characterized by a reduction in the biochemical network and considers the impact of the blood slip at the vessel wall. Numerical results showing the capacity of the model to predict different perturbations in the hemostatic system are discussed.
Quantitative comparisons of numerical models of brittle wedge dynamics
NASA Astrophysics Data System (ADS)
Buiter, Susanne
2010-05-01
Numerical and laboratory models are often used to investigate the evolution of deformation processes at various scales in crust and lithosphere. In both approaches, the freedom in choice of simulation method, materials and their properties, and deformation laws could affect model outcomes. To assess the role of modelling method and to quantify the variability among models, we have performed a comparison of laboratory and numerical experiments. Here, we present results of 11 numerical codes, which use finite element, finite difference and distinct element techniques. We present three experiments that describe shortening of a sand-like, brittle wedge. The material properties of the numerical ‘sand', the model set-up and the boundary conditions are strictly prescribed and follow the analogue setup as closely as possible. Our first experiment translates a non-accreting wedge with a stable surface slope of 20 degrees. In agreement with critical wedge theory, all models maintain the same surface slope and do not deform. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge in a sandbox-like setup, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. We show that we successfully simulate sandbox-style brittle behaviour using different numerical modelling techniques and that we obtain the same styles of deformation behaviour in numerical and laboratory experiments at similar levels of variability. The GeoMod2008 Numerical Team: Markus Albertz, Michelle Cooke, Tony Crook, David Egholm, Susan Ellis, Taras Gerya, Luke Hodkinson, Boris Kaus, Walter Landry, Bertrand Maillot, Yury Mishin
Sheet Hydroforming Process Numerical Model Improvement Through Experimental Results Analysis
NASA Astrophysics Data System (ADS)
Gabriele, Papadia; Antonio, Del Prete; Alfredo, Anglani
2010-06-01
The increasing application of numerical simulation in metal forming field has helped engineers to solve problems one after another to manufacture a qualified formed product reducing the required time [1]. Accurate simulation results are fundamental for the tooling and the product designs. The wide application of numerical simulation is encouraging the development of highly accurate simulation procedures to meet industrial requirements. Many factors can influence the final simulation results and many studies have been carried out about materials [2], yield criteria [3] and plastic deformation [4,5], process parameters [6] and their optimization. In order to develop a reliable hydromechanical deep drawing (HDD) numerical model the authors have been worked out specific activities based on the evaluation of the effective stiffness of the blankholder structure [7]. In this paper after an appropriate tuning phase of the blankholder force distribution, the experimental activity has been taken into account to improve the accuracy of the numerical model. In the first phase, the effective capability of the blankholder structure to transfer the applied load given by hydraulic actuators to the blank has been explored. This phase ended with the definition of an appropriate subdivision of the blankholder active surface in order to take into account the effective pressure map obtained for the given loads configuration. In the second phase the numerical results obtained with the developed subdivision have been compared with the experimental data of the studied model. The numerical model has been then improved, finding the best solution for the blankholder force distribution.
Numerical modelling of river morphodynamics: Latest developments and remaining challenges
NASA Astrophysics Data System (ADS)
Siviglia, Annunziato; Crosato, Alessandra
2016-07-01
Numerical morphodynamic models provide scientific frameworks for advancing our understanding of river systems. The research on involved topics is an important and socially relevant undertaking regarding our environment. Nowadays numerical models are used for different purposes, from answering questions about basic morphodynamic research to managing complex river engineering problems. Due to increasing computer power and the development of advanced numerical techniques, morphodynamic models are now more and more used to predict the bed patterns evolution to a broad spectrum of spatial and temporal scales. The development and the success of application of such models are based upon a wide range of disciplines from applied mathematics for the numerical solution of the equations to geomorphology for the physical interpretation of the results. In this light we organized this special issue (SI) soliciting multidisciplinary contributions which encompass any aspect needed for the development and applications of such models. Most of the papers in the SI stem from contributions to session HS9.5/GM7.11 on numerical modelling and experiments in river morphodynamics at the European Geosciences Union (EGU) General Assembly held in Vienna, April 27th to May 2nd 2014.
Considering digits in a current model of numerical development
Roesch, Stephanie; Moeller, Korbinian
2015-01-01
Numerical cognition has long been considered the perfect example of abstract information processing. Nevertheless, there is accumulating evidence in recent years suggesting that the representation of number magnitude may not be entirely abstract but may present a specific case of embodied cognition rooted in the sensory and bodily experiences of early finger counting and calculating. However, so far none of the existing models of numerical development considers the influence of finger-based representations. Therefore, we make first suggestions on (i) how finger-based representations may be integrated into a current model of numerical development; and (ii) how they might corroborate the acquisition of basic numerical competencies at different development levels. PMID:25628559
Numerical modeling in induction heating for axisymmetric geometries
Chaboudez, C.; Glardon, R.; Mari, D.; Clain, S.; Rappaz, J.; Swierkosz, M.
1997-01-01
Induction heating is widely used in today`s industry, in operations such as metal hardening, preheating for forging operations, or brazing. It is a complex process, involving both electromagnetic and thermal phenomena. Since the design and the investigation of an induction heating system usually relies upon a series of tedious, expensive and long experiments, numerical simulation can be a valuable help in this field. This paper deals with numerical simulation of induction heating for axisymmetric geometries. A mathematical model is presented, together with a numerical scheme based on the Finite Element Method. A numerical simulation code was implemented using the model presented in this paper. A comparison between results given by the code and experimental measurements is provided.
Numerical schemes for a model for nonlinear dispersive waves
NASA Technical Reports Server (NTRS)
Bona, J. L.; Pritchard, W. G.; Scott, L. R.
1985-01-01
A description is given of a number of numerical schemes to solve an evolution equation (Korteweg-deVries) that arises when modelling the propagation of water waves in a channel. The discussion also includes the results of numerical experiments made with each of the schemes. It is suggested, on the basis of these experiments, that one of the schemes may have (discrete) solitary-wave solutions.
A survey of numerical models for wind prediction
NASA Technical Reports Server (NTRS)
Schonfeld, D.
1980-01-01
A literature review is presented of the work done in the numerical modeling of wind flows. Pertinent computational techniques are described, as well as the necessary assumptions used to simplify the governing equations. A steady state model is outlined, based on the data obtained at the Deep Space Communications complex at Goldstone, California.
Numerical Models of Broad Bandwidth Nanosecond Optical Parametric Oscillators
Bowers, M.S.; Gehr, R.J.; Smith, A.V.
1998-10-14
We describe results from three new methods of numerically modeling broad-bandwidth, nanosecond OPO's in the plane-wave approximate ion. They account for differences in group velocities among the three mixing waves, and also include a qutt~ttun noise model.
Numerical Modeling of Shatter Cones Development in Impact Craters
NASA Astrophysics Data System (ADS)
Baratoux, D.; Melosh, H. J.
2003-03-01
We present a new model for the formation of shatter cones in impact craters. Our model has been tested by means of numerical simulations. Our results are consistent with the observations of shatter cones in natural impact craters and explosions experiments.
Hydroforming Of Patchwork Blanks — Numerical Modeling And Experimental Validation
NASA Astrophysics Data System (ADS)
Lamprecht, Klaus; Merklein, Marion; Geiger, Manfred
2005-08-01
In comparison to the commonly applied technology of tailored blanks the concept of patchwork blanks offers a number of additional advantages. Potential application areas for patchwork blanks in automotive industry are e.g. local reinforcements of automotive closures, structural reinforcements of rails and pillars as well as shock towers. But even if there is a significant application potential for patchwork blanks in automobile production, industrial realization of this innovative technique is decelerated due to a lack of knowledge regarding the forming behavior and the numerical modeling of patchwork blanks. Especially for the numerical simulation of hydroforming processes, where one part of the forming tool is replaced by a fluid under pressure, advanced modeling techniques are required to ensure an accurate prediction of the blanks' forming behavior. The objective of this contribution is to provide an appropriate model for the numerical simulation of patchwork blanks' forming processes. Therefore, different finite element modeling techniques for patchwork blanks are presented. In addition to basic shell element models a combined finite element model consisting of shell and solid elements is defined. Special emphasis is placed on the modeling of the weld seam. For this purpose the local mechanical properties of the weld metal, which have been determined by means of Martens-hardness measurements and uniaxial tensile tests, are integrated in the finite element models. The results obtained from the numerical simulations are compared to experimental data from a hydraulic bulge test. In this context the focus is laid on laser- and spot-welded patchwork blanks.
Numerical investigation of algebraic oceanic turbulent mixing-layer models
NASA Astrophysics Data System (ADS)
Chacón-Rebollo, T.; Gómez-Mármol, M.; Rubino, S.
2013-11-01
In this paper we investigate the finite-time and asymptotic behaviour of algebraic turbulent mixing-layer models by numerical simulation. We compare the performances given by three different settings of the eddy viscosity. We consider Richardson number-based vertical eddy viscosity models. Two of these are classical algebraic turbulence models usually used in numerical simulations of global oceanic circulation, i.e. the Pacanowski-Philander and the Gent models, while the other one is a more recent model (Bennis et al., 2010) proposed to prevent numerical instabilities generated by physically unstable configurations. The numerical schemes are based on the standard finite element method. We perform some numerical tests for relatively large deviations of realistic initial conditions provided by the Tropical Atmosphere Ocean (TAO) array. These initial conditions correspond to states close to mixing-layer profiles, measured on the Equatorial Pacific region called the West-Pacific Warm Pool. We conclude that mixing-layer profiles could be considered as kinds of "absorbing configurations" in finite time that asymptotically evolve to steady states under the application of negative surface energy fluxes.
Numerical Modelling of Wave Interaction with Porous Structures
NASA Astrophysics Data System (ADS)
Gao, F.; M., D.; M., D.; G., C.
This paper presents a numerical model for simulating wave interaction with porous structures. By using the free surface-capturing approach together with a novel Cartesian cut cell treatment, the Finite Volume Model calculates the two phase flows out side of porous structure based on the Navier-Stokes equations, while the flow in the porous structure is described by Navier-Stokes type model equations. The free surface of water is treated as a contact discontinuity in the density field which is captured automatically as part of the numerical solution by using a time-accurate artificial compressibility method and high resolution Godunov-type scheme. The numerical model is first calibrated by simple test for a steady flow passing through a porous block. Reasonably good agreements with other numerical results are obtained. After that, the numerical model is used to simulate the breaking wave overtopping a caisson breakwater, protected by a layer of armor units. The results show that the porous armor layer is effective in reducing the overtopping rate as well as in protecting the stability of the caisson breakwater.
Rapid installation of numerical models in multiple parent codes
Brannon, R.M.; Wong, M.K.
1996-10-01
A set of``model interface guidelines``, called MIG, is offered as a means to more rapidly install numerical models (such as stress-strain laws) into any parent code (hydrocode, finite element code, etc.) without having to modify the model subroutines. The model developer (who creates the model package in compliance with the guidelines) specifies the model`s input and storage requirements in a standardized way. For portability, database management (such as saving user inputs and field variables) is handled by the parent code. To date, NUG has proved viable in beta installations of several diverse models in vectorized and parallel codes written in different computer languages. A NUG-compliant model can be installed in different codes without modifying the model`s subroutines. By maintaining one model for many codes, MIG facilitates code-to-code comparisons and reduces duplication of effort potentially reducing the cost of installing and sharing models.
Ensemble-type numerical uncertainty information from single model integrations
Rauser, Florian Marotzke, Jochem; Korn, Peter
2015-07-01
We suggest an algorithm that quantifies the discretization error of time-dependent physical quantities of interest (goals) for numerical models of geophysical fluid dynamics. The goal discretization error is estimated using a sum of weighted local discretization errors. The key feature of our algorithm is that these local discretization errors are interpreted as realizations of a random process. The random process is determined by the model and the flow state. From a class of local error random processes we select a suitable specific random process by integrating the model over a short time interval at different resolutions. The weights of the influences of the local discretization errors on the goal are modeled as goal sensitivities, which are calculated via automatic differentiation. The integration of the weighted realizations of local error random processes yields a posterior ensemble of goal approximations from a single run of the numerical model. From the posterior ensemble we derive the uncertainty information of the goal discretization error. This algorithm bypasses the requirement of detailed knowledge about the models discretization to generate numerical error estimates. The algorithm is evaluated for the spherical shallow-water equations. For two standard test cases we successfully estimate the error of regional potential energy, track its evolution, and compare it to standard ensemble techniques. The posterior ensemble shares linear-error-growth properties with ensembles of multiple model integrations when comparably perturbed. The posterior ensemble numerical error estimates are of comparable size as those of a stochastic physics ensemble.
A general numerical model for wave rotor analysis
NASA Technical Reports Server (NTRS)
Paxson, Daniel W.
1992-01-01
Wave rotors represent one of the promising technologies for achieving very high core temperatures and pressures in future gas turbine engines. Their operation depends upon unsteady gas dynamics and as such, their analysis is quite difficult. This report describes a numerical model which has been developed to perform such an analysis. Following a brief introduction, a summary of the wave rotor concept is given. The governing equations are then presented, along with a summary of the assumptions used to obtain them. Next, the numerical integration technique is described. This is an explicit finite volume technique based on the method of Roe. The discussion then focuses on the implementation of appropriate boundary conditions. Following this, some results are presented which first compare the numerical approximation to the governing differential equations and then compare the overall model to an actual wave rotor experiment. Finally, some concluding remarks are presented concerning the limitations of the simplifying assumptions and areas where the model may be improved.
A general numerical model for wave rotor analysis
NASA Astrophysics Data System (ADS)
Paxson, Daniel W.
1992-07-01
Wave rotors represent one of the promising technologies for achieving very high core temperatures and pressures in future gas turbine engines. Their operation depends upon unsteady gas dynamics and as such, their analysis is quite difficult. This report describes a numerical model which has been developed to perform such an analysis. Following a brief introduction, a summary of the wave rotor concept is given. The governing equations are then presented, along with a summary of the assumptions used to obtain them. Next, the numerical integration technique is described. This is an explicit finite volume technique based on the method of Roe. The discussion then focuses on the implementation of appropriate boundary conditions. Following this, some results are presented which first compare the numerical approximation to the governing differential equations and then compare the overall model to an actual wave rotor experiment. Finally, some concluding remarks are presented concerning the limitations of the simplifying assumptions and areas where the model may be improved.
Numerical modelling of steel tubes under oblique crushing forces
NASA Astrophysics Data System (ADS)
Ismail, A. E.; Rahman, M. Q. Abdul; Nezere, N.; Jamian, S.; Kamarudin, K. A.; Awang, M. K.; Nor, M. K. Mohd; Ibrahim, M. N.; Rasidi Ibrahim, M.; Zulafif Rahim, M.; Fahrul Hassan, Mohd; Nor, Nik Hisyamudin Muhd; Arifin, A. M. T.; Zaini Yunos, Muhamad
2017-08-01
This paper presents the numerical assessment of crushing responses of elliptical tubes under crushing forces. Based on the literature survey, tremendous amount of works on the axial crushing behaviour can be found. However, the studies on the oblique crushing responses are rarely found. Therefore, this work investigates numerically the elliptical tubes under compressions. The numerical model of the tubes are developed using ANSYS finite element program. Two important parameters are used such as elliptical ratios and oblique angles. The tubes are compressed quasi-statically and the force-displacement curves are extracted. Then, the area under the curves are calculated and it is represented the performances of energy absorptions. It is found numerically that the introductions of oblique angles during the crushing processes decrease the crushing performances. However, the elliptical-shaped tubes capable to enhance the energy absorption capabilities. On the other hand, the elliptical-shaped tubes produced the enhancement on the energy absorption capabilities.
Numerical hysteresis model for intermittent studies in unsaturated soils
NASA Astrophysics Data System (ADS)
Banerjee, M.
1986-07-01
In the present study, the use of one of the recent dependent domain models of capillary hysteresis in the numerical analysis of intermittent infiltration and redistribution of water in two types of soils (a sand and Rubicon Sandy Loam) has been shown. The numerical results for both the soils have been presented in terms of pressure head depth, moisture content depth and the pressure head-moisture content relationships. The capillary hysteresis model has been found to be very useful for the prediction of both wetting and drying scanning curves of various orders.
Numerical modeling of runback water on ice protected aircraft surfaces
NASA Technical Reports Server (NTRS)
Al-Khalil, Kamel M.; Keith, Theo G., Jr.; Dewitt, Kenneth J.
1992-01-01
A numerical simulation for 'running wet' aircraft anti-icing systems is developed. The model includes breakup of the water film, which exists in regions of direct impingement, into individual rivulets. The wetness factor distribution resulting from the film breakup and the rivulet configuration on the surface are predicted in the numerical solution procedure. The solid wall is modeled as a multilayer structure and the anti-icing system used is of the thermal type utilizing hot air and/or electrical heating elements embedded with the layers. Details of the calculation procedure and the methods used are presented.
Numerical models for the evaluation of geothermal systems
Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.
1986-08-01
We have carried out detailed simulations of various fields in the USA (Bada, New Mexico; Heber, California); Mexico (Cerro Prieto); Iceland (Krafla); and Kenya (Olkaria). These simulation studies have illustrated the usefulness of numerical models for the overall evaluation of geothermal systems. The methodology for modeling the behavior of geothermal systems, different approaches to geothermal reservoir modeling and how they can be applied in comprehensive evaluation work are discussed.
Numerical models of laser fusion of intestinal tissues.
Pearce, John A
2009-01-01
Numerical models of continuous wave Tm:YAG thermal fusion in rat intestinal tissues were compared to experiment. Optical and thermal FDM models that included tissue damage based on Arrhenius kinetics were used to predict birefringence loss in collagen as the standard of comparison. The models also predicted collagen shrinkage, jellification and water loss. The inclusion of variable optical and thermal properties is essential to achieve favorable agreement between predicted and measured damage boundaries.
A numerical model and spreadsheet interface for pumping test analysis.
Johnson, G S; Cosgrove, D M; Frederick, D B
2001-01-01
Curve-matching techniques have been the standard method of aquifer test analysis for several decades. A variety of techniques provide the capability of evaluating test data from confined, unconfined, leaky aquitard, and other conditions. Each technique, however, is accompanied by a set of assumptions, and evaluation of a combination of conditions can be complicated or impossible due to intractable mathematics or nonuniqueness of the solution. Numerical modeling of pumping tests provides two major advantages: (1) the user can choose which properties to calibrate and what assumptions to make; and (2) in the calibration process the user is gaining insights into the conceptual model of the flow system and uncertainties in the analysis. Routine numerical modeling of pumping tests is now practical due to computer hardware and software advances of the last decade. The RADFLOW model and spreadsheet interface presented in this paper is an easy-to-use numerical model for estimation of aquifer properties from pumping test data. Layered conceptual models and their properties are evaluated in a trial-and-error estimation procedure. The RADFLOW model can treat most combinations of confined, unconfined, leaky aquitard, partial penetration, and borehole storage conditions. RADFLOW is especially useful in stratified aquifer systems with no identifiable lateral boundaries. It has been verified to several analytical solutions and has been applied in the Snake River Plain Aquifer to develop and test conceptual models and provide estimates of aquifer properties. Because the model assumes axially symmetrical flow, it is limited to representing multiple aquifer layers that are laterally continuous.
Feedbacks Between Numerical and Analytical Models in Hydrogeology
NASA Astrophysics Data System (ADS)
Zlotnik, V. A.; Cardenas, M. B.; Toundykov, D.; Cohn, S.
2012-12-01
Hydrogeology is a relatively young discipline which combines elements of Earth science and engineering. Mature fundamental disciplines (e.g., physics, chemistry, fluid mechanics) have centuries-long history of mathematical modeling even prior to discovery of Darcy's law. Thus, in hydrogeology, relatively few classic analytical models (such those by Theis, Polubarinova-Kochina, Philip, Toth, Henry, Dagan, Neuman) were developed by the early 1970's. The advent of computers and practical demands refocused mathematical models towards numerical techniques. With more diverse but less mathematically-oriented training, most hydrogeologists shifted from analytical methods to use of standardized computational software. Spatial variability in internal properties and external boundary conditions and geometry, and the added complexity of chemical and biological processes will remain major challenges for analytical modeling. Possibly, analytical techniques will play a subordinate role to numerical approaches in many applications. On the other hand, the rise of analytical element modeling of groundwater flow is a strong alternative to numerical models when data demand and computational efficiency is considered. The hallmark of analytical models - transparency and accuracy - will remain indispensable for scientific exploration of complex phenomena and for benchmarking numerical models. Therefore, there will always be feedbacks and complementarities between numerical and analytical techniques, as well as a certain ideological schism among various views to modeling. We illustrate the idea of feedbacks by reviewing evolution of Joszef Toth's analytical model of gravity driven flow systems. Toth's (1963) approach was to reduce the flow domain to a rectangle which allowed for closed-form solution of the governing equations. Succeeding numerical finite-element models by Freeze and Witherspoon (1966-1968) explored the effects of geometry and heterogeneity on regional groundwater flow
Development of Numerical Grids for UZ Flow and Transport Modeling
J. Hinds
2001-12-18
This Analysis/Model Report (AMR) describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of a complex, three-dimensional (3-D) model, such as the Unsaturated-Zone Flow and Transport Model (UZ Model) of Yucca Mountain. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal loading conditions. Revision 00 of the work described herein follows the planning and work direction outlined in the ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (CRWMS M&O 1999c). The technical scope, content, and management of ICN 01 of this AMR is currently controlled by the planning document, ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001 b, Addendum B, Section 4.1). The steps involved in numerical grid development include: (1) defining the location of important calibration features, (2) determining model grid layers and fault geometry based on the Geologic Framework Model (GFM), the Integrated Site Model (ISM), and definition of hydrogeologic units (HGUs), (3) analyzing and extracting GFM and ISM data pertaining to layer contacts and property distributions, (4) discretizing and refining the two-dimensional (2-D), plan-view numerical grid, (5) generating the 3-D grid with finer resolution at the repository horizon and within the Calico Hills nonwelded (CHn) hydrogeologic unit, and (6) formulating the dual-permeability mesh. The products
Accuracy evaluation of a numerical simulation model of nasal airflow.
Lu, Jiuxing; Han, Demin; Zhang, Luo
2014-05-01
Our numerical simulation model provides an accurate reflection of nasal airflow, and the results were validated by clinical measurements. To evaluate the accuracy of a numerical simulation model of nasal airflow. Ten volunteers with normal nasal cavities underwent CT, acoustic rhinometry, and rhinomanometry. CT data were uploaded into Mimics, ICEM-CFD, Fluent, and CFD-Post software for three-dimensional modeling, finite element grid division, transient calculations, and analysis, respectively. Velocity and pressure data of airflow were obtained during the normal respiratory cycle. The accuracy of the simulation was evaluated by two methods: acoustic rhinometry measurements were used to evaluate the accuracy of the anatomic model, and rhinomanometry measurements were used to evaluate the accuracy of the nasal resistance values obtained by numerical simulation. There were no significant differences between the values describing the model and the acoustic rhinometry measurements, the nasal resistance values obtained by numerical simulation. The airflow through the nasal cavity was mainly laminar. The maximum velocities were measured at the nasal valve, the amplitudes of all velocity curves at locations beyond the nasal valve were reduced. The amplitudes of the pressure curves increased from the front to the back of the airway.
Numerical Simulation and Cold Modeling experiments on Centrifugal Casting
NASA Astrophysics Data System (ADS)
Keerthiprasad, Kestur Sadashivaiah; Murali, Mysore Seetharam; Mukunda, Pudukottah Gopaliengar; Majumdar, Sekhar
2011-02-01
In a centrifugal casting process, the fluid flow eventually determines the quality and characteristics of the final product. It is difficult to study the fluid behavior here because of the opaque nature of melt and mold. In the current investigation, numerical simulations of the flow field and visualization experiments on cold models have been carried out for a centrifugal casting system using horizontal molds and fluids of different viscosities to study the effect of different process variables on the flow pattern. The effects of the thickness of the cylindrical fluid annulus formed inside the mold and the effects of fluid viscosity, diameter, and rotational speed of the mold on the hollow fluid cylinder formation process have been investigated. The numerical simulation results are compared with corresponding data obtained from the cold modeling experiments. The influence of rotational speed in a real-life centrifugal casting system has also been studied using an aluminum-silicon alloy. Cylinders of different thicknesses are cast at different rotational speeds, and the flow patterns observed visually in the actual castings are found to be similar to those recorded in the corresponding cold modeling experiments. Reasonable agreement is observed between the results of numerical simulation and the results of cold modeling experiments with different fluids. The visualization study on the hollow cylinders produced in an actual centrifugal casting process also confirm the conclusions arrived at from the cold modeling experiments and numerical simulation in a qualitative sense.
Numerical model of Fanuc AM100iB robot
NASA Astrophysics Data System (ADS)
Cholewa, A.; Świder, J.; Zbilski, A.
2016-08-01
The article presents a numerical model of Fanuc AM 100iB robot, prepared in the form of a block diagram in Simulink software, using the SimMechanics toolbox. The main task of the numerical model of Fanuc AM 100iB robot is to calculate the value of torques putting a load on motor shafts, and to calculate the values of kinematic parameters of the robot's arms in real time and in interactive mode. The values and format of torques putting a load on subsequent joints, and then on the motor shafts, resulted from the effect of the simultaneous action of all torques and the delay, resulting from the implementation of numerical calculations in real time. The numerical model developed is a result of design focused on recreating the effects of simultaneous action of all these factors, which are present in the actual drives and affect the consumption of electricity. A very important criterion, taken into account when designing the model, was also its computational efficiency. In addition, the model was used to visualise the work of the tested machine in three-dimensional space.
NASA Astrophysics Data System (ADS)
Graham, Jason; Meneveau, Charles
2012-12-01
Simulating turbulent flows over objects characterized by hierarchies of length-scales poses special challenges associated with the cost of resolving small-scale elements. If these are treated as subgrid-scale elements, their effects on the resolved scales must be captured realistically. Most importantly, the associated drag forces must be parameterized. Prior work [S. Chester, C. Meneveau, and M. B. Parlange, "Modeling turbulent flow over fractal trees with renormalized numerical simulation," J. Comput. Phys. 225, 427-448 (2007), 10.1016/j.jcp.2006.12.009] proposed a technique called renormalized numerical simulation (RNS), which is applicable to objects that display scale-invariant geometric (fractal) properties. The idea of RNS is similar to that of the dynamic model used in large eddy simulation to determine model parameters for the subgrid-stress tensor model in the bulk of the flow. In RNS, drag forces from the resolved elements that are obtained during the simulation are re-scaled appropriately by determining drag coefficients that are then applied to specify the drag forces associated with the subgrid-scale elements. The technique has already been applied to model turbulent flow over a canopy of fractal trees [S. Chester, C. Meneveau, and M. B. Parlange, "Modeling turbulent flow over fractal trees with renormalized numerical simulation," J. Comput. Phys. 225, 427-448 (2007), 10.1016/j.jcp.2006.12.009], using a particular set of assumptions in evaluating the drag coefficient. In the current work we introduce a generalized framework for describing and implementing the RNS methodology. Furthermore, we describe various other possible practical implementations of RNS that differ on important, technical aspects related to (1) time averaging, (2) spatial localization, and (3) numerical representation of the drag forces. As part of this study, several RNS formulations are presented and compared. The various models are first implemented and compared in simulations of
Numerical characterization and modeling of adiabatic slot film cooling
NASA Astrophysics Data System (ADS)
Voegele, Andrew
Film cooling is a technique used to protect critical surfaces in combustors, thrust chambers, turbines and nozzles from hot, chemically reacting gases. Accurately predicting the film's performance is especially challenging in the vicinity of the wall and the film injection plane due to the complex interactions of two highly turbulent, shearing, boundary layer flows. Properly characterizing the streams at the inlet of a numerical simulation and the choice of turbulence model are crucial to accurately predicting the decay of the film. To address these issues, this study employs a RANS solver that is used to model a film cooled wall. Menter's baseline model, and shear-stress transport model and the Spalart-Allmaras model are employed to determine the effect on film cooling predictions. Several methods for prescribing the inlet planes are explored. These numerical studies are compared with experimental data obtained in a UMD film cooling wind tunnel.
Numerical modeling of consolidation processes in hydraulically deposited soils
NASA Astrophysics Data System (ADS)
Brink, Nicholas Robert
Hydraulically deposited soils are encountered in many common engineering applications including mine tailing and geotextile tube fills, though the consolidation process for such soils is highly nonlinear and requires the use of advanced numerical techniques to provide accurate predictions. Several commercially available finite element codes poses the ability to model soil consolidation, and it was the goal of this research to assess the ability of two of these codes, ABAQUS and PLAXIS, to model the large-strain, two-dimensional consolidation processes which occur in hydraulically deposited soils. A series of one- and two-dimensionally drained rectangular models were first created to assess the limitations of ABAQUS and PLAXIS when modeling consolidation of highly compressible soils. Then, geotextile tube and TSF models were created to represent actual scenarios which might be encountered in engineering practice. Several limitations were discovered, including the existence of a minimum preconsolidation stress below which numerical solutions become unstable.
Numerical Model Studies of the Martian Mesoscale Circulations
NASA Technical Reports Server (NTRS)
Segal, Moti; Arritt, Raymond W.
1997-01-01
The study objectives were to evaluate by numerical modeling various possible mesoscale circulation on Mars and related atmospheric boundary layer processes. The study was in collaboration with J. Tillman of the University of Washington (who supported the study observationally). Interaction has been made with J. Prusa of Iowa State University in numerical modeling investigation of dynamical effects of topographically-influenced flow. Modeling simulations included evaluations of surface physical characteristics on: (i) the Martian atmospheric boundary layer and (ii) their impact on thermally and dynamically forced mesoscale flows. Special model evaluations were made in support of selection of the Pathfinder landing sites. J. Tillman's finding of VL-2 inter-annual temperature difference was followed by model simulations attempting to point out the forcing for this feature. Publication of the results in the reviewed literature in pending upon completion of the manuscripts in preparation as indicated later.
Development, validation and application of numerical space environment models
NASA Astrophysics Data System (ADS)
Honkonen, Ilja
2013-10-01
Currently the majority of space-based assets are located inside the Earth's magnetosphere where they must endure the effects of the near-Earth space environment, i.e. space weather, which is driven by the supersonic flow of plasma from the Sun. Space weather refers to the day-to-day changes in the temperature, magnetic field and other parameters of the near-Earth space, similarly to ordinary weather which refers to changes in the atmosphere above ground level. Space weather can also cause adverse effects on the ground, for example, by inducing large direct currents in power transmission systems. The performance of computers has been growing exponentially for many decades and as a result the importance of numerical modeling in science has also increased rapidly. Numerical modeling is especially important in space plasma physics because there are no in-situ observations of space plasmas outside of the heliosphere and it is not feasible to study all aspects of space plasmas in a terrestrial laboratory. With the increasing number of computational cores in supercomputers, the parallel performance of numerical models on distributed memory hardware is also becoming crucial. This thesis consists of an introduction, four peer reviewed articles and describes the process of developing numerical space environment/weather models and the use of such models to study the near-Earth space. A complete model development chain is presented starting from initial planning and design to distributed memory parallelization and optimization, and finally testing, verification and validation of numerical models. A grid library that provides good parallel scalability on distributed memory hardware and several novel features, the distributed cartesian cell-refinable grid (DCCRG), is designed and developed. DCCRG is presently used in two numerical space weather models being developed at the Finnish Meteorological Institute. The first global magnetospheric test particle simulation based on the
Oscillation characteristics of endodontic files: numerical model and its validation.
Verhaagen, Bram; Lea, Simon C; de Bruin, Gerrit J; van der Sluis, Luc W M; Walmsley, A Damien; Versluis, Michel
2012-11-01
During a root canal treatment, an antimicrobial fluid is injected into the root canal to eradicate all bacteria from the root canal system. Agitation of the fluid using an ultrasonically vibrating miniature file results in a significant improvement in the cleaning efficacy over conventional syringe irrigation. Numerical analysis of the oscillation characteristics of the file, modeled as a tapered, driven rod, shows a sinusoidal wave pattern with an increase in amplitude and decrease in wavelength toward the free end of the file. Measurements of the file oscillation with a scanning laser vibrometer show good agreement with the numerical simulation. The numerical model of endodontic file oscillation has the potential for predicting the oscillation pattern and fracture likeliness of various file types and the acoustic streaming they induce during passive ultrasonic irrigation.
Numerical Techniques for Coupled Ring Current - Radiation Belts Modelling
NASA Astrophysics Data System (ADS)
Aseev, Nikita; Shprits, Yuri; Kellerman, Adam; Drozdov, Alexander
2016-04-01
The dynamics of electrons in the Earth's radiation belts can be described by the Fokker-Planck equation, which includes radial and local diffusion processes. The Versatile Electron Radiation Belt (VERB) code was developed to solve the Fokker-Planck equation for electron PSD. It incorporates a range of numerical techniques, which are appropriate for this purpose. The code has been recently extended to include convection and now solves the convection-diffusion problem in 4D. This report is devoted to several numerical algorithms for modeling of the Earth's radiation belts. We concentrate on a comparison of 3rd and 9th-order schemes for solution of an advection problem, and show some results on the basis of the numerical solution of the local diffusion problem including mixed terms in 2D. Recent 4D modeling of storm events using the VERB-4D code will be also presented.
Physical and numerical modeling of Joule-heated melters
NASA Astrophysics Data System (ADS)
Eyler, L. L.; Skarda, R. J.; Crowder, R. S., III; Trent, D. S.; Reid, C. R.; Lessor, D. L.
1985-10-01
The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable.
Physical and numerical modeling of Joule-heated melters
Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.
1985-10-01
The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs.
An improved numerical model for wave rotor design and analysis
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Wilson, Jack
1992-01-01
A numerical model has been developed which can predict both the unsteady flows within a wave rotor and the steady averaged flows in the ports. The model is based on the assumptions of one-dimensional, unsteady, and perfect gas flow. Besides the dominant wave behavior, it is also capable of predicting the effects of finite tube opening time, leakage from the tube ends, and viscosity. The relative simplicity of the model makes it useful for design, optimization, and analysis of wave rotor cycles for any application. This paper discusses some details of the model and presents comparisons between the model and two laboratory wave rotor experiments.
An improved numerical model for wave rotor design and analysis
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Wilson, Jack
1993-01-01
A numerical model has been developed which can predict both the unsteady flows within a wave rotor and the steady averaged flows in the ports. The model is based on the assumptions of one-dimensional, unsteady, and perfect gas flow. Besides the dominant wave behavior, it is also capable of predicting the effects of finite tube opening time, leakage from the tube ends, and viscosity. The relative simplicity of the model makes it useful for design, optimization, and analysis of wave rotor cycles for any application. This paper discusses some details of the model and presents comparisons between the model and two laboratory wave rotor experiments.
Modified Numerical Simulation Model of Blood Flow in Bend
Liu, X; Zhou, X; Hao, X; Sang, X
2015-01-01
ABSTRACT The numerical simulation model of blood flow in bend is studied in this paper. The curvature modification is conducted for the blood flow model in bend to obtain the modified blood flow model in bend. The modified model is verified by U tube. By comparing the simulation results with the experimental results obtained by measuring the flow data in U tube, it was found that the modified blood flow model in bend can effectively improve the prediction accuracy of blood flow data affected by the curvature effect. PMID:27398727
A SPATIO-TEMPORAL DOWNSCALER FOR OUTPUT FROM NUMERICAL MODELS
Often, in environmental data collection, data arise from two sources: numerical models and monitoring networks. The first source provides predictions at the level of grid cells, while the second source gives measurements at points. The first is characterized by full spatial cove...
Development of numerical Grids for UZ Flow and Transport Modeling
P. Dobson
2004-08-31
This report describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain, Nevada. Numerical grid generation is an integral part of the development of the unsaturated zone (UZ) flow and transport model, a complex, three-dimensional (3-D) model of Yucca Mountain. This revision contains changes made to improve the clarity of the description of grid generation. The numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal-loading conditions. The technical scope, content, and management for the current revision of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 2). Grids generated and documented in this report supersede those documented in Revision 00 of this report, ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2001 [DIRS 159356]). The grids presented in this report are the same as those developed in Revision 01 (BSC 2003 [DIRS 160109]); however, the documentation of the development of the grids in Revision 02 has been updated to address technical inconsistencies and achieve greater transparency, readability, and traceability. The constraints, assumptions, and limitations associated with this report are discussed in the appropriate sections that follow.
Modeling of Passive Acoustic Liners from High Fidelity Numerical Simulations
NASA Astrophysics Data System (ADS)
Ferrari, Marcello do Areal Souto
Noise reduction in aviation has been an important focus of study in the last few decades. One common solution is setting up acoustic liners in the internal walls of the engines. However, measurements in the laboratory with liners are expensive and time consuming. The present work proposes a nonlinear physics-based time domain model to predict the acoustic behavior of a given liner in a defined flow condition. The parameters of the model are defined by analysis of accurate numerical solutions of the flow obtained from a high-fidelity numerical code. The length of the cavity is taken into account by using an analytical procedure to account for internal reflections in the interior of the cavity. Vortices and jets originated from internal flow separations are confirmed to be important mechanisms of sound absorption, which defines the overall efficiency of the liner. Numerical simulations at different frequency, geometry and sound pressure level are studied in detail to define the model parameters. Comparisons with high-fidelity numerical simulations show that the proposed model is accurate, robust, and can be used to define a boundary condition simulating a liner in a high-fidelity code.
A SPATIO-TEMPORAL DOWNSCALER FOR OUTPUT FROM NUMERICAL MODELS
Often, in environmental data collection, data arise from two sources: numerical models and monitoring networks. The first source provides predictions at the level of grid cells, while the second source gives measurements at points. The first is characterized by full spatial cove...
An Approach to Query Cost Modelling in Numeric Databases.
ERIC Educational Resources Information Center
Jarvelin, Kalervo
1989-01-01
Examines factors that determine user charges based on query processing costs in numeric databases, and analyzes the problem of estimating such charges in advance. An approach to query cost estimation is presented which is based on the relational data model and the query optimization, cardinality estimation, and file design techniques developed in…
Numerical Modeling of Drying Residual RP-1 in Rocket Engines
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Polsgrove, Robert; Tiller, Bruce; Rodriquez, Pete (Technical Monitor)
2000-01-01
When a Rocket Engine shuts down under a fuel rich environment, a significant amount of unburned RP-1 is trapped In the engine. It is necessary to clean the residual RP-1 prior to subsequent firing to avoid any explosion due to detonation. The conventional method is to dry RP-1 with inert gas such as Nitrogen or Helium. It is difficult to estimate the drying time unless the engine is adequately equipped with instruments to measure the trace of RP-1 during the drying process. Such instrumentation in flight hardware is often impractical and costly. On the other hand numerical modeling of the drying process can provide a good insight for a satisfactory operation of the process. A numerical model can provide answer to questions such as a) how long it takes to dry, b) which fluid is a better dryer for RP-1, c) how to reduce drying time etc. The purpose of the present paper is to describe a numerical model of drying RP-1 trapped in a cavity with flowing nitrogen or helium. The numerical model assumes one dimensional flow of drying fluid in contact with liquid pool of RP-1. An evaporative mass transfer takes place across the contact surface.
Modeling collisional processes in plasmas using discontinuous numerical methods
NASA Astrophysics Data System (ADS)
Miller, Sean
Fluid-based plasma models are typically applied to parameter regimes where a local thermal equilibrium is assumed. The applicability of this regime is valid for many plasmas, however, it is limited to plasma dynamics dominated by collisional effects. This study attempts to extend the validity of the collisional fluid regime using an anisotropic 13-moment fluid model derived from the Pearson type-IV probability distribution. The model explicitly evolves the heat flux hyperbolically alongside the density, momentum, and energy in order to capture dynamics usually restricted to costly kinetic models. Each particle species is modeled individually and collectively coupled through electromagnetic and collision operators. To remove electromagnetic divergence errors inherent to numerical representations of Maxwell's equations, both hyperbolic and parabolic cleaning methods are presented. The plasma models are implemented using high-order finite volume and discontinuous Galerkin numerical methods designed for unstructured meshes. The unstructured code framework, numerical methods, and plasma models were developed in the University of Washington's WARPXM code for use on heterogeneous accelerated clusters.
Numerical integration of population models satisfying conservation laws: NSFD methods.
Mickens, Ronald E
2007-10-01
Population models arising in ecology, epidemiology and mathematical biology may involve a conservation law, i.e. the total population is constant. In addition to these cases, other situations may occur for which the total population, asymptotically in time, approach a constant value. Since it is rarely the situation that the equations of motion can be analytically solved to obtain exact solutions, it follows that numerical techniques are needed to provide solutions. However, numerical procedures are only valid if they can reproduce fundamental properties of the differential equations modeling the phenomena of interest. We show that for population models, involving a dynamical conservation law the use of nonstandard finite difference (NSFD) methods allows the construction of discretization schemes such that they are dynamically consistent (DC) with the original differential equations. The paper will briefly discuss the NSFD methodology, the concept of DC, and illustrate their application to specific problems for population models.
A numerical framework for modelling floating wind turbines
NASA Astrophysics Data System (ADS)
Vire, Axelle; Xiang, Jiansheng; Piggott, Matthew; Latham, John-Paul; Pain, Christopher
2012-11-01
This work couples a fluid/ocean- and a solid- dynamics model in order to numerically study fluid-structure interactions. The fully non-linear Navier-Stokes and solid-dynamics equations are solved on two distinct finite-element and unstructured grids. The interplay between fluid and solid is represented through a penalty force in the momentum balances of each material. The present algorithm is novel in that it spatially conserves the discrete penalty force, when exchanging it between both models, independently of the mesh resolution and of the shape-function orders in each model. This numerical framework targets the modelling of offshore floating wind turbines. Results will be shown for the flow past a moving pile and an actuator-disk representation of a turbine. This research is supported by the European Union Seventh Framework Programme (grant agreement PIEF-GA-2010-272437).
Numerical simulations of the 2-dimensional Robin-Hood model
NASA Astrophysics Data System (ADS)
Cwilich, Gabriel; Fox, Perry; Zypman, Fredy; Buldyrev, Sergey
2007-03-01
The Robin Hood, or Zaitsev model [1] has been successfully used to model depinning of interfaces, friction, dislocation motion and flux creep, because it is one of the simplest extremal models for self-organized criticallity Until now, its properties have been well understood theoretically in one dimension and its scaling laws numerically verified. It is important to extend the range of validity of these laws into higher dimensions, to find precise values for the scaling exponents, and to investigate how they depend on the details of the model (like anisotropy). The case of two dimensions is of particular importance when studying surface friction [2]. Here, we numerically evaluate high precision scaling exponents for the avalanche size distribution, the avalanche fractal dimension, and the Levy flight-like distribution of the jumps between extremal active sites. [1] S.I. Zaitsev , Physica A 189, 411 (1992). [2] S. Buldyrev, J. Ferrante and F. Zypman Phys. Rev E (accepted)
Numerical exploration of spontaneous broken symmetries in multiorbital Hubbard models
Kung, Y. F.; Chen, C. -C.; Moritz, B.; Johnston, S.; Thomale, R.; Devereaux, T. P.
