Science.gov

Sample records for 2g hts wires

  1. Synchronous motor with HTS-2G wires

    NASA Astrophysics Data System (ADS)

    Dezhin, D.; Ilyasov, R.; Kozub, S.; Kovalev, K.; Verzhbitsky, L.

    2014-05-01

    One of the applications of new high-temperature superconductor materials (HTS) is field coils for synchronous electrical machines. The use of YBCO 2G HTS tapes (HTS-2G) allows increasing of magnetic flux density in the air gap, which will increase the output power and reduce the dimensions of the motor. Such motors with improved characteristics can be successfully used in transportation as traction motor. In MAI-based "Center of Superconducting machines and devices" with the support of "Rosatom" has been designed and tested a prototype of the 50 kW synchronous motor with radial magnetic flux from a field-coils based on HTS-2G tapes. The experimental and theoretical results are presented.

  2. A study on the required performance of a 2G HTS wire for HTS wind power generators

    NASA Astrophysics Data System (ADS)

    Sung, Hae-Jin; Park, Minwon; Go, Byeong-Soo; Yu, In-Keun

    2016-05-01

    YBCO or REBCO coated conductor (2G) materials are developed for their superior performance at high magnetic field and temperature. Power system applications based on high temperature superconducting (HTS) 2G wire technology are attracting attention, including large-scale wind power generators. In particular, to solve problems associated with the foundations and mechanical structure of offshore wind turbines, due to the large diameter and heavy weight of the generator, an HTS generator is suggested as one of the key technologies. Many researchers have tried to develop feasible large-scale HTS wind power generator technologies. In this paper, a study on the required performance of a 2G HTS wire for large-scale wind power generators is discussed. A 12 MW class large-scale wind turbine and an HTS generator are designed using 2G HTS wire. The total length of the 2G HTS wire for the 12 MW HTS generator is estimated, and the essential prerequisites of the 2G HTS wire based generator are described. The magnetic field distributions of a pole module are illustrated, and the mechanical stress and strain of the pole module are analysed. Finally, a reasonable price for 2G HTS wire for commercialization of the HTS generator is suggested, reflecting the results of electromagnetic and mechanical analyses of the generator.

  3. Theory of AC Loss in Cables with 2G HTS Wire

    SciTech Connect

    Clem, J.R.; Malozemoff, A.P.

    2009-09-13

    While considerable work has been done to understand AC losses in power cables made of first generation (1G) high temperature superconductor (HTS) wires, use of second generation (2G) HTS wires brings in some new considerations. The high critical current density of the HTS layer 2G wire reduces the surface superconductor hysteretic losses. Instead, gap and polygonal losses, flux transfer losses in imbalanced two layer cables and ferromagnetic losses for wires with NiW substrates constitute the principal contributions. Current imbalance and losses associated with the magnetic substrate can be minimized by orienting the substrates of the inner winding inward and the outer winding outward.

  4. Thermal conductivity of 2G HTS wires for current lead applications

    NASA Astrophysics Data System (ADS)

    Hoffmann, C.; Strickland, N.; Pooke, D.; Gannon, J.; Carter, B.; Otto, A.

    2010-06-01

    We have studied the thermal conductivity of several 2G HTS coated conductor wires produced by AMSC's RABiTSTM/MOD processes. The measurements employed a non-steady state method in which the sample is connected to a cold head on one end and a copper block on the other end. The heat capacity of the copper block is used to determine heat flow through the sample as the cold head slowly warms up. Measurements were done at temperatures ranging from 10 K to 130 K on 2G wires made with a Ni 5at%W substrate and different lamination architectures. The focus of the investigation was on the effects of lamina material type, thickness of the silver layer and alloyed silver. The data show that 2G wires can be 3 times less thermally conductive when compared to 1G BSCCO wires with a Ag-Au matrix, making them excellent candidates for use in current lead applications.

  5. HTS Wire Development Workshop: Proceedings

    SciTech Connect

    Not Available

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  6. Total AC loss study of 2G HTS coils for fully HTS machine applications

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Yuan, Weijia; Kvitkovic, Jozef; Pamidi, Sastry

    2015-11-01

    The application of HTS coils for fully HTS machines has become a new research focus. In the stator of an electrical machine, HTS coils are subjected to a combination of an AC applied current and AC external magnetic field. There is a phase shift between the AC current and AC magnetic field. In order to understand and estimate the total AC loss of HTS coils for electrical machines, we designed and performed a calorimetric measurement for a 2G HTS racetrack coil. Our measurement indicates that the total AC loss is greatly influenced by the phase shift between the applied current and the external magnetic field when the magnetic field is perpendicular to the tape surface. When the applied current and the external magnetic field are in phase, the total AC loss is the highest. When there is a 90 degree phase difference, the total AC loss is the lowest. In order to explain this phenomenon, we employ H formulation and finite element method to model the 2G HTS racetrack coil. Our calculation agrees well with experimental measurements. Two parameters are defined to describe the modulation of the total AC loss in terms of phase difference. The calculation further reveals that the influence of phase difference varies with magnetic field direction. The greatest influence of phase difference is in the perpendicular direction. The study provides key information for large-scale 2G HTS applications, e.g. fully HTS machines and superconducting magnetic energy storage, where the total AC loss subjected to both applied currents and external magnetic fields is a critical parameter for the design.

  7. Reliable commercial HTS wire for power applications

    NASA Astrophysics Data System (ADS)

    Kellers, Jürgen; Masur, Lawrence J.

    2002-08-01

    The production of HTS wire for power applications is increasingly maturing into industrial dimensions. The most widely considered manufacturing method for this conductor is the BSCCO-2223-OPIT route, used internationally by many organizations, including American Superconductor. Significant advances in HTS wire technology have been made in the past years, with currently a guaranteed minimum critical current performance of 115 A at 77 K over commercial long length. For the HTS wire itself this is equivalent to an engineering current density of 13.5 kA/cm 2. During the past 18 months, American Superconductor increased its HTS wire manufacturing capacity in its Westborough operations from 250 to 500 km/year to meet the increased demand for development and demonstration purposes. While this level of quality and quantity is sufficient to demonstrate technical feasibility and reliability of prototype power applications, it cannot satisfy fully commercial requirements for economic viability. To address broader markets with a commercially viable product, a price level of $50/(kA m) is possible with BSCCO-2223-OPIT when manufactured in much larger quantities. Therefore, American Superconductor is currently siting a new facility dedicated solely to the manufacturing of BSCCO-OPIT-2223 wire in quantities of 10,000 km/year. Key initial applications for this wire are power transmission cables, industrial motors and electrical generators. This paper will report on the performance and reliability testing of BSCCO-2223 wires. We will discuss the electrical, bending, tensile, and fatigue testing results of wires manufactured for applications such as American Superconductor's 5000 hp ultra-compact motor. Due to their compactness, these motors will be less expensive to manufacture compared with conventional motors and will be more energy efficient. We will also review the stringent electrical, mechanical, and environmental testing developed jointly by American Superconductor and

  8. Synchronous Generator with HTS-2G field coils for Windmills with output power 1 MW

    NASA Astrophysics Data System (ADS)

    Kovalev, K.; Kovalev, L.; Poltavets, V.; Samsonovich, S.; Ilyasov, R.; Levin, A.; Surin, M.

    2014-05-01

    Nowadays synchronous generators for wind-mills are developed worldwide. The cost of the generator is determined by its size and weight. In this deal the implementation of HTS-2G generators is very perspective. The application of HTS 2G field coils in the rotor allows to reduce the size of the generator is 1.75 times. In this work the design 1 MW HTS-2G generator is considered. The designed 1 MW HTS-2G generator has the following parameters: rotor diameter 800 mm, active length 400 mm, phase voltage 690V, rotor speed 600 min-1 rotor field coils with HTS-2G tapes. HTS-2G field coils located in the rotating cryostat and cooled by liquid nitrogen. The simulation and optimization of HTS-2G field coils geometry allowed to increase feed DC current up to 50A. Copper stator windings are water cooled. Magnetic and electrical losses in 1 MW HTS-2G generator do not exceed 1.6% of the nominal output power. In the construction of HTS-2G generator the wave multiplier with ratio 1:40 is used. The latter allows to reduce the total mass of HTS-2G generator down to 1.5 tons. The small-scale model of HTS-2G generator with output power 50 kW was designed, manufactured and tested. The test results showed good agreement with calculation results. The manufacturing of 1 MW HTS-2G generator is planned in 2014. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry".

  9. Anisotropy of 2G HTS racetrack coils in external magnetic fields

    NASA Astrophysics Data System (ADS)

    Chudy, Michal; Chen, Yiran; Zhang, Min; Coombs, T. A.

    2013-07-01

    Pancake or racetrack coils wound with second generation high-temperature superconductors (2G HTSs) are important elements for numerous applications of HTS. The applications of these coils are primarily in rotating machines such as motors and generators where they must withstand external magnetic fields from various orientations. The characterization of 2G HTS coils is mostly focused on AC loss assessment, critical current and maximum magnetic field evaluation. In this study, racetrack coils will be placed in different orientations of external magnetic fields—Jc (Ic) versus angle measurements will be performed and interpreted. Full attention is paid to studies of anisotropy Jc versus angle curves for short samples of 2G HTS tapes. As will be shown, the shape of the Jc versus angle curves for tapes has a strong influence on the Jc (Ic) versus angle curves for coils. In this work, a unique and unpredicted behavior of the Jc versus angle curves for the 2G HTS racetrack coils was found. This will be analyzed and fully explained.

  10. H-formulation for simulating levitation forces acting on HTS bulks and stacks of 2G coated conductors

    NASA Astrophysics Data System (ADS)

    Sass, F.; Sotelo, G. G.; Junior, R. de Andrade; Sirois, Frédéric

    2015-12-01

    Several techniques to model high temperature superconductors (HTSs) are used throughout the world. At the same time, the use of superconductors in transportation and magnetic bearings promises an increase in energy efficiency. However, the most widespread simulation technique in the literature, the H-formulation, has not yet been used to simulate superconducting levitation. The goal of this work is to present solutions for the challenges concerning the use of the H-formulation to predict the behavior of superconducting levitators built either with YBCO bulks or stacks of 2G wires. It is worth mentioning the originality of replacing bulks with HTS stacks in this application. In our simulation methodology, the movement between the HTS and the permanent magnet was avoided by restricting the simulation domain to the HTS itself, which can be done by applying appropriate boundary conditions and analytical expressions for the source field. Commercial finite element software was used for the sake of ease of implementation. Simulation results were compared with experimental data, showing good agreement. We conclude that the H-formulation is suitable for problems involving moving objects and is a good alternative to other approaches for simulating superconducting magnetic bearings.

  11. Study of HTS Wires at High Magnetic Fields

    SciTech Connect

    Turrioni, D.; Barzi, E.; Lamm, M.J.; Yamada, R.; Zlobin, A.V.; Kikuchi, A.; /Fermilab

    2009-01-01

    Fermilab is working on the development of high field magnet systems for ionization cooling of muon beams. The use of high temperature superconducting (HTS) materials is being considered for these magnets using Helium refrigeration. Critical current (I{sub c}) measurements of HTS conductors were performed at FNAL and at NIMS up to 28 T under magnetic fields at zero to 90 degree with respect to the sample face. A description of the test setups and results on a BSCCO-2223 tape and second generation (2G) coated conductors are presented.

  12. 3D modeling and simulation of 2G HTS stacks and coils

    NASA Astrophysics Data System (ADS)

    Zermeño, Víctor M. R.; Grilli, Francesco

    2014-04-01

    Use of 2G HTS coated conductors in several power applications has become popular in recent years. Their large current density under high magnetic fields makes them suitable candidates for high power capacity applications such as stacks of tapes, coils, magnets, cables and current leads. For this reason, modeling and simulation of their electromagnetic properties is very desirable in the design and optimization processes. For many applications, when symmetries allow it, simple models consisting of 1D or 2D representations are well suited for providing a satisfying description of the problem at hand. However, certain designs such as racetrack coils and finite-length or non-straight stacks, do pose a 3D problem that cannot be easily reduced to a 2D configuration. Full 3D models have been developed, but their use for simulating superconducting devices is a very challenging task involving a large-scale computational problem. In this work, we present a new method to simulate the electromagnetic transient behavior of 2G HTS stacks and coils. The method, originally used to model stacks of straight superconducting tapes or circular coils in 2D, is now extended to 3D. The main idea is to construct an anisotropic bulk-like equivalent for the stack or coil, such that the geometrical layout of the internal alternating structures of insulating, metallic, superconducting and substrate layers is reduced while keeping the overall electromagnetic behavior of the original device. Besides the aforementioned interest in modeling and simulating 2G HTS coated conductors, this work provides a further step towards efficient 3D modeling and simulation of superconducting devices for large-scale applications.

  13. Engineered pinning landscapes for enhanced 2G coil wire

    DOE PAGESBeta

    Rupich, Martin W.; Sathyamurthy, Srivatsan; Fleshler, Steven; Li, Qiang; Solovyov, Vyacheslav; Ozaki, Toshinori; Welp, Ulrich; Kwok, Wai -Kwong; Leroux, Maxime; Koshelev, Alexei E.; et al

    2016-04-01

    We demonstrate a twofold increase in the in-field critical current of AMSC's standard 2G coil wire by irradiation with 18-MeV Au ions. The optimum pinning enhancement is achieved with a dose of 6 × 1011 Au ions/cm2. Although the 77 K, self-field critical current is reduced by about 35%, the in-field critical current (H//c) shows a significant enhancement between 4 and 50 K in fields > 1 T. The process was used for the roll-to-roll irradiation of AMSC's standard 46-mm-wide production coated conductor strips, which were further processed into standard copper laminated coil wire. The long-length wires show the samemore » enhancement as attained with short static irradiated samples. The roll-to-roll irradiation process can be incorporated in the standard 2G wire manufacturing, with no modifications to the current process. In conclusion, the enhanced performance of the wire will benefit rotating machine and magnet applications.« less

  14. Manufacturing and test of 2G-HTS coils for rotating machines: Challenges, conductor requirements, realization

    NASA Astrophysics Data System (ADS)

    Oomen, Marijn; Herkert, Werner; Bayer, Dietmar; Kummeth, Peter; Nick, Wolfgang; Arndt, Tabea

    2012-11-01

    We investigate the use of 2nd-generation High-Temperature Superconductors (2G-HTSs) in the rotors of electrical motors and generators. For these devices the conductor must be wound into robust impregnated coils, which are operated in vacuum at temperatures around 30 K, in strong magnetic fields of about 2T. Differences in thermal contraction between the coil former, conductor constituents, impregnation resin, bandage and heat-sink materials (assembled at room temperature) cause mechanical stresses at operating temperature. Rotating-machine operation adds Lorentz forces and challenging centripetal accelerations up to thousands of g. Second generation-HTS conductors withstand large tensile stresses in axial direction and compression in normal direction. However, shear stresses, axial compression, and tension normal to the conductor can cause degradation in superconducting properties. Such stresses can be mitigated by correct choice of materials, coil lay-out and manufacturing process. A certain stress level will remain, which the conductor must withstand. We have manufactured many impregnated round and race-track coils, using different 2G-HTS conductors, and tested them at temperatures from 25 K to 77 K. Degradation of the superconductor in early coils was traced to the mentioned differences in thermal contraction, and was completely avoided in coils produced later. We will discuss appropriate coil-winding techniques to assure robust and reliable superconductor performance.

  15. WITHDRAWN: Complex Study of Transport AC Loss in Various 2G HTS Racetrack Coils

    NASA Astrophysics Data System (ADS)

    Chen, Yiran; Zhang, Min; Chudy, Michal; Matsuda, Koichi; Coombs, Tim

    2013-06-01

    HTS racetrack coils are becoming important elements of an emerging number of superconducting devices such as generators or motors. In these devices the issue of AC loss is crucial, as performance and cooling power are derived from this quantity. This paper presents a comparative study of transport AC loss in two different types of 2G HTS racetrack coils. In this study, both experimental measurements and computer simulation approaches were employed. All the experiments were performed using classical AC electrical method. The finite-element computer model was used to estimate electromagnetic properties and calculate transport AC loss. The main difference between the characterized coils is covered inside tape architectures. While one coil uses tape based on RABITS magnetic substrate, the second coil uses a non-magnetic tape. Ferromagnetic loss caused by a magnetic substrate is an important issue involved in the total AC loss. As a result, the coil with the magnetic substrate surprised with high AC loss and rather low performance.

  16. Complex study of transport AC loss in various 2G HTS racetrack coils

    NASA Astrophysics Data System (ADS)

    Chen, Yiran; Zhang, Min; Chudy, Michal; Matsuda, Koichi; Coombs, Tim

    2013-04-01

    HTS racetrack coils are becoming important elements of an emerging number of superconducting devices such as generators or motors. In these devices the issue of AC loss is crucial, as performance and cooling power are derived from this quantity. This paper presents a comparative study of transport AC loss in two different types of 2G HTS racetrack coils. In this study, both experimental measurements and computer simulation approaches were employed. All the experiments were performed using classical AC electrical method. The finite-element computer model was used to estimate electromagnetic properties and calculate transport AC loss. The main difference between the characterized coils is covered inside tape architectures. While one coil uses tape based on RABITS magnetic substrate, the second coil uses a non-magnetic tape. Ferromagnetic loss caused by a magnetic substrate is an important issue involved in the total AC loss. As a result, the coil with the magnetic substrate surprised with high AC loss and rather low performance.

  17. Enhanced quench propagation in 2G-HTS coils co-wound with stainless steel or anodised aluminium tapes

    NASA Astrophysics Data System (ADS)

    Núñez-Chico, A. B.; Martínez, E.; Angurel, L. A.; Navarro, R.

    2016-08-01

    Early quench detection and thermal stability of superconducting coils are of great relevance for practical applications. Magnets made with second generation high temperature superconducting (2G-HTS) tapes present low quench propagation velocities and therefore slow voltage development and high local temperature rises, which may cause irreversible damage. Since quench propagation depends on the anisotropy of the thermal conductivity, this may be used to achieve an improvement of the thermal stability and robustness of 2G-HTS coils. On pancake type coils, the thermal conductivity along the tapes (coil’s azimuthal direction) is mostly fixed by the 2G-HTS tape characteristics, so that the reduction of anisotropy relies on the improvement of the radial thermal conductivity, which depends on the used materials between superconducting tapes, as well as on the winding and impregnation processes. In this contribution, we have explored two possibilities for such anisotropy reduction: by using anodised aluminium or stainless steel tapes co-wound with the 2G-HTS tapes. For all the analysed coils, critical current distribution, minimum quench energy values and both tangential and radial quench propagation velocities at different temperatures and currents are reported and compared with the results of similar coils co-wound with polyimide (Kapton®) tapes.

  18. MOD Buffer/YBCO Approach to Fabricate Low-Cost Second Generation HTS Wires

    SciTech Connect

    Paranthaman, Mariappan Parans; Sathyamurthy, Srivatsan; Bhuiyan, Md S; Martin, Patrick M; Aytug, Tolga; Kim, Kyunghoon; Fayek, Mostafa; Leonard, Keith J; Li, Jing; Zhang, W.; Rupich, Marty

    2007-01-01

    The metal organic deposition (MOD) of buffer layers on RABiTS substrates is considered a potential, low-cost approach to manufacturing high performance Second Generation (2G) high temperature superconducting (HTS) wires. The typical architecture used by American Superconductor in their 2G HTS wire consists of a Ni-W (5 at.%) substrate with a reactively sputtered Y2O3 seed layer, YSZ barrier layer and a CeO2 cap layer. This architecture supports critical currents of over 300 A/cm-width (77 K, self-field) with 0.8 mum YBCO films deposited by the TFA-MOD process. The main challenge in the development of the MOD buffers is to match or exceed the performance of the standard vacuum deposited buffer architecture. We have recently shown that the texture and properties of MOD - La2Zr2Ogamma (LZO) barrier layers can be improved by inserting a thin sputtered Y2O3 seed layer and prepared MOD deposited LZO layers followed by MOD or RF sputtered CeO2 cap layers that support MOD-YBCO films with Ic's of 200 and 255 A/cm-width, respectively. Detailed X-ray and microstructural characterizations indicated that MOD - CeO2 cap reacted completely with MOD YBCO to form BaCeOs. However, sputtered CeO2 cap/MOD YBCO interface remains clean. By further optimizing the coating conditions and reducing the heat-treatment temperatures, we have demonstrated an Ic of 336 A/cm with improved LZO layers and sputtered CeO2 cap and exceeded the performance of that of standard vacuum deposited buffers.

  19. An introduction to the design and fabrication progress of a megawatt class 2G HTS motor for the ship propulsion application

    NASA Astrophysics Data System (ADS)

    Moon, Heejong; Kim, Yeong-Chun; Park, Heui-Joo; Yu, In-Keun; Park, Minwon

    2016-03-01

    This paper introduces the design and fabrication progress of a megawatt class 2G high temperature superconductor (HTS) motor for the ship propulsion application at Doosan Heavy Industries and Construction. The purpose of this 2G HTS propulsion motor is to launch the business area for marine applications such as surface ship, submarine, merchant ship etc. The principles and interpretation of the magnetic field for 2G HTS motor and permanent magnet type motors are similar on the basis of 3D design and production. The most important component of an HTS motor is the rotor, which is composed of HTS coil, non-ferrous metal, torque disk, damper, and hollow shaft. A HTS rotor using hastelloy-based 2G HTS coils was designed and built. Open-circuit and short-circuit characteristics of the superconducting motor were investigated and compared with the analysis results at reduced excitation to verify the design. Preliminary testing of a 2G HTS motor has been conducted at a few hundred kilowatts as per the design. Through these results, we anticipate that most of the design criteria can be satisfied. However, we have faced several issues during the testing of the motor and these issues need to be resolved in order to take the design further.

  20. Feasibility of a short-period superconducting undulator using 2G HTS tapes.

    SciTech Connect

    Kim, S. H.; Doose, C. L.; Jaski, M. S.; Kasa, M. T. )

    2011-06-01

    This paper presents a design concept of a planar-type superconducting undulator (SCU) using YBCO high-temperature superconductor (HTS) tapes. The SCU has a period length of 15 mm, and the tape conductor has dimensions of 4-mm width and 0.1-mm thickness. It has been shown that the conductor transition from one coil groove to the one in the next period is possible by making a semi-circular concave loop of the tape for continuous winding in the same direction. Non-uniform current distribution in the tape may cause field quality degradation. Assuming a uniform current density in the tape, the engineering critical-current density of the HTS in the coil for the design and the corresponding achievable on-axis peak field at 4.2 K were calculated.

  1. Applied Hts Bulks and Wires to Rotating Machines for Marine Propulsion

    NASA Astrophysics Data System (ADS)

    Miki, M.; Felder, B.; Kimura, Y.; Tsuzuki, K.; Taguchi, R.; Shiliang, Y.; Xu, Y.; Ida, T.; Izumi, M.

    2010-04-01

    High-temperature superconductors allow a compact and efficient way to provide high-torque density to rotating machines with excellent operation. A field pole, providing flux density of more than 1.5 T around the armature, was initially designed for an axial-gap type with the flux parallel to the rotor axis. Melt-growth Gd-123 bulks as well as Bi-2223 wire windings have been successfully assembled on the rotor disk. No iron core was used, though being an auxiliary flux control found in most HTS motors. Both bulk and wire types have realized a practical motor operation within a limited output range. For bulks, a 15 kW, 720 rpm, synchronous motor was designed and tested in the group of TUMSAT, Kitano Seiki and University of Fukui. A bulk field pole was cooled down by liquid nitrogen and was magnetized in the motor. To enhance the output power to more than 30 kW, we developed a thermosyphon system using condensed neon. Another field pole with HTS wire for large-scale marine propulsion is also discussed on a 100 kW, 230 rpm tested machine. A closed-cycle condensed neon associated with thermal insulation is also reported.

  2. Cost Effective Open Geometry HTS MRI System amended to BSCCO 2212 Wire for High Field Magnets

    SciTech Connect

    Kennth Marken

    2006-08-11

    the project start and that date a substantial shift in the MRI marketplace occurred, with rapid growth for systems at higher fields (1.5 T and above) and a consequent decline in the low field market (<1.0 T). While the project aim appeared technically attainable at that time, the conclusion was reached that the system and market economics do not warrant additional investment. The program was redirected to develop BSCCO 2212 multifilament wire development for high field superconducting magnets for NMR and other scientific research upon an agreement between DOE and Oxford Instruments, Superconducting Technology. The work t took place between September, 2004 and the project end in early 2006 was focused on 2212 multifilamentary wire. This report summarizes the technical achievements both in 2212 dip coated for an HTS MRI system and in BSCCO 2212 multifilamentary wire for high field magnets.

  3. Study on thermo-mechanical treatment in fabrication of Bi2212/Ag HTS wire

    NASA Astrophysics Data System (ADS)

    Kim, S. C.; Ha, D. W.; Oh, S. S.; Han, I. Y.; Bruzek, C. E.; Oh, J. G.; Sohn, H. S.

    2007-07-01

    Round shape Bi2212/Ag wire is isotropic, while Bi2212/Ag or Bi2223/Ag tape has anisotropic characteristics or performances with respect to magnetic field orientation, which is the only HTS wires that can be used to make Rutherford cable to transport high current. In this work, two different Bi2212/Ag round wires with different Ag ratio were fabricated using powder-in-tube method and processing factor at each step was investigated. Double stacked 385 (55 × 7) filamentary wires of various final diameter were heat treated at different melting temperatures. Microstructure after pre-annealing was investigated. Wires which have Ag ratio (silver area/superconductor area) of 0.3 and 0.42 after powder filling show similar critical current density. Higher Ag ratio wire at 0.74 mm diameter heat treated at melting temperature 890 °C shows critical current density of 2750 A/mm 2 at 4.2 K, 0 T.

  4. DEVELOPMENT OF HTS CONDUCTORS FOR ELECTRIC POWER APPLICATIONS

    SciTech Connect

    Goyal, A.; Rupich, M.

    2012-10-23

    Second generation (2G) technologies to fabricate high-performance superconducting wires developed at the Oak Ridge National Laboratory (ORNL) were transferred to American Superconductor via this CRADA. In addition, co-development of technologies for over a decade was done to enable fabrication of commercial high-temperature superconducting (HTS) wires with high performance. The massive success of this CRADA has allowed American Superconductor Corporation (AMSC) to become a global leader in the fabrication of HTS wire and the technology is fully based on the Rolling Assisted Biaxially Textured Substrates (RABiTS) technology invented and developed at ORNL.

  5. V-1 TRANSITION AND N-VALUE OF MULTIFILAMENTARY LTS AND HTS WIRES AND CABLES.

    SciTech Connect

    GHOSH,A.K.

    2003-05-25

    For low T, multifilamentary conductors like NbTi and Nb{sub 3}Sn, the V-I transition to the normal state is typically quantified by the parameter, n, defined by ({rho}/{rho}{sub c})= (I/I{sub c}){sup n}. For NbTi, this parameterization has been very useful in the development of high Jc wires, where the n-value is regarded as an index of the filament quality. In copper-matrix wires with undistorted filaments, the n-value at 5T is {approx} 40-60, and drops monotonically with increasing field. However, n can vary significantly in conductors with higher resistivity matrices and those with a low copper fraction. Usually high n-values are associated with unstable resistive behavior and premature quenching. The n-value in NbTi Rutherford cables, when compared to that in the wires is useful in evaluating cabling degradation of the critical current due to compaction at the edges of the cable. In Nb{sub 3}Sn wires, n-value has been a less useful tool, since often the resistive transition shows small voltages {approx} a few {mu}V prior to quenching. However, in ''well behaved'' wires, n is {approx} 30-40 at 12T and also shows a monotonic behavior with field. Strain induced I{sub c} degradation in these wires is usually associated with lower n-values. For high T{sub c} multifilamentary wires and tapes, a similar power law often describes the resistive transition. At 4.2K, Bi-2223 tapes as well as Bi-2212 wires exhibit n-values {approx} 15-20. In either case, n does not change appreciably with field. Rutherford cables of Bi-2212 wire show lower values of n than the virgin wire.

  6. Reflective HTS switch

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.

    1994-01-01

    A HTS switch includes a HTS conductor for providing a superconducting path for an electrical signal and an serpentine wire actuator for controllably heating a portion of the conductor sufficiently to cause that portion to have normal, and not superconducting, resistivity. Mass of the portion is reduced to decrease switching time.

  7. Reflective HTS switch

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Hohenwarter, G.K.G.

    1994-09-27

    A HTS (High Temperature Superconductor) switch includes a HTS conductor for providing a superconducting path for an electrical signal and an serpentine wire actuator for controllably heating a portion of the conductor sufficiently to cause that portion to have normal, and not superconducting, resistivity. Mass of the portion is reduced to decrease switching time. 6 figs.

  8. Theory of ac loss in power transmission cables with second generation high temperature superconductor wires

    SciTech Connect

    Clem, J. R.; Malozemoff, A. P.

    2010-02-22

    While a considerable amount of work has been done in an effort to understand ac losses in power transmission cables made of first generation high temperature superconductor (HTS) wires, use of second generation (2G) HTS wires brings in some new considerations. The high critical current density of the HTS layer in 2G wires reduces the surface superconductor hysteretic losses, for which a new formula is derived. Instead, gap and polygonal losses, flux transfer losses in imbalanced two-layer cables and ferromagnetic losses for wires with NiW substrates constitute the principal contributions. A formula for the flux transfer losses is also derived with a paramagnetic approximation for the substrate. Current imbalance and losses associated with the magnetic substrate can be minimized by orienting the substrates of the inner winding inward and the outer winding outward.

  9. Development of the Current Bypassing Methods into the Transverse Direction in Non-insulation HTS Coils

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Kim, S. B.; Ikoma, H.; Kanemoto, D.

    In the case of motors and generators, the benefits of using high temperature superconducting (HTS) coils can be represented by the reduction of 50% in both losses and sizes compared to conventional machines. However, it is hard to establish quench detection and protection devices for the HTS coils applied to the rotors of motors and generators. So, the stability of the coils is lower than for the quiescent coils applied to NMR, MRI and so on. Therefore, it is important to improve the self-protection ability of HTS coils. We have studied the methods to improve the self-protection ability of HTS coils by removing the layer-to-layer insulation and inserting metal tape instead of the electrical insulation. The operating current in the non-insulated HTS coil was bypassed into the transverse direction by the generated normal region because of their electrical contact among the winding. In this study, we examined the method to control the current bypassing on layer-to-layer for controlling the inductance of the non-insulated HTS coil. The current bypassing properties on non-insulated HTS coil wound with 2G wires will be discussed.

  10. Contribution of ion beam analysis methods to the development of 2nd generation high temperature superconducting (HTS) wires

    SciTech Connect

    Usov, Igor O; Arendt, Paul N; Stan, Liliana; Holesinger, Terry G; Foltyn, Steven R; Depaula, Raymond F

    2009-01-01

    One of the crucial steps in the second generation high temperature superconducting wire program was development of the buffer layer architecture. The architecture designed at the Superconductivity Technology Center at Los Alamos National Laboratory consists of several oxide layers wherein each layer plays a specific role, namely: nucleation layer, diffusion barrier, biaxially textured template, and an intermediate layer with a good match to the lattice parameter of superconducting Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} (YBCO) compound. This report demonstrates how a wide range of ion beam analysis techniques (SIMS, RBS, channeling, PIXE, PIGE, NRA, ERD) was employed for analysis of each buffer layer and the YBCO films. These results assisted in understanding of a variety of physical processes occurring during the buffet layer fabrication and helped to optimize the buffer layer architecture as a whole.

  11. Development Status of AMSC Amperium® Wire

    NASA Astrophysics Data System (ADS)

    Fleshler, S.; DeMoranville, K.; Gannon, J., Jr.; Li, X.; Podtburg, E.; Rupich, M. W.; Sathyamurthy, S.; Thieme, C. L. H.; Tucker, D.; Whitman, L.

    2014-05-01

    AMSC produces Second Generation (2G) HTS wire for utility power applications as well as coil, motor and generator solutions. In this paper, various types of AMSC's Amperium® wire suitable to power cables, fault current limiters and coils are reviewed. In addition, recently developed performance-improvements in amperage, reduced ac power loss and mechanical properties are summarized. The introduction of thicker HTS layers coupled with optimized heat treatments to enhance critical current density dramatically improve both cable and coil wire current-carrying capability. A non-magnetic RABiTSTM substrate has now been developed to the point where it is compatible with the manufacturing process and capable of sustaining large critical currents. Finally, the ability of Amperium® wires to withstand cable-winding stresses, and to exhibit the high transverse c-axis strength critical to the reliability of the wire in coils, are discussed.

  12. HTS High Gradient Magnetic Separation system

    SciTech Connect

    Daugherty, M.A.; Coulter, J.Y.; Hults, W.L.

    1996-09-01

    We report on the assembly, characterization and operation of a high temperature superconducting (HTS) magnetic separator. The magnet is made of 624 m of Silver/BSCCO superconducting wire and has overall dimensions of 18 cm OD, 15.5 cm height and 5 cm ID. The HTS current leads are designed to operate with the warm end at 75 K and the cold end cooled by a two stage Gifford-McMahon cryocooler. The upper stage of the cryocooler cools the thermal shield and two heat pipe thermal intercepts. The lower stage of the cryocooler cools the HTS magnet and the bottom end of the HTS current leads. The HTS magnet was initially characterized in liquid cryogens. We report on the current- voltage (I-V) characteristics of the HTS magnet at temperatures ranging from 15 to 40 K. At 40 K the magnet can generate a central field of 2.0 T at a current of 120 A.

  13. Large Scale Applications of HTS in New Zealand

    NASA Astrophysics Data System (ADS)

    Wimbush, Stuart C.

    New Zealand has one of the longest-running and most consistently funded (relative to GDP) programmes in high temperature superconductor (HTS) development and application worldwide. As a consequence, it has a sustained breadth of involvement in HTS technology development stretching from the materials discovery right through to burgeoning commercial exploitation. This review paper outlines the present large scale projects of the research team at the newly-established Robinson Research Institute of Victoria University of Wellington. These include the construction and grid-based testing of a three-phase 1 MVA 2G HTS distribution transformer utilizing Roebel cable for its high-current secondary windings and the development of a cryogen-free conduction-cooled 1.5 T YBCO-based human extremity magnetic resonance imaging system. Ongoing activities supporting applications development such as low-temperature full-current characterization of commercial superconducting wires and the implementation of inductive flux-pump technologies for efficient brushless coil excitation in superconducting magnets and rotating machines are also described.

  14. 1998 wire development workshop proceedings

    SciTech Connect

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  15. A Test of HTS Power Cable in a Sweeping Magnetic Field

    SciTech Connect

    Piekarz, H.; Hays, S.; Blowers, J.; Shiltsev, V.; /Fermilab

    2011-11-29

    Short sample HTS power cable composed of multiple 344C-2G strands and designed to energize a fast-cycling dipole magnet was exposed to a sweeping magnetic field in the (2-20) T/s ramping rate. The B-field orientation toward the HTS strands wide surface was varied from 0{sup 0} to 10{sup 0}, in steps of 1{sup 0}. The test arrangement allowed measurement of the combined hysteresis and eddy current power losses. For the validity of these measurements, the power losses of a short sample cable composed of multiple LTS wire strands were also performed to compare with the known data. The test arrangement of the power cable is described, and the test results are compared with the projections for the eddy and hysteresis power losses using the fine details of the test cable structures.

  16. Development of HTS Magnet for Rotating Gantry

    NASA Astrophysics Data System (ADS)

    Tasaki, Kenji; Koyanagi, Kei; Takayama, S. Shigeki; Ishii, Yusuke; Kurusu, Tsutomu; Amemiya, Naoyuki; Ogitsu, Toru; iwata, Yoshiyuki; Noda, Koji

    The effectiveness of heavy-ion radiotherapy for cancer treatment has been recognized by medical experts and the public. However, due to the large size of the equipment, this therapy has not been widely adopted. In particular, the rotating gantries used to irradiate patients with the heavy-ion beams from any direction may be as heavy as 600 tons in our estimation. By employing high-temperature superconducting (HTS) wires in these rotating gantries and increasing the magnetic field generated by the deflecting coils, the total weight of the rotating gantry can be reduced to around the weight of those used for proton radiotherapy. A project for developing an HTS deflecting magnet for heavy-ion radiotherapy has been underway since 2013, supported by the Japanese Ministry of Economy, Trade and Industry (METI) and the Japan Agency for Medical Research and Development (AMED). The aim of this project is to develop fundamental technologies for designing and fabricating HTS deflecting magnets, such as irregular magnetic field estimating techniques, design technology for HTS magnets, high-precision HTS coil winding technology, AC loss estimating techniques, and thermal runaway estimating techniques and to fabricate a small model of an HTS deflecting magnet and evaluate its performance. In this paper, the project's progress will be described.