2014-12-05
Here, we study three proposals for broken symmetry in the cuprate pseudogap-oxygen antiferromagnetism, Theta(II) orbital loop currents, and circulating currents involving apex oxygens-through numerical exploration of multiorbital Hubbard models. Our numerically exact results show no evidence for the existence of oxygen antiferromagnetic order or the Theta(II) phase in the three-orbital Hubbard model. The model also fails to sustain an ordered current pattern even with the presence of additional apex oxygen orbitals. Thus, we conclude that it is difficult to stabilize the aforementioned phases in the multiorbital Hubbard models for parameters relevant to cuprate superconductors. However, the Theta(II) phase might be stabilized through explicit flux terms. We also found an enhanced propensity for circulating currents with such terms in calculations simulating applied stress or strain, which skew the copper-oxygen plane to resemble a kagome lattice. We propose an experimental viewpoint to shed additional light on this problem.
Assessing Accuracy of Waveform Models against Numerical Relativity Waveforms
NASA Astrophysics Data System (ADS)
Pürrer, Michael; LVC Collaboration
2016-03-01
We compare currently available phenomenological and effective-one-body inspiral-merger-ringdown models for gravitational waves (GW) emitted from coalescing black hole binaries against a set of numerical relativity waveforms from the SXS collaboration. Simplifications are used in the construction of some waveform models, such as restriction to spins aligned with the orbital angular momentum, no inclusion of higher harmonics in the GW radiation, no modeling of eccentricity and the use of effective parameters to describe spin precession. In contrast, NR waveforms provide us with a high fidelity representation of the ``true'' waveform modulo small numerical errors. To focus on systematics we inject NR waveforms into zero noise for early advanced LIGO detector sensitivity at a moderately optimistic signal-to-noise ratio. We discuss where in the parameter space the above modeling assumptions lead to noticeable biases in recovered parameters.
Validation Testing and Numerical Modeling of Advanced Armor Materials
2012-11-01
constitutive material strength response with an appropriate yield surface model. The research is sub-divided into three areas: engineering design...and specimen preparation for Taylor impact testing, analytical solution for the dynamic yield strength of the materials used, and numerical modeling...aluminum alloy only. We perform a detailed analysis of the deformed specimen shapes to determine the dynamic yield strength . Additionally, hydrocode
A Congeries of Numerical Models used at the BRL
1980-09-01
MODEL NAME: CINDA (SINDA). REFERENCE(S): Chrysler Improved Numerical Differencing Analyzer for 3rd Generation Computers, TN-AP-67-287, Oct 20, 1967...used. 6. FOR MORE INFORMATION REGARDING THIS MODEL: POINT OF CONTACT: William Beverly PHONE NUMBER: VLD, extension 2853. 128 1. TASK AREA...Field. 13 CINDA (SINDA). 112 141 CONING. CYL C jectnes Cobra. Duel3. 76 CSQII - An exterior Finite 20 Difference Program for Two-Dimensional
Numerical modeling and simulation of flow through porous fabric surface
NASA Astrophysics Data System (ADS)
Gao, Zheng; Li, Xiaolin
We designed a numerical scheme to model the permeability of the fabric surface in an incompressible fluid by coupling the projection method with the Ghost Fluid Method in the front tracking framework. The pressure jump condition is obtained by adding a source term to the Poisson's equation in the projection step without modifications on its coefficients. The numerical results suggest that this approach has the ability to reproduce the relationship between pressure drop and relative velocity observed in the experiments. We use this algorithm to study the effects of porosity on the drag force and stability of parachutes during its inflation and deceleration.
A numerical cloud model for the support of laboratory experimentation
NASA Technical Reports Server (NTRS)
Hagen, D. E.
1979-01-01
A numerical cloud model is presented which can describe the evolution of a cloud starting from moist aerosol-laden air through the diffusional growth regime. The model is designed for the direct support of cloud chamber laboratory experimentation, i.e., experiment preparation, real-time control and data analysis. In the model the thermodynamics is uncoupled from the droplet growth processes. Analytic solutions for the cloud droplet growth equations are developed which can be applied in most laboratory situations. The model is applied to a variety of representative experiments.
Numerical model for the uptake of groundwater contaminants by phreatophytes
Widdowson, M.A.; El-Sayed, A.; Landmeyer, J.E.
2008-01-01
Conventional solute transport models do not adequately account for the effects of phreatophytic plant systems on contaminant concentrations in shallow groundwater systems. A numerical model was developed and tested to simulate threedimensional reactive solute transport in a heterogeneous porous medium. Advective-dispersive transport is coupled to biodegradation, sorption, and plantbased attenuation processes including plant uptake and sorption by plant roots. The latter effects are a function of the physical-chemical properties of the individual solutes and plant species. Models for plant uptake were tested and evaluated using the experimental data collected at a field site comprised of hybrid poplar trees. A non-linear equilibrium isotherm model best represented site conditions.
Validation of numerical models for flow simulation in labyrinth seals
NASA Astrophysics Data System (ADS)
Frączek, D.; Wróblewski, W.
2016-10-01
CFD results were compared with the results of experiments for the flow through the labyrinth seal. RANS turbulence models (k-epsilon, k-omega, SST and SST-SAS) were selected for the study. Steady and transient results were analyzed. ANSYS CFX was used for numerical computation. The analysis included flow through sealing section with the honeycomb land. Leakage flows and velocity profiles in the seal were compared. In addition to the comparison of computational models, the divergence of modeling and experimental results has been determined. Tips for modeling these problems were formulated.
The numerical scheme development of a simplified frozen soil model
NASA Astrophysics Data System (ADS)
Li, Qian; Sun, Shufen; Dai, Qiudan
2009-09-01
In almost all frozen soil models used currently, three variables of temperature, ice content and moisture content are used as prognostic variables and the rate term, accounting for the contribution of the phase change between water and ice, is shown explicitly in both the energy and mass balance equations. The models must be solved by a numerical method with an iterative process, and the rate term of the phase change needs to be pre-estimated at the beginning in each iteration step. Since the rate term of the phase change in the energy equation is closely related to the release or absorption of the great amount of fusion heat, a small error in the rate term estimation will introduce greater error in the energy balance, which will amplify the error in the temperature calculation and in turn, cause problems for the numerical solution convergence. In this work, in order to first reduce the trouble, the methodology of the variable transformation is applied to a simplified frozen soil model used currently, which leads to new frozen soil scheme used in this work. In the new scheme, the enthalpy and the total water equivalent are used as predictive variables in the governing equations to replace temperature, volumetric soil moisture and ice content used in many current models. By doing so, the rate terms of the phase change are not shown explicitly in both the mass and energy equations and its pre-estimation is avoided. Secondly, in order to solve this new scheme more functionally, the development of the numerical scheme to the new scheme is described and a numerical algorithm appropriate to the numerical scheme is developed. In order to evaluate the new scheme of the frozen soil model and its relevant algorithm, a series of model evaluations are conducted by comparing numerical results from the new model scheme with three observational data sets. The comparisons show that the results from the model are in good agreement with these data sets in both the change trend of
Numerical models for fluid-grains interactions: opportunities and limitations
NASA Astrophysics Data System (ADS)
Esteghamatian, Amir; Rahmani, Mona; Wachs, Anthony
2017-06-01
In the framework of a multi-scale approach, we develop numerical models for suspension flows. At the micro scale level, we perform particle-resolved numerical simulations using a Distributed Lagrange Multiplier/Fictitious Domain approach. At the meso scale level, we use a two-way Euler/Lagrange approach with a Gaussian filtering kernel to model fluid-solid momentum transfer. At both the micro and meso scale levels, particles are individually tracked in a Lagrangian way and all inter-particle collisions are computed by a Discrete Element/Soft-sphere method. The previous numerical models have been extended to handle particles of arbitrary shape (non-spherical, angular and even non-convex) as well as to treat heat and mass transfer. All simulation tools are fully-MPI parallel with standard domain decomposition and run on supercomputers with a satisfactory scalability on up to a few thousands of cores. The main asset of multi scale analysis is the ability to extend our comprehension of the dynamics of suspension flows based on the knowledge acquired from the high-fidelity micro scale simulations and to use that knowledge to improve the meso scale model. We illustrate how we can benefit from this strategy for a fluidized bed, where we introduce a stochastic drag force model derived from micro-scale simulations to recover the proper level of particle fluctuations. Conversely, we discuss the limitations of such modelling tools such as their limited ability to capture lubrication forces and boundary layers in highly inertial flows. We suggest ways to overcome these limitations in order to enhance further the capabilities of the numerical models.
An application of fast algorithms to numerical electromagnetic modeling
Bezvoda, V.; Segeth, K.
1987-03-01
Numerical electromagnetic modeling by the finite-difference or finite-element methods leads to a large sparse system of linear algebraic equations. Fast direct methods, requiring an order of at most q log q arithmetic operations to solve a system of q equations, cannot easily be applied to such a system. This paper describes the iterative application of a fast method, namely cyclic reduction, to the numerical solution of the Helmholtz equation with a piecewise constant imaginary coefficient of the absolute term in a plane domain. By means of numerical tests the advantages and limitations of the method compared with classical direct methods are discussed. The iterative application of the cyclic reduction method is very efficient if one can exploit a known solution of a similar (e.g., simpler) problem as the initial approximation. This makes cyclic reduction a powerful tool in solving the inverse problem by trial-and-error.
Numerical approach to unbiased and driven generalized elastic model
NASA Astrophysics Data System (ADS)
Nezhadhaghighi, M. Ghasemi; Chechkin, A.; Metzler, R.
2014-01-01
From scaling arguments and numerical simulations, we investigate the properties of the generalized elastic model (GEM) that is used to describe various physical systems such as polymers, membranes, single-file systems, or rough interfaces. We compare analytical and numerical results for the subdiffusion exponent β characterizing the growth of the mean squared displacement ⟨(δh)2⟩ of the field h described by the GEM dynamic equation. We study the scaling properties of the qth order moments ⟨|δh|q⟩ with time, finding that the interface fluctuations show no intermittent behavior. We also investigate the ergodic properties of the process h in terms of the ergodicity breaking parameter and the distribution of the time averaged mean squared displacement. Finally, we study numerically the driven GEM with a constant, localized perturbation and extract the characteristics of the average drift for a tagged probe.
Modeling supersonic combustion using a fully-implicit numerical method
NASA Technical Reports Server (NTRS)
Maccormack, Robert W.; Wilson, Gregory J.
1990-01-01
A fully-implicit finite-volume algorithm for two-dimensional axisymmetric flows has been coupled to a detailed hydrogen-air reaction mechanism (13 species and 33 reactions) so that supersonic combustion phenomena may be investigated. Numerical computations are compared with ballistic-range shadowgraphs of Lehr (1972) that exhibit two discontinuities caused by a blunt body as it passes through a premixed stoichiometric hydrogen-air mixture. The suitability of the numerical procedure for simulating these double-front flows is shown. The requirements for the physical formulation and the numerical modeling of these flowfields are discussed. Finally, the sensitivity of these external flowfields to changes in certain key reaction rate constants is examined.
Forecasts of time averages with a numerical weather prediction model
NASA Technical Reports Server (NTRS)
Roads, J. O.
1986-01-01
Forecasts of time averages of 1-10 days in duration by an operational numerical weather prediction model are documented for the global 500 mb height field in spectral space. Error growth in very idealized models is described in order to anticipate various features of these forecasts and in order to anticipate what the results might be if forecasts longer than 10 days were carried out by present day numerical weather prediction models. The data set for this study is described, and the equilibrium spectra and error spectra are documented; then, the total error is documented. It is shown how forecasts can immediately be improved by removing the systematic error, by using statistical filters, and by ignoring forecasts beyond about a week. Temporal variations in the error field are also documented.
GPU accelerated numerical simulations of viscoelastic phase separation model.
Yang, Keda; Su, Jiaye; Guo, Hongxia
2012-07-05
We introduce a complete implementation of viscoelastic model for numerical simulations of the phase separation kinetics in dynamic asymmetry systems such as polymer blends and polymer solutions on a graphics processing unit (GPU) by CUDA language and discuss algorithms and optimizations in details. From studies of a polymer solution, we show that the GPU-based implementation can predict correctly the accepted results and provide about 190 times speedup over a single central processing unit (CPU). Further accuracy analysis demonstrates that both the single and the double precision calculations on the GPU are sufficient to produce high-quality results in numerical simulations of viscoelastic model. Therefore, the GPU-based viscoelastic model is very promising for studying many phase separation processes of experimental and theoretical interests that often take place on the large length and time scales and are not easily addressed by a conventional implementation running on a single CPU.
Nonlinear dispersion effects in elastic plates: numerical modelling and validation
NASA Astrophysics Data System (ADS)
Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2017-04-01
Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.
FEM numerical model analysis of magnetic nanoparticle tumor heating experiments.
Pearce, John A; Petyk, Alicia A; Hoopes, P Jack
2014-01-01
Iron oxide nanoparticles are currently under investigation as heating agents for hyperthermic treatment of tumors. Major determinants of effective heating include the biodistribution of magnetic materials, the minimum iron oxide loading required to achieve adequate heating, and practically achievable magnetic field strengths. These are inter-related criteria that ultimately determine the practicability of this approach to tumor treatment. Currently, we lack fundamental engineering design criteria that can be used in treatment planning and assessment. Coupling numerical models to experimental studies illuminate the underlying physical processes and can separate physical processes to determine their relative importance. Further, adding thermal damage and cell death process to the models provides valuable perspective on the likelihood of successful treatment. FEM numerical models were applied to increase the understanding of a carefully calibrated series of experiments in mouse mammary carcinoma. The numerical models results indicate that tumor loadings equivalent to approximately 1 mg of Fe3O4 per gram of tumor tissue are required to achieve adequate heating in magnetic field strengths of 34 kA/m (rms) at 160 kHz. Further, the models indicate that direct intratumoral injection of the nanoparticles results in between 1 and 20% uptake in the tissues.
Biomechanical behaviour of ankle ligaments: constitutive formulation and numerical modelling.
Forestiero, A; Carniel, E L; Natali, A N
2014-01-01
This study was aimed at the definition of a constitutive formulation of ankle ligaments and of a procedure for the constitutive parameters evaluation, for the biomechanical analysis by means of numerical models. To interpret the typical features of ligaments mechanical response, as anisotropic configuration, geometric non-linearity, non-linear elasticity and time-dependent behaviour, a specific fibre-reinforced visco-hyperelastic model is provided. The identification of constitutive parameters is performed by a stochastic-deterministic procedure that minimises the discrepancy between experimental and computational results. A preliminary evaluation of parameters is performed by analytical models in order to define reference values. Afterwards, solid models are developed to consider the complex histo-morphometric configuration of samples as a basis for the definition of numerical models. The results obtained are adopted for upgrading parameter values by comparison with specific mechanical tests. Assuming the new parameters set, the final numerical results are compared with the overall set of experimental data, to assess the reliability and efficacy of the analysis developed for the interpretation of the mechanical response of ankle ligaments.
Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell
Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.
2015-01-01
Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434
Numerical Modeling of Plasmas in which Nanoparticles Nucleate and Grow
NASA Astrophysics Data System (ADS)
Agarwal, Pulkit
Dusty plasmas refer to a broad category of plasmas. Plasmas such as argon-silane plasmas in which particles nucleate and grow are widely used in semiconductor processing and nanoparticle manufacturing. In such dusty plasmas, the plasma and the dust particles are strongly coupled to each other. This means that the presence of dust particles significantly affects the plasma properties and vice versa. Therefore such plasmas are highly complex and they involve several interesting phenomena like nucleation, growth, coagulation, charging and transport. Dusty plasma afterglow is equally complex and important. Especially, residual charge on dust particles carries special significance in several industrial and laboratory situations and it has not been well understood. A 1D numerical model was developed of a low-pressure capacitively-coupled plasma in which nanoparticles nucleate and grow. Polydispersity of particle size distributions can be important in such plasmas. Sectional method, which is well known in aerosol literature, was used to model the evolving particle size and charge distribution. The numerical model is transient and one-dimensional and self consistently accounts for nucleation, growth, coagulation, charging and transport of dust particles and their effect on plasma properties. Nucleation and surface growth rates were treated as input parameters. Results were presented in terms of particle size and charge distribution with an emphasis on importance of polydispersity in particle growth and dynamics. Results of numerical model were compared with experimental measurements of light scattering and light emission from plasma. Reasonable qualitative agreement was found with some discrepancies. Pulsed dusty plasma can be important for controlling particle production and/or unwanted particle deposition. In this case, it is important to understand the behavior of the particle cloud during the afterglow following plasma turn-off. Numerical model was modified to self
Numerical modelling of the shoulder for clinical applications.
Favre, Philippe; Snedeker, Jess G; Gerber, Christian
2009-05-28
Research activity involving numerical models of the shoulder is dramatically increasing, driven by growing rates of injury and the need to better understand shoulder joint pathologies to develop therapeutic strategies. Based on the type of clinical question they can address, existing models can be broadly categorized into three groups: (i) rigid body models that can simulate kinematics, collisions between entities or wrapping of the muscles over the bones, and which have been used to investigate joint kinematics and ergonomics, and are often coupled with (ii) muscle force estimation techniques, consisting mainly of optimization methods and electromyography-driven models, to simulate muscular action and joint reaction forces to address issues in joint stability, muscular rehabilitation or muscle transfer, and (iii) deformable models that account for stress-strain distributions in the component structures to study articular degeneration, implant failure or muscle/tendon/bone integrity. The state of the art in numerical modelling of the shoulder is reviewed, and the advantages, limitations and potential clinical applications of these modelling approaches are critically discussed. This review concentrates primarily on muscle force estimation modelling, with emphasis on a novel muscle recruitment paradigm, compared with traditionally applied optimization methods. Finally, the necessary benchmarks for validating shoulder models, the emerging technologies that will enable further advances and the future challenges in the field are described.
Applications of Numerical Models for Rough Surface Scattering
NASA Astrophysics Data System (ADS)
Johnson, Joel Tidmore
This thesis provides new computational models for electromagnetic surface scattering which allow large one and two dimensional problems to be considered through the use of efficient numerical algorithms and parallel computing techniques. This is in contrast with previous numerical studies that have been limited to relatively small surfaces rough in one dimension only. The new numerically exact models are applied to several problems of current interest, and allow studies of phenomena not predicted by any available analytical theories. In addition, comparisons are made with predictions of standard analytical models to obtain an assessment of their performance. A one dimensional model for VHF propagation is the first numerical model considered. Comparisons with measurement data show the model to produce accurate results, and conclusively demonstrate the importance of terrain measurements in propagation predictions. Comparisons with approximate models allow their appropriate regions of validity to be determined. Polarimetric thermal emission from two dimensional periodic surfaces is studied using an extended boundary condition (EBC) numerical solution. The model is applied to generate the only numerically exact results for two dimensional surface polarimetric thermal emission currently available, and demonstrates that properties of U _{B}, the third Stokes emission parameter, remain similar to those observed previously for one dimensional periodic surfaces. The response of U_{B} to level of medium anisotropy is also investigated. A Monte Carlo study of backscattering enhancement from two dimensional perfectly conducting random rough surfaces follows, using a recently developed more efficient version of the method of moments which allows the large two dimensional surfaces investigated to be treated. Comparisons with bistatic scattering data from machine fabricated random surfaces taken at the University of Washington illustrate the first such validation of a two
Ultrasonic and numerical modeling of reflections from simulated fractured reservoirs
Stephen, T.; Zhu, Xiang,
1997-10-01
In order to develop modeling techniques for the characterization of fracture properties in tight gas sands from surface seismic reflection data we examine seismic waves scattered from anisotropic heterogeneity with laboratory data and numerical modeling. Laboratory models representing features of a fractured reservoir were constructed using Phenolite embedded in a Lucite background, and seismic surveys were gathered over these models. In parallel with laboratory measurement, finite-difference modeling of reflections from a fractured medium were carried out. Fracture zone properties were calculated using an effective medium theory, the variation of fracture density produced a heterogeneous medium. The heterogeneity was modeled with a stochastic process, characterized by a probability density function and an auto-correlation function. Results from both modeling efforts show that prestacked AVO data can contain important information describing reservoir heterogeneity.
Numerical modeling of pulsatile turbulent flow in stenotic vessels.
Varghese, Sonu S; Frankel, Steven H
2003-08-01
Pulsatile turbulent flow in stenotic vessels has been numerically modeled using the Reynolds-averaged Navier-Stokes equation approach. The commercially available computational fluid dynamics code (CFD), FLUENT, has been used for these studies. Two different experiments were modeled involving pulsatile flow through axisymmetric stenoses. Four different turbulence models were employed to study their influence on the results. It was found that the low Reynolds number k-omega turbulence model was in much better agreement with previous experimental measurements than both the low and high Reynolds number versions of the RNG (renormalization-group theory) k-epsilon turbulence model and the standard k-epsilon model, with regard to predicting the mean flow distal to the stenosis including aspects of the vortex shedding process and the turbulent flow field. All models predicted a wall shear stress peak at the throat of the stenosis with minimum values observed distal to the stenosis where flow separation occurred.
Handling geophysical flows: Numerical modelling using Graphical Processing Units
NASA Astrophysics Data System (ADS)
Garcia-Navarro, Pilar; Lacasta, Asier; Juez, Carmelo; Morales-Hernandez, Mario
2016-04-01
Computational tools may help engineers in the assessment of sediment transport during the decision-making processes. The main requirements are that the numerical results have to be accurate and simulation models must be fast. The present work is based on the 2D shallow water equations in combination with the 2D Exner equation [1]. The resulting numerical model accuracy was already discussed in previous work. Regarding the speed of the computation, the Exner equation slows down the already costly 2D shallow water model as the number of variables to solve is increased and the numerical stability is more restrictive. On the other hand, the movement of poorly sorted material over steep areas constitutes a hazardous environmental problem. Computational tools help in the predictions of such landslides [2]. In order to overcome this problem, this work proposes the use of Graphical Processing Units (GPUs) for decreasing significantly the simulation time [3, 4]. The numerical scheme implemented in GPU is based on a finite volume scheme. The mathematical model and the numerical implementation are compared against experimental and field data. In addition, the computational times obtained with the Graphical Hardware technology are compared against Single-Core (sequential) and Multi-Core (parallel) CPU implementations. References [Juez et al.(2014)] Juez, C., Murillo, J., & Garca-Navarro, P. (2014) A 2D weakly-coupled and efficient numerical model for transient shallow flow and movable bed. Advances in Water Resources. 71 93-109. [Juez et al.(2013)] Juez, C., Murillo, J., & Garca-Navarro, P. (2013) . 2D simulation of granular flow over irregular steep slopes using global and local coordinates. Journal of Computational Physics. 225 166-204. [Lacasta et al.(2014)] Lacasta, A., Morales-Hernndez, M., Murillo, J., & Garca-Navarro, P. (2014) An optimized GPU implementation of a 2D free surface simulation model on unstructured meshes Advances in Engineering Software. 78 1-15. [Lacasta
Numerical modeling of shallow magma intrusions with finite element method
NASA Astrophysics Data System (ADS)
Chen, Tielin; Cheng, Shaozhen; Fang, Qian; Zhou, Cheng
2017-03-01
A numerical approach for simulation of magma intrusion process, considering the couplings of the stress distribution, the viscous fluid flow of magma, and the fracturing of host rock, has been developed to investigate the mechanisms of fracture initiation and propagation in host rock during magma intrusion without pre-placing a set of fractures. The study focused on the dike intrusions filled with injected viscous magma in shallow sediments. A series of numerical modellings were carried out to simulate the process of magma intrusion in host rocks, with particular attention on the magma propagation processes and the formation of intrusion shapes. The model materials were Mohr-Coulomb materials with tension failure and shear failure. The scenarios of both stochastically heterogeneous host rocks and layered host rocks were analyzed. The injected magma formed intrusions shapes of (a) dyke, (b) sill, (c) cup-shaped intrusion, (d) saucer-shaped intrusion. The numerical results were in agreement with the experimental and field observed results, which confirmed the adequacy and the power of the numerical approach.
Mathematical and Numerical Techniques in Energy and Environmental Modeling
NASA Astrophysics Data System (ADS)
Chen, Z.; Ewing, R. E.
Mathematical models have been widely used to predict, understand, and optimize many complex physical processes, from semiconductor or pharmaceutical design to large-scale applications such as global weather models to astrophysics. In particular, simulation of environmental effects of air pollution is extensive. Here we address the need for using similar models to understand the fate and transport of groundwater contaminants and to design in situ remediation strategies. Three basic problem areas need to be addressed in the modeling and simulation of the flow of groundwater contamination. First, one obtains an effective model to describe the complex fluid/fluid and fluid/rock interactions that control the transport of contaminants in groundwater. This includes the problem of obtaining accurate reservoir descriptions at various length scales and modeling the effects of this heterogeneity in the reservoir simulators. Next, one develops accurate discretization techniques that retain the important physical properties of the continuous models. Finally, one develops efficient numerical solution algorithms that utilize the potential of the emerging computing architectures. We will discuss recent advances and describe the contribution of each of the papers in this book in these three areas. Keywords: reservoir simulation, mathematical models, partial differential equations, numerical algorithms
Proudman and Chrystal resonances simulated with three numerical models
NASA Astrophysics Data System (ADS)
Bubalo, Maja; Janeković, Ivica; Orlić, Mirko
2017-04-01
The aim of this work was to validate and compare how Proudman and Chrystal resonances are reproduced with different, nowadays widely used, numerical models. The test case was based on simple air pressure disturbances of two commonly used shapes (a boxcar and a sinusoidal), having various wave lengths, and propagating at different speeds. Our test domain was a rectangular basin, 300 km long with a uniform depth of 50 m. For each simulation, we saved water level anomalies and computed the integral of the energy density spectrum for a number of points distributed along the basin. The 341 simulations were performed using three different numerical models: ADCIRC, ROMS and SCHISM. A comparison of the results shows that the models represent the resonant phenomena in different ways. For the Proudman resonance, the most consistent results, closest to the analytical solution, were obtained with ROMS model, which reproduced the mean resonant speed equal to 21.99 m/s - i.e., close to the theoretical value of 22.14 m/s. ADCIRC model showed small deviations from that value, with the mean speed being slightly lower - 21.79 m/s. SCHISM differed the most from the analytical solution, with the mean speed equalling 21.04 m/s. For the Chrystal resonance, all the models showed similar behaviour, with ADCIRC model providing slightly lower values of the mean resonant period than the other two models.
3-D Numerical Stratigraphic Forward Modeling of Rifts
NASA Astrophysics Data System (ADS)
Lovely, P. J.; Harris, A.; Baumgardner, S. E.; Engelder, T.; Sun, T.; Lyons, R. P.; Granjeon, D.
2016-12-01
Continental rifts are of great interest and relevance to scientists and the general public because they contain numerous depositional environments at relatively compressed spatiotemporal scales, continuous climate records, and hydrocarbon resources. The interaction of climate, sediment routing, and tectonism controls the distribution and continuity of the depositional environments, but these relationships are nonlinear and complex. Conceptual stratigraphic models provide useful insight into facies distribution but are typically qualitative and may not capture the full range of geologically plausible scenarios generated by these interactions. Here, we use a numerical forward stratigraphic model to demonstrate that a deterministic, nonlinear diffusion-based sediment transport model can approximate key tectonostratigraphic processes interpreted from continental rift systems. The sediment transport model acts upon a simple elastic tectonic model that approximates appropriate distributions of subsidence and uplift associated with a schematic fault architecture typical of early stage continental rifting. Comparison of model results to observations of outcrops and the subsurface demonstrates the model's ability to reproduce key tectonostratigraphic features. We also show that such a model may be used to analyze the sensitivity of sand distributions to base-level, sediment, and water flux changes. We present an example analysis with a suite of metrics such as sand thickness, net-to-gross, and mass extraction methods that quantitatively describe the deposits that result from various inputs. This simple sensitivity analysis can be conducted by academic and industry groups to better characterize facies distribution or quantify uncertainties associated with continental rifts.
Numerical modeling of electron-beam welding of dissimilar metals
NASA Astrophysics Data System (ADS)
Krektuleva, R. A.; Cherepanov, O. I.; Cherepanov, R. O.
2016-11-01
This paper is devoted to numerical modeling of heat transfer processes and estimation of thermal stresses in weld seams created by electron beam welding of heterogeneous metals. The mathematical model is based on a system of equations that includes the Lagrange's variational equation of theory of plasticity and variational equation of M. Biot's principle to simulate the heat transfer processes. The two-dimensional problems (plane strain and plane stress) are considered for estimation of thermal stresses in welds considering differences of mechanical properties of welded materials. The model is developed for simulation of temperature fields and stresses during electron beam welding.
Numerical solutions of the three-dimensional magnetohydrodynamic alpha model.
Mininni, Pablo D; Montgomery, David C; Pouquet, Annick
2005-04-01
We present direct numerical simulations and alpha -model simulations of four familiar three-dimensional magnetohydrodynamic (MHD) turbulence effects: selective decay, dynamic alignment, inverse cascade of magnetic helicity, and the helical dynamo effect. The MHD alpha model is shown to capture the long-wavelength spectra in all these problems, allowing for a significant reduction of computer time and memory at the same kinetic and magnetic Reynolds numbers. In the helical dynamo, not only does the alpha model correctly reproduce the growth rate of magnetic energy during the kinematic regime, it also captures the nonlinear saturation level and the late generation of a large scale magnetic field by the helical turbulence.
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.
Numerical modeling of microwave switchers with subpicosecond time delay
NASA Astrophysics Data System (ADS)
Konoplev, B.; Ryndin, E.
2016-12-01
In this article the layout and structure of the microwave switcher based on the managed electron density maximum rearrangement in multi-contacts functionally integrated active region are considered. The basis of the microwave switcher is a normally opened high electron mobility transistor structure (HEMT) with multiple Schottky gates and the corresponding number of switching ohmic contacts. In this research two-dimensional finite-difference physical and topological model of the considered microwave switchers is proposed. The distinctive features of the proposed model are combination of two different sets of variables and explicit first-order upwind discretization scheme for the normalized continuity equation. The obtained results of numerical modeling are discussed.
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.
Preliminary numerical analysis of improved gas chromatograph model
NASA Technical Reports Server (NTRS)
Woodrow, P. T.
1973-01-01
A mathematical model for the gas chromatograph was developed which incorporates the heretofore neglected transport mechanisms of intraparticle diffusion and rates of adsorption. Because a closed-form analytical solution to the model does not appear realizable, techniques for the numerical solution of the model equations are being investigated. Criteria were developed for using a finite terminal boundary condition in place of an infinite boundary condition used in analytical solution techniques. The class of weighted residual methods known as orthogonal collocation is presently being investigated and appears promising.
Busted Butte: Achieving the Objectives and Numerical Modeling Results
W.E. Soll; M. Kearney; P. Stauffer; P. Tseng; H.J. Turin; Z. Lu
2002-10-07
The Unsaturated Zone Transport Test (UZTT) at Busted Butte is a mesoscale field/laboratory/modeling investigation designed to address uncertainties associated with flow and transport in the UZ site-process models for Yucca Mountain. The UZTT test facility is located approximately 8 km southeast of the potential Yucca Mountain repository area. The UZTT was designed in two phases, to address five specific objectives in the UZ: the effect of heterogeneities, flow and transport (F&T) behavior at permeability contrast boundaries, migration of colloids , transport models of sorbing tracers, and scaling issues in moving from laboratory scale to field scale. Phase 1A was designed to assess the influence of permeability contrast boundaries in the hydrologic Calico Hills. Visualization of fluorescein movement , mineback rock analyses, and comparison with numerical models demonstrated that F&T are capillary dominated with permeability contrast boundaries distorting the capillary flow. Phase 1B was designed to assess the influence of fractures on F&T and colloid movement. The injector in Phase 1B was located at a fracture, while the collector, 30 cm below, was placed at what was assumed to be the same fracture. Numerical simulations of nonreactive (Br) and reactive (Li) tracers show the experimental data are best explained by a combination of molecular diffusion and advective flux. For Phase 2, a numerical model with homogeneous unit descriptions was able to qualitatively capture the general characteristics of the system. Numerical simulations and field observations revealed a capillary dominated flow field. Although the tracers showed heterogeneity in the test block, simulation using heterogeneous fields did not significantly improve the data fit over homogeneous field simulations. In terms of scaling, simulations of field tracer data indicate a hydraulic conductivity two orders of magnitude higher than measured in the laboratory. Simulations of Li, a weakly sorbing tracer
Numerical Modeling of Fracture Propagation in Naturally Fractured Formations
NASA Astrophysics Data System (ADS)
Wang, W.; Prodanovic, M.; Olson, J. E.; Schultz, R.
2015-12-01
Hydraulic fracturing consists of injecting fluid at high pressure and high flowrate to the wellbore for the purpose of enhancing production by generating a complex fracture network. Both tensile failure and shear failure occur during the hydraulic fracturing treatment. The shear event can be caused by slip on existing weak planes such as faults or natural fractures. From core observation, partially cemented and fully cemented opening mode natural fractures, often with considerable thickness are widely present. Hydraulic fractures can propagate either within the natural fracture (tensile failure) or along the interface between the natural fracture and the rock matrix (tensile/shear failure), depending on the relative strength of cement and rock matrix materials, the bonding strength of interface, as well as the presence of any heterogeneities. In this study, we evaluate the fracture propagation both experimentally and numerically. We embed one or multiple inclusions of different mechanical properties within synthetic hydrostone samples in order to mimic cemented natural fractures and rock. A semi-circular bending test is performed for each set of properties. A finite element model built with ABAQUS is used to mimic the semi-circular bending test and study the fracture propagation path, as well as the matrix-inclusion bonding interface status. Mechanical properties required for the numerical model are measured experimentally. The results indicate that the match between experiment and modeling fracture path are extremely sensitive to the chosen interface (bonding) model and related parameters. The semi-circular bending test is dry and easily conducted, providing a good platform for validating numerical approaches. A validated numerical model will enable us to add pressurized fluid within the crack and simulate hydraulic fracture-natural fracture interaction in the reservoir conditions, ultimately providing insights into the extent of the fracture network.
Temperature sensitivity of a numerical pollen forecast model
NASA Astrophysics Data System (ADS)
Scheifinger, Helfried; Meran, Ingrid; Szabo, Barbara; Gallaun, Heinz; Natali, Stefano; Mantovani, Simone
2016-04-01
Allergic rhinitis has become a global health problem especially affecting children and adolescence. Timely and reliable warning before an increase of the atmospheric pollen concentration means a substantial support for physicians and allergy suffers. Recently developed numerical pollen forecast models have become means to support the pollen forecast service, which however still require refinement. One of the problem areas concerns the correct timing of the beginning and end of the flowering period of the species under consideration, which is identical with the period of possible pollen emission. Both are governed essentially by the temperature accumulated before the entry of flowering and during flowering. Phenological models are sensitive to a bias of the temperature. A mean bias of -1°C of the input temperature can shift the entry date of a phenological phase for about a week into the future. A bias of such an order of magnitude is still possible in case of numerical weather forecast models. If the assimilation of additional temperature information (e.g. ground measurements as well as satellite-retrieved air / surface temperature fields) is able to reduce such systematic temperature deviations, the precision of the timing of phenological entry dates might be enhanced. With a number of sensitivity experiments the effect of a possible temperature bias on the modelled phenology and the pollen concentration in the atmosphere is determined. The actual bias of the ECMWF IFS 2 m temperature will also be calculated and its effect on the numerical pollen forecast procedure presented.
Comparison between analytical and numerical solution of mathematical drying model
NASA Astrophysics Data System (ADS)
Shahari, N.; Rasmani, K.; Jamil, N.
2016-02-01
Drying is often related to the food industry as a process of shifting heat and mass inside food, which helps in preserving food. Previous research using a mass transfer equation showed that the results were mostly concerned with the comparison between the simulation model and the experimental data. In this paper, the finite difference method was used to solve a mass equation during drying using different kinds of boundary condition, which are equilibrium and convective boundary conditions. The results of these two models provide a comparison between the analytical and the numerical solution. The result shows a close match between the two solution curves. It is concluded that the two proposed models produce an accurate solution to describe the moisture distribution content during the drying process. This analysis indicates that we have confidence in the behaviour of moisture in the numerical simulation. This result demonstrated that a combined analytical and numerical approach prove that the system is behaving physically. Based on this assumption, the model of mass transfer was extended to include the temperature transfer, and the result shows a similar trend to those presented in the simpler case.
Performance benchmarks for a next generation numerical dynamo model
NASA Astrophysics Data System (ADS)
Matsui, Hiroaki; Heien, Eric; Aubert, Julien; Aurnou, Jonathan M.; Avery, Margaret; Brown, Ben; Buffett, Bruce A.; Busse, Friedrich; Christensen, Ulrich R.; Davies, Christopher J.; Featherstone, Nicholas; Gastine, Thomas; Glatzmaier, Gary A.; Gubbins, David; Guermond, Jean-Luc; Hayashi, Yoshi-Yuki; Hollerbach, Rainer; Hwang, Lorraine J.; Jackson, Andrew; Jones, Chris A.; Jiang, Weiyuan; Kellogg, Louise H.; Kuang, Weijia; Landeau, Maylis; Marti, Philippe; Olson, Peter; Ribeiro, Adolfo; Sasaki, Youhei; Schaeffer, Nathanaël.; Simitev, Radostin D.; Sheyko, Andrey; Silva, Luis; Stanley, Sabine; Takahashi, Futoshi; Takehiro, Shin-ichi; Wicht, Johannes; Willis, Ashley P.
2016-05-01
Numerical simulations of the geodynamo have successfully represented many observable characteristics of the geomagnetic field, yielding insight into the fundamental processes that generate magnetic fields in the Earth's core. Because of limited spatial resolution, however, the diffusivities in numerical dynamo models are much larger than those in the Earth's core, and consequently, questions remain about how realistic these models are. The typical strategy used to address this issue has been to continue to increase the resolution of these quasi-laminar models with increasing computational resources, thus pushing them toward more realistic parameter regimes. We assess which methods are most promising for the next generation of supercomputers, which will offer access to O(106) processor cores for large problems. Here we report performance and accuracy benchmarks from 15 dynamo codes that employ a range of numerical and parallelization methods. Computational performance is assessed on the basis of weak and strong scaling behavior up to 16,384 processor cores. Extrapolations of our weak-scaling results indicate that dynamo codes that employ two-dimensional or three-dimensional domain decompositions can perform efficiently on up to ˜106 processor cores, paving the way for more realistic simulations in the next model generation.
Quantitative comparisons of numerical models of brittle deformation
NASA Astrophysics Data System (ADS)
Buiter, S.
2009-04-01
Numerical modelling of brittle deformation in the uppermost crust can be challenging owing to the requirement of an accurate pressure calculation, the ability to achieve post-yield deformation and localisation, and the choice of rheology (plasticity law). One way to approach these issues is to conduct model comparisons that can evaluate the effects of different implementations of brittle behaviour in crustal deformation models. We present a comparison of three brittle shortening experiments for fourteen different numerical codes, which use finite element, finite difference, boundary element and distinct element techniques. Our aim is to constrain and quantify the variability among models in order to improve our understanding of causes leading to differences between model results. Our first experiment of translation of a stable sand-like wedge serves as a reference that allows for testing against analytical solutions (e.g., taper angle, root-mean-square velocity and gravitational rate of work). The next two experiments investigate an unstable wedge in a sandbox-like setup which deforms by inward translation of a mobile wall. All models accommodate shortening by in-sequence formation of forward shear zones. We analyse the location, dip angle and spacing of thrusts in detail as previous comparisons have shown that these can be highly variable in numerical and analogue models of crustal shortening and extension. We find that an accurate implementation of boundary friction is important for our models. Our results are encouraging in the overall agreement in their dynamic evolution, but show at the same time the effort that is needed to understand shear zone evolution. GeoMod2008 Team: Markus Albertz, Michele Cooke, Susan Ellis, Taras Gerya, Luke Hodkinson, Kristin Hughes, Katrin Huhn, Boris Kaus, Walter Landry, Bertrand Maillot, Christophe Pascal, Anton Popov, Guido Schreurs, Christopher Beaumont, Tony Crook, Mario Del Castello and Yves Leroy
Untangling Slab Dynamics Using 3-D Numerical and Analytical Models
NASA Astrophysics Data System (ADS)
Holt, A. F.; Royden, L.; Becker, T. W.
2016-12-01
Increasingly sophisticated numerical models have enabled us to make significant strides in identifying the key controls on how subducting slabs deform. For example, 3-D models have demonstrated that subducting plate width, and the related strength of toroidal flow around the plate edge, exerts a strong control on both the curvature and the rate of migration of the trench. However, the results of numerical subduction models can be difficult to interpret, and many first order dynamics issues remain at least partially unresolved. Such issues include the dominant controls on trench migration, the interdependence of asthenospheric pressure and slab dynamics, and how nearby slabs influence each other's dynamics. We augment 3-D, dynamically evolving finite element models with simple, analytical force-balance models to distill the physics associated with subduction into more manageable parts. We demonstrate that for single, isolated subducting slabs much of the complexity of our fully numerical models can be encapsulated by simple analytical expressions. Rates of subduction and slab dip correlate strongly with the asthenospheric pressure difference across the subducting slab. For double subduction, an additional slab gives rise to more complex mantle pressure and flow fields, and significantly extends the range of plate kinematics (e.g., convergence rate, trench migration rate) beyond those present in single slab models. Despite these additional complexities, we show that much of the dynamics of such multi-slab systems can be understood using the physics illuminated by our single slab study, and that a force-balance method can be used to relate intra-plate stress to viscous pressure in the asthenosphere and coupling forces at plate boundaries. This method has promise for rapid modeling of large systems of subduction zones on a global scale.
Numerical modeling of seasonally freezing ground and permafrost
NASA Astrophysics Data System (ADS)
Nicolsky, Dmitry J.
2007-12-01
This thesis represents a collection of papers on numerical modeling of permafrost and seasonally freezing ground dynamics. An important problem in numerical modeling of temperature dynamics in permafrost and seasonally freezing ground is related to parametrization of already existing models. In this thesis, a variation data assimilation technique is presented to find soil properties by minimizing the discrepancy between in-situ measured temperatures and those computed by the models. The iterative minimization starts from an initial approximation of the soil properties that are found by solving a sequence of simple subproblems. In order to compute the discrepancy, the temperature dynamics is simulated by a new implementation of the finite element method applied to the heat equation with phase change. Despite simplifications in soil physics, the presented technique was successfully applied to recover soil properties, such as thermal conductivity, soil porosity, and the unfrozen water content, at several sites in Alaska. The recovered properties are used in discussion on soil freezing/thawing and permafrost dynamics in other parts of this thesis. Another part of this thesis concerns development of a numerical thermo-mechanical model of seasonal soil freezing on the lateral scale of several meters. The presented model explains observed differential frost heave occurring in non-sorted circle ecosystems north of the Brooks Range in the Alaskan tundra. The model takes into account conservation principles for energy, linear momentum and mass of three constituents: liquid water, ice and solid particles. The conservation principles are reduced to a computationally convenient system of coupled equations for temperature, liquid water pressure, porosity, and the velocity of soil particles in a three-dimensional domain with cylindrical symmetry. Despite a simplified rheology, the model simulates the ground surface motion, temperature, and water dynamics in soil and explains
A mesoscale sixth-order numerical modelling system
NASA Technical Reports Server (NTRS)
Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Tuccillo, J. J.
1981-01-01
A numerical simulation system is currently under development for NASA which is intended to improve the modeling of subsynoptic and mesoscale adjustments associated with cyclogenesis, severe storm development and atmospheric transport processes. The model utilizes a standard hydrostatic sigma-p coordinate primitive equation set, with x,y-space differencing accurate to eighth order. A three-step dynamic initialization procedure is employed between the analysis of real-time data and grid interpolation. Results of an 18-hour simulation during which synoptic scale cyclogenesis, subsynoptic scale jet streak adjustments, mesoscale convergence zones and tornadic storms were observed have shown the present model to have the potential for simulating the fine-scale structure of features associated with cyclogenesis and intense squall-line development. The mesoscale model was also found to produce less truncation than the NWS LFM model, although a frictionless version of the mesoscale model somewhat overdeepens and overaccelerates features.
Mathematical analysis and numerical simulation of a model of morphogenesis.
Muñoz, Ana I; Tello, José Ignacio
2011-10-01
We consider a simple mathematical model of distribution of morphogens (signaling molecules responsible for the differentiation of cells and the creation of tissue patterns). The mathematical model is a particular case of the model proposed by Lander, Nie and Wan in 2006 and similar to the model presented in Lander, Nie, Vargas and Wan 2005. The model consists of a system of three equations: a PDE of parabolic type with dynamical boundary conditions modelling the distribution of free morphogens and two ODEs describing the evolution of bound and free receptors. Three biological processes are taken into account: diffusion, degradation and reversible binding. We study the stationary solutions and the evolution problem. Numerical simulations show the behavior of the solution depending on the values of the parameters.
The use of direct numerical simulation data in turbulence modeling
NASA Technical Reports Server (NTRS)
Mansour, N. N.
1991-01-01
Direct numerical simulations (DNS) of turbulent flows provide a complete data base to develop and to test turbulence models. In this article, the progress made in developing models for the dissipation rate equation is reviewed. New scaling arguments for the various terms in the dissipation rate equation were tested using data from DNS of homogeneous shear flows. Modifications to the epsilon-equation model that take into account near-wall effects were developed using DNS of turbulent channel flows. Testing of new models for flows under mean compression was carried out using data from DNS of isotropically compressed turbulence. In all of these studies the data from the simulations was essential in guiding the model development. The next generation of DNS will be at higher Reynolds numbers, and will undoubtedly lead to improved models for computations of flows of practical interest.
Reevaluating the two-representation model of numerical magnitude processing.
Jiang, Ting; Zhang, Wenfeng; Wen, Wen; Zhu, Haiting; Du, Han; Zhu, Xiangru; Gao, Xuefei; Zhang, Hongchuan; Dong, Qi; Chen, Chuansheng
2016-01-01
One debate in mathematical cognition centers on the single-representation model versus the two-representation model. Using an improved number Stroop paradigm (i.e., systematically manipulating physical size distance), in the present study we tested the predictions of the two models for number magnitude processing. The results supported the single-representation model and, more importantly, explained how a design problem (failure to manipulate physical size distance) and an analytical problem (failure to consider the interaction between congruity and task-irrelevant numerical distance) might have contributed to the evidence used to support the two-representation model. This study, therefore, can help settle the debate between the single-representation and two-representation models.
SToRM: A numerical model for environmental surface flows
Simoes, Francisco J.
2009-01-01
SToRM (System for Transport and River Modeling) is a numerical model developed to simulate free surface flows in complex environmental domains. It is based on the depth-averaged St. Venant equations, which are discretized using unstructured upwind finite volume methods, and contains both steady and unsteady solution techniques. This article provides a brief description of the numerical approach selected to discretize the governing equations in space and time, including important aspects of solving natural environmental flows, such as the wetting and drying algorithm. The presentation is illustrated with several application examples, covering both laboratory and natural river flow cases, which show the model’s ability to solve complex flow phenomena.
Numerical Modeling of Pulse Detonation Rocket Engine Gasdynamics and Performance
NASA Technical Reports Server (NTRS)
2003-01-01
This paper presents viewgraphs on the numerical modeling of pulse detonation rocket engines (PDRE), with an emphasis on the Gasdynamics and performance analysis of these engines. The topics include: 1) Performance Analysis of PDREs; 2) Simplified PDRE Cycle; 3) Comparison of PDRE and Steady-State Rocket Engines (SSRE) Performance; 4) Numerical Modeling of Quasi 1-D Rocket Flows; 5) Specific PDRE Geometries Studied; 6) Time-Accurate Thrust Calculations; 7) PDRE Performance (Geometries A B C and D); 8) PDRE Blowdown Gasdynamics (Geom. A B C and D); 9) PDRE Geometry Performance Comparison; 10) PDRE Blowdown Time (Geom. A B C and D); 11) Specific SSRE Geometry Studied; 12) Effect of F-R Chemistry on SSRE Performance; 13) PDRE/SSRE Performance Comparison; 14) PDRE Performance Study; 15) Grid Resolution Study; and 16) Effect of F-R Chemistry on SSRE Exit Species Mole Fractions.
Comparison and numerical treatment of generalised Nernst-Planck models
NASA Astrophysics Data System (ADS)
Fuhrmann, Jürgen
2015-11-01
In its most widespread, classical formulation, the Nernst-Planck-Poisson system for ion transport in electrolytes fails to take into account finite ion sizes. As a consequence, it predicts unphysically high ion concentrations near electrode surfaces. Historical and recent approaches to an appropriate modification of the model are able to fix this problem. Several appropriate formulations are compared in this paper. The resulting equations are reformulated using absolute activities as basic variables describing the species amounts. This reformulation allows to introduce a straightforward generalisation of the Scharfetter-Gummel finite volume discretisation scheme for drift-diffusion equations. It is shown that it is thermodynamically consistent in the sense that the solution of the corresponding discretised generalised Poisson-Boltzmann system describing the thermodynamical equilibrium is a stationary state of the discretised time-dependent generalised Nernst-Planck system. Numerical examples demonstrate the improved physical correctness of the generalised models and the feasibility of the numerical approach.
On numerical considerations for modeling reactive astrophysical shocks
Papatheodore, Thomas L.; Messer, O. E. Bronson E-mail: bronson@ornl.gov
2014-02-10
Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds and associated quantities is to prohibit burning inside the numerically broadened shock. We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in models of Type Ia supernovae, including potential impacts on observables.
Numerical Modeling of Table-Top X-Ray Lasers
Shlyaptsev, V N; Dunn, J; Moon, S; Osterheld, A L; Rocca, J J; Detering, F; Rozmus, W; Matte, J P; Fiedorowicz, H; Bartnik, A; Kanouff, M
2002-04-29
In this work we report numerical modeling results of laser-generated transient inversion and capillary discharge X-ray lasers. We have found the importance of plasma kinetics approaches in transient X-ray lasers physics by expanding the physical model beyond hydrodynamics approximation. Using Particle and Fokker-Planck codes the clear evidence of the Langdon effect was inferred from the recent experimental data obtained with the Ni-like Pd X-ray laser. In the search for more efficient X-ray lasers we looked closely at alternative target designs utilizing low density targets. In conjunction with recent experiments at LLNL the numerical investigations of gas puff targets has been performed.
Wake redirection: comparison of analytical, numerical and experimental models
NASA Astrophysics Data System (ADS)
Wang, Jiangang; Bottasso, Carlo L.; Campagnolo, Filippo
2016-09-01
This paper focuses on wake redirection techniques for wind farm control. Two control strategies are investigated: yaw misalignment and cyclic pitch control. First, analytical formulas are derived for both techniques, with the goal of providing a simple physical interpretation of the behavior of the two methods. Next, more realistic results are obtained by numerical simulations performed with CFD and by experiments conducted with scaled wind turbine models operating in a boundary layer wind tunnel. Comparing the analytical, numerical and experimental models allows for a cross-validation of the results and a better understanding of the two wake redirection techniques. Results indicate that yaw misalignment is more effective than cyclic pitch control in displacing the wake laterally, although the latter may have positive effects on wake recovery.
Optimum employment of satellite indirect soundings as numerical model input
NASA Technical Reports Server (NTRS)
Horn, L. H.; Derber, J. C.; Koehler, T. L.; Schmidt, B. D.
1981-01-01
The characteristics of satellite-derived temperature soundings that would significantly affect their use as input for numerical weather prediction models were examined. Independent evaluations of satellite soundings were emphasized to better define error characteristics. Results of a Nimbus-6 sounding study reveal an underestimation of the strength of synoptic scale troughs and ridges, and associated gradients in isobaric height and temperature fields. The most significant errors occurred near the Earth's surface and the tropopause. Soundings from the TIROS-N and NOAA-6 satellites were also evaluated. Results again showed an underestimation of upper level trough amplitudes leading to weaker thermal gradient depictions in satellite-only fields. These errors show a definite correlation to the synoptic flow patterns. In a satellite-only analysis used to initialize a numerical model forecast, it was found that these synoptically correlated errors were retained in the forecast sequence.
Numerical Simulation of SNCR Technology with Simplified Chemical Kinetics Model
NASA Astrophysics Data System (ADS)
Blejchař, T.; Dolníčková, D.
2013-04-01
The paper deals with numerical simulation of SNCR method. For numerical modelling was used CFD code Ansys/CFX. SNCR method was described by dominant chemical reaction, which were look up NIST Chemical database. The reactions including reduction of NOx and concentration change of pollutants, like N2O and CO in flue gas too. Proposed chemical kinetics and CFD model was applied to two boilers. Both simulations were compared with experimental measurements. First simulation was used to validation of chemical mechanism. Second simulation was based on first simulation and it was used to verification of compiled SNCR chemical mechanism. Next the new variant of the reagent penetration lance was proposed and compared with the original variants.
A Numerical Model of Viscoelastic Flow in Microchannels
Trebotich, D; Colella, P; Miller, G; Liepmann, D
2002-11-14
The authors present a numerical method to model non-Newtonian, viscoelastic flow at the microscale. The equations of motion are the incompressible Navier-Stokes equations coupled with the Oldroyd-B constitutive equation. This constitutive equation is chosen to model a Boger fluid which is representative of complex biological solutions exhibiting elastic behavior due to macromolecules in the solution (e.g., DNA solution). The numerical approach is a projection method to impose the incompressibility constraint and a Lax-Wendroff method to predict velocities and stresses while recovering both viscous and elastic limits. The method is second-order accurate in space and time, free-stream preserving, has a time step constraint determined by the advective CFL condition, and requires the solution of only well-behaved linear systems amenable to the use of fast iterative methods. They demonstrate the method for viscoelastic incompressible flow in simple microchannels (2D) and microducts (3D).
Numerical modeling of injection experiments at The Geysers
Pruess, K.; Enedy, S.
1993-01-01
Data from injection experiments in the southeast Geysers are presented that show strong interference (both negative and positive) with a neighboring production well. Conceptual and numerical models are developed that explain the negative interference (decline of production rate) in terms of heat transfer limitations and water-vapor relative permeability effects. Recovery and over-recovery following injection shut-in are attributed to boiling of injected fluid, with heat of vaporization provided by the reservoir rocks.
Numerical modeling of injection experiments at The Geysers
Pruess, Karsten; Enedy, Steve
1993-01-28
Data from injection experiments in the southeast Geysers are presented that show strong interference (both negative and positive) with a neighboring production well. Conceptual and numerical models are developed that explain the negative interference (decline of production rate) in terms of heat transfer limitations and water-vapor relative permeability effects. Recovery and overrecovery following injection shut-in are attributed to boiling of injected fluid, with heat of vaporization provided by the reservoir rocks.
Numerical Modeling of ISS Thruster Plume Induced Contamination Environment
2007-11-02
Numerical Method- ology The flow conditions and geometry considered in this work correspond to the bipropellant NTO/ UDMH 130 N thruster. A conical...the expansion angle of the diverging section is 20 deg. The propellant is UDMH /NTO, and the stagnation temperature and pressure are 2,900 K and 3.85...atm, respectively. Ten species mixture was used to model UDMH /NTO combustion products. The equilibrium combustion products composition for assumed
Numerical modeling of two-dimensional confined flows
NASA Technical Reports Server (NTRS)
Greywall, M. S.
1979-01-01
A numerical model of two-dimensional confined flows is presented. The flow in the duct is partitioned into finite streams. The difference equations are then obtained by applying conservation principles directly to the individual streams. A listing of a computer code based on this approach in FORTRAN 4 language is presented. The code computes two dimensional compressible turbulent flows in ducts when the duct area along the flow is specified and the pressure gradient is unknown.
Numerical modeling of turbulent supersonic reacting coaxial jets
NASA Technical Reports Server (NTRS)
Eklund, Dean R.; Hassan, H. A.; Drummond, J. Philip
1989-01-01
The paper considers the mixing and subsequent combustion within turbulent reacting shear layers. A computer program was developed to solve the axisymmetric Reynolds averaged Navier-Stokes equations. The numerical method integrates the Reynolds averaged Navier-Stokes equations using a finite volume approach while advancing the solution forward in time using a Runge-Kutta scheme. Three separate flowfields are investigated and it is found that no single turbulence model considered could accurately predict the degree of mixing for all three cases.
Fast Numerically Based Modeling for Ground Penetrating Radar
NASA Astrophysics Data System (ADS)
Sassen, D. S.; Everett, M. E.
2007-05-01
There is a need for computationally fast GPR numerical modeling. This includes circumstances where real time performance is needed, for example discrimination of landmines or UXO's, and in circumstances that require a high number of successive forward problems, for example inversion or imaging. Traditional numerical techniques such as finite difference or finite element are too slow for these applications, but they provide results from general scenarios such as scattering from very complicated shapes with high contrast. Neural networks may fit in the niche between analytical techniques and traditional numerical techniques. Our concept is training a neural network to associate the model inputs of electromagnetic properties of the background and targets, and the size and shape of the targets, with the output generated by a 3-D finite difference model. Successive examples from various electromagnetic properties and targets are displayed to the neural network, until the neural network has adapted itself though optimization. The trained neural network is now used as the forward model by displaying new input parameters and the neural network then generates the appropriate output. The results from the neural network are then compared to results from finite difference models to see how well the neural networks is performing and at what point it breaks down. Areas of poor fit can be addressed through further training. The neural network GPR model can be adapted by displaying additional finite difference results to the neural network, and can also be adapted to a specific field area by actual field data examples. Because of this adaptation ability the neural network GPR model can be optimized for specific environments and applications.
Numerical solution of High-kappa model of superconductivity
Karamikhova, R.
1996-12-31
We present formulation and finite element approximations of High-kappa model of superconductivity which is valid in the high {kappa}, high magnetic field setting and accounts for applied magnetic field and current. Major part of this work deals with steady-state and dynamic computational experiments which illustrate our theoretical results numerically. In our experiments we use Galerkin discretization in space along with Backward-Euler and Crank-Nicolson schemes in time. We show that for moderate values of {kappa}, steady states of the model system, computed using the High-kappa model, are virtually identical with results computed using the full Ginzburg-Landau (G-L) equations. We illustrate numerically optimal rates of convergence in space and time for the L{sup 2} and H{sup 1} norms of the error in the High-kappa solution. Finally, our numerical approximations demonstrate some well-known experimentally observed properties of high-temperature superconductors, such as appearance of vortices, effects of increasing the applied magnetic field and the sample size, and the effect of applied constant current.
Numerical Modeling of Inclusion Behavior in Liquid Metal Processing
NASA Astrophysics Data System (ADS)
Bellot, Jean-Pierre; Descotes, Vincent; Jardy, Alain
2013-09-01
Thermomechanical performance of metallic alloys is directly related to the metal cleanliness that has always been a challenge for metallurgists. During liquid metal processing, particles can grow or decrease in size either by mass transfer with the liquid phase or by agglomeration/fragmentation mechanisms. As a function of numerical density of inclusions and of the hydrodynamics of the reactor, different numerical modeling approaches are proposed; in the case of an isolated particle, the Lagrangian technique coupled with a dissolution model is applied, whereas in the opposite case of large inclusion phase concentration, the population balance equation must be solved. Three examples of numerical modeling studies achieved at Institut Jean Lamour are discussed. They illustrate the application of the Lagrangian technique (for isolated exogenous inclusion in titanium bath) and the Eulerian technique without or with the aggregation process: for precipitation and growing of inclusions at the solidification front of a Maraging steel, and for endogenous inclusions in the molten steel bath of a gas-stirred ladle, respectively.
Optimization methods and silicon solar cell numerical models
NASA Technical Reports Server (NTRS)
Girardini, K.; Jacobsen, S. E.
1986-01-01
An optimization algorithm for use with numerical silicon solar cell models was developed. By coupling an optimization algorithm with a solar cell model, it is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junction depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm was developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAP1D). SCAP1D uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the performance of a solar cell. A major obstacle is that the numerical methods used in SCAP1D require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the values associated with the maximum efficiency. This problem was alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution.
Numerical modeling of bubble dynamics in viscoelastic media with relaxation
Warnez, M. T.; Johnsen, E.
2015-01-01
Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller–Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin–Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time. PMID:26130967
Numerical modeling of bubble dynamics in viscoelastic media with relaxation
NASA Astrophysics Data System (ADS)
Warnez, M. T.; Johnsen, E.
2015-06-01
Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.
Numerical modeling of bubble dynamics in viscoelastic media with relaxation.
Warnez, M T; Johnsen, E
2015-06-01
Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.
NASA Astrophysics Data System (ADS)
Motte, Fabrice; Bugler-Lamb, Samuel L.; Falcoz, Quentin
2015-07-01
The attraction of solar energy is greatly enhanced by the possibility of it being used during times of reduced or non-existent solar flux, such as weather induced intermittences or the darkness of the night. Therefore optimizing thermal storage for use in solar energy plants is crucial for the success of this sustainable energy source. Here we present a study of a structured bed filler dedicated to Thermocline type thermal storage, believed to outweigh the financial and thermal benefits of other systems currently in use such as packed bed Thermocline tanks. Several criterions such as Thermocline thickness and Thermocline centering are defined with the purpose of facilitating the assessment of the efficiency of the tank to complement the standard concepts of power output. A numerical model is developed that reduces to two dimensions the modeling of such a tank. The structure within the tank is designed to be built using simple bricks harboring rectangular channels through which the solar heat transfer and storage fluid will flow. The model is scrutinized and tested for physical robustness, and the results are presented in this paper. The consistency of the model is achieved within particular ranges for each physical variable.
ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS
Chiswell, S.; Buckley, R.
2009-01-15
During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has made higher
Numerical modelling of the memory effect in wet scrubbers.
Löthgren, Carl-Johan; Andersson, Sven
2008-08-01
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) can be absorbed in and desorbed from polypropylene (PP) tower packings in wet scrubbers utilized in waste incineration lines. This behaviour, also known as the memory effect, has been modelled using a gas phase-PP surface equilibrium and a numerical solid phase diffusion model describing the transport of PCDD/Fs inside the PP. The diffusivities and gas-PP partition coefficients of TCDD/F to HxCDD/Fs in PP have been estimated using the numerical model. Two incineration lines were modelled. In the first line, the absorption and desorption in PP test rods was followed before and after installation of a fabric filter that was placed before a wet scrubber. In the second incineration line, the accumulation of PCDD/Fs in a wet scrubber during start up periods and the subsequent decline during the following three months was modelled and compared to continuous two-week gas measurements after the scrubber. The obtained diffusivities in PP range from 10(-13) m(2)/s for TCDD to 10(-16) m(2)/s for HxCDD. Lower chlorinated homologues with a distinctive change in concentrations during the desorption period (e.g. TCDF) are easier to model, and show the best agreement between the two incineration lines.
The CMEE Library for Numerical Modeling of Electron Effects
NASA Astrophysics Data System (ADS)
Stoltz, Peter; Cohen, Ron; Molvik, Art; Furman, Miguel; Vay, Jean-Luc; Adelmann, Andreas
2003-10-01
The CMEE (Computational Modules for Electron Effects) library is a collection of computer routines for numerical modeling of electron effects in accelerator and plasma physics codes. The goal of this library is to make these numerical models available to any code in need of electron effects modeling, including high-power microwave codes, fusion wall interaction codes, laser-plasma codes, proton accelerator codes, and HIF codes. CMEE includes routines to model secondary electrons, neutral gas desorption and ionization. The secondary electron routines are based on routines from the POSINST code. The neutral gas desorption routines are based on a thermal binding model similar to the model in ,e.g., the LSP code. The ionization routines are based on the IONPACK library from Tech-X. This poster discusses the latest state of these routines, specifically implementation in the WARP code and comparisons to data from the High Current Experiment (HCX). In particular, recent comparisons between the CMEE routines and neutral gas desorption measurements from HCX are presented.
Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling
Du, Qiang
2014-11-12
The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of which is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next
Numerical modeling of anisotropic fiber bundle behavior in oxygenators.
Bhavsar, Sonya S; Schmitz-Rode, Thomas; Steinseifer, Ulrich
2011-11-01
Prediction of flow patterns through oxygenator fiber bundles can allow shape optimization so that efficient gas exchange occurs with minimal thrombus formation and hemolysis. Computational fluid dynamics (CFD) simulations can be used to predict three-dimensional flow velocities and flow distribution from spatially dependent variables and they allow estimations of erythrocyte residence time within the fiber bundle. This study builds upon previous work to develop an accurate numerical model for oxygenators, which would allow for accelerated iterations in oxygenator shape and diffuser plate design optimization. Hollow fiber flow channels were developed to permit experimental calculation of fluid permeability in two directions: main flow along the hollow fiber and perpendicular to the hollow fibers. Commercial software was used to develop three-dimensional CFD models of the experimental flow channels and an anisotropic porous media model for oxygenators from these experimental results. The oxygenator model was used to predict pressure loss throughout the device, visualize blood distribution within the fiber bundle, and estimate erythrocyte residence time within the bundle. Experimental flow channels measurements produced a streamwise permeability of 1.143e(-8) m(2) and transverse permeability of 2.385e(-9) m(2) . These permeabilities, coupled with previous work with volume porosity, were used to develop the numerical model of anisotropic behavior through porous fiber bundles, which indicated a more uniform flow field throughout the oxygenator. Incorporation of known anisotropic fiber bundle behavior in previous numerical models more accurately represents fluid behavior through an oxygenator fiber bundle. CFD coupled with experimental validation can produce a powerful tool for oxygenator design and development.
New numerical model of mesospheric bores: Observational implications
NASA Astrophysics Data System (ADS)
Picard, R. H.; Cohen, E.; Dewan, E. M.; Winick, J. R.; Taylor, M. J.; She, C.-Y.
Mesospheric bores are space-time varying frontal structures that may play a role in transport and coupling between horizontally separated regions. We examine the observational implications of a new numerical model of the generation and propagation of mesospheric bores. The bores develop as long-wave excitations in mesospheric wave ducts, formed by the temperature and wind structure, in much the same way as they do in the tropospheric boundary-layer duct. However, while the boundary-layer duct has a clamped ground boundary (zero vertical displacement), the embedded mesospheric duct has two free boundaries, which results in some differences in behavior. With a separability assumption valid in the long-wave limit, the fluid equations separate into a product of solutions of the Taylor-Goldstein equation describing the vertical dependence of the mode function and of the Benjamin-Davis-Ono (BDO) equation describing the horizontal and time behavior. We compare results of the numerical model with the analytic model of Dewan and Picard (1998) that is based on Lighthill's channel-bore solutions. The numerical model leads to predictions of new or as-yet-unobserved phenomena, including (1) the conceivable existence of bores in Doppler ducts, (2) the existence of a fast sinuous-mode bore with no channel-bore analogue having phase speeds of 150-180 m/s, and (3) the possibility of foaming or turbulent (non-undular) bores. Following Christie (1989), we model the turbulent dissipation processes in the latter case by including a Burgers-type term in the BDO equation. We also discuss the response of emitted radiance to bores and compare model predictions with recent bore observations accompanied by simultaneous lidar data [Smith et al., 2001; She et al., 2004].
A preliminary numerical model of the Geminid meteoroid stream
NASA Astrophysics Data System (ADS)
Ryabova, G. O.
2016-02-01
A pilot numerical model of the Geminid meteoroid stream is presented. This model implies cometary origin of the stream. Ejection of relatively small amount of particles (90 000 test meteoroids with masses 0.02, 0.003 and 0.0003 g) from the asteroid (3200) Phaethon (the parent body) was simulated, and their evolution was followed till the present time. The particles close to the Earth orbit were considered as the `shower'. It was found that the width of the model shower is at least twice less comparatively the real shower. The maximum activity of the model shower is dislocated and occurs about one day late. The most probable reason for both discrepancies is the drastic transformation of the parent body orbit during rapid release of the volatiles in the process of the stream initial formation. The dispersion of the model stream was evaluated in terms of the Southworth-Hawkins D-criterion.
Numerical treatment of a geometrically nonlinear planar Cosserat shell model
NASA Astrophysics Data System (ADS)
Sander, Oliver; Neff, Patrizio; Bîrsan, Mircea
2016-05-01
We present a new way to discretize a geometrically nonlinear elastic planar Cosserat shell. The kinematical model is similar to the general six-parameter resultant shell model with drilling rotations. The discretization uses geodesic finite elements (GFEs), which leads to an objective discrete model which naturally allows arbitrarily large rotations. GFEs of any approximation order can be constructed. The resulting algebraic problem is a minimization problem posed on a nonlinear finite-dimensional Riemannian manifold. We solve this problem using a Riemannian trust-region method, which is a generalization of Newton's method that converges globally without intermediate loading steps. We present the continuous model and the discretization, discuss the properties of the discrete model, and show several numerical examples, including wrinkling of thin elastic sheets in shear.
Dynamical modeling of elliptical galaxies. II. numerical prolate models
Lake, G.
1981-01-01
The analytical solutions of Paper I are generalized using the self-consistent field method. These prolate models are constructed using only two integrals of motion, the energy (E) and the angular momentum about the axis of symmetry, (L/sub z/). They are the first models with flattening greater than E4 which possess elliptical isophotes and realistic density profiles. The singularity in the surface brightness which characterized the models of Paper I has been removed by smoothing the extreme suppression of L/sub z/. The new models (like those of Paper I) still show a sharp rise in the velocity dispersion at the center. This feature is due to the strongly anisotropic velocity dispersions, rather than the existence of a supermassive object.
Numerical modelling of GMI effect in soft magnetic amorphous ribbons
NASA Astrophysics Data System (ADS)
Rahman, I. Z.; Boboc, A.; Kamruzzaman, Md.; Rahman, M. A.
2004-05-01
A numerical simulation model based on Machado et al. [J. Appl. Phys. 79 (1996) 6558] was developed to study the relaxation time and GMI in a series of Co-and Fe-based commercial alloys in the ribbon form as a function of excitation frequency and DC bias field. In Machado et al's model the relaxation time was considered as constant. Based on our experimental observations, we considered the relaxation time as a function of frequency and applied field. In this paper we report on the establishment of a general expression of the relaxation time for both Fe-and Co-based alloys.
A numerical approach for modelling fault-zone trapped waves
NASA Astrophysics Data System (ADS)
Gulley, A. K.; Kaipio, J. P.; Eccles, J. D.; Malin, P. E.
2017-08-01
We develop a computationally efficient approach to compute the waveforms and the dispersion curves for fault-zone trapped waves guided by arbitrary transversely isotropic across-fault velocity models. The approach is based on a Green's function type representation for FL and FR type fault-zone trapped waves. The model can be used for simulation of the waveforms generated by both infinite line sources (2-D) and point sources (3-D). The numerical scheme is based on a high order finite element approximation and, to increase computational efficiency, we make use of absorbing boundary conditions and mass lumping of finite element matrices.
Thermoinertial bouncing of a relativistic collapsing sphere: A numerical model
Herrera, L.; Di Prisco, A.; Barreto, W.
2006-01-15
We present a numerical model of a collapsing radiating sphere, whose boundary surface undergoes bouncing due to a decreasing of its inertial mass density (and, as expected from the equivalence principle, also of the 'gravitational' force term) produced by the 'inertial' term of the transport equation. This model exhibits for the first time the consequences of such an effect, and shows that under physically reasonable conditions this decreasing of the gravitational term in the dynamic equation may be large enough as to revert the collapse and produce a bouncing of the boundary surface of the sphere.
Numerical Schemes for a Model for Nonlinear Dispersive Waves.
1983-11-01
2604 November 1983 ABSTRACT A description is given of a number of numerical schemes to solve an evolution equation Athat arises when modelling the...travel at constant speed and whose shape is independent of time. One of the models, the Korteweg -de Vries equation , has been studied extensively, both...inital-value problem for the Korteweg -de Vries equation y~~~-2u 0(I) ut + ux + Buu x +fYu inO, Department of Mathematics, University of Chicago, Chicago
Numerical simulation model for vertical flow in geothermal wells
Tachimori, M.
1982-01-01
A numerical simulation model for vertical flow in geothermal wells is presented. The model consists of equations for the conservation of mass, momentum, and energy, for thermodynamic state of water, for friction losses, for slip velocity relations, and of the criteria for various flow regimes. A new set of correlations and criteria is presented for two-phase flow to improve the accuracy of predictions; bubbly flow - Griffith and Wallis correlation, slug flow - Nicklin et al. one, annular-mist flow - Inoue and Aoki and modified by the author. The simulation method was verified by data from actual wells.
Numerical modeling of a cryogenic fluid within a fuel tank
NASA Technical Reports Server (NTRS)
Greer, Donald S.
1994-01-01
The computational method developed to study the cryogenic fluid characteristics inside a fuel tank in a hypersonic aircraft is presented. The model simulates a rapid draining of the tank by modeling the ullage vapor and the cryogenic liquid with a moving interface. A mathematical transformation was developed and applied to the Navier-Stokes equations to account for the moving interface. The formulation of the numerical method is a transient hybrid explicit-implicit technique where the pressure term in the momentum equations is approximated to first order in time by combining the continuity equation with an ideal equation of state.
Numerical Modeling in Problems of Near-Earth Object Dynamics
NASA Astrophysics Data System (ADS)
Aleksandrova, A. G.; Bordovitsyna, T. V.; Chuvashov, I. N.
2017-05-01
A method of numerical modeling is used to solve three most interesting problems of artificial Earth satellite (AES) dynamics. Orbital evolution of an ensemble of near-Earth objects at altitudes in the range from 1 500 to 60 000 km is considered, chaoticity of motion of objects in the geosynchronous zone is studied by the MEGNOanalysis, the parameters of AES motion are determined, and the models of forces are considered from measurements for GLONASS satellites. The recent versions of algorithms and programs used to perform investigations are briefly described.
An Object Model for a Rocket Engine Numerical Simulator
NASA Technical Reports Server (NTRS)
Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.
1998-01-01
Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.
An Object Model for a Rocket Engine Numerical Simulator
NASA Technical Reports Server (NTRS)
Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.
1998-01-01
Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.
Standards and Guidelines for Numerical Models for Tsunami Hazard Mitigation
NASA Astrophysics Data System (ADS)
Titov, V.; Gonzalez, F.; Kanoglu, U.; Yalciner, A.; Synolakis, C. E.
2006-12-01
An increased number of nations around the workd need to develop tsunami mitigation plans which invariably involve inundation maps for warning guidance and evacuation planning. There is the risk that inundation maps may be produced with older or untested methodology, as there are currently no standards for modeling tools. In the aftermath of the 2004 megatsunami, some models were used to model inundation for Cascadia events with results much larger than sediment records and existing state-of-the-art studies suggest leading to confusion among emergency management. Incorrectly assessing tsunami impact is hazardous, as recent events in 2006 in Tonga, Kythira, Greece and Central Java have suggested (Synolakis and Bernard, 2006). To calculate tsunami currents, forces and runup on coastal structures, and inundation of coastlines one must calculate the evolution of the tsunami wave from the deep ocean to its target site, numerically. No matter what the numerical model, validation (the process of ensuring that the model solves the parent equations of motion accurately) and verification (the process of ensuring that the model used represents geophysical reality appropriately) both are an essential. Validation ensures that the model performs well in a wide range of circumstances and is accomplished through comparison with analytical solutions. Verification ensures that the computational code performs well over a range of geophysical problems. A few analytic solutions have been validated themselves with laboratory data. Even fewer existing numerical models have been both validated with the analytical solutions and verified with both laboratory measurements and field measurements, thus establishing a gold standard for numerical codes for inundation mapping. While there is in principle no absolute certainty that a numerical code that has performed well in all the benchmark tests will also produce correct inundation predictions with any given source motions, validated codes
Physical and Numerical Modeling of Buoyant Groundwater Plumes
NASA Astrophysics Data System (ADS)
Brakefield, L. K.; Abarca, E.; Langevin, C. D.; Clement, T. P.
2007-12-01
In coastal states, the injection of treated wastewater into deep saline aquifers offers a disposal alternative to ocean outfalls and discharge directly into local waterways. The density of treated wastewater is similar to that of freshwater but is often much lower than the ambient density of deep aquifers. This significant density contrast can cause upward buoyant movement of the wastewater plume during and after injection. Since some wastewater treatment plants inject more than 100 MGD of this treated wastewater, it is of the utmost importance to be able to not only determine the fate and transport rates of the plume, but to be able to best determine locations for monitoring wells for early detection of possible problems. In this study, both physical and numerical modeling were undertaken to investigate and understand buoyant plume behavior and transport. Physical models using a 2D cross-sectional Plexiglas tank filled with glass beads were carried out under different ambient density scenarios. The experiments consisted of injection of a freshwater pulse-source bubble into a fully saline tank. The injection occurred in an initially static system with no ambient flow. In the scenarios, the freshwater plume migrated vertically upward until reaching the top of the tank. Fingers developed because of the heterogeneity of the density dependent flow field. The vertical velocities and transport patterns of these plumes were compared to one another to investigate variances due to different ambient water densities. Using the finite-difference numerical code SEAWAT to simulate variable density flow, the experiments were numerically modeled and compared with the physical model results. Due to the sensitivity of this problem to numerical resolution, results from three different grids were compared to determine a reasonable compromise between computer runtimes and numerical accuracy. Furthermore, a comparison of advection solvers was undertaken to identify the best solver to
Numerical Model for Conduction-Cooled Current Lead Heat Loads
White, M.J.; Wang, X.L.; Brueck, H.D.; /DESY
2011-06-10
Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world; however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal intercepts. The model is validated by comparing the numerical model results to ideal cases where analytical equations are valid. In addition, the XFEL (X-Ray Free Electron Laser) prototype current leads are modeled and compared to the experimental results from testing at DESY's XFEL Magnet Test Stand (XMTS) and Cryomodule Test Bench (CMTB).
Benchmark problems for numerical implementations of phase field models
Jokisaari, A. M.; Voorhees, P. W.; Guyer, J. E.; Warren, J.; Heinonen, O. G.
2016-10-01
Here, we present the first set of benchmark problems for phase field models that are being developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST). While many scientific research areas use a limited set of well-established software, the growing phase field community continues to develop a wide variety of codes and lacks benchmark problems to consistently evaluate the numerical performance of new implementations. Phase field modeling has become significantly more popular as computational power has increased and is now becoming mainstream, driving the need for benchmark problems to validate and verify new implementations. We follow the example set by the micromagnetics community to develop an evolving set of benchmark problems that test the usability, computational resources, numerical capabilities and physical scope of phase field simulation codes. In this paper, we propose two benchmark problems that cover the physics of solute diffusion and growth and coarsening of a second phase via a simple spinodal decomposition model and a more complex Ostwald ripening model. We demonstrate the utility of benchmark problems by comparing the results of simulations performed with two different adaptive time stepping techniques, and we discuss the needs of future benchmark problems. The development of benchmark problems will enable the results of quantitative phase field models to be confidently incorporated into integrated computational materials science and engineering (ICME), an important goal of the Materials Genome Initiative.
Benchmark problems for numerical implementations of phase field models
Jokisaari, A. M.; Voorhees, P. W.; Guyer, J. E.; ...
2016-10-01
Here, we present the first set of benchmark problems for phase field models that are being developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST). While many scientific research areas use a limited set of well-established software, the growing phase field community continues to develop a wide variety of codes and lacks benchmark problems to consistently evaluate the numerical performance of new implementations. Phase field modeling has become significantly more popular as computational power has increased and is now becoming mainstream, driving the need for benchmark problems to validate and verifymore » new implementations. We follow the example set by the micromagnetics community to develop an evolving set of benchmark problems that test the usability, computational resources, numerical capabilities and physical scope of phase field simulation codes. In this paper, we propose two benchmark problems that cover the physics of solute diffusion and growth and coarsening of a second phase via a simple spinodal decomposition model and a more complex Ostwald ripening model. We demonstrate the utility of benchmark problems by comparing the results of simulations performed with two different adaptive time stepping techniques, and we discuss the needs of future benchmark problems. The development of benchmark problems will enable the results of quantitative phase field models to be confidently incorporated into integrated computational materials science and engineering (ICME), an important goal of the Materials Genome Initiative.« less
How to produce flat slabs: insights from numeric modeling
NASA Astrophysics Data System (ADS)
Constantin Manea, Vlad; Perez-Gussinye, Marta; Manea, Marina
2010-05-01
Flat slab subduction occurs at ~10% of the active convergent margins and it is assumed that subduction of oceanic aseismic ridges or seamount chains is the main mechanism to produce very low angle subduction slabs. However, recent numeric and analog modeling showed that ridges alone of moderate dimensions subducted perpendicular to the trench are not sufficient to produce flat-slab geometries. Therefore an alternative mechanism able to produce flat-slabs is required. In this paper we present dynamic numeric modeling results of subduction in the vicinity of thick continental lithosphere, as a craton for example. We tailored our modeling setup for the Chilean margins at ~31° and our models are integrated back in time 30 Myr. Modeling results show that a craton thickness of 200 km or more when approaching the trench is capable of blocking the asthenospheric flow in the mantle wedge and increasing considerably the suction force. We were able to produce a flat slab that fits well the flat slab geometry in Chile (based on seismicity) and stress distribution. We conclude that thick cratons located in the vicinity of subduction zones, are capable to produce very low angle slabs, and probable a combination of buoyant ridge subduction with a neighbor thick craton represent a better mechanism to produce flat slabs.
Antarctic glacial history from numerical models and continental margin sediments
Barker, P.F.; Barrett, P.J.; Cooper, A. K.; Huybrechts, P.
1999-01-01
The climate record of glacially transported sediments in prograded wedges around the Antarctic outer continental shelf, and their derivatives in continental rise drifts, may be combined to produce an Antarctic ice sheet history, using numerical models of ice sheet response to temperature and sea-level change. Examination of published models suggests several preliminary conclusions about ice sheet history. The ice sheet's present high sensitivity to sea-level change at short (orbital) periods was developed gradually as its size increased, replacing a declining sensitivity to temperature. Models suggest that the ice sheet grew abruptly to 40% (or possibly more) of its present size at the Eocene-Oligocene boundary, mainly as a result of its own temperature sensitivity. A large but more gradual middle Miocene change was externally driven, probably by development of the Antarctic Circumpolar Current (ACC) and Polar Front, provided that a few million years' delay can be explained. The Oligocene ice sheet varied considerably in size and areal extent, but the late Miocene ice sheet was more stable, though significantly warmer than today's. This difference probably relates to the confining effect of the Antarctic continental margin. Present-day numerical models of ice sheet development are sufficient to guide current sampling plans, but sea-ice formation, polar wander, basal topography and ice streaming can be identified as factors meriting additional modelling effort in the future.
Benchmark problems for numerical implementations of phase field models
Jokisaari, A. M.; Voorhees, P. W.; Guyer, J. E.; Warren, J.; Heinonen, O. G.
2016-10-01
Here, we present the first set of benchmark problems for phase field models that are being developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST). While many scientific research areas use a limited set of well-established software, the growing phase field community continues to develop a wide variety of codes and lacks benchmark problems to consistently evaluate the numerical performance of new implementations. Phase field modeling has become significantly more popular as computational power has increased and is now becoming mainstream, driving the need for benchmark problems to validate and verify new implementations. We follow the example set by the micromagnetics community to develop an evolving set of benchmark problems that test the usability, computational resources, numerical capabilities and physical scope of phase field simulation codes. In this paper, we propose two benchmark problems that cover the physics of solute diffusion and growth and coarsening of a second phase via a simple spinodal decomposition model and a more complex Ostwald ripening model. We demonstrate the utility of benchmark problems by comparing the results of simulations performed with two different adaptive time stepping techniques, and we discuss the needs of future benchmark problems. The development of benchmark problems will enable the results of quantitative phase field models to be confidently incorporated into integrated computational materials science and engineering (ICME), an important goal of the Materials Genome Initiative.
Numerical modelling of the 28 October 2011 Haida Gwaii tsunami
NASA Astrophysics Data System (ADS)
Fine, I.; Cherniawsky, J. Y.; Thomson, R.
2013-12-01
On October 28, 2012, a strong (Mw=7.7) earthquake occurred offshore of Moresby Island, Haida Gwaii (formerly the Queen Charlotte Islands). The earthquake generated a trans-Pacific tsunami observed from New Zealand to Alaska. We used an updated finite-fault model of the earthquake of Hayes (2013) to estimate the tsunami source. The location of this source was subsequently adjusted using tsunami waveforms recorded by bottom pressure recorders at NOAA DART stations and on the NEPTUNE Canada cabled observatory. The adjusted source was then used in a high-resolution model of tsunami wave propagation towards the bays and inlets of Moresby Island. According to the model, tsunami run-up in some bays would have been higher than 7 m. Subsequent post-surveys at several Moresby Island sites were undertaken in mid-November of 2012 and in June 2013, directed in part by the numerical model results. These surveys showed clear evidence of recent tsunami run-up of more than 8 m above the tide at specific coastal embayments, in good agreement with the numerical model results.
Numerical Modeling of Propellant Boiloff in Cryogenic Storage Tank
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.
2007-01-01
This Technical Memorandum (TM) describes the thermal modeling effort undertaken at Marshall Space Flight Center to support the Cryogenic Test Laboratory at Kennedy Space Center (KSC) for a study of insulation materials for cryogenic tanks in order to reduce propellant boiloff during long-term storage. The Generalized Fluid System Simulation program has been used to model boiloff in 1,000-L demonstration tanks built for testing the thermal performance of glass bubbles and perlite insulation. Numerical predictions of boiloff rate and ullage temperature have been compared with the measured data from the testing of demonstration tanks. A satisfactory comparison between measured and predicted data has been observed for both liquid nitrogen and hydrogen tests. Based on the experience gained with the modeling of the demonstration tanks, a numerical model of the liquid hydrogen storage tank at launch complex 39 at KSC was built. The predicted boiloff rate of hydrogen has been found to be in good agreement with observed field data. This TM describes three different models that have been developed during this period of study (March 2005 to June 2006), comparisons with test data, and results of parametric studies.