  17. Development of a brushless HTS exciter for a 10 kW HTS synchronous generator

    NASA Astrophysics Data System (ADS)

    Bumby, Chris W.; Badcock, Rodney A.; Sung, Hae-Jin; Kim, Kwang-Min; Jiang, Zhenan; Pantoja, Andres E.; Bernardo, Patrick; Park, Minwon; Buckley, Robert G.

    2016-02-01

    HTS synchronous generators, in which the rotor coils are wound from high-T c superconducting wire, are exciting attention due to their potential to deliver very high torque and power densities. However, injection of the large DC currents required by the HTS rotor coils presents a technical challenge. In this paper we discuss the development of a brushless HTS exciter which operates across the cryostat wall to inject a superconducting DC current into the rotor coil circuit. This approach fundamentally alters the thermal load upon the cryogenic system by removing the need for thermally inefficient normal-conducting current leads. We report results from an experimental laboratory device and show that it operates as a constant voltage source with an effective internal resistance. We then discuss the design of a prototype HTS-PM exciter based on our experimental device, and describe its integration with a demonstration HTS generator. This 200 RPM, 10 kW synchronous generator comprises eight double pancake HTS rotor coils which are operated at 30 K, and are energised to 1.5 T field through the injection of 85 A per pole. We show how this excitation can be achieved using an HTS-PM exciter consisting of 12 stator poles of 12 mm YBCO coated-conductor wire and an external permanent magnet rotor. We demonstrate that such an exciter can excite the rotor windings of this generator without forming a thermal-bridge across the cryostat wall. Finally, we provide estimates of the thermal load imposed by our prototype HTS-PM exciter on the rotor cryostat. We show that duty cycle operation of the device ensures that this heat load can be minimised, and that it is substantially lower than that of equivalently-rated conventional current leads.

  18. Bi-2223/Ag HTS coil magnetic field properties for magnet and bias winding

    NASA Astrophysics Data System (ADS)

    Jin, J. X.; Grantham, C.; Liu, H. K.; Dou, S. X.

    1997-08-01

    Ag-clad (Bi,Pb)2Sr2Ca2Cu3O10+x high-Tc supercondicting (HTS) multifilament wire, is used to prepare a HTS coil. The magnetic field behaviour of the HTS coil is studied with respect to its critical current and magnetic field properties. The anisotropic HTS wire has strong magnetic field dependent critical current, which causes critical current degradation when used in the form of a coil. The HTS coil magnetic field is measured and its distribution is investigated. The experimental results and analysis provide basic information for the design of a magnet or bias winding with the Ag-clad (Bi,Pb)2Sr2Ca2Cu3O10+x HTS wire.

  19. Commercialization of Medium Voltage HTS Triax TM Cable Systems

    SciTech Connect

    Knoll, David

    2012-12-31

    The original project scope that was established in 2007 aimed to install a 1,700 meter (1.1 mile) medium voltage HTS Triax{TM} cable system into the utility grid in New Orleans, LA. In 2010, however, the utility partner withdrew from the project, so the 1,700 meter cable installation was cancelled and the scope of work was reduced. The work then concentrated on the specific barriers to commercialization of HTS cable technology. The modified scope included long-length HTS cable design and testing, high voltage factory test development, optimized cooling system development, and HTS cable life-cycle analysis. In 2012, Southwire again analyzed the market for HTS cables and deemed the near term market acceptance to be low. The scope of work was further reduced to the completion of tasks already started and to testing of the existing HTS cable system in Columbus, OH. The work completed under the project included: • Long-length cable modeling and analysis • HTS wire evaluation and testing • Cable testing for AC losses • Optimized cooling system design • Life cycle testing of the HTS cable in Columbus, OH • Project management. The 200 meter long HTS Triax{TM} cable in Columbus, OH was incorporated into the project under the initial scope changes as a test bed for life cycle testing as well as the site for an optimized HTS cable cooling system. The Columbus cable utilizes the HTS TriaxTM design, so it provided an economical tool for these of the project tasks.

  20. Test Results for a 25 Meter Prototype Fault Current Limiting Hts Cable for Project Hydra

    NASA Astrophysics Data System (ADS)

    Rey, C. M.; Duckworth, R. C.; Demko, J. A.; Ellis, A.; James, D. R.; Gouge, M. J.; Tuncer, E.

    2010-04-01

    The Oak Ridge National Laboratory (ORNL) has tested a 25-m long prototype High Temperature Superconducting (HTS) cable with inherent Fault-Current Limiting (FCL) capability at its HTS cable test facility. The HTS-FCL cable and terminations were designed and fabricated by Ultera, which is a joint venture between Southwire and nkt cables. System integration and HTS wire were provided by American Superconductor Corporation who was the overall team leader of the project. The ultimate goal of the 25-m HTS-FCL cable test program was to verify the design and ensure the operational integrity for the eventual installation of a ˜200-m fully functional HTS-FCL cable in the Consolidated Edison electric grid located in downtown New York City. The 25-m HTS-FCL cable consisted of a three-phase (3-Φ) HTS Triax™ design with a cold dielectric between the phases. The HTS-FCL cable had an operational voltage of 13.8 kV phase-to-phase (7967 V phase-to-ground) and an operating current of 4000 Arms per phase, which is the highest operating current to date of any HTS cable. The 25-m HTS-FCL cable was subjected to a series of cryogenic and electrical tests. Test results from the 25-m HTS-FCL cable are presented and discussed.

  1. Review of activities in USA on HTS materials

    SciTech Connect

    Peterson, D.E.

    1995-02-01

    Rapid progress in attaining practical applications of High Temperature Superconductors (HTS) has been made since the discovery of these new materials. Many critical parameters influencing HTS powder synthesis and wire processing have been identified through a combination of fundamental exploration and applied research. The complexity of these novel materials with regard to phase behavior and physical properties has become evident as a result of these careful studies. Achieving optimal mechanical and superconducting properties in wires and tapes will require further understanding and synergy among several different technical disciplines. Highlights of efforts towards producing practical superconductors for electric power applications based on rare earth-, bismuth-, and thallium-based systems are reviewed.

  2. HTS thin films: Passive microwave components and systems integration issues

    SciTech Connect

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B.

    1994-12-31

    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory`s High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects.

  3. Development of HTS-SQUID Gradiometer with an External HTS Multiturn Thin Film Pickup Coil

    NASA Astrophysics Data System (ADS)

    Teraoka, M.; Tsukamoto, A.; Adachi, S.; Takai, H.; Tanabe, K.

    Highly-sensitive HTS-SQUIDs are applied to various systems such as eddy-current non-destructive evaluation (NDE) and compact magnetometer systems. To avoid unstable operation of the SQUID due to an excitation field, a flux transformer made of normal Cu wire is used to separate the pickup coil and SQUID. However, the resistance of the flux transformer generates thermal noise and reduces the signal bandwidth at low frequencies. In this study, we investigate use of a superconducting flux transformer with resistive connections (SFTR). The SFTR consists of pickup and input coils made of HTS thin films. The two coils are connected by using an HTS coated conductor. The input coil is stacked on an HTS thin film gradiometer. From the measured results of resistances of the connections between each coil and the coated conductor, it was found that the resistance of bonding wire was a dominant component. The estimated resistance of the SFTR was 7.2 mΩ, corresponding to a lower cut-off frequency of 11.7 Hz.

  4. Test Results For a 25-m Prototype Fault Current Limiting HTS Cable for Project Hydra

    SciTech Connect

    Rey, Christopher M; Duckworth, Robert C; Demko, Jonathan A; Ellis, Alvin R; Gouge, Michael J; James, David Randy; Tuncer, Enis

    2010-01-01

    The Oak Ridge National Laboratory (ORNL) has tested a 25-m long prototype High Temperature Superconducting (HTS) cable with inherent Fault-Current Limiting (FCL) capability at its recently upgraded HTS cable test facility in Oak Ridge, TN. The HTS-FCL cable and terminations were designed and fabricated by Ultera, which is a joint venture of Southwire and nkt cables with FCL features and HTS wire provided by American Superconductor Corporation. The overall project is sponsored by the U.S. Department of Homeland Security. The ultimate goal of the 25-m HTS-FCL cable test program was to verify the design and ensure the operational integrity for the eventual installation of a ~ 200-m fully functional HTS-FCL cable in the Consolidated Edison electric grid located in downtown New York City. The 25-m HTS-FCL cable consisted of a three-phase (3- ) Triax design with a cold dielectric between the phases. The HTS-FCL cable had an operational voltage of 13.8 kV phase-to-phase and an operating current of 4000 Arms per phase, which is the highest operating current to date of any HTS cable. The 25-m HTS-FCL cable was subjected to a series of cryogenic and electrical tests. Test results from the 25-m HTS-FCL cable are presented and discussed.

  5. Calibration of a HTS Based LOX 400 mm Level Sensor

    NASA Astrophysics Data System (ADS)

    Karunanithi, R.; Jacob, S.; Nadig, D. S.; Prasad, M. V. N.; Gour, Abhay S.; Pankaj, S.; Gowthaman, M.; Sudharshan, H.

    The measurement of the cryogen level in a cryostage of space crafts is crucial. At the same time the weight of the sensor should be small as it affects the payload fraction of the space craft. An attempt to develop a HTS based level sensor of 400 mm for Liquid Oxygen (LOX) measurement was made. In the initial phase of testing, loss of superconductivity of HTS wire in LOX inside a cryostat was noticed. Thus, a new four wall cryostat was designed to have a stable LOX level to provide thermal stability to the HTS based LOX sensor. The calibration of the developed sensor was carried out against capacitance level sensor which was pre calibrated using diode array to verify its linearity and performance for different current excitation levels. The calibrations were carried out without heater wires. The automatic data logging was accomplished using a program developed in LabVIEW 11.0.

  6. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System

    NASA Astrophysics Data System (ADS)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  7. Design and Development of a 100 MVA HTS Generator for Commercial Entry

    SciTech Connect

    2007-06-07

    In 2002, General Electric and the US Department of Energy (DOE) entered into a cooperative agreement for the development of a commercialized 100 MVA generator using high temperature superconductors (HTS) in the field winding. The intent of the program was to: (1) identify and develop technologies that would be needed for such a generator; (2) develop conceptual designs for generators with ratings of 100 MVA and higher using HTS technology; (3) perform proof of concept tests at the 1.5 MW level for GE's proprietary warm iron rotor HTS generator concept; and (4) design, build, and test a prototype of a commercially viable 100 MVA generator that could be placed on the power grid. This report summarizes work performed during the program and is provided as one of the final program deliverables. The design for the HTS generator was based on GE's warm iron rotor concept in which a cold HTS coil is wound around a warm magnetic iron pole. This approach for rotating HTS electrical machinery provides the efficiency benefits of the HTS technology while addressing the two most important considerations for power generators in utility applications: cost and reliability. The warm iron rotor concept uses the least amount of expensive HTS wire compared to competing concepts and builds on the very high reliability of conventional iron core stators and armature windings.

  8. An HTS Machine Laboratory Prototype

    NASA Astrophysics Data System (ADS)

    Mijatovic, N.; Jensen, B. B.; Træholta, C.; Abrahamsen, A. B.; Zermeno, V. M. R.; Pedersen, N. F.

    This paper describes Superwind HTS machine laboratory setup which is a small scale HTS machine designed and build as a part of the efforts to identify and tackle some of the challenges the HTS machine design may face. One of the challenges of HTS machines is a Torque Transfer Element (TTE) which is in this design integral part of the cryostat. The discussion of the requirements for the TTE supported with a simple case study comparing a shaft and a cylinder as candidates for TTE are presented. The discussion resulted with a cylinder as a TTE design rated for a 250Nm and with more then 10 times lower heat conduction compared to a shaft. The HTS machine was successfully cooled to 77K and tests have been performed. The IV curves of the HTS field winding employing 6 HTS coils indicate that two of the coils had been damaged. The maximal value of the torque during experiments of 78Nm was recorded. Loaded with 33%, the TTE performed well and showed suffcient margin for future experiments.

  9. AC Loss Measurements on a 2G YBCO Coil

    SciTech Connect

    Rey, Christopher M; Duckworth, Robert C; Schwenterly, S W

    2011-01-01

    The Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to continue development of HTS power transformers. For compatibility with the existing power grid, a commercially viable HTS transformer will have to operate at high voltages in the range of 138 kV and above, and will have to withstand 550-kV impulse voltages as well. Second-generation (2G) YBCO coated conductors will be required for an economically-competitive design. In order to adequately size the refrigeration system for these transformers, the ac loss of these HTS coils must be characterized. Electrical AC loss measurements were conducted on a prototype high voltage (HV) coil with co-wound stainless steel at 60 Hz in a liquid nitrogen bath using a lock-in amplifier technique. The prototype HV coil consisted of 26 continuous (without splice) single pancake coils concentrically centered on a stainless steel former. For ac loss measurement purposes, voltage tap pairs were soldered across each set of two single pancake coils so that a total of 13 separate voltage measurements could be made across the entire length of the coil. AC loss measurements were taken as a function of ac excitation current. Results show that the loss is primarily concentrated at the ends of the coil where the operating fraction of critical current is the highest and show a distinct difference in current scaling of the losses between low current and high current regimes.

  10. Thermal management of long-length HTS cable systems

    SciTech Connect

    Demko, Jonathan A; Hassenzahl, William V

    2011-01-01

    Projections of electric power production suggest a major shift to renewables, such as wind and solar, which will be in remote locations where massive quantities of power are available. One solution for transmitting this power over long distances to load centers is direct current (dc), high temperature superconducting (HTS) cables. Electric transmission via dc cables promises to be effective because of the low-loss, highcurrent- carrying capability of HTS wire at cryogenic temperatures. However, the thermal management system for the cable must be carefully designed to achieve reliable and energyefficient operation. Here we extend the analysis of a superconducting dc cable concept proposed by the Electric Power Research Institute (EPRI), which has one stream of liquid nitrogen flowing in a cryogenic enclosure that includes the power cable, and a separate return tube for the nitrogen. Refrigeration stations positioned every 10 to 20 km cool both nitrogen streams. Both go and return lines are contained in a single vacuum/cryogenic envelope. Other coolants, including gaseous helium and gaseous hydrogen, could provide potential advantages, though they bring some technical challenges to the operation of long-length HTS dc cable systems. A discussion of the heat produced in superconducting cables and a system to remove the heat are discussed. Also, an analysis of the use of various cryogenic fluids in long-distance HTS power cables is presented.

  11. HTS magnetometers for fetal magnetocardiography.

    PubMed

    Li, Z; Wakai, R T; Paulson, D N; Schwartz, B

    2004-01-01

    High temperature superconducting (HTS) SQUID sensors have adequate magnetic field sensitivity for adult magnetocardiography (MCG) measurements, but it remains to be seen how well they perform for fetal MCG (fMCG), where the heart signals are typically ten times smaller than the adult signals. In this study, we assess the performance of a prototype HTS SQUID system; namely, a three-SQUID gradiometer formed from three vertically-aligned HTS dc-SQUID magnetometers integrated into a fiberglass liquid nitrogen dewar of diameter 12.5 cm and height 30 cm. Axial gradiometers with short or long baseline, as well as a second order gradiometer, can be formed out of these magnetometers via electronic subtraction. The calibrated magnetometer sensitivities at 1 kHz are 109 fT/square root of Hz, 155 fT/square root of Hz and 51 fT/square root of Hz. Direct comparison is made between the HTS SQUID system and a LTS SQUID system by making recordings with both systems during the same session on adult and fetal subjects. Although the fMCG could be resolved with the HTS SQUID system in most near-term subjects, the signal-to-noise ratio was relatively low and the system could not be operated outside of a shielded room. PMID:16012655

  12. Low Cost Fabrication of 2G Wires for AC Applications

    SciTech Connect

    Kodenkandath, T.; List, F.A., III

    2005-09-15

    Ink-jet printing has been demonstrated as an adaptable technology for printing YBCO filaments using a Metal Organic (MO) YBCO precursor. The technology was demonstrated using AMSC's proprietary metal organic TFA-based YBCO precursor and a commercial piezoelectric print-head on RABiTS templates. Filaments with a width of 100 um and spacing of 200 um were successfully printed, decomposed and processed to YBCO. Critical currents of {approx} 200 A/cm-w were achieved in a series of filaments with a 2 mm width. The single nozzle laboratory printer used in the Phase 1 program is capable of printing {approx} 100 um wide single filaments at a rate of 8-10 cm/sec. The electrical stabilization of filaments with a Ag ink was also evaluated using ink-jet printing. The overall objective of the Phase 1 Project was the evaluation and demonstration of inkjet-printing for depositing YBCO filaments on textured templates (RABiTS, IBAD, ISD, etc. substrates) with properties appropriate for low loss ac conductors. Goals of the Phase 1 program included development of an appropriate precursor ink, demonstration of the printing process, processing and characterization of printed YBCO filaments and evaluation of the process for further development.

  13. Current-Voltage Measurements in a 2G YBCO Coil

    SciTech Connect

    Rey, Christopher M; Duckworth, Robert C

    2007-01-01

    Abstract- The Oak Ridge National Laboratory in collaboration with American Superconductor Corporation and Cryomagnetics Inc. has designed, fabricated, and tested an HTS coil wound with second-generation (2G) YBCO coated conductor tape. The purpose of the HTS coil project was to study the quench characteristics in 2G YBCO coils at 77 K and lower temperatures (~ 30-45 K). These quench characteristics were investigated in both a pool boiling LN2 environment and in a conduction cooled configuration at ~ 30 K and 45 K. Transport critical current (Ic) measurements taken on the very first thermal cycle of the YBCO coil in pool boiling LN2 showed an Ic ~ 31 A corresponding to a central magnetic field of 0.32 T. The measured Ic value was consistent with the calculated value using the calculated maximum perpendicular B-field component and the measured short sample Ic at 77 K. Subsequent Ic measurements taken in the conduction cooling configuration at 34 K and 45 K, showed a steady-state Ic ~ 45-49 A and 38-44 A, respectively. These Ic values were significantly lower than the calculated value assuming a literature derived temperature dependent Ic of the 2G YBCO tape. A steady degradation was observed in the Ic of the coil with each successive thermal cycle. In addition, the coil was also pulse tested up to 1-T in non-steady state transient conditions and for ramp rates varying between 0.01 and 5 A/s. The problems and limitations encountered during testing of this new type of 2G coil is briefly discussed.

  14. Race-track coils for a 3 MW HTS ship motor

    NASA Astrophysics Data System (ADS)

    Ueno, E.; Kato, T.; Hayashi, K.

    2014-09-01

    Since the discovery of high-temperature superconductivity (HTS), Sumitomo Electric has been developing silver-sheathed Bi2223 superconducting wire and products. Ship propulsion motors are one of the most promising applications of HTS. Sumitomo Electric Industries, Ltd. (SEI) has recently manufactured 24 large racetrack coils, using 70 km long DI-BSCCO wires, for use in a 3 MW HTS motor developed by Kawasaki Heavy Industries, Ltd. (KHI). The 3 MW HTS motor, using our newly developed racetrack coils, has successfully passed the loading test. It is particularly important that the HTS field coils used in ship propulsion motors can withstand the expansive forces repeatedly applied to them. As racetrack type coils have straight sections, the support mechanism they require to withstand expansive forces is very different from that of circular coils. Therefore, we ran tests and obtained the basic data to evaluate the 20-year durability of racetrack coils against the repeatedly applied expansive forces expected in domestic ship propulsion motors.

  15. Development of HTS magnets for application

    NASA Astrophysics Data System (ADS)

    Hatanaka, Kichiji; Fukuda, Mitsuhiro; Yorita, Tetsuhiko; Ueda, Hiroshi; Yasuda, Yuusuke; Kamakura, Keita; Morita, Yoshiya; Yamane, Hiroyoshi; Kawaguchi, Takeo

    2014-09-01

    We have been developing magnets utilizing high-temperature superconducting (HTS) wires for this decade. We built three model magnets, a mirror coil for an ECR ion source, a set of coils for a scanning magnet and a super-ferric dipole magnet to generate magnetic field of 3 T. They were excited with AC/pulse currents as well as DC currents. Recently we fabricated a cylindrical magnet for a practical use which polarizes ultracold neutrons (UCN). It consists of 10 double pancakes and the field strength at the center is higher than 3.5 T which is required to fully polarize 210 neV neutrons. It was successfully cooled and excited. The magnet was used to polarized UCN generated by the RCNP-KEK superthermal UCN source, One dipole magnet has been manufactured which is used as a switching magnet after the RCNP ring cyclotron and is excited by pulse currents. It becomes possible to deliver beams to two experimental halls by time sharing. Their designs and performances are presented in the talk.

  16. TOPICAL REVIEW: Current status of high-Tc wire

    NASA Astrophysics Data System (ADS)

    Vase, Per; Flükiger, René; Leghissa, Martino; Glowacki, Bartek

    2000-07-01

    This paper is the result of the work of a SCENET (The European Network for Superconductivity) material working group's efforts on giving values for present and future expected performance of high-temperature superconducting (HTS) wires and tapes. The purpose of the work is to give input to the design of HTS applications like power cables, motors, current leads, magnets, transformers and generators. The current status performance values are supposed to be used in the design of today's prototypes and the future values for the design of fully commercial HTS applications of the future. We focus on what is expected to be the relevant parameters for HTS application design. The most successful technique by far for making HTS tapes has been on the (Bi, Pb)2Sr2Ca2Cu3Ox (Bi-2223) material by the powder-in-tube (PIT) technique and this paper therefore focuses on giving the current status and expected future performance for Bi-2223 tapes.

  17. Electrical performance analysis of HTS synchronous motor based on 3D FEM

    NASA Astrophysics Data System (ADS)

    Baik, S. K.; Kwon, Y. K.; Kim, H. M.; Lee, J. D.; Kim, Y. C.; Park, G. S.

    2010-11-01

    A 1-MW class superconducting motor with High-Temperature Superconducting (HTS) field coil is analyzed and tested. This machine is a prototype to make sure applicability aimed at generator and industrial motor applications such as blowers, pumps and compressors installed in large plants. This machine has the HTS field coil made of Bi-2223 HTS wire and the conventional copper armature (stator) coils cooled by water. The 1-MW class HTS motor is analyzed by 3D electromagnetic Finite Element Method (FEM) to get magnetic field distribution, self and mutual inductance, and so forth. Especially excitation voltage (Back EMF) is estimated by using the mutual inductance between armature and field coils and compared with experimental result. Open and short circuit tests were conducted in generator mode while a 1.1-MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests and also compared with the analysis results from FEM.

  18. Study on stabilization and quench protection of coils wound of HTS coated conductors considering quench origins - Proposal of criteria for stabilization and quench protection

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Osami; Fujimoto, Yasutaka; Takao, Tomoaki

    2014-09-01

    It has been considered that HTS coils are hard to be quenched because of high quench energy due to high critical temperature and high specific heat of HTS wires. Therefore, attention to quench protection was not much paid. However, HTS coils still have possibility to be quenched during operation by mainly the following two origins, (a) presence of non-recoverable local defects in the conductors and (b) temperature rise of long part of the conductor. Actually, severe quench accidents, such as burning coils, are occurring in various places as scales of HTS increased. Purposes of this paper are to study on behaviors of normal zone and hot spot temperature of wires during quench detect/energy dump sequence and to find criteria for the stability and quench protection. In the paper, criteria are proposed for stability and quench protection of HTS coils. A criterion for the stability is that a coil can be operated stably without a quench against defects in coil windings and that for quench protection is that a coil can be safely protected from damages caused by a quench due to temperature rise of long part of coil wires. The criteria are used as design rules for HTS coils.

  19. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin

    2015-11-01

    High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  20. Status and Progress of a Fault Current Limiting Hts Cable to BE Installed in the con EDISON Grid

    NASA Astrophysics Data System (ADS)

    Maguire, J.; Folts, D.; Yuan, J.; Henderson, N.; Lindsay, D.; Knoll, D.; Rey, C.; Duckworth, R.; Gouge, M.; Wolff, Z.; Kurtz, S.

    2010-04-01

    In the last decade, significant advances in the performance of second generation (2G) high temperature superconducting wire have made it suitable for commercially viable applications such as electric power cables and fault current limiters. Currently, the U.S. Department of Homeland Security is co-funding the design, development and demonstration of an inherently fault current limiting HTS cable under the Hydra project with American Superconductor and Consolidated Edison. The cable will be approximately 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The underground cable will be installed and energized in New York City. The project is led by American Superconductor teamed with Con Edison, Ultera (Southwire and nkt cables joint venture), and Air Liquide. This paper describes the general goals, design criteria, status and progress of the project. Fault current limiting has already been demonstrated in 3 m prototype cables, and test results on a 25 m three-phase cable will be presented. An overview of the concept of a fault current limiting cable and the system advantages of this unique type of cable will be described.

  1. Electrical and Mechanical Characterizations of Nanocomposite Insulation for HTS Systems

    SciTech Connect

    Walsh, J K; Fabian, Paul E; Hooker, M W; Lizotte, M J; Tuncer, Enis; Sauers, Isidor

    2011-01-01

    As HTS wire technology continues to advance, a critical need has emerged for dielectric materials that can be used in superconducting components such as terminations, fault current limiters, transformers, and motors. To address this need, CTD is developing nanocomposite insulations based on epoxy and benzoxazine chemistries. Depending on part geometry, some processing methods are more efficient than others. For this reason, CTD is investigating both fiber-reinforced and filled resin systems for use in these applications. A thorough set of electrical testing including AC breakdown, breakdown as a function of thickness, and flashover shows promising performance characteristics. In addition, mechanical testing (short beam shear and compression) indicate that these new materials to have as good or better performance than G10.

  2. Reliable commercial high temperature superconductor wire for space missions

    NASA Astrophysics Data System (ADS)

    Masur, Lawrence J.; Kellers, Jürgen

    2002-01-01

    High Temperature Superconductors (HTS) are widely considered for large power applications used by industrial end-users and electric utilities. The prominent application areas include power transmission cables, electric motors, generators, current limiters, and transformers. The promising design concepts rely on HTS to be a flexible composite conductor, robust enough to handle an industrial environment. Currently, the most advanced manufacturing method for flexible composite conductor is the Bi-2223-OPIT, used by many organizations. Significant advances in HTS technology have been made, with average critical current performance of 130 A at 77 K which is equivalent to an engineering current density of 15.1 kA/cm2. During the past 18 months, American Superconductor increased its HTS wire manufacturing capacity from 250 km to 500 km per year to meet the increased demand for development and demonstrations. While this level of quality and quantity enables impressive demonstrations of prototype power applications, it does not fully meet the requirements of commercial economic viability. Therefore, to further decrease wire price to the range of $50/kA-m, American Superconductor is currently siting a new facility dedicated to the manufacturing of Bi-OPIT-2223 wire in quantities of 10,000 km per year. The purpose of this paper is to examine the functional, reliable, and economical aspects of today's HTS materials with an eye towards application in space missions. .

  3. Basic Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; And Others

    This module is the first in a series of three wiring publications; it serves as the foundation for students enrolled in a wiring program. It is a prerequisite to either "Residential Wiring" or "Commercial and Industrial Wiring." The module contains 16 instructional units that cover the following topics: occupational introduction; general safety;…

  4. Electrical parameter evaluation of a 1 MW HTS motor via analysis and experiments

    NASA Astrophysics Data System (ADS)

    Baik, S. K.; Kwon, Y. K.; Kim, H. M.; Kim, S. H.; Lee, J. D.; Kim, Y. C.; Park, H. J.; Kwon, W. S.; Park, G. S.

    2009-06-01

    A 1 MW class HTS (high-temperature superconducting) synchronous motor has been developed. Design concerns of the developed motor are focused on smaller machine size and higher efficiency than conventional motors or generators with the same rating simultaneously reducing expensive Bi-2223 HTS wire which is used for superconducting field coil carrying the operating current around 30 K (-243 °C). Influence of an important parameter, synchronous reactance, has been analyzed on the machine performances such as voltage variation and output power during motor and generator operation. The developed motor was also analyzed by three-dimensional electromagnetic FEM (finite element method) to get magnetic field distribution, inductance, electromagnetic stress and so forth. This motor is aimed to be utilized for industrial application such as large motors operating in large plants. The HTS field coil of the developed motor is cooled by way of Neon thermosiphon mechanism and the stator (armature) coil is cooled by water through hollow copper conductor. This paper also describes evaluation of some electrical parameters from performance test results which were obtained at steady state in generator and motor mode of our HTS machine.

  5. Operating characteristics of contactless power transfer for electric vehicle from HTS antenna to normal conducting receiver

    NASA Astrophysics Data System (ADS)

    Chung, Yoon Do; Lee, Chang Young; Jo, Hyun Chul; Park, Young Gun; Yim, Seong Woo

    2014-09-01

    As contactless power transfer (CPT) technology using strongly coupled electromagnetic resonators is a recently explored technique to realize the large power delivery and storage without any cable or wire, this technique is required for diffusion of electric vehicles (EVs) since it makes possible a convenient charging system. Typically, since the normal conducting coils are used as a transmitting coil in the CPT system, there is limited to deliver the large power promptly. From this reason, we proposed the combination CPT technology with HTS transmitting antenna, it is called as, superconducting contactless power transfer for EV (SUCPT4EV) system. As the HTS coil has an enough current density and high quality factor Q value, it can deliver a mass amount of electric energy and improved efficiency in spite of a small scale antenna. The SUCPT4EV system has been expected as a reasonable option to improve the transfer efficiency of large electric power. In this study, we examined the improvement of transmission efficiency and properties for HTS transmitted antenna coils within 40 cm distance at radio frequency (RF) generator of 60 W, 370 kHz. In addition, we achieved impedance matching conditions for different material coils between HTS and normal conductors.

  6. Electronic gradiometry for NDE in an unshielded environment with stationary and moving HTS SQUIDs

    NASA Astrophysics Data System (ADS)

    Carr, C.; Cochran, A.; Kuznik, J.; McKirdy, D. McA.; Donaldson, G. B.

    Difficulties in the fabrication of multilayer high-temperature superconductor (HTS) devices have led to recent interest in the use of simpler HTS SQUID magnetometers in electronic gradiometers. One application of such systems is electromagnetic non-destructive evaluation. We have developed a prototype two-SQUID system and we present recent results in this paper. We first demonstrate the level of interference suppression by comparing magnetometer and gradiometer signals. Then we present several results taken conventionally with the HTS SQUIDs stationary above moving specimens and, for the first time, with the SQUIDs unshielded in motion above stationary specimens. The specimens comprise a pair of wires in a return current loop as a calibration source, and an aircraft-grade aluminium plate with fine slits mimicking fatigue cracks, first exposed and then covered with an additional aluminium sheet to simulate internal flaws. These results are an important, though by no means final, step towards practical non-destructive evaluation of real test subjects with HTS SQUIDs.

  7. Development of Non-destructive Evaluation System Using an HTS-SQUID Gradiometer with an External Pickup Coil

    NASA Astrophysics Data System (ADS)

    Kawano, J.; Kawauchi, S.; Ishikawa, F.; Tanabe, K.

    We are developing a new eddy-current non-destructive evaluation (NDE) system using a high-temperature superconducting quantum interference device (HTS-SQUID) gradiometer with the aim of applying it to power plants. Electric power facilities such as ducts and vessels are generally untransportable because of their size, and thus it is difficult to apply a conventional SQUID NDE system. The new NDE system employs an external Cu pickup coil which is supposed to be driven flexibly by a robot arm at room temperature and an HTS-SQUID chip which is placed in a magnetically shielded vessel. In the present research, we investigated the performance of an HTS-SQUID sensor connected with external pickup coils before mounting them to a robot arm. By varying the Cu coil conditions such as their sizes, the number of turns, and the diameter of wire, we qualitatively evaluated the frequency dependence of the effective area and the cutoff frequency.

  8. AC loss measurements in HTS coil assemblies with hybrid coil structures

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenan; Long, Nicholas J.; Staines, Mike; Badcock, Rodney A.; Bumby, Chris W.; Buckley, Robert G.; Amemiya, Naoyuki

    2016-09-01

    Both AC loss and wire cost in coil windings are critical factors for high temperature superconductor (HTS) AC machinery applications. We present AC loss measurement results in three HTS coil assemblies at 77 K and 65 K which have a hybrid coil structure comprising one central winding (CW) and two end windings (EWs) wound with ReBCO and BSCCO wires with different self-field I c values at 77 K. All AC loss results in the coil assemblies are hysteretic and the normalized AC losses in the coil assemblies at different temperatures can be scaled with the I c value of the coil assemblies. The normalised results show that AC loss in a coil assembly with BSCCO CW can be reduced by using EWs wound with high I c ReBCO wires, whilst further AC loss reduction can be achieved by replacing the BSCCO CW with ReBCO CW. The results imply that a flexible hybrid coil structure is possible which considers both AC loss and wire cost in coil assemblies.

  9. Flux Compression in HTS Films

    NASA Astrophysics Data System (ADS)

    Mikheenko, P.; Colclough, M. S.; Chakalov, R.; Kawano, K.; Muirhead, C. M.

    We report on experimental investigation of the effect of flux compression in superconducting YBa2Cu3Ox (YBCO) films and YBCO/CMR (Colossal Magnetoresistive) multilayers. The flux compression produces positive magnetic moment (m) upon the cooling in a field from above to below the critical temperature. We found effect of compression in all measured films and multilayers. In accordance with theoretical calculations, m is proportional to applied magnetic field. The amplitude of the effect depends on the cooling rate, which suggests the inhomogeneous cooling as its origin. The positive moment is always very small, a fraction of a percent of the ideal diamagnetic response. A CMR layer in contact with HTS decreases the amplitude of the effect. The flux compression weakly depends on sample size, but sensitive to its form and topology. The positive magnetic moment does not appear in bulk samples at low rates of the cooling. Our results show that the main features of the flux compression are very different from those in Paramagnetic Meissner effect observed in bulk high temperature superconductors and Nb disks.

  10. Study of HTS Insert Coils for High Field Solenoids

    SciTech Connect

    Lombardo, Vito; /Fermilab

    2009-09-01

    Fermilab is currently working on the development of high field magnet systems for ionization cooling of muon beams. The use of high temperature superconducting materials (HTS) is being considered for these solenoids using Helium refrigeration. Several studies have been performed on insert coils made of BSCCO-2223 tapes and second generation (2G) YBCO coated conductors, which are tested at various temperatures and at external fields of up to 14 T. Critical current (I{sub c}) measurements of YBCO short samples are presented as a function of bending stress, magnetic field and field orientation with respect to the sample surface. An analytical fit of critical current data as a function of field and field orientation is also presented. Results from several single-layer and double-layer pancake coils are also discussed.

  11. Cryogen-free lkA-class Ic measurement system featuring an 8 T HTS magnet

    NASA Astrophysics Data System (ADS)

    Strickland, N. M.; Hoffmann, C.; Wimbush, S. C.; Pooke, D. M.; Huang, T.; Lazic, Z.; Chamritski, V.; Talantsev, E. F.; Long, N. J.; Tallon, J. L.

    2014-05-01

    We have developed a cryogen-free critical-current (Ic) measuring system comprising a conduction-cooled 8 T HTS magnet and convection-cooled sample, both cooled by commercial cryocoolers. The sample can be rotated and transport currents of up to 800 A delivered with less than 0.5 K temperature rise during the Ic measurement. The system is automated with respect to variations in temperature (30-90 K), field (0-8 T), and field angle (0-360°). We have used this system to measure HTS wire samples, concentrating on metal-organic deposited YBCO on RABiTS substrates. Particular emphasis is given to the evolution of Ic anisotropy with temperature, and the dangers of extrapolating from 77 K to 30 K.

  12. Stability test of conduction-cooled LTS/HTS composite coil

    NASA Astrophysics Data System (ADS)

    Cui, Ying Min; Wang, Yin Shun; Lv, Gang; Pi, Wei

    2016-06-01

    A small LTS/HTS composite coil made of NbTi/Cu and YBCO, with an inner diameter of 80 mm, an outer diameter of 88mm, a height of 50 mm, and an inductance of 5.5 μH, was designed to test its heat disturbance performance in a GM cryocooler. For comparison, a conventional LTS coil of a similar size made of NbTi/Cu wire was also tested. Transport current was applied from 50 A to 700 A at 8 K and 8.5 K, respectively. The two coils’ heat disturbance, minimum quench energy and quench propagation velocity performance were investigated and simulated. The results indicate that the LTS/HTS composite coil shows better thermal stability and is more fit for operation in conductive cryocooler systems compared to LTS coils.

  13. R&D ERL: HTS Solenoid

    SciTech Connect

    Gupta, R.; Muratore, J.; Plate, S.

    2010-01-01

    An innovative feature of the ERL project is the use of a solenoid made with High Temperature Superconductor (HTS) with the Superconducting RF cavity. The HTS solenoid design offers many advantages because of several unique design features. Typically the solenoid is placed outside the cryostat which means that the beam gets significantly defused before a focusing element starts. In the current design, the solenoid is placed inside the cryostat which provides an early focusing structure and thus a significant reduction in the emittance of the electron beam. In addition, taking full advantage of the high critical temperature of HTS, the solenoid has been designed to reach the required field at {approx}77 K, which can be obtained with liquid nitrogen. This significantly reduces the cost of testing and allows a variety of critical pre-tests which would have been prohibitively expensive at 4 K in liquid helium because of the additional requirements of cryostat and associated facilities.

  14. Hybrid Current Lead Design of HTS SMES

    NASA Astrophysics Data System (ADS)

    Ge, T.; Ren, L.; He, Q.; Jiao, F.; Dong, H.; Jin, T.; Zhou, S.

    In application of Superconducting magnetic energy storage device (SMES), current lead represents a key development component. This paper will focus on parameters and structure design of hybrid high-temperature superconductor (HTS) current lead in a SMES with 100 kJ/100 kW class. Based on the theoretical analysis, finite element simulation (FEA) has been used. It studies the thermal influence of variable cross-sectional area, HTS material and the connection between current lead and cryocooler. Some improvements have been proposed to reduce heat losses. At the end of this paper, a whole procedure about hybrid current lead design is given.

  15. Electromagnetic Design of HTS D-shaped Coils for a Toroidal-type Superconducting Magnet

    NASA Astrophysics Data System (ADS)

    Liu, H.; Deng, X.; Ren, L.; Xu, Y.; He, J.; Tang, Y.

    High current and magnetic field are essential for achieving MCF (magnetic confinement fusion). Superconducting materials and technology have unique advantages to achieve high magnetic field and large-current transmission. With the commercialization of 2G HTS tapes, they are paid wide attention to in Tokamak magnet application. In order to investigate the feasibility of applying HTS into Tokamak magnets, a toroidal-type magnet has been designed using YBCO tapes by means of FEM analysis combining with Matlab. The effects of the coil number and coil arrangements on the critical current, the maximum parallel magnetic field, the inductance and the storage capacity of the magnet are analyzed. Based on that, key technological points of the electromagnetic design are discussed.

  16. HTS axial flux induction motor with analytic and FEA modeling

    NASA Astrophysics Data System (ADS)

    Li, S.; Fan, Y.; Fang, J.; Qin, W.; Lv, G.; Li, J. H.

    2013-11-01

    This paper presents a high-temperature superconductor (HTS) axial-flux induction motor, which can output levitation force and torque simultaneously. In order to analyze the character of the force, analytic method and finite element method are adopted to model the motor. To make sure the HTS can carry sufficiently large current and work well, the magnetic field distribution in HTS coil is calculated. An effective method to improve the critical current of HTS coil is presented. Then, AC losses in HTS windings in the motor are estimated and tested.

  17. Residential Wiring.

    ERIC Educational Resources Information Center

    Taylor, Mark

    The second in a series of three curriculum packages on wiring, these materials for a five-unit course were developed to prepare postsecondary students for entry-level employment in the residential wiring trade. The five units are: (1) blueprint reading and load calculations; (2) rough-in; (3) service; (4) trim out and troubleshooting; and (5) load…

  18. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  19. RADIATION RESISTANT HTS QUADRUPOLES FOR RIA.

    SciTech Connect

    GUPTA,R.; ANERELLA,M.; HARRISON,M.; ET AL.

    2004-10-03

    Extremely high radiation, levels with accumulated doses comparable to those in nuclear reactors than in accelerators, and very high heat loads ({approx}15 kw) make the quadrupole magnets in the fragment separator one of the most challenging elements of the proposed Rare Isotope Accelerator (RIA). Removing large heat loads, protecting the superconducting coils against quenching, the long term survivability of magnet components, and in particular, insulation that can retain its functionality in such a harsh environment, are the major challenges associated with such magnets. A magnet design based on commercially available high temperature superconductor (HTS) and stainless steel tape insulation has been developed. HTS will efficiently remove these large heat loads and stainless steel can tolerate these large radiation doses. Construction of a model magnet has been started with several coils already built and tested. This paper presents the basic magnet design, results of the coil tests, the status and the future plans. In addition, preliminary results of radiation calculations are also presented.

  20. Mobile conduction-cooled HTS SMES

    NASA Astrophysics Data System (ADS)

    Ren, L.; Tang, Y.; Li, J.; Shi, J.; Chen, L.; Guo, F.; Fang, J.; Wen, J.

    2010-11-01

    An immovable 35 kJ/7 kW high- Tc superconducting magnetic energy storage (HTS SMES) system had been developed in the Electric Power System Dynamic Simulation Laboratory, Huazhong University of Science and Technology in 2005. In order to adapt for on-site experimental conditions, the mechanical configuration of the magnet is reinforced and the SMES system is assembled in a special container to be freighted to the actual power system for the feasibility study on different applications at different sites. The mobile HTS SMES system had withstood various kinds of poor road surfaces and then arrived at the experimental site on August 18, 2009. In this paper, the reconstructed configuration and the shock absorption of the magnet are presented. The field test results show that the mobile SMES system can operate on the power network at different locations and suppress effectively power fluctuation of the generator terminal.

  1. Cold storage characteristics of mobile HTS magnet

    NASA Astrophysics Data System (ADS)

    Mizuno, Katsutoshi; Miyazaki, Yoshiki; Nagashima, Ken; Kawano, Asumi; Okamura, Tetsuji

    2011-06-01

    A cold storage system specialized in mobile high-temperature superconducting (HTS) magnets (e.g. for magnetically levitated (maglev) vehicles) has been proposed. In this system, a cooling source is detachable and a HTS coil is capable of maintaining superconducting state with its heat capacity. This system allows a considerably lightweight HTS magnet. An apparatus was constructed to evaluate the possibility of using cold storage systems in maglev vehicles. The thermal characteristic of this apparatus was based on a magnet for previous maglev test vehicles [1]. The operational temperature range of the magnet was assumed from 20 K to 50 K. Some experiments indicated that heat conduction by residual gas was not negligible. Especially over 30 K, gas conduction took a large part of heat input. This phenomenon is attributable to reduction of cryopumping effect. However, activated carbon in the apparatus compensates cryopumping effect. A unique heat capacitor was also used to enhance the cold storage effect. Water ice was chosen as a heat capacitor because water ice has a higher heat capacity than metallic materials at cryogenic temperatures. A small amount of water ice also prolonged cryogenic temperature condition. These results indicate 1 day of cold storage is probable in a magnet for maglev vehicles.

  2. Designing HTS coils for magnetic circuits

    SciTech Connect

    Jenkins, R.G.; Jones, H.; Goodall, R.M.

    1996-07-01

    The authors discuss some of the main considerations involved in the design of HTS coils to operate in liquid nitrogen and provide ampere-turns for magnetic circuits in general, and then in particular for a small-scale electromagnetic (i.e, attractive) maglev demonstrator. The most important factor affecting design is the sensitive and strongly anisotropic dependence of HTS tape`s critical current on magnetic field. Any successful design must limit the field in the windings, especially components perpendicular to the tape`s surface (radial components in the case of solenoids), to acceptably low levels such that local critical currents nowhere fall below the operating current. This factor is relevant to the construction of HTS coils for all applications. A second important factor is that the presence of an iron magnetic circuit can greatly alter the flux distribution within the coils from that found when they are in free space. FE modelling has been used to calculate accurate field profiles in proposed designs for comparison with short sample I{sub c}(B) data. They present a design for a maglev demonstrator, illustrating how some of the problems, in particular the reduction of radial field components, may be addressed, and describe its predicted performance.

  3. Progress in development of high capacity magnetic HTS bearings

    NASA Astrophysics Data System (ADS)

    Kummeth, P.; Nick, W.; Neumueller, H.-W.

    2005-10-01

    HTS magnetic bearings are inherently stable without an active feedback system. They provide low frictional losses, no wear and allow operation at high rotational speed without lubrication. So they are very promising for use in motors, generators and turbines. We designed and constructed an HTS radial bearing for use with a 400 kW HTS motor. It consists of alternating axially magnetized permanent magnet rings on the rotor and a segmented YBCO stator. Stator cooling is performed by liquid nitrogen, the temperature of the stator can be adjusted by varying the pressure in the cryogenic vessel. At 68 K maximum radial forces of more than 3.7 kN were found. These results range within the highest radial bearing capacities reported worldwide. The encouraging results lead us to develop a large heavy load HTS radial bearing. Currently a high magnetic gradient HTS bearing for a 4 MVA synchronous HTS generator is under construction.

  4. High output power electric motors with bulk HTS elements

    NASA Astrophysics Data System (ADS)

    Kovalev, L. K.; Ilushin, K. V.; Kovalev, K. L.; Penkin, V. T.; Poltavets, V. N.; Koneev, S. M.-A.; Akimov, I. I.; Gawalek, W.; Oswald, B.; Krabbes, G.

    2003-04-01

    New types of electric machines with the rotors containing bulk HTS (YBCO and Bi-Ag) elements are presented. Different schematics of hysteresis, reluctance, “trapped field” and composed synchronous HTS machines are discussed. The two-dimensional mathematical models describing the processes in such types of HTS machines were developed on the basis of the theoretical analysis of the electrodynamic and hysteresis processes in the single-domain and polycrystal YBCO ceramic samples and plate shape Bi-Ag elements. The test results of the series of hysteresis, reluctance, “trapped field” and composed with permanent magnets HTS motors with output power rating 0.1-18 kW and current frequency 50 and 400 Hz are given. These results show that in the media of liquid nitrogen the specific output power per one weight unit of HTS motors is 4-7 times better than for conventional electric machines. Comparison of the theoretical and experimental characteristics of the developed HTS motors show that they are in good agreement. The test results for liquid nitrogen cryogenic pump system with hysteresis 500 W HTS motor are discussed. The designs and first test results of HTS motor operating in the media of liquid nitrogen with output power 100 kW and power factor more than 0.8 are given. Future development and applications of new types of HTS motors for aerospace technology, on-land industry and transport systems are discussed.

  5. Wire Wise.

    ERIC Educational Resources Information Center

    Swanquist, Barry

    1998-01-01

    Discusses how today's technology is encouraging schools to invest in furnishings that are adaptable to computer use and telecommunications access. Explores issues concerning modularity, wiring management, ergonomics, durability, price, and aesthetics. (GR)

  6. Study on Thrust Improvement and Ripple Suppression of HTS Linear Switched Reluctance Motor with Coreless HTS Excitation Windings

    NASA Astrophysics Data System (ADS)

    Oto, Satoshi; Hirayama, Tadashi; Kawabata, Shuma

    This paper describes a linear switched reluctance motor (LSRM) in which HTS tapes are used for coreless excitation windings in order to reduce the thrust ripple and normal force. This LSRM consists of a mover with saliency structure, coreless HTS coils and a stator back yoke. In this paper, we first describe the operating principle of the HTS-LSRM. Next, we calculate performances of the HTS-LSRM using 3-D FEM analysis. The effects of the motor structure on the thrust characteristic and normal force characteristics are clarified from the numerical results. Furthermore, we investigate the motor structure for thrust improvement, thrust ripple and normal force reduction.

  7. Thermal analysis for the HTS stator consisting of HTS armature windings and an iron core for a 2.5 kW HTS generator

    NASA Astrophysics Data System (ADS)

    Song, P.; Qu, T.-M.; Lai, L.-F.; Wu, M.-S.; Yu, X.-Y.; Han, Z.

    2016-05-01

    Most present demonstrations of high-temperature superconducting (HTS) synchronous motors/generators are partially superconducting, only installing HTS coils on the rotor as excitation windings. The possible applicability of HTS armature windings is an interesting research topic because these windings can certainly increase the power density attributed to a potentially high armature loading capacity. In this study, we analysed the thermal behaviours of a developed 2.5 kW-300 rpm synchronous generator prototype that consists of an HTS stator with Bi-2223-Ag armature windings on an iron core and a permanent magnet (PM) rotor. The entire HTS stator, including the iron core, is cooled with liquid nitrogen through conduction cooling. The rated frequency is set at 10 Hz to reduce AC loss. The properties of the HTS windings and the iron core are characterized, and the temperatures in the HTS stator under different operation conditions are measured. The estimated iron loss is 11.5 W under operation in 10 Hz at liquid nitrogen temperature. Conduction cooling through the silicon iron core is sufficient to cool the iron core and to compensate for the temperature increment caused by iron loss. The stable running capacity is limited to 1.6 kW when the armature current is 12.6 A (effective values) due to the increasing temperature in the slots as a result of the AC loss in the HTS coils. The thermal contact between the HTS coils and the cooling media should be improved in the future to take away the heat generated by AC loss.

  8. Testing of machine wound second generation HTS tape Vacuum Pressure Impregnated coils

    NASA Astrophysics Data System (ADS)

    Swaffield, D.; Lewis, C.; Eugene, J.; Ingles, M.; Peach, D.

    2014-05-01

    Delamination of second generation (2G) High Temperature Superconducting (HTS) tapes has previously been reported when using resin based insulation systems for wound coils. One proposed root cause is the differential thermal contraction between the coil former and the resin encapsulated coil turns resulting in the tape c-axis tensile stress being exceeded. Importantly, delamination results in unacceptable degradation of the superconductor critical current level. To mitigate the delamination risk and prove winding, jointing and Vacuum Pressure Impregnation (VPI) processes in the production of coils for superconducting rotating machines at GE Power Conversion two scaled trial coils have been wound and extensively tested. The coils are wound from 12mm wide 2G HTS tape supplied by AMSC onto stainless steel 'racetrack' coil formers. The coils are wound in two layers which include both in-line and layer-layer joints subject to in-process test. The resin insulation system chosen is VPI and oven cured. Tests included; insulation resistance, repeat quench and recovery of the superconductor, heat runs and measurement of n-value, before and after multiple thermal cycling between ambient and 35 Kelvin. No degradation of coil performance is evidenced.

  9. No Wires.

    ERIC Educational Resources Information Center

    DeLoughry, Thomas J.

    1995-01-01

    The University of California at Santa Cruz has completed a successful test of a wireless computer network that would enable students and professors to get on line from anywhere on campus. The network, linked by radio waves, could save millions of dollars in campus wiring costs and would better meet student and faculty information needs. (MSE)

  10. Waveform control pulse magnetization for HTS bulk magnet

    NASA Astrophysics Data System (ADS)

    Ida, Tetsuya; Shigeuchi, Koji; Okuda, Sayo; Watasaki, Masahiro; Izumi, Mitsuru

    2016-03-01

    For the past 10 years, we have studied high-temperature superconducting (HTS) bulk magnets for use in electromagnetic rotating machines. If the magnetic field effectively magnetizes the HTS bulk, then the size of the motor and generator can be reduced without a reduction in output. We showed that the melt-textured Gd-Ba-Cu-O HTS bulk effectively traps a high magnetic field using waveform control pulse magnetization (WCPM). WCPM makes it possible to generate any pulsed magnetic field waveform by appropriately changing the duty ratio of the pulse width modulation. By chopping so that the pulsed magnetic field has a period of about 1ms, the WCPM technology enables active control of the rise time and suppresses magnetic flux motion that decreases magnetization efficiency. This method is also useful for any HTS bulk magnet, and the high magnetic flux density is trapped in the HTS bulk by a single pulse magnetic field. We developed a magnetizer that has a feedback system from the penetrated magnetic flux density to realize WCPM. In this research, using only a single pulse magnetic field of WCPM method at 77K, an HTS bulk with a 45mm diameter and 19mm thickness trapped a maximum magnetic field of 1.63T, which is more than 90% of the trapped magnetic flux density by FC magnetization. This result suggests that the pulse magnetizing method can replace the conventional field-cooled method and promote the practical use of HTS magnets for electromagnetic power applications.

  11. Upgrade of SULTAN/EDIPO for HTS Cable Test

    NASA Astrophysics Data System (ADS)

    Wesche, R.; Bruzzone, P.; Uglietti, D.; Bykovsky, N.; Lewandowska, M.

    CRPP hosts two unique conductor test facilities SULTAN (SUpraLeiter TestANlage) and EDIPO (European DIPOle). They allow the test of high current superconductors in high magnetic fields (SULTAN 11 T, EDIPO 12.5 T). In both facilities sample currents up to 100 kA can be supplied by means of a NbTi transformer. Presently the facilities are upgraded for the test of high current high-temperature superconductor (HTS) samples. For HTS conductor testing at temperatures between 20 and 50 K, the heat flux between the HTS sample under test and the NbTi transformer needs to be limited to around 10 W per conductor leg by means of an HTS adapter connecting them. The second required upgrade is the supply of intermediate temperature helium (20-50 K) to the HTS test conductor. It is mandatory that the helium gas coming from the HTS conductor under test can be returned to the cryoplant as cold gas (T < 20 K). To reach this goal a tube-in-tube heat exchanger has been manufactured in which 4.5 K helium coming from the cryoplant is in counter flow with the warm gas leaving the HTS test conductor.

  12. Monolithic HTS microwave phase shifter and other devices

    NASA Astrophysics Data System (ADS)

    Jackson, Charles M.; Kobayashi, June H.; Guillory, Emery B.; Pettiette-Hall, Claire; Burch, John F.

    1992-08-01

    We describe a monolithic high-temperature superconductor (HTS) phase shifter based on the distributed Josephson inductance (DJI) design integrated monolithically into a 10-GHz microstrip line. This microwave circuit incorporates greater than 1000 HTS RF SQUIDS. Recent data demonstrate the performance of this broadband HTS circuit. We observed phase shifts greater than 150 deg in resonant structures, and 20 deg in broadband circuits. The nonlinear inductance of the superconducting transmission line can be used for other novel applications, including parametric amplification. A comparison of the DJI circuit to a series array of Josephson elements (used for pulse sharpening) will contrast these two new and exciting nonlinear transmission line circuits.

  13. Efficient growth of HTS films with volatile elements

    DOEpatents

    Siegal, M.P.; Overmyer, D.L.; Dominguez, F.

    1998-12-22

    A system is disclosed for applying a volatile element-HTS layer, such as Tl-HTS, to a substrate in a multiple zone furnace, said method includes heating at higher temperature, in one zone of the furnace, a substrate and adjacent first source of Tl-HTS material, to sublimate Tl-oxide from the source to the substrate; and heating at lower temperature, in a separate zone of the furnace, a second source of Tl-oxide to replenish the first source of Tl-oxide from the second source. 3 figs.

  14. Efficient growth of HTS films with volatile elements

    DOEpatents

    Siegal, Michael P.; Overmyer, Donald L.; Dominguez, Frank

    1998-01-01

    A system for applying a volatile element-HTS layer, such as Tl-HTS, to a substrate in a multiple zone furnace, said method includes heating at higher temperature, in one zone of the furnace, a substrate and adjacent first source of Tl-HTS material, to sublimate Tl-oxide from the source to the substrate; and heating at lower temperature, in a separate zone of the furnace, a second source of Tl-oxide to replenish the first source of Tl-oxide from the second source.

  15. Recent developments in processing HTS silver-clad Bi-2223 tapes, coils and test magnets

    SciTech Connect

    Haldar, P.; Hoehn, J.G. Jr.; Motowidlo, L.R.; Balachandran, U.; Iwasa, Y.; Yunus, M.

    1993-10-01

    Considerable progress has been made in fabricating Bi-2223 high temperature superconductor (HTS) wires and tapes with high critical current densities that are attractive for electric power and high-field magnet applications. Powder-in-tube processed silver-clad Bi-2223 short tape samples, small coils and test magnets have been fabricated and measured at liquid nitrogen (77K), pumped liquid nitrogen (64 K), liquid neon (27K) and liquid helium (4.2K) temperatures. Optimization of thermo-mechanical process parameters have yielded J{sub c}`s in the superconducting core > 4.0 {times} 10{sup 4} A/cm{sup 2} at 77K zero field and > 2.0 {times} 10{sup 5} A/cm{sup 2} at 4.2K, zero field. Long lengths (up to 70 m) of mono-core conductors were fabricated and tested to carry significant amounts of current (23 A, {approximately}15,000 A/cm{sup 2}) at liquid nitrogen temperature. Recent test magnets assembled from pancake wound coils were measured to generate magnetic fields as high as 2.6, 1.8 and 0.36 Tesla at 4.2K, 27K and 77K respectively. These results show promise towards practical utilization of HTS materials.

  16. Experimental Manufacture and Performance Evaluation of Linear Switched Reluctance Motor with HTS Excitation Windings

    NASA Astrophysics Data System (ADS)

    Hirayama, Tadashi; Oto, Satoshi; Higashijima, Atsushi; Kawabata, Shuma

    This paper presents an experimental manufacture and performance evaluation of prototype linear switched reluctance motor with HTS excitation windings (HTS-LSRM). The Ag-alloy sheathed Bi-2223 tapes are used for HTS coils. We first present a structure of the prototype HTS-LSRM. Next, current-carrying properties of the HTS coils are measured. Furthermore, current and voltage waveforms are measured and we evaluation a control performance of the current and voltage.

  17. Recent development of drastically innovative BSCCO wire (DI-BISCCO)

    NASA Astrophysics Data System (ADS)

    Kikuchi, M.; Kato, T.; Ohkura, K.; Ayai, N.; Fujikami, J.; Fujino, K.; Kobayashi, S.; Ueno, E.; Yamazaki, K.; Yamade, S.; Hayashi, K.; Sato, K.; Nagai, T.; Matsui, Y.

    2006-10-01

    Up to this day, Ag-sheathed Bi2223 superconducting wires have been widely investigated and the long wires about 1000 m have been produced by using powder-in-tube (PIT) method on a commercial basis in the various facilities or companies. Although the wires are used for some applications such as HTS cables, magnets, motor and so on, the Bi2223 wires not only require much more improvements of the superconducting properties such as critical current, mechanical properties, but also longer and more uniform wires. Recently, the performances of Bi2223 wires have been drastically improved by using Controlled Over Pressure (CT-OP) sintering process. CT-OP process increased critical current (Ic) by more than 60% at 77 K and self field and improved the mechanical strength by more than 70%. The maximum Ic was increased up to 166 A. These drastic improvements were caused by the higher density of Bi2223 filament up to almost 100% and better connectivity of the Bi2223 grains. The dense structure of the Bi2223 filaments prevents the ballooning phenomenon which is caused by the gasification of the trapped liquid nitrogen during temperature rise. Additionally, higher uniformity and higher production yield of long length wire were also achieved by exterminating defects during sintering. These high performance levels in CT-OP wires have contributed commercial level applications. We call as Drastically Innovative BSCCO (DI-BSCCO).

  18. Design of a Probe for Strain Sensitivity Studies of Critical Current Densities in SC Wires and Tapes

    SciTech Connect

    Dhanaraj, N.; Barzi, E.; Turrioni, D.; Rusy, A.; Lombardo, V.; /Fermilab

    2011-07-01

    The design of a variable-temperature probe used to perform strain sensitivity measurements on LTS wires and HTS wires and tapes is described. The measurements are intended to be performed at liquid helium temperatures (4.2 K). The wire or tape to be measured is wound and soldered on to a helical spring device, which is fixed at one end and subjected to a torque at the free end. The design goal is to be able to achieve {+-} 0.8 % strain in the wire and tape. The probe is designed to carry a current of 2000A.

  19. Prospects of long-distance HTS DC power transmission systems

    NASA Astrophysics Data System (ADS)

    Romashov, M. A.; Sytnikov, V. E.; Shakarian, Y. G.; Ivanov, Y. V.

    2014-05-01

    Continual improvement of technologies for the safe use of power resources is a key to sustainable development of a human society. In particular, high-temperature superconductivity (HTS) should be used to meet the growing needs of the electric-power industry. It is known that HTS power cables allow us to increase the level of transmitted energy to several GW at voltage of 66-110 kV. HTS power cables of a coaxial design are almost ideal non-polluting system shielding electromagnetic field. In the present work we have tried to analyze various configurations of HTS power transmission systems, estimate the cable transmission capacitance depending on distance, and characterize reliability and efficiency of the systems.

  20. Design and Evaluation of Ybco Cable for the Albany Hts Cable Project

    NASA Astrophysics Data System (ADS)

    Ohya, M.; Yumura, H.; Ashibe, Y.; Ito, H.; Masuda, T.; Sato, K.

    2008-03-01

    The Albany Cable Project's aim is to develop a 350 meter long HTS cable system with a capacity of 800 A at 34.5 kV, located between two substations in the National Grid Power Company's grid. In-grid use of BSCCO HTS cable began on July 20, 2006, and successful long-term operation proceeded as planned. The cable system consists of two cables, one 320 meters long and the other 30 meters, a cable-to-cable splice in a vault, two terminations, and a cooling system. In Phase-II of the Albany project, this autumn, the 30-meter section will be replaced with YBCO cable. The test manufacturing and evaluation of YBCO cable has been carried out using SuperPower's YBCO wires in order to confirm the credibility of the cable design. No degradation of the critical current was found at any stage of manufacture. The fault-current test, involving a 1-meter sample carrying 23 kA at 38 cycles, was conducted under open-bath conditions. The temperature increases at the conductor and shield were comparable to those of the BSCCO core, and no Ic degradation was found after the fault-current test. After the design suitability was confirmed, a 30-meter YBCO cable was manufactured. The critical current of the conductor and the shield were approximately 2.6 kA and 2.4 kA, respectively, almost the same as the design values, considering the wire's Ic and the effect of the magnetic field. The AC loss of the sample cable was 0.34 W/m/phase at 800 Arms and 60 Hz. Following favorable shipping test results, the YBCO cable was shipped to the United States, and arrived at the site in June 2007.

  1. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  2. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.

    1992-01-01

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  3. Rotor compound concept for designing an industrial HTS synchronous motor

    NASA Astrophysics Data System (ADS)

    Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.

    2013-06-01

    Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model potentially is more effective than the other iron made HTS motors.

  4. Development of 22 T VSM System using Novel Improvements in HTS Conductor

    NASA Astrophysics Data System (ADS)

    Good, Jeremy; Bracanovic, Darko

    Current research has identified a need for greater magnetising fields during vibrating sample magnetometer (VSM) measurements and other measurement options. We present here the methodology involved in our development of a VSM system with 22 T superconducting magnet, a unique system and the highest field combined with a VSM anywhere in the world. Recent developments in HTS conductors have allowed greater reliability than previous coils made from YBCO and BISCO and thus facilitate the consistent achievement of higher magnetising fields at the sample with operation at 4.2 K rather than 2.2 K. Cryogenic Ltd wind HTS coils in both solenoid and pancake forms with an emphasis on solenoids, since they have been found to give a more reliable performance with less thermal transfer to the surrounding liquid helium. The 22T VSM system has been developed using 2G YBCO coated and BSSCO tape which exhibit critical currents up to 5 times greater than those seen in YBCO and BISCO at 4.2 K.

  5. The Evaluation of Student Attitudes toward MC2G

    ERIC Educational Resources Information Center

    Basol-Gocmen, Gulsah; Kanyongo, Gibbs Y.; Blankson, Lydia

    2002-01-01

    The purpose of this paper is to evaluate the use of MC2G program to teach certain topics in statistics education. MC2G is a program written in Pascal Delphi by Gordon Brooks of Ohio University based on Monte Carlo studies. MC2G provides students opportunity to practice important topics in an introductory statistics course, such as power, Type I…

  6. Optimal design of HTS magnets for a modular toroid-type 2.5 MJ SMES using multi-grouped particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Lee, S. Y.; Kwak, S. Y.; Seo, J. H.; Lee, S. Y.; Park, S. H.; Kim, W. S.; Lee, J. K.; Bae, J. H.; Kim, S. H.; Sim, K. D.; Seong, K. C.; Jung, H. K.; Choi, K.; Hahn, S.

    2009-10-01

    Superconducting magnetic energy storage (SMES) is one of the promising power system applications of superconducting technology and has been actively researched and developed worldwide. Generally, there are three types of SMES-solenoid, multiple solenoid, and toroid. Among these types, toroid type seems to require more wires than solenoid type and multiple solenoid type at the same operating current. However toroid type reduces normal field in the wire and stray field dramatically because magnetic field is confined inside the coil. So, the total length of wire in the toroid type can be reduced in comparison with that in the solenoid type by increasing operating current. In this paper, a 2.5 MJ class SMES with HTS magnets of single solenoid, multiple solenoid and modular toroid type were optimized using a recently developed multi-modal optimization technique named multi-grouped particle swarm optimization (MGPSO). The objective of the optimization was to minimize the total length of HTS superconductor wires satisfying some equality and inequality constraints. The stored energy and constraints were calculated using 3D magnetic field analysis techniques and an automatic tetrahedral mesh generator. Optimized results were verified by 3D finite element method (FEM).

  7. Optimization of Our SC HTS Reluctance Motor

    NASA Astrophysics Data System (ADS)

    Oswald, B.; Best, K.-J.; Setzer, M.; Söll, M.; Gawalek, W.; Gutt, A.; Kovalev, L.; Fisher, L.; Krabbes, G.; Freyhardt, H. C.

    2004-06-01

    Since several years we have successfully designed, built and tested at 77K several reluctance motors. YBCO bulk material has been incorporated into the rotor. Our latest results, based on the old design, will be published within the proceedings of the 8th VDI-Status-Seminar. The range of mechanical output power achieved is up to about 200 kW. All these motors have shown that a significant step in performance is obtained by using HTS bulk elements in the rotor, compared to the data of these test motors without superconductors. However, by now the motor parameters have been limited to certain values. In order to optimize this type of motor and to achieve increased output power and power density we have modified the design with several respects. This includes properties of the superconductor (critical current density raised by about 20%), the use of special soft magnetic material in the stator (increased saturation polarization), modified cut of the laminations (optimized for application at 77 K), and new geometry of the motor dimensions aimed at extremely high dynamics in order to adapt this motor to some special applications. With our present paper we present the results of this optimization which have brought the expected improvements and which are in excellent accordance with theory.

  8. Modelling ac ripple currents in HTS coated conductors

    NASA Astrophysics Data System (ADS)

    Xu, Zhihan; Grilli, Francesco

    2015-10-01

    Dc transmission using high temperature superconducting (HTS) coated conductors (CCs) offers a promising solution to the globally growing demand for effective, reliable and economic transmission of green energy up to the gigawatt level over very long distances. The credible estimation of the losses and thereby the heat dissipation involved, where ac ripples (introduced in rectification/ac-dc conversion) are viewed as a potential source of notable contribution, is highly essential for the rational design of practical HTS dc transmission cables and corresponding cryogenic systems to fulfil this demand. Here we report a targeted modelling study into the ac losses in a HTS CC subject to dc and ac ripple currents simultaneously, by solving Maxwell’s equations using the finite element method (FEM) in the commercial software package COMSOL. It is observed that the instantaneous loss exhibits only one peak per cycle in the HTS CC subject to sinusoidal ripples, given that the amplitude of the ac ripples is smaller than approximately 20% of that of the dc current. This is a distinct contrast to the usual observation of two peaks per cycle in a HTS CC subject to ac currents only. The unique mechanism is also revealed, which is directly associated with the finding that, around any local minima of the applied ac ripples, the critical state of -J c is never reached at the edges of the HTS CC, as it should be according to the Bean model. When running further into the longer term, it is discovered that the ac ripple loss of the HTS CC in full-wave rectification decays monotonically, at a speed which is found to be insensitive to the frequency of the applied ripples within our targeted situations, to a relatively low level of approximately 1.38 × 10-4 W m-1 in around 1.7 s. Comparison between this level and other typical loss contributions in a HTS dc cable implies that ac ripple currents in HTS CCs should only be considered as a minor source of dissipation in superconducting dc

  9. Heat Transfer Experiments and Analysis of a Simulated HTS

    SciTech Connect

    Demko, Jonathan A; Duckworth, Robert C; Gouge, Michael J; Knoll, David

    2010-01-01

    Long-length high temperature superconducting (HTS) cable projects, over 1 km, are being designed that are cooled by flowing liquid nitrogen. The compact counter-flow cooling arrangement which has the supply and return stream in a single cryostat offers several advantages including smallest space requirement, least heat load, and reduced cost since a return cryostat is not required. One issue in long length HTS cable systems is the magnitude of the heat transfer radially through the cable. It is extremely difficult to instrument an HTS cable in service on the grid with the needed thermometry because of the issues associated with installing thermometers on high voltage components. A 5-meter long test system has been built that simulates a counter-flow cooled, HTS cable using a heated tube to simulate the cable. Measurements of the temperatures in the flow stream and on the tube wall are presented and compared to analysis. These data can be used to benchmark different HTS cable heat transfer and fluid flow analysis approaches.

  10. R&D Progress of HTS Magnet Project for Ultrahigh-field MRI

    NASA Astrophysics Data System (ADS)

    Tosaka, Taizo; Miyazaki, Hiroshi; Iwai, Sadanori; Otani, Yasumi; Takahashi, Masahiko; Tasaki, Kenji; Nomura, Shunji; Kurusu, Tsutomu; Ueda, Hiroshi; Noguchi, So; Ishiyama, Atsushi; Urayama, Shinichi; Fukuyama, Hidenao

    An R&D project on high-temperature superconducting (HTS) magnets using rare-earth Ba2Cu3O7 (REBCO) wires was started in 2013. The project objective is to investigate the feasibility of adapting REBCO magnets to ultrahigh field (UHF) magnetic resonance imaging (MRI) systems. REBCO wires are promising components for UHF-MRI magnets because of their superior superconducting and mechanical properties, which make them smaller and lighter than conventional ones. Moreover, REBCO magnets can be cooled by the conduction-cooling method, making liquid helium unnecessary. In the past two years, some test coils and model magnets have been fabricated and tested. This year is the final year of the project. The goals of the project are: (1) to generate a 9.4 T magnetic field with a small test coil, (2) to generate a homogeneous magnetic field in a 200 mm diameter spherical volume with a 1.5 T model magnet, and (3) to perform imaging with the 1.5 T model magnet. In this paper, the progress of this R&D is described. The knowledge gained through these R&D results will be reflected in the design of 9.4 T MRI magnets for brain and whole body imaging.

  11. Monolithic HTS microwave phase shifter and other devices

    SciTech Connect

    Jackson, C.M.; Kobayashi, J.H.; Guillory, E.B.; Pettiette-Hall, C.; Burch, J.F. )

    1992-08-01

    We describe a monolithic high-temperature superconductor (HTS) phase shifter based on the distributed Josephson inductance (DJI) design integrated monolithically into a 10-GHz microstrip line. This microwave circuit incorporates >1000 HTS rf SQUIDS. Recent data demonstrate the performance of this broadband HTS circuit. We observed phase shifts greater than 150[degrees] in resonant structures, and 20[degrees] in broadband circuits. The nonlinear inductance of the superconducting transmission line can be used for other novel applications, including parametric amplification. A comparison of the DJI circuit to a series array of Josephson elements (used for pulse sharpening) will contrast these two new and exciting nonlinear transmission line circuits. 19 refs., 4 figs., 2 tabs.

  12. HTS power lead testing at the Fermilab magnet test facility

    SciTech Connect

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; /Fermilab

    2005-08-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV C0 interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads.

  13. Fabrication and wire extrusion of ceramic superconductors

    SciTech Connect

    Poeppel, R.B.; Balachandran, U.; Singh, J.P.; Dusek, J.T.; Picciolo, J.J.; Dorris, S.E.; Lanagan, M.T.; Goretta, K.C.; Youngdahl, C.A.; Hull, J.R.