Constitutive Modeling and Numerical Simulation of Frp Confined Concrete Specimens
NASA Astrophysics Data System (ADS)
Smitha, Gopinath; Ramachandramurthy, Avadhanam; Nagesh, Ranganatha Iyer; Shahulhameed, Eduvammal Kunhimoideen
2014-09-01
Fiber-reinforced polymer (FRP) composites are generally used for the seismic retrofit of concrete members to enhance their strength and ductility. In the present work, the confining effect of Carbon Fiber-Reinforced Polymer (CFRP) composite layers has been investigated by numerical simulation. The numerical simulation has been carried out using nonlinear finite element analysis (FEA) to predict the response behaviour of CFRP-wrapped concrete cylinders. The nonlinear behaviour of concrete in compression and the linear elastic behaviour of CFRP has been modeled using an appropriate constitutive relationship. A cohesive model has been developed for modeling the interface between the concrete and CFRP. The interaction and damage failure criteria between the concrete to the cohesive element and the cohesive element to the CFRP has also been accounted for in the modeling. The response behaviour of the wrapped concrete specimen has been compared with the proposed interface model and with a perfectly bonded condition. The results obtained from the present study showed good agreement with the experimental load-displacement response and the failure pattern in the literature. Further, a sensitivity analysis has been carried out to study the effect of the number of layers of CFRP on the concrete specimens. It has been observed that wrapping with two layers was found to be the optimum, beyond which the response becomes flexible but with a higher load-carrying capacity
Influence of clearance model on numerical simulation of centrifugal pump
NASA Astrophysics Data System (ADS)
Wang, Z.; Gao, B.; Yang, L.; Du, W. Q.
2016-05-01
Computing models are always simplified to save the computing resources and time. Particularly, the clearance that between impeller and pump casing is always ignored. But the completer model is, the more precise result of numerical simulation is in theory. This paper study the influence of clearance model on numerical simulation of centrifugal pump. We present such influence via comparing performance, flow characteristic and pressure pulsation of two cases that the one of two cases is the model pump with clearance and the other is not. And the results show that the head decreases and power increases so that efficiency decreases after computing with front and back cavities. Then no-leakage model would improve absolute velocity magnitude in order to reach the rated flow rate. Finally, more disturbance induced by front cavity flow and wear-ring flow would change the pressure pulsation of impeller and volute. The performance of clearance flow is important for the whole pump in performance, flow characteristic, pressure pulsation and other respects.
Numerical modeling of capillary electrophoresis - electrospray mass spectrometry interface design.
Jarvas, Gabor; Guttman, Andras; Foret, Frantisek
2015-01-01
Capillary electrophoresis hyphenated with electrospray mass spectrometry (CE-ESI-MS) has emerged in the past decade as one of the most powerful bioanalytical techniques. As the sensitivity and efficiency of new CE-ESI-MS interface designs are continuously improving, numerical modeling can play important role during their development. In this review, different aspects of computer modeling and simulation of CE-ESI-MS interfaces are comprehensively discussed. Relevant essentials of hydrodynamics as well as state-of-the-art modeling techniques are critically evaluated. Sheath liquid-, sheathless-, and liquid-junction interfaces are reviewed from the viewpoint of multidisciplinary numerical modeling along with details of single and multiphase models together with electric field mediated flows, electrohydrodynamics, and free fluid-surface methods. Practical examples are given to help non-specialists to understand the basic principles and applications. Finally, alternative approaches like air amplifiers are also included. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 34: 558-569, 2015. © 2014 Wiley Periodicals, Inc.
Global Numerical Modeling of the Muon Collider Target
NASA Astrophysics Data System (ADS)
Roman, Samulyak; Glimm, James
2000-11-01
The problem of free surface instabilities is the major concern in the study of the Muon Collider target. The target is in the form of a mercury jet interacting with high energy proton beams in the presence of a strong magnetic field. Strong pressure waves caused by the target - proton beam interaction lead to strong disturbances of the jet surface and to the jet breakup into droplets. The global numerical simulation of the Muon Collider target was done by using FronTier, a compressible fluid dynamics code. FronTier is capable to work with free surfaces and, in particular, to model the propagation of free jets. The code is based on the method of front tracking, a numerical technique for solving systems of conservation laws in which the evolution of discontinuities is determined through the solution of the associated Riemann problem. To model the behavior of the real material (mercury) under the influence of proton beams a SESAME type tabulated equation of state for mercury was created in a wide temperature - density domain which includes the fluid state of mercury, the vapor state and the state above the critical point. The numerical simulation of the target evolution driven by strong pressure waves is important for the optimal target design.
A simplified model for TIG-dressing numerical simulation
NASA Astrophysics Data System (ADS)
Ferro, P.; Berto, F.; James, M. N.
2017-04-01
Irrespective of the mechanical properties of the alloy to be welded, the fatigue strength of welded joints is primarily controlled by the stress concentration associated with the weld toe or weld root. In order to reduce the effects of such notch defects in welds, which are influenced by tensile properties of the alloy, post-weld improvement techniques have been developed. The two most commonly used techniques are weld toe grinding and TIG dressing, which are intended to both remove toe defects such as non-metallic intrusions and to re-profile the weld toe region to give a lower stress concentration. In the case of TIG dressing the weld toe is re-melted to provide a smoother transition between the plate and the weld crown and to beneficially modify the residual stress redistribution. Assessing the changes to weld stress state arising from TIG-dressing is most easily accomplished through a complex numerical simulation that requires coupled thermo-fluid dynamics and solid mechanics. However, this can be expensive in terms of computational cost and time needed to reach a solution. The present paper therefore proposes a simplified numerical model that overcomes such drawbacks and which simulates the remelted toe region by means of the activation and deactivation of elements in the numerical model.
Starting laminar plumes: Comparison of laboratory and numerical modeling
NASA Astrophysics Data System (ADS)
Vatteville, Judith; van Keken, Peter E.; Limare, Angela; Davaille, Anne
2009-12-01
A detailed comparison of starting laminar plumes in viscous fluids is provided using the complementary approaches of laboratory modeling and numerical simulation. In the laboratory experiments the plumes are started in a nearly isoviscous silicone oil with heat supplied through a fixed circular source. The temperature field is measured by differential interferometry and thermochromic liquid crystals. The velocity field is determined by particle image velocimetry. Numerical simulations of the laboratory experiments are performed using a finite element method that employs the measured properties of the physical oil and the heating history. No further adjustments are made to match the laboratory results. For fluids at two different viscosities and for variable power supplied to the plume there is excellent agreement in the temporal evolution and fine spatial detail of the plume. Minor differences remain, particulary in the transient stage of the plume in the low-viscosity fluid, but the differences are within the experimental uncertainties. In contrast, the assumption of constant viscosity in the numerical models leads to differences that are larger than the experimental uncertainties, demonstrating that these near-isoviscous fluids should not be considered to have constant viscosity.
Numerical Modelling of Solitary Wave Experiments on Rubble Mound Breakwaters
NASA Astrophysics Data System (ADS)
Guler, H. G.; Arikawa, T.; Baykal, C.; Yalciner, A. C.
2016-12-01
Performance of a rubble mound breakwater protecting Haydarpasa Port, Turkey, has been tested under tsunami attack by physical model tests conducted at Port and Airport Research Institute (Guler et al, 2015). It is aimed to understand dynamic force of the tsunami by conducting solitary wave tests (Arikawa, 2015). In this study, the main objective is to perform numerical modelling of solitary wave tests in order to verify accuracy of the CFD model IHFOAM, developed in OpenFOAM environment (Higuera et al, 2013), by comparing results of the numerical computations with the experimental results. IHFOAM is the numerical modelling tool which is based on VARANS equations with a k-ω SST turbulence model including realistic wave generation, and active wave absorption. Experiments are performed using a Froude scale of 1/30, measuring surface elevation and flow velocity at several locations in the wave channel, and wave pressure around the crown wall of the breakwater. Solitary wave tests with wave heights of H=7.5 cm and H=10 cm are selected which represent the results of the experiments. The first test (H=7.5 cm) is the case that resulted in no damage whereas the second case (H=10 cm) resulted in total damage due to the sliding of the crown wall. After comparison of the preliminary results of numerical simulations with experimental data for both cases, it is observed that solitary wave experiments could be accurately modeled using IHFOAM focusing water surface elevations, flow velocities, and wave pressures on the crown wall of the breakwater (Figure, result of sim. at t=29.6 sec). ACKNOWLEDGEMENTSThe authors acknowledge developers of IHFOAM, further extend their acknowledgements for the partial supports from the research projects MarDiM, ASTARTE, RAPSODI, and TUBITAK 213M534. REFERENCESArikawa (2015) "Consideration of Characteristics of Pressure on Seawall by Solitary Waves Based on Hydraulic Experiments", Jour. of Japan. Soc. of Civ. Eng. Ser. B2 (Coast. Eng.), Vol 71, p I
A dynamic spar numerical model for passive shape change
NASA Astrophysics Data System (ADS)
Calogero, J. P.; Frecker, M. I.; Hasnain, Z.; Hubbard, J. E., Jr.
2016-10-01
A three-dimensional constraint-driven dynamic rigid-link numerical model of a flapping wing structure with compliant joints (CJs) called the dynamic spar numerical model is introduced and implemented. CJs are modeled as spherical joints with distributed mass and spring-dampers with coupled nonlinear spring and damping coefficients, which models compliant mechanisms spatially distributed in the structure while greatly reducing computation time compared to a finite element model. The constraints are established, followed by the formulation of a state model used in conjunction with a forward time integrator, an experiment to verify a rigid-link assumption and determine a flapping angle function, and finally several example runs. Modeling the CJs as coupled bi-linear springs shows the wing is able to flex more during upstroke than downstroke. Coupling the spring stiffnesses allows an angular deformation about one axis to induce an angular deformation about another axis, where the magnitude is proportional to the coupling term. Modeling both the leading edge and diagonal spars shows that the diagonal spar changes the kinematics of the leading edge spar verses only considering the leading edge spar, causing much larger axial rotations in the leading edge spar. The kinematics are very sensitive to CJ location, where moving the CJ toward the wing root causes a stronger response, and adding multiple CJs on the leading edge spar with a CJ on the diagonal spar allows the wing to deform with larger magnitude in all directions. This model lays a framework for a tool which can be used to understand flapping wing flight.
Newest insights from MHD numerical modeling of Pulsar Wind Nebulae
NASA Astrophysics Data System (ADS)
Olmi, B.; Del Zanna, L.; Amato, E.; Bucciantini, N.; Bandiera, R.
2016-06-01
Numerical MHD models are considered very successful in accounting for many of the observed properties of Pulsar Wind Nebulae (PWNe), especially those concerning the high energy emission morphology and the inner nebula dynamics. Although PWNe are known to be among the most powerful accelerators in nature, producing particles up to PeV energies, the mechanisms responsible of such an efficient acceleration are still a deep mystery. Indeed, these processes take place in one of the most hostile environment for particle acceleration: the relativistic and highly magnetized termination shock of the pulsar wind. The newest results from numerical simulations of the Crab Nebula, the PWN prototype, will be presented, with special attention to the problem of particle acceleration. In particular it will be shown how a multi-wavelengths analysis of the wisps properties can be used to constrain the particle acceleration mechanisms working at the Crab's termination shock, by identifying the particle acceleration site at the shock front.
Numerical modelling of multimode fibre-optic communication lines
Sidelnikov, O S; Fedoruk, M P; Sygletos, S; Ferreira, F
2016-01-31
The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong coupling regime provides a lower EVM level than the weak coupling one. (fibre-optic communication lines)
A numerical model for edge waves on a compound slope
NASA Astrophysics Data System (ADS)
Lu, Yang; Feng, Wei-bing; Zhang, Yu; Feng, Xi
2017-04-01
An edge wave is a kind of surface gravity wave basically travelling along a shoaling beach. Based on the periodic assumption in the longshore direction, a second order ordinary differential equation is obtained for numerical simulation of the cross-shore surface elevation. Given parameters at the shoreline, a cross-shore elevation profile is obtained through integration with fourth-order Runge-Kutta technique. For a compound slope, a longshore wavenumber is obtained by following a geometrical approach and solving a transcendental equation with an asymptotic method. Numerical results on uniform and compound sloping beaches with different wave periods, slope angles, modes and turning point positions are presented. Some special scenarios, which cannot be predicted by analytical models are also discussed.
On Numerical Considerations for Modeling Reactive Astrophysical Shocks
Papatheodore, Thomas L; Messer, Bronson
2014-01-01
Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds (and associated quantities) is to prohibit burning inside the numerically broadened shock (Fryxell et al. 1989). We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that, in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. (1989). In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly-resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in Type Ia supernovae.
Numerical Modeling of Electroacoustic Logging Including Joule Heating
NASA Astrophysics Data System (ADS)
Plyushchenkov, Boris D.; Nikitin, Anatoly A.; Turchaninov, Victor I.
It is well known that electromagnetic field excites acoustic wave in a porous elastic medium saturated with fluid electrolyte due to electrokinetic conversion effect. Pride's equations describing this process are written in isothermal approximation. Update of these equations, which allows to take influence of Joule heating on acoustic waves propagation into account, is proposed here. This update includes terms describing the initiation of additional acoustic waves excited by thermoelastic stresses and the heat conduction equation with right side defined by Joule heating. Results of numerical modeling of several problems of propagation of acoustic waves excited by an electric field source with and without consideration of Joule heating effect in their statements are presented. From these results, it follows that influence of Joule heating should be taken into account at the numerical simulation of electroacoustic logging and at the interpretation of its log data.
A numerical model for ETC gun interior ballistics applications
NASA Astrophysics Data System (ADS)
Hsiao, C.-C.; Phillips, G. T.; Su, F. Y.
1993-01-01
A multidimensional, transient, fluid dynamic model, BISON, has been developed to study the interior ballistic processes in an electrothermal chemical (ETC) gun. The model solves the full Navier-Stokes equations and uses a high-order numerical scheme to integrate the governing equations. Most of the important physical processes pertinent to ETC gun interior ballistics, including multiphase flow, chemical reactions, and plasma dynamics, are incorporated. Examples of applications to the study of ETC gun phenomena, such as plasma jet penetration and real gun design component analyses, are discussed. The modeling results not only compare well with experimental data, but also provide a better understanding of interior ballistics physics. The multidimensional BISON model is useful for ETC simulations.
Numerical Solution of the Extended Nernst-Planck Model.
Samson; Marchand
1999-07-01
The main features of a numerical model aiming at predicting the drift of ions in an electrolytic solution upon a chemical potential gradient are presented. The mechanisms of ionic diffusion are described by solving the extended Nernst-Planck system of equations. The electrical coupling between the various ionic fluxes is accounted for by the Poisson equation. Furthermore, chemical activity effects are considered in the model. The whole system of nonlinear equations is solved using the finite-element method. Results yielded by the model for simple test cases are compared to those obtained using an analytical solution. Applications of the model to more complex problems are also presented and discussed. Copyright 1999 Academic Press.
Numerical modeling of spray combustion with an advanced VOF method
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul
1995-01-01
This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.
Numerical and experimental verification of physical blast thermodynamic model
NASA Astrophysics Data System (ADS)
Chorowski, Maciej; Iluk, Artur; Grabowski, Maciej; Jędrusyna, Artur
2015-12-01
Helium inventory in big cryogenic systems may be of the order of hundred tons. During the warm up of the machine the helium has to be stored in warm pressurized tanks. A potential rupture of the tank may create a danger to adjacent objects. In order to formulate recommendations concerning storage of compressed gases in close vicinity of nuclear installations, a thermodynamic model of physical blast has been formulated. The model has been experimentally verified in a laboratory scale test rig. To simulate rupture of compressed gas storage tanks, plastic tanks have been used. Scaling of the results to real cases like ITER compressed gas inventory requires good understanding of potential rupture of high volume gas storage tanks. Numerical model of tanks rupture have been elaborated and verified against experimental results. The model allows scaling of thermodynamic simplified description to real gas storage installations.
A hierarchical energy efficiency evaluation model of numerical control workshop
NASA Astrophysics Data System (ADS)
Xu, Binzi; Wang, Yan; Ji, Zhicheng
2017-07-01
Energy consumption of numerical control (NC) workshop has lots of characteristics, such as hierarchy, multi-sources and time-varying. These characteristics make the modeling and evaluation of energy consumption in NC workshop very difficult. In this paper, a novel hierarchical model of the energy consumption in NC workshop is presented. Then, the calculation methods of energy efficiency in each layer are given. Furthermore, the acquisition method of the energy consumption data which is easily implemented is put forward and an experiment in NC workshop was made to illustrate the effectiveness of the proposed energy consumption model. The experimental results showed that the model cannot only describe the energy consumption effectively but also provide a way to identify the bottleneck of energy consumption in the workshop.
Numerical simulation and modeling of combustion in scramjets
NASA Astrophysics Data System (ADS)
Clark, Ryan James
In the last fifteen years the development of a viable scramjet has quickly approached the following long term goals: responsive sub-orbital space access; long-range, prompt global strike; and high-speed transportation. Nonetheless, there are significant challenges that need to be resolved. These challenges include high skin friction drag and high heat transfer rates, inherent to vehicles in sustained, hypersonic flight. Another challenge is sustaining combustion. Numerical simulation and modeling was performed to provide insight into reducing skin friction drag and sustaining combustion. Numerical simulation was used to investigate boundary layer combustion, which has been shown to reduce skin friction drag. The objective of the numerical simulations was to quantify the effect of fuel injection parameters on boundary layer combustion and ultimately on the change in the skin friction coefficient and heat transfer rate. A qualitative analysis of the results suggest that the reduction in the skin friction coefficient depends on multiple parameters and potentially an interaction between parameters. Sustained combustion can be achieved through a stabilized detonation wave. Additionally, stabilizing a detonation wave will yield rapid combustion. This will allow for a shorter and lighter-weight engine system, resulting in less required combustor cooling. A stabilized detonation wave was numerically modeled for various inlet and geometric cases. The effect of fuel concentration, inlet Mach number, and geometric configuration on the stability of a detonation wave was quantified. Correlations were established between fuel concentration, inlet speed, geometric configuration and parameters characterizing the detonation wave. A linear relationship was quantified between the fuel concentration and the parameters characterizing the detonation wave.
Numerical model for thermal parameters in optical materials
NASA Astrophysics Data System (ADS)
Sato, Yoichi; Taira, Takunori
2016-04-01
Thermal parameters of optical materials, such as thermal conductivity, thermal expansion, temperature coefficient of refractive index play a decisive role for the thermal design inside laser cavities. Therefore, numerical value of them with temperature dependence is quite important in order to develop the high intense laser oscillator in which optical materials generate excessive heat across mode volumes both of lasing output and optical pumping. We already proposed a novel model of thermal conductivity in various optical materials. Thermal conductivity is a product of isovolumic specific heat and thermal diffusivity, and independent modeling of these two figures should be required from the viewpoint of a clarification of physical meaning. Our numerical model for thermal conductivity requires one material parameter for specific heat and two parameters for thermal diffusivity in the calculation of each optical material. In this work we report thermal conductivities of various optical materials as Y3Al5O12 (YAG), YVO4 (YVO), GdVO4 (GVO), stoichiometric and congruent LiTaO3, synthetic quartz, YAG ceramics and Y2O3 ceramics. The dependence on Nd3+-doping in laser gain media in YAG, YVO and GVO is also studied. This dependence can be described by only additional three parameters. Temperature dependence of thermal expansion and temperature coefficient of refractive index for YAG, YVO, and GVO: these are also included in this work for convenience. We think our numerical model is quite useful for not only thermal analysis in laser cavities or optical waveguides but also the evaluation of physical properties in various transparent materials.
Automated smoother for the numerical decoupling of dynamics models
Vilela, Marco; Borges, Carlos CH; Vinga, Susana; Vasconcelos, Ana Tereza R; Santos, Helena; Voit, Eberhard O; Almeida, Jonas S
2007-01-01
Background Structure identification of dynamic models for complex biological systems is the cornerstone of their reverse engineering. Biochemical Systems Theory (BST) offers a particularly convenient solution because its parameters are kinetic-order coefficients which directly identify the topology of the underlying network of processes. We have previously proposed a numerical decoupling procedure that allows the identification of multivariate dynamic models of complex biological processes. While described here within the context of BST, this procedure has a general applicability to signal extraction. Our original implementation relied on artificial neural networks (ANN), which caused slight, undesirable bias during the smoothing of the time courses. As an alternative, we propose here an adaptation of the Whittaker's smoother and demonstrate its role within a robust, fully automated structure identification procedure. Results In this report we propose a robust, fully automated solution for signal extraction from time series, which is the prerequisite for the efficient reverse engineering of biological systems models. The Whittaker's smoother is reformulated within the context of information theory and extended by the development of adaptive signal segmentation to account for heterogeneous noise structures. The resulting procedure can be used on arbitrary time series with a nonstationary noise process; it is illustrated here with metabolic profiles obtained from in-vivo NMR experiments. The smoothed solution that is free of parametric bias permits differentiation, which is crucial for the numerical decoupling of systems of differential equations. Conclusion The method is applicable in signal extraction from time series with nonstationary noise structure and can be applied in the numerical decoupling of system of differential equations into algebraic equations, and thus constitutes a rather general tool for the reverse engineering of mechanistic model descriptions
Electrokinetic spontaneous polarization in porous media: petrophysics and numerical modelling
NASA Astrophysics Data System (ADS)
Titov, K.; Ilyin, Yu.; Konosavski, P.; Levitski, A.
2002-10-01
The behaviour of streaming potential is directly related to movement of groundwater. The responses for typical subsurface flows are modelled to investigate possibilities of spontaneous polarization (SP) when performing quantitative data interpretation. The physical properties of geomaterials related to streaming potential are described. A magnitude range of streaming current coefficient is assessed for geomaterials and found to be from -10-10 to -10-8 A/Pa m, depending on water salinity and rock composition. The electrical sources of SP caused by groundwater flow in saturated media are theoretically described. It is shown that SP is completely defined by three types of electrical sources situated (1) on boundaries where water enters or quits porous media, (2) in areas with transient regime, and (3) on the boundaries of rocks with different properties (hydraulic conductivity, streaming current coefficients and electrical conductivity). A 2D-computer program based on the method of finite difference was created to provide numerical successive modelling of both groundwater flow and SP. Using Sill's [Geophysics 48 (1983) 76] approach, first the water heads are calculated. Then, electrical sources of SP are obtained on the basis of the calculated heads and coefficient of streaming current. Finally, the SP is obtained on the basis of calculated electrical sources and subsurface electrical conductivity. Numerical examples illustrating SP responses of infiltration, of barrage with different electrical conductivity, and of well pumping are discussed. Field data obtained at the site containing the dam between superficial artificial reservoir and the river are interpreted on the basis of numerical modelling. The discussed method can be mainly used for additional calibration of groundwater flow models.
Numerical modeling of hydrodynamic in southwestern Johor, Malaysia
NASA Astrophysics Data System (ADS)
Jusoh, Wan Hasliza Wan; Tangang, Fredolin; Juneng, Liew; Hamid, Mohd. Radzi Abdul
2014-09-01
Tanjung Piai located at the southwest of Johor, Malaysia faces severe erosion since a few decades ago. Considering the condition in this particular area, understanding of its hydrodynamic behaviour should be clearly explained. Thus, a numerical modelling has been applied in this study in order to investigate the hydrodynamic of current flow along the study area. Hydrodynamic study was carried out by applying a numerical modelling of MIKE 21 software based on flexible mesh grids. The model generally described the current flow pattern in the study area corresponding to the several flows from surrounding water regime which are Malacca Strait, Singapore Strait and Java Sea. The interaction of various water flows in the area of Tanjung Piai which is located in the middle part of the meeting of the currents to have a very complicated hydrodynamic conditions. The study area generally experienced two tidal phase in a day as the water flows is greatly influenced by the adjacent water flow from Malacca and Singapore Straits. During first tidal cycle, the most dominant flow is influenced by a single water flow which is Malacca Strait for both ebbing and flooding event. The current velocity was generally higher during this first tidal phase particularly at the tips of Tanjung Piai where severe erosion is spotted. However, the second tidal phase gives different stress to the study area as the flow is relatively dominated by both Malacca and Singapore Straits. During this phase, the meeting of current from both straits can be discovered near to the Tanjung Piai as this occurrence makes relatively slower current velocity around the study area. Basically, the numerical modelling result in this study can be considered as basic information in describing the condition of study area as it would be very useful for extensive study especially the study of sediment transport and morphological processes in the coastal area.
Parallelism and optimization of numerical ocean forecasting model
NASA Astrophysics Data System (ADS)
Xu, Jianliang; Pang, Renbo; Teng, Junhua; Liang, Hongtao; Yang, Dandan
2016-10-01
According to the characteristics of Chinese marginal seas, the Marginal Sea Model of China (MSMC) has been developed independently in China. Because the model requires long simulation time, as a routine forecasting model, the parallelism of MSMC becomes necessary to be introduced to improve the performance of it. However, some methods used in MSMC, such as Successive Over Relaxation (SOR) algorithm, are not suitable for parallelism. In this paper, methods are developedto solve the parallel problem of the SOR algorithm following the steps as below. First, based on a 3D computing grid system, an automatic data partition method is implemented to dynamically divide the computing grid according to computing resources. Next, based on the characteristics of the numerical forecasting model, a parallel method is designed to solve the parallel problem of the SOR algorithm. Lastly, a communication optimization method is provided to avoid the cost of communication. In the communication optimization method, the non-blocking communication of Message Passing Interface (MPI) is used to implement the parallelism of MSMC with complex physical equations, and the process of communication is overlapped with the computations for improving the performance of parallel MSMC. The experiments show that the parallel MSMC runs 97.2 times faster than the serial MSMC, and root mean square error between the parallel MSMC and the serial MSMC is less than 0.01 for a 30-day simulation (172800 time steps), which meets the requirements of timeliness and accuracy for numerical ocean forecasting products.
Enthalpy benchmark experiments for numerical ice sheet models
NASA Astrophysics Data System (ADS)
Kleiner, T.; Rückamp, M.; Bondzio, J. H.; Humbert, A.
2015-02-01
We present benchmark experiments to test the implementation of enthalpy and the corresponding boundary conditions in numerical ice sheet models. Since we impose several assumptions on the experiment design, analytical solutions can be formulated for the proposed numerical experiments. The first experiment tests the functionality of the boundary condition scheme and the basal melt rate calculation during transient simulations. The second experiment addresses the steady-state enthalpy profile and the resulting position of the cold-temperate transition surface (CTS). For both experiments we assume ice flow in a parallel-sided slab decoupled from the thermal regime. We compare simulation results achieved by three different ice flow-models with these analytical solutions. The models agree well to the analytical solutions, if the change in conductivity between cold and temperate ice is properly considered in the model. In particular, the enthalpy gradient on the cold side of the CTS goes to zero in the limit of vanishing temperate-ice conductivity, as required from the physical jump conditions at the CTS.
Multiphase, multicomponent numerical model of bioventing with nonequilibrium mass exchange
Lang, J.R.; Rathfelder, K.M.; Abriola, L.M.
1995-12-31
A numerical model is presented that has been specifically designed to simulate the combined processes of soil vapor extraction and enhanced bioremediation known as bioventing. In this model, equations describing multiphase flow, multicomponent advective diffusive transport, and biodegradation are coupled. An entrapped organic residual, mobile gas and aqueous phases, and a reactive biophase are modeled. Components include n organic contaminants, oxygen, nitrogen, and water. Rate-limited mass exchange between the phases is simulated using linear driving force expressions. These expressions model volatilization and dissolution of the entrapped organic residual, rate-limited transport between the gas and aqueous phases, and rate-limited transport to the biophase. Monod-type kinetic expressions are employed to describe biophase utilization of substrates, the electron acceptor, and a limiting nutrient, as well as the growth of the microbial population. The coupled nonlinear governing equations are solved using a set iterative finite element method. Numerical simulations are presented for one-dimensional bench-scale column studies. These simulations illustrate the potential importance of biological degradation in the remediation of systems that are subject to mass transfer limitations.
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. The SD module rejects waste heat from the power conversion cycle to space through a pumped-loop, multi-panel, deployable radiator. The baseline radiator configuration was defined during the Space Station conceptual design phase and is a function of the state point and heat rejection requirements of the power conversion unit. Requirements determined by the overall station design such as mass, system redundancy, micrometeoroid and space debris impact survivability, launch packaging, costs, and thermal and structural interaction with other station components have also been design drivers for the radiator configuration. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations. A brief description and discussion of the numerical model, it's capabilities and limitations, and results of the parametric studies performed is presented.
A numerical investigation of a simplified human birth model
NASA Astrophysics Data System (ADS)
Pealatere, Roseanna; Baumer, Alexa; Fauci, Lisa; Leftwich, Megan C.
2015-11-01
This work uses simplified models and numerical computations to explore the effects of both the fetal velocity and the viscosity of the surrounding fluid on the forces associated with human birth. The numerical results are compared with the results of an experimental model representing the fetus moving through the birth canal using a rigid cylinder (fetus) that moves at a constant velocity through the center of a passive elastic tube (birth canal). The entire system is immersed in highly viscous fluid. Due to low Reynolds' number, the Stokes equations can be used to describe the relationship between velocity and forces in the system. The mathematical model uses the method of regularized Stokeslets to estimate the pulling force necessary to move the rigid inner cylinder at a constant velocity. The elastic tube through which the rigid cylinder passes is constructed by a discrete network of Hookean springs, with macroscopic elasticity matched to the tube used in the physical experiment. More complex geometries as well as peristaltic activation of the elastic tube can be added to the model to provide more insight into the relationship between force and velocity during human birth.
Numerical and Analytic Studies of Random-Walk Models.
NASA Astrophysics Data System (ADS)
Li, Bin
We begin by recapitulating the universality approach to problems associated with critical systems, and discussing the role that random-walk models play in the study of phase transitions and critical phenomena. As our first numerical simulation project, we perform high-precision Monte Carlo calculations for the exponents of the intersection probability of pairs and triplets of ordinary random walks in 2 dimensions, in order to test the conformal-invariance theory predictions. Our numerical results strongly support the theory. Our second numerical project aims to test the hyperscaling relation dnu = 2 Delta_4-gamma for self-avoiding walks in 2 and 3 dimensions. We apply the pivot method to generate pairs of self-avoiding walks, and then for each pair, using the Karp-Luby algorithm, perform an inner -loop Monte Carlo calculation of the number of different translates of one walk that makes at least one intersection with the other. Applying a least-squares fit to estimate the exponents, we have obtained strong numerical evidence that the hyperscaling relation is true in 3 dimensions. Our great amount of data for walks of unprecedented length(up to 80000 steps), yield a updated value for the end-to-end distance and radius of gyration exponent nu = 0.588 +/- 0.001 (95% confidence limit), which comes out in good agreement with the renormalization -group prediction. In an analytic study of random-walk models, we introduce multi-colored random-walk models and generalize the Symanzik and B.F.S. random-walk representations to the multi-colored case. We prove that the zero-component lambdavarphi^2psi^2 theory can be represented by a two-color mutually -repelling random-walk model, and it becomes the mutually -avoiding walk model in the limit lambda to infty. However, our main concern and major break-through lies in the study of the two-point correlation function for the lambda varphi^2psi^2 theory with N > 0 components. By representing it as a two-color random-walk expansion
Numerical modeling of LCD electro-optical performance
NASA Astrophysics Data System (ADS)
Woehler, Henning; Becker, Michael E.
2002-06-01
Realization of complex high information density LCDs and systematic optimization of their electro-optical and ergonomic performance would not be possible in the required time-frame without reliable numerical modeling of the electro-optical performance of such display devices. In this paper we outline the history of numerical LDC modeling starting with Berreman and van Doorn, finally arriving at modern state-of-the-art LCD-modeling in two and three dimensions. Numerical modeling of LCDs is carried out in two steps: first, the effect of the electrical field on the orientation of the liquid crystalline alignment has to be evaluated before the corresponding optical properties can be computed. Starting from LC-elasticity theory we present suitable numerical methods for computing various states of LC-deformation (stable, metastable, bistable, etc.) in one- dimensional problems Light propagation in layered anisotropic absorbing media is evaluated with methods that are based on Maxwell's equations (Berreman 4 X 4-matrix approach). This approach can be simplified to yield methods with reduced computing time and sufficient accuracy for many problems (e.g. extended Jones 2 X 2-matrix formalism). A finite element method with automatic mesh generation and refinement for computing accurate solutions in two- dimensional problems is presented and its application illustrated with examples (e.g. IPS-effect, VAN-cells, etc.). In two- and three-dimensional problems, i.e. in cells with lateral dimensions comparable to the cell thickness, a variety of different director configurations are possible for a given geometry and electrical driving and addressing, making the modeling more complicated. Moreover, local defects can occur, which should also be considered in the simulation. Suitable approaches for the director field calculation, i.e. the vector and the tensor approach, are discussed. The complexity of the problem increases considerably when a third dimension is added, e.g. the
Numerical modelling of electrochemical polarization around charged metallic particles
NASA Astrophysics Data System (ADS)
Bücker, Matthias; Undorf, Sabine; Flores Orozco, Adrián; Kemna, Andreas
2017-04-01
We extend an existing analytical model and carry out numerical simulations to study the polarization process around charged metallic particles immersed in an electrolyte solution. Electro-migration and diffusion processes in the electrolyte are described by the Poisson-Nernst-Planck system of partial differential equations. To model the surface charge density, we consider a time- and frequency-invariant electric potential at the particle surface, which leads to the build-up of a static electrical double layer (EDL). Upon excitation by an external electric field at low frequencies, we observe the superposition of two polarization processes. On the one hand, the induced dipole moment on the metallic particle leads to the accumulation of opposite charges in the electrolyte. This charge polarization corresponds to the long-known response of uncharged metallic particles. On the other hand, the unequal cation and anion concentrations in the EDL give rise to a salinity gradient between the two opposite sides of the metallic particle. The resulting concentration polarization enhances the magnitude of the overall polarization response. Furthermore, we use our numerical model to study the effect of relevant model parameters such as surface charge density and ionic strength of the electrolyte on the resulting spectra of the effective conductivity of the composite model system. Our results do not only give interesting new insight into the time-harmonic variation of electric potential and ion concentrations around charged metallic particle. They are also able to reduce incongruities between earlier model predictions and geophysical field and laboratory measurements. Our model thereby improves the general understanding of IP signatures of metallic particles and represents the next step towards a quantitative interpretation of IP imaging results. Part of this research is funded by the Austrian Federal Ministry of Science, Research and Economy under the Raw Materials Initiative.
Improvement of a 2D numerical model of lava flows
NASA Astrophysics Data System (ADS)
Ishimine, Y.
2013-12-01
I propose an improved procedure that reduces an improper dependence of lava flow directions on the orientation of Digital Elevation Model (DEM) in two-dimensional simulations based on Ishihara et al. (in Lava Flows and Domes, Fink, JH eds., 1990). The numerical model for lava flow simulations proposed by Ishihara et al. (1990) is based on two-dimensional shallow water model combined with a constitutive equation for a Bingham fluid. It is simple but useful because it properly reproduces distributions of actual lava flows. Thus, it has been regarded as one of pioneer work of numerical simulations of lava flows and it is still now widely used in practical hazard prediction map for civil defense officials in Japan. However, the model include an improper dependence of lava flow directions on the orientation of DEM because the model separately assigns the condition for the lava flow to stop due to yield stress for each of two orthogonal axes of rectangular calculating grid based on DEM. This procedure brings a diamond-shaped distribution as shown in Fig. 1 when calculating a lava flow supplied from a point source on a virtual flat plane although the distribution should be circle-shaped. To improve the drawback, I proposed a modified procedure that uses the absolute value of yield stress derived from both components of two orthogonal directions of the slope steepness to assign the condition for lava flows to stop. This brings a better result as shown in Fig. 2. Fig. 1. (a) Contour plots calculated with the original model of Ishihara et al. (1990). (b) Contour plots calculated with a proposed model.
Photometry of dark atmosphereless planetary bodies: an efficient numerical model
NASA Astrophysics Data System (ADS)
Wilkman, Olli; Muinonen, Karri; Peltoniemi, Jouni
2015-12-01
We present a scattering model for regolith-covered Solar System bodies. It can be used to compute the intensity of light scattered by a surface consisting of packed, mutually shadowing particles. Our intention is to provide a model in which other researchers can apply in studies of Solar System photometry. Our model is a Lommel-Seeliger type model, representing a medium composed of individual scatterers with small single-scattering albedo. This means that it is suitable for dark regolith surfaces such as the Moon and many classes of asteroids. Our model adds an additional term which takes into account the mutual shadowing between the scatterers. The scatterers can have an arbitrary phase function. We use a numerical ray-tracing simulation to compute the shadowing contribution. We present the model in a form which makes implementing it in existing software straightforward and fast. The model in practice is implemented as files containing pre-computed values of the surface reflection coefficient, which can be loaded into a user's program and used to compute the scattering in the desired viewing geometries. As the usage requires only a little simple arithmetic and a table look-up, it is as fast to use as common analytical models.
Numerical modeling of laser isochoric heating of hot dense matter
NASA Astrophysics Data System (ADS)
Sentoku, Yasuhiko
2005-10-01
Ultra-intense short-pulse lasers are important tools for creating short-lived high energy plasmas, however to date, it has not been possible to create several hundred eV solid density matter because of the rapid transport of the laser-generated hot electrons throughout the target volume. We proposed a new way to isochorically heat matter at solid density to extreme temperatures by magnetic confinement of laser- generated hot electrons for several picoseconds by application of a multi-MG external field. In advance of an experiment at the Nevada Terawatt Facility (NTF), using a 100 TW- class laser, which will be synchronized to a 1MA Z-pinch machine, we have performed theoretical studies using a collisional particle-in-cell codes PICLS, which is optimized for a study of isochoric heating of solid density plasmas. One of the critical issues of the PIC simulation of the the laser isochoric heating is significant numerical heating, which makes difficult to simulate 100 eV solid density plasmas over picoseconds by PIC. In this talk, we introduce a couple of numerical techniques to extend the grid size with suppressing the numerical heating and also the full relativistic collision model to simulate the isochoric heating by ultra-intense lasers. This work was supported by DOE/NNSA-UNR grant DE-FC52-01NV14050.
Numerical Modeling of Saturated Boiling in a Heated Tube
NASA Technical Reports Server (NTRS)
Majumdar, Alok; LeClair, Andre; Hartwig, Jason
2017-01-01
This paper describes a mathematical formulation and numerical solution of boiling in a heated tube. The mathematical formulation involves a discretization of the tube into a flow network consisting of fluid nodes and branches and a thermal network consisting of solid nodes and conductors. In the fluid network, the mass, momentum and energy conservation equations are solved and in the thermal network, the energy conservation equation of solids is solved. A pressure-based, finite-volume formulation has been used to solve the equations in the fluid network. The system of equations is solved by a hybrid numerical scheme which solves the mass and momentum conservation equations by a simultaneous Newton-Raphson method and the energy conservation equation by a successive substitution method. The fluid network and thermal network are coupled through heat transfer between the solid and fluid nodes which is computed by Chen's correlation of saturated boiling heat transfer. The computer model is developed using the Generalized Fluid System Simulation Program and the numerical predictions are compared with test data.
Numerical Analysis of Electromagnetic Fields in Multiscale Model
NASA Astrophysics Data System (ADS)
Ma, Ji; Fang, Guang-You; Ji, Yi-Cai
2015-04-01
Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. Supported in part by China Postdoctoral Science Foundation under Grant No. 201M550839, and in part by the Key Research Program of the Chinese Academy of Sciences under Grant No. KGZD-EW-603
Numerical model for electrical explosion of copper wires in water
NASA Astrophysics Data System (ADS)
Chung, Kyoung-Jae; Lee, Kern; Hwang, Y. S.; Kim, Deok-Kyu
2016-11-01
This paper presents a simple but quite accurate numerical model for analyzing electrical explosion of copper wires in water. The numerical model solves a circuit equation coupled with one-dimensional magneto-hydrodynamic (MHD) equations with the help of appropriate wide-range equation of state (EOS) and electrical conductivity for copper. The MHD equations are formulated in a Lagrangian form to identify the interface between the wire and surrounding water clearly. A quotidian EOS (QEOS) that is known as the simplest form of EOS is utilized to build wide-range EOS for copper. In the QEOS, we consider the liquid-vapor phase transition, which is critical in analyzing the wire explosion system. For the electrical conductivity of copper, a semi-empirical set of equations covering from solid state to partially ionized plasma state are employed. Experimental validation has been performed with copper wires of various diameters, which are exploded by a microsecond timescale pulsed capacitive discharge. The simulation results show excellent agreements with the experimental results in terms of temporal motions of a plasma channel boundary and a shock front as well as current and voltage waveforms. It is found that the wire explodes (vaporizes) along the liquid branch of a binodal curve irrespective of wire dimension and operating voltage. After the explosion, the wire becomes a plasma state right away or after the current pause (dwell), depending on the operating conditions. It is worth noting that such a peculiar characteristic of wire explosion, i.e., current pause and restrike, is well simulated with the present numerical model. In particular, it is shown that the wire cools down along the vapor branch of the binodal curve during the current dwell, due to a significant difference of thermodynamic characteristics across the binodal curve. The influence of radiation for studying nonideal plasmas with a wire explosion technique and a physical process for shock wave formation
Numerical modelling and image reconstruction in diffuse optical tomography
Dehghani, Hamid; Srinivasan, Subhadra; Pogue, Brian W.; Gibson, Adam
2009-01-01
The development of diffuse optical tomography as a functional imaging modality has relied largely on the use of model-based image reconstruction. The recovery of optical parameters from boundary measurements of light propagation within tissue is inherently a difficult one, because the problem is nonlinear, ill-posed and ill-conditioned. Additionally, although the measured near-infrared signals of light transmission through tissue provide high imaging contrast, the reconstructed images suffer from poor spatial resolution due to the diffuse propagation of light in biological tissue. The application of model-based image reconstruction is reviewed in this paper, together with a numerical modelling approach to light propagation in tissue as well as generalized image reconstruction using boundary data. A comprehensive review and details of the basis for using spatial and structural prior information are also discussed, whereby the use of spectral and dual-modality systems can improve contrast and spatial resolution. PMID:19581256
A numerical model for the piezoelectric transduction of stress waves
NASA Astrophysics Data System (ADS)
Rajic, N.
2006-10-01
One of the most intensely studied forms of in situ structural health monitoring involves the use of piezoceramic disc elements to induce and transduce elastic stress waves. This paper reports on a numerical modelling facility for axisymmetric acousto-ultrasonic problems where a transversely-isotropic piezoelectric disc element is attached to or embedded in a structural host. The model accounts for both elasto-electromagnetic coupling and viscoelastic material behaviour. Experimental examples are shown to demonstrate good correlation between observed and predicted behaviour. Comparisons show that the predictive accuracy of the model depends profoundly on the quality of the material property data furnished. Where biased inputs are suspected, a remedy is proposed comprising stochastic optimization guided by observations of the system response.
Numerical modeling for primary atomization of liquid jets
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Chuech, S. G.; Singhal, A. K.
1989-01-01
In the proposed numerical model for primary atomization, surface-wave dispersion equations are solved in conjunction with the jet-embedding technique of solving mean flow equations of a liquid jet. Linear and approximate nonlinear models have been considered. In each case, the dispersion equation is solved over the whole wavelength spectrum to predict drop sizes, frequency, and liquid-mass breakup rates without using any empirical constants. The present model has been applied to several low-speed and high-speed jets. For the high-speed case (the LOX/H2 coaxial injector of the Space Shuttle Main Engine Preburner), predicted drop sizes and liquid breakup rates are in good agreement with the results of the CICM code, which have been calibrated against measured data.
Numerical modeling of shear band formation in PBX-9501
Dey, T.N.; Kamm, J.R.
1998-12-31
Adiabatic shear bands in explosives may be a source of ignition and lead to detonation. Three possible mechanisms leading to shear banding are (1) thermal softening, (2) mechanical softening due to microcracking, and (3) quasi-granular constitutive response. The latter two mechanisms can lead to shear band formation in PBXs at nominal strains much smaller than those required for the thermal softening mechanism. The authors study formation of shear bands with models including the latter two mechanisms under unconfined compression. Statistical variation of numerical results is similar to that observed in some experiments. However, the commonly used methods of calibrating constitutive models can be misleading because of effects due to shear band formation. One model currently being used for studies of shear band formation and ignition in PBX 9501 was calibrated in this way and may need re-examination.
Numerical modeling of fish passage at the Lower Granite dam
NASA Astrophysics Data System (ADS)
Weber, Larry; Li, Songheng; Hansen, Ken
2005-11-01
Being the first collector dam on the Snake River, the Lower Granite Dam is important to juvenile fish downstream passage. To improve the performance of the Behavioral-Guidance-Structure(BGS), Surface-Bypass-Collector(SBC), and Removable-Spillway-Weir (RSW) on fish passage, numerical simulations have been conducted using the 3D CFD model developed at IIHR-Hydroscience & Engineering. The code solves the RANS equations with two-equation turbulence models. Multi-block structured grids were generated. The model was first compared in the total force and distribution on the BGS wall with the prototype data and the comparison gave a satisfactory agreement. Then runs with combinations of the BGS, SBC, RSW, trash boom, and loading of the units and spillway were conducted, and the primary flow patterns, pressure distribution on the BGS wall, velocity, and acceleration status of flow approaching the RSW were analyzed and compared.
Aerospace laser sensing of cloudiness: numerical statistical modeling
NASA Astrophysics Data System (ADS)
Kargin, A. B.; Kargin, B. A.; Lavrov, M. V.
2013-08-01
In the numerical modeling of laser radiation transfer in optically dense cloudy media it is necessary to take into account multiple scattering effects, which alter the spatiotemporal structure of light pulses. The Monte Carlo method makes it possible to achieve the most complete account of these effects in the solution of direct problems of laser sensing of scattering media. This work considers two problems. The first is connected with construction of an adequate optical model of crystalline clouds which takes account their optical anisotropy. The second touches on questions of Monte Carlo modeling of laser radiation transfer in optically anisotropic media. A number of results of numerical experiments are presented which establish a quantitative connection between some cloud parameters and the magnitude and shape of the time convolution of a non-stationary laser return signal reflected by a single-layer continuous crystalline or liquid-droplet cloud and by two-level continuous cloudiness, when the crystalline cloud is located above the liquid-droplet cloud.
A Computational Model for the Numerical Simulation of FSW Processes
NASA Astrophysics Data System (ADS)
Agelet de Saracibar, C.; Chiumenti, M.; Santiago, D.; Cervera, M.; Dialami, N.; Lombera, G.
2010-06-01
In this paper a computational model for the numerical simulation of Friction Stir Welding (FSW) processes is presented. FSW is a new method of welding in solid state in which a shouldered tool with a profile probe is rotated and slowly plunged into the joint line between two pieces of sheet or plate material which are butted together. Once the probe has been completely inserted, it is moved with a small tilt angle in the welding direction. Here a quasi-static, thermal transient, mixed multiscale stabilized Eulerian formulation is used. Norton-Hoff and Sheppard-Wright rigid thermo-viscoplastic material models have been considered. A staggered solution algorithm is defined such that for any time step, the mechanical problem is solved at constant temperature and then the thermal problem is solved keeping constant the mechanical variables. A pressure multiscale stabilized mixed linear velocity/linear pressure finite element interpolation formulation is used to solve the mechanical problem and a convection multiscale stabilized linear temperature interpolation formulation is used to solve the thermal problem. The model has been implemented into the in-house developed FE code COMET. Results obtained in the simulation of FSW process are compared to other numerical results or experimental results, when available.
Numerical modeling of flexible insect wings using volume penalization
NASA Astrophysics Data System (ADS)
Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Sesterhenn, Joern
2012-11-01
We consider the effects of chordwise flexibility on the aerodynamic performance of insect flapping wings. We developed a numerical method for modeling viscous fluid flows past moving deformable foils. It extends on the previously reported model for flows past moving rigid wings (J Comput Phys 228, 2009). The two-dimensional Navier-Stokes equations are solved using a Fourier pseudo-spectral method with the no-slip boundary conditions imposed by the volume penalization method. The deformable wing section is modeled using a non-linear beam equation. We performed numerical simulations of heaving flexible plates. The results showed that the optimal stroke frequency, which maximizes the mean thrust, is lower than the resonant frequency, in agreement with the experiments by Ramananarivo et al. (PNAS 108(15), 2011). The oscillatory part of the force only increases in amplitude when the frequency increases, and at the optimal frequency it is about 3 times larger than the mean force. We also study aerodynamic interactions between two heaving flexible foils. This flow configuration corresponds to the wings of dragonflies. We explore the effects of the phase difference and spacing between the fore- and hind-wing.
Numerical model for unsteady airflow in inclined human trachea
NASA Astrophysics Data System (ADS)
Alnussairy, Esam A.; Bakheet, Ahmed; Mustapha, Norzieha; Amin, Norsarahaida
2017-04-01
Achieving an accurate and efficient model for inclined bed therapy is ever-demanding. A new mathematical model for simulating airflow inside human trachea under resting and normal breathing scenario, where the influence of inclination angle on the unsteady flow is determined. The governing equations of motion consisting of unsteady, nonlinear, non-homogenous, Navier-Stokes equations are derived and numerically solved using the Marker and Cell method in Matlab code. Two-dimensional cylindrical coordinate system with appropriate initial and boundary conditions are used. The discretization is performed on uniform staggered grids. The pressure is calculated iteratively using the Successive-Over-Relaxation method. Quantities including the wall pressure, pressure drop, axial and radial velocity, volumetric flow rate, flow resistance and streamlines of airflow patterns are computed. The computed axial velocities for the horizontal position are agreed when compared with other experimental and numerical findings. An increase in the inclination angle is found to diminish the pressure drop inside the trachea. Thus, it generated a higher negative pressure in the lungs. Simulation results are demonstrated to be accurate when compared with the real situation. Excellent features of the results suggest that the proposed model based simulation procedure may contribute towards the development of precise and effective inclined bed therapy.
A numerical investigation of a simplified human birth model
NASA Astrophysics Data System (ADS)
Gossmann, Roseanna; Baumer, Alexa; Fauci, Lisa; Leftwich, Megan C.
2016-11-01
This work uses a simplified model to explore the forces experienced by the fetus during human birth. Numerical results are compared with the results of a physical model representing the fetus moving through the birth canal using a rigid cylinder (fetus) that moves at a constant velocity through the center of a passive elastic tube (birth canal). The entire system is immersed in a highly viscous fluid. Numerical simulations are run at low and zero Reynolds numbers. In each case, the pulling force necessary to move the rigid inner cylinder at a constant velocity through the tube is measured. The discrete elastic tube through which the rigid cylinder passes has macroscopic elasticity matched to the tube used in the physical experiment. The buckling behavior of the elastic tube is explored by varying velocity, length, and diameter of the rigid cylinder, and length of the elastic tube. More complex geometries as well as peristaltic activation of the elastic tube can be added to the model to provide more insight into the relationship between force and velocity during human birth.
Analytical and numerical modeling of surface morphologies in thin films
Genin, F.Y.
1995-05-01
Experimental studies have show that strains due to thermal expansion mismatch between a film and its substrate can produce very large stresses in the film that can lead to the formation of holes and hillocks. Based on a phenomenological description of the evolution of a solid surface under both capillary and stress driving forces and for surface and grain boundary self-diffusion, this article provides analytical and numerical solutions for surface profiles of model geometries in polycrystalline thin films. Results can explain a variety of surface morphologies commonly observed experimentally and are discussed to give some practical insights on how to control the growth of holes and hillocks in thin films.
Numerical Modeling of Pulse Detonation Rocket Engine Gasdynamics and Performance
NASA Technical Reports Server (NTRS)
Morris, C. I.
2003-01-01
Pulse detonation engines (PDB) have generated considerable research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional gas turbines and rocket engines. The detonative mode of combustion employed by these devices offers a theoretical thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional engines. However, the unsteady blowdown process intrinsic to all pulse detonation devices has made realistic estimates of the actual propulsive performance of PDES problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models.
Determining Heterogeneous Bottom Friction Distributions using a Numerical Wave Model
2007-08-11
8217 J. M. Kaihatu.’ and K. T. Holland 2 Recci cd 22 September 2(005; rc ised 15 March 2007; accepted I June 2007. published I1 August 2007. It] This...dependencies in the numerical wave model for this procedure to be effective. Citation: Keen, T. R., W. E. Rogers, J. Dykes, J. M. Kaihatu, and K. T. Holland ...grid ( lop of page). similar to traditional data assimilation approaches but there are important differences. For example, this work is focused on the
An explicit mixed numerical method for mesoscale model
NASA Technical Reports Server (NTRS)
Hsu, H.-M.
1981-01-01
A mixed numerical method has been developed for mesoscale models. The technique consists of a forward difference scheme for time tendency terms, an upstream scheme for advective terms, and a central scheme for the other terms in a physical system. It is shown that the mixed method is conditionally stable and highly accurate for approximating the system of either shallow-water equations in one dimension or primitive equations in three dimensions. Since the technique is explicit and two time level, it conserves computer and programming resources.
Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm
NASA Astrophysics Data System (ADS)
Ouared, R.; Chopard, B.; Stahl, B.; Rüfenacht, D. A.; Yilmaz, H.; Courbebaisse, G.
2008-07-01
The lattice Boltzmann numerical method is applied to model blood flow (plasma and platelets) and clotting in intracranial aneurysms at a mesoscopic level. The dynamics of blood clotting (thrombosis) is governed by mechanical variations of shear stress near wall that influence platelets-wall interactions. Thrombosis starts and grows below a shear rate threshold, and stops above it. Within this assumption, it is possible to account qualitatively well for partial, full or no occlusion of the aneurysm, and to explain why spontaneous thrombosis is more likely to occur in giant aneurysms than in small or medium sized aneurysms.
Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods
NASA Technical Reports Server (NTRS)
Wu, S. T.
1988-01-01
Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.
Predictability and numerical modelling of the North Atlantic Oscillation
NASA Astrophysics Data System (ADS)
Bojariu, Roxana; Gimeno, Luis
2003-10-01
The North Atlantic Oscillation (NAO) is the dominant pattern of atmospheric circulation variability in the extratropical Northern Hemisphere and it is a major controlling factor in basic meteorological variables such as surface wind, temperature and precipitation which have large socioeconomic impacts on energy, agriculture, industry, traffic and human health throughout the whole of Europe and eastern North America. Because of this dominant impact on the weather and climate of the wealthiest areas of the planet, there is a growing interest in quantifying the possible limits of predictability of the phenomenon and the ability of the climate numerical models of simulating it. This paper reviews recent work on predictability and methods of numerical modelling of the North Atlantic Oscillation used to simulate the phenomenon. Atmospheric models with no orography or land-sea contrasts are able to capture the main feature of the NAO; however, to capture any interannual or interdecadal variability of the NAO, atmospheric general circulation models (AGCM) with seasonally varying sea surface temperature (SSTs) forcing are required. Still, no model reproduces the recent observed upward trend in the NAO index, suggesting that either the models are deficient or external forcing such as man-made effects are responsible for this feature. Predictive patterns have been identified in the Atlantic SSTs preceding specific phases of the NAO by up to 6 months, in the atmospheric temperatures anomalies in the previous November, in the Eurasian snow cover and in the sea-ice extent over Arctic. The use of simulations based on ensemble prediction to estimate potential predictability shows the possibility of capturing the upward trend of the NAO and suggests that multiannual to multidecadal variations in the NAO are more predictable than interannual fluctuations.
An operational phenological model for numerical pollen prediction
NASA Astrophysics Data System (ADS)
Scheifinger, Helfried
2010-05-01
The general prevalence of seasonal allergic rhinitis is estimated to be about 15% in Europe, and still increasing. Pre-emptive measures require both the reliable assessment of production and release of various pollen species and the forecasting of their atmospheric dispersion. For this purpose numerical pollen prediction schemes are being developed by a number of European weather services in order to supplement and improve the qualitative pollen prediction systems by state of the art instruments. Pollen emission is spatially and temporally highly variable throughout the vegetation period and not directly observed, which precludes a straightforward application of dispersion models to simulate pollen transport. Even the beginning and end of flowering, which indicates the time period of potential pollen emission, is not (yet) available in real time. One way to create a proxy for the beginning, the course and the end of the pollen emission is its simulation as function of real time temperature observations. In this work the European phenological data set of the COST725 initiative forms the basis of modelling the beginning of flowering of 15 species, some of which emit allergic pollen. In order to keep the problem as simple as possible for the sake of spatial interpolation, a 3 parameter temperature sum model was implemented in a real time operational procedure, which calculates the spatial distribution of the entry dates for the current day and 24, 48 and 72 hours in advance. As stand alone phenological model and combined with back trajectories it is thought to support the qualitative pollen prediction scheme at the Austrian national weather service. Apart from that it is planned to incorporate it in a numerical pollen dispersion model. More details, open questions and first results of the operation phenological model will be discussed and presented.
Sound Transmission Validation and Sensitivity Studies in Numerical Models.
Oberrecht, Steve P; Krysl, Petr; Cranford, Ted W
2016-01-01
In 1974, Norris and Harvey published an experimental study of sound transmission into the head of the bottlenose dolphin. We used this rare source of data to validate our Vibroacoustic Toolkit, an array of numerical modeling simulation tools. Norris and Harvey provided measurements of received sound pressure in various locations within the dolphin's head from a sound source that was moved around the outside of the head. Our toolkit was used to predict the curves of pressure with the best-guess input data (material properties, transducer and hydrophone locations, and geometry of the animal's head). In addition, we performed a series of sensitivity analyses (SAs). SA is concerned with understanding how input changes to the model influence the outputs. SA can enhance understanding of a complex model by finding and analyzing unexpected model behavior, discriminating which inputs have a dominant effect on particular outputs, exploring how inputs combine to affect outputs, and gaining insight as to what additional information improves the model's ability to predict. Even when a computational model does not adequately reproduce the behavior of a physical system, its sensitivities may be useful for developing inferences about key features of the physical system. Our findings may become a valuable source of information for modeling the interactions between sound and anatomy.
Numerical modeling of dish-Stirling reflux solar receivers
Hogan, R.E.
1990-01-01
Using reflux solar receivers to collect solar energy for dish-Stirling electric power generation systems is currently being investigated by several organizations, including Sandia National Laboratories, Albuquerque, New Mexico. In support of this program, Sandia has developed two numerical models describing the energy transfer within and thermal performance of pool-boiler and heat-pipe receivers. Both models are applicable to axisymmetric geometries and they both consider the radiative and convective energy transfer within the receiver cavity, the conductive and convective energy transfer within the receiver cavity, the conductive and convective energy transfer from the receiver housing, and the energy transfer to the receiver working fluid. In these models, the radiative transfer within the receiver is analyzed using a two-band (solar and infrared) net-radiation formulation for enclosure radiation. Empirical convective correlations describe the convective heat transfer from the cavity to the surroundings. The primary difference between the models is the level of detail in modeling the heat conduction through the receiver walls. The more detailed model uses a two-dimensional finite control volume method, whereas the simpler model uses a one-dimensional thermal resistance approach. 20 refs., 7 figs., 2 tabs.
Cloud-Scale Numerical Modeling of the Arctic Boundary Layer
NASA Technical Reports Server (NTRS)
Kruegen, Steven K.; Delnore, Victor E. (Technical Monitor)
2002-01-01
The research objective of this NASA grant-funded project was to determine in detail how large-scale processes. in combination with cloud-scale radiative, microphysical, and dynamical processes, govern the formation and multi-layered structure of Arctic stratus clouds. This information will be useful for developing and improving 1D (one dimensional) boundary layer models for the Arctic. Also, to quantitatively determine the effects of leads on the large-scale budgets of sensible heat, water vapor, and condensate in a variety of Arctic winter conditions. This information will be used to identify the most important lead-flux processes that require parameterization in climate models. Our approach was to use a high-resolution numerical model, the 2D (two dimensional) University of Utah Cloud Resolving Model (UU CRM), and its 1D version, the University of Utah Turbulence Closure Model (UU TCM), a boundary layer model based on third-moment turbulence closure, as well as a large-eddy simulation (LES) model originally developed by C.H. Moeng.
Numerical Thermal Model of a 30-cm NSTAR Ion Thruster
NASA Technical Reports Server (NTRS)
VanNoord, Jon; Gallimore, Alec; Rawlin, Vincent K.
1999-01-01
A thermal computer model of the NSTAR (Nasa Solar Electric Propulsion Technology Applications Readiness) xenon ion thruster has been produced using a lumped parameter thermal nodal network scheme. This model contains 104 nodes on the thruster and was implemented using SINDA (Systems Improved Numerical Differencing Analyzer) and TRASYS (Thermal Radiation Analyzer System) on various UNIX workstations. The model includes radiation and conduction heat transfer, the effect of plasma interaction on the thruster, and an account for finely perforated surfaces. The model was developed in conjunction with an NSTAR thruster outfitted with approximately 20 thermocouples for thermal testing at the NASA Lewis Research Center. The results of these experiments were used to calibrate and confirm the computer model first without and then with the plasma interaction. The calibrated model was able to predict discharge chamber temperatures to within 10 C of measured temperatures. To demonstrate the ability of the model under various circumstances the heat flux was examined for a thruster operating in the environment of space.
Collision and Break-off : Numerical models and surface observables
NASA Astrophysics Data System (ADS)
Bottrill, Andrew; van Hunen, Jeroen; Allen, Mark
2013-04-01
The process of continental collision and slab break-off has been explored by many authors using a number of different numerical models and approaches (Andrews and Billen, 2009; Gerya et al., 2004; van Hunen and Allen, 2011). One of the challenges of using numerical models to explore collision and break-off is relating model predictions to real observables from current collision zones. Part of the reason for this is that collision zones by their nature destroy a lot of potentially useful surface evidence of deep dynamics. One observable that offers the possibility for recording mantle dynamics at collision zones is topography. Here we present topography predictions from numerical models and show how these can be related to actual topography changes recoded in the sedimentary record. Both 2D and 3D numerical simulation of the closure of a small oceanic basin are presented (Bottrill et al., 2012; van Hunen and Allen, 2011). Topography is calculated from the normal stress at the surface applied to an elastic beam, to give a more realist prediction of topography by accounting for the expected elasticity of the lithosphere. Predicted model topography showed a number of interesting features on the overriding plate. The first is the formation of a basin post collision at around 300km from the suture. Our models also showed uplift postdating collision between the suture and this basin, caused by subduction of buoyant material. Once break-off has occurred we found that this uplift moved further into the overriding plate due to redistribution of stresses from the subducted plate. With our 3D numerical models we simulate a collision that propagates laterally along a subduction system. These models show that a basin forms, similar to that found in our 2D models, which propagates along the system at the same rate as collision. The apparent link between collision and basin formation leads to the investigation into the stress state in the overriding lithosphere. Preliminary
A Numerical Modeling Approach to Cometary Nucleus Surface Roughness Determination
NASA Astrophysics Data System (ADS)
Höfner, S.; Vincent, J.-B.; Sierks, H.; Blum, J.
2013-09-01
Activity of cometary nuclei is closely linked with thermophysical processes. Main catalyst to activity is the diurnal temperature wave induced by solar heating. Highly resolved comet nucleus geometric models are used to model temperatures with flat surfacial facets taken from shape modeling approaches [1, 3]. Recent analyses of Groussin et al. [4] and Davidsson et al. [2] compared thermal inertia and surface temperatures of Tempel 1 and Hartley 2 synthetic models to those derived from spectral images. They outlined that applying beaming factors and radiative self-heating is not sufficient to understand the thermal behaviour of the nucleus surface. Regions with large incidence angles (e.g. at the morning terminator) distinctively deviate from predicted temperatures. One of the main contributions to this deviation is the effect of surface roughness with scals that are considerably smaller than the model facets. Combined with a relatively low thermal inertia, temperatures cover a wide range of values even at closest neighbourhood to each other. The radiative measurement for a distant observer unveils a smearing effect that indicates higher temperatures compared to average. The authors follow two numerical approaches to model small-scale surface roughness: (A) by using randomly generated fractal surfaces and (B) by downscaling groups of facets originating from larger shape models of Tempel 1. We apply a model that accounts for both radiative heat exchange for all facets and shadowing effects due to incoming solar radiation. These values are calculated in a thermal model. The revealed temperatures are analyzed with respect to average large-scale surface temperatures. Hence, they are compared to deviating temperatures that are measured by a distant observer that is unable to resolve sub-structure surface patterns. A parametric study varying thermal inertia and the degree of surface roughness then outlines a bandwidth of feasible surface structures and relates them to
Armentrout, J.M.; Smith-Rouch, L.S.; Bowman, S.A.
1996-08-01
Numeric simulations based on integrated data sets enhance our understanding of depositional geometry and facilitate quantification of depositional processes. Numeric values tested against well-constrained geologic data sets can then be used in iterations testing each variable, and in predicting lithofacies distributions under various depositional scenarios using the principles of sequence stratigraphic analysis. The stratigraphic modeling software provides a broad spectrum of techniques for modeling and testing elements of the petroleum system. Using well-constrained geologic examples, variations in depositional geometry and lithofacies distributions between different tectonic settings (passive vs. active margin) and climate regimes (hothouse vs. icehouse) can provide insight to potential source rock and reservoir rock distribution, maturation timing, migration pathways, and trap formation. Two data sets are used to illustrate such variations: both include a seismic reflection profile calibrated by multiple wells. The first is a Pennsylvanian mixed carbonate-siliciclastic system in the Paradox basin, and the second a Pliocene-Pleistocene siliciclastic system in the Gulf of Mexico. Numeric simulations result in geometry and facies distributions consistent with those interpreted using the integrated stratigraphic analysis of the calibrated seismic profiles. An exception occurs in the Gulf of Mexico study where the simulated sediment thickness from 3.8 to 1.6 Ma within an upper slope minibasin was less than that mapped using a regional seismic grid. Regional depositional patterns demonstrate that this extra thickness was probably sourced from out of the plane of the modeled transect, illustrating the necessity for three-dimensional constraints on two-dimensional modeling.
NASA Astrophysics Data System (ADS)
Clark, Martyn; Kavetski, Dmitri
2010-05-01
Much of the research in the PUB initiative is focused on the analysis and interpretation of model results in well instrumented watersheds, in order to inform appropriate model structures and parameter values for use in ungauged basins. However, many of the models used in PUB share a common characteristic: poor numerical implementation. It is likely that many published conclusions, including (i) parameter sensitivity, optima and uncertainty estimates, and, more disconcertingly, (ii) the interpretation of hydrologic model output to gain insights into internal catchment dynamics, including the relative significance and behavior of different processes, may be questionable due to numerical artifacts introduced by unreliable time stepping schemes. Such lack of attention to numerical schemes has almost certainly hindered progress in the PUB initiative. Here, we comprehensively evaluate several classes of time stepping schemes in terms of numerical fidelity, computational efficiency, and impact on model sensitivity analysis, calibration and prediction. Extensive numerical experiments are carried out using 8 distinct time stepping algorithms and 6 different conceptual hydrological models, applied in the densely gauged experimental Mahurangi catchment as well as in 12 MOPEX basins with diverse physical characteristics and hydroclimatic regimes. Results show that numerical errors of uncontrolled time stepping schemes, which remain widely used in hydrology, routinely dwarf the structural errors of the model conceptualization. This has serious implications for model analysis and predictive use, including inconsistent inferences of parameters and internal states even if the calibrated streamflow predictions are similar. Even when numerical errors allow "getting the right result for the wrong reason", they make the model unduly fragile in predictive mode, as evidenced in validation tests. The extensive analyses in this paper indicate that these deformations are not rare isolated
Analysis of single ring infiltrometer test by direct numerical modeling
NASA Astrophysics Data System (ADS)
Réfloch, Aurore; Oxarango, Laurent; Rossier, Yvan; Gaudet, Jean Paul
2016-04-01
The well field of the Lyon metropolitan area provides drinking water to approximately 1,300,000 inhabitants. It is equipped with 12 infiltration basins. These basins have two main goals: sustaining the water table in times of peak demand for water, and preventing a possible contamination from the Rhône river by inverting groundwater flow direction. The water infiltration under the basins is thus crucial for the overall hydrogeologic behavior of the site. In order to characterize this phenomenon, a set of infiltrometer tests were performed to estimate the soil hydraulic properties. The soil is a coarse alluvial deposits. In order to deal with its sparse granulometric curve, a large single ring infiltrometer (1 meter in diameter) was used. A constant hydraulic head (=0.07 m) was imposed during the test. Two kinds of data are recorded: the amount of water infiltrated over time and the extension of the moisture stain around the ring. The main hydraulic properties are estimated using Richard's equation in a 2D axi-symmetric configuration. Simulations are performed using a finite element commercial software package (Comsol Multiphysics 5.1). According to simplified numerical models, an average homogeneous saturated permeability of the alluvial deposits is estimated at 5.0 10-6 m.s-1. However, such a simple model is not able to represent accurately the moisture stain at the soil surface. More complex models introduce anisotropy of permeability in the alluvium layer, with mono or bi-layer domain. In these cases, experimental and modeling results are consistent, both for the amount of water infiltrated over time and the extension of the moisture stain around the ring. The hydraulic anisotropy in the soil could be due to the stratified nature of alluvial deposits and to soil compaction during the construction of infiltration basins. Keywords: Single ring infiltrometer test, artificial aquifer recharge, numerical modeling.
Numerical modeling for an electric-field hyperthermia applicator
NASA Technical Reports Server (NTRS)
Wu, Te-Kao; Chou, C. K.; Chan, K. W.; Mcdougall, J.
1993-01-01
Hyperthermia, in conjunction with radiation and chemotherapy for treatment of cancers, is an area of current concern. Experiments have shown that hyperthermia can increase the potency of many chemotherapy drugs and the effectiveness of radiation for treating cancer. A combination of whole body or regional hyperthermia with chemotherapy or radiation should improve treatment results. Conventional methods for inducing whole body hyperthermia, such as exposing a patient in a radiant cabinet or under a hot water blanket, conduct heat very slowly from the skin to the body core. Thus a more efficient system, such as the three-plate electric-field hyperthermia applicator (EHA), is developed. This three-plate EHA has one top plate over and two lower plates beneath the patient. It is driven at 27.12 MHz with 500 Watts through a matching circuit. Using this applicator, a 50 kg pig was successfully heated to 42 C within 45 minutes. However, phantom and animal studies have indicated non-uniform heating near the side of the body. In addition, changes in the size and distance between the electrode plates can affect the heating (or electromagnetic field) pattern. Therefore, numerical models using the method of moments (MOM) or the finite difference time domain (FDTD) technique are developed to optimize the heating pattern of this EHA before it is used for human trials. The accuracy of the numerical modeling has been achieved by the good agreement between the MOM and FDTD results for the three-plate EHA without a biological body. The versatile FDTD technique is then applied to optimize the EHA design with a human body. Both the numerical and measured data in phantom blocks will be presented. The results of this study will be used to design an optimized system for whole body or regional hyperthermia.
Numerical modeling for an electric-field hyperthermia applicator
NASA Technical Reports Server (NTRS)
Wu, Te-Kao; Chou, C. K.; Chan, K. W.; Mcdougall, J.
1993-01-01
Hyperthermia, in conjunction with radiation and chemotherapy for treatment of cancers, is an area of current concern. Experiments have shown that hyperthermia can increase the potency of many chemotherapy drugs and the effectiveness of radiation for treating cancer. A combination of whole body or regional hyperthermia with chemotherapy or radiation should improve treatment results. Conventional methods for inducing whole body hyperthermia, such as exposing a patient in a radiant cabinet or under a hot water blanket, conduct heat very slowly from the skin to the body core. Thus a more efficient system, such as the three-plate electric-field hyperthermia applicator (EHA), is developed. This three-plate EHA has one top plate over and two lower plates beneath the patient. It is driven at 27.12 MHz with 500 Watts through a matching circuit. Using this applicator, a 50 kg pig was successfully heated to 42 C within 45 minutes. However, phantom and animal studies have indicated non-uniform heating near the side of the body. In addition, changes in the size and distance between the electrode plates can affect the heating (or electromagnetic field) pattern. Therefore, numerical models using the method of moments (MOM) or the finite difference time domain (FDTD) technique are developed to optimize the heating pattern of this EHA before it is used for human trials. The accuracy of the numerical modeling has been achieved by the good agreement between the MOM and FDTD results for the three-plate EHA without a biological body. The versatile FDTD technique is then applied to optimize the EHA design with a human body. Both the numerical and measured data in phantom blocks will be presented. The results of this study will be used to design an optimized system for whole body or regional hyperthermia.
A multiphysical ensemble system of numerical snow modelling
NASA Astrophysics Data System (ADS)
Lafaysse, Matthieu; Cluzet, Bertrand; Dumont, Marie; Lejeune, Yves; Vionnet, Vincent; Morin, Samuel
2017-05-01
Physically based multilayer snowpack models suffer from various modelling errors. To represent these errors, we built the new multiphysical ensemble system ESCROC (Ensemble System Crocus) by implementing new representations of different physical processes in the deterministic coupled multilayer ground/snowpack model SURFEX/ISBA/Crocus. This ensemble was driven and evaluated at Col de Porte (1325 m a.s.l., French alps) over 18 years with a high-quality meteorological and snow data set. A total number of 7776 simulations were evaluated separately, accounting for the uncertainties of evaluation data. The ability of the ensemble to capture the uncertainty associated to modelling errors is assessed for snow depth, snow water equivalent, bulk density, albedo and surface temperature. Different sub-ensembles of the ESCROC system were studied with probabilistic tools to compare their performance. Results show that optimal members of the ESCROC system are able to explain more than half of the total simulation errors. Integrating members with biases exceeding the range corresponding to observational uncertainty is necessary to obtain an optimal dispersion, but this issue can also be a consequence of the fact that meteorological forcing uncertainties were not accounted for. The ESCROC system promises the integration of numerical snow-modelling errors in ensemble forecasting and ensemble assimilation systems in support of avalanche hazard forecasting and other snowpack-modelling applications.
NEXT-GENERATION NUMERICAL MODELING: INCORPORATING ELASTICITY, ANISOTROPY AND ATTENUATION
S. LARSEN; ET AL
2001-03-01
A new effort has been initiated between the Department of Energy (DOE) and the Society of Exploration Geophysicists (SEG) to investigate what features the next generation of numerical seismic models should contain that will best address current technical problems encountered during exploration in increasingly complex geologies. This collaborative work is focused on designing and building these new models, generating synthetic seismic data through simulated surveys of various geometries, and using these data to test and validate new and improved seismic imaging algorithms. The new models will be both 2- and 3-dimensional and will include complex velocity structures as well as anisotropy and attenuation. Considerable attention is being focused on multi-component acoustic and elastic effects because it is now widely recognized that converted phases could play a vital role in improving the quality of seismic images. An existing, validated 3-D elastic modeling code is being used to generate the synthetic data. Preliminary elastic modeling results using this code are presented here along with a description of the proposed new models that will be built and tested.
Numerical modeling of temperature distributions within the neonatal head.
Van Leeuwen, G M; Hand, J W; Lagendijk, J J; Azzopardi, D V; Edwards, A D
2000-09-01
Introduction of hypothermia therapy as a neuroprotection therapy after hypoxia-ischemia in newborn infants requires appraisal of cooling methods. In this numerical study thermal simulations were performed to test the hypothesis that cooling of the surface of the cranium by the application of a cooling bonnet significantly reduces deep brain temperature and produces a temperature differential between the deep brain and the body core. A realistic three-dimensional (3-D) computer model of infant head anatomy was used, derived from magnetic resonance data from a newborn infant. Temperature distributions were calculated using the Pennes heatsink model. The cooling bonnet was at a constant temperature of 10 degrees C. When modeling head cooling only, a constant body core temperature of 37 degrees C was imposed. The computed result showed no significant cooling of the deep brain regions, only the very superficial regions of the brain are cooled to temperatures of 33-34 degrees C. Poor efficacy of head cooling was still found after a considerable increase in the modeled thermal conductivities of the skin and skull, or after a decrease in perfusion. The results for the heatsink thermal model of the infant head were confirmed by comparison of results computed for a scaled down adult head, using both the heatsink description and a discrete vessel thermal model with both anatomy and vasculature obtained from MR data. The results indicate that significant reduction in brain temperature will only be achieved if the infant's core temperature is lowered.
Aspects and Strategies of Numerical Modelling of Underground Coal Fires
NASA Astrophysics Data System (ADS)
Wuttke, M. W.; Han, J.; Liu, G.; Kessels, W.; Schmidt, M.; Gusat, D.; Fischer, Chr.; Hirner, A.; Meyer, U.
2009-04-01
Numerical modelling of underground coal fires has become a valuable tool even for practical fire extinction work. The approaches, methods and finally codes that are used depend on the targets that are aimed at by the particular modelling task. The most general one is to fully understand the processes that sustain or suppress the fire. Another purpose is to produce realistic data for regions that are not accessible (e . g. underneath a burning coal seam) or couldn't be investigated (e.g due to limited resources) to estimate the complete energy budget of the fire. Last but not least one would like to forecast the fire dynamics to predict the future damage or to assess the effectivenees of extinction work. These purposes require the consideration of all aspects with respect to thermal, hydraulic, mechanical and chemical (THMC) processes. At the moment there is no single code that completely covers all these aspects with every degree of complexity. Within the Sino-German project "Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in North China" we apply existing codes with different foci with respect to THMC processes and try to combine all codes to one comprehensive model. Besides the sophisticated academic modelling approach we also pursue the concept of "Onsite" modelling to enable fire fighting personnel to perform simplified modelling tasks even by means of web-based applications.
Numerical modelling of floating debris-associated flash flood processes
NASA Astrophysics Data System (ADS)
Mahaffey, S. H.; Liang, Q.
2016-12-01
Flash floods are characterised by high velocity `walls of water' and rapidly varying flow regimes, which are notoriously difficult to replicate through numerical modelling. Flow dynamics may be complicated further by the transport and subsequent build-up of a variety of floating debris arising from natural and anthropogenic sources. These may lead to blockage and potential damage of channel structures, flow rerouting and altered flood extents. However conventional modelling techniques do not intrinsically incorporate debris processes and the varied nature of debris shape, size and density make a widely applicable modelling scheme difficult to achieve. Here a new tool has been developed using an emerging approach, which incorporates debris transport through the coupling of two existing modelling techniques. A hydrodynamic scheme has here been coupled with the discrete element method to predict the motion and flow-interaction of floating debris. Hydraulic forces arising from flow around the debris are applied to instigate its motion and an equivalent opposing force is applied to fluid cells, enabling backwater effects to be simulated. The methodology used in shape representation allows the modelling tool to be applied to a diverse range of debris sources. In this work the modelling scheme has been applied to experimental case studies where cylindrical wooden dowels are transported in a hydraulic flume. The scheme adequately replicates water depth and depth-averaged velocity as well as the position of cylindrical wooden dowels within the flume.
A numerical oil spill model based on a hybrid method.
Guo, W J; Wang, Y X
2009-05-01
The purpose of this paper is the development of a hybrid particle tracking/Eulerian-Lagrangian approach for the simulation of spilled oil in coastal areas. Oil discharge from the source is modeled by the release of particles. When the oil slick thickness or the oil concentration reaches a critical value, particles are mapped on slick thickness or node concentrations, and the calculations proceed in the Eulerian-Lagrangian mode. To acquire accurate environment information, the model is coupled with the 3-D free-surface hydrodynamics model (POM) and the third-generation wave model (SWAN). By simulating the oil processes of spreading, advection, turbulent diffusion, evaporation, emulsification, dissolution and shoreline deposition, it has the ability to predict the horizontal movement of surface oil slick, the vertical distribution of oil particles, the concentration in the water column and the mass balance of spilled oil. An accidental oil release near Dalian coastal waters is simulated to validate the developed model. Compared with the satellite images of oil slicks on the surface, the numerical results indicate that the model has a reasonable accuracy.
Pulse shape control in a dual cavity laser: numerical modeling
NASA Astrophysics Data System (ADS)
Yashkir, Yuri
2006-04-01
We present a numerical model of the laser system for generating a special shape of the pulse: a steep peak at the beginning followed by a long pulse tail. Laser pulses of this nature are required for various applications (laser material processing, optical breakdown spectroscopy, etc.). The laser system consists of two "overlapped" cavities with different round-trip times. The laser crystal, the Q-switching element, the back mirror, and the output coupler are shared. A shorter pulse is generated in a short cavity. A small fraction of this pulse is injected into the long cavity as a seed. It triggers generation of the longer pulse. The output emission from this hybrid laser produces a required pulse shape. Parameters of the laser pulse (ratios of durations and energies of short- and long- pulse components) can be controlled through cavity length and the output coupler reflection. Modelling of the laser system is based on a set of coupled rate equations for dynamic variables of the system: the inverse population in an active laser media and photon densities in coupled cavities. Numerical experiments were provided with typical parameters of a Nd:YAG laser to study the system behaviour for different combinations of parameters.
Numerical modeling of a slurry droplet containing a spherical particle
NASA Astrophysics Data System (ADS)
Megaridis, Constantine M.; Sirignano, William A.
1993-03-01
A numerical investigation of the fundamental processes governing the momentum, energy, and mass exchanges between the solid, liquid, and gas phases of a vaporizing slurry droplet is presented. The axisymmetric configuration consists of an isolated slurry droplet with a large spherical solid particle in its core that is suddenly injected in a gaseous high-temperature, laminar, convective environmental. The model allows for independent motion of the solid particle along the axis of symmetry of the slurry droplet, and considers variable gas-phase thermophysical properties as well as variable liquid-phase viscosities and latent heat of vaporization. Additional features of the model include internal liquid circulation with transient droplet heating, droplet surface regression due to vaporization, and droplet deceleration with respect to the free flow due to drag. The numerical calculation employs an iterative solution procedure that has been successfully used previously for an isolated all-liquid droplet. We found that the relative motion of the solid particle and the liquid-carrier fluid is very significant during the early stages of the simulation. In that respect, the fluid mechanics dominate the heat and mass transport phenomena involved, thus strongly suggesting a high possibility of secondary atomization as a result of the penetration of the solid particle through the gas/liquid interface.
Attenuation of numerical artefacts in the modelling of fluid interfaces
NASA Astrophysics Data System (ADS)
Evrard, Fabien; van Wachem, Berend G. M.; Denner, Fabian
2015-11-01
Numerical artefacts in the modelling of fluid interfaces, such as parasitic currents or spurious capillary waves, present a considerable problem in two-phase flow modelling. Parasitic currents result from an imperfect evaluation of the interface curvature and can severely affect the flow, whereas spatially underresolved (spurious) capillary waves impose strict limits on the time-step and, hence, dictate the required computational resources for surface-tension-dominated flows. By applying an additional shear stress term at the fluid interface, thereby dissipating the surface energy associated with small wavelengths, we have been able to considerably reduce the adverse impact of parasitic currents and mitigate the time-step limit imposed by capillary waves. However, a careful choice of the applied interface viscosity is crucial, since an excess of additional dissipation compromises the accuracy of the solution. We present the derivation of the additional interfacial shear stress term, explain the underlying physical mechanism and discuss the impact on parasitic currents and interface instabilities based on a variety of numerical experiments. We acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) through Grant No. EP/M021556/1 and from PETROBRAS.
Optimization methods and silicon solar cell numerical models
NASA Technical Reports Server (NTRS)
Girardini, K.
1986-01-01
The goal of this project is the development of an optimization algorithm for use with a solar cell model. It is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junctions depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm has been developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAPID). SCAPID uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the operation of a solar cell. A major obstacle is that the numerical methods used in SCAPID require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the value associated with the maximum efficiency. This problem has been alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution. Adapting SCAPID so that it could be called iteratively by the optimization code provided another means of reducing the cpu time required to complete an optimization. Instead of calculating the entire I-V curve, as is usually done in SCAPID, only the efficiency is calculated (maximum power voltage and current) and the solution from previous calculations is used to initiate the next solution.
2D Numerical MHD Models of Solar Explosive Events
NASA Astrophysics Data System (ADS)
Roussev, I.
2001-10-01
Observations of the Sun reveal a great variety of dynamic phenomena interpretable as a manifestation of magnetic reconnection. These range from small-scale 'Explosive events' seen in the 'quiet' Sun, through violent flares observed in active regions. The high degree of complexity of the magnetic field inferred from observations may locally produce a fruitful environment for the process of magnetic reconnection to take place. Explosive events are associated with regions undergoing magnetic flux cancellation. This thesis presents a 2-dimensional (2D) numerical study devoted to explore the idea that the salient spectral signatures seen in explosive events are most probably caused by bi-directional outflow jets as a results of an ongoing magnetic reconnection. In order to provide qualitative results needed for the better physical interpretation of solar explosive events, several models intended to represent a 'quiet' Sun transition of solar explosive events, several models intended to represent a 'quiet' Sun transition region undergoing magnetic reconnection are examined, in both unstratified and gravitationally stratified atmospheres. The magnetic reconnection is initiated in an ad hoc manner, and the dynamic evolution is followed by numerically solving the equations of 2D dissipative magnetohydrodynamics (MHD), including the effects of field-aligned thermal conduction, radiative losses, volumetric heating, and anomalous resistivity.
On the impact of buttressing on numerical ice sheet models.