    1991-05-01

    Many applications of high-temperature superconductors (HTSs) will depend on the ability to fabricate these materials into long lengths with suitable electrical and mechanical properties maintained over the entire length. The program described in this paper is focused on improvement of the relevant material properties of HTSs and on development of fabrication methods that can be transferred to industry for production of commercial conductors. Our research has resulted in advances in fabrication methods that improve the performance of long lengths of polycrystalline HTS wires and tapes. We have examined the Y-Ba-Cu-O (YBCO), Bi-Sr-Ca-Cu-O (BSCCO), and Tl- Ba-Ca-Cu-O (TBCCO) classes of HTSs. Significant results from our research and work by contemporaries are reported in the various sections of the paper. 28 refs.

  14. Windows: Life after Wire.

    ERIC Educational Resources Information Center

    Razwick, Jerry

    2003-01-01

    Although wired glass is extremely common in school buildings, the International Building Code adopted new standards that eliminate the use of traditional wired glass in K-12 schools, daycare centers, and athletic facilities. Wired glass breaks easily, and the wires can cause significant injuries by forming dangerous snags when the glass breaks.…

  15. Ultra-High Performance, High-Temperature Superconducting Wires via Cost-effective, Scalable, Co-evaporation Process

    SciTech Connect

    Kim, Dr. Hosup; Oh, Sang-Soo; Ha, HS; Youm, D; Moon, SH; Kim, JH; Heo, YU; Dou, SX; Wee, Sung Hun; Goyal, Amit

    2014-01-01

    Long-length, high-temperature superconducting (HTS) wires capable of carrying high critical current, Ic, are required for a wide range of applications. Here, we report extremely high performance HTS wires based on 5 m thick SmBa2Cu3O7- (SmBCO) single layer films on textured metallic templates. SmBCO layer wires over 20 meters long were deposited by a cost-effective, scalable co-evaporation process using a batch-type drum in a dual chamber. All deposition parameters influencing the composition, phase, and texture of the films were optimized via a unique combinatorial method that is broadly applicable for co-evaporation of other promising complex materials containing several cations. Thick SmBCO layers deposited under optimized conditions exhibit excellent cube-on-cube epitaxy. Such excellent structural epitaxy over the entire thickness results in exceptionally high Ic performance, with average Ic over 1000 A/cm for the entire 22 meter long wire and maximum Ic over 1,500 A/cm for a short 12 cm long tape. The Ic values reported in this work are the highest values ever reported from any lengths of cuprate-based HTS wire or conductor.

  16. Ultra-High Performance, High-Temperature Superconducting Wires via Cost-effective, Scalable, Co-evaporation Process

    PubMed Central

    Kim, Ho-Sup; Oh, Sang-Soo; Ha, Hong-Soo; Youm, Dojun; Moon, Seung-Hyun; Kim, Jung Ho; Dou, Shi Xue; Heo, Yoon-Uk; Wee, Sung-Hun; Goyal, Amit

    2014-01-01

    Long-length, high-temperature superconducting (HTS) wires capable of carrying high critical current, Ic, are required for a wide range of applications. Here, we report extremely high performance HTS wires based on 5 μm thick SmBa2Cu3O7 − δ (SmBCO) single layer films on textured metallic templates. SmBCO layer wires over 20 meters long were deposited by a cost-effective, scalable co-evaporation process using a batch-type drum in a dual chamber. All deposition parameters influencing the composition, phase, and texture of the films were optimized via a unique combinatorial method that is broadly applicable for co-evaporation of other promising complex materials containing several cations. Thick SmBCO layers deposited under optimized conditions exhibit excellent cube-on-cube epitaxy. Such excellent structural epitaxy over the entire thickness results in exceptionally high Ic performance, with average Ic over 1,000 A/cm-width for the entire 22 meter long wire and maximum Ic over 1,500 A/cm-width for a short 12 cm long tape. The Ic values reported in this work are the highest values ever reported from any lengths of cuprate-based HTS wire or conductor. PMID:24752189

  17. Quench detection system for twin coils HTS SMES

    NASA Astrophysics Data System (ADS)

    Badel, A.; Tixador, P.; Simiand, G.; Exchaw, O.

    2010-10-01

    The quench detection and protection system is a critical element in superconducting magnets. After a short summary of the quench detection and protection issues in HTS magnets, an original detection system is presented. The main feature of this system is an active protection of the detection electronics during the discharges, making it possible to use standard electronics even if the discharge voltage is very high. The design of the detection system is therefore easier and it can be made very sensitive. An implementation example is presented for a twin coil HTS SMES prototype, showing the improvements when compared to classical detection systems during operation.

  18. Development of a 600 kJ HTS SMES

    NASA Astrophysics Data System (ADS)

    Seong, K. C.; Kim, H. J.; Kim, S. H.; Sim, K. D.; Sohn, M. H.; Lee, E. Y.; Park, S. J.; Hahn, S. Y.; Park, M. W.

    2008-09-01

    This paper describes an overview of development on a 600 kJ high-temperature superconducting magnetic energy storage (HTS SMES). Our final goal will be the commercialization of MJ class HTS SMES system for the increase of power quality within 5 years. Hence, for this purpose, we have developed the research and development in 3 years. The purpose of this research is to develop a pilot system, which can protect the sensitivity loads from a momentary power interruption or a voltage sag.

  19. Albany Hts Cable Project Long Term In-Grid Operation Status Update

    NASA Astrophysics Data System (ADS)

    Yumura, H.; Masuda, T.; Watanabe, M.; Takigawa, H.; Ashibe, Y.; Ito, H.; Hirose, M.; Sato, K.

    2008-03-01

    High-temperature superconducting (HTS) cable systems are expected to be a solution for improvement of the power grid and three demonstration projects in the real grid are under way in the United States. One of them is the Albany, NY Cable Project, involving the installation and operation of a 350 meter HTS cable system with a capacity of 34.5kV, 800A, connecting between two substations in National Grid's electric utility system. A 320 meter and a 30 meter cable are installed in underground conduit and connected together in a vault. The cables were fabricated with 70km of DI-BSCCO wire in a 3 core-in-one cryostat structure. The cable installation of a 320 meter and a 30 meter section was completed successfully using the same pulling method as a conventional underground cable. After the cable installation, the joint and two terminations were assembled at the Albany site. After the initial cooling of the system, the commissioning tests such as the critical current, heat loss measurement and DC withstand voltage test were conducted successfully. The in-grid operation began on July 20th, 2006 and operated successfully in unattended condition through May 1st, 2007. In the 2nd phase of the Albany project, the 30 meter section is to be replaced by a YBCO cable. The YBCO cable had been developed and a new 30 meter cable was manufactured by using SuperPower's YBCO coated conductors. This paper describes the latest status of the Albany cable project.

  20. Stretched Wire Mechanics

    SciTech Connect

    Bowden, Gordon; /SLAC

    2005-09-06

    Stretched wires are beginning to play an important role in the alignment of accelerators and synchrotron light sources. Stretched wires are proposed for the alignment of the 130 meter long LCLS undulator. Wire position technology has reached sub-micron resolution yet analyses of perturbations to wire straightness are hard to find. This paper considers possible deviations of stretched wire from the simple 2-dimensional catenary form.

  1. Numerical assessment of efficiency and control stability of an HTS synchronous motor

    NASA Astrophysics Data System (ADS)

    Xian, Wei; Yuan, Weijia; Coombs, T. A.

    2010-06-01

    A high temperature superconducting (HTS) permanent magnet synchronous motor (PMSM) is designed and developed in Cambridge University. It is expected to become cost competitive with the conventional PMSM owing to its high efficiency, high power density, high torque density, etc. The structure and parameters of HTS PMSM are detailed. Both AC losses by transport current and applied filed in stator armature winding of HTS PMSM are also analyzed. Computed and simulated results of the characteristics of the HTS PMSM and conventional PMSM are compared. The improvement on stability of direct torque control (DTC) on the HTS PMSM is estimated, and proved by simulation on Matlab/Simulink.

  2. Characteristics on electodynamic suspension simulator with HTS levitation magnet

    NASA Astrophysics Data System (ADS)

    Lee, J.; Bae, D. K.; Sim, K.; Chung, Y. D.; Lee, Y.-S.

    2009-10-01

    High- Tc superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high- Tc superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.

  3. Large-scale HTS bulks for magnetic application

    NASA Astrophysics Data System (ADS)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  4. Development of HTS Cable System for ALBANY Project

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Yumura, H.; Takigawa, H.; Ito, H.; Ashibe, Y.; Kato, T.; Suzawa, C.; Masuda, T.; Sato, K.; Isojima, S.

    2006-06-01

    High temperature superconducting (HTS) cable is anticipated to transmit a large amount of electricity with a compact size and can reduce the transmission loss and greenhouse gas emission. The Albany project is being undertaken to verify the practicability of a long HTS cable in the real grid by performing a long-term operation test. The cable is 350-meter long and carries 800 A at 34.5 kV between two electric power substations (Menands and Riverside) in Albany, N.Y. [1]. The project is scheduled to run from 2002 to 2007 and is proceeding as planned. The HTS cable and its apparatus were manufactured in Japan, and the cable was shipped to the USA in the middle of August. After it arrives at the site, the cable installation and the apparatus assembly will be carried out sequentially. This system is expected to begin operating early next year after initial cooling. This paper gives an overview and the current status of the development of the HTS cable system.

  5. HTS DC Transmission Line for Megalopolis Grid Development

    NASA Astrophysics Data System (ADS)

    Kopylov, S.; Sytnikov, V.; Bemert, S.; Ivanov, Yu; Krivetskiy, I.; Romashov, M.; Shakaryan, Yu; Keilin, V.; Shikov, A.; Patrikeev, V.; Lobyntsev, V.; Shcherbakov, V.

    2014-05-01

    Using of HTS AC and DC cables in electric power grids allows increasing of the transferred power, losses diminishing, decreasing of exclusion zone areas, the enhancement of the environmental conditions and fire/explosion safety of electric power systems. However, the use of DC superconducting cable lines together with converters brings additional advantages as reduction of losses in cables and suitable lowering of refrigerating plant capacity, as well as the realization of the function of short-circuit currents limitation by means of the appropriate setting of converter equipment. Russian Federal Grid Company and its R&D Center started the construction of the DC HTS power transmission line which includes the cable itself, cryogenic equipment, AC/DC converters, terminals and cable coupling boxes. This line will connect two substations in Saint-Petersburg - 330 kV "Centralnaya" and 220 kV "RP-9". The length of this HTS transmission line will be about 2500 meters. Nowadays are developed all the elements of the line and technologies of the cable manufacturing. Two HTS cable samples, each 30 m length, have been made. This paper describes the results of cables tests.

  6. A numerical model for stability considerations in HTS magnets

    NASA Astrophysics Data System (ADS)

    Lehtonen, Jorma; Mikkonen, Risto; Paasi, Jaakko

    2000-03-01

    We propose that in an HTS application, stability is lost more likely because of a global increase in temperature caused by heat generation distributed over the whole coil than because of a local normal zone which starts to propagate. For consideration of stability in HTS magnets, we present a computational model based on the heat conduction equation coupled with Maxwell's equations, whereby analysis can be performed by using commercial software packages for computational electromagnetics and thermodynamics. For temperature distribution inside the magnet, we derive the magnetic field dependent effective values of thermal conductivity, specific heat, and heat generated by electromagnetic phenomena for the composite structure of the magnet, while cooling conditions and external heat sources are described as boundary conditions. Our model enables the magnet designer to estimate a safe level of the operation current before a thermal runaway. Finally, as examples, we present some calculations of the HTS magnet with ac to review the effects of slanted electric field-current density E (J ) characteristics and high critical temperature of HTS materials.

  7. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, James W.

    1994-01-01

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest.

  8. A Cryogenic Dc-Dc Power Converter for a 100 kW Synchronous HTS Generator at Liquid Nitrogen Temperatures

    NASA Astrophysics Data System (ADS)

    Bailey, Wendell; Wen, Hauming; Yang, Yifeng; Forsyth, Andrew; Jia, Chungjiang

    A dc-dc converter has been developed for retrofitting inside the vacuum space of the HTS rotor of a synchronous generator. The heavy copper sections of the current leads used for energising the HTS field winding were replaced by cryogenic power electronics; consisting of the converter and a rotor control unit. The converter board was designed using an H-bridge configuration with two 5A rated wires connecting the cryogenic boards to the stator control board located on the outside of the generator and drawing power from a (5A, 50 V) dc power source. The robustness of converter board was well demonstrated when it was powered up from a cold start at 82K. When charging the field winding with moderate currents (30A), the heat in-leak to the 'cold' rotor core was only 2W. It continued to function down to 74K, surviving several quenches. However, the quench protection function failed when injecting 75A into the field winding, resulting in the burn out of one of the DC-link capacitors. The magnitudes of the critical currents measured with the original current leads were compared to the quench currents, which was defined as the current which triggered quench protection protocol. The difference between the two currents was rather large, (∼20A). However, additional measurements using a single HTS coil in liquid nitrogen found that this reduction should not be so dramatic and in the region of 4A. Our conclusions identified the converter's switching voltage and its operating frequency as two parameters, which could have contributed to lowering the quench current. Magnetic fields and eddy currents are expected to be more prominent the field winding and its impact on the converter also need further investigation.

  9. Wire Test Grip Fixture

    NASA Technical Reports Server (NTRS)

    Burke, Christopher S.

    2011-01-01

    Wire-testing issues, such as the gripping strains imposed on the wire, play a critical role in obtaining clean data. In a standard test frame fitted with flat wedge grips, the gripping action alone creates stresses on the wire specimen that cause the wire to fail at the grip location. A new test frame, which is outfitted with a vacuum chamber, negated the use of any conventional commercially available wire test fixtures, as only 7 in. (17.8 cm) existed between the grip faces. An innovative grip fixture was designed to test thin gauge wire for a variety of applications in an existing Instron test frame outfitted with a vacuum chamber.

  10. Towards G2G: Systems of Technology Database Systems

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Bell, David

    2005-01-01

    We present an approach and methodology for developing Government-to-Government (G2G) Systems of Technology Database Systems. G2G will deliver technologies for distributed and remote integration of technology data for internal use in analysis and planning as well as for external communications. G2G enables NASA managers, engineers, operational teams and information systems to "compose" technology roadmaps and plans by selecting, combining, extending, specializing and modifying components of technology database systems. G2G will interoperate information and knowledge that is distributed across organizational entities involved that is ideal for NASA future Exploration Enterprise. Key contributions of the G2G system will include the creation of an integrated approach to sustain effective management of technology investments that supports the ability of various technology database systems to be independently managed. The integration technology will comply with emerging open standards. Applications can thus be customized for local needs while enabling an integrated management of technology approach that serves the global needs of NASA. The G2G capabilities will use NASA s breakthrough in database "composition" and integration technology, will use and advance emerging open standards, and will use commercial information technologies to enable effective System of Technology Database systems.

  11. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  12. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  13. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1999-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  14. Laser Wire Stripper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.

  15. Thermodynamic Study of UO3(g), UO2(OH)2(g), UO2Cl2(g), and UO2F2(g)

    SciTech Connect

    Ebbinghaus, B B; Krikorian, O H; Fleming, D L

    2002-11-07

    Using the transpiration method, the volatility of uranium oxide in the presence of oxygen and water vapor has been measured at temperatures ranging from 1173 to 1573 K and the volatility of uranium oxide in the presence of oxygen and chlorine has been measured at 1175 K. The major vapor species in the presence of oxygen and water vapor are found to be UO{sub 3}(g) and UO{sub 2}(0H){sub 2}(g). Third law treatment of the vaporization data yields {Delta}H{sub f}{sup o}(298) values of -790.52 {+-} 7.32 and -1199.94 {+-} 10.25 kJ/mol, respectively. The major vapor species in the presence of oxygen and chlorine is found to be UO{sub 2}Cl{sub 2}(g). Third law treatment of the vaporization data yields a {Delta}H{sub f}{sup o}(298) value of -1002.04 {+-} 3.26 kJ/mol. From an assessment of all the thermodynamic data available for UO{sub 3}(g), UO{sub 2}(OH){sub 2}(g), UO{sub 2}Cl{sub 2}(g), and UO{sub 2}F{sub 2}(g), the best {Delta}H{sub f{sup o}}(298) values for each of these species are calculated to be -796.74 {+-} 3.52, -1199.94 {+-} 10.25, -999.64 {+-} 2.40, and -1369.22 {+-} 2.87 kJ/mol, respectively. From these, the {Delta}H{sub f{sup o}} (298) values for UO{sub 2}ClOH(g), UO{sub 2}FOH(g), and UO{sub 2}FCl(g) are estimated to be -1099.79, -1284.58, and -1184.43 kJ/mol, respectively. The thermodynamic data for all the vapor species are then applied to conditions one might expect in a thermal oxidation processor for mixed waste to estimate the amount of uranium volatility.

  16. Intermetallic compound formation at Cu-Al wire bond interface

    SciTech Connect

    Bae, In-Tae; Young Jung, Dae; Chen, William T.; Du Yong

    2012-12-15

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 Degree-Sign C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable {theta} Prime -CuAl{sub 2} IMC phase (tetragonal, space group: I4m2, a = 0.404 nm, c= 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable {theta} Prime -CuAl{sub 2} phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and {theta} Prime -CuAl{sub 2}, which can minimize lattice mismatch for {theta} Prime -CuAl{sub 2} to grow on Cu.

  17. Splice Resistance Measurements in 2G YBCO Coated Conductor

    SciTech Connect

    Rey, Christopher M; Duckworth, Robert C; Zhang, Yifei

    2009-01-01

    Abstract The Oak Ridge National Laboratory has been investigating the electrical splice resistance of second-generation (2G) YBCO coated conductor. The purpose of the experimental investigation is to study the splice resistance of 2G YBCO coated conductor as a function of: a) operating temperature, b) magnetic field strength (B-field), and c) magnetic field orientation ( ). Understanding the splice resistance with its corresponding variation as a function of surface preparation and operating conditions is essential to the practical implementation of electric utility devices; e.g., motors, generators, transformers, cables, and fault-current limiters, etc. Preliminary test results indicate that the 2G YBCO splice resistance shows a weak temperature dependence and a significantly stronger dependence upon magnetic field strength and magnetic field orientation. Surface preparation conditions are also briefly discussed. Index Terms coated conductor, splice, critical current, YBCO

  18. Development of Prototype HTS Components for Magnetic Suspension Applications

    NASA Technical Reports Server (NTRS)

    Haldar, P.; Hoehn, J., Jr.; Selvamanickam, V.; Farrell, R. A.; Balachandran, U.; Iyer, A. N.; Peterson, E.; Salazar, K.

    1996-01-01

    We have concentrated on developing prototype lengths of bismuth and thallium based silver sheathed superconductors by the powder-in-tube approach to fabricate high temperature superconducting (HTS) components for magnetic suspension applications. Long lengths of mono and multi filament tapes are presently being fabricated with critical current densities useful for maglev and many other applications. We have recently demonstrated the prototype manufacture of lengths exceeding 1 km of Bi-2223 multi filament conductor. Long lengths of thallium based multi-filament conductor have also been fabricated with practical levels of critical current density and improved field dependence behavior. Test coils and magnets have been built from these lengths and characterized over a range of temperatures and background fields to determine their performance. Work is in progress to develop, fabricate and test HTS windings that will be suitable for magnetic suspension, levitation and other electric power related applications.

  19. HTS Fabry-Perot resonators for the far infrared

    SciTech Connect

    Keller, P.; Prenninger, M.; Pechen, E.V.; Renk, K.F.

    1996-12-31

    The authors report on far infrared (FIR) Fabry-Perot resonators (FPR) with high temperature superconductor (HTS) thin films as mirrors. For the fabrication of FPR they use two parallel MgO plates covered with YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thin films on adjacent sides. They have measured the far-infrared transmissivity at 10 K with a Fourier transform infrared spectrometer. Very sharp resonances can be observed for frequencies below 6 THz where the MgO is transparent. The finesse (width of the first order resonance) is comparable to the FPR with metallic meshes as reflectors that are applied in the FIR spectroscopy and astronomy. They have also shown that thin films of gold are not an adequate substitute to HTS thin films and not suitable for the fabrication of high-quality FPR due to the ohmic losses.

  20. High voltage insulation of bushing for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Jin; Choi, Jae-Hyeong; Kim, Sang-Hyun

    2012-12-01

    For the operation of high temperature superconducting (HTS) power equipments, it is necessary to develop insulating materials and high voltage (HV) insulation technology at cryogenic temperature of bushing. Liquid nitrogen (LN2) is an attractive dielectric liquid. Also, the polymer insulating materials are expected to be used as solid materials such as glass fiber reinforced plastic (GFRP), polytetra-fluoroethylene (PTFE, Teflon), Silicon (Si) rubber, aromatic polyamide (Nomex), EPDM/Silicon alloy compound (EPDM/Si). In this paper, the surface flashover characteristics of various insulating materials in LN2 are studied. These results are studied at both AC and impulse voltage under a non-uniform field. The use of GFRP and Teflon as insulation body for HTS bushing should be much desirable. Especially, GFRP is excellent material not only surface flashover characteristics but also mechanical characteristics at cryogenic temperature. The surface flashover is most serious problem for the shed design in LN2 and operation of superconducting equipments.

  1. Project Overview of HTS Magnet for Ultra-high-field MRI System

    NASA Astrophysics Data System (ADS)

    Tosaka, Taizo; Miyazaki, Hiroshi; Iwai, Sadanori; Otani, Yasumi; Takahashi, Masahiko; Tasaki, Kenji; Nomura, Shunji; Kurusu, Tsutomu; Ueda, Hiroshi; Noguchi, So; Ishiyama, Atsushi; Urayama, Shinichi; Fukuyama, Hidenao

    A project to develop an ultra-high-field magnetic resonance imaging (MRI) system based on HTS magnets using (RE)Ba2Cu3O7 (REBCO; RE=rear earth) coils is underway. The project is supported by the Japanese Ministry of Economy, Trade and Industry and aims to establish magnet technologies for a whole-body 9.4 T MRI system. REBCO wires have high critical current density in high magnetic fields and high strength against hoop stresses, and therefore, MRI magnets using REBCO coils are expected to have cryogenic systems that are smaller, lighter, and simpler than the conventional ones. A major problem in using REBCO coils for MRI magnets is the huge irregular magnetic field generated by the screening current in REBCO tapes. Thus, the main purpose of this project is to make the influence of this screening current predictable and controllable. Fundamental technologies, including treatment of the screening currents, were studied via experiments and numerical simulations using small coils. Two types of model magnets are planned to be manufactured, and the knowledge gained in the development of the model magnets will be reflected in the magnet design of a whole-body 9.4 T MRI system.

  2. Homogeneous performance and strain tolerance of long Bi-2223 HTS conductors under hoop stress

    NASA Astrophysics Data System (ADS)

    Miyoshi, Y.; Kitaguchi, H.; Chaud, X.; Debray, F.; Nishijima, G.; Tsuchiya, Y.

    2014-02-01

    Two types of high-strength industrial Bi-2223 conductor, one laminated by copper alloy and the other laminated by stainless steel, have been tested to examine the effect of hoop stress on the transport property. The specimens (˜2 m long) were prepared by winding one layer around a GFRP mandrel and the measurements were made in a liquid helium bath with the hoop stress calculated from the BJR product applied by external magnetic field. A careful measurement wire configuration was necessary to cancel the noise pick-up from the environment for more accurate determination of Ic and n-value. We show for the first time that both conductors showed homogeneous voltage-current characteristics over a long length and degradations with hoop stress occurred uniformly, which is crucial information for the development of HTS magnet technology. The onset of degradation occurred at 200 MPa and 220 MPa, with additional bending stress present from the winding diameter of 108 mm, for copper alloy laminated and stainless steel laminated conductors, respectively. After considering the effect of bending strain, our result agrees well with the previously measured data.

  3. Conceptual design of contactless power transfer into HTS receiver coil using normal conducting resonance antenna

    NASA Astrophysics Data System (ADS)

    Kang, Hyoung Ku; Chung, Yoon Do; Yim, Seong Woo

    2014-09-01

    The contactless power transfer (CPT) technology based on strongly coupled electromagnetic resonators has been recently explored to realize the large power delivery and storage without any cable or wire across a large air gap. As the CPT technology makes possible the process of connector-free charging, it has been studied for practical applications to a variety of power applications. In the superconducting magnet system, a widespread method of electric energy supply is realized by the current lead which is one of indispensable subsystems in the power transfer equipment; however, it causes energy losses. To overcome such a problem, the combination CPT technology with HTS receiver coils has been proposed. It is called as, superconducting contactless power transfer (SUCPT) system. Such a technique has been expected a reasonable approach to provide a safe and convenient way of charging or storage without connecting joints in the superconducting applications. In this study, we presented the feasibility and various effects of transmission property from room temperature to very low temperature vessel within 40 cm under different material’s cooling vessels using radio frequency (RF) generator is 370 KHz.

  4. Test results of HTS magnet for SMES application

    NASA Astrophysics Data System (ADS)

    Kozak, J.; Majka, M.; Jaroszynski, L.; Janowski, T.; Kozak, S.; Kondratowicz – Kucewicz, B.; Wojtasiewicz, G.

    2010-06-01

    The magnet for a superconducting magnetic energy storage system (SMES) conducting cooled by SRDK-408 cryocooler is described in this paper. The superconducting magnet consists of 7 double-pancake coils made of Bi-2223 HTS tape with the inner and outer diameters 210 mm, 315 mm respectively and height of 191 mm. The inductance of the magnet is approximately 1 H. In this paper we report the design improvements and the measurement results taken at the cooling of the magnet.

  5. Development of Substrate for RABiTS-based HTS Conductors

    SciTech Connect

    2009-06-05

    During its fifteen years of life, this CRADA has evolved in both scope and purpose. Early efforts to develop high performance bismuth-based powder-in-tube first generation high temperature superconductors (HTS) have shifted toward efforts to understand and develop technologies required to fabricate second generation HTS coated conductors. Since the two original longstanding principal investigators from UT-Battelle and Oxford Superconducting Technology (OST) are not presently employed by their respective organizations, this final report shall focus primarily on results of the more recent past involving research and development of the deformation and annealing processes required to fabricate metallic substrates for RABiTS-based second generation coated conductors. The specific objectives of this recent work involve the development of OST Ni/3%W tape for HTS coated conductors and include: (a) to improve uniformity of cube texture through control of deformation and annealing parameters, (b) to minimize delamination and other buffer deposition problems through understanding and control of key parameters related to the metal substrate, (c) to ensure that the textured metal substrate allows well textured buffers with no delamination, and (d) to prepared a final report.

  6. Testing of an HTS Power Cable Made from YBCO Tapes

    SciTech Connect

    Gouge, Michael J; Duckworth, Robert C; Demko, Jonathan A; Rey, Christopher M; Lindsay, David T; Roden, Mark L; Tolbert, Jerry Carlton

    2007-01-01

    Oak Ridge National Laboratory (ORNL) has designed, built, and tested a 1.25-m-long, prototype high temperature superconducting (HTS) power cable made from second-generation YBa2Cu3Ox (YBCO)-coated conductor tapes. Electrical tests of this cable were performed in liquid nitrogen at 77 K. DC testing of the HTS cable included determination of the V-I curve with a critical current of about 2100 A, which was consistent with the critical currents of the two layers of 4.4-mm wide YBCO tapes. AC testing of the cable was conducted at currents up to about 1500 Arms. The ac losses were determined calorimetrically by measuring the response of a calibrated temperature sensor placed on the former and electrically by use of a Rogowski coil with a lock-in amplifier. Over-current testing was conducted at peak current values up to 4.9 kA for pulse lengths of 0.3-0.5 s. Test results are compared to earlier data from a 1.25-m-long power cable made from 1-cm-wide YBCO tapes and also comparable BSCCO cables. This commercial-grade HTS cable demonstrated the feasibility of second-generation YBCO tapes in an ac cable application.

  7. The insulation design for transmission class HTS transformer with continuous disk winding

    NASA Astrophysics Data System (ADS)

    Cheon, H. G.; Kwag, D. S.; Choi, J. H.; Kim, S. H.

    2007-10-01

    In the response to the demands for electrical energy, much effort aimed to develop and commercialize HTS power equipments have been made around the world. Among them HTS transformer is one of very promising one. In Korea, companies and universities are developing a power distribution and transmission class HTS transformer that is one of the 21st century superconducting frontier projects. The composite continuous disk winding of transmission class HTS transformer is concentrically arranged H1-L-H2 from center. For the development of transmission HTS transformer with continuous disk winding, the cryogenic insulation technology should be established. We have been analyzed insulation composition and investigated electrical characteristics such as the breakdown of LN2, barrier, kapton films, flashover on FRP in LN2. We are going to compare with measured each value and apply the value to most suitable insulating design of the HTS transformer.

  8. TEST RESULTS OF HTS COILS AND AN R AND D MAGNET FOR RIA.

    SciTech Connect

    GUPTA, R.; ANERELLA, M.; HARRISON, M.; SCHMALZLE, J.; SAMPSON, W.; ZELLER, A.

    2005-05-16

    This paper presents the successful construction and test results of a magnetic mirror model for the Rare Isotope Accelerator (RIA) that is based on High Temperature Superconductors (HTS). In addition, the performance of thirteen coils (each made with {approx}220 meters of commercially available HTS tape) is also presented. The proposed HTS magnet is a crucial part of the R&D for the Fragment Separator region where the magnets are subjected to several orders of magnitude more radiation and energy deposition than typical beam line and accelerator magnets receive during their entire lifetime. A preliminary design of an HTS dipole magnet for the Fragment Separator region is also presented.

  9. Hysteresis and reluctance electric machines with bulk HTS elements. Recent results and future development

    NASA Astrophysics Data System (ADS)

    Kovalev, L. K.; Ilushin, K. V.; Penkin, V. T.; Kovalev, K. L.; M-A Koneev, S.; Poltavets, V. N.; Larionoff, A. E.; Modestov, K. A.; Larionoff, S. A.; Gawalek, W.; Habisreuther, T.; Oswald, B.; Best, K.-J.; Strasser, T.

    2000-05-01

    Two new types of HTS electric machine are considered. The first type is hysteresis motors and generators with cylindrical and disc rotors containing bulk HTS elements. The second type is reluctance motors with compound HTS-ferromagnetic rotors. The compound HTS-ferromagnetic rotors, consisting of joined alternating bulk HTS (YBCO) and ferromagnetic (iron) plates, provide a new active material for electromechanical purposes. Such rotors have anisotropic properties (ferromagnetic in one direction and diamagnetic in the perpendicular one). Theoretical and experimental results for HTS hysteresis and reluctance motors are presented. A series of hysteresis HTS motors with output power rating from 1 kW (at 50 Hz) up to 4 kW (at 400 Hz) and a series of reluctance HTS motors with output power 2-18.5 kW (at 50 Hz) were constructed and successfully tested. It was shown that HTS reluctance motors could reach two to five times better overall dimensions and specific power than conventional asynchronous motors of the same size and will have higher values of power factor (cos ϕ≥0.7 to 0.8).

  10. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  11. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  12. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  13. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  14. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  15. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  16. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  17. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  18. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  19. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  20. Thin wire pointing method

    NASA Technical Reports Server (NTRS)

    Green, G.; Mattauch, R. J. (Inventor)

    1983-01-01

    A method is described for forming sharp tips on thin wires, in particular phosphor bronze wires of diameters such as one-thousandth inch used to contact micron size Schottky barrier diodes, which enables close control of tip shape and which avoids the use of highly toxic solutions. The method includes dipping an end of a phosphor bronze wire into a dilute solution of sulfamic acid and applying a current through the wire to electrochemically etch it. The humidity in the room is controlled to a level of less than 50%, and the voltage applied between the wire and another electrode in the solutions is a half wave rectified voltage. The current through the wire is monitored, and the process is stopped when the current falls to a predetermined low level.

  1. Sintered wire annode

    DOEpatents

    Falce, Louis R.; Ives, R. Lawrence

    2007-12-25

    A plurality of high atomic number wires are sintered together to form a porous rod that is parted into porous disks which will be used as x-ray targets. A thermally conductive material is introduced into the pores of the rod, and when a stream of electrons impinges on the sintered wire target and generates x-rays, the heat generated by the impinging x-rays is removed by the thermally conductive material interspersed in the pores of the wires.

  2. Zinc wired rebar

    SciTech Connect

    Zhang, X.G.; Hwang, J.

    1997-02-01

    A novel method for corrosion protection of rebar in concrete is reported wherein it is galvanically protected by attaching a zinc wire along its length. The self-corrosion and galvanic-corrosion loss of the zinc wire is dependent on the water/cement ratio, the size of the cathode, and the concrete cover thickness. The wire acts as a sacrificial anode when the rebar embedded in concrete is exposed to corrosive environments.

  3. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface is disclosed. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest. 4 figs.

  4. Weld Wire Investigation Summary

    SciTech Connect

    Cunningham, M.A.

    1999-03-22

    After GTA welding reservoir A production/process prove-in assemblies, X-ray examination detected a lack of sidewall fusion. After examining several possible causes, it was determined that the weld wire filler metal was responsible, particularly the wire cleaning process. The final conclusion was that the filler wire must be abrasively cleaned in a particular manner to perform as required. The abrasive process was incorporated into the wire material specification, ensuring consistency for all reservoir GTA welding at AlliedSignal Federal Manufacturing and Technologies (FM and T).

  5. Wire-inhomogeneity detector

    DOEpatents

    Gibson, G.H.; Smits, R.G.; Eberhard, P.H.

    1982-08-31

    A device for uncovering imperfections in electrical conducting wire, particularly superconducting wire, by detecting variations in eddy currents. Eddy currents effect the magnetic field in a gap of an inductor, contained in a modified commercial ferrite core, through which the wire being tested is passed. A small increase or decrease in the amount of conductive material, such as copper, in a fixed cross section of wire will unbalance a bridge used to measure the impedance of the inductor, tripping a detector and sounding an alarm.

  6. Locating PHEV exchange stations in V2G

    SciTech Connect

    Pan, Feng; Bent, Russell; Berscheid, Alan; Izraelevitz, David

    2010-01-01

    Plug-in hybrid electric vehicle (PREV) is an environment friendly modem transportation method and has been rapidly penetrate the transportation system. Renewable energy is another contributor to clean power but the associated intermittence increases the uncertainty in power generation. As a foreseen benefit of a vchicle-to-grid (V2G) system, PREV supporting infrastructures like battery exchange stations can provide battery service to PREV customers as well as being plugged into a power grid as energy sources and stabilizer. The locations of exchange stations are important for these two objectives under constraints from both ,transportation system and power grid. To model this location problem and to understand and analyze the benefit of a V2G system, we develop a two-stage stochastic program to optimally locate the stations prior to the realizations of battery demands, loads, and generation capacity of renewable power sources. Based on this model, we use two data sets to construct the V2G systems and test the benefit and the performance of these systems.

  7. VIEW SOUTHEASTBUILDING 4 NO. 1 WIRE MILL (1871) WIRE DRAWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SOUTHEAST-BUILDING 4 NO. 1 WIRE MILL (1871) WIRE DRAWING MACHINE - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ

  8. Wire Array Photovoltaics

    NASA Astrophysics Data System (ADS)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  9. A Possible Path from BCS through HTS to VHTS

    NASA Astrophysics Data System (ADS)

    Chu, C. W.

    2010-03-01

    Three years after celebrating the 50th anniversary of the BCS theory and the 20th anniversary of the discovery of high temperature superconductivity (HTS), it appears to be most fitting for us to contemplate the possibility of very high temperature superconductivity (VHTS). VHTS, preferably at room temperature, if achieved, could change the world both scientifically and technologically. Unfortunately, it has long been considered by some to belong to the domain of science fiction and to occur only ``at an astronomical distance and under an astronomical pressure.'' With the advent of liquid nitrogen superconductivity in 1987, the outlook has become much brighter. Currently, there appears to be no reason, either theoretical or experimental, why VHTS would be impossible, in spite of the 2006 prediction of the death of HTS by 2010-2015 through the so-called scientometric analysis of the publication record of the previous 20 years. The recent discovery of the new class of Fe-pnictide HTSs fuels more cautious optimism. Since its inception, BCS theory has provided the basic framework for the occurrence and understanding of superconductivity, but it has failed to show where and how to find superconductivity at a higher temperature. This may be attributed to the small energy scale of superconductivity in comparison with those of other excitations in the solids. After examining existing data, we believe that a holistic multidisciplinary enlightened empirical approach appears to be the most effective way to discover novel superconductors with higher transition temperatures. In this talk, I shall present several possible approaches toward VHTS that we are currently pursuing, after briefly summarizing what has happened in the long search for HTS and VHTS.