NASA Astrophysics Data System (ADS)
Cornford, Stephen; Martin, Daniel; Lee, Victoria; Payne, Antony; Ng, Esmond
2016-04-01
Idealized problems with little or no lateral variation are frequently used to study numerical ice sheet models that are then applied to realistic problems that have substantial lateral stresses. Given that the strong lateral variation can, for example, result in a stable grounding line on retrograde slope - an impossible result otherwise - it seems unwise to assume that any conclusion drawn from an unbuttressed flow-line geometry can be extrapolated to the general case. We will present results from two problems which do involve significant lateral stresses, the idealized MISMIP+ tests and 1000-year simulations of the entire Antarctic ice sheet, both resolved to sub-kilometre spatial resolution with the BISICLES ice sheet model. We will consider some numerical issues - for example, whether sub-grid friction schemes are as useful as they appear to be in flow-line problems. We will also consider the impact of the Coulomb limited basal traction law proposed by Tsai (2015), which results in flow-line marine ice streams that are more sensitive to climate perturbations than with the usual Weertman law: to what extent does that hold true in buttressed ice streams?
Parameterization of mires in a numerical weather prediction model
NASA Astrophysics Data System (ADS)
Yurova, Alla; Tolstykh, Mikhail; Nilsson, Mats; Sirin, Andrey
2014-11-01
Mires (peat-accumulating wetlands) occupy 8.1% of Russian territory and are especially numerous in the western Siberian Lowlands, where they can significantly modify atmospheric heat and water balances. They also influence air temperatures and humidity in the boundary layers closest to the earth's surface. The purpose of our study was to incorporate the influence of mires into the SL-AV numerical weather prediction model, which is used operationally in the Hydrometeorological Center of Russia. This was done by adjusting the multilayer soil component (by modifying the peat thermal conductivity in the heat diffusion equation and reformulating the lower boundary condition for Richard's equation), and reformulating both the evapotranspiration and runoff from mires. When evaporation from mires was incorporated into the SL-AV model, the latent heat flux in the areas dominated by mires increased strongly, resulting in surface cooling and hence reductions in the sensible heat flux and outgoing terrestrial long-wave radiation. Presented results show that including mires significantly decreased the bias and RMSE of predictions of temperature and relative humidity 2 m above the ground for lead times of 12, 36, and 60 h from 00 h Coordinated Universal Time (evening conditions), but did not eliminate the bias in forecasts for lead times of 24, 48, and 72 h (morning conditions) in Siberia. Different parameterizations of mire evapotranspiration are also compared.
Fifty years of numerical modeling of baroclinic ocean
NASA Astrophysics Data System (ADS)
Sarkisyan, A. S.
2012-02-01
This paper presents a brief critical analysis of the main historical stages of numerical modeling for the last fifty years. It was a half a century ago that the numerical simulation of an actual baroclinic ocean was initiated by the author and his students [1, 2]. In meteorology, studies on the numerical modeling of a baroclinic atmosphere existed much earlier [21, 22]. Despite this, a similar move in oceanography was met with strong resistance. At that time, there were many studies on the calculation of the total mass transport. The founders of this field, V.B. Shtokman, H. Sverdrup, and W. Munk, were mistaken in believing that they addressed baroclinic models of the ocean. The author preferred works by V. Ekman [12] and I. Sandström and B. Helland-Hansen [19]. A generalization of recent studies made it possible to come to some conclusions on the need to use the level of the free oceanic surface as a basis rather than the function of total mass transport, on the role of the baroclinic β effect (BARBE), on the joint effect of baroclinicity and bottom relief (JEBAR), etc. The author conditionally divides these fifty years into the following three stages. (1) The first stage was 1961-1969, when the author and his students performed almost exclusively diagnostic and adaptation calculations of climatic characteristics. (2) The second stage began with papers by K. Bryan [23] and his students. This is an important and promising stage involving mainly prognostic studies and four-dimensional analysis. The major advances in modeling at this stage (the Gulf Stream separation point [61], the Kuroshio seasonal evolution [63], the formation of the cold intermediate layer in the Black Sea [80], the subsurface countercurrent in the Caspian Sea [25], the realistic four-dimensional analysis of the Kara Sea [60], etc.) were due to high-resolution and/or data assimilation with an adequate period of integration. (3) The third stage began with the activities of international
Laboratory and Numerical Modeling of Smoke Characteristics for Superfog Formation
NASA Astrophysics Data System (ADS)
Bartolome, C.; Lu, V.; Tsui, K.; Princevac, M.; Venkatram, A.; Mahalingam, S.; Achtemeier, G.; Weise, D.
2011-12-01
Land management techniques in wildland areas include prescribed fires to promote biodiversity and reduce risk of severe wildfires across the United States. Several fatal car pileups have been associated with smoke-related visibility reduction from prescribed burns. Such events have occurred in year 2000 on the interstate highways I-10 and I-95, 2001 on the I-4, 2006 on the I-95, and 2008 on the I-4 causing numerous fatalities, injuries, and damage to property. In some of the cases visibility reduction caused by smoke and fog combinations traveling over roadways have been reported to be less than 3 meters, defined as superfog. Our research focuses on delineating the conditions that lead to formation of the rare phenomena of superfog and creating a tool to enable land managers to effectively plan prescribed burns and prevent tragic events. It is hypothesized that the water vapor from combustion, live fuels, soil moisture, and ambient air condense onto the cloud condensation nuclei (CCN) particles emitted from low intensity smoldering fires. Physical and numerical modeling has been used to investigate these interactions. A physical model in the laboratory has been developed to characterize the properties of smoke resulting from smoldering pine needle litters at the PSW Forest Service in Riverside, CA. Temporal measurements of temperature, relative humidity, sensible heat flux, radiation heat flux, convective heat flux, particulate matter concentrations and visibilities have been measured for specific cases. The size distribution and number concentrations of the fog droplets formed inside the chamber by mixing cool dry and moist warm air masses to produce near superfog visibilities were measured by a Phase Doppler Particle Analyzer. Thermodynamic modeling of smoke and ambient air was conducted to estimate liquid water contents (LWC) available to condense into droplets and form significant reductions in visibility. The results show that LWC of less than 2 g m-3 can be
Numerical Modeling and Optimization of Warm-water Heat Sinks
NASA Astrophysics Data System (ADS)
Hadad, Yaser; Chiarot, Paul
2015-11-01
For cooling in large data-centers and supercomputers, water is increasingly replacing air as the working fluid in heat sinks. Utilizing water provides unique capabilities; for example: higher heat capacity, Prandtl number, and convection heat transfer coefficient. The use of warm, rather than chilled, water has the potential to provide increased energy efficiency. The geometric and operating parameters of the heat sink govern its performance. Numerical modeling is used to examine the influence of geometry and operating conditions on key metrics such as thermal and flow resistance. This model also facilitates studies on cooling of electronic chip hot spots and failure scenarios. We report on the optimal parameters for a warm-water heat sink to achieve maximum cooling performance.
Numerical modelling of nonlinear full-wave acoustic propagation
Velasco-Segura, Roberto Rendón, Pablo L.
2015-10-28
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.
Finite-element numerical modeling of atmospheric turbulent boundary layer
NASA Technical Reports Server (NTRS)
Lee, H. N.; Kao, S. K.
1979-01-01
A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.
A mathematical model and numerical method for thermoelectric DNA sequencing
NASA Astrophysics Data System (ADS)
Shi, Liwei; Guilbeau, Eric J.; Nestorova, Gergana; Dai, Weizhong
2014-05-01
Single nucleotide polymorphisms (SNPs) are single base pair variations within the genome that are important indicators of genetic predisposition towards specific diseases. This study explores the feasibility of SNP detection using a thermoelectric sequencing method that measures the heat released when DNA polymerase inserts a deoxyribonucleoside triphosphate into a DNA strand. We propose a three-dimensional mathematical model that governs the DNA sequencing device with a reaction zone that contains DNA template/primer complex immobilized to the surface of the lower channel wall. The model is then solved numerically. Concentrations of reactants and the temperature distribution are obtained. Results indicate that when the nucleoside is complementary to the next base in the DNA template, polymerization occurs lengthening the complementary polymer and releasing thermal energy with a measurable temperature change, implying that the thermoelectric conceptual device for sequencing DNA may be feasible for identifying specific genes in individuals.
Numerical modelling of nonlinear full-wave acoustic propagation
NASA Astrophysics Data System (ADS)
Velasco-Segura, Roberto; Rendón, Pablo L.
2015-10-01
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe's linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.
Progress report on LBL's numerical modeling studies on Cerro Prieto
Halfman-Dooley, S.E.; Lippman, M.J.; Bodvarsson, G.S.
1989-04-01
An exploitation model of the Cerro Prieto geothermal system is needed to assess the energy capacity of the field, estimate its productive lifetime and develop an optimal reservoir management plan. The model must consider the natural state (i.e., pre-exploitation) conditions of the system and be able to predict changes in the reservoir thermodynamic conditions (and fluid chemistry) in response to fluid production (and injection). This paper discusses the results of a three-dimensional numerical simulation of the natural state conditions of the Cerro Prieto field and compares computed and observed pressure and temperature/enthalpy changes for the 1973--1987 production period. 16 refs., 24 figs., 2 tabs.
Numerical modeling of a vortex stabilized arcjet thruster
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Pawlas, Gary E.
1989-01-01
A numerical method to solve the equations governing a vortex stabilized arcjet thruster is being developed. The model will allow the effects of swirling flow and geometry on arcjet thruster performance to be determined. The propellant flow equations, i.e., the axisymmetric, thin layer, Navier-Stokes equations, are solved using a Gauss-Siedel line-relaxation procedure. An implicit FTCS method is used to solve the electromagnetic field equations. A grid generation scheme was developed for an arbitrary arcjet geometry. The model will allow the radial and axial components of velocity and current distributions to be determined from a region upstream of the cathode, through the constrictor, to the exit plane of the nozzle.
Three-Dimensional Numerical Modeling of Magnetohydrodynamic Augmented Propulsion Experiment
NASA Technical Reports Server (NTRS)
Turner, M. W.; Hawk, C. W.; Litchford, R. J.
2009-01-01
Over the past several years, NASA Marshall Space Flight Center has engaged in the design and development of an experimental research facility to investigate the use of diagonalized crossed-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In support of this effort, a three-dimensional numerical MHD model has been developed for the purpose of analyzing and optimizing accelerator performance and to aid in understanding critical underlying physical processes and nonideal effects. This Technical Memorandum fully summarizes model development efforts and presents the results of pretest performance optimization analyses. These results indicate that the MHD accelerator should utilize a 45deg diagonalization angle with the applied current evenly distributed over the first five inlet electrode pairs. When powered at 100 A, this configuration is expected to yield a 50% global efficiency with an 80% increase in axial velocity and a 50% increase in centerline total pressure.
Testing Numerical Modeling of Phase Coarsening by Microgravity Experiments
NASA Astrophysics Data System (ADS)
Wang, K. G.; Glicksman, M. E.
2017-08-01
Quantitative understanding of the morphological evolution that occurs during phase coarsening is crucial for optimization of processing procedures to control the final structure and properties of multiphase materials. Generally, ground-based experimental studies of phase coarsening in solids are limited to model alloy systems. Data from microgravity experiments on phase coarsening in Sn-Pb solid-liquid mixtures, executed on the International Space Station, are archived in NASA's Physical Sciences Informatics (PSI) system. In such microgravity experiments, it is expected that the rate of sedimentation will be greatly reduced compared with terrestrial conditions, allowing the kinetics of phase coarsening to be followed more carefully and accurately. In this work we tested existing numerical models of phase coarsening using NASA's PSI microgravity data. Specially, we compared the microstructures derived from phase-field and multiparticle diffusion simulations with those observed in microgravity experiments.
Using Numerical Modeling to Simulate Space Capsule Ground Landings
NASA Technical Reports Server (NTRS)
Heymsfield, Ernie; Fasanella, Edwin L.
2009-01-01
Experimental work is being conducted at the National Aeronautics and Space Administration s (NASA) Langley Research Center (LaRC) to investigate ground landing capabilities of the Orion crew exploration vehicle (CEV). The Orion capsule is NASA s replacement for the Space Shuttle. The Orion capsule will service the International Space Station and be used for future space missions to the Moon and to Mars. To evaluate the feasibility of Orion ground landings, a series of capsule impact tests are being performed at the NASA Langley Landing and Impact Research Facility (LandIR). The experimental results derived at LandIR provide means to validate and calibrate nonlinear dynamic finite element models, which are also being developed during this study. Because of the high cost and time involvement intrinsic to full-scale testing, numerical simulations are favored over experimental work. Subsequent to a numerical model validated by actual test responses, impact simulations will be conducted to study multiple impact scenarios not practical to test. Twenty-one swing tests using the LandIR gantry were conducted during the June 07 through October 07 time period to evaluate the Orion s impact response. Results for two capsule initial pitch angles, 0deg and -15deg , along with their computer simulations using LS-DYNA are presented in this article. A soil-vehicle friction coefficient of 0.45 was determined by comparing the test stopping distance with computer simulations. In addition, soil modeling accuracy is presented by comparing vertical penetrometer impact tests with computer simulations for the soil model used during the swing tests.
Numerical modeling of frontal and basal accretion at collisional margins
NASA Astrophysics Data System (ADS)
Selzer, Cornelia; Buiter, Susanne J. H.; Pfiffner, O. Adrian
2008-06-01
We investigate the deformation of orogenic wedges that form in the early stages of continent-continent collisions using a two-dimensional numerical model limited to the upper lithosphere. Our models show that deformation at the plate margins is influenced by rheology, surface processes, and the balance between inward mass flux and outward subduction flux, as controlled by the subduction load (which represents the effects of slab pull and resistive forces) and flexural downbending. We find three characteristic deformation modes: (1) near-pure subduction with little or no accretion; (2) frontal accretion with development of an accretionary wedge built up by offscraping of the sediment layer at shallow depth; and (3) independent frontal and basal accretion where a retrothrust allows stacking of basement nappes at crustal to mantle depths. Near-pure subduction is enabled for "ordinary-rheology" materials, characterized by brittle and viscous material behavior (approximating a "Christmas tree-type" depth profile), and almost zero friction along the subduction shear zone. Frontal accretion occurs when slightly increased friction along the subduction shear zone allows offscraping of the sediment layer from the subducting plate. Independent frontal and basal accretion develops in strong-rheology models with an almost fully brittle material behavior. Major surface erosion or a reduction of the subduction load promote the development of large basement nappes. Frontal accretion is favored by major sedimentation during convergence, a large backstop, and in the case of a lateral transition from a "strong-rheology" to an "ordinary-rheology" subducting plate. Our numerical models develop first-order characteristics as observed in natural orogenic wedges, for example upper crustal nappe stacks, frontal and basal accretion, or extension in the core of an orogen. Frontal and basal accretion are interdependent, and tend to stabilize the subduction system.
NASA Astrophysics Data System (ADS)
Miura, Hideaki; Zheng, Linjin; Horton, Wendell
2017-09-01
Numerical simulations of interchange/tearing instabilities in a 2D slab with a numerical model for edge plasma resistivity are carried out. Plasma outside the Last Closed Flux Surface (LCFS), or the scrape-off layer (SOL), can be characterized by open magnetic fields which terminate on the divertor plates in the outside. A numerical model with current diffusivity is developed to enforce a low-level saturated current profile in the SOL region as well as a current jump across the LCFS. The numerical simulations show that interchange modes can transform into tearing modes, as the current-interchange tearing modes which has been proposed by Zheng and Furukawa [Phys. Plasmas 17, 052508 (2010)]. An applicability of the model to the tokamak edge stability and ELM studies is discussed.
Numerical modeling of multiphase flow in rough and propped fractures
NASA Astrophysics Data System (ADS)
Dabrowski, Marcin; Dzikowski, Michał; Jasinski, Lukasz; Olkiewicz, Piotr
2017-04-01
crystalline rocks. The detailed pattern of flow paths and effective fracture conductivity are largely dependent on the level of confining stresses and fracture wall roughness, which both determine the shape and distribution of fracture apertures and contact areas. The distribution of proppant grains, which are used to maintain apertures of hydraulic fractures, is a key factor governing fracture flow in industrial applications. The flow of multiphase fluids in narrow apertures of rock fractures may substantially differ from the flow of a single-phase fluid. For example, multiphase flow effects play an important role during all stages of unconventional reservoir life cycle. Multiphase flow conditions are also expected to prevail in high temperature geothermal fields and during the transport of non aqueous phase liquid contaminants in groundwaters. We use direct numerical simulations to study single- and multiphase flow in rough and propped fractures. We compute the fluid flow using either the finite element or the lattice Boltzmann method. Body-fitting, unstructured computational meshes are used to improve the numerical accuracy. The fluid-fluid and fluid-solid interfaces are directly resolved and an implicit approach to surface tension is used to alleviate restrictions due to capillary CFL condition. In FEM simulations, the Beltrami-Laplace operator is integrated by parts to avoid interface curvature computation during evaluation of the surface tension term. We derive and validate an upscaled approach to Stokes flow in propped and rough fractures. Our upscaled 2.5D fracture flow model features a Brinkman term and is capable of treating no-slip boundary conditions on the rims of proppant grains and fracture wall contact areas. The Stokes-Brinkman fracture flow model provides an improvement over the Reynolds model, both in terms of the effective fracture permeability and the local flow pattern. We present numerical and analytical models for the propped fracture
Numerical Modeling of Shatter Cones Development in Impact Craters
NASA Technical Reports Server (NTRS)
Baratoux, D.; Melosh, H. J.
2003-01-01
Shatter cones are the characteristic forms of rock fractures in impact structures. They have been used for decades as unequivocal fingerprints of meteoritic impacts on Earth. The abundant data about shapes, apical angles, sizes and distributions of shatter cones for many terrestrial impact structures should provide insights for the determination of impact conditions and characteristics of shock waves produced by high-velocity projectiles in geologic media. However, previously proposed models for the formation of shatter cones do not agree with observations. For example, the widely accepted Johnson-Talbot mechanism requires that the longitudinal stress drops to zero between the arrival of the elastic precursor and the main plastic wave. Unfortunately, observations do not support such a drop. A model has been also proposed to explain the striated features on the surface of shatter cones but can not invoked for their conical shape. The mechanism by which shatter cones form thus remains enigmatic to date. In this paper we present a new model for the formation of shatter cones. Our model has been tested by means of numerical simulations using the hydrocodes SALE 2D enhanced with the Grady-Kipp-Melosh fragmentation model.
A numeric model to simulate solar individual ultraviolet exposure.
Vernez, David; Milon, Antoine; Francioli, Laurent; Bulliard, Jean-Luc; Vuilleumier, Laurent; Moccozet, Laurent
2011-01-01
Exposure to solar ultraviolet (UV) light is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors. Individual exposure data remain scarce and development of alternative assessment methods is greatly needed. We developed a model simulating human exposure to solar UV. The model predicts the dose and distribution of UV exposure received on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a rendering engine that estimates the solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by each triangle was calculated, taking into account reflected, direct and diffuse radiation, and shading from other body parts. Dosimetric measurements (n = 54) were conducted in field conditions using a foam manikin as surrogate for an exposed individual. Dosimetric results were compared to the model predictions. The model predicted exposure to solar UV adequately. The symmetric mean absolute percentage error was 13%. Half of the predictions were within 17% range of the measurements. This model provides a tool to assess outdoor occupational and recreational UV exposures, without necessitating time-consuming individual dosimetry, with numerous potential uses in skin cancer prevention and research. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.
Simulation of orthodontic tooth movements. A comparison of numerical models.
Bourauel, C; Freudenreich, D; Vollmer, D; Kobe, D; Drescher, D; Jäger, A
1999-01-01
Orthodontic tooth movements are based on the ability of bone to react to mechanical stresses with the apposition and resorption of alveolar bone. Currently, the underlying biophysical, biochemical, and cellular processes are the subject of numerous studies. At present, however, an analytical description of orthodontic tooth movements including all components of the processes involved seems to be impossible. It was the aim of the present study to develop a mechanics-based phenomenological model capable of describing the alveolar bone remodeling. Thus, 2 different models were developed. The first is based on the assumption that deformations of the periodontal ligament (PDL) are the key stimulus to starting orthodontic tooth movement. The second supposes that deformations of the alveolar bone are the basis of orthodontic bone remodeling. Both models were integrated into a finite element package calculating stresses, strains and deformations of tooth and tooth supporting structures and from this simulating the movement of the tooth and its alveolus through the bone. Clinically induced canine retractions in 5 patients as well as force systems were exactly measured and the tooth movements were simulated using both models. The results show that the first model allows reliable simulation of orthodontic tooth movements, whereas the second is to be rejected.
A numerical model for dynamic wave rotor analysis
NASA Technical Reports Server (NTRS)
Paxson, D. E.
1995-01-01
A numerical model has been developed which can predict the dynamic (and steady state) performance of a wave rotor, given the geometry and time dependent boundary conditions. The one-dimensional, perfect gas, CFD based code tracks the gasdynamics in each of the wave rotor passages as they rotate past the various ducts. The model can operate both on and off-design, allowing dynamic behavior to be studied throughout the operating range of the wave rotor. The model accounts for several major loss mechanisms including finite passage opening time, fluid friction, heat transfer to and from the passage walls, and leakage to and from the passage ends. In addition, it can calculate the amount of work transferred to and from the fluid when the flow in the ducts is not aligned with the passages such as occurs in off-design operation. Since it is one-dimensional, the model runs reasonably fast on a typical workstation. This paper will describe the model and present the results of some transient calculations for a conceptual four port wave rotor designed as a topping cycle for a small gas turbine engine.
Numerical Modeling of Shatter Cones Development in Impact Craters
NASA Technical Reports Server (NTRS)
Baratoux, D.; Melosh, H. J.
2003-01-01
Shatter cones are the characteristic forms of rock fractures in impact structures. They have been used for decades as unequivocal fingerprints of meteoritic impacts on Earth. The abundant data about shapes, apical angles, sizes and distributions of shatter cones for many terrestrial impact structures should provide insights for the determination of impact conditions and characteristics of shock waves produced by high-velocity projectiles in geologic media. However, previously proposed models for the formation of shatter cones do not agree with observations. For example, the widely accepted Johnson-Talbot mechanism requires that the longitudinal stress drops to zero between the arrival of the elastic precursor and the main plastic wave. Unfortunately, observations do not support such a drop. A model has been also proposed to explain the striated features on the surface of shatter cones but can not invoked for their conical shape. The mechanism by which shatter cones form thus remains enigmatic to date. In this paper we present a new model for the formation of shatter cones. Our model has been tested by means of numerical simulations using the hydrocodes SALE 2D enhanced with the Grady-Kipp-Melosh fragmentation model.
Numerical modelling of blue mussel (Mytilus edulis) bacterial contamination
NASA Astrophysics Data System (ADS)
Dabrowski, Tomasz; Doré, William J.; Lyons, Kieran; Nolan, Glenn D.
2014-05-01
Bivalve shellfish such as oysters and mussels can concentrate human pathogens when grown in areas impacted by municipal wastewater. Under EU regulation this risk to consumers is controlled by determining the sanitary quality of bivalve shellfish production areas based on the concentration of Escherichia coli present in shellfish flesh. The authors present a modelling approach to simulate an uptake of E. coli from seawater and subsequent depuration by Mytilus edulis. The model that dynamically predicts E. coli concentration in the mussel tissue is embedded within a 3-D numerical modelling system comprising hydrodynamic, biogeochemical, shellfish ecophysiological and the newly proposed microbial modules. The microbial module has two state variables, namely, the concentrations of E. coli in water and in the mussel tissue. Novel formulations to calculate the filtration rates by mussels and the resulting uptake of bacteria are proposed; these rates are updated at every computational time step. Concentrations of E. coli in seawater are also updated accordingly taking into account the amounts ingested by mussels. The model has been applied to Bantry Bay in the south-west of Ireland. The results indicate that the model is capable of reproducing the official classification of shellfish waters in the bay based on monthly sampling at several stations. The predicted filtration rates and ratios of E. coli in water and mussels also compare well with the literature. The model thus forms a tool that may be used to assist in the classification of shellfish waters at much greater spatial and temporal detail than that offered by a field monitoring programme. Moreover, it can also aid in designing an efficient monitoring programme. The model can also be utilised to determine the contribution of individual point sources of pollution on the microbial loading in mussels and, when incorporated into an operational framework, it can provide a short-term forecasting of microbial
Numerical modeling of an estuary: A comprehensive skill assessment
Warner, J.C.; Geyer, W.R.; Lerczak, J.A.
2005-01-01
Numerical simulations of the Hudson River estuary using a terrain-following, three-dimensional model (Regional Ocean Modeling System (ROMS)) are compared with an extensive set of time series and spatially resolved measurements over a 43 day period with large variations in tidal forcing and river discharge. The model is particularly effective at reproducing the observed temporal variations in both the salinity and current structure, including tidal, spring neap, and river discharge-induced variability. Large observed variations in stratification between neap and spring tides are captured qualitatively and quantitatively by the model. The observed structure and variations of the longitudinal salinity gradient are also well reproduced. The most notable discrepancy between the model and the data is in the vertical salinity structure. While the surface-to-bottom salinity difference is well reproduced, the stratification in the model tends to extend all the way to the water surface, whereas the observations indicate a distinct pycnocline and a surface mixed layer. Because the southern boundary coindition is located near the mouth the estuary, the salinity within the domain is particularly sensitive to the specification of salinity at the boundary. A boundary condition for the horizontal salinity gradient, based on the local value of salinity, is developed to incorporate physical processes beyond the open boundary not resolved by the model. Model results are sensitive to the specification of the bottom roughness length and vertical stability functions, insofar as they influence the intensity of vertical mixing. The results only varied slightly between different turbulence closure methods of k-??, k-??, and k-kl. Copyright 2005 by the American Geophysical Union.
3-D numerical modeling of plume-induced subduction initiation
NASA Astrophysics Data System (ADS)
Baes, Marzieh; Gerya, taras; Sobolev, Stephan
2016-04-01
Investigation of mechanisms involved in formation of a new subduction zone can help us to better understand plate tectonics. Despite numerous previous studies, it is still unclear how and where an old oceanic plate starts to subduct beneath the other plate. One of the proposed scenarios for nucleation of subduction is plume-induced subduction initiation, which was investigated in detail, using 2-D models, by Ueda et al. (2008). Recently. Gerya et al. (2015), using 3D numerical models, proposed that plume-lithosphere interaction in the Archean led to the subduction initiation and onset of plate tectonic. In this study, we aim to pursue work of Ueda et al. (2008) by incorporation of 3-D thermo-mechanical models to investigate conditions leading to oceanic subduction initiation as a result of thermal-chemical mantle plume-lithosphere interaction in the modern earth. Results of our experiments show four different deformation regimes in response to plume-lithosphere interaction, that are a) self-sustaining subduction initiation where subduction becomes self-sustained, b) freezing subduction initiation where subduction stops at shallow depths, c) slab break-off where subducting circular slab breaks off soon after formation and d) plume underplating where plume does not pass through the lithosphere but spreads beneath it (failed subduction initiation). These different regimes depend on several parameters such as plume's size, composition and temperature, lithospheric brittle/plastic strength, age of the oceanic lithosphere and presence/absence of lithospheric heterogeneities. Results show that subduction initiates and becomes self-sustained when lithosphere is older than 10 Myr and non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than 2.
Numerical Modeling for Yield Pillar Design: A Case Study
NASA Astrophysics Data System (ADS)
Li, Wenfeng; Bai, Jianbiao; Peng, Syd; Wang, Xiangyu; Xu, Ying
2015-01-01
Two single-entry gateroad systems employing a yield pillar for bump control in a Chinese coal mine were introduced. The overburden depth of the longwall panels was approximately 390 m. When the width/height (W/H) ratio of the yield pillar was 2.67, coal bumps in the tailgate occurred in front of the longwall retreating face. However, in another panel, the coal bump was eliminated because the W/H ratio was reduced to 1.67. Under this condition, instrumentation results indicated that the roof-to-floor and rib-to-rib convergences reached 1,050 and 790 mm, respectively, during longwall retreat. The numerical model was used to back-analyze the two cases of yield pillar application in the hope to find the principle for yield pillar design. In order to improve the reliability of the numerical model, the strain-hardening gob and strain-softening pillar materials were meticulously calibrated, and the coal/rock interface strength was determined by laboratory direct shear tests. The results of the validated model indicate that if the W/H ratio of the yield pillar equals 1.67, the peak vertical stress in the panel rib (37.7 MPa) is much larger than that in the yield pillar (21.1 MPa); however, the peak vertical stress in the panel rib (30.87 MPa) is smaller than that in the yield pillar (36 MPa) when the W/H ratio of yield pillar is 2.67. These findings may be helpful to the design of yield pillars for bump control.
Rivers on Titan - numerical modelling of sedimentary structures
NASA Astrophysics Data System (ADS)
Misiura, Katarzyna; Czechowski, Leszek
2016-07-01
On Titan surface we can expect a few different geomorphological forms, e.g. fluvial valley and river channels. In our research we use numerical model of the river to determine the limits of different fluvial parameters that play important roles in evolution of the rivers on Titan and on Earth. We have found that transport of sediments as suspended load is the main way of transport for Titan [1]. We also determined the range of the river's parameters for which braided river is developed rather than meandering river. Similar, parallel simulations for rivers deltas are presented in [2]. Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This work is aimed to investigate the similarity and differences between these processes on Titan and the Earth. Numerical model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. For more information about equations see [1]. Parameters of the model We considered our model for a few different parameters of liquid and material transported by a river. For Titan we consider liquid corresponding to a Titan's rain (75% methane, 25% nitrogen), for Earth, of course, the water. Material transported in rivers on Titan is water ice, for Earth - quartz. Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. Results and Conclusions The results of our simulation show the differences in behaviour of the
A numerical strategy for modelling rotating stall in core compressors
NASA Astrophysics Data System (ADS)
Vahdati, M.
2007-03-01
The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The determination of the blade response during rotating stall is a difficult problem for which there is no reliable procedure. During rotating stall, the blades encounter the stall cells and the excitation depends on the number, size, exact shape and rotational speed of these cells. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Accurate numerical simulations of core-compressor rotating stall phenomena require the modelling of a large number of bladerows using grids containing several tens of millions of points. The time-accurate unsteady-flow computations may need to be run for several engine revolutions for rotating stall to get initiated and many more before it is fully developed. The difficulty in rotating stall initiation arises from a lack of representation of the triggering disturbances which are inherently present in aeroengines. Since the numerical model represents a symmetric assembly, the only random mechanism for rotating stall initiation is provided by numerical round-off errors. In this work, rotating stall is initiated by introducing a small amount of geometric mistuning to the rotor blades. Another major obstacle in modelling flows near stall is the specification of appropriate upstream and downstream boundary conditions. Obtaining reliable boundary conditions for such flows can be very difficult. In the present study, the low-pressure compression (LPC) domain is placed upstream of the core compressor. With such an approach, only far field atmospheric boundary conditions are specified which are obtained from aircraft speed and altitude. A chocked variable-area nozzle, placed after the last compressor bladerow in the model, is used to impose boundary
Comparison of Laboratory Experimental Data to XBeach Numerical Model Output
NASA Astrophysics Data System (ADS)
Demirci, Ebru; Baykal, Cuneyt; Guler, Isikhan; Sogut, Erdinc
2016-04-01
Coastal zones are living and constantly changing environments where both the natural events and the human-interaction results come into picture regarding to the shoreline behavior. Both the nature of the coastal zone and the human activities shape together the resultants of the interaction with oceans and coasts. Natural extreme events may result in the need of human interference, such as building coastal structures in order to prevent from disasters or any man-made structure throughout a coastline may affect the hydrodynamics and morphology in the nearshore. In order to understand and cope with this cycle of cause and effect relationship, the numerical models developed. XBeach is an open-source, 2DH, depth average numerical model including the hydrodynamic processes of short wave transformation (refraction, shoaling and breaking), long wave (infragravity wave) transformation (generation, propagation and dissipation), wave-induced setup and unsteady currents, as well as overwash and inundation and morphodynamic processes of bed load and suspended sediment transport, dune face avalanching, bed update and breaching (Roelvink et al., 2010). Together with XBeach numerical model, it is possible to both verify and visualize the resultant external effects to the initial shorelines in coastal zones. Recently, Baykal et al. (2015) modelled the long term morphology changes with XBeach near Kızılırmak river mouth consisting of one I-shaped and one Y-shaped groins. In order to investigate the nature of the shoreline and near shore hydrodynamic conditions and morphology, the five laboratory experiments are conducted in the Largescale Sediment Transport Facility at the U.S. Army Engineer Research and Development Center in order to be used to improve longshore sand transport relationships under the combined influence of waves and currents and the enhancement of predictive numerical models of beach morphology evolution. The first series of the experiments were aimed at
Assessing seawater intrusion overshoot using physical and numerical modelling
NASA Astrophysics Data System (ADS)
Morgan, L.; Stoeckl, L.; Werner, A. D.; Post, V.
2013-12-01
Abstract In recent years, a number of numerical modelling studies of sea-level rise (SLR) and seawater intrusion (SWI) (i.e., Watson et al., 2010; Chang et al., 2011) have reported an overshoot phenomenon, whereby the freshwater-saltwater interface temporarily extends further inland than the eventual steady-state position. In this study, physical sand box modelling of SLR-SWI in a flux-controlled unconfined aquifer setting was carried out to test if SWI overshoot is a measurable physical process. An overshoot was observed in the SLR physical experiment and images of the overshoot are presented. A SLD experiment was also carried out and the overshoot was again observed. These are the first documented cases of overshoot in a laboratory setting, and the first time overshoot for a retreating interface has been reported. The transient wedge toe position obtained from the physical experiments was compared to numerical modelling results, and a reasonable match was obtained, with an overshoot simulated numerically for both the SLR and SLD cases. This provides confidence in the results of the physical experiments. The magnitude of the overshoot for SLR and SLD in the physical experiments was 24% of the change in steady-state interface position, albeit the laboratory setting is designed to maximise overshoot extent by adopting high groundwater flow gradients and large and rapid sea-level changes. While the likelihood of overshoot at the field scale appears to be low, this work has demonstrated that SWI overshoot is physically plausible, and can be produced in controlled laboratory experiments. References Chang, S. W., T. P. Clement, M. J. Simpson, and K. -K. Lee (2011), Does sea-level rise have an impact on saltwater intrusion?, Adv. Water Res., 34(10), 1283-1291, doi:10.1016/j.advwatres.2011.06.006. Watson, T. A., A. D. Werner, and C. T. Simmons (2010), Transience of seawater intrusion in response to sea-level rise, Water Resour. Res., 46, W12533, doi:10.1029/2010WR009564.
CDIAC catalog of numeric data packages and computer model packages
Boden, T.A.; O`Hara, F.M. Jr.; Stoss, F.W.
1993-05-01
The Carbon Dioxide Information Analysis Center acquires, quality-assures, and distributes to the scientific community numeric data packages (NDPs) and computer model packages (CMPs) dealing with topics related to atmospheric trace-gas concentrations and global climate change. These packages include data on historic and present atmospheric CO{sub 2} and CH{sub 4} concentrations, historic and present oceanic CO{sub 2} concentrations, historic weather and climate around the world, sea-level rise, storm occurrences, volcanic dust in the atmosphere, sources of atmospheric CO{sub 2}, plants` response to elevated CO{sub 2} levels, sunspot occurrences, and many other indicators of, contributors to, or components of climate change. This catalog describes the packages presently offered by CDIAC, reviews the processes used by CDIAC to assure the quality of the data contained in these packages, notes the media on which each package is available, describes the documentation that accompanies each package, and provides ordering information. Numeric data are available in the printed NDPs and CMPs, in CD-ROM format, and from an anonymous FTP area via Internet. All CDIAC information products are available at no cost.
Numerical modeling of infrasound propagation at very long distance
NASA Astrophysics Data System (ADS)
Piserchia, Pierre-Franck; Roche, Roger
2004-05-01
Compliance with the CTBT in the atmosphere will be monitored by a world-wide network of infrasound stations consisting of 60 stations equipped with microbarographs in order to measure small changes in the air pressure in the frequency range 0.02 to 4 Hz. They are characterized by a good sensitivity, and by a large dynamic. By the application of array techniques, it is possible to determine the direction of pressure pulses caused by small explosions in the atmosphere, as well as shock waves caused by supersonic aircraft or meteorites. To take into account the nonlinear phenomena at the source and during the propagation, we are developing a numerical approach to solve the Euler nonlinear equation. In a first step, in the linear domain, this method is compared with two other numerical modeling approaches based on the ray tracing technique and the parabolic approach. In our test case, the source is on the ground and generates a 1-Pa pressure pulse centered at the frequency of 0.1 Hz. We considered an infrasound propagation over a distance of 500 km and an atmosphere height of 200 km. In a further step, the source level will be increased to study nonlinear phenomena.
Numerical modelling of microfracturing during primary migration in shales
NASA Astrophysics Data System (ADS)
Renard, Francois; Goulart-Teixeira, Marcello; Donze, Frederic; Panahi, Hamed; Papachristos, Efthymios; Scholtes, Luc
2017-04-01
In several geological environments, chemical reactions are coupled to rock deformation and the associated stresses induced locally interact with the far field loading. This is the case in immature shales that undergo burial and diagenesis, where the organic matter evolves with temperature into hydrocarbons which induces local volume expansion. At large scale, this mechanism is responsible for the transport of hydrocarbons from source to reservoir rocks, a process referred to as primary migration.However, how the interactions between local fluid production, microfracturing, and transport are coupled remain to be understood. Here, we analyze this coupling phenomenon by developing a discrete element model where the generation of local overpressures occurring in kerogen patches is simulated, while the surrounding rock is subjected to external loading. It is shown that, due to local fluid overpressure; microfracturing occurs and brings the fluids to migrate through the medium. The numerical results are confirmed by laboratory experiments where the network of microfractures induced in an immature Green River shale sample heated under small differential stress was imaged in three dimensions using X-ray microtomography. Moreover, the numerical simulations identify that the state of differential stress and the initial kerogen distribution constitute two key parameters that control the formation of the three-dimensional percolating microfracture network and could thus explain primary migration in shale rocks.
Dynamics in classical Josephson junction arrays: models and numerical simulations
NASA Astrophysics Data System (ADS)
Ciria, José C.; Giovannella, C.
1998-05-01
These lecture notes are divided in three main sections. In the first one we give a detailed derivation of the equation of motion of an array of resistively and capacitively shunted Josephson Junctions (JJA). The derivation starts from a Lagrangian written for the gauge invariant phase, φij, and its conjugate variable, φij, and it is done in the full inductance-matrix approximation. The ohmic dissipation due to the shunting resistances is taken in account through the introduction in the Euler-Lagrangian equation of a convenient Rayleigh's function. The JJA formalism, then, is extended to the much more complex case of a granular superconductor. In order to make clear the relationship between the JJA formalism and those developed in the framework of other discrete models, like the discrete sine-Gordon and the Frenkel-Kontorova ones, a paragraph is devoted to their comparative analysis. The relationship between phase and `particle' dynamics is also briefly discussed. In the second section we provide the `beginners' with some basic ideas on how to perform numerical simulations based on the JJA formalism. Finally, in the third section we give a flavour of the physical problems that one can solve by `running' numerical codes like the ones we have developed. The dynamical properties of single massless and massive vortices and those of a JJA subjected to an external ac driving force are briefly discussed.
Numerical modeling of colloid facilitated virus transport in porus media
NASA Astrophysics Data System (ADS)
Katzourakis, Vasileios E.; Chrysikopoulos, Constantinos V.
2013-04-01
A conceptual mathematical model was developed to describethe simultaneous transport (cotransport) of viruses and colloids in three-dimensional, water saturated, homogeneous porous media with uniform flow. The model accounts for the migration of individual virus and colloid particles as well as viruses attached onto colloids. Viruses can be suspended in the aqueous phase, attached onto suspended colloids and the solid matrix, and attached onto colloids previously attached on the solid matrix. Colloids can be suspended in the aqueous phase or attached on the solid matrix. Viruses in all four phases (suspended in the aqueous phase, attached onto suspended colloid particles, attached onto the solid matrix, and attached onto colloids previously attached on the solid matrix) may undergo inactivation with different inactivation coefficients. The governing coupled partial differential equations were solved numerically by employing finite difference methods, which were implemented explicitly or implicitly so that both stability and accuracy factors were satisfied. Furthermore, available experimental data were used to test the newly developed cotransport model. The model was shown to simulate quite accurately the available experimental data.
Numerical Modeling of Flow through Phloem Considering Active Loading
NASA Astrophysics Data System (ADS)
Liu, Jin; Sze, Tsun-Kay Jackie; Dutta, Prashanta
2013-11-01
Transport through phloem is of significant interest in engineering applications including self-powered microfluidic pumps. We present a phloem model, combining protein level mechanics with cellular level fluid transport. Fluid flow and sucrose transport through a petiole sieve tube are simulated using the Nernst-Planck, Navier-Stokes, and continuity equations. Governing equations are solved using the finite volume method with dynamically calculated boundary conditions. Sieve tube cell structure consisting of sieve plates is included in a two dimensional model by computational cell blocking. Sucrose transport is incorporated as a boundary condition through a six-state model, bringing in active loading mechanisms with consideration of physical plant properties. The effects of reaction rates and leaf sucrose concentration are investigated to understand the transport mechanism in petiole sieve tubes. Numerical results show that increasing forward reactions of the proton sucrose transporter significantly promotes the pumping ability. A lower leaf sieve sucrose concentration results in a lower wall inflow velocity, but yields a higher inflow of water due to the active loading mechanism. The overall effect is higher outflow velocity for lower leaf sieve sucrose concentration because the increase in inflow velocity outweighs wall velocity. This new phloem model provides new insights on mechanisms potentially useful for fluidic pumping in self-powered microfluidic pumps. This work is supported in part by the National Science Fundation grant CBET-1250107.
A Numerical Model for the Microcirculation in Skeletal Muscle Fascia
NASA Astrophysics Data System (ADS)
Jacobitz, Frank G.; Schmid-Schönbein, Geert W.
2002-11-01
A numerical model for blood flow in a microvascular network has been developed. The model uses the complete network topology of rat spinotrapezius muscle fascia that was reconstructed from microscopic images. The fascia's network is composed of a feeding arterial network, a collecting venous network, and bundles of capillaries. The flow in the network's vessels is characterized by low Reynolds and Womersley numbers. The model consideres that the microvessels are distensible by pressure and that the arterioles are actively contractile. The blood has non-Newtonian apparent viscosity and blood cells are distributed at bifurcations according to the flow rates into the side branches. These properties have previously been determined experimentally. The method of indefinite admittances is used to compute the flow in the network. The apparent viscosity is computed from local values of hematocrit, shear, and vessel diameter. The model provides detailed information about the flow in all of the network's vessels. Statistical properties of the network, such as the overall flowrate through the network or distributions of pressure, shear stress, and hematocrit in the network are determined. Results for the flow in arterial, venous, and capillary vessels are compared.
Numerical Modeling of the Evolving Stable Boundary Layer
NASA Astrophysics Data System (ADS)
Sorbjan, Z.