  10. Local flux intrusion in HTS annuli during pulsed field magnetization

    NASA Astrophysics Data System (ADS)

    Korotkov, V. S.; Krasnoperov, E. P.; Kartamyshev, A. A.

    2016-03-01

    During pulsed field magnetization of melt-grown HTS flux jumps can occur and the shielding current falls by 10-20 times. As the duration of pulse is shorter than the temperature relaxation time (<< 1 s), the circular current remains small during the field falling. The residual trapped field in the hole of the annulus has a direction opposite to that of the pulsed field. Small circular current and high critical current density are explained by the fact that flux moves through narrow regions of the annulus body. The angle of the sector with “soft flux” (i.e. a low Jc region) is estimated to be ∼ 7 deg.

  11. Commercial and Industrial Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  12. 2016 MOST WIRED.

    PubMed

    Barr, Paul; Butcher, Lola; Hoppszallern, Suzanna

    2016-07-01

    This year's IT survey shows that hospitals are aggressively fighting cyber crime and looking for ways to use data to help in the transition to value-based care. Find out who made the 2016 lists of Most Wired, Most Advanced, Most Improved and Most Wired-Small and Rural. PMID:27526506

  13. The exploding wire phenomenon

    NASA Astrophysics Data System (ADS)

    Aspden, H.

    1985-02-01

    Graneau's recent interpretation of the exploding wire phenomenon as an electrodynamic effect verifying Ampère's classical formulation is questioned. Instead, it is shown that the rupturing force arising from the imbalance of the self-induced electromotive force and the ohmic potential during an explosive current surge will account for the wire breaking into several segments, as is observed.

  14. Water Desalination with Wires.

    PubMed

    Porada, S; Sales, B B; Hamelers, H V M; Biesheuvel, P M

    2012-06-21

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode pairs in freshwater with and in brine without an applied cell voltage, we create an ion adsorption/desorption cycle. We show experimentally how in six subsequent cycles we can reduce the salinity of 20 mM feed (brackish) water by a factor of 3, while application of a cation exchange membrane on the cathode wires makes the desalination factor increase to 4. Theoretical modeling rationalizes the experimental findings, and predicts that system performance can be significantly enhanced by material modifications. To treat large volumes of water, multiple stacks of wire pairs can be used simultaneously in a "merry-go-round" operational mode. PMID:26285717

  15. International space station wire program

    NASA Technical Reports Server (NTRS)

    May, Todd

    1995-01-01

    Hardware provider wire systems and current wire insulation issues for the International Space Station (ISS) program are discussed in this viewgraph presentation. Wire insulation issues include silicone wire contamination, Tefzel cold temperature flexibility, and Russian polyimide wire insulation. ISS is a complex program with hardware developed and managed by many countries and hundreds of contractors. Most of the obvious wire insulation issues are known by contractors and have been precluded by proper selection.

  16. The insulation coordination and surge arrester design for HTS cable system in Icheon substation

    NASA Astrophysics Data System (ADS)

    Lee, Hansang; Yoon, Dong-Hee; Lee, Seung-Ryul; Yang, Byeong-Mo; Jang, Gilsoo

    2013-01-01

    This paper proposes an insulation coordination and surge arrester design for HTS (High-Temperature Superconducting) cable system in Icheon substation in Korea. In the aspect of the economic analysis, since the HTS cable is very expensive, the insulation coordination to prevent the dielectric breakdown caused by the lightning surge should be considered carefully. Also, in the aspect of the power system reliability, since the HTS cable has much more capacity compared than conventional power cables and the ripple effect from the HTS cable failure may lead to the wide area blackout, an intensive study for insulation coordination from lightning surge is one of the most important considerations. In this paper, the insulation coordination for lightning surge is verified using HTS cable and power equipment models and the design of the proper surge arrester is proposed.

  17. Application of shielding current in bulk HTS to control magnetic field distribution

    NASA Astrophysics Data System (ADS)

    Kii, T.

    2016-03-01

    Superconducting shielding current is excited when external field is applied to superconductor. In case for field cooling of bulk superconductor, shielding current is an origin of strong trapped field. When external field is changed to a properly arranged bulk HTS array, various magnetic field distribution can be formed by an excited shielding current in each bulk HTS. This paper presents a simple intuitively method to design magnetic field distribution using supercurrents in bulk high-temperature superconductor (HTS) array. In this method, an ideal current path for intended field distribution is represented by shielding currents in bulk HTS array. Expected performance can be roughly estimated by using Biot-Savart law. As examples, Maxwell coil pair and helical field generator are designed. This method can be applied to design various magnet devices using bulk HTS array.

  18. Advances in second generation high temperature superconducting wire manufacturing and R&D at American Superconductor Corporation

    NASA Astrophysics Data System (ADS)

    Rupich, Martin W.; Li, Xiaoping; Thieme, Cees; Sathyamurthy, Srivatsan; Fleshler, Steven; Tucker, David; Thompson, Elliot; Schreiber, Jeff; Lynch, Joseph; Buczek, David; DeMoranville, Ken; Inch, James; Cedrone, Paul; Slack, James

    2010-01-01

    The RABiTS™/MOD-YBCO (rolling assisted biaxially textured substrate/metal-organic deposition of YBa2Cu3O7-δ) route has been established as a low-cost manufacturing process for producing high performance second generation (2G) wire. American Superconductor Corporation (AMSC) has used this approach to establish a production scale manufacturing line based on a wide-web manufacturing process. This initial production line is currently capable of producing 2G wire in lengths to 500 m with critical currents exceeding 250 A cmwidth-1 at 77 K, in the self-field. The wide-web process, combined with slitting and lamination processes, allows customization of the 2G wire width and stabilizer composition to meet application specific wire requirements. The production line is currently supplying 2G wire for multiple cable, fault current limiter and coil applications. Ongoing R&D is focused on the development of thicker YBCO layers and improved flux pinning centers. This paper reviews the history of 2G wire development at AMSC, summarizes the current capability of the 2G wire manufacturing at AMSC, and describes future R&D improvements.

  19. HTS cables open the window for large-scale renewables

    NASA Astrophysics Data System (ADS)

    Geschiere, A.; Willén, D.; Piga, E.; Barendregt, P.

    2008-02-01

    In a realistic approach to future energy consumption, the effects of sustainable power sources and the effects of growing welfare with increased use of electricity need to be considered. These factors lead to an increased transfer of electric energy over the networks. A dominant part of the energy need will come from expanded large-scale renewable sources. To use them efficiently over Europe, large energy transits between different countries are required. Bottlenecks in the existing infrastructure will be avoided by strengthening the network. For environmental reasons more infrastructure will be built underground. Nuon is studying the HTS technology as a component to solve these challenges. This technology offers a tremendously large power transport capacity as well as the possibility to reduce short circuit currents, making integration of renewables easier. Furthermore, power transport will be possible at lower voltage levels, giving the opportunity to upgrade the existing network while re-using it. This will result in large cost savings while reaching the future energy challenges. In a 6 km backbone structure in Amsterdam Nuon wants to install a 50 kV HTS Triax cable for a significant increase of the transport capacity, while developing its capabilities. Nevertheless several barriers have to be overcome.

  20. Restoration and testing of an HTS fault current controller

    SciTech Connect

    Waynert, J. A.; Boenig, H.; Mielke, C. H.; Willis, J. O.; Burley, B. L.

    2002-01-01

    A three-phase, 1200 A, 12.5 kV fault current controller using three HTS 4 mH coils, was built by industry and tested in 1999 at the Center Substation of Southern California Edison in Norwalk, CA. During the testing, it appeared that each of the three single-phase units had experienced a voltage breakdown, one externally and two internally. Los Alamos National Laboratory (LANL) was asked by DOE to restore the operation of the fault current controller provided the HTS coils had not been damaged during the initial substation tests. When the internally-failed coil vacuum vessels were opened it became evident that in these two vessels, a flashover had occurred at the high voltage bus section leading to the terminals of the superconducting coil. An investigation into the failure mechanism resulted in six possible causes for the flashover. Based on these causes, the high voltage bus was completely redesigned. Single-phase tests were successfully performed on the modified unit at a 13.7 kV LANL substation. This paper presents the postulated voltage flashover failure mechanisms, the new high voltage bus design which mitigates the failure mechanisms, the sequence of tests used to validate the new design, and finally, the results of variable load and short-circuit tests with the single-phase unit operating on the LANL 13.7 kV substation.

  1. HTS Magnets for Advanced Magnetoplasma Space Propulsion Applications

    SciTech Connect

    Carte, M.D.; Chang-Diaz, F.R. Squire, J.P.; Schwenterly, S.W.

    1999-07-12

    Plasma rockets are being considered for both Earth-orbit and interplanetary missions because their extremely high exhaust velocity and ability to modulate thrust allow very efficient use of propellant mass. In such rockets, a hydrogen or helium plasma is RF-heated and confined by axial magnetic fields produced by coils around the plasma chamber. HTS coils cooled by the propellant are desirable to increase the energy efficiency of the system. We describe a set of prototype high-temperature superconducting (HTS) coils that are being considered for the VASIMR ( Variable Specific Impulse Magnetoplasma Rocket) thruster proposed for testing on the Radiation Technology Demonstration (RTD) satellite. Since this satellite will be launched by the Space Shuttle, for safety reasons liquid helium will be used as propellant and coolant. The coils must be designed to operate in the space environment at field levels of 1 T. This generates a unique set of requirements. Details of the overall winding geometry and current density, as well as the challenging thermal control aspects associated with a compact, minimum weight design will be discussed.

  2. Performance Testing of a Cryogenic Refrigeration System for HTS Cables

    NASA Astrophysics Data System (ADS)

    Lee, R. C.; Dada, A.; Garcia, E. L.; Ringo, S. M.

    2006-04-01

    A novel Cryogenic Refrigeration System (CRS) has been developed to provide the refrigeration for an in-grid 350 m HTS cable demonstration in Albany NY. Refrigeration is provided by a closed cycle refrigerator (cryocooler) with a nominal cooling capacity of 6 kW at 70 K. The CRS is designed to meet both the stringent operating and reliability criteria necessary for the utility industry, while demonstrating the commercial requirements of a cost effective and compact design. Integral to the operation of the CRS is the continuous monitoring and control provided by BOC's remote operations infrastructure. The skid mounted CRS has been installed at host utility Niagara Mohawk's site in Albany. Field trials of the CRS and its remote operation were conducted prior to the HTS cable installation using a simulated heat load. A wide variety of operating conditions and modes of operation were tested, including back up and accelerated recovery from fault current conditions. This paper describes the integrated system design and field testing results.

  3. 5 MJ flywheel based on bulk HTS magnetic suspension

    NASA Astrophysics Data System (ADS)

    Poltavets, V.; Kovalev, K.; Ilyasov, R.; Glazunov, A.; Maevsky, V.; Verzbitsky, L.; Akhmadyshev, V.; Shikov, A.

    2014-05-01

    Nowadays the flywheel energy storage systems (FES) are developed intensively as uninterruptible power supply (UPS) devices for on-land and transport (especially airborne) applications worldwide. This work is devoted to the FES with magnetic suspension on the base of bulk HTS YBCO elements and permanent magnets. The developed FES is intended to be used as UPS in Russian atomic industry in case of an emergency. For the successful design of the FES the following questions should be solved: design of the motor/generator, design of the rotor (flywheel), design of the bearing system, design of the control system and system of power load matching, design of the cooling system. The developed small-scale FES with the stored energy 0.5 MJ was used to solve these basic questions. The elaborated FES consists of the synchronous electric machine with permanent magnets, the solid flywheel with axial magnetic suspension on the base of YBCO bulks and permanent magnets, the system of control and power load matching, and the system of liquid nitrogen cooling. The results of theoretical modeling of different schematics of magnetic suspension and experimental investigations of the constructed FES are presented. The design of the future full-scale FES with the stored energy ~5 MJ and output power up to 100 kW is described. The test results of the flywheel rotor and HTS magnetic suspension of 5 MJ FES are presented. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry"

  4. Sub-Micron Long HTS Ho Electron Mixers

    NASA Technical Reports Server (NTRS)

    Harnack, 0.; Karasik, B. S.; McGrath, W. R.; Kleinsasser, A. W.; Barner, J. B.

    2000-01-01

    The hot-electron bolometer mixer made from a high-T, superconductor (HTS) was introduced recently as an alternative to a Schottky mixer at THz frequencies. The performance of the mixer depends on the total thermal conductance for heat removal from the phonon sub-system due to either length-dependent phonon diffusion or phonon escape to the substrate. We have measured both the length and temperature dependencies of the IF bandwidth of the mixers fabricated from 25-35 mn thick YBCO films on MgO and sapphire substrates. The films were grown by a laser deposition technique and electron-beam lithography was used to define bridge lengths down to 50 nm. Mixer measurements were done using signal frequencies in the range of 1-100 GHz. For 50 nm and 400 nm long devices on MgO, the 3-dB bandwidth was about 100 MHz. At temperatures below 60 K, the hot-electron plateau was clearly seen starting around 2-3 GHz. At temperatures above 70 K, the flux-flow effects begin to dominate and the IF bandwidth increases to 1-8 GHz, while the conversion efficiency drops by several dB. This temperature dependence of the IF bandwidth can account for previously reported unexpectedly high bandwidth of HTS mixers.

  5. Next Generation Wiring

    NASA Technical Reports Server (NTRS)

    Medelius, Petro; Jolley, Scott; Fitzpatrick, Lilliana; Vinje, Rubiela; Williams, Martha; Clayton, LaNetra; Roberson, Luke; Smith, Trent; Santiago-Maldonado, Edgardo

    2007-01-01

    Wiring is a major operational component on aerospace hardware that accounts for substantial weight and volumetric space. Over time wire insulation can age and fail, often leading to catastrophic events such as system failure or fire. The next generation of wiring must be reliable and sustainable over long periods of time. These features will be achieved by the development of a wire insulation capable of autonomous self-healing that mitigates failure before it reaches a catastrophic level. In order to develop a self-healing insulation material, three steps must occur. First, methods of bonding similar materials must be developed that are capable of being initiated autonomously. This process will lead to the development of a manual repair system for polyimide wire insulation. Second, ways to initiate these bonding methods that lead to materials that are similar to the primary insulation must be developed. Finally, steps one and two must be integrated to produce a material that has no residues from the process that degrades the insulating properties of the final repaired insulation. The self-healing technology, teamed with the ability to identify and locate damage, will greatly improve reliability and safety of electrical wiring of critical systems. This paper will address these topics, discuss the results of preliminary testing, and remaining development issues related to self-healing wire insulation.

  6. Orbiter Kapton wire operational requirements and experience

    NASA Technical Reports Server (NTRS)

    Peterson, R. V.

    1994-01-01

    The agenda of this presentation includes the Orbiter wire selection requirements, the Orbiter wire usage, fabrication and test requirements, typical wiring installations, Kapton wire experience, NASA Kapton wire testing, summary, and backup data.

  7. RAPID COMMUNICATION: High performance superconducting wire in high applied magnetic fields via nanoscale defect engineering

    NASA Astrophysics Data System (ADS)

    Wee, Sung Hun; Goyal, Amit; Zuev, Yuri L.; Cantoni, Claudia

    2008-09-01

    High temperature superconducting (HTS) wires capable of carrying large critical currents with low dissipation levels in high applied magnetic fields are needed for a wide range of applications. In particular, for electric power applications involving rotating machinery, such as large-scale motors and generators, a high critical current, Ic, and a high engineering critical current density, JE, in applied magnetic fields in the range of 3-5 Tesla (T) at 65 K are required. In addition, exceeding the minimum performance requirements needed for these applications results in a lower fabrication cost, which is regarded as crucial to realize or enable many large-scale bulk applications of HTS materials. Here we report the fabrication of short segments of a potential superconducting wire comprised of a 4 µm thick YBa2Cu3O7-δ (YBCO) layer on a biaxially textured substrate with a 50% higher Ic and JE than the highest values reported previously. The YBCO film contained columns of self-assembled nanodots of BaZrO3 (BZO) roughly oriented along the c-axis of YBCO. Although the YBCO film was grown at a high deposition rate, three-dimensional self-assembly of the insulating BZO nanodots still occurred. For all magnetic field orientations, minimum Ic and JE at 65 K, 3 T for the wire were 353 A cm-1 and 65.4 kA cm-2, respectively.

  8. High Performance Superconducting Wire in High Applied Magnetic Fields via Nanoscale Defect Engineering

    SciTech Connect

    Goyal, Amit; Wee, Sung Hun; Zuev, Yuri L; Cantoni, Claudia

    2008-01-01

    High temperature superconducting (HTS) wires capable of carrying large critical currents with low dissipation levels in high applied magnetic fields are needed for a wide range of applications. In particular, for electric power applications involving rotating machinery, such as large-scale motors and generators, a high critical current, Ic, and a high engineering critical current density, JE, in applied magnetic fields in the range of 3 5 Tesla (T) at 65 K are required. In addition, exceeding the minimum performance requirements needed for these applications results in a lower fabrication cost, which is regarded as crucial to realize or enable many large-scale bulk applications of HTS materials. Here we report the fabrication of short segments of a potential superconducting wire comprised of a 4 m thick YBa2Cu3O7− (YBCO) layer on a biaxially textured substrate with a 50% higher Ic and JE than the highest values reported previously. The YBCO film contained columns of self-assembled nanodots of BaZrO3 (BZO) roughly oriented along the c-axis of YBCO. Although the YBCO film was grown at a high deposition rate, three-dimensional self-assembly of the insulating BZO nanodots still occurred. For all magnetic field orientations, minimum Ic and JE at 65 K, 3 T for the wire were 353 A cm−1 and 65.4 kA cm−2, respectively.

  9. Novel concept for a space power distribution busbar using HTS materials and passive cooling

    NASA Astrophysics Data System (ADS)

    Shimko, Martin A.; Crowley, Christopher J.; Wallis, Peter N.

    1992-04-01

    This paper presents the performance, defines the range of applications, and shows the feasibility of using high temperature superconducting (HTS) materials with passive heat rejection for space power transmission. A conceptual design for the busbar is presented, and mass and resistive energy losses are estimated for various missions, power levels, and current types (AC and DC). All applications display a large increase in power transmission efficiency, while mass comparisons show the passively cooled HTS busbar mass ranges from 12% of the mass of a copper busbar at geosynchronous orbit (GEO) and beyond, to 38% at a 1000 km earth orbit (LEO). The design of the HTS conductor is novel, consisting of interleaved HTS strip conductors (HTS plus substrate) separated by dielectric insulating material. Appropriate HTS materials are presently available in long length (≳100 m) with current densities (≳1000 amp/cm2) and critical temperatures (95 K) which make the passively cooled busbar feasible. An original numerical model for the conductor/radiator assembly is described which includes the effects of solar insolation, reflected and IR thermal loads from the earth, and internally generated losses in the HTS. Completely passive operation at low earth orbits (LEO) of 1000 km is enabled by a novel asymmetric design for a directional radiator that includes a unique back-to-back busbar configuration that does not require active pointing. The design includes copper conductor downleads employing the same passive cooling scheme.

  10. Design Construction and Test Results of a HTS Solenoid For Energy Recovery Linac

    SciTech Connect

    Anerella, M; Ben-Zvi, I; Kayran, D; McIntyre, G; Muratore, J; Plate, S; Sampson, W; Cole, M

    2011-03-28

    An innovative feature of the proposed Energy Recovery Linac (ERL) is the use of a solenoid made with High Temperature Superconductor (HTS) with the Superconducting RF cavity. The use of HTS allows solenoid to be placed in close proximity to the cavity and thus provides early focusing of the electron beam. In addition, cryogenic testing at {approx}77 K is simpler and cheaper than 4 K testing. This paper will present the design, construction and test results of this HTS solenoid. The HTS solenoid in the proposed ERL will be situated in the transition region between the superconducting cavity at {approx}4 K and the cryostat at the room temperature. Solenoid inside the cryogenic structure provides an early focusing and hence low emittance beam. The temperature in the transition region will be too high for a conventional low temperature superconductor and resistive heat load from copper coils will be too high on cryogenic system. HTS coils also allow much higher current density and significant reduction in size as compared to copper coils. Hence HTS solenoid provide a unique and technically superior solution. The use of a HTS solenoid with superconducting cavity offers a unique option as it can be placed in a cold to warm transition region to provide early focussing without using additional space. Construction and test results so far are very encouraging for its use in the ERL project.

  11. Experimental Studies on Cryogenic System for 22.9 KV Hts Cable Sytem

    NASA Astrophysics Data System (ADS)

    Sohn, S. H.; Lim, J. H.; Yang, H. S.; Kim, D. L.; Ryoo, H. S.; Kim, C. D.; Kim, D. H.; Lee, S. K.; Hwang, S. D.

    2008-03-01

    In terms of high transmission capacity with lower voltage, a high temperature superconducting (HTS) cable system is a very attractive challenge for utilities. However, the concomitant cryogenic system for the HTS cable system is one of the tantalizing problems in the operation. The reliability and maintainability of cryogenic system are the key issues to apply it to the real electric power grid. Korea Electric Power Corporation (KEPCO) is making an attempt to verify the applicability of the HTS cable system to improve the efficiency of electric power industry. Since May 2006, a 22.9-kV, 50-MVA, 3-phase, 100-m class HTS cable system with an open cooling system has been operated at the KEPCO Gochang test yard. Concurrently, another HTS cable verification test with the same electrical specification and an hybrid cooling system has been carried out by LS Cable (LSC) Ltd in close proximity to the KEPCO's HTS cable system within Gochang test yard. KEPCO conducts the operation of the open cooling system, and is evaluating the hybrid system of LSC with respect to facility performance and usability. This paper compares the cryogenic performance of both HTS cable systems and discusses cooling test results such as step response.

  12. Influence analysis of structural parameters and operating parameters on electromagnetic properties of HTS linear induction motor

    NASA Astrophysics Data System (ADS)

    Fang, J.; Sheng, L.; Li, D.; Zhao, J.; Li, Sh.; Qin, W.; Fan, Y.; Zheng, Q. L.; Zhang, W.

    A novel High Temperature Superconductor Linear Induction Motor (HTS LIM) is researched in this paper. Since the critical current and the electromagnetic force of the motor are determined mainly by the primary slot leakage flux, the main magnetic flux and eddy current respectively, in order to research the influence of structural parameters and operating parameters on electromagnetic properties of HTS LIM, the motor was analyzed by 2D transient Finite Element Method (FEM). The properties of the motor, such as the maximum slot leakage flux density, motor thrust, motor vertical force and critical current are analyzed with different structural parameters and operating parameters. In addition, an experimental investigation was carried out on prototype HTS motor. Electrical parameters were deduced from these tests and also compared with the analysis results from FEM. AC losses of one HTS coil in the motor were measured and AC losses of all HTS coils in HTS LIM were estimated. The results in this paper could provide reference for the design and research on the HTS LIM.

  13. Analysis on heat loss characteristics of a 10 kV HTS power substation

    NASA Astrophysics Data System (ADS)

    Teng, Yuping; Dai, Shaotao; Song, Naihao; Zhang, Jingye; Gao, Zhiyuan; Zhu, Zhiqin; Zhou, Weiwei; Wei, Zhourong; Lin, Liangzhen; Xiao, Liye

    2014-09-01

    A 10 kV High Temperature Superconducting power substation (10 kV HTS substation), supported by Chinese State 863 projects, was developed and has been running to supply power for several factories for more than two years at an industrial park of Baiyin, Gansu province in Northwest China. The system of the 10 kV HTS substation compositions, including a HTS cable, a HTS transformer, a SFCL, and a SMES, are introduced. The SMES works at liquid helium temperature and the other three apparatus operates under liquid nitrogen condition. There are mainly four types of heat losses existing in each HTS apparatus of the 10 kV HTS substation, including AC loss, Joule heat loss, conductive heat, and leak-in heat from cryostat. A small quantity of AC loss still exists due to the harmonic component of the current when it carries DC for HTS apparatus. The principle and basis for analysis of the heat losses are introduced and the total heat loss of each apparatus are calculated or estimated, which agree well with the test result. The analysis and result presented are of importance for the design of the refrigeration system.

  14. Development of 3kA conduction cooled HTS current lead system

    NASA Astrophysics Data System (ADS)

    Ohsemochi, Koichi; Ono, Michitaka; Nomura, Shunji; Kuriyama, Toru; Kasahara, Hirofumi; Akita, Shirabe; Koso, Seiichi

    2003-10-01

    The research and development of superconducting magnet energy storage (SMES) system, a national project, began in 1999. One of the purposes of this project is investigation concerning the application of high-temperature superconducting (HTS) SMES. As a part of this project, the 3 kA class HTS small model coil was manufactured in order to verify the possibility of realizing conduction cooled HTS SMES. Therefore, it is important to develop the conduction cooled current lead system for applying this coil. We developed a kA class conduction cooled HTS current lead system. This current lead system consists of the copper current lead and the YBaCuO (YBCO) HTS current lead. The YBCO bulk manufactured by Nippon Steel Corporation was applied to the HTS current lead. The YBCO bulk keeps high critical current density ( Jc > 10,000 A/cm 2) in the magnetic field (1 T) at 77 K compared with Bi2223 superconductor. The experiment of this HTS current lead system was carried out, and rated current of 3000 A was achieved successfully.

  15. Dual wire weld feed proportioner

    NASA Technical Reports Server (NTRS)

    Nugent, R. E.

    1968-01-01

    Dual feed mechanism enables proportioning of two different weld feed wires during automated TIG welding to produce a weld alloy deposit of the desired composition. The wires are fed into the weld simultaneously. The relative feed rates of the wires and the wire diameters determine the weld deposit composition.

  16. Angular Dependence of Transport AC Losses in Superconducting Wire with Position-Dependent Critical Current Density in a DC Magnetic Field

    NASA Astrophysics Data System (ADS)

    Su, Xing-liang; Xiong, Li-ting; Gao, Yuan-wen; Zhou, You-he

    2013-07-01

    Transport AC losses play a very important role in high temperature superconductors (HTSs), which usually carry AC transport current under applied magnetic field in typical application-like conditions. In this paper, we propose the analytical formula for transport AC losses in HTS wire by considering critical current density of both inhomogeneous and anisotropic field dependent. The angular dependence of critical current density is described by effective mass theory, and the HTS wire has inhomogeneous distribution cross-section of critical current density. We calculate the angular dependence of normalized AC losses under different DC applied magnetic fields. The numerical results of this formula agree well with the experiment data and are better than the results of Norris formula. This analytical formula can explain the deviation of experimental transport current losses from the Norris formula and apply to calculate transport AC losses in realistic practical condition.

  17. Design, Construction and Test of Cryogen-Free HTS Coil Structure

    SciTech Connect

    Hocker, H.; Anerella, M.; Gupta, R.; Plate, S.; Sampson, W.; Schmalzle, J.; Shiroyanagi, Y.

    2011-03-28

    This paper will describe design, construction and test results of a cryo-mechanical structure to study coils made with the second generation High Temperature Superconductor (HTS) for the Facility for Rare Isotope Beams (FRIB). A magnet comprised of HTS coils mounted in a vacuum vessel and conduction-cooled with Gifford-McMahon cycle cryocoolers is used to develop and refine design and construction techniques. The study of these techniques and their effect on operations provides a better understanding of the use of cryogen free magnets in future accelerator projects. A cryogen-free, superconducting HTS magnet possesses certain operational advantages over cryogenically cooled, low temperature superconducting magnets.

  18. The electrical characteristics of solid insulators for 154 kV class HTS transformer

    NASA Astrophysics Data System (ADS)

    Cheon, H. G.; Choi, J. H.; Pang, M. S.; Kim, W. J.; Kim, S. H.

    2011-11-01

    HTS transformer, without any loss of insulation lifetime due to the reduction in terms of size and weight, can increase the overload capacity, and have some benefits such as the improvement in efficiency, minimization of environmental pollution, and convenient spatial arrangement, which contribute a lot to electric power system operation. However, for practical insulation design of the HTS transformer, it is necessary to establish the research on electrical properties LN 2 as well as solid insulators. These solid insulators have been used as main insulations for HTS transformer. In this paper, we discussed breakdown and V- t characteristics of glass fiber reinforced plastics (GFRP) and pressboard in LN 2.

  19. The Improved Transient Stabilities of HTS Coils by Removing the Insulation and Inserting the Metal Tapes

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Kajikawa, H.; Ikoma, H.; Joo, J. H.; Jo, J. M.; Han, Y. J.; Jeong, H. S.

    NMR/MRI magnets have a protection device to prevent the damages due to a quench. On the other hand, the protection device design of HTS coils or magnets are very difficult because it has a very low normal zone propagation velocity (NZPV) and complicate behaviors of quench. We have studied the methods to improve the self-protection ability of HTS coils by removing the turn-to-turn insulation and inserting the metal tape instead of insulation. In this paper, the improved transient stabilities and self- protection abilities of HTS coils by removing the insulation and inserting metal tapes will be presented by minimum quench energy (MQE).

  20. Splicing Wires Permanently With Explosives

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Kushnick, Anne C.

    1990-01-01

    Explosive joining process developed to splice wires by enclosing and metallurgically bonding wires within copper sheets. Joints exhibit many desirable characteristics, 100-percent conductivity and strength, no heat-induced annealing, no susceptibility to corrosion in contacts between dissimilar metals, and stability at high temperature. Used to join wires to terminals, as well as to splice wires. Applicable to telecommunications industry, in which millions of small wires spliced annually.

  1. Magnetizing of permanent magnets using HTS bulk magnets

    NASA Astrophysics Data System (ADS)

    Oka, Tetsuo; Muraya, Tomoki; Kawasaki, Nobutaka; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Terasawa, Toshihisa

    2012-01-01

    A demagnetized Nd-Fe-B permanent magnet was scanned just above the magnetic pole which contains the HTS bulk magnet generating a magnetic field of 3.27 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. We examined the magnetic field distributions when the magnetic poles were scanned twice to activate the magnet plate inversely with various overlap distances between the tracks of the bulk magnet. The magnetic field of the "rewritten" magnet reached the values of the magnetically saturated region of the material, showing steep gradients at the border of each magnetic pole. As a replacement for conventional pulse field magnetizing methods, this technique is proposed to expand the degree of freedom in the design of electromagnetic devices, and is proposed as a novel practical method for magnetizing rare-earth magnets, which have excellent magnetic performance and require intense fields of more than 3 T to be activated.

  2. Bi-2223 HTS winding in toroidal configuration for SMES coil

    NASA Astrophysics Data System (ADS)

    Kondratowicz-Kucewicz, B.; Janowski, T.; Kozak, S.; Kozak, J.; Wojtasiewicz, G.; Majka, M.

    2010-06-01

    Energy can be stored in the magnetic field of a coil. Superconducting Magnetic Energy Storage (SMES) is very promising as a power storage system for load levelling or power stabilizer. However, the strong electromagnetic force caused by high magnetic field and large coil current is a problem in SMES systems. A toroidal configuration would have a much less extensive external magnetic field and electromagnetic forces in winding. The paper describes the design of HTS winding for SMES coil in modular toroid configuration consist of seven Bi-2223 double-pancakes as well as numerical analysis of SMES magnet model using FLUX 3D package. As the results of analysis the paper presents the optimal coil configuration and the parameters such as radius of toroidal magnet, energy stored in magnet and magnetic field distribution.

  3. Conductance Degradation in HTS Coated Conductor Solder Joints

    NASA Astrophysics Data System (ADS)

    Canavan, Edgar R.; Leidecker, Henning; Panashchenko, Lyudmyla

    2015-12-01

    Solder joints between YBCO coated conductors and normal metal traces have been analysed as part of an effort to develop a robust HTS lead assembly for a spaceflight mission. Measurements included critical current and current transfer profiles. X-ray micrographs were used to verify proper solder flow and to determine the extent of voiding. SEM of cross-sections with EDS analysis was crucial in understanding the diffusion of the protective silver layer over the YBCO into the solder for different solder processes. The assembly must be stored for an extended period of time prior to final cool-down and operation. Measurements of the joint resistance over the course of months show a significant increase with time. Understanding the interface condition suggests an explanation for the change.

  4. Analytical Study of Stress State in HTS Solenoids

    SciTech Connect

    Barzi, E.; Terzini, E.; /Fermilab

    2009-01-01

    A main challenge for high field solenoids made of in High Temperature Superconductor (HTS) is the large stress developed in the conductor. This is especially constraining for BSCCO, a brittle and strain sensitive ceramic material. To find parametric correlations useful in magnet design, analytical models can be used. A simple model is herein proposed to obtain the radial, azimuthal and axial stresses in a solenoid as a function of size, i.e. self-field, and of the engineering current density for a number of different constraint hypotheses. The analytical model was verified against finite element modeling (FEM) using the same hypotheses of infinite rigidity of the constraints and room temperature properties. FEM was used to separately evaluate the effect of thermal contractions at 4.2 K for BSCCO and YBCO coils. Even though the analytical model allows for a finite stiffness of the constraints, it was run using infinite stiffness. For this reason, FEM was again used to determine how much stresses change when considering an outer stainless steel skin with finite rigidity for both BSCCO and YBCO coils. For a better understanding of the actual loads that high field solenoids made of HTS will be subject to, we have started some analytical studies of stress state in solenoids for a number of constraint hypotheses. This will hopefully show what can be achieved with the present conductor in terms of self-field. The magnetic field (B) exerts a force F = B x J per unit volume. In superconducting magnets, where the field and current density (J) are both high, this force can be very large, and it is therefore important to calculate the stresses in the coil.

  5. HABP2 G534E Variant in Papillary Thyroid Carcinoma

    PubMed Central

    Tomsic, Jerneja; Fultz, Rebecca; Liyanarachchi, Sandya; He, Huiling; Senter, Leigha; de la Chapelle, Albert

    2016-01-01

    The main nonmedullary form of thyroid cancer is papillary thyroid carcinoma (PTC) that accounts for 80–90% of all thyroid malignancies. Only 3–10% of PTC patients have a positive family history of PTC yet the familiality is one of the highest of all cancers as measured by case control studies. A handful of genes have been implicated accounting for a small fraction of this genetic predisposition. It was therefore of considerable interest that a mutation in the HABP2 gene was recently implicated in familial PTC. The present work was undertaken to examine the extent of HABP2 variant involvement in PTC. The HABP2 G534E variant (rs7080536) was genotyped in blood DNA from 179 PTC families (one affected individual per family), 1160 sporadic PTC cases and 1395 controls. RNA expression of HABP2 was tested by qPCR in RNA extracted from tumor and normal thyroid tissue from individuals that are homozygous wild-type or heterozygous for the variant. The variant was found to be present in 6.1% familial cases, 8.0% sporadic cases (2 individuals were homozygous for the variant) and 8.7% controls. The variant did not segregate with PTC in one large and 6 smaller families in which it occurred. In keeping with data from the literature and databases the expression of HABP2 was highest in the liver, much lower in 3 other tested tissues (breast, kidney, brain) but not found in thyroid. Given these results showing lack of any involvement we suggest that the putative role of variant HABP2 in PTC should be carefully scrutinized. PMID:26745718

  6. Investigation of DC current injection effect on the microwave characteristics of HTS YBCO microstrip resonators

    NASA Astrophysics Data System (ADS)

    Nurgaliev, T.; Blagoev, B.; Mateev, E.; Neshkov, L.; Strbik, V.; Uspenskaya, L.; Nedkov, I.; Chromik, Š.

    2014-03-01

    The DC current injection effect from a ferromagnetic (FM) La0.7Sr0.3MnO3 (LSMO) to a high temperature superconducting (HTS) Y1Ba2Cu3O7-x (YBCO) thin film was investigated by the microwave surface impedance measurements in a FM/HTS structure, formed as a microstrip resonator for improving the sensitivity of the experiments. The quality factor and the resonance frequency of this structure were found to strongly depend on the current strength, injected from the LSMO electrode into the HTS microstrip electrode. The magnetic penetration depth and the quasiparticle conductivity of the HTS component were determined to increase under DC current injection process, which in all probability stimulated breaking of Cooper pairs and led to a decrease of the superfluid concentration and an increase of the normal fluid concentration without significantly affecting the relaxation time of the quasiparticles.

  7. Status of 275 kV REBCO HTS Cable Development in the NEDO Project

    NASA Astrophysics Data System (ADS)

    Mukoyama, Shinichi; Yagi, Masashi; Okuma, Takeshi; Maruyama, Osamu; Shiohara, Yuu; Hayakawa, Naoki; Mizutani, Teruyoshi

    A 275 kV 3 kA high temperature superconducting cable (HTS cable), which could be used as a backbone power line in the future, was developed in the NEDO project called M-PACC. One of the most important developments of a high voltage HTS cable was the high voltage insulation technology. A design guideline and a test specification that was necessary to design, product and demonstrate of a 275 kV, 3 kA HTS cable have been studied by obtaining the various experimental data such as AC withstand voltage, impulse withstand voltage, partial discharge inception stress, and the V-t characteristics of the insulation, on the basis of the Japan Electrical Standards (JEC) and the International Electrotechnical Commission (IEC). Moreover, the 275 kV, 3 kA HTS cable with a length of 30 m was demonstrated under a long-term voltage and current loading test.

  8. Design of an HTS Levitated Double-Sided HTSLSM for Maglev

    NASA Astrophysics Data System (ADS)

    Zheng, Luhai; Jin, Jianxun; Guo, Youguang; Zhu, Jianguo

    A hybrid high temperature superconducting (HTS) linear synchronous propulsion system composed of a double-sided HTS linear synchronous motor (HTSLSM) in the middle and HTS magnetic suspension sub-systems on both sides has been proposed for a middle-low-speed maglev. Three carriages has been made up for the proposed maglev, and each carriage consists of four HTSLSM modules. The HTSLSM has been designed to reach a speed of 69 km/h and a maximum thrust of 48.9 kN for each motor. The finite element analysis has been used for the theoretical verification. The results obtained show that the HTS linear propulsion system satisfies the principal requirements for the maglev.

  9. Magnetic Forces Simulation of Bulk HTS over Permanent Magnetic Railway with Numerical Method

    NASA Astrophysics Data System (ADS)

    Lu, Yiyun; Zhuang, Shujun

    2012-10-01

    Magnetic levitation forces of bulk high temperature superconductor (HTS) above two types permanent magnet railway (PMR) is simulated using finite element method (FEM). The models are formulated by H-formulation and resolving codes is developed using Finite Element Program Generator (FEPG). The E- J power law is used to describe the electrical field vs. current density nonlinear characteristic of HTS. The applied magnetic fields induced by the PMR are calculated by the standard analysis method with the equivalent surface current model. By the method, the calculation formulation of magnetic fields generated by Halbach PMR and symmetrical PMR is derived respectively. The simulation results show that the finite element dynamic mesh rebuilding problem of HTS magnetic levitation transportation system comprised of bulk HTS and PMR can be easily avoided by the methods.

  10. The Development of Protein Chips for High Throughput Screening (HTS) of Chemically Labeling Small Molecular Drugs.

    PubMed

    Feng, Yingzhu; Wang, Bochu; Chu, Xinxin; Wang, Yazhou; Zhu, Liancai

    2016-01-01

    How to construct protein chips and chemically labeling drug molecules without disrupting structures for HTS is still a challenging area. There are two main obstacles, one is that human multitrans membrane receptors, which are major drug targets, exhibit distinct motifs, and fold structures, and they will collapse unfold without membrane support in vitro; another one is that there still lack effective chemical labeling method for small drugs for detection. Therefore, how to acquire high detecting sensitivity for small molecules and to immobilize membrane protein receptors in native conformation with uniform direction on the chip, need to be solved for drug HTS. This paper reviews drug HTS trends in recent years, proposed a new virion-chip model and a feasible C-H activation method for CY-5 labeling drugs. It is expected to provide a good platform for future drug HTS. PMID:25963567

  11. Cryogenic Cooling System for 5 kA, 200 μH Class HTS DC Reactor

    NASA Astrophysics Data System (ADS)

    Park, Heecheol; Kim, Seokho; Kim, Kwangmin; Park, Minwon; Park, Taejun; Kim, A.-rong; Lee, Sangjin

    DC reactors, made by aluminum busbar, are used to stabilize the arc of an electric furnace. In the conventional arc furnace, the transport current is several tens of kilo-amperes and enormous resistive loss is generated. To reduce the resistive loss at the DC reactor, a HTS DC reactor can be considered. It can dramatically improve the electric efficiency as well as reduce the installation space. Similar with other superconducting devices, the HTS DC reactor requires current leads from a power source in room temperature to the HTS coil in cryogenic environment. The heat loss at the metal current leads can be minimized through optimization process considering the geometry and the transport current. However, the transport current of the HTS DC reactor for the arc furnace is much larger than most of HTS magnets and the enormous heat penetration through the current lead should be effectively removed to keep the temperature around 70∼77 K. Current leads are cooled down by circulation of liquid nitrogen from the cooling system with a stirling cryocooler. The operating temperature of HTS coil is 30∼40 K and circulation of gaseous helium is used to remove the heat generation at the HTS coil. Gaseous helium is transported through the cryogenic helium blower and a single stage GM cryocooler. This paper describes design and experimental results on the cooling system for current leads and the HTS coil of 5 kA, 200 μH class DC reactor as a prototype. The results are used to verify the design values of the cooling systems and it will be applied to the design of scale-up cooling system for 50 kA, 200 μH class DC reactor.

  12. Wire brush fastening device

    SciTech Connect

    Meigs, R.A.

    1993-08-31

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus.

  13. Wire brush fastening device

    DOEpatents

    Meigs, Richard A.

    1995-01-01

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus.

  14. Wire brush fastening device

    DOEpatents

    Meigs, R.A.

    1995-09-19

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus. 13 figs.

  15. Dielectric coated wire antennas

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.; Newman, E. H.

    1976-01-01

    An electrically thin dielectric insulating shell on an antenna composed of electrically thin circular cylindrical wires is examined. A moment method solution is obtained, and the insulating shell is modeled by equivalent volume polarization currents. These polarization currents are related in a simple manner to the surface charge density on the wire antenna. In this way the insulating shell causes no new unknowns to be introduced, and the size of the impedance matrix is the same as for the uninsulated wires. The insulation is accounted for entirely through a modification of the symmetric impedance matrix. This modification influences the current distribution, impedance, efficiency, field patterns, and scattering properties. The theory is compared with measurement for dielectric coated antennas in air.

  16. Development and construction of an HTS rotor for ship propulsion application

    NASA Astrophysics Data System (ADS)

    Nick, W.; Frank, M.; Kummeth, P.; Rabbers, J. J.; Wilke, M.; Schleicher, K.

    2010-06-01

    A low-speed high-torque HTS machine is being developed at Siemens on the basis of previous steps (400kW demonstrator, 4MVA generator). The goal of the programme is to utilize the characteristic advantages offered by electrical machines with HTS-excited rotor, such as efficiency, compact size, and dynamic performance. To be able to address future markets, requirements from ship classification as well as potential customers have to be met. Electromagnetic design cannot be focused on nominal operation only, but has to deal with failure modes like short circuit too. Utilization of superconductor requires to consider margins taking into account that the windings have to operate reliably not only in "clean" laboratory conditions, but in rough environment with the stator connected to a power converter. Extensive quality control is needed to ensure homogenous performance (current capacity, electrical insulation, dimensions) for the large quantity of HTS (45 km). The next step was to set up and operate a small-scale "industrial" manufacturing process to produce HTS windings in a reproducible way, including tests at operating conditions. A HTS rotor includes many more components compared to a conventional one, so tough geometric tolerances must be met to ensure robust performance of the system. All this gives a challenging task, which will be concluded by cold testing of the rotor in a test facility. Then the rotor will be delivered for assembly to the stator. In following machine tests the performance of the innovative HTS drive system will be demonstrated.

  17. Heat Transfer Simulation to Liquid Nitrogen from HTS Tapes at the Overload Currents

    NASA Astrophysics Data System (ADS)

    Zubko, V. V.; Ryabov, S. M.; Fetisov, S. S.; Vysotsky, V. S.

    Knowledge of HTS materials behavior at overload currents is important to design fault current limiters or fault protection systems of electro-technical devices. There are sharp voltage peaks and voltage oscillations during rectangular current pulses (DC current) on HTS tapes cooled by liquid nitrogen. It is common knowledge that a homogeneous liquid can withstand certain amount of overheating before switching to the boiling phase. In the liquid nitrogen during the increase of the heat flux there is superheating (temperature overshoot) and boiling hysteresis takes place. We explain voltage peaks and voltage oscillations by the hysteresis phenomenon in boiling nitrogen during the increase and decrease of the heat flux in the nitrogen which is a result of current redistribution in the HTS tapes. Based on the measurements of voltage and temperature of the HTS tapes during current overload and numerical analysis of the process we estimated the heat-transfer characteristics from the HTS tapes to liquid nitrogen. We also obtained the information about limiting superheating of the liquid nitrogen. The influence of covers of the HTS tapes on superheating of the nitrogen is also discussed.

  18. Characteristics of the magnetic field distribution on compact NMR magnets using cryocooled HTS bulks

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Takano, R.; Nakano, T.; Imai, M.; Hahn, S. Y.

    2009-10-01

    Recently, the performance of high temperature superconducting (HTS) bulks such as critical current density, size, and mechanical strength has been improved rapidly. So, various applications using HTS bulks such as motors, bearings and flywheels have been investigated by many research groups. A compact nuclear magnetic resonance (NMR) magnet is one of the new applications after a technique to enhance maximum trapped field of the HTS bulk more than 11.7 T (500 MHz 1H NMR frequency) has been developed. This new compact NMR magnet out of HTS bulks is cost-effective compared with conventional NMR magnets and then expected to be widely used in food and drug industry. In design and manufacture of the compact NMR magnets, spatial field homogeneity of the large trapped magnetic field in HTS bulk annuli is a crucial issue because the behavior of a trapped field is highly non-linear and, as a result, a technique to improve the field homogeneity such as active/passive shimming now becomes more challenging compared with that of the conventional counterparts. This paper presents the magnetic field distributions in single and three assembled HTS bulk annuli measured by a 3-axis and multi-arrayed Hall sensor under two different cryogenic environments: (1) in a bath of liquid nitrogen (LN 2) and (2) dry cooling by a cryocooler. The spatial homogeneity changes with various operating temperatures were investigated and the effect of critical current density enhancement by lowering the operating temperature on the field homogeneity improvement was discussed in detail.

  19. Design, fabrication and evaluation of a conduction cooled HTS magnet for SMES

    NASA Astrophysics Data System (ADS)

    Bae, J. H.; Kim, S. H.; Kim, H. J.; Sohn, M. H.; Seong, K. C.; Kim, H. M.

    2009-10-01

    This paper describes design, fabrication, and evaluation of the conduction cooled high temperature superconducting (HTS) magnet for superconducting magnetic energy storage (SMES). The HTS magnet is composed of 22 of double pancake coils made of 4-ply conductors that stacked two Bi-2223 multi-filamentary tapes with the reinforced brass tape. Each double pancake coil consists of two solenoid coils with an inner diameter of 500 mm, an outer diameter of 691 mm, and a height of 10 mm. The aluminum plates of 3 mm thickness were arranged between double pancake coils for the cooling of the heat due to the power dissipation in the coil. The magnet was cooled down to 5.6 K with two stage Gifford McMahon (GM) cryocoolers. The maximum temperature at the HTS magnet in discharging mode rose as the charging current increased. 1 MJ of magnetic energy was successfully stored in the HTS magnet when the charging current reached 360A without quench. In this paper, thermal and electromagnetic behaviors on the conduction cooled HTS magnet for SMES are presented and these results will be utilized in the optimal design and the stability evaluation for conduction cooled HTS magnets.

  20. 2. TYPICAL OVERHEAD WIRE CONSTRUCTION CURVE GUY WIRE ARRANGEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. TYPICAL OVERHEAD WIRE CONSTRUCTION - CURVE GUY WIRE ARRANGEMENT (ABANDONED WEST LEG OF WYE AT SIXTH AVENUE AND PINE STREET) - Yakima Valley Transportation Company Interurban Railroad, Trackage, Yakima, Yakima County, WA

  1. Flying wires at Fermilab

    SciTech Connect

    Gannon, J.; Crawford, C.; Finley, D.; Flora, R.; Groves, T.; MacPherson, M.

    1989-03-01

    Transverse beam profile measurement systems called ''Flying Wires'' have been installed and made operational in the Fermilab Main Ring and Tevatron accelerators. These devices are used routinely to measure the emittance of both protons and antiprotons throughout the fill process, and for emittance growth measurements during stores. In the Tevatron, the individual transverse profiles of six proton and six antiproton bunches are obtained simultaneously, with a single pass of the wire through the beam. Essential features of the hardware, software, and system operation are explained in the rest of the paper. 3 refs., 4 figs.

  2. Hts, the Drosophila homologue of Adducin, physically interacts with the transmembrane receptor Golden goal to guide photoreceptor axons.

    PubMed

    Ohler, Stephan; Hakeda-Suzuki, Satoko; Suzuki, Takashi

    2011-01-01

    Neurons steer their axons towards their proper targets during development. Molecularly, a number of guidance receptors have been identified. The transmembrane protein Golden goal (Gogo) was reported previously to guide photoreceptor (R) axons in the Drosophila visual system. Here, we show that Hts, the Drosophila homologue of Adducin, physically interacts with Gogo's cytoplasmic domain via its head-neck domain. hts null mutants show similar defects in R axon guidance as do gogo mutants. Rescue experiments suggest that the C-terminal tail but not the MARCKS homology domain of Hts is required. Overexpression of either gogo or hts causes abnormally thick swellings of R8 axons in the medulla, but if both are co-overexpressed, R8 axons appear normal and the amount of excessive Hts is reduced. Our results fit with a model where Gogo both positively and negatively regulates Hts that affects the Actin-Spectrin cytoskeleton in growth cone filopodia, thereby guiding R axons. PMID:21128303

  3. Wiring for space applications program

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad

    1994-01-01

    The insulation testing and analysis consists of: identifying and prioritizing NASA wiring requirements; selecting candidate wiring constructions; developing test matrix and formulating test program; managing, coordinating, and conducting tests; and analyzing and documenting data, establishing guidelines and recommendations.

  4. NewsWire, 2002.

    ERIC Educational Resources Information Center

    Byrom, Elizabeth, Ed.; Bingham, Margaret, Ed.; Bowman, Gloria, Ed.; Shoemaker, Dan, Ed.

    2002-01-01

    This document presents the 3 2002 issues of the newsletter "NewsWire," (volume 5). Issue Number One focuses on collaborative Web projects. This issue begins with descriptions of four individual projects: "iEARN"; "Operation RubyThroat"; "Follow the Polar Huskies!"; and "Log in Your Animal Roadkill!" Features that follow include: "Bringing the…

  5. Basic Wiring. Second Edition.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; And Others

    This guide is designed to assist teachers conducting a foundation course to prepare students for additional courses of training for entry-level employment in either the residential or commercial and industrial wiring trades. Included in the guide are 17 instructional units and the following sections of information for teachers: guidelines in using…

  6. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  7. Caroviologens: Towards molecular wires

    NASA Astrophysics Data System (ADS)

    Blanchard-Desce, M.; Arrhenius, T. S.; Dvolaïtzky, M.; Kugimiya, S.-I.; Lazrak, T.; Lehn, J.-M.

    1992-07-01

    Bispyridinium conjugated polyenes of different lengths and charges have been synthesized. Since they combine the features of carotenoids and of viologens, they have been termed caroviologens. Such molecules, possessing an extended conjugated chain fitted with polar electroactive endgroups, and having a length sufficient to span a lipid membrane could function as transmembrane electron channels, i.e., as molecular wires.

  8. A World without Wires

    ERIC Educational Resources Information Center

    Panettieri, Joseph C.

    2006-01-01

    The wireless bandwagon is rolling across Mississippi, picking up a fresh load of converts and turning calamity into opportunity. Traditional wired school networks, many of which unraveled during Hurricane Katrina, are giving way to advanced wireless mesh networks that frequently include voice-over-IP (VoIP) capabilities. Vendor funding is helping…

  9. Residential Wiring. Second Edition.

    ERIC Educational Resources Information Center

    Taylor, Mark; And Others

    This guide is designed to assist teachers conducting a course to prepare students for entry-level employment in the residential wiring trade. Included in the guide are six instructional units and the following sections of information for teachers: guidelines in using the unit components; academic and workplace skills classifications and…

  10. Easily-wired toggle switch

    NASA Technical Reports Server (NTRS)

    Dean, W. T.; Stringer, E. J.

    1979-01-01

    Crimp-type connectors reduce assembly and disassembly time. With design, no switch preparation is necessary and socket contracts are crimped to wires inserted in module attached to back of toggle switch engaging pins inside module to make electrical connections. Wires are easily removed with standard detachment tool. Design can accommodate wires of any gage and as many terminals can be placed on switch as wire gage and switch dimensions will allow.

  11. Wire EDM for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  12. 1997 wire development workshop: Proceedings

    SciTech Connect

    1997-04-01

    This conference is divided into the following sections: (1) First Generation Wires I; (2) First Generation Wires II; (3) Coated conductors I; and (4) Coated conductors II. Applications of the superconducting wires include fault current limiters, superconducting motors, transformers, and power transmission lines.

  13. Production of hot-wires

    NASA Astrophysics Data System (ADS)

    Dickinson, S. C.

    1983-04-01

    Several methods for producing hot-wire probes are described. Discussion includes the manufacture of probe bodies, soldering plated wires to the prongs etching Walaston type wires, and finishing the probe. This report is written as an instruction manual for researchers who desire to produce or repair their own sensors.

  14. Heat Transfer Study for HTS Power Transfer Cables

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S.; Fesmire, J.

    2002-01-01

    Thermal losses are a key factor in the successful application of high temperature superconducting (HTS) power cables. Existing concepts and prototypes rely on the use of multilayer insulation (MLI) systems that are subject to large variations in actual performance. The small space available for the thermal insulation materials makes the application even more difficult because of bending considerations, mechanical loading, and the arrangement between the inner and outer piping. Each of these mechanical variables affects the heat leak rate. These factors of bending and spacing are examined in this study. Furthermore, a maintenance-free insulation system (high vacuum level for 20 years or longer) is a practical requirement. A thermal insulation system simulating a section of a flexible FITS power cable was constructed for test and evaluation on a research cryostat. This paper gives experimental data for the comparison of ideal MLI, MLI on rigid piping, and MLI between flexible piping. A section of insulated flexible piping was tested under cryogenic vacuum conditions including simulated bending and spacers.

  15. Neon turbo-Brayton cycle refrigerator for HTS power machines

    NASA Astrophysics Data System (ADS)

    Hirai, Hirokazu; Hirokawa, M.; Yoshida, Shigeru; Nara, N.; Ozaki, S.; Hayashi, H.; Okamoto, H.; Shiohara, Y.

    2012-06-01

    We developed a prototype turbo-Brayton refrigerator whose working fluid is neon gas. The refrigerator is designed for a HTS (High Temperature Superconducting) power transformer and its cooling power is more than 2 kW at 65 K. The refrigerator has a turboexpander and a turbo-compressor, which utilize magnetic bearings. These rotational machines have no rubbing parts and no oil-components. Those make a long maintenance interval of the refrigerator. The refrigerator is very compact because our newly developed turbo-compressor is volumetrically smaller than a displacement type compressor in same operating specification. Another feature of the refrigerator is a wide range operation capability for various heat-loads. Cooling power is controlled by the input-power of the turbo-compressor instead of the conventional method of using an electric heater. The rotational speed of the compressor motor is adjusted by an inverter. This system is expected to be more efficient. We show design details, specification and cooling test results of the new refrigerator in this paper.

  16. Development of High Capacity Split Stirling Cryocooler for HTS

    NASA Astrophysics Data System (ADS)

    Yumoto, Kenta; Nakano, Kyosuke; Hiratsuka, Yoshikatsu

    Sumitomo Heavy Industries, Ltd. (SHI) developed a high-power Stirling-type pulse tube cryocooler for cooling high-temperature superconductor (HTS) devices, such as superconductor motors, superconducting magnetic energy storage (SMES), and fault current limiters. The experimental results of a prototype pulse tube cryocooler were reported in September 2013. For a U-type expander, the cooling capacity was 151 W at 70 K with a compressor input power of 4 kW. Correspondingly, the coefficient of performance (COP) was about 0.038. However, the efficiency of the cryocooler is required to be COP > 0.1 and it was found that, theoretically, it is difficult to further improve the efficiency of a pulse tube cryocooler because the workflow generated at the hot end of the pulse tube cannot be recovered. Therefore, it was decided to change the expander to a free-piston type from a pulse tube type. A prototype was developed and preliminary experiments were conducted. A cooling capacity of 120 W at 70 K with a compressor input power of 2.15 kW with corresponding COP of 0.056, was obtained. The detailed results are reported in this paper.

  17. Mobile HTS SQUID System for Nondestructive Evaluation of Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Krause, Hans-Joachim; Hohmann, Rainer; Grueneklee, Michael; Zhang, Yi; Braginski, Alex I.

    1997-03-01

    For the detection of deep-lying flaws in aircraft structures, a mobile eddy-current system is being developed in conjunction with a high-temperature superconductor (Yba_2Cu_3O_7) thin-film HTS SQUID gradiometer. The challenge is to operate the SQUID sensor during movement in strong ambient fields, independent of orientation. A planar rf double hole gradiometer with a gradient sensitivity of 500 fT/(cm √Hz) was designed for that purpose. Two different cooling concepts were successfully implemented: the SQUID operation in the vacuum region of a lightweight nitrogen cryostat, constructed for operation in any orientation, and the use of a commercial Joule-Thomson cryocooler for liquid-nitrogen-free SQUID cooling. With a SQUID integration scheme using a sapphire cold finger, motion-related additional noise is nearly eliminated. Using a system equipped with a differential eddy current excitation, two-dimensional scans were performed to find fatigue cracks and corrosion pits hidden below several layers of aluminum. For demonstration in the Lufthansa maintenance facility at Frankfurt Airport, the system was used to detect flaws in aircraft wheels. Work in progress includes developing longer base gradiometers for detection of deep flaws.

  18. Eddy current nondestructive material evaluation based on HTS SQUIDs

    NASA Astrophysics Data System (ADS)

    Mück, M.; Kreutzbruck, M. v.; Baby, U.; Tröll, J.; Heiden, C.

    1997-08-01

    High Temperature Superconductor (HTS) Superconducting Quantum Interference Devices (SQUIDs) are promising sensors for applications in eddy current nondestructive evaluation (NDE). Due to their high field sensitivity at low frequencies, they are especially suitable for applications, where a large penetration depth is required. We have investigated two different SQUID-based NDE systems, one of which is optimised for testing felloes of aircraft wheels. The second system allows for testing planar structures using a motorised x-y-stage, which moves the cryostat above the planar samples. As sensors 3 GHz rf SQUIDs made from YBCO were used, having a field noise of about 1 pT/√Hz. This results in a dynamic range of our SQUID system of about 155 dB/√Hz. In most cases, the SQUIDs have been cooled by immersing them in liquid nitrogen. We have however also developed a cryosystem, which allows for cooling the sensors by a Ne-gas flow. In planar test structures we could detect flaws with lengths of 10 mm, having a height of 0.6 mm in a depth of 13 mm. In aircraft felloes, flaws located at the inner surface of the felloe (thickness 8 mm) were easily detectable despite a high static background field of up to 0.5 G caused by ferromagnetic structures inside the felloe. For flaws in a depth of 5 mm, the spatial resolution of both systems was about 8 mm without applying image postprocessing.

  19. Investigation of the resistive properties of HTS/manganite bilayers

    NASA Astrophysics Data System (ADS)

    Nurgaliev, T.; Blagoev, B.; Štrbik, V.; Chromik, Š.; Sojková, M.

    2016-03-01

    Temperature dependences of the resistivity of manganite La0.7Ca0.3MnO3 (LCMO) films deposited on LaAlO3 and SrTiO3 substrates by RF magnetron sputtering were shown to be successfully simulated in the whole temperature range (covering metal, insulator and metal-insulator transition regions) using a phenomenological phase-coexistence transport model. Quantitative data on the internal parameters of these films were obtained. The possibility was also considered for investigation of individual resistive characteristics and excess conductivity of a high temperature superconducting (HTS) YBa2Cu3O7-x (YBCO) thin film in the vicinity of T C included into a YBCO/LCMO bilayer structure. It was shown that the considered YBCO film in the temperature range from 85.5 K to 114.9 K behaves as a two-dimensional system with respect to the fluctuations in the superconducting order parameter, while a three-dimensional regime is observed in a narrow range of temperatures at T < 85.5 K. Such behavior was assumed to be partly due to the FM LCMO component of the bilayer, the spin-polarized charge carriers of which enter into the YBCO film and cause a "breaking" of superconducting pairs in the superconducting gap and pseudogap regimes.

  20. Engineering Nanocolumnar Defect Configurations for Optimized Vortex Pinning in High Temperature Superconducting Nanocomposite Wires

    SciTech Connect

    Wee, Sung Hun; Zuev, Yuri L; Cantoni, Claudia; Goyal, Amit; Ahuja, Raj; Abiade, J.

    2013-01-01

    High temperature superconducting (HTS), coated conductor wires based on nanocomposite films containing self-assembled, insulating BaZrO3 (BZO) nanocolumnar defects have previously been reported to exhibit enhanced vortex pinning. Here, we report on microstructural design via control of BZO nanocolumns density in YBa2Cu3O7- (YBCO)+BZO nancomposite films to achieve the highest critical current density, Jc(H, ,T). X-ray diffraction and microstructural examination shows increasing number density of epitaxial BZO nanocolumns in the highly cube-textured YBCO matrix with increasing nominal BZO additions. Transport property measurement reveals that an increase in BZO content upto 4 vol% is required to sustain the highest pinning and Jc performance as the magnetic field increases. By growing thicker, single-layer nanocomposite films (~4 m) with controlled density of BZO columnar defects, the critical current (Ic) of ~1000 A/cm at 77 K, self-field and the minimum Ic of 455 A/cm at 65 K and 3 T for all magnetic field orientations were obtained. This is the highest Ic reported to date for films on metallic templates which are the basis for the 2nd generation, coated conductor-based HTS wires.

  1. The Effect of Magnetic Field on HTS Leads What Happens when thePower Fails at RAL?

    SciTech Connect

    Green, Michael A.

    2007-02-14

    The key to being able to operate the MICE superconducting solenoids on small coolers is the use of high temperature superconducting (HTS) leads between the first stage of the cooler and the magnet, which operates at around 4.2 K. Because MICE magnets are not shielded, all of the MICE magnets have a stray magnetic field in the region where the coolers and the HTS leads are located. The behavior of the HTS leads in a magnetic field depends strongly on the HTS material used for the leads and the temperature of the cooler first stage temperature. The HTS leads can be specified to operate at the maximum current for the magnet. This report shows how the HTS leads can be specified for use the MICE magnets. MICE magnets take from 1.3 hours (the tracker solenoids) to 3.7 hours (the coupling magnet) to charge to the highest projected operating currents. If the power fails, the cooler and the upper ends of the HTS leads warm up. The question is how one can discharge the magnet to protect the HTS leads without quenching the MICE magnets. This report describes a method that one can use to protect the HTS leads in the event of a power failure at the Rutherford Appleton Laboratory (RAL).

  2. Test results of a 30-m HTS cable pre-demonstration system in Yokohama project

    NASA Astrophysics Data System (ADS)

    Yumura, H.; Ashibe, Y.; Ohya, M.; Itoh, H.; Watanabe, M.; Yatsuka, K.; Masuda, T.; Honjo, S.; Mimura, T.; Kitoh, Y.; Noguchi, Y.

    2010-11-01

    High temperature superconducting cable demonstration project supported by Ministry of Economy, Trade and Industry and New Energy and Industrial Technology Development Organization has started since FY 2007 in Japan. Target of this project is to operate a 66 kV, 200 MVA HTS cable in a live grid in order to demonstrate its reliability and stable operation. A demonstration site has been decided to Asahi substation which is located in Yokohama. The cable length will be decided to between 200 and 300 m depending on a site configuration. Various preliminary tests such as critical current, ac losses, fault current loading, mechanical tests, have been conducted by using short core samples in order to confirm a HTS cable design and a cable-to-cable joint structure. From these test results, a HTS cable, a joint and a termination have been designed to meet the required specifications. To verify their performances before the installation of the HTS cable system in Yokohama, a 30-m HTS cable was manufactured and various sample tests were conducted as shipping test. The critical current of the HTS conductor and shield were 6.1 kA and 7.1 kA, respectively. The AC loss was 0.83 W/m/ph at 2 kA rms, 60 Hz. As withstand voltage tests, AC 90 kV for 3 h and lightning impulse at ±385 kV were applied to cable core, successfully. These test results has confirmed that the 30-m cable had good properties as designed and satisfied the required specifications. After the success of the shipping tests, the 30-m HTS cable pre-demonstration system has been installed at SEI factory. The cable system will be operated and checked the various performances in this summer.

  3. Silver-sheathed multifilament wires

    NASA Astrophysics Data System (ADS)

    Wu, C. T.; Goretta, K. C.; Shi, D.; Lanagan, M. T.; Poeppel, R. B.

    1991-01-01

    The process for manufacturing Ag-sheathed multifilament superconducting wires was investigated. Bi2Sr(1.7)CaCu2O(x), Pb-doped Bi2Sr2Ca2Cu3O(x), or YBa2Cu3O(x) powders were packed into Ag tubes and swaged into long wires. Pieces were cut from each wire, packed into a second Ag tube and swaged or rolled into multifilament wires. Each wire was then sintered to produce a superconductor. Processing considerations included the sheath workability, effects of compacting and residual stresses, and heat treatment schedules. The superconducting properties of the Bi-based wires were superior to those of the YBa2Cu3O(x) wires at 4.2 K, but not at 77 K.

  4. Insulation and Heat Treatment of Bi-2212 Wire for Wind-and-React Coils

    SciTech Connect

    Peter K. F. Hwang

    2007-10-22

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2" dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  5. From wires to cosmology

    NASA Astrophysics Data System (ADS)

    Amin, Mustafa A.; Baumann, Daniel

    2016-02-01

    We provide a statistical framework for characterizing stochastic particle production in the early universe via a precise correspondence to current conduction in wires with impurities. Our approach is particularly useful when the microphysics is uncertain and the dynamics are complex, but only coarse-grained information is of interest. We study scenarios with multiple interacting fields and derive the evolution of the particle occupation numbers from a Fokker-Planck equation. At late times, the typical occupation numbers grow exponentially which is the analog of Anderson localization for disordered wires. Some statistical features of the occupation numbers show hints of universality in the limit of a large number of interactions and/or a large number of fields. For test cases, excellent agreement is found between our analytic results and numerical simulations.

  6. Dental Arch Wire

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Straightening teeth is an arduous process requiring months, often years, of applying corrective pressure by means of arch wires-better known as brace-which may have to be changed several times in the course of treatment. A new method has been developed by Dr. George Andreasen, orthodontist and dental scientist at the University of Iowa. The key is a new type of arch wire material, called Nitinol, with exceptional elasticity which helps reduce the required number of brace changes. An alloy of nickel and titanium, Nitinol was originally developed for aerospace applications by the Naval Ordnance Laboratory, now the Naval Surface Weapons Laboratory, White Oaks, Maryland. NASA subsequently conducted additional research on the properties of Nitinol and on procedures for processing the metal.

  7. Wire insulation defect detector

    NASA Technical Reports Server (NTRS)

    Greulich, Owen R. (Inventor)

    2004-01-01

    Wiring defects are located by detecting a reflected signal that is developed when an arc occurs through the defect to a nearby ground. The time between the generation of the signal and the return of the reflected signal provides an indication of the distance of the arc (and therefore the defect) from the signal source. To ensure arcing, a signal is repeated at gradually increasing voltages while the wire being tested and a nearby ground are immersed in a conductive medium. In order to ensure that the arcing occurs at an identifiable time, the signal whose reflection is to be detected is always made to reach the highest potential yet seen by the system.

  8. Parametric study for the cooling of high temperature superconductor (HTS) current leads

    NASA Astrophysics Data System (ADS)

    Lewandowska, Monika; Wesche, Rainer

    2013-01-01

    The analysis of cooling of a binary HTS 20 kA current lead (CL) operating between 4.5 and 300 K has been carried out. Assuming that the HTS module is conduction-cooled, two cooling options for the copper heat exchanger (HEX) part of the CL have been considered, i.e. (1) cooling with a single flow of gaseous helium and (2) cooling with two flows of gaseous helium. The ideal refrigerator power required to cool the whole HTS CL has been calculated for both cooling scenarios and different values of input parameters and the thermodynamic optimization has been performed for both cooling options. The obtained results indicate that the cooling Option 2 cannot provide significant savings of the refrigerator power, as compared to the Option 1. However, it has been observed that at the same helium inlet temperature the temperature at the warm end of the HTS part, and the resulting number of HTS tapes, can be reduced in the Option 2 with respect to the Option 1.

  9. Integration of HTS Cables in the Future Grid of the Netherlands

    NASA Astrophysics Data System (ADS)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future transmission grid will obtain electrical power generated by decentralized renewable sources, together with large scale generation units located at the coastal region. In this way electrical power has to be distributed and transmitted over longer distances from generation to end user. Potential grid issues like: amount of distributed power, grid stability and electrical loss dissipation merit particular attention. High temperature superconductors (HTS) can play an important role in solving these grid problems. Advantages to integrate HTS components at transmission voltages are numerous: more transmittable power together with less emissions, intrinsic fault current limiting capability, lower ac loss, better control of power flow, reduced footprint, less magnetic field emissions, etc. The main obstacle at present is the relatively high price of HTS conductor. However as the price goes down, initial market penetration of several HTS components (e.g.: cables, fault current limiters) is expected by year 2015. In the full paper we present selected ways to integrate EHV AC HTS cables depending on a particular future grid scenario in the Netherlands.

  10. Developing scientific confidence in HTS-derived prediction models: lessons learned from an endocrine case study.

    PubMed

    Cox, Louis Anthony; Popken, Douglas; Marty, M Sue; Rowlands, J Craig; Patlewicz, Grace; Goyak, Katy O; Becker, Richard A

    2014-08-01

    High throughput (HTS) and high content (HCS) screening methods show great promise in changing how hazard and risk assessments are undertaken, but scientific confidence in such methods and associated prediction models needs to be established prior to regulatory use. Using a case study of HTS-derived models for predicting in vivo androgen (A), estrogen (E), thyroid (T) and steroidogenesis (S) endpoints in endocrine screening assays, we compare classification (fitting) models to cross validation (prediction) models. The more robust cross validation models (based on a set of endocrine ToxCast™ assays and guideline in vivo endocrine screening studies) have balanced accuracies from 79% to 85% for A and E, but only 23% to 50% for T and S. Thus, for E and A, HTS results appear promising for initial use in setting priorities for endocrine screening. However, continued research is needed to expand the domain of applicability and to develop more robust HTS/HCS-based prediction models prior to their use in other regulatory applications. Based on the lessons learned, we propose a framework for documenting scientific confidence in HTS assays and the prediction models derived therefrom. The documentation, transparency and the scientific rigor involved in addressing the elements in the proposed Scientific Confidence Framework could aid in discussions and decisions about the prediction accuracy needed for different applications. PMID:24845243

  11. MScreen: An Integrated Compound Management and High Throughput Screening (HTS) Data Storage and Analysis System

    PubMed Central

    Jacob, Renju T.; Larsen, Martha J.; Larsen, Scott D.; Kirchhoff, Paul D.; Sherman, David H.; Neubig, Richard R.

    2013-01-01

    High-throughput screening (HTS) has historically been used by the pharmaceutical industry to rapidly test hundreds of thousands of compounds to identify potential drug candidates. More recently, academic groups have used HTS to identify new chemical probes or small interfering RNA (siRNA) that can serve as experimental tools to examine the biology or physiology of novel proteins, processes, or interactions. HTS presents a significant challenge with the vast and complex nature of data generated. This report describes MScreen, a web-based, open-source cheminformatics application for chemical library and siRNA plate management, primary HTS and dose-response data handling, structure search, and administrative functions. Each project in MScreen can be secured with passwords or shared in an open information environment which enables collaborators to easily compare data from many screens, providing a useful means to identify compounds with desired selectivity. Unique features include compound, substance, mixture, and siRNA plate creation and formatting; automated dose-response fitting and quality control (QC); and user, target, and assay method administration. MScreen provides an effective means to facilitate HTS information handling and analysis in the academic setting so that users can efficiently view their screening data and evaluate results for follow-up. PMID:22706349

  12. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    NASA Astrophysics Data System (ADS)

    Longcai, Zhang

    2014-07-01

    Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  13. Wiring for aerospace applications

    NASA Technical Reports Server (NTRS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-01-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  14. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Reynolds, L.; Tweed, H.