2013-12-01
A single-column model of the evolving stable boundary layer is tested for the consistency of turbulence parameterization, self-similar properties of the flow, and effects of ambient forcing. The turbulence closure of the model is based on the K-theory approach, with stability functions based on empirical data, and a semi-empirical form of the mixing length. The model has one internal, governing stability parameter, the Richardson number Ri, which dynamically adjusts to the boundary conditions and to external forcing. Model results, expressed in terms of local similarity scales, are universal functions of the Richardson number, i.e. they are satisfied in the entire stable boundary layer, for all instants of time, and all kinds of external forcing. Based on similarity expression, a realizability condition is derived for the minimum turbulent heat flux in the stable boundary layer. Numerical experiments show that the development of 'horse-shoe' shaped, 'fixed-elevation' wind hodographs in the interior of the stable boundary layer are solely caused by effects imposed by surface thermal forcing, and are not related to the inertial oscillation mechanism.
Numerical studies of the Zaitsev (Robin Hood ) model
NASA Astrophysics Data System (ADS)
Fox, Perry; Cwilich, Gabriel; Buldyrev, Sergey; Zypman, Fredy
2008-03-01
The Zaitsev[1] model of depinning of interfaces has been widely used to discuss motion of dislocations, low temperature flux creep, and more recently dry friction. The properties of this model have been discussed theoretically in one dimension, and numerically verified with precision in the isotropic case. We are studying here the effect of anisotropy in the distribution of the ``mass'' among the neighbors in the updating of the sites, which is known to modify the critical exponents of the model in one dimension. We have considered the validity of the scaling laws in higher dimensions, which might be relevant for the case of friction [2], by computing several of the exponents of the model for the avalanche size distribution, average avalanche size, avalanche fractal dimension and distribution of jumps between extremal sites of activity. The much richer space of parameters of anisotropy in two dimensions has been explored. [1] S.I. Zaitsev , Physica A189, 411 (1992). [2] S. Buldyrev, J. Ferrante and F. Zypman Phys. Rev E64, 066110, (2006)
Numerical modelling of propagation of landslides using SPH
NASA Astrophysics Data System (ADS)
Montull, Carlos; Pastor, Manuel; Springman, Sarah
2015-04-01
Landslides cause severe economic damage and a large number of casualties every year around the world. Engineers and geologists need to understand and predict their properties, such as velocity, depth and run out distance. In addition to experience gained on similar cases, predictions require the application of mathematical, constitutive/rheological and numerical models. Different models are currently used to simulate long run-out landslides in order to elaborate hazard maps. Among the available alternatives, depth integrated models present a reasonable compromise between computational cost and accuracy. The purpose of this paper is to apply the SPH depth integrated model, together with suitable rheological laws, to analize fast landslides. We will present the results obtained with the code Geoflow_SPH to three selected cases: (i) The Frank avalanche, (ii) the Cougar Hill flowslide and (iii) the Sham Tseng debris flow. The results of the simulations include estimations of fundamental aspects of the problem, such as the path followed by the sliding mass, the shape of the run-out area, the maximum run-out, the depth of the final deposit, the pore pressure evolution and the speed evolution of the landslide.
Numerical modelling of air-water flows in sewer drops.
Beceiro, Paula; Almeida, Maria do Céu; Matos, Jorge
2017-07-01
The presence of dissolved oxygen (DO) in water flows is an important factor to ensure the aerobic conditions recognised as beneficial to preventing the occurrence of detrimental effects. The incorporation of DO in wastewater flowing in sewer systems is a process widely investigated in order to quantify the effect of continuous reaeration through the air-liquid interface or air entrained due to the presence of singularities such as drops or junctions. The location of sewer drops to enhance air entrainment and subsequently reaeration is an effective practice to promote aerobic conditions in sewers. In the present paper, vertical drops, backdrops and stepped drops were modelled using the computational fluid dynamics (CFD) code FLOW-3D(®) to evaluate the air-water flows due to the turbulence induced by the presence of these types of structures. An assessment of the hydraulic variables and an analysis of the air entrainment based on the available experimental studies were carried out. The results of the CFD models for these structures were validated using measurements of discharge, pressure head and water depth obtained in the corresponding physical models. A very good fit was obtained for the hydraulic behaviour. After validation of numerical models, analysis of the air entrainment was carried out.
A network landscape model: stability analysis and numerical tests
NASA Astrophysics Data System (ADS)
Bonacini, E.; Groppi, M.; Monaco, R.; Soares, A. J.; Soresina, C.
2017-07-01
A Network Landscape Model (NLM) for the evaluation of the ecological trend of an environmental system is here presented and investigated. The model consists in a network of dynamical systems, where each node represents a single Landscape Unit (LU), endowed by a system of ODEs for two variables relevant to the production of bio-energy and to the percentage of green areas, respectively. The main goal of the paper consists in testing the relevance of connectivity between the LUs. For this purpose we consider first the Single LU Model (SLM) and investigate its equilibria and their stability, in terms of two bifurcation parameters. Then the network dynamics is theoretically investigated by means of a bifurcation analysis of a proper simplified differential system, that allows to understand how the coupling between different LUs modifies the asymptotic scenarios for the single LU model. Numerical simulations of NLM are performed, with reference to an environmental system in Northern Italy, and results are discussed in connection with SLM.
Numerical modeling of rapidly varying flows using HEC-RAS and WSPG models.
Rao, Prasada; Hromadka, Theodore V
2016-01-01
The performance of two popular hydraulic models (HEC-RAS and WSPG) for modeling hydraulic jump in an open channel is investigated. The numerical solutions are compared with a new experimental data set obtained for varying channel bottom slopes and flow rates. Both the models satisfactorily predict the flow depths and location of the jump. The end results indicate that the numerical models output is sensitive to the value of chosen roughness coefficient. For this application, WSPG model is easier to implement with few input variables.
Numerical modeling of the SNS H- ion source
NASA Astrophysics Data System (ADS)
Veitzer, Seth A.; Beckwith, Kristian R. C.; Kundrapu, Madhusudhan; Stoltz, Peter H.
2015-04-01
Ion source rf antennas that produce H- ions can fail when plasma heating causes ablation of the insulating coating due to small structural defects such as cracks. Reducing antenna failures that reduce the operating capabilities of the Spallation Neutron Source (SNS) accelerator is one of the top priorities of the SNS H- Source Program at ORNL. Numerical modeling of ion sources can provide techniques for optimizing design in order to reduce antenna failures. There are a number of difficulties in developing accurate models of rf inductive plasmas. First, a large range of spatial and temporal scales must be resolved in order to accurately capture the physics of plasma motion, including the Debye length, rf frequencies on the order of tens of MHz, simulation time scales of many hundreds of rf periods, large device sizes on tens of cm, and ion motions that are thousands of times slower than electrons. This results in large simulation domains with many computational cells for solving plasma and electromagnetic equations, short time steps, and long-duration simulations. In order to reduce the computational requirements, one can develop implicit models for both fields and particle motions (e.g. divergence-preserving ADI methods), various electrostatic models, or magnetohydrodynamic models. We have performed simulations using all three of these methods and have found that fluid models have the greatest potential for giving accurate solutions while still being fast enough to perform long timescale simulations in a reasonable amount of time. We have implemented a number of fluid models with electromagnetics using the simulation tool USim and applied them to modeling the SNS H- ion source. We found that a reduced, single-fluid MHD model with an imposed magnetic field due to the rf antenna current and the confining multi-cusp field generated increased bulk plasma velocities of > 200 m/s in the region of the antenna where ablation is often observed in the SNS source. We report
MODELING COLLISIONAL CASCADES IN DEBRIS DISKS: THE NUMERICAL METHOD
Gaspar, Andras; Psaltis, Dimitrios; Oezel, Feryal; Rieke, George H.; Cooney, Alan E-mail: dpsaltis@as.arizona.edu E-mail: grieke@as.arizona.edu
2012-04-10
We develop a new numerical algorithm to model collisional cascades in debris disks. Because of the large dynamical range in particle masses, we solve the integro-differential equations describing erosive and catastrophic collisions in a particle-in-a-box approach, while treating the orbital dynamics of the particles in an approximate fashion. We employ a new scheme for describing erosive (cratering) collisions that yields a continuous set of outcomes as a function of colliding masses. We demonstrate the stability and convergence characteristics of our algorithm and compare it with other treatments. We show that incorporating the effects of erosive collisions results in a decay of the particle distribution that is significantly faster than with purely catastrophic collisions.
Numerical modeling of radionuclide migration through a borehole disposal site.
Yeboah, Serwaa; Akiti, Thomas T; Fletcher, John J
2014-01-01
The migration of radionuclides from a borehole repository located about 20 km from the Akwapim fault line which lies in an area of high seismicity was analyzed for some selected radionuclides. In the event of a seismic activity, fractures and faults could be rejuvenated or initiated resulting in container failure leading to the release of radionuclides. A numerical model was solved using a two-dimensional finite element code (Comsol Multiphysics) by taking into account the effect of heterogeneities. Results showed that, the fractured medium created preferential pathways indicating that, fault zones generated potential paths for released radionuclides from a radioactive waste repository. The results obtained showed that variations in hydraulic conductivity as a result of the heterogeneity considered within the domain significantly affected the direction of flow.
Modeling extracellular electrical stimulation: II. Computational validation and numerical results.
Tahayori, Bahman; Meffin, Hamish; Dokos, Socrates; Burkitt, Anthony N; Grayden, David B
2012-12-01
The validity of approximate equations describing the membrane potential under extracellular electrical stimulation (Meffin et al 2012 J. Neural Eng. 9 065005) is investigated through finite element analysis in this paper. To this end, the finite element method is used to simulate a cylindrical neurite under extracellular stimulation. Laplace's equations with appropriate boundary conditions are solved numerically in three dimensions and the results are compared to the approximate analytic solutions. Simulation results are in agreement with the approximate analytic expressions for longitudinal and transverse modes of stimulation. The range of validity of the equations describing the membrane potential for different values of stimulation and neurite parameters are presented as well. The results indicate that the analytic approach can be used to model extracellular electrical stimulation for realistic physiological parameters with a high level of accuracy.
Numerical Modeling of Impact Initiation of High Explosives
Wu, C J; Piggott, T; Yoh, J; Reaugh, J
2006-05-31
We performed continuum mechanics simulations to examine the behavior of energetic materials in Ballistic Chamber Impact (BIC) experiments, using an Arbitrary Lagrangian-Eulerian code (ALE3D). Our simulations revealed that interface friction plays an important role in inducing the formation of shear bands, which result in 'hot spots' for ignition. The temperature localization during BIC impact was found to be significant in materials with high yield strength. In those materials, there are multiple locations inside shear bands can achieve temperatures exceeding the threshold temperature for reaction. In addition, we investigated the relevant parameters influencing the pressure profile of a BIC test by numerical analysis from a simple phenomenological model. To our surprise, we found that the peaks of BIC pressure profiles not only can be a result of multi-center chemical reactions, but can also arise from factors associated apparatus configuration.
Numerical Investigation of a Model Scramjet Combustor Using DDES
NASA Astrophysics Data System (ADS)
Shin, Junsu; Sung, Hong-Gye
2017-04-01
Non-reactive flows moving through a model scramjet were investigated using a delayed detached eddy simulation (DDES), which is a hybrid scheme combining Reynolds averaged Navier-Stokes scheme and a large eddy simulation. The three dimensional Navier-Stokes equations were solved numerically on a structural grid using finite volume methods. An in-house was developed. This code used a monotonic upstream-centered scheme for conservation laws (MUSCL) with an advection upstream splitting method by pressure weight function (AUSMPW+) for space. In addition, a 4th order Runge-Kutta scheme was used with preconditioning for time integration. The geometries and boundary conditions of a scramjet combustor operated by DLR, a German aerospace center, were considered. The profiles of the lower wall pressure and axial velocity obtained from a time-averaged solution were compared with experimental results. Also, the mixing efficiency and total pressure recovery factor were provided in order to inspect the performance of the combustor.
Numerical modelling of dynamic sludge blanket behaviour in secondary clarifiers.
Armbruster, M; Krebs, P; Rodi, W
2001-01-01
New developments in numerical modelling of turbulent and density-affected flow in secondary clarifiers are reported. The sludge blanket is included in the computation domain which allows us to account for sedimentation and resuspension of sludge as well as the growth and diminution of the sludge blanket and at the same time respecting mass conservation. It is shown how strongly the prediction of the sludge-blanket height depends on the approaches to describe the settling behaviour of the sludge and the rheological properties within the sludge blanket. Further, an example of dynamic simulation is presented and discussed. This demonstrates how the sludge blanket behaves during load variation and that instabilities may occur at the interface of sludge blanket and supernatant, potentially resulting in sludge wash-off during transient phases, which is not only during load increase but also during load decrease.
Numerical modeling of perovskite solar cells with a planar structure
NASA Astrophysics Data System (ADS)
Malyukov, S. P.; Sayenko, A. V.; Ivanova, A. V.
2016-10-01
The paper is devoted to the research and development of high-efficiency solar cells with a planar perovskite n-i-p structure. A numerical model of this solar cell in the drift- diffusion approximation based on Poisson equation and continuity equations provided to determine their photoelectric characteristics and design optimization. The author considers the spectral photogeneration, bulk and surface recombination, transport charge carriers in perovskite and their collection by the electron and hole transport layers. As a result of the simulation, it was obtained efficiency dependence on perovskite absorber material thickness and lifetime (diffusion length) of the charge carriers. It is found that in addition to absorption coefficient optimal perovskite thickness is determined largely by the charge carrier diffusion length, and it has the upper limit in thickness of 500-600 nm.
Numerical modeling of a finned PCM heat sink
NASA Astrophysics Data System (ADS)
Kozak, Y.; Ziskind, G.
2012-09-01
Phase-change materials (PCMs) can absorb large amounts of heat without significant rise of their temperature during the melting process. This effect is attractive for using in thermal energy storage and passive thermal management. One of the techniques enhance the rate of heat transfer into PCMs is by using fins made of a thermally high conductive material. This paper deals with numerical modeling of a finned PCM-based heat sink. Heat is dissipated on the heat sink base and may be either absorbed by the PCM stored in compartments with conducting walls, or dissipated to the air using fins, or both. A detailed analysis had been done by means of a complete solution of the governing multi-dimensional conservation equations, taking into account convection in the melt, density and volume change due to phase change and temperature variation, motion of solid in the liquid, and other associated phenomena.
Numerical model study of radio frequency vessel sealing thermodynamics
NASA Astrophysics Data System (ADS)
Pearce, John
2015-03-01
Several clinically successful clinical radio frequency vessel-sealing devices are currently available. The dominant thermodynamic principles at work involve tissue water vaporization processes. It is necessary to thermally denature vessel collagen, elastin and their adherent proteins to achieve a successful fusion. Collagens denature at middle temperatures, between about 60 and 90 C depending on heating time and rate. Elastin, and its adherent proteins, are more thermally robust, and require temperatures in excess of the boiling point of water at atmospheric pressure to thermally fuse. Rapid boiling at low apposition pressures leads to steam vacuole formation, brittle tissue remnants and frequently to substantial disruption in the vessel wall, particularly in high elastin-content arteries. High apposition pressures substantially increase the equilibrium boiling point of tissue water and are necessary to ensure a high probability of a successful seal. The FDM numerical models illustrate the beneficial effects of high apposition pressures.
Numerical studies of a model fermion-boson system
NASA Astrophysics Data System (ADS)
Cheng, T.; Gospodarczyk, E. R.; Su, Q.; Grobe, R.
2010-02-01
We study the spectral and dynamical properties of a simplified model system of interacting fermions and bosons. The spatial discretization and an effective truncation of the Hilbert space permit us to compute the distribution of the bare fermions and bosons in the energy eigenstates of the coupled system. These states represent the physical particles and are used to examine the validity of the analytical predictions by perturbation theory and by the Greenberg-Schweber approximation that assumes all fermions are at rest. As an example of our numerical framework, we examine how a bare electron can trigger the creation of a cloud of virtual bosons around. We relate this cloud to the properties of the associated energy eigenstates.
Numerical model of long-lived Jovian vortices
NASA Technical Reports Server (NTRS)
Ingersoll, A. P.; Cuong, P. G.
1981-01-01
The extension of the measured zonal velocity profile into the adiabatic interior of Jupiter, while eddies and large oval structures are confined to a shallow stably-stratified upper layer, are assumed in a nonlinear numerical model of long-lived Jovian vortices. In agreement of the observed flows of Jupiter, each vortex is stationary with respect to the shear flow at a critical latitude that is close to the latitude of the vortex center. The solutions obtained are strongly nonlinear, in contrast to the solitary wave solutions that are the weakly nonlinear extensions of ultralong linear waves. The merging of two stable vortices upon collision, rather than the non-interaction predicted by solitary wave theory, is in keeping with Jovian vortex observations. It is suggested that long-lived vortices maintain themselves against dissipation by absorbing smaller vortices produced by convection.
Numerical simulations for a variable order fractional Schnakenberg model
NASA Astrophysics Data System (ADS)
Hammouch, Z.; Mekkaoui, T.; Belgacem, F. B. M.
2014-12-01
This paper is concerned with the numerical solutions of a variable-order space-time fractional reaction-diffusion model. The space-time fractional derivative is considered in the sense of Riesz-Feller, the system is defined by replacing the second order space derivatives with the variable Riesz-Feller derivatives. The problem is solved by an explicit finite difference method. Finally, simulation results to this problem are presented and discussed. In the original article PDF file, as supplied to AIP Publishing, the name and affiliation of author F. B. M. Belgacem was missing due to a Latex compiling error. This article was updated on 29 January 2015 to correct that error.
Three dimensional numerical modeling of land subsidence in Shanghai
NASA Astrophysics Data System (ADS)
Ye, S.; Luo, Y.; Wu, J.; Teatini, P.; Wang, H.; Jiao, X.
2015-11-01
Shanghai city has been suffering land subsidence caused by overly exploitation of ground water since 1921, which is a serious problem for this coastal city with altitude of 2.2-4.8 m above mean sea level. The largest cumulative land subsidence amounted to 2.6 m in the downtown area. Measures to decrease the ground water exploitation, change the pumping aquifers, and increase aquifer artificial recharge have been used to mitigate land subsidence since 1961. It is necessary to develop a proper numerical model to simulate and predict land subsidence. In this study, a decoupled three-dimensional (3-D) finite element land subsidence model including a 3-D ground water flow model and a 3-D geo-mechanical model was developed to simulate the 3-D deformation of the aquifer systems in the center area of Shanghai. The area of downtown Shanghai is 660 km2, with 10 million inhabitants, dense high buildings, and 11 metro lines. The simulation spans the period from 1979 to 1995. Two different assumptions have been tested on the side boundary, i.e., precluding the three components of the displacement, or assuming a free-displacement condition. The distribution of calculated land subsidence and horizontal displacements in different aquifers was analyzed. The computed vertical displacement fitted well with the available observations. It has been verified that the two different assumptions on the lateral boundaries in the geo-mechanical model caused different results just limited on nodes close to boundary. The developed 3-D land subsidence model is reasonable and can be used to simulate and predict 3-D movement of aquifer systems in the center area of Shanghai, which could provide scientific support to local government in controlling land subsidence and differential movements of the land surface.
Numerical modeling, calibration, and validation of an ultrasonic separator.
Cappon, Hans; Keesman, Karel J
2013-03-01
Our overall goal is to apply acoustic separation technology for the recovery of valuable particulate matter from wastewater in industry. Such large-scale separator systems require detailed design and evaluation to optimize the system performance at the earliest stage possible. Numerical models can facilitate and accelerate the design of this application; therefore, a finite element (FE) model of an ultrasonic particle separator is a prerequisite. In our application, the particle separator consists of a glass resonator chamber with a piezoelectric transducer attached to the glass by means of epoxy adhesive. Separation occurs most efficiently when the system is operated at its main eigenfrequency. The goal of the paper is to calibrate and validate a model of a demonstrator ultrasonic separator, preserving known physical parameters and estimating the remaining unknown or less-certain parameters to allow extrapolation of the model beyond the measured system. A two-step approach was applied to obtain a validated model of the separator. The first step involved the calibration of the piezoelectric transducer. The second step, the subject of this paper, involves the calibration and validation of the entire separator using nonlinear optimization techniques. The results show that the approach lead to a fully calibrated 2-D model of the empty separator, which was validated with experiments on a filled separator chamber. The large sensitivity of the separator to small variations indicated that such a system should either be made and operated within tight specifications to obtain the required performance or the operation of the system should be adaptable to cope with a slightly off-spec system, requiring a feedback controller.
Injury representation against ballistic threats using three novel numerical models.
Breeze, Johno; Fryer, R; Pope, D; Clasper, J
2017-06-01
Injury modelling of ballistic threats is a valuable tool for informing policy on personal protective equipment and other injury mitigation methods. Currently, the Ministry of Defence (MoD) and Centre for Protection of National Infrastructure (CPNI) are focusing on the development of three interlinking numerical models, each of a different fidelity, to answer specific questions on current threats. High-fidelity models simulate the physical events most realistically, and will be used in the future to test the medical effectiveness of personal armour systems. They are however generally computationally intensive, slow running and much of the experimental data to base their algorithms on do not yet exist. Medium fidelity models, such as the personnel vulnerability simulation (PVS), generally use algorithms based on physical or engineering estimations of interaction. This enables a reasonable representation of reality and greatly speeds up runtime allowing full assessments of the entire body area to be undertaken. Low-fidelity models such as the human injury predictor (HIP) tool generally use simplistic algorithms to make injury predictions. Individual scenarios can be run very quickly and hence enable statistical casualty assessments of large groups, where significant uncertainty concerning the threat and affected population exist. HIP is used to simulate the blast and penetrative fragmentation effects of a terrorist detonation of an improvised explosive device within crowds of people in metropolitan environments. This paper describes the collaboration between MoD and CPNI using an example of all three fidelities of injury model and to highlight future areas of research that are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Constraining Slab Breakoff Induced Magmatism through Numerical Modelling
NASA Astrophysics Data System (ADS)
Freeburn, R.; Van Hunen, J.; Maunder, B. L.; Magni, V.; Bouilhol, P.
2015-12-01
Post-collisional magmatism is markedly different in nature and composition than pre-collisional magmas. This is widely interpreted to mark a change in the thermal structure of the system due to the loss of the oceanic slab (slab breakoff), allowing a different source to melt. Early modelling studies suggest that when breakoff takes place at depths shallower than the overriding lithosphere, magmatism occurs through both the decompression of upwelling asthenopshere into the slab window and the thermal perturbation of the overriding lithosphere (Davies & von Blanckenburg, 1995; van de Zedde & Wortel, 2001). Interpretations of geochemical data which invoke slab breakoff as a means of generating magmatism mostly assume these shallow depths. However more recent modelling results suggest that slab breakoff is likely to occur deeper (e.g. Andrews & Billen, 2009; Duretz et al., 2011; van Hunen & Allen, 2011). Here we test the extent to which slab breakoff is a viable mechanism for generating melting in post-collisional settings. Using 2-D numerical models we conduct a parametric study, producing models displaying a range of dynamics with breakoff depths ranging from 150 - 300 km. Key models are further analysed to assess the extent of melting. We consider the mantle wedge above the slab to be hydrated, and compute the melt fraction by using a simple parameterised solidus. Our models show that breakoff at shallow depths can generate a short-lived (< 3 Myr) pulse of mantle melting, through the hydration of hotter, undepleted asthenosphere flowing in from behind the detached slab. However, our results do not display the widespread, prolonged style of magmatism, observed in many post-collisional areas, suggesting that this magmatism may be generated via alternative mechanisms. This further implies that using magmatic observations to constrain slab breakoff is not straightforward.
Numerical Modelling of Extreme Natural Hazards in the Russian Seas
NASA Astrophysics Data System (ADS)
Arkhipkin, Victor; Dobrolyubov, Sergey; Korablina, Anastasia; Myslenkov, Stanislav; Surkova, Galina
2017-04-01
Storm surges and extreme waves are severe natural sea hazards. Due to the almost complete lack of natural observations of these phenomena in the Russian seas (Caspian, Black, Azov, Baltic, White, Barents, Okhotsk, Kara), especially about their formation, development and destruction, they have been studied using numerical simulation. To calculate the parameters of wind waves for the seas listed above, except the Barents Sea, the spectral model SWAN was applied. For the Barents and Kara seas we used WAVEWATCH III model. Formation and development of storm surges were studied using ADCIRC model. The input data for models - bottom topography, wind, atmospheric pressure and ice cover. In modeling of surges in the White and Barents seas tidal level fluctuations were used. They have been calculated from 16 harmonic constant obtained from global atlas tides FES2004. Wind, atmospheric pressure and ice cover was taken from the NCEP/NCAR reanalysis for the period from 1948 to 2010, and NCEP/CFSR reanalysis for the period from 1979 to 2015. In modeling we used both regular and unstructured grid. The wave climate of the Caspian, Black, Azov, Baltic and White seas was obtained. Also the extreme wave height possible once in 100 years has been calculated. The statistics of storm surges for the White, Barents and Azov Seas were evaluated. The contribution of wind and atmospheric pressure in the formation of surges was estimated. The technique of climatic forecast frequency of storm synoptic situations was developed and applied for every sea. The research was carried out with financial support of the RFBR (grant 16-08-00829).
Numerical modeling of Atlantic hurricanes moving into the middle latitudes
NASA Astrophysics Data System (ADS)
Fogarty, Christopher T.
Hurricanes that form over the Atlantic Ocean very frequently migrate into the middle latitudes where they encounter very different oceanic and atmospheric conditions than in the tropics. Cool sea surface temperatures (SSTs) cause these storms to weaken and become thermodynamically decoupled from the ocean, while baroclinic atmospheric environments often cause them to transform into extratropical storms---a process known as extratropical transition (ET). The changing structure of these storms in the middle latitudes presents many unique forecasting challenges related to the increasing asymmetry in moisture and wind fields, and their potentially destructive nature. An examination of three such events over Eastern Canada---using a combination of observations and a numerical model---forms the foundation of this work, with an emphasis on applying the research to weather forecasting. The case studies include Hurricane Michael (2000), Hurricane Karen (2001) and Hurricane Juan (2003). Hurricane Michael intensified in a strongly-baroclinc environment and evolved into an intense extratropical storm over Newfoundland. Karen also underwent ET, but weakened quickly during its approach to Nova Scotia, while Hurricane Juan struck the province as a category-two hurricane, experiencing only marginal weakening over anomalously warm SSTs. In essence, these cases represent a cross section of the behavior of many tropical cyclones in this part of the world. Hindcast simulations are conducted for each event using the Canadian Mesoscale Compressible Community (MC2) model with a synthetic, observationally-consistent hurricane vortex used in the model's initial conditions. Sensitivity experiments are run for each case by modifying initial specifications of the vortex, model physics parameterizations, and surface boundary conditions like SST. In the case of Hurricane Juan, it is determined that the anomalously-warm SSTs played a significant role in the landfall intensity, while Hurricane
On the time to steady state: insights from numerical modeling
NASA Astrophysics Data System (ADS)
Goren, L.; Willett, S.; McCoy, S. W.; Perron, J.
2013-12-01
How fast do fluvial landscapes approach steady state after an application of tectonic or climatic perturbation? While theory and some numerical models predict that the celerity of the advective wave (knickpoint) controls the response time for perturbations, experiments and other landscape evolution models demonstrate that the time to steady state is much longer than the theoretically predicted response time. We posit that the longevity of transient features and the time to steady state are controlled by the stability of the topology and geometry of channel networks. Evolution of a channel network occurs by a combination of discrete capture events and continuous migration of water divides, processes, which are difficult to represent accurately in landscape evolution models. We therefore address the question of the time to steady state using the DAC landscape evolution model that solves accurately for the location of water divides, using a combination of analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC also includes an explicit capture criterion. We have tested fundamental predictions from DAC and show that modeled networks reproduce natural network characteristics such as the Hack's exponent and coefficient and the fractal dimension. We define two steady-state criteria: a topographic steady state, defined by global, pointwise steady elevation, and a topological steady state defined as the state in which no further reorganization of the drainage network takes place. Analyzing block uplift simulations, we find that the time to achieve either topographic or topological steady state exceeds by an order of magnitude the theoretical response time of the fluvial network. The longevity of the transient state is the result of the area feedback, by which, migration of a divide changes the local contributing area. This change propagates downstream as a slope adjustment, forcing further divide migrations
A General Framework for Multiphysics Modeling Based on Numerical Averaging
NASA Astrophysics Data System (ADS)
Lunati, I.; Tomin, P.
2014-12-01
In the last years, multiphysics (hybrid) modeling has attracted increasing attention as a tool to bridge the gap between pore-scale processes and a continuum description at the meter-scale (laboratory scale). This approach is particularly appealing for complex nonlinear processes, such as multiphase flow, reactive transport, density-driven instabilities, and geomechanical coupling. We present a general framework that can be applied to all these classes of problems. The method is based on ideas from the Multiscale Finite-Volume method (MsFV), which has been originally developed for Darcy-scale application. Recently, we have reformulated MsFV starting with a local-global splitting, which allows us to retain the original degree of coupling for the local problems and to use spatiotemporal adaptive strategies. The new framework is based on the simple idea that different characteristic temporal scales are inherited from different spatial scales, and the global and the local problems are solved with different temporal resolutions. The global (coarse-scale) problem is constructed based on a numerical volume-averaging paradigm and a continuum (Darcy-scale) description is obtained by introducing additional simplifications (e.g., by assuming that pressure is the only independent variable at the coarse scale, we recover an extended Darcy's law). We demonstrate that it is possible to adaptively and dynamically couple the Darcy-scale and the pore-scale descriptions of multiphase flow in a single conceptual and computational framework. Pore-scale problems are solved only in the active front region where fluid distribution changes with time. In the rest of the domain, only a coarse description is employed. This framework can be applied to other important problems such as reactive transport and crack propagation. As it is based on a numerical upscaling paradigm, our method can be used to explore the limits of validity of macroscopic models and to illuminate the meaning of
The Rheasilvia Crater on Rotating Vesta: Numerical Modeling
NASA Astrophysics Data System (ADS)
Ivanov, B.; Kamyshenkov, D.
2012-12-01
The Dawn mission to the asteroid Vesta delivers valuable new data about this differentiated planetary body (see Russel ea., Jaumann ea., Schenk ea., Science, 11 May 2012). The youngest of giant impact craters on Vesta, Rheasilvia, is an important "window" into Vesta structure and history. Numerical SPH modeling of the Rheasilvia impact formation (Jutzi and Asphaug, 2010-12, Jutzi ea., 2012) revealed the main details of the event. We use alternatively 2D SALE-based code to study some details better resolved in the Eulerian hydrocodes (Ivanov ea., 2011-12). We continue the modeling and now the target rotation (centripetal accelerations) is added to the code (in 2D we can model only vertical impact at the pole). The problem of the initial rotating target shape is solving numerically: the liquid 3-layer sphere ("basalt" crust, "dunite" mantle, iron core) is gradually spin up and starts to oscillate around an equilibrium elliptic shape. At the moment of maximum average velocity all velocities are zeroed and the target approaches to its equilibrium more slowly. A few iterations allow us to reach the state where the model run, restarted with strength switched on, demonstrates only near boundaries material damage. After ~3000 s of this "dry" run the model restarts again with zeroed damage and velocities and the impacting projectile. For the 5 hours rotation period, 40 km crust and 100 km core the (a-c)/a flattening is about 0.165 v.s 0.196 for 285x229 km ellipsoid used for mapping (Jaumann ea., 2012). The core flattening is about 0.15. After the impact the crater is formed and flattening increases to ~0.168 for crust and mantle and to 0.156 for the core (crust and mantle ellipses are fitted for the uncratered hemisphere). Hence, the Rheasilvia-scale impact may slightly change the effective asteroid shape. Older large impacts visible on Vesta (Schenk ea., 2012) should be modeled in future to trace the shape evolution. The Rheasilvia-scale impact results in the mantle uplift
Numerical modeling of magnetic moments for UXO applications
Sanchez, V.; Li, Y.; Nabighian, M.; Wright, D.
2006-01-01
The surface magnetic anomaly observed in UXO clearance is mainly dipolar and, consequently, the dipole is the only magnetic moment regularly recovered in UXO applications. The dipole moment contains information about intensity of magnetization but lacks information about shape. In contrast, higher-order moments, such as quadrupole and octupole, encode asymmetry properties of the magnetization distribution within the buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and its potential utility in UXO clearance, we present a 3D numerical modeling study for highly susceptible metallic objects. The basis for the modeling is the solution of a nonlinear integral equation describing magnetization within isolated objects. A solution for magnetization distribution then allows us to compute magnetic moments of the object, analyze their relationships, and provide a depiction of the surface anomaly produced by different moments within the object. Our modeling results show significant high-order moments for more asymmetric objects situated at depths typical of UXO burial, and suggest that the increased relative contribution to magnetic gradient data from these higher-order moments may provide a practical tool for improved UXO discrimination.
In Marriage of Model and Numerics, Glimpses of the Future
NASA Astrophysics Data System (ADS)
Nejadmalayeri, Alireza; Vasilyev, Oleg V.; Vezolainen, Alexei
2012-11-01
A newly defined concept of m-refinement (model-refinement), which provides two-way coupling of physical models and numerical methods, is employed to study the Reynolds scaling of SCALES with constant levels of fidelity. Within the context of wavelet-based methods, this new hybrid methodology provides a hierarchical space/time dynamically adaptive automatic smooth transition from resolving the Kolmogorov length-scale (WDNS) to decomposing deterministic-coherent/stochastic-incoherent modes (CVS) to capturing more/less energetic structures (SCALES). This variable fidelity turbulence modeling approach utilizes a unified single solver framework by means of a Lagrangian spatially varying thresholding technique. The fundamental findings of this computational complexity study are summarized as follows: 1) SCALES can achieve the objective of ``controlling the captured flow-physics as desired'' by profoundly small number of spatial modes; 2) Reynolds scaling of constant-dissipation SCALES is the same regardless of fidelity of the simulations; 3) the number of energy containing structures at a fixed level of resolved turbulent kinetic energy scales linearly with Re; and 4) the fractal dimension of coherent energy containing structures is close to unity. This work was supported by NSF under grant No. CBET-0756046.
Numerical modeling of high-temperature corrosion processes
Nesbitt, J.A.
1995-08-01
Numerical modeling of the diffusional transport associated with high-temperature corrosion processes is reviewed. These corrosion processes include external scale formation and internal subscale formation during oxidation, coating degradation by oxidation and substrate interdiffusion, carburization, sulfidation and nitridation. The studies that are reviewed cover such complexities as concentration-dependent diffusivities, cross-term effects in ternary alloys, and internal precipitation where several compounds of the same element may form (e.g., carbides of Cr) or several compounds exist simultaneously (e.g., carbides containing amounts of Ni, Cr, Fe or Mo). In addition, the studies involve a variety of boundary conditions that vary with time and temperature. Finite-difference (F-D) techniques have been applied almost exclusively to model either the solute or corrodant transport in each of these studies. Hence, the paper first reviews the use of F-D techniques to develop solutions to the diffusion equations with various boundary conditions appropriate to high-temperature corrosion processes. The bulk of the paper then reviews various F-D modeling studies of diffusional transport associated with high-temperature corrosion.
Numerical Modeling of High-Temperature Corrosion Processes
NASA Technical Reports Server (NTRS)
Nesbitt, James A.
1995-01-01
Numerical modeling of the diffusional transport associated with high-temperature corrosion processes is reviewed. These corrosion processes include external scale formation and internal subscale formation during oxidation, coating degradation by oxidation and substrate interdiffusion, carburization, sulfidation and nitridation. The studies that are reviewed cover such complexities as concentration-dependent diffusivities, cross-term effects in ternary alloys, and internal precipitation where several compounds of the same element form (e.g., carbides of Cr) or several compounds exist simultaneously (e.g., carbides containing varying amounts of Ni, Cr, Fe or Mo). In addition, the studies involve a variety of boundary conditions that vary with time and temperature. Finite-difference (F-D) techniques have been applied almost exclusively to model either the solute or corrodant transport in each of these studies. Hence, the paper first reviews the use of F-D techniques to develop solutions to the diffusion equations with various boundary conditions appropriate to high-temperature corrosion processes. The bulk of the paper then reviews various F-D modeling studies of diffusional transport associated with high-temperature corrosion.
A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores
NASA Astrophysics Data System (ADS)
Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; di, Yuan
2017-01-01
Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs.
A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores
Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; Di, Yuan
2017-01-01
Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs. PMID:28091599
A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores.
Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; Di, Yuan
2017-01-16
Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs.
Numerical Modelling and Analysis of Flow through Aquatic Canopies
NASA Astrophysics Data System (ADS)
Etminan Farooji, V.; Lowe, R.; Ghisalberti, M.
2016-02-01
The ability of coastal vegetation such as seagrasses and mangrove forests to dissipate wave energy is well documented in both field and laboratory studies. Quantifying this transformation of wave properties is critical for predicting coastal hydrodynamics accurately, and modelling these transformations is required to quantify the role that coastal vegetation plays in reducing storm damage and coastal erosion. This has led to the development of a number of wave-vegetation hydrodynamic formulations, which account for the influence of plant structure on wave attenuation through the vegetation drag coefficient. There is very limited knowledge of the drag coefficient of aquatic vegetation and it is typically treated only as a calibration parameter; that is, adjusted to minimize the difference between predicted and observed wave heights. In this study, computational fluid dynamics methods are used to obtain a better understanding of flow and energy dissipation inside aquatic canopies. The results show an increase in the force exerted on canopy elements as the canopy density increases. The results of the numerical simulations have been used to analyse various small scale flow characteristics affecting the drag force and investigate the mechanisms that govern the flow behaviour. The results of this study can be employed to improve the accuracy of wave dissipation modelling within coastal models.
Numerical modelling methods for predicting antenna performance on aircraft
NASA Astrophysics Data System (ADS)
Kubina, S. J.
1983-09-01
Typical case studies that involve the application of Moment Methods to the prediction of the radiation characteristics of antennas in the HF frequency band are examined. The examples consist of the analysis of a shorted transmission line HF antenna on a CHSS-2/Sea King helicopter, wire antennas on the CP-140/Aurora patrol aircraft and a long dipole antenna on the Space Shuttle Orbiter spacecraft. In each of these cases the guidelines for antenna modeling by the use of the program called the Numerical Electromagnetic Code are progressively applied and results are compared to measurements made by the use of scale-model techniques. In complex examples of this type comparisons based on individual radiation patterns are insufficient for the validation of computer models. A volumetric method of radiation pattern comparison is used based on criteria that result from pattern integration and that are related to communication system performance. This is supplemented by hidden-surface displays of an entire set of conical radiation patterns resulting from measurements and computations. Antenna coupling considerations are discussed for the case of the dual HF installation on the CP-140/Aurora aircraft.
Modeling multiscale evolution of numerous voids in shocked brittle material.
Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng
2014-04-01
The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.
Numerical modeling of higher order magnetic moments in UXO discrimination
Sanchez, V.; Yaoguo, L.; Nabighian, M.N.; Wright, D.L.
2008-01-01
The surface magnetic anomaly observed in unexploded ordnance (UXO) clearance is mainly dipolar, and consequently, the dipole is the only magnetic moment regularly recovered in UXO discrimination. The dipole moment contains information about the intensity of magnetization but lacks information about the shape of the target. In contrast, higher order moments, such as quadrupole and octupole, encode asymmetry properties of the magnetization distribution within the buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and to show its potential utility in UXO clearance, we present a numerical modeling study of UXO and related metallic objects. The tool for the modeling is a nonlinear integral equation describing magnetization within isolated compact objects of high susceptibility. A solution for magnetization distribution then allows us to compute the magnetic multipole moments of the object, analyze their relationships, and provide a depiction of the anomaly produced by different moments within the object. Our modeling results show the presence of significant higher order moments for more asymmetric objects, and the fields of these higher order moments are well above the noise level of magnetic gradient data. The contribution from higher order moments may provide a practical tool for improved UXO discrimination. ?? 2008 IEEE.
Numerical Simulations of Separated Flows Using Wall-Modeled LES
NASA Astrophysics Data System (ADS)
Vane, Zachary; Ortega, Jason; Salari, Kambiz
2014-11-01
Calculations using an unstructured, wall-modeled large eddy simulation (WMLES) solver are performed for several high Reynolds number test cases of interest. While the equilibrium formulation of this wall-model (Bodart, Larsson & Moin, AIAA 2013-2724) has proven to be accurate for steady, attached boundary layers, its application to non-equilibrium or highly three-dimensional problems has yet to be fully explored. A series of turbulent flows that exhibit boundary layer separation due to the geometries involved in each test case are considered. First, spanwise-periodic simulations for the flow over periodic hills are performed at multiple Reynolds numbers. Next, calculations involving separation caused by three-dimensional bodies are used to generate more complex flow fields and to evaluate the accuracy of the WMLES in the separated wake region downstream. The performance of the WMLES is quantified through comparisons with existing numerical and experimental data sets. The effects of grid resolution and variations in several wall-model parameters are also investigated to determine their influence on the overall calculation.
Numerical study of similarity in prototype and model pumped turbines
NASA Astrophysics Data System (ADS)
Li, Z. J.; Wang, Z. W.; Bi, H. L.
2014-03-01
Similarity study of prototype and model pumped turbines are performed by numerical simulation and the partial discharge case is analysed in detail. It is found out that in the RSI (rotor-stator interaction) region where the flow is convectively accelerated with minor flow separation, a high level of similarity in flow patterns and pressure fluctuation appear with relative pressure fluctuation amplitude of model turbine slightly higher than that of prototype turbine. As for the condition in the runner where the flow is convectively accelerated with severe separation, similarity fades substantially due to different topology of flow separation and vortex formation brought by distinctive Reynolds numbers of the two turbines. In the draft tube where the flow is diffusively decelerated, similarity becomes debilitated owing to different vortex rope formation impacted by Reynolds number. It is noted that the pressure fluctuation amplitude and characteristic frequency of model turbine are larger than those of prototype turbine. The differences in pressure fluctuation characteristics are discussed theoretically through dimensionless Navier-Stokes equation. The above conclusions are all made based on simulation without regard to the penstock response and resonance.
Qian, Yu-mei; Chen, Li-ping; Wu, Ya-dong; Jiao, Ting
2010-06-01
To rapidly reconstruct a three-dimensional numerical model of the human upper airway and investigate the relationship between anatomical structures with airflow distribution by using the computational fluid dynamics. A three-dimensional model of the human upper airway was reconstructed based on computed tomographic images of a healthy volunteer's skull. Numerical simulation of the upper airway airflow was performed by using computational fluid dynamics (CFD) method. A three-dimensional model of the human upper airway including nasal cavity, pharynx and larynx was reconstructed rapidly. A detailed anatomical structure and velocity distribution characteristics of airflow was obtained and a large velocity gradient in nasal valve area, nasopharynx, up and downstream of epiglottis was found. The model has good simulation of upper airway. Numerical simulation results provide the basic trend of airflow of the upper respiratory tract.The numerical model meets the needs of computational fluid dynamics analysis, and provide data control and research foundation for pathologic upper airway airflow numerical simulation.