    1972-01-01

    The work performed entailed the design, development, construction and testing of a 4000 word by 18 bit random access, NDRO plated wire memory for use in conjunction with a spacecraft imput/output unit and central processing unit. The primary design parameters, in order of importance, were high reliability, low power, volume and weight. A single memory unit, referred to as a qualification model, was delivered.

  15. Dual wire welding torch and method

    DOEpatents

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  16. Wire detecting apparatus and method

    SciTech Connect

    Kronberg, J.W.

    1991-12-31

    This invention is comprised of an apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receiver`s position with respect to the wiring. The receiver`s audible signal is strongest when the receiver is directly above the wiring and the long axis of the receiver`s coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring`s concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest.

  17. Manually Operated Welding Wire Feeder

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor)

    2001-01-01

    A manual welding wire feeder apparatus comprising a bendable elongate metal frame with a feed roller mounted at the center thereof for rotation about an axis transverse to the longitudinal axis of the frame. The frame ends are turned up as tabs and each provided with openings in alignment with each other and the mid-width center of the roller surface. The tab openings are sized to accommodate welding wire and each extends to a side edge of the tab, both opening on the same side of the frame, whereby welding wire can be side-loaded onto the frame. On the side of the frame, opposite the roller a lock ring handle is attached tangentially and is rotatable about the attachment point and an axis perpendicular to the frame. The device is grasped in the hand normally used to hold the wire. A finger is placed through the loop ring and the frame positioned across the palm and lower fingers. The thumb is positioned atop the wire so it can be moved from the back of the frame across the roller, and towards the front. In doing so, the wire is advanced at a steady rate in axial alignment with the tab openings and roller. To accommodate different wire diameters the frame is bendable about its center in the plane of the frame axis and wire so as to keep the wire in sufficient tension against the roller and to keep the wire fixed when the frame is tilted and thumb pressure released.

  18. The Role of HTS in Drug Discovery at the University of Michigan

    PubMed Central

    Larsen, Martha J.; Larsen, Scott D.; Fribley, Andrew; Grembecka, Jolanta; Homan, Kristoff; Mapp, Anna; Haak, Andrew; Nikolovska-Coleska, Zaneta; Stuckey, Jeanne A.; Sun, Duxin

    2014-01-01

    High throughput screening (HTS) is an integral part of a highly collaborative approach to drug discovery at the University of Michigan. The HTS lab is one of four core centers that provide services to identify, produce, screen and follow-up on biomedical targets for faculty. Key features of this system are: protein cloning and purification, protein crystallography, small molecule and siRNA HTS, medicinal chemistry and pharmacokinetics. Therapeutic areas that have been targeted include anti-bacterial, metabolic, neurodegenerative, cardiovascular, anti-cancer and anti-viral. The centers work in a coordinated, interactive environment to affordably provide academic investigators with the technology, informatics and expertise necessary for successful drug discovery. This review provides an overview of these centers at the University of Michigan, along with case examples of successful collaborations with faculty. PMID:24409957

  19. Characteristics of high efficiency current charging system for HTS magnet with solar energy

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Wook; Yoon, Yong-Soo; Chung, Yoon-Do; Jo, Hyun-Chul; Kim, Ho-Min; Oh, Sung-Kwun; Kim, Hyun-Ki; Oh, Jae-Gi; Ko, Tae-Kuk

    In terms of electrical energy, the technical fusion with solar energy system is promisingly applied in order to improve the efficiency in the power applications, since the solar energy system can convert an eternal electric energy in all-year-around. As one of such power applications, we proposed a current charging system for HTS magnet combined with solar energy (CHS). As this system can operate without external utility power to charge the HTS load magnet due to the solar energy, the operating efficiency is practically improved. The power converter, which is interfaced with solar energy and HTS magnet systems, plays an important role to transfer the stable electric energy and thus, the stabilized performance of the converter with solar energy system is one of essential factors. In this study, we investigated various charging performances under different operating conditions of the converter. In addition, operating characteristics have been analyzed by solving solar cell equivalent equations based on circuit simulation program.

  20. A 1.3-GHz LTS/HTS NMR Magnet–A Progress Report

    PubMed Central

    Bascuñán, Juan; Hahn, Seungyong; Park, Dong Keun; Iwasa, Yukikazu

    2011-01-01

    In this paper we present details of a 600 MHz HTS insert (H600) double pancake (DP) windings. It will first be operated in the bore of a 500 MHz LTS magnet, achieving a frequency of 1.1 GHz. Upon completion of H600, we will embark on the final phase (Phase 3B) of a 3-Phase program began in 2000: completion of a high resolution 1.3 GHz LTS/HTS magnet. In Phase 3B, the H600 will be coupled to a 700 MHz LTS magnet to achieve the ultimate frequency of 1.3 GHz. The HTS insert is composed of two concentric stacks of double pancakes, one wound with high strength BSCCO-2223 tape, the other with YBCO coated conductor. Details include conductor and coil parameters, winding procedure, DPs mechanical support and integration to the background 500 MHz LTS magnet. Test results of individual DPs in LN2 are also presented. PMID:22081752

  1. Low Temperature Performance of a Boost Converter with MPP and HTS Inductors

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Dickman, John E.

    1996-01-01

    Low temperature performance of a 150 W, 50 kHz, 24/48 V boost PWM dc-to-dc converter is reported. The efficiency of the converter using a molypermalloy powder (MPP) core based inductor went up from 94% at room temperature (23 C) to 95.9% at liquid nitrogen temperature (-196 C). A BSCCO based high temperature superconducting (HTS) inductor with a transition temperature of approximately -158 C was compared to a MPP core based inductor in terms of the power converter performance at liquid nitrogen temperature. The use of the HTS inductor in the converter tested yielded no significant performance improvement over the same converter with the MPP inductor. The experimental results are discussed along with the HTS inductor characteristics.

  2. Voltage current property of two HTS tapes connected by ordinary Sn Pb solder

    NASA Astrophysics Data System (ADS)

    Gu, C.; Zhuang, C.; Qu, T. M.; Han, Z.

    2005-10-01

    The V-I property of two HTS tapes connected by ordinary Sn-Pb solder has been studied both numerically and experimentally. Two basic joint structures: "shake hand" and "pray hand" with different overlapped length are studied. By means of a Finite Element Analysis package ANSYS, not only the entire V-I curve from 0 to 2Ic can be obtained but also the detail of current distribution along the HTS tape can be simulated. The numerical approach is based on a 2D electric field analysis, where the conductivity of the HTS material is simulated in terms of a power law E-J relation. The simulated results are compared with the experimental data obtained from the commonly used four-probe method. We found that from the energy dissipation point of view, the "pray hand" structure is more appropriate for use in the high current region.

  3. Electrical and thermal characteristics of Bi2212/Ag HTS coils for conduction-cooled SMES

    NASA Astrophysics Data System (ADS)

    Hayakawa, N.; Noguchi, S.; Kurupakorn, C.; Kojima, H.; Endo, F.; Hirano, N.; Nagaya, S.; Okubo, H.

    2006-06-01

    In this paper, we investigated the electrical and thermal performance of conduction-cooled Bi2212/Ag HTS coils with 4K-GM cryocooler system. First, we measured the critical current Ic for different ambient temperatures T0 at 4.2 K - 40 K. Experimental results revealed that Ic increased with the decrease in T0 and was saturated at T0 < 10 K. We carried out thermal analysis considering heat generation, conduction and transfer under conduction-cooling condition, and reproduced the electrical and thermal characteristics of the conduction-cooled HTS coil, taking account of temperature dependence of specific heat and thermal conductivity of the materials. We also measured the temperature rise of Bi2212/Ag HTS coil for different continuous current levels at T0 = 4.8 K. Experimental results revealed the criterion of thermal runaway, which was discussed in terms of heat generation and propagation in the test coil.

  4. Fabrication of hybrid thin film structures from HTS and CMR materials

    NASA Astrophysics Data System (ADS)

    Sojková, M.; Štrbík, V.; Nurgaliev, T.; Chromik, Š.; Dobročka, E.; Španková, M.; Blagoev, B.; Gál, N.

    2016-03-01

    We present the preparation of bilayers from high-temperature superconductors (HTS) and half-metallic ferromagnetic (FM) manganite with a colossal magnetoresistance (CMR). We used YBa2Cu3O7-x (YBCO) and Tl2Ba2CaCu2O8 (TBCCO) thin films as a HTS material and La0.67Sr0.33MnO3 (LSMO) film as a CMR material. In the case of YBCO/LSMO, we prepared FM/HTS heterostructure for studying the spin-polarized current injection effect on the electrical properties of the YBCO strip in dc or low-frequency regimes and on the microwave characteristics of the strip. For the first time, we report the preparation of a TBCCO/LSMO bilayer. In some applications, the TBCCO offers better parameters (higher working temperature, lower surface resistance, lower 1/f noise) than YBCO.

  5. A 1.3-GHz LTS/HTS NMR Magnet-A Progress Report.

    PubMed

    Bascuñán, Juan; Hahn, Seungyong; Park, Dong Keun; Iwasa, Yukikazu

    2011-06-01

    In this paper we present details of a 600 MHz HTS insert (H600) double pancake (DP) windings. It will first be operated in the bore of a 500 MHz LTS magnet, achieving a frequency of 1.1 GHz. Upon completion of H600, we will embark on the final phase (Phase 3B) of a 3-Phase program began in 2000: completion of a high resolution 1.3 GHz LTS/HTS magnet. In Phase 3B, the H600 will be coupled to a 700 MHz LTS magnet to achieve the ultimate frequency of 1.3 GHz. The HTS insert is composed of two concentric stacks of double pancakes, one wound with high strength BSCCO-2223 tape, the other with YBCO coated conductor. Details include conductor and coil parameters, winding procedure, DPs mechanical support and integration to the background 500 MHz LTS magnet. Test results of individual DPs in LN2 are also presented. PMID:22081752

  6. Department of Energy`s Wire Development Workshop - Superconductivity program for electric systems

    SciTech Connect

    1996-06-01

    The 1996 High-Temperature Superconducting Wire Development Workshop was held on January 31--February 1 at the Crown Plaza Tampa Westshore in Tampa, Florida. The meeting was hosted by Tampa Electric Company and sponsored by the Department of Energy`s Superconductivity Program for Electric Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. Tampa Electric`s Greg Ramon began the meeting by giving a perspective on the changes now occurring in the utility sector. Major program wire development accomplishments during the past year were then highlighted, particularly the world record achievements at Los Alamos and Oak Ridge National Laboratories. The meeting then focussed on three priority technical issues: thallium conductors; AC losses in HTS conductors; and coated conductors on textured substrates. Following in-depth presentations, working groups were formed in each technology area to discuss and critique the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  7. Metering Wheel-Wire Track Wire Boom Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Granoff, Mark S.

    2014-01-01

    The NASA MMS Spin Plane Double Probe (SDP) Deployer utilizes a helical path, rotating Metering Wheel and a spring loaded Wire "Holding" Track to pay out a "fixed end" 57 meter x 1.5 mm diameter Wire Boom stored between concentric storage cylinders. Unlike rotating spool type storage devices, the storage cylinders remain stationary, and the boom wire is uncoiled along the length of the cylinder via the rotation of the Metering Wheel. This uncoiling action avoids the need for slip-ring contacts since the ends of the wire can remain stationary. Conventional fixed electrical connectors (Micro-D type) are used to terminate to operational electronics.

  8. PLA2G16 promotes osteosarcoma metastasis and drug resistance via the MAPK pathway

    PubMed Central

    Li, Lin; Liang, Shoulei; Wasylishen, Amanda R.; Zhang, Yanqin; Yang, Xueli; Zhou, Bingzheng; Shan, Luling; Han, Xiuxin; Mu, Tianyang; Wang, Guowen; Xiong, Shunbin

    2016-01-01

    The prognosis of metastatic osteosarcoma is dismal and a better understanding of the mechanisms underlying disease progression is essential to improve treatment options and patient outcomes. We previously demonstrated Pla2g16 overexpression in mouse osteosarcoma contributes to metastasis phenotypes and increased expression of PLA2G16 is associated with metastasis and poor prognosis in human tumors. To further examine the mechanisms through which PLA2G16 contributes to human osteosarcoma metastasis and explore the potential of PLA2G16 as a therapeutic target in osteosarcoma, we generated a panel of human osteosarcoma cell lines expressing different levels of PLA2G16. The functional analyses of these cell lines demonstrated high levels of PLA2G16 expression increased osteosarcoma cell migration, invasion, clonogenic survival, and anchorage-independent colony formation. Importantly, this activity was dependent on the phospholipase activity of PLA2G16. Additionally, PLA2G16 overexpression decreased the sensitivity of cells to a panel of chemotherapeutic agents. Analysis of downstream pathways revealed the pro-metastasis functions of PLA2G16 were mediated through the MAPK pathway, as knockdown of PLA2G16 decreased ERK1/2 phosphorylation and pharmacological inhibition of MEK significantly repressed PLA2G16 mediated cell migration and clonogenic survival. Furthermore, PLA2G16 overexpression promoted xenograft tumor growth in vivo, and these tumors exhibit increased ERK1/2 phosphorylation. Lastly, the expression of PLA2G16 is strongly correlated with the increased ERK1/2 phosphorylation in human osteosarcoma samples, and the combined lesions are associated with reduced overall and metastasis-free survival. Collectively, these results demonstrate increased PLA2G16 expression activates the MAPK pathway to enhance osteosarcoma metastasis and may be a novel therapeutic target for these cancers. PMID:26933804

  9. Review of wire chamber aging

    SciTech Connect

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs.

  10. Numerical Study to Obtain the Improved Field Homogeneity and Enlarged Inner Diameter of HTS Bulk Magnet for Compact NMR

    NASA Astrophysics Data System (ADS)

    Miyazawa, D.; Kim, S. B.; Kitamura, H.; Ishizuka, D.; Hojo, K.

    We have been studying the compact magnet for NMR device that consists of a stacked high temperature superconducting (HTS) GdBCO bulk annuli. We can generate the trapped magnetic field over 1.5 T at 77.4 K and 150 ppm/cm3 on inner diameter of 20 mm HTS bulks using field compensation methods. However, it is necessary to enlarge the inner diameter of the HTS bulk magnet because the diameter of commercial NMR probe is larger than 20 mm. In this paper, we studied an optimal shape of the stacked HTS bulk magnet to obtain the enlarged inner diameter using 3-D FEM based analysis. We was able to enlarge the inner diameter of the HTS bulk magnet from 20 mm to 34 mm remaining magnetic field strength of 1.5 T and magnetic field homogeneity of 666 ppm/cm3 by proposed passive field compensation method.

  11. A Study on the Body Insulators for the Bushing for HTS Devices at Cryogenic Temperature

    NASA Astrophysics Data System (ADS)

    Kim, W. J.; Shin, H. S.; Kim, S. H.

    A bushing for high temperature superconducting devices (HTS bushing) is important because of applying high voltage to the cable or the winding of the transformer. It is cooled with liquid nitrogen (LN2) and is insulated with various insulators. For the development of the HTS bushing, it is necessary to know the fundamental characteristics of various insulators at cryogenic temperature. The electrical characteristics of the breakdown were studied under AC and impulse voltages. Also, the mechanical characteristics such as tensile strength in air and LN2 were studied. It was confirmed that GFRP is excellent not only electrical characteristics but also mechanical characteristics in LN2.

  12. Numerical investigations on applicability of permanent magnet method to crack detection in HTS film

    NASA Astrophysics Data System (ADS)

    Kamitani, A.; Takayama, T.; Saitoh, A.

    2014-09-01

    The scanning permanent-magnet (PM) method was originally developed for determining the spatial distribution of the critical current density in a high-temperature superconducting (HTS) film. In the present study, its applicability to the crack detection in an HTS film is investigated numerically. To this end, a defect parameter is defined for characterizing a crack position and it is calculated along various scanning lines. The results of computations show that, only when the scanning position is near a crack, the defect parameter shows a violent change. On the basis of the behavior of the defect parameter, the method for roughly identifying a crack is also proposed.

  13. A study on insulation characteristics according to cooling methods of the HTS SMES

    NASA Astrophysics Data System (ADS)

    Choi, J. H.; Cheon, H. G.; Choi, J. W.; Kim, H. J.; Seong, K. C.; Kim, S. H.

    2010-11-01

    The high temperature superconducting magnetic energy storage (HTS SMES) stores electric power in the form of magnetic energy, and then converts it to electric energy. For the operation, the HTS SMES must have a cryogenic temperature. The cooling methods for a cryogenic temperature are divided into an immersed method and a conduction cooled method. The immersed method is a direct cooling method that immerses the superconducting magnet into a cryogen. On the other hand, the conduction cooled method is an indirect cooling method that cools a superconductor through thermal conduction with a cryocooler. This paper classified the structures of insulation according to cooling methods, and studied the insulation characteristics of each insulation factor.

  14. Levitation or suspension: Which one is better for the heavy-load HTS maglev transportation

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Kang, Dong; Yang, X. F.; Wang, Fei; Peng, G. H.; Zheng, Jun; Ma, G. T.; Wang, J. S.

    2015-09-01

    Because of the limitation of permanent magnet (PM), the efficient of bulk high-Tc superconductor (HTSC) in a high-Tc superconducting (HTS) maglev system is not very high. It is better to magnetize the bulk HTSC with a high trapped field to increase the force density. The different application type of magnetized bulk HTSC in a maglev system, namely, levitation or suspension type, will bring quite different operation performance. This paper discusses the influence of application type on operation performance of magnetized bulk HTSC by experiments and simulations. From the discussion, it can be found which application type is better for the heavy-load HTS maglev system.

  15. Homogenous BSCCO-2212 Round Wires for Very High Field Magnets

    SciTech Connect

    Dr. Scott Campbell Dr. Terry Holesinger Dr. Ybing Huang

    2012-06-30

    The performance demands on modern particle accelerators generate a relentless push towards higher field magnets. In turn, advanced high field magnet development places increased demands on superconducting materials. Nb3Sn conductors have been used to achieve 16 T in a prototype dipole magnet and are thought to have the capability for {approx}18 T for accelerator magnets (primarily dipoles but also higher order multipole magnets). However there have been suggestions and proposals for such magnets higher than 20 T. The High Energy Physics Community (HEP) has identified important new physics opportunities that are enabled by extremely high field magnets: 20 to 50 T solenoids for muon cooling in a muon collider (impact: understanding of neutrinos and dark matter); and 20+ T dipoles and quadrupoles for high energy hadron colliders (impact: discovery reach far beyond present). This proposal addresses the latest SBIR solicitation that calls for grant applications that seek to develop new or improved superconducting wire technologies for magnets that operate at a minimum of 12 Tesla (T) field, with increases up to 15 to 20 T sought in the near future (three to five years). The long-term development of accelerator magnets with fields greater than 20 T will require superconducting wires having significantly better high-field properties than those possessed by current Nb{sub 3}Sn or other A15 based wires. Given the existing materials science base for Bi-2212 wire processing, we believe that Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) round wires can be produced in km-long piece lengths with properties suitable to meet both the near term and long term needs of the HEP community. The key advance will be the translation of this materials science base into a robust, high-yield wire technology. While the processing and application of A15 materials have advanced to a much higher level than those of the copper oxide-based, high T{sub c} (HTS) counterparts, the HTS materials have

  16. Neural wiring optimization.

    PubMed

    Cherniak, Christopher

    2012-01-01

    Combinatorial network optimization theory concerns minimization of connection costs among interconnected components in systems such as electronic circuits. As an organization principle, similar wiring minimization can be observed at various levels of nervous systems, invertebrate and vertebrate, including primate, from placement of the entire brain in the body down to the subcellular level of neuron arbor geometry. In some cases, the minimization appears either perfect, or as good as can be detected with current methods. One question such best-of-all-possible-brains results raise is, what is the map of such optimization, does it have a distinct neural domain? PMID:22230636

  17. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Carpenter, K. H.

    1974-01-01

    The design, construction, and test history of a 4096 word by 18 bit random access NDRO Plated Wire Memory for use in conjunction with a spacecraft input/output and central processing unit is reported. A technical and functional description is given along with diagrams illustrating layout and systems operation. Test data is shown on the procedures and results of system level and memory stack testing, and hybrid circuit screening. A comparison of the most significant physical and performance characteristics of the memory unit versus the specified requirements is also included.

  18. Impact of V2G on Distribution Feeder: A Power Loss Reduction Approach

    NASA Astrophysics Data System (ADS)

    Chukwu, Uwakwe C.; Mahajan, Satish M.

    2013-08-01

    The penetration of Vehicle-to-Grid (V2G) into the electrical distribution system has potential to create room for many operational benefits. A V2G facility installed on a distribution feeder line segment may affect power loss in the distribution system. Mathematical models are developed to study how magnitude of V2G reactive power injection and different mixes of uniformly distributed loads and lumped loads can impact power loss on a distribution system feeder. The V2G facilities assumed in this research are V2G parking lots with provision for injecting reactive currents into the feeder of a distribution network. It is shown that loss reduction can be greatly influenced by the pattern of loading, the amount of V2G reactive injection as well as position and number of V2G parking lot along the feeder segment. Useful results are obtained, with a promise that more than 95% power loss reduction (relative to power loss in the system without V2G installed) is possible by optimally locating a V2G parking lot along the feeder. It is observed that location and capacity injection of a V2G facility are the most critical for loss reduction. It was concluded that proper system planning and operational practice are required in order to reduce power losses.

  19. Texture development in Galfenol wire

    NASA Astrophysics Data System (ADS)

    Boesenberg, A. J.; Restorff, J. B.; Wun-Fogle, M.; Sailsbury, H.; Summers, E.

    2013-05-01

    Galfenol (Fe-Ga alloy) wire fabrication provides a low cost alternative to directional solidification methods. This work evaluates the compositional dependence of the wire drawing suitability of Fe-Ga and characterizes the microstructural and magnetic properties of these wires. Wire has been produced with Ga contents between 10 at. % and 17 at. % to allow determination of the ductile to brittle transition (DTBT) in wire manufacture. Published results on chill cast bend specimens indicated that a DTBT occurs at roughly 15 at. % Ga. This DTBT was observed under tensile loading with a corresponding change in fracture behavior from transverse fracture to intergranular fracture. For improved magnetostrictive performance, higher Ga contents are desired, closer to the 17 at. % Ga evaluated in this work. Electron backscattered diffraction B-H loop and resonance measurements as a function of magnetic field (to determine modulus and coupling factor) are presented for as-drawn, furnace, and direct current (DC) annealed wire. Galfenol wire produced via traditional drawing methods is found to have a strong <110> (α) texture parallel to the drawing direction. As-drawn wire was observed to have a lower magnetic permeability and larger hysteresis than DC annealed wire. This is attributed to the presence of a large volume of crystalline defects; such as vacancies and dislocations.

  20. Microwave properties of HTS (high temperature superconductor) films

    SciTech Connect

    Cooke, D.W.; Arendt, P.N.; Gray, E.R.; Muenchausen, R.E.; Bennett, B.L.; Foltyn, S.R.; Estler, R.C.; Wu, X.D.; Reeves, G.A.; Elliott, N.E.; Brown, D.R. ); Portis, A.M. ); Taber, R.C. . Labs.); Mogro-Campero, A. . Corporate Research and Development Ce

    1990-01-01

    High-frequency applications of high-temperature superconductors generally fall into two categories: devices that require low values of surface resistance R{sub s} in ambient surface magnetic fields H{sub rf}, and devices that require low R{sub s} in modest fields. Moreover, many applications can be realized with small-surface-area films whereas others require larger areas-radiofrequency (rf) cavities, for example. Regardless of the application, the potential of HTS films is predicated on satisfying one or both of the above-stated requirements. We have measured the surface resistance of small-area (1 cm{sup 2}) and large-area (6.5 cm{sup 2}) YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) films that have been laser ablated onto LaA{ell}O{sub 3} substrates, large-area (5.1 cm{sup 2}) YBCO films that have been e-beam deposited onto LaA{ell}O{sub 3}, and large-area (11.4 cm{sup 2}) T{ell}-based films that have been magnetron sputtered onto metallic substrates. The best R{sub s} values are obtained from the 1-cm{sup 2} laser-ablated films; they are 40 {mu}{Omega} and 340 {mu}{Omega} at 4 K and 77 K, respectively ({omega}/2{pi} = 10 GHz). Comparable values for Cu are 6 and 13 m{Omega}, respectively. Large-area T{ell}-based films yield typical R{sub s} values of 4 m{Omega} and 14 m{Omega} at 4 K and 77 K, respectively ({omega}/2{pi} = 18 GHz). The dependence of R{sub s} on H{sub rf} for these films indicates that surface fields as large as 55 Oe can be achieved with R{sub s} increasing only by a factor of 10. This field dependence is associated with c-axis texturing.

  1. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury....

  2. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury....

  3. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY... of insulated wire; splice in underground wire. Insulated wire shall be protected from...

  4. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury....

  5. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury....

  6. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY... of insulated wire; splice in underground wire. Insulated wire shall be protected from...

  7. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury....

  8. Development of the cryo-rotary joint for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    NASA Astrophysics Data System (ADS)

    Miki, M.; Felder, B.; Tsuzuki, K.; Izumi, M.; Hayakawa, H.

    2010-06-01

    We have studied a prototype of an axial-gap type synchronous motor with Gd-bulk HTS field-pole magnets since 2001. At the liquid nitrogen temperature, these bulks have trapped over 1 T inside the motor after being applied the pulsed field magnetization method. Increasing the flux of the field poles is the most straightforward way of improving the output power of the motor. Cooling down the bulk HTS magnets below the liquid nitrogen temperature provides an effective alternative to increase the magnetic flux trapping. In 2007, we exchanged the cryogen from liquid nitrogen to condensed neon. The key technology of this challenge is a rotary joint, introducing a fluid cryogen into the rotating body in the motor from the static reservoir. We have successfully developed a compact rotary joint which is smaller and lighter than the existent one (1/10 volume, 1/3 length and 1/12 weight). The present joint was manufactured and evaluated with liquid nitrogen and condensed neon. We presume a total heat loss of this rotary joint of less than 10 watts. Successful cooling and rotating tests of the bulk-HTS motor with this novel rotary joint are conducted.

  9. Two-Wire to Four-Wire Audio Converter

    NASA Technical Reports Server (NTRS)

    Talley, G. L., Jr; Seale, B. L.

    1983-01-01

    Simple circuit provides interface between normally incompatible voicecommunication lines. Circuit maintains 40 dB of isolation between input and output halves of four-wire line permitting two-wire line to be connected. Balancing potentiometer, Rg, adjusts gain of IC2 to null feed through from input to output. Adjustment is done on workbench just after assembly.

  10. The Mechanical Design Optimization of a High Field HTS Solenoid

    SciTech Connect

    Lalitha, SL; Gupta, RC

    2015-06-01

    This paper describes the conceptual design optimization of a large aperture, high field (24 T at 4 K) solenoid for a 1.7 MJ superconducting magnetic energy storage device. The magnet is designed to be built entirely of second generation (2G) high temperature superconductor tape with excellent electrical and mechanical properties at the cryogenic temperatures. The critical parameters that govern the magnet performance are examined in detail through a multiphysics approach using ANSYS software. The analysis results formed the basis for the performance specification as well as the construction of the magnet.

  11. Soft magnetic wires

    NASA Astrophysics Data System (ADS)

    Vázquez, M.

    2001-06-01

    An overview of the present state of the art on the preparation techniques, outstanding magnetic properties and applications of soft magnetic micro and nanowires is presented. Rapid solidification techniques (in-rotating-water quenching and drawing methods) to fabricate amorphous microwires with diameter in the range from 100 down to 1 μm are first described. Electrodeposition is also employed to prepare composite microtubes (magnetic coatings) and to fill porous membranes (diameter of the order of 0.1 μm). Magnetic behaviours of interest are related to the different hysteresis loops of samples: square-shaped loops typical of bistable behaviour, and nearly non-hysteretic loop with well-defined transverse anisotropy field. The role played by magnetic dipolar interactions in the magnetic behaviour of arrays of micro and nanowires is described. A particular analysis is done on the giant magnetoimpedance (GMI) effect in the radio and microwave frequency ranges exhibited by ultrasoft microwires. Finally, a few examples of applications are introduced for magnetostrictive and non-magnetostrictive wires, they are: “magnetoelastic pens”, micromotors; DC current-sensors based on GMI, and sharpened amorphous wire tips in spin polarised scanning tunneling microscopy.

  12. Improved superconducting magnet wire

    DOEpatents

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  13. Analysis of Iterative Screening with Stepwise Compound Selection Based on Novartis In-house HTS Data.

    PubMed

    Paricharak, Shardul; IJzerman, Adriaan P; Bender, Andreas; Nigsch, Florian

    2016-05-20

    With increased automation and larger compound collections, the development of high-throughput screening (HTS) started replacing previous approaches in drug discovery from around the 1980s onward. However, even today it is not always appropriate, or even feasible, to screen large collections of compounds in a particular assay. Here, we present an efficient method for iterative screening of small subsets of compound libraries. With this method, the retrieval of active compounds is optimized using their structural information and biological activity fingerprints. We validated this approach retrospectively on 34 Novartis in-house HTS assays covering a wide range of assay biology, including cell proliferation, antibacterial activity, gene expression, and phosphorylation. This method was employed to retrieve subsets of compounds for screening, where selected hits from any given round of screening were used as starting points to select chemically and biologically similar compounds for the next iteration. By only screening ∼1% of the full screening collection (∼15 000 compounds), the method consistently retrieves diverse compounds belonging to the top 0.5% of the most active compounds for the HTS campaign. For most of the assays, over half of the compounds selected by the method were found to be among the 5% most active compounds of the corresponding full-deck HTS. In addition, the stringency of the iterative method can be modified depending on the number of compounds one can afford to screen, making it a flexible tool to discover active compounds efficiently. PMID:26878899

  14. Basic concepts, status, opportunities, and challenges of electrical machines utilizing high-temperature superconducting (HTS) windings

    NASA Astrophysics Data System (ADS)

    Frauenhofer, J.; Grundmann, J.; Klaus, G.; Nick, W.

    2008-02-01

    An overview of the different approaches towards achieving a marketable application of a superconducting electrical machine, either as synchronous motor or generator, will be given. This field ranges from relatively small industrial drives to utility generators with large power ratings, from the low speed and high torque of wind power generators and ship propulsion motors, to high speed generators attached to turbines. Essentially HTS machine technology offers several advantages such as compactness (weight and volume reduction), increased efficiency, and other operational benefits. The machine features have to be optimized with regard to the specific application, and different concepts were developed by internationally competing teams, with Siemens being one of them. The achieved status in these fields will be summarized, pointing to the specific technical challenges to overcome. For this purpose we have not only to consider the technology of manufacturing the HTS rotor winding itself, but also to check requirements and availability of supporting technologies. This ranges from new challenges posed to the non-superconducting ("conventional") components of such innovative HTS machines, manufacturing superconducting material in the coming transition from 1st to 2nd generation HTS tape, cryogenic technology including material behavior, to new and challenging tasks in simulating and predicting the performance of such machines by computational tools. The question of market opportunities for this technology obviously is a function of all these aspects; however, a strong tendency for the near future is seen in the area of high-torque ship propulsion.

  15. Predictive Signatures of Developmental Toxicity Modeled with HTS Data from ToxCast™ Bioactivity Profiles

    EPA Science Inventory

    The EPA ToxCast™ research program uses a high-throughput screening (HTS) approach for predicting the toxicity of large numbers of chemicals. Phase-I contains 309 well-characterized chemicals which are mostly pesticides tested in over 600 assays of different molecular targets, cel...

  16. Pathway Profiling and Tissue Modeling Using ToxCast HTS Data

    EPA Science Inventory

    High-throughput screening (HTS) and high-content screening (HCS) assays are providing data-rich studies to probe and profile the direct cellular effects of thousands of chemical compounds in commerce or potentially entering the environment. In vitro profiling may compare unknown ...

  17. Long-term operating characteristics of Japan's first in-grid HTS power cable

    NASA Astrophysics Data System (ADS)

    Nakano, Tetsutaro; Maruyama, Osamu; Honjo, Shoichi; Watanabe, Michihiko; Masuda, Takato; Hirose, Masayuki; Shimoda, Masahiro; Nakamura, Naoko; Yaguchi, Hiroharu; Machida, Akito

    2015-11-01

    Tokyo Electric Power Company, Sumitomo Electric Industries, Ltd and Mayekawa Mfg. Co., Ltd have jointly conducted the first in-grid demonstration test of a high-temperature superconducting (HTS) cable in Japan, from FY2007 to FY2013. The objective of this project is to evaluate the reliability, stability and other characteristics of the system. The cable structure used in this project is the type of three-in-one cable. As a coolant, sub-cooled liquid nitrogen flows through the gap between the corrugated cryostat and the three cable cores. This structure can realize compactness and reduce heat invasion compared with three single-core HTS cables housed in separate cryostats. The cooling system consists of six refrigerators, two circulation pumps and a reservoir tank. Each refrigerator has a cooling power of 1.0 kW at 77 K, 0.8 kW at 67 K. The number of operating refrigerators is controlled so that the coolant temperature at the cable inlet is kept to preset value. The HTS cable was connected to the live electricity grid from October 29, 2012 to December 25, 2013. In-grid operation continued for more than one year without any accidental interruption of operation or other operating issues. During this time, we studied the operating performance of the HTS cable in dependence on the sub-cooled LN2 temperature.

  18. Thermal insulation performance of flexible piping for use in HTS power cables

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Demko, J. A.

    2002-05-01

    High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 kelvin (K) are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.

  19. Assessment of High Temperature Superconducting (HTS) electric motors for rotorcraft propulsion

    NASA Technical Reports Server (NTRS)

    Doernbach, Jay

    1990-01-01

    The successful development of high temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. Applications of high temperature superconductors have been envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft and solar powered aircraft. The potential of HTS electric motors and generators for providing primary shaft power for rotorcraft propulsion is examined. Three different sized production helicopters were investigated; namely, the Bell Jet Ranger, the Sikorsky Black Hawk and the Sikorsky Super Stallion. These rotorcraft have nominal horsepower ratings of 500, 3600, and 13400 respectively. Preliminary results indicated that an all-electric HTS drive system produces an improvement in rotorcraft Takeoff Gross Weight (TOGW) for those rotorcraft with power ratings above 2000 horsepower. The predicted TOGW improvements are up to 9 percent for the medium-sized Sikorsky Black Hawk and up to 20 percent for the large-sized Sikorsky Super Stallion. The small-sized Bell Jet Ranger, however, experienced a penalty in TOGW with the all-electric HTS drive system.

  20. Nanomaterial (NM) bioactivity profiling by ToxCast high-throughput screening (HTS)

    EPA Science Inventory

    Rapidly increasing numbers of new NMs and their uses demand efficient tests of NM bioactivity for safety assessment. The EPA’s ToxCast program uses HTS assays to prioritize for targeted testing, identify biological pathways affected, and aid in linking NM properties and potential...

  1. Thermal Insulation Performance of Flexible Piping for Use in HTS Power Cables

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 K are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.

  2. High Voltage Testing of a 5-meter Prototype Triaxial HTS Cable

    SciTech Connect

    Sauers, Isidor; James, David Randy; Ellis, Alvin R; Tuncer, Enis; Pace, Marshall O; Gouge, Michael J; Demko, Jonathan A; Lindsay, David T

    2007-01-01

    High voltage tests were performed on a 5-m long prototype triaxial HTS cable (supplied by Ultera) at ORNL in preparation for installation of a 200-m HTS cable of the same design at the AEP utility substation in Columbus, Ohio. The triaxial design comprises three concentric phases and shield around a common former with the phase to phase dielectric at cryogenic temperature. Advantages of this design include increased current density, a reduced amount of HTS tape needed, and reduced heat load. The phase to phase voltage will be 13.2 kVrms (7.6 kVrms to ground). Preliminary testing was done on half-scale and full-scale terminations which successfully passed AC withstand, partial discharge, and impulse tests. High voltage tests conducted on the 5-m cable with the cable straight and after bending 90 degrees were ac withstand to 39 kVrms, partial discharge inception, and a minimum of 10 positive and 10 negative lightning waveform impulses at 110 kV. Phase to phase insulation was tested by applying high voltage to each phase one at a time with all the other phases grounded. Partial discharge data will be presented. The 5-m prototype triaxial HTS cable passed all the HV tests performed, with a PD inception voltage significantly above the required voltage.