Two-Dimensional Numerical Modeling of Anthropogenic Beach Berm Erosion
NASA Astrophysics Data System (ADS)
Shakeri Majd, M.; Schubert, J.; Gallien, T.; Sanders, B. F.
2014-12-01
Anthropogenic beach berms (sometimes called artificial berms or artificial dunes) temporarily enhance the ability of beaches to withstand overtopping and thus guard against coastal flooding. However, the combination of a rising tide, storm surge, and/or waves may erode anthropogenic berms in a matter of hours or less and cause flooding [1]. Accurate forecasts of coastal flooding therefore demand the ability to predict where and when berms fail and the volume of water that overtops into defended coastal lowlands. Here, a two-dimensional numerical model of swash zone waves and erosion is examined as a tool for predicting the erosion of anthropogenic beach berms. The 2D model is known as a Debris Flow Model (DFM) because it tightly couples flow and sediment transport within an approximate Riemann solver and is able to resolve shocks in fluid/sediment interface [2]. The DFM also includes a two dimensional avalanching scheme to account for gravity-driven slumping of steep slopes. The performance of the DFM is examined with field-scale anthropogenic berm erosion data collected at Newport Beach, California. Results show that the DFM can be applied in the swash zone to resolve wave-by-wave flow and sediment transport. Results also show that it is possible to calibrate the model for a particular event, and then predict erosion for another event, but predictions are sensitive to model parameters, such as erosion and avalanching. References: [1] Jochen E. Schubert, Timu W. Gallien, Morteza Shakeri Majd, and Brett F. Sanders. Terrestrial laser scanning of anthropogenic beach berm erosion and overtopping. Journal of Coastal Research In-Press, 2014. [2] Morteza Shakeri Majd and Brett F. Sanders. The LHLLC scheme for Two-Layer and Two-Phase transcritical flows over a mobile bed with avalanching, wetting and drying. Advances in Water Resources, 64, 16-31, 2014.
Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines
NASA Technical Reports Server (NTRS)
Morris, Christopher I.
2005-01-01
Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous
Experimental validation of a numerical model for subway induced vibrations
NASA Astrophysics Data System (ADS)
Gupta, S.; Degrande, G.; Lombaert, G.
2009-04-01
This paper presents the experimental validation of a coupled periodic finite element-boundary element model for the prediction of subway induced vibrations. The model fully accounts for the dynamic interaction between the train, the track, the tunnel and the soil. The periodicity or invariance of the tunnel and the soil in the longitudinal direction is exploited using the Floquet transformation, which allows for an efficient formulation in the frequency-wavenumber domain. A general analytical formulation is used to compute the response of three-dimensional invariant or periodic media that are excited by moving loads. The numerical model is validated by means of several experiments that have been performed at a site in Regent's Park on the Bakerloo line of London Underground. Vibration measurements have been performed on the axle boxes of the train, on the rail, the tunnel invert and the tunnel wall, and in the free field, both at the surface and at a depth of 15 m. Prior to these vibration measurements, the dynamic soil characteristics and the track characteristics have been determined. The Bakerloo line tunnel of London Underground has been modelled using the coupled periodic finite element-boundary element approach and free field vibrations due to the passage of a train at different speeds have been predicted and compared to the measurements. The correspondence between the predicted and measured response in the tunnel is reasonably good, although some differences are observed in the free field. The discrepancies are explained on the basis of various uncertainties involved in the problem. The variation in the response with train speed is similar for the measurements as well as the predictions. This study demonstrates the applicability of the coupled periodic finite element-boundary element model to make realistic predictions of the vibrations from underground railways.
Seismicity and fluid injections: numerical modelling of fault activation
NASA Astrophysics Data System (ADS)
Murphy, S.; O'Brien, G.; Bean, C.; McCloskey, J.; Nalbant, S.
2012-04-01
Injection of fluid into the subsurface is a common technique and is used to optimise returns from hydrocarbon plays (e.g. enhanced oil recovery, hydrofacturing of shales) and geothermal sites as well as for the sequestering carbon dioxide. While it is well understood that stress perturbations caused by fluid injections can induce/trigger earthquakes; the modelling of such hazard is still in its infancy. By combining fluid flow and seismicity simulations we have created a numerical model for investigating induced seismicity over large time periods so that we might examine the role of operational and geological factors in seismogenesis around a sub-surface fluid injection. In our model, fluid injection is simulated using pore fluid movement throughout a permeable layer from a high-pressure point source using a lattice Boltzmann scheme. We can accommodate complicated geological structures in our simulations. Seismicity is modelled using a quasi-dynamic relationship between stress and slip coupled with a rate-and state friction law. By spatially varying the frictional parameters, the model can reproduce both seismic and aseismic slip. Static stress perturbations (due to either to fault cells slipping or fluid injection) are calculated using analytical solutions for slip dislocations/pressure changes in an elastic half space. An adaptive time step is used in order to increase computational efficiency and thus allow us to model hundreds of years of seismicity. As a case study, we investigate the role that relative fault - injection location plays in seismic activity. To do this we created three synthetic catalogues with only the relative location of the fault from the point of injection varying between the models. In our control model there is no injection meaning it contains only tectonically triggered events. In the other two catalogues, the injection site is placed below and adjacent to the fault respectively. The injection itself is into a permeable thin planar layer
Dispersion of conservative properties for SGD effects by numerical modeling
NASA Astrophysics Data System (ADS)
Gallegos, G.; Marino-Tapia, I.; Enriquez, C.
2013-05-01
The submarine groundwater discharges around de coasts of theYucatán Peninsula are very common because of its karstic nature. These discharges of fresh water into the sea can change the thermohaline conditions of the region. There are several studies that demonstrate that point submarine groundwater discharges can change the superficial temperature and haline conditions near the point-SGD. Furthermore, there is evidence that considerable concentrations of nutrients are transported to the sea via SGDs. In order to quantify the area of influence of a point-SGD and the ability of the coastal system to dissipate the ground water, this study presents a numerical simulation of a point-SGD on the north coast of Yucatán, Dzilam Bravo. Teh flow recorded for this SGD is ~1m^3/s and it is located 200m offshore in waters of less than 2m detph.. The numerical simulation was carried out in the model DELFT-3D which has been calibrated with water level and hydrodynamics data for the region with a grid of 486 x 243 nodes that cover an area of 6 km alongshore by 2 km crosshore with a resolution of 14 m. Three ideal numerical scenarios were simulated: only wind forcing, only tidal forcing and wind-tide forcing. The real cases are for two different wind conditions, the first is a southeast wind, and the second is a breeze with an easterly component; the dominant winds in the region are easterly. Seasonal variation was also simulated; the two conditions that exist in the region are the rainy and dry seasons. The extreme events of ENSO and northerly storms locally known as "nortes" were also simulated. The results of the ideal set of scenarios shows wind as the principal forcing for dispersion and it governs the direction of the salinity gradient. The seasonal variations show that the area of influence in terms of salinity is also a function of the contrast between fresh and sea water, and finally the set of extreme condition simulations shows, in case of the northerly storms, that the
Stratified flows with variable density: mathematical modelling and numerical challenges.
NASA Astrophysics Data System (ADS)
Murillo, Javier; Navas-Montilla, Adrian
2017-04-01
Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux
Sheet Hydroforming Pre-bulging Numerical Model Improvement
NASA Astrophysics Data System (ADS)
Gabriele, Papadia; Antonio, Del Prete; Alfredo, Anglani
2010-06-01
Sheet hydroforming has gained increasing interest during the last years, especially as application in the manufacturing of some components for automotive, aerospace, and electrical appliances[1,2]. Many parameters influence the process of sheet hydroforming, one of them is the pre-bulging[3]. Different studies have been also done to determine the optimal forming parameters through FEA[4,5]. In the case of sheet hydromechanical forming process the blank is first placed on the lower die (a fluid chamber combined with draw ring) and then, after sealing the blank between blank holder and draw ring, punch progresses to deform the blank[6]. Pressure of the fluid chamber is also increased simultaneously with the punch progression[7]. In this paper, the pre-bulging effect on active hydromechanical deep drawing process has been investigated experimentally and numerically. Pre-bulging includes two parameters: pre-bulging height and pre-bulging pressure, which influence the forming process significantly[3]. Numerical simulations and experimental tests were carried out for a given shape to investigate the pre-bulging effect on the maximum hydroforming depth. During this activity, the authors have verified that the low numerical—experimental accuracy detected it was caused also by the simulation of the pre-bulging phase. The authors have analyzed the problem to define a correct procedure to simulate the pre-bulging phase. From this point of view, nine different levels of pre-bulging (taking into account the level equal to zero also) have been tested to experimentally calculate the Thickness Percentage Reduction (TPR) at the maximum pre-bulging height. For each level, the experiment has been conducted two times for a total number of eighteen experiments. The experimental TPR values have been compared with the numerical ones reaching a good accuracy only in the case of pre-bulging height greater than forty millimeters. The experimental activity has given a valid contribution to
Comparing Numerical Spall Simulations with a Nonlinear Spall Formation Model
NASA Astrophysics Data System (ADS)
Ong, L.; Melosh, H. J.
2012-12-01
Spallation accelerates lightly shocked ejecta fragments to speeds that can exceed the escape velocity of the parent body. We present high-resolution simulations of nonlinear shock interactions in the near surface. Initial results show the acceleration of near-surface material to velocities up to 1.8 times greater than the peak particle velocity in the detached shock, while experiencing little to no shock pressure. These simulations suggest a possible nonlinear spallation mechanism to produce the high-velocity, low show pressure meteorites from other planets. Here we pre-sent the numerical simulations that test the production of spall through nonlinear shock interactions in the near sur-face, and compare the results with a model proposed by Kamegai (1986 Lawrence Livermore National Laboratory Report). We simulate near-surface shock interactions using the SALES_2 hydrocode and the Murnaghan equation of state. We model the shock interactions in two geometries: rectangular and spherical. In the rectangular case, we model a planar shock approaching the surface at a constant angle phi. In the spherical case, the shock originates at a point below the surface of the domain and radiates spherically from that point. The angle of the shock front with the surface is dependent on the radial distance of the surface point from the shock origin. We model the target as a solid with a nonlinear Murnaghan equation of state. This idealized equation of state supports nonlinear shocks but is tem-perature independent. We track the maximum pressure and maximum velocity attained in every cell in our simula-tions and compare them to the Hugoniot equations that describe the material conditions in front of and behind the shock. Our simulations demonstrate that nonlinear shock interactions in the near surface produce lightly shocked high-velocity material for both planar and cylindrical shocks. The spall is the result of the free surface boundary condi-tion, which forces a pressure gradient
Numerical modeling of mineral dissolution - precipitation kinetics integrating interfacial processes
NASA Astrophysics Data System (ADS)
Azaroual, M. M.
2016-12-01
The mechanisms of mineral dissolution/precipitation are complex and interdependent. Within a same rock, the geochemical modelling may have to manage kinetic reactions with high ratios between the most reactive minerals (i.e., carbonates, sulfate salts, etc.) and less reactive minerals (i.e., silica, alumino-silicates, etc.). These ratios (higher than 10+6) induce numerical instabilities for calculating mass and energy transfers between minerals and aqueous phases at the appropriate scales of time and space. The current scientific debate includes: i) changes (or not) of the mineral reactive surface with the progress of the dissolution/precipitation reactions; ii) energy jumps (discontinuity) in the thermodynamic affinity function of some dissolution/precipitation reactions and iii) integration of processes at the "mineral - aqueous solution" interfaces for alumino-silicates, silica and carbonates. In recent works dealing with the specific case of amorphous silica, measurements were performed on nano-metric cross-sections indicating the presence of surface layer between the bulk solution and the mineral. This thin layer is composed by amorphous silica and hydrated silica "permeable" to the transfer of water and ionic chemical constituents. The boundary/interface between the initial mineral and the silica layer is characterized by a high concentration jump of chemical products at the nanoscale and some specific interfacial dissolution/precipitation processes.In this study, the results of numerical simulations dealing with different mechanisms of silicate and carbonate dissolution/precipitation reactions and integrating interfacial processes will be discussed. The application of this approach to silica precipitation is based on laboratory experiments and it highlights the significant role of the "titration" surface induced by surface complexation reactions in the determination of the kinetics of precipitation.
Numerical and physical modelling of bubbly flow phenomena
Sangani, A.S.
1992-02-01
The objective of the proposed research is to develop a theoretical framework for analyzing various two-phase flows, with special emphasis on the flows, with special emphasis on the flows of gas- liquid dispersions. The macroscopic behavior of these flows depends on the details of the microstructure of the dispersion, and these details, in turn, depend on the nature of the flow. Given the very diverse nature of the flows and their complex dependence on the microstructure of the dispersion, it is unlikely that a single set of equations, similar to the Navier-Stokes equations for homogeneous fluids, will apply to all the different situations. What is possible, however, is to develop general methodologies that can be used to examine specific situations and a general understanding about different kinds of macroscopic flows. The aim of the proposed research is to develop efficient numerical techniques for carrying out dynamic simulations of flows of dispersions and to apply them to a carefully selected problems whose solutions would reveal important qualitative as well as quantitative insights into the complex interdependence of the microstructure and macroscopic properties of the flows. These numerical techniques are to be supplemented with the techniques of ensemble averaging and statistical physics to obtain results that could be used in modelling more complicated flows through a set of relatively simple equations. Two classes of macroscopic flows were analyzed in detail during the current funding period. The first is the oscillatory flows, as in the case of acoustic or pressure wave propagation through bubbly liquids, and the second is convective flows as in bubbles rising through a liquid. 20 refs.
Numerical and physical modelling of bubbly flow phenomena. Progress report
Sangani, A.S.
1992-02-01
The objective of the proposed research is to develop a theoretical framework for analyzing various two-phase flows, with special emphasis on the flows, with special emphasis on the flows of gas- liquid dispersions. The macroscopic behavior of these flows depends on the details of the microstructure of the dispersion, and these details, in turn, depend on the nature of the flow. Given the very diverse nature of the flows and their complex dependence on the microstructure of the dispersion, it is unlikely that a single set of equations, similar to the Navier-Stokes equations for homogeneous fluids, will apply to all the different situations. What is possible, however, is to develop general methodologies that can be used to examine specific situations and a general understanding about different kinds of macroscopic flows. The aim of the proposed research is to develop efficient numerical techniques for carrying out dynamic simulations of flows of dispersions and to apply them to a carefully selected problems whose solutions would reveal important qualitative as well as quantitative insights into the complex interdependence of the microstructure and macroscopic properties of the flows. These numerical techniques are to be supplemented with the techniques of ensemble averaging and statistical physics to obtain results that could be used in modelling more complicated flows through a set of relatively simple equations. Two classes of macroscopic flows were analyzed in detail during the current funding period. The first is the oscillatory flows, as in the case of acoustic or pressure wave propagation through bubbly liquids, and the second is convective flows as in bubbles rising through a liquid. 20 refs.
Kramers problem: numerical Wiener-Hopf-like model characteristics.
Ezin, A N; Samgin, A L
2010-11-01
Since the Kramers problem cannot be, in general, solved in terms of elementary functions, various numerical techniques or approximate methods must be employed. We present a study of characteristics for a particle in a damped well, which can be considered as a discretized version of the Melnikov [Phys. Rev. E 48, 3271 (1993)] turnover theory. The main goal is to justify the direct computational scheme to the basic Wiener-Hopf model. In contrast to the Melnikov approach, which implements factorization through a Cauchy-theorem-based formulation, we employ the Wiener-Levy theorem to reduce the Kramers problem to a Wiener-Hopf sum equation written in terms of Toeplitz matrices. This latter can provide a stringent test for the reliability of analytic approximations for energy distribution functions occurring in the Kramers problems at arbitrary damping. For certain conditions, the simulated characteristics are compared well with those determined using the conventional Fourier-integral formulas, but sometimes may differ slightly depending on the value of a dissipation parameter. Another important feature is that, with our method, we can avoid some complications inherent to the Melnikov method. The calculational technique reported in the present paper may gain particular importance in situations where the energy losses of the particle to the bath are a complex-shaped function of the particle energy and analytic solutions of desired accuracy are not at hand. In order to appreciate more readily the significance and scope of the present numerical approach, we also discuss concrete aspects relating to the field of superionic conductors.
Numerical modeling and experimental testing of a solar grill
Olwi, I.; Khalifa, A. )
1993-02-01
The sun provides a free, nonpolluting and everlasting source of energy. Considerable research has been carried out to utilize solar energy for purposes such as water heating, high temperature ovens, and conversion to electrical energy. One of the interesting forms for utilizing solar energy is cooking. The main disadvantage of solar energy systems has been the low efficiency attained in most of its practical applications. It is expected, however, that due to continuing decreases in the availability of other energy sources such as oil and coal, along with the safety problems associated with nuclear energy, man's need for utilization of solar energy will increase, thus leading him to find the ways and means to develop adequate and efficient solar-powered systems. In camps, where tents are used to accommodate people, cooking is done via conventional gas stoves. This usually takes place in extremely crowded areas which become highly fireprone. Solar oven cookers seem to be a viable alternative considering both economy and safety. Among the various forms of solar cookers, the oven-type solar cooker is known to be the best in terms of efficiency. One of the most practical and efficient forms of solar oven cookers is the outdoor portable solar grill (Bar-B-Q), developed by Khalifa et al. The solar grill is a light and portable unit that utilizes solar energy to grill meat. One of the best types of grilling with this cooker is the well-known Shish Kebab or Bar-B-Q. A detailed description for the design of the solar grill is provided as follows. This paper is aimed at providing experimental results and formulating a numerical model for the solar grill. Results of the two approaches are then compared to verify the validity of the numerical simulation. An experimental and theoretical investigation was conducted on the solar grill in order to study the factors that affect its design and performance.
Asymmetric Subductions in an Asymmetric Earth: Geodynamics and Numerical Modeling
NASA Astrophysics Data System (ADS)
Dal Zilio, L.; Ficini, E.; Doglioni, C.; Gerya, T.
2016-12-01
The driving mechanism of plate tectonics is still controversial. Moreover, mantle kinematics is still poorly constrained due to the limited information available on its composition, thermal state, and physical parameters. The net rotation of the lithosphere, or so-called W-ward drift, however, indicates a decoupling of the plates relative to the underlying asthenosphere at about 100-200 km depth in the Low-Velocity Zone and a relative "E-ward" mantle counterflow. This mantle flow can account for a number of tectonic asymmetries on subduction dynamics such as steep versus shallow slab dip, diverging versus converging subduction hinge, low versus high topography of mountain belts, etc. This asymmetry is generally interpreted to reflect the age-dependent negative buoyancy of the subducting lithosphere. However, slab dip is insensitive to the age of the lithosphere. Here we investigate the role of mantle flow in controlling subduction dynamics using a high-resolution rheologically consistent two-dimensional numerical modeling. Results show the evolution of a subducting oceanic plate beneath a continent: when the subducting plate is dipping in opposite direction with respect to the mantle flow, the slab is sub-vertically deflected by the mantle flow, thus leading the coeval development of a back-arc basin. In contrast, agreement between mantle flow and dipping of the subducting slab relieves shallow dipping subduction zone, which in turn controls the development of a pronounced topography. Moreover, this study confirms that the age of the subducting oceanic lithosphere (i.e. its negative buoyancy) has a second order effect on the dip angle of the slab and, more generally, on subduction dynamics. Our numerical experiments show strong similarities to the observed evolution of subduction zone worldwide and demonstrate that the possibility of a horizontal mantle flow is universally valid.
Numerical Modeling of Tube Forming by HPTR Cold Pilgering Process
NASA Astrophysics Data System (ADS)
Sornin, D.; Pachón-Rodríguez, E. A.; Vanegas-Márquez, E.; Mocellin, K.; Logé, R.
2016-09-01
For new fast-neutron sodium-cooled Generation IV nuclear reactors, the candidate cladding materials for the very strong burn-up are ferritic and martensitic oxide dispersion strengthened grades. Classically, the cladding tube is cold formed by a sequence of cold pilger milling passes with intermediate heat treatments. This process acts upon the geometry and the microstructure of the tubes. Consequently, crystallographic texture, grain sizes and morphologies, and tube integrity are highly dependent on the pilgering parameters. In order to optimize the resulting mechanical properties of cold-rolled cladding tubes, it is essential to have a thorough understanding of the pilgering process. Finite Element Method (FEM) models are used for the numerical predictions of this task; however, the accuracy of the numerical predictions depends not only on the type of constitutive laws but also on the quality of the material parameters identification. Therefore, a Chaboche-type law which parameters have been identified on experimental observation of the mechanical behavior of the material is used here. As a complete three-dimensional FEM mechanical analysis of the high-precision tube rolling (HPTR) cold pilgering of tubes could be very expensive, only the evolution of geometry and deformation is addressed in this work. The computed geometry is compared to the experimental one. It is shown that the evolution of the geometry and deformation is not homogeneous over the circumference. Moreover, it is exposed that the strain is nonhomogeneous in the radial, tangential, and axial directions. Finally, it is seen that the dominant deformation mode of a material point evolves during HPTR cold pilgering forming.
Numerical modeling transport phenomena in proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Suh, DongMyung
To study the coupled phenomena occurring in proton exchange membrane fuel cells, a two-phase, one-dimensional, non-isothermal model is developed in the chapter 1. The model includes water phase change, proton transport in the membrane and electro-osmotic effect. The thinnest, but most complex layer in the membrane electrode assembly, catalyst layer, is considered an interfacial boundary between the gas diffusion layer and the membrane. Mass and heat transfer and electro-chemical reaction through the catalyst layer are formulated into equations, which are applied to boundary conditions for the gas diffusion layer and the membrane. Detail accounts of the boundary equations and the numerical solving procedure used in this work are given. The polarization curve is calculated at different oxygen pressures and compared with the experimental results. When the operating condition is changed along the polarization curve, the change of physicochemical variables in the membrane electrode assembly is studied. In particular, the over-potential diagram presents the usage of the electrochemical energy at each layer of the membrane electrode assembly. Humidity in supplying gases is one of the most important factors to consider for improving the performance of PEMFE. Both high and low humidity conditions can result in a deteriorating cell performance. The effect of humidity on the cell performance is studied in the chapter 2. First, a numerical model based on computational fluid dynamics is developed. Second, the cell performances are simulated, when the relative humidity is changed from 0% to 100% in the anode and the cathode channel. The simulation results show how humidity in the reactant gases affects the water content distribution in the membrane, the over-potential at the catalyst layers and eventually the cell performance. In particular, the rapid enhancement in the cell performance caused by self-hydrating membrane is captured by the simulation. Fully humidifying either H2
Physical and numerical modeling of seawater intrusion in coastal aquifers
NASA Astrophysics Data System (ADS)
Crestani, Elena; Camporese, Matteo; Salandin, Paolo
2016-04-01
Seawater intrusion in coastal aquifers is a worldwide problem caused, among others factors, by aquifer overexploitation, rising sea levels, and climate changes. To limit the deterioration of both surface water and groundwater quality caused by saline intrusion, in recent years many research studies have been developed to identify possible countermeasures, mainly consisting of underground barriers. In this context, physical models are fundamental to study the saltwater intrusion, since they provide benchmarks for numerical model calibrations and for the evaluation of the effectiveness of general solutions to contain the salt wedge. This work presents a laboratory experiment where seawater intrusion was reproduced in a specifically designed sand-box. The physical model, built at the University of Padova, represents the terminal part of a coastal aquifer and consists of a flume 500 cm long, 30 cm wide and 60 cm high, filled for an height of 49 cm with glass beads characterized by a d50 of 0.6 mm and a uniformity coefficient d60/d10 ≈ 1.5. The resulting porous media is homogeneous, with porosity of about 0.37 and hydraulic conductivity of about 1.3×10-3 m/s. Upstream from the sand-box, a tank filled by freshwater provides the recharge to the aquifer. The downstream tank simulates the sea and red food dye is added to the saltwater to easily visualize the salt wedge. The volume of the downstream tank is about five times the upstream one, and, due to the small filtration discharge, salt concentration variations (i.e., water density variations) due to the incoming freshwater flow are negligible. The hydraulic gradient during the tests is constant, due to the fixed water level in the two tanks. Water levels and discharged flow rate are continuously monitored. The experiment presented here had a duration of 36 h. For the first 24 h, the saltwater wedge was let to evolve until quasi stationary condition was obtained. In the last 12 h, water withdrawal was carried out at a
Magmatism in Lithosphere Delamination process inferred from numerical models
NASA Astrophysics Data System (ADS)
Göǧüş, Oǧuz H.; Ueda, Kosuke; Gerya, Taras
2017-04-01
The peel away of the oceanic/continental slab from the overlying orogenic crust has been suggested as a ubiquitous process in the Alpine-Mediterranean orogenic region (e.g. Carpathians, Apennines, Betics and Anatolia). The process is defined as lithospheric delamination where a slab removal/peel back may allow for the gradual uprising of sub-lithospheric mantle, resulting in high heat flow, transient surface uplift/subsidence and varying types of magma production. Geodynamical modeling studies have adressed the surface response to the delamination in the context of regional tectonic processes and explored wide range of controlling parameters in pre-syn and post collisional stages. However, the amount and styles of melt production in the mantle (e.g. decompression melting, wet melting in the wedge) and the resulting magmatism due to the lithosphere delamination remains uncertain. In this work, by using thermomechanical numerical experiments, designed in the configuration of subduction to collision, we investigated how melting in the mantle develops in the course of delamination. Furthermore, model results are used to decipher the distribution of volumetric melt production, melt extraction and the source of melt and the style of magmatism (e.g. igneous vs. volcanic). The model results suggest that a broad region of decompression melting occurs under the crust, mixing with the melting of the hydrated mantle derived by the delaminating/subducting slab. Depending on the age of the ocean slab, plate convergence velocity and the mantle temperature, the melt production and crust magmatism may concentrate under the mantle wedge or in the far side of the delamination front (where the subduction begins). The slab break-off usually occurs in the terminal stages of the delamination process and it may effectively control the location of the magmatism in the crust. The model results are reconciled with the temporal and spatial distribution of orogenic vs. anorogenic magmatism in
Numerical modeling of fluid migration in subduction zones
NASA Astrophysics Data System (ADS)
Walter, M. J.; Quinteros, J.; Sobolev, S. V.
2015-12-01
It is well known that fluids play a crucial role in subduction evolution. For example, mechanical weakening along tectonic interfaces, due to high fluid pressure, may enable oceanic subduction. Hence, the fluid content seems to be a critical parameter for subduction initiation. Studies have also shown a correlation between the location of slab dehydration and intermediate seismic activity. Furthermore, expelled fluids from the subduction slab affect the melting temperature, consequently, contributing to partial melting in the wedge above the down-going plate and extensive volcanism. In summary, fluids have a great impact on tectonic processes and therefore should be incorporated into geodynamic numerical models. Here we use existing approaches to couple and solve fluid flow equations in the SLIM-3D thermo-mechanical code. SLIM-3D is a three-dimensional thermo-mechanical code capable of simulating lithospheric deformation with elasto-visco-plastic rheology. It has been successfully applied to model geodynamic processes at different tectonic settings, including subduction zones. However, although SLIM-3D already includes many features, fluid migration has not been incorporated into the model yet. To this end, we coupled solid and fluid flow assuming that fluids flow through a porous and deformable solid. Thereby, we introduce a two-phase flow into the model, in which the Stokes flow is coupled with the Darcy law for fluid flow. Ultimately, the evolution of porosity is governed by a compaction pressure and the advection of the porous solid. We show the details of our implementation of the fluid flow into the existing thermo-mechanical finite element code and present first results of benchmarks and experiments. We are especially interested in the coupling of subduction processes and the evolution of the magmatic arc. Thereby, we focus on the key factors controlling magma emplacement and its influence on subduction processes.
Black shale weathering: An integrated field and numerical modeling study
NASA Astrophysics Data System (ADS)
Bolton, E. W.; Wildman, R. A., Jr.; Berner, R. A.; Eckert, J. O., Jr.; Petsch, S. T.; Mok, U.; Evans, B.
2003-04-01
We present an integrated study of black shale weathering in a near surface environment. Implications of this study contribute to our understanding of organic matter oxidation in uplifted sediments, along with erosion and reburial of ancient unoxidized organic matter, as major controls on atmospheric oxygen levels over geologic time. The field study used to launch the modeling effort is based on core samples from central-eastern Kentucky near Clay City (Late Devonian New Albany/Ohio Shale), where the strata are essentially horizontal. Samples from various depth intervals (up to 12 m depth) were analyzed for texture (SEM images), porosity fraction (0.02 to 0.1), and horizontal and vertical permeability (water and air permeabilities differ due to the fine-grained nature of the sediments, but are on the order of 0.01 to 1. millidarcies, respectively). Chemical analyses were also performed for per cent C, N, S, and basic mineralogy was determined (clays, quartz, pyrite, in addition to organic matter). The samples contained from 2 to 15 per cent ancient (non-modern soil) organic matter. These results were used in the creation of a numerical model for kinetically controlled oxidation of the organic matter within the shale (based on kinetics from Chang and Berner, 1999). The one-dimensional model includes erosion, oxygen diffusion in the partially saturated vadose zone as well as water percolation and solute transport. This study extends the studies of Petsch (2000) and the weathering component of Lasaga and Ohmoto (2002) to include more reactions (e.g., pyrite oxidation to sulfuric acid and weathering of silicates due to low pH) and to resolve the near-surface boundary layer. The model provides a convenient means of exploring the influence of variable rates of erosion, oxygen level, rainfall, as well as physical and chemical characteristics of the shale on organic matter oxidation.
Numerical Modeling of Conjugate Heat Transfer in Fluid Network
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2004-01-01
Fluid network modeling with conjugate heat transfer has many applications in Aerospace engineering. In modeling unsteady flow with heat transfer, it is important to know the variation of wall temperature in time and space to calculate heat transfer between solid to fluid. Since wall temperature is a function of flow, a coupled analysis of temperature of solid and fluid is necessary. In cryogenic applications, modeling of conjugate heat transfer is of great importance to correctly predict boil-off rate in propellant tanks and chill down of transfer lines. In TFAWS 2003, the present author delivered a paper to describe a general-purpose computer program, GFSSP (Generalized Fluid System Simulation Program). GFSSP calculates flow distribution in complex flow circuit for compressible/incompressible, with or without heat transfer or phase change in all real fluids or mixtures. The flow circuit constitutes of fluid nodes and branches. The mass, energy and specie conservation equations are solved at the nodes where as momentum conservation equations are solved at the branches. The proposed paper describes the extension of GFSSP to model conjugate heat transfer. The network also includes solid nodes and conductors in addition to fluid nodes and branches. The energy conservation equations for solid nodes solves to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The numerical scheme accounts for conduction, convection and radiation heat transfer. The paper will also describe the applications of the code to predict chill down of cryogenic transfer line and boil-off rate of cryogenic propellant storage tank.
Thinning factor distributions viewed through numerical models of continental extension
NASA Astrophysics Data System (ADS)
Svartman Dias, Anna Eliza; Hayman, Nicholas W.; Lavier, Luc L.
2016-12-01
A long-standing question surrounding rifted margins concerns how the observed fault-restored extension in the upper crust is usually less than that calculated from subsidence models or from crustal thickness estimates, the so-called "extension discrepancy." Here we revisit this issue drawing on recently completed numerical results. We extract thinning profiles from four end-member geodynamic model rifts with varying width and asymmetry and propose tectonic models that best explain those results. We then relate the spatial and temporal evolution of upper to lower crustal thinning, or crustal depth-dependent thinning (DDT), and crustal thinning to mantle thinning, or lithospheric DDT, which are difficult to achieve in natural systems due to the lack of observations that constrain thinning at different stages between prerift extension and lithospheric breakup. Our results support the hypothesis that crustal DDT cannot be the main cause of the extension discrepancy, which may be overestimated because of the difficulty in recognizing distributed deformation, and polyphase and detachment faulting in seismic data. More importantly, the results support that lithospheric DDT is likely to dominate at specific stages of rift evolution because crustal and mantle thinning distributions are not always spatially coincident and at times are not even balanced by an equal magnitude of thinning in two dimensions. Moreover, either pure or simple shear models can apply at various points of time and space depending on the type of rift. Both DDT and pure/simple shear variations across space and time can result in observed complex fault geometries, uplift/subsidence, and thermal histories.
FEM numerical model study of heating in magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Pearce, John A.; Cook, Jason R.; Hoopes, P. Jack; Giustini, Andrew
2011-03-01
Electromagnetic heating of nanoparticles is complicated by the extremely short thermal relaxation time constants and difficulty of coupling sufficient power into the particles to achieve desired temperatures. Magnetic field heating by the hysteresis loop mechanism at frequencies between about 100 and 300 kHz has proven to be an effective mechanism in magnetic nanoparticles. Experiments at 2.45 GHz show that Fe3O4 magnetite nanoparticle dispersions in the range of 1012 to 1013 NP/mL also heat substantially at this frequency. An FEM numerical model study was undertaken to estimate the order of magnitude of volume power density, Qgen (W m-3) required to achieve significant heating in evenly dispersed and aggregated clusters of nanoparticles. The FEM models were computed using Comsol Multiphysics; consequently the models were confined to continuum formulations and did not include film nano-dimension heat transfer effects at the nanoparticle surface. As an example, the models indicate that for a single 36 nm diameter particle at an equivalent dispersion of 1013 NP/mL located within one control volume (1.0 x 10-19 m3) of a capillary vessel a power density in the neighborhood of 1017 (W m-3) is required to achieve a steady state particle temperature of 52°C - the total power coupled to the particle is 2.44 μW. As a uniformly distributed particle cluster moves farther from the capillary the required power density decreases markedly. Finally, the tendency for particles in vivo to cluster together at separation distances much less than those of the uniform distribution further reduces the required power density.
Numerical modeling of the interstellar medium in galactic disks
NASA Technical Reports Server (NTRS)
Rosen, A.; Bregman, J. N.; Norman, Michael L.
1993-01-01
We have been developing detailed hydrodynamic models of the global interstellar medium in the hope of understanding the mass and volume occupied by various phases, as well as their structure and kinematics. In our model, the gas is modeled by one fluid while representative Pop 1 stars are modeled by a second fluid. The two fluids are coupled in that the gas forms into stars at a rate given by a Schmidt law while stellar mass loss returns matter into the gas phase (on a time scale of 100 Myr). Also, the stars heat the gas through stellar winds and the gas cools through optically thin radiation. The time behavior of these two fluids is studied in two spatial dimensions with the Eulerian finite difference numerical hydrodynamic code Zen. The two spatial dimensions are along the plane of a disk (x, total length of 2 kpc) and perpendicular to the disk (z, total height of +/- 15 kpc) and a galactic gravitational field in the z direction, typical of that at the solar circle, is imposed upon the simulation; self-gravity and rotation are absent. For the boundary conditions, outflow is permitted at the top and bottom of the grid (z = +/- 15 kpc) while periodic boundary conditions are imposed upon left and right sides of the grid. As initial conditions, we assumed a gaseous distribution like that seen for the H1 by earlier researchers, although the results are insensitive to the initial conditions. We have run simulations in which the heating due to stars, parameterized as a stellar wind velocity, a, is varied from low (a = 150 km/s), to intermediate (a = 300 km/s), to high (a = 600 km/s). Since the intermediate case is roughly equivalent to the Galactic energy injection rate from supernovae, this summary will concentrate on results from this simulation.
Numerical Modeling of Conjugate Heat Transfer in Fluid Network
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2004-01-01
Fluid network modeling with conjugate heat transfer has many applications in Aerospace engineering. In modeling unsteady flow with heat transfer, it is important to know the variation of wall temperature in time and space to calculate heat transfer between solid to fluid. Since wall temperature is a function of flow, a coupled analysis of temperature of solid and fluid is necessary. In cryogenic applications, modeling of conjugate heat transfer is of great importance to correctly predict boil-off rate in propellant tanks and chill down of transfer lines. In TFAWS 2003, the present author delivered a paper to describe a general-purpose computer program, GFSSP (Generalized Fluid System Simulation Program). GFSSP calculates flow distribution in complex flow circuit for compressible/incompressible, with or without heat transfer or phase change in all real fluids or mixtures. The flow circuit constitutes of fluid nodes and branches. The mass, energy and specie conservation equations are solved at the nodes where as momentum conservation equations are solved at the branches. The proposed paper describes the extension of GFSSP to model conjugate heat transfer. The network also includes solid nodes and conductors in addition to fluid nodes and branches. The energy conservation equations for solid nodes solves to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The numerical scheme accounts for conduction, convection and radiation heat transfer. The paper will also describe the applications of the code to predict chill down of cryogenic transfer line and boil-off rate of cryogenic propellant storage tank.
Numerical modeling of thermal conductive heating in fractured bedrock.
Baston, Daniel P; Falta, Ronald W; Kueper, Bernard H
2010-01-01
Numerical modeling was employed to study the performance of thermal conductive heating (TCH) in fractured shale under a variety of hydrogeological conditions. Model results show that groundwater flow in fractures does not significantly affect the minimum treatment zone temperature, except near the beginning of heating or when groundwater influx is high. However, fracture and rock matrix properties can significantly influence the time necessary to remove all liquid water (i.e., reach superheated steam conditions) in the treatment area. Low matrix permeability, high matrix porosity, and wide fracture spacing can contribute to boiling point elevation in the rock matrix. Consequently, knowledge of these properties is important for the estimation of treatment times. Because of the variability in boiling point throughout a fractured rock treatment zone and the absence of a well-defined constant temperature boiling plateau in the rock matrix, it may be difficult to monitor the progress of thermal treatment using temperature measurements alone. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
A numerical model of localized convection cells of Euglena suspensions
NASA Astrophysics Data System (ADS)
Iima, Makoto; Shoji, Erika; Yamaguchi, Takayuki
2014-11-01
Suspension of Euglena gracilis shows localized convection cells when it is illuminated form below with strong light intensity. Experiments in an annular container shows that there are two elementary localized structures. One consists of a pair of convection cells and a single region where number density of Euglena is high. The other consists a localized traveling wave. Based on the measurements of the flux of number density, we propose a model of bioconvection incorporating lateral phototaxis effect proportional to the light intensity gradient. Using pseudo spectral method, we performed numerical simulation of this model. We succeed in reproducing one of the localized structures, a convection pair with single region of high number density. Also, when the aspect ratio is large, there are a parameter region where the localized structure and conductive state are both stable, which is suggested by experiments. Spatial distribution of the number density implies that the accumulation of microorganism due to the convective flow causes such bistability. CREST(PJ74100011) and KAKENHI(26400396).
The numerical modelling of a driven nonlinear oscillator
Shew, C.
1995-11-01
The torsional oscillator in the Earth Sciences Division was developed at Lawrence Livermore National Laboratory and is the only one of its kind. It was developed to study the way rocks damp vibrations. Small rock samples are tested to determine the seismic properties of rocks, but unlike other traditional methods that propagate high frequency waves through small samples, this machine forces the sample to vibrate at low frequencies, which better models real-life properties of large masses. In this particular case, the rock sample is tested with a small crack in its middle. This forces the rock to twist against itself, causing a {open_quotes}stick-slip{close_quotes} friction, known as stiction. A numerical model that simulates the forced torsional osillations of the machine is currently being developed. The computer simulation implements the graphical language LabVIEW, and is looking at the nonlinear spring effects, the frictional forces, and the changes in amplitude and frequency of the forced vibration. Using LabVIEW allows for quick prototyping and greatly reduces the {open_quotes}time to product{close_quotes} factor. LabVIEW`s graphical environment allows scientists and engineers to use familiar terminology and icons (e.g. knobs, switches, graphs, etc.). Unlike other programming systems that use text-based languages, such as C and Basic, LabVIEW uses a graphical programming language to create programs in block diagram form.
Numerical Simulations of a Multiscale Model of Stratified Langmuir Circulation
NASA Astrophysics Data System (ADS)
Malecha, Ziemowit; Chini, Gregory; Julien, Keith
2012-11-01
Langmuir circulation (LC), a prominent form of wind and surface-wave driven shear turbulence in the ocean surface boundary layer (BL), is commonly modeled using the Craik-Leibovich (CL) equations, a phase-averaged variant of the Navier-Stokes (NS) equations. Although surface-wave filtering renders the CL equations more amenable to simulation than are the instantaneous NS equations, simulations in wide domains, hundreds of times the BL depth, currently earn the ``grand challenge'' designation. To facilitate simulations of LC in such spatially-extended domains, we have derived multiscale CL equations by exploiting the scale separation between submesoscale and BL flows in the upper ocean. The numerical algorithm for simulating this multiscale model resembles super-parameterization schemes used in meteorology, but retains a firm mathematical basis. We have validated our algorithm and here use it to perform multiscale simulations of the interaction between LC and upper ocean density stratification. ZMM, GPC, KJ gratefully acknowledge funding from NSF CMG Award 0934827.
Numerical Modeling of Mixing and Venting from Explosions in Bunkers
NASA Astrophysics Data System (ADS)
Liu, Benjamin
2005-07-01
2D and 3D numerical simulations were performed to study the dynamic interaction of explosion products in a concrete bunker with ambient air, stored chemical or biological warfare (CBW) agent simulant, and the surrounding walls and structure. The simulations were carried out with GEODYN, a multi-material, Godunov-based Eulerian code, that employs adaptive mesh refinement and runs efficiently on massively parallel computer platforms. Tabular equations of state were used for all materials with the exception of any high explosives employed, which were characterized with conventional JWL models. An appropriate constitutive model was used to describe the concrete. Interfaces between materials were either tracked with a volume-of-fluid method that used high-order reconstruction to specify the interface location and orientation, or a capturing approach was employed with the assumption of local thermal and mechanical equilibrium. A major focus of the study was to estimate the extent of agent heating that could be obtained prior to venting of the bunker and resultant agent dispersal. Parameters investigated included the bunker construction, agent layout, energy density in the bunker and the yield-to-agent mass ratio. Turbulent mixing was found to be the dominant heat transfer mechanism for heating the agent.
Numerically modelling the large scale coronal magnetic field
NASA Astrophysics Data System (ADS)
Panja, Mayukh; Nandi, Dibyendu
2016-07-01
The solar corona spews out vast amounts of magnetized plasma into the heliosphere which has a direct impact on the Earth's magnetosphere. Thus it is important that we develop an understanding of the dynamics of the solar corona. With our present technology it has not been possible to generate 3D magnetic maps of the solar corona; this warrants the use of numerical simulations to study the coronal magnetic field. A very popular method of doing this, is to extrapolate the photospheric magnetic field using NLFF or PFSS codes. However the extrapolations at different time intervals are completely independent of each other and do not capture the temporal evolution of magnetic fields. On the other hand full MHD simulations of the global coronal field, apart from being computationally very expensive would be physically less transparent, owing to the large number of free parameters that are typically used in such codes. This brings us to the Magneto-frictional model which i