  3. Performance evolution of 60 kA HTS cable prototypes in the EDIPO test facility

    NASA Astrophysics Data System (ADS)

    Bykovsky, N.; Uglietti, D.; Sedlak, K.; Stepanov, B.; Wesche, R.; Bruzzone, P.

    2016-08-01

    During the first test campaign of the 60 kA HTS cable prototypes in the EDIPO test facility, the feasibility of a novel HTS fusion cable concept proposed at the EPFL Swiss Plasma Center (SPC) was successfully demonstrated. While the measured DC performance of the prototypes at magnetic fields from 8 T to 12 T and for currents from 30 kA to 70 kA was close to the expected one, an initial electromagnetic cycling test (1000 cycles) revealed progressive degradation of the performance in both the SuperPower and SuperOx conductors. Aiming to understand the reasons for the degradation, additional cycling (1000 cycles) and warm up-cool down tests were performed during the second test campaign. I c performance degradation of the SuperOx conductor reached ∼20% after about 2000 cycles, which was reason to continue with a visual inspection of the conductor and further tests at 77 K. AC tests were carried out at 0 and 2 T background fields without transport current and at 10 T/50 kA operating conditions. Results obtained in DC and AC tests of the second test campaign are presented and compared with appropriate data published recently. Concluding the first iteration of the HTS cable development program at SPC, a summary and recommendations for the next activity within the HTS fusion cable project are also reported.

  4. The Current in a Wire

    ERIC Educational Resources Information Center

    Thompson, Keith

    2009-01-01

    This little problem arose because I was frustrated with the standard electromagnetism texts, which show the magnetic field due to a current-bearing wire outside the wire [proportional to] 1/r and inside [proportional to] r. However, they never point out that the moving electrons must be influenced by the magnetic field created by the other moving…

  5. Aircraft wiring program status report

    NASA Technical Reports Server (NTRS)

    Beach, Rex

    1995-01-01

    In this Naval Air Warfare Center (NAWC) Aircraft Division status report, the general and wire and cable component activities, the systems engineering activities, the aircraft wiring lead maintenance activities, the NAVAIR/NASA interface activities, and the Base Realignment and Closure (BRAC) Commission recommendations are presented.

  6. First Wire-Free Pacemaker Approved

    MedlinePlus

    ... Wire-Free Pacemaker Approved Treats irregular heartbeat without wired leads To use the sharing features on this ... said in a news release. In traditional pacemakers, wired leads may malfunction and require the device to ...

  7. Welding wire pressure sensor assembly

    NASA Technical Reports Server (NTRS)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  8. Welding wire pressure sensor assembly

    NASA Astrophysics Data System (ADS)

    Morris, Timothy B.; Milly, Peter F.; White, J. Kevin

    1993-05-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  9. Welding wire pressure sensor assembly

    NASA Astrophysics Data System (ADS)

    Morris, Timothy B.; Milly, Peter F., Sr.; White, J. Kevin

    1994-04-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  10. Characteristics of trapped magnetic fields in HTS bulk annuli with various axial spaces for compact NMR magnets

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Imai, M.; Takano, R.; Kashima, K.; Hahn, S.

    2010-11-01

    Recently, the performance of high-temperature superconducting (HTS) bulks such as a critical current density, size, and mechanical strength has been improved. In consequence, various applications with HTS bulks such as motors, bearings, and flywheels are being investigated by many research groups; Compact nuclear magnetic resonance (NMR) magnet is one of the new applications after a technique to enhance maximum trapped field of an HTS bulk more than 11.7 T, 500 MHz 1H NMR frequency, has been developed. This new compact NMR magnet out of HTS bulks is far less expensive than those conventional NMR magnets and expected to be widely used in food and drug industry. In design and manufacture of those compact NMR magnets, the issues of spatial homogeneity and temporal stability of trapped magnetic fields in HTS bulk annuli are very important. In this paper, the characteristics of the trapped magnetic fields in a stack of assembled HTS bulk annuli were investigated with various axial spaces between HTS bulks, experimentally and analytically.

  11. Apollo experience report: Electrical wiring subsystem

    NASA Technical Reports Server (NTRS)

    White, L. D.

    1975-01-01

    The general requirements of the electrical wiring subsystems and the problem areas and solutions that occurred during the major part of the Apollo Program are detailed in this report. The concepts and definitions of specific requirements for electrical wiring; wire-connecting devices; and wire-harness fabrication, checkout, and installation techniques are discussed. The design and development of electrical wiring and wire-connecting devices are described. Mission performance is discussed, and conclusions and recommendations for future programs are presented.

  12. Electrode carrying wire for GTAW welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E. (Inventor); Dyer, Gerald E. (Inventor)

    1990-01-01

    A welding torch for gas tungsten arc welding apparatus has a hollow tungsten electrode including a ceramic liner and forms the filler metal wire guide. The wire is fed through the tungsten electrode thereby reducing the size of the torch to eliminate clearance problems which exist with external wire guides. Since the wire is preheated from the tungsten more wire may be fed into the weld puddle, and the wire will not oxidize because it is always within the shielding gas.

  13. Internal wire guide for GTAW welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E. (Inventor); Dyer, Gerald E. (Inventor)

    1989-01-01

    A welding torch for gas tungsten arc welding apparatus has a filler metal wire guide positioned within the torch, and within the shielding gas nozzle. The wire guide is adjacent to the tungsten electrode and has a ceramic liner through which the wire is fed. This reduces the size of the torch and eliminates the outside clearance problems that exit with external wire guides. Additionally, since the wire is always within the shielding gas, oxidizing of the wire is eliminated.

  14. Sintered wire cathode

    DOEpatents

    Falce, Louis R.; Ives, R. Lawrence

    2009-06-09

    A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al.sub.2O.sub.3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.

  15. Multi-channel Data Acquisition System for a 500 m DC HTS Power Cable in Ishikari

    NASA Astrophysics Data System (ADS)

    Ivanov, Yury V.; Chikumoto, Noriko; Watanabe, Hirofumi; Takano, Hirohisa; Inoue, Noriyuki; Yamaguchi, Satarou

    Reduction of heat penetrating into the cryogenic region is the important method of optimization of superconducting devices. In the cases of short-range power transmission lines and compact HTS devices like magnets, the heat leakage through current leads is relatively large. In order to decrease this contribution, current leads equipped with Peltier elements can be used. The mentioned technology is being actively developed in the Chubu University. Commercial samples of Peltier current leads are installed at the terminals of 500-meter DC HTS cable in Ishikari (Hokkaido). This cable is designed for 5 kA. The inner conducting layer consists of 37 DI-BSCCO HTS tapes from Sumitomo Electric Industries, Ltd. with a critical current of 180 A; and the outer one consists of 35 tapes of the same type. Each end of the cable's tape is connected to the individual Peltier current lead. Accordingly, each of the two terminals is equipped with 72 Peltier current leads, 144 pieces in total. In order to examine behavior of the current leads in detail, each piece is supplied with two thermocouples; there are also voltage taps on feedthrough and on HTS tape end. In addition, current through Peltier current lead can be measured by means of individual current transformer. The hardware part of the data acquisition system includes four Keithley 3706A multimeters equipped with 60-channel model 3724 FET multiplexer cards. Therefore, 144 data blocks are formed. Furthermore, there are 72 measurements of a voltage drop across HTS tape. Sampling period is set to be 3 s. The program part of the data acquisition system was written using LabVIEW software solution (National Instruments Corp.).

  16. An active homopolar magnetic bearing with high temperature superconductor (HTS) coils and ferromagnetic cores

    NASA Technical Reports Server (NTRS)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-01-01

    A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.

  17. WELLTON GOVERNMENT CAMP, PERMANENT GARAGE TYPE 2G. PLAN, ELEVATIONS, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WELLTON GOVERNMENT CAMP, PERMANENT GARAGE TYPE 2-G. PLAN, ELEVATIONS, AND SECTIONS. Drawing 50-308-4553, dated October 21, 1949. U.S. Department of the Interior, Bureau of Reclamation, Yuma, Arizona - Wellton-Mohawk Irrigation System, Permanent Garage Type 2-G, 30611 and 30621 Wellton-Mohawk Drive, Wellton, Yuma County, AZ

  18. Trapped Field Attenuation Characteristics of HTS Bulk Magnet Exposed to External Traveling-Wave Magnetic Field in an HTSLSM

    NASA Astrophysics Data System (ADS)

    Jin, Jianxun; Zheng, Luhai

    Traveling-wave magnetic field generated by a linear motor is a typical AC time-varying field. In order to identify the trapped magnetic flux attenuation characteristics of the high temperature superconducting (HTS) bulk magnet exposed to the external traveling-wave field generated by the primary of a developed HTS linear synchronous motor (HTSLSM), relevant experiments have been carried out through a built measurement system. As results, the relationships between the trapped magnetic flux attenuation of the HTS bulk magnet and the amplitude, frequency and direction of the external traveling-wave magnetic field are experimentally obtained to allow the HTSLSM characteristics to be practically verified.

  19. An analog macromodel of the SG1525A PWM for use with SPICE2G. 6 simulators. [Simulation Program with Integrated Circuit Emphasis (SPICE2G. 6)

    SciTech Connect

    Raney, C.W.

    1992-01-01

    An analog macromodel for the SG1525A PWM (pulse width modulator) that is compatible with SPICE2G.6 and PSPICE analog simulators has been developed. It exhibits no convergence problems, simulates realistic line and load responses, frequency response, output voltage levels, and has time domain capability. Model development and a comparison of macromodel performance with actual measurements will be discussed.

  20. Estrogen and promoter methylation in the regulation of PLA2G7 transcription.

    PubMed

    Jiang, Danjie; Wang, Yunliang; Shen, Yusheng; Xu, Yan; Zhu, Huangkai; Wang, Jinhua; Wang, Hongwei; Duan, Shiwei

    2016-10-10

    In the current study, cell lines including HEK293, SW480, HPASMC, HPCASMC and HAEC were cultured with 5-aza-2-deoxycytidine (DAC) and 17-β-estradiol to investigate whether PLA2G7 transcription was under the control of promoter methylation and 17-β-estradiol. Luciferase reporter gene assays were used to evaluate whether reporter gene activity was enhanced by PLA2G7 promoter fragment. Gene expression and methylation were detected using RT-PCR and pyrosequencing methods, respectively. Endogenous PLA2G7 transcription levels were found to be significantly lower in vascular related cell lines than in the other cell lines. Luciferase reporter gene assays indicated that gene activity was significantly enhanced by PLA2G7 promoter fragment. PLA2G7 transcription was found to be up-regulated with the treatment of DAC. The 17-β-estradiol was found to down-regulate PLA2G7 transcription in all the cell lines. However, 17-β-estradiol did not have significant effect on PLA2G7 methylation. Further chromatin immunoprecipitation assay showed that 17-β-estradiol might regulate gene transcription by affecting the acetylated histone H3 and H4 marks on PLA2G7 promoter. Our results showed that PLA2G7 gene expression was co-regulated by 17-β-estradiol and promoter methylation. Our findings might provide molecular clues for gender disparity in the contribution of PLA2G7 to vascular related diseases such as coronary heart disease. PMID:27450918

  1. Plasma chemistry in wire chambers

    SciTech Connect

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

  2. Removal of Metanil Yellow from water environment by amino functionalized graphenes (NH2-G) - Influence of surface chemistry of NH2-G

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyao; Wei, Qin; Du, Bin; Zhang, Yakun; Xin, Xiaodong; Yan, Liangguo; Yu, Haiqin

    2013-11-01

    In this paper, amino functionalized graphenes (NH2-G) were synthesized for the efficient removal of an acid dye, Metanil Yellow (MY). The morphology, physical structure and chemical properties of the NH2-G were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and N2 adsorption-desorption isotherms, respectively. Batch experiments were conducted on the adsorption of MY by the prepared modified graphenes to investigate the effect of several parameters such as pH, dye concentration, adsorption time and temperature. Optimal conditions for the adsorption system were as follows: pH of 7, 0.4 g L-1 adsorbent and contact time of 120 min with the maximum adsorption capacity of 71.62 mg g-1. The adsorption mechanism was investigated by (on the basis of) adsorption isotherms, adsorption kinetic and adsorption thermodynamics. MY adsorption by NH2-G was better fitted by both Langmuir isotherm among five different equilibrium models and pseudo-second-order kinetic model. Furthermore, the thermodynamic experiments results with the values of activation parameters such as free energy (ΔG, -4.729 to -5.592 kJ mol-1), enthalpy (ΔH, 8.120 kJ mol-1) and entropy (ΔS, 43.08 J mol-1 K-1) illustrated that the adsorption process of MY onto NH2-G was endothermic and spontaneous in nature. The results obtained in this study suggest that NH2-G is an excellent adsorbent for effective removal of Metanil Yellow from water.

  3. Engineering nanocolumnar defect configurations for optimized vortex pinning in high temperature superconducting nanocomposite wires.

    PubMed

    Wee, Sung Hun; Zuev, Yuri L; Cantoni, Claudia; Goyal, Amit

    2013-01-01

    We report microstructural design via control of BaZrO3 (BZO) defect density in high temperature superconducting (HTS) wires based on epitaxial YBa2Cu3O7-δ (YBCO) films to achieve the highest critical current density, Jc, at different fields, H. We find the occurrence of Jc(H) cross-over between the films with 1-4 vol% BZO, indicating that optimal BZO doping is strongly field-dependent. The matching fields, Bφ, estimated by the number density of BZO nanocolumns are matched to the field ranges for which 1-4 vol% BZO-doped films exhibit the highest Jc(H). With incorporation of BZO defects with the controlled density, we fabricate 4-μm-thick single layer, YBCO + BZO nanocomposite film having the critical current (Ic) of ~1000 A cm(-1) at 77 K, self-field and the record minimum Ic, Ic(min), of 455 A cm(-1) at 65 K and 3 T for all field angles. This Ic(min) is the largest value ever reported from HTS films fabricated on metallic templates. PMID:23939231

  4. Engineering nanocolumnar defect configurations for optimized vortex pinning in high temperature superconducting nanocomposite wires

    PubMed Central

    Wee, Sung Hun; Zuev, Yuri L.; Cantoni, Claudia; Goyal, Amit

    2013-01-01

    We report microstructural design via control of BaZrO3 (BZO) defect density in high temperature superconducting (HTS) wires based on epitaxial YBa2Cu3O7-δ (YBCO) films to achieve the highest critical current density, Jc, at different fields, H. We find the occurrence of Jc(H) cross-over between the films with 1–4 vol% BZO, indicating that optimal BZO doping is strongly field-dependent. The matching fields, Bφ, estimated by the number density of BZO nanocolumns are matched to the field ranges for which 1–4 vol% BZO-doped films exhibit the highest Jc(H). With incorporation of BZO defects with the controlled density, we fabricate 4-μm-thick single layer, YBCO + BZO nanocomposite film having the critical current (Ic) of ~1000 A cm−1 at 77 K, self-field and the record minimum Ic, Ic(min), of 455 A cm−1 at 65 K and 3 T for all field angles. This Ic(min) is the largest value ever reported from HTS films fabricated on metallic templates. PMID:23939231

  5. Requirements for printed wiring boards

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In order to maintain the high standards of the NASA printed wiring programs, this publication: prescribes NASA's requirements for assuring reliable rigid printed wiring boards; describes and incorporates basic considerations necessary to assure reliable rigid printed wiring boards; establishes the supplier's responsibility to train and certify personnel; provides for supplier documentation of the fabrication and inspection procedures to be used for NASA work, including supplier innovations and changes in technology; and provides visual workmanship standards to aid those responsible for determining quality conformance to the established requirements.

  6. Pla2g16 phospholipase mediates gain-of-function activities of mutant p53.

    PubMed

    Xiong, Shunbin; Tu, Huolin; Kollareddy, Madhusudhan; Pant, Vinod; Li, Qin; Zhang, Yun; Jackson, James G; Suh, Young-Ah; Elizondo-Fraire, Ana C; Yang, Peirong; Chau, Gilda; Tashakori, Mehrnoosh; Wasylishen, Amanda R; Ju, Zhenlin; Solomon, Hilla; Rotter, Varda; Liu, Bin; El-Naggar, Adel K; Donehower, Lawrence A; Martinez, Luis Alfonso; Lozano, Guillermina

    2014-07-29

    p53(R172H/+) mice inherit a p53 mutation found in Li-Fraumeni syndrome and develop metastatic tumors at much higher frequency than p53(+/-) mice. To explore the mutant p53 metastatic phenotype, we used expression arrays to compare primary osteosarcomas from p53(R172H/+) mice with metastasis to osteosarcomas from p53(+/-) mice lacking metastasis. For this study, 213 genes were differentially expressed with a P value <0.05. Of particular interest, Pla2g16, which encodes a phospholipase that catalyzes phosphatidic acid into lysophosphatidic acid and free fatty acid (both implicated in metastasis), was increased in p53(R172H/+) osteosarcomas. Functional analyses showed that Pla2g16 knockdown decreased migration and invasion in mutant p53-expressing cells, and vice versa: overexpression of Pla2g16 increased the invasion of p53-null cells. Furthermore, Pla2g16 levels were increased upon expression of mutant p53 in both mouse and human osteosarcoma cell lines, indicating that Pla2g16 is a downstream target of the mutant p53 protein. ChIP analysis revealed that several mutant p53 proteins bind the Pla2g16 promoter at E26 transformation-specific (ETS) binding motifs and knockdown of ETS2 suppressed mutant p53 induction of Pla2g16. Thus, our study identifies a phospholipase as a transcriptional target of mutant p53 that is required for metastasis. PMID:25024203

  7. Impact Assessment of V2G on the Power Loss of Unbalanced Radial Distribution Network

    NASA Astrophysics Data System (ADS)

    Chukwu, Uwakwe Christian; Mahajan, Satish M.

    2013-08-01

    Electric distribution feeders are inherently unbalanced and therefore have potential for severe power loss. The penetration of vehicle-to-grid (V2G) into the distribution feeders is expected to impact the power losses in the system. This is a pressing issue since power loss affects the operations, economics, and quality of service for the electric power systems. In this article, the impact of V2G parking lots on power losses of a radial distribution network is investigated. Two test networks were used in the study, namely: IEEE 13 and IEEE 123 Node test feeder networks. The test feeders and the V2G facilities were modeled in Radial Distribution Analysis Package (RDAP). Load flow results provided information on the power losses of the network. Results show that for a given penetration level, the impact of 3-phase and system-wide V2G integration on the power loss results in less power losses than 1-phase V2G integration. Results also indicate that operating the entire system such that V2G facilities will not compromise "near-balanced" state of operation and will have an improved impact on the power loss than highly unbalanced operation. The results obtained will be a useful tool for studying the impact of V2G on the power loss of a distribution network.

  8. Critical currents of YBCO tapes and Bi-2212 wires at different temperatures and magnetic fields

    SciTech Connect

    Lombardo, V.; Barzi, e.; Turrioni, D.; Zlobin, A.V.; /Fermilab

    2010-08-01

    Design studies for the cooling channel of a Muon Collider call for straight and helical solenoids generating field well in excess of the critical fields of state of the art Low Temperature Superconductors (LTS) such as Nb{sub 3}Sn or NbTi. Therefore, High Temperature Superconductors (HTS) will need to be used for the manufacturing of all or certain sections of such magnets to be able to generate and withstand the field levels at the cryogenic temperatures required by the new machine. In this work, two major High Temperature Superconductors - Bi2212 round wires and YBCO coated conductor tapes - are investigated to understand how critical current density of such conductors scales as a function of external field and operating temperature. This is vital information to make conductor choices depending on the application and to proceed with the design of such magnets.

  9. Magnetic fields end-face effect investigation of HTS bulk over PMG with 3D-modeling numerical method

    NASA Astrophysics Data System (ADS)

    Qin, Yujie; Lu, Yiyun

    2015-09-01

    In this paper, the magnetic fields end-face effect of high temperature superconducting (HTS) bulk over a permanent magnetic guideway (PMG) is researched with 3D-modeling numerical method. The electromagnetic behavior of the bulk is simulated using finite element method (FEM). The framework is formulated by the magnetic field vector method (H-method). A superconducting levitation system composed of one rectangular HTS bulk and one infinite long PMG is successfully investigated using the proposed method. The simulation results show that for finite geometrical HTS bulk, even the applied magnetic field is only distributed in x-y plane, the magnetic field component Hz which is along the z-axis can be observed interior the HTS bulk.

  10. An HTS flux pump operated by directly driving a superconductor into flux flow region in the E– J curve

    NASA Astrophysics Data System (ADS)

    Geng, Jianzhao; Coombs, T. A.

    2016-09-01

    High-T c superconducting (HTS) flux pumps are capable of compensating the persistent current decay in HTS magnets without electrical contact. In this paper, following work on a low-T c superconducting self-switching flux pump, we propose a new HTS flux pump by directly driving a high-T c superconductor into the flux flow region in the E– J curve. The flux pump consists of a transformer which has a superconducting secondary winding shorted by an YBCO-coated conductor bridge. A high alternating current with a much higher positive peak value than the negative peak value is induced in the secondary winding. The current always drives the bridge superconductor into the flux flow region only at around its positive peak value, thus resulting in flux pumping. The proposed flux pump is much simpler than existing HTS flux pumps.

  11. Propulsion and guidance simulation of HTS bulk linear synchronous motor taking into account /E-J characteristic

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Matsumoto, H.

    2003-10-01

    We have proposed a new linear synchronous motor (LSM) theory which is based on an idea of considering the pinning force as synchronizing one in using current-carrying-armature-winding instead of permanent magnets. We have carried out basic experiments on two-dimensional electromagnetic forces produced in HTS bulk within DC-magnetic-field. As a result, we found that HTS bulk magnet in a cooling case can be levitated and guided stably according to the flux conditions between bulk and DC magnet. HTS bulk LSM can produce propulsion, levitation and guidance forces from zero speed, and be used in many applications. This paper proposes HTS bulk LSM analyzed and designed taking into account E- J characteristic. The LSM can produce stable guidance force without control. The LSM propulsion and guidance motion can be simulated numerically only by a simple propulsion control, which is not only closed-loop control but also open-loop control.

  12. Effect of Elastic Compression Stocking (ECS) on Leg Veins During 2G Centrifugation

    NASA Astrophysics Data System (ADS)

    Arbeille, Ph.; Kaspransky, R.

    2008-06-01

    Objective: evaluate the calf vein response to hypergravity, and check the efficiency of elastic compression stocking (ECS) in preventing their distension. Method: Tibial (Tib csa) and Gastrocnemius (Gast csa) vein cross section area were investigated by echography. The subject was submitted to (a) 10 min stand test (ST), (b) 2G centrifugation for 2 min, (c) 10 min ST, with and without ECS. Results: Centrifugation at 2G induced a higher vein distension for both Gast and Tib vein compare to ST. At 2G centrifugation, ECS reduced the amplitude of the csa increase and limited the max vein csa to the ST value without ECS.

  13. Demonstrating Forces between Parallel Wires.

    ERIC Educational Resources Information Center

    Baker, Blane

    2000-01-01

    Describes a physics demonstration that dramatically illustrates the mutual repulsion (attraction) between parallel conductors using insulated copper wire, wooden dowels, a high direct current power supply, electrical tape, and an overhead projector. (WRM)

  14. Method of manufacturing superconductor wire

    SciTech Connect

    Motowidlo, Leszek

    2014-09-16

    A method for forming Nb.sub.3Sn superconducting wire is provided. The method employs a powder-in-tube process using a high-tin intermetallic compound, such as MnSn.sub.2, for producing the Nb.sub.3Sn. The use of a high-tin intermetallic compound enables the process to perform hot extrusion without melting the high-tin intermetallic compound. Alternatively, the method may entail drawing the wire without hot extrusion.

  15. Smart Wire Grid: Resisting Expectations

    SciTech Connect

    Ramsay, Stewart; Lowe, DeJim

    2014-03-03

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  16. Smart Wire Grid: Resisting Expectations

    ScienceCinema

    Ramsay, Stewart; Lowe, DeJim

    2014-04-09

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  17. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits,...

  18. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits,...

  19. 1 mil gold bond wire study.

    SciTech Connect

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  20. Final Report on CRADA ORNL05-0703

    SciTech Connect

    Christen, D. K.

    2010-04-27

    The work of this CRADA has been focused on the development of Rolling-Assisted Biaxially Textured Substrate (RABiTS)-based high-temperature superconducting (HTS) coated conductor technology that is in the pre-commercial development stage. Metal-Oxide Technologies, Inc. (MetOx) is a Houston-based small business that is developing and manufacturing second-generation (2G) HTS wire using an all-Metallo-Organic Chemical Vapor Deposition (MOCVD) process, including the buffer layers and HTS coating. Advances toward commercialization were enabled by coordinated interactions that facilitated the synthesis, characterization, and iterative optimization of prototype 2G wire segments.

  1. 19. INTERIOR, 'CHILLER NO. 2' (G.S.A. PHOTOCOPY, N.D.) (4 x ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR, 'CHILLER NO. 2' (G.S.A. PHOTOCOPY, N.D.) (4 x 5 NEGATIVE) - U.S. General Services Administration, Central Heating Plant, C & D Streets between Twelfth & Thirteenth Streets Southwest, Washington, District of Columbia, DC

  2. Microvascular pressure responses of second-generation rats chronically exposed to 2 g centrifugation

    NASA Technical Reports Server (NTRS)

    Richardson, D. R.; Knapp, C. F.

    1977-01-01

    Preliminary results are presented for a study aimed at a quantitative comparison of microvascular dynamics in second-generation rats reared in a 2-g force field produced by centrifugation with similar data from animals reared in a centrifuge that produced only a 1-g force. It is shown that the pressure distribution in the mesenteric microvasculature of the second generation of rats reared in a 2-g environment, as well as the animals' blood pressure response to epinephrine, are significantly different compared to their 1-g counterparts. In particular, 1-g and 2-g chronic centrifugation enhances the arterial blood pressure, and the 2-g force field attenuates the pressor effects of norepinephrine.

  3. HAER COLO,30LAKWD.V,2G (sheet 1 of 1) Glenn L. Martin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HAER COLO,30-LAKWD.V,2G- (sheet 1 of 1) - Glenn L. Martin Company, Titan Missile Test Facilities, Cold Flow Laboratory Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  4. Simulation of chain of quenches on toroidal HTS-SMES taking account of thermal and electromagnetic characteristics

    NASA Astrophysics Data System (ADS)

    Oga, Y.; Noguchi, S.; Igarashi, H.

    When a temperature rise occurs at a local area inside a coil of toroidal HTS-SMES by any reason, a temperature hotspot which results in a thermal runaway appears at the local area. Subsequently, after appearing the local normal zone in the HTS coil, the transport current of the HTS coil decrease since the resistance of HTS coil appears and the current partially flows into a parallel-connecting shunt resistance. However, if the transport current of the normal-transitioned HTS coil is hardly changed, the temperature on the hotspot would rise more and then the normal zone would spread rapidly. It may cause a serious accident due to high stored energy. Therefore, using the numerical simulation, we have investigated the behaviors of the coil current, the critical current, and the temperature in the superconducting element coils of HTS-SMES. Consequently, the temperature of the superconducting element coils rises up extremely when a large heat is generated at a certain area of one of them by any reason. Moreover, there is a possibility that the shunt resister hardly functions for protection since the coil is burned out due to high inductances and low resistance of the superconducting element coil.

  5. 40 CFR Appendix A-2 to Part 60 - Test Methods 2G through 3C

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 8 2012-07-01 2012-07-01 false Test Methods 2G through 3C A Appendix A-2 to Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES (CONTINUED) Pt. 60, App. A-2 Appendix A-2 to Part 60—Test Methods 2G through 3C Method...

  6. A Feasibility Study on HTS Cable for the Grid Integration of Renewable Energy

    NASA Astrophysics Data System (ADS)

    Yoon, D.-H.

    Nowadays there are a lot of demands for the renewable energy generation because fossil fuel is being exhausted. The size of renewable plant has a tendency to be increased for economic reasons. So the high voltage level facilities are necessary for interconnection between power grid and renewable plant. The interconnection facilities should have a transmission capacity enough to transfer the peak power generated by renewable plant. However, the output of renewable has an intermittent characteristic and its variation range is not small. Therefore an average utilization ratio of interconnection line between is low because of the power fluctuation from renewable plant. The High Temperature Superconducting (HTS) cable is able to transmit a large amount of electricity without additional power facility. In this paper, an advantage of using HTS cable as an interconnection line between power grid and renewable plant are analyzed.

  7. Influence of Off-Centre Operation on the Performance of HTS Maglev

    NASA Astrophysics Data System (ADS)

    Gou, Y.; He, D.; Zheng, J.; Ye, C.; Xu, Y.; Sun, R.; Che, T.; Deng, Z.

    2014-03-01

    Owing to instinctive self-stable levitation characteristics, high-temperature superconducting (HTS) maglev using bulk high-temperature superconductors attracts more and more attention from scientists and engineers around the world. In this paper, the levitation force relaxation and guidance force characteristics of a Y-Ba-Cu-O levitation unit with different eccentric distances (EDs) off the center of the permanent magnet guideway were experimentally investigated under field-cooling (FC) conditions. Experimental results indicate that the levitation force slightly increases at small EDs firstly, but degrades with further increasing of EDs. However, the maximum guidance force and its stiffness exhibit enhancement in moderate ED range. The results demonstrate that a properly designed initial FC eccentric distance is important for the practical applications of HTS maglev according to specific requirements like running in curve lines.

  8. Superconducting magnetostatic wave devices using HTS/perovskite-type manganite PCMO heterostructure

    NASA Astrophysics Data System (ADS)

    Terakago, Masafumi; Mine, Shigenobu; Sakatani, Tomotaka; Hontsu, Shigeki; Nishikawa, Hiroaki; Nakamori, Masaya; Tabata, Hitoshi; Kawai, Tomoji

    2001-12-01

    Pr1-xCaxMnO3 (PCMO) (x = 0.15~0.30) has good dielectric and magnetic properties at the microwave band. High-Tc superconductor (HTS)/ferromagnetic PCMO heterostructure has a high potential for superconducting tunable microwave filters and superconducting magnetostatic wave (MSW) devices. In order to demonstrate the preparation possibility of superconducting MSW devices, we investigated the microwave behaviour of YBa2Cu3O7-δ(YBCO)/PCMO heterostructures fabricated by a pulsed laser deposition technique on (La0.3Sr0.7)(Al0.65Ta0.35)O3 (100) substrate. We also fabricated superconducting MSW-band elimination filter (BEF) with YBCO/PCMO structure. The MSW-BEF exhibited notch characteristic that is caused by the energy conversion due to the coupling between the MSW mode and the transverse electromagnetic mode. These results suggest that the HTS/PCMO heterostructure is effective for the superconducting MSW application.

  9. A method to enhance the curve negotiation performance of HTS Maglev

    NASA Astrophysics Data System (ADS)

    Che, T.; Gou, Y. F.; Deng, Z. G.; Zheng, J.; Zheng, B. T.; Chen, P.

    2015-09-01

    High temperature superconducting (HTS) Maglev has attracted more and more attention due to its special self-stable characteristic, and much work has been done to achieve its actual application, but the research about the curve negotiation is not systematic and comprehensive. In this paper, we focused on the change of the lateral displacements of the Maglev vehicle when going through curves under different velocities, and studied the change of the electromagnetic forces through experimental methods. Experimental results show that setting an appropriate initial eccentric distance (ED), which is the distance between the center of the bulk unit and the center of the permanent magnet guideway (PMG), when cooling the bulks is favorable for the Maglev system’s curve negotiation. This work will provide some available suggestions for improving the curve negotiation performance of the HTS Maglev system.

  10. HTS by NMR of Combinatorial Libraries: A Fragment-Based Approach to Ligand Discovery

    PubMed Central

    Wu, Bainan; Zhang, Ziming; Noberini, Roberta; Barile, Elisa; Giulianotti, Marc; Pinilla, Clemencia; Houghten, Richard A.; Pasquale, Elena B.; Pellecchia, Maurizio

    2014-01-01

    SUMMARY Fragment-based ligand design (FBLD) approaches have become more widely used in drug discovery projects from both academia and industry, and are even often preferred to traditional high-throughput screening (HTS) of large collection of compounds (>105). A key advantage of FBLD approaches is that these often rely on robust biophysical methods such as NMR spectroscopy for detection of ligand binding, hence are less prone to artifacts that too often plague the results from HTS campaigns. In this article, we introduce a screening strategy that takes advantage of both the robustness of protein NMR spectroscopy as the detection method, and the basic principles of combinatorial chemistry to enable the screening of large libraries of fragments (>105 compounds) preassembled on a common backbone. We used the method to identify compounds that target protein-protein interactions. PMID:23352136

  11. HTS electrical machines with BSCCO/Ag composite plate-shaped rotor elements

    NASA Astrophysics Data System (ADS)

    Kovalev, L. K.; Ilushin, K. V.; Penkin, V. T.; Kovalev, K. L.; Koneev, S. M.-A.; Modestov, K. A.; Larionoff, S. A.; Akimov, I. I.; Dew-Hughes, D.

    2002-08-01

    This work relates to the investigation of electrical machines having advanced BSCCO/Ag-sheathed elements which are being produced by the well-known technology “powder in tube”. That foliate HTS material is being considered to be used in three types of electric machines: reluctance and hysteresis motors and synchronous machines with “trapped magnetic flux”. Depending on the thickness, quantity of BSCCO layers and filling factor they are being produced as thin and thick ones. Several small-scale experimental models of the above-mentioned types were developed and tested in liquid nitrogen. The output power rating of reluctance motors with thin and thick HTS elements are 3 and 4 kW respectively. “Trapped field” machine was tested in generator mode for open circuit operation. The value of obtained magnetic flux density in the air gap is 0.8 T.

  12. Fabrication of Pd-Cr wire

    NASA Technical Reports Server (NTRS)

    Diamond, Sidney; Leach, Dennen M.

    1989-01-01

    Fabrication of Pd-13 percent Cr alloy wires is described. Melting, casting, swaging and annealing processes are discussed. Drawing to reach two diameters (0.003 inch and 0.00176 inch) of wire is described. Representative micrographs of the Pd-Cr alloy at selected stages during wire fabrication are included. The resistance of the wire was somewhat lower, by about 15 to 20 percent, than comparable wire of other alloys used for strain gages.

  13. Experimental Results for Space-Wire-D

    NASA Astrophysics Data System (ADS)

    Parkes, Steve; Gibson, David; Ferrer, Albert

    2015-09-01

    SpaceWire-D is a deterministic extension to SpaceWire that uses time-division multiplexing to schedule traffic within time-slots. It allows a single SpaceWire network to be used for both time-critical avionics control applications and asynchronous payload data-handling simultaneously using existing SpaceWire technology. In this paper we describe the services of SpaceWire-D and present experimental results for each service.

  14. Connecting to Thermocouples with Fewer Lead Wires

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2003-01-01

    A simple technique has been devised to reduce the number of lead wires needed to connect an array of thermocouples to the instruments (e.g., voltmeters) used to read their output voltages. Because thermocouple wires are usually made of expensive metal alloys, reducing the number of lead wires can effect a considerable reduction in the cost of such an array. Reducing the number of wires also reduces the number of terminals and the amount of space needed to accommodate the wires.

  15. The HABP2 G534E polymorphism does not increase nonmedullary thyroid cancer risk in Hispanics

    PubMed Central

    Bohórquez, Mabel E; Estrada, Ana P; Stultz, Jacob; Sahasrabudhe, Ruta; Williamson, John; Lott, Paul; Duque, Carlos S; Donado, Jorge; Mateus, Gilbert; Bolaños, Fernando; Vélez, Alejandro; Echeverry, Magdalena

    2016-01-01

    Familial nonmedullary thyroid cancer (NMTC) has not been clearly linked to causal germline variants, despite the large role that genetic factors play in risk. Recently, HABP2 G534E (rs7080536A) has been implicated as a causal variant in NMTC. We have previously shown that the HABP2 G534E variant is not associated with TC risk in patients from the British Isles. Hispanics are the largest and the youngest minority in the United States and NMTC is now the second most common malignancy in women from this population. In order to determine if the HABP2 G534E variant played a role in NMTC risk among Hispanic populations, we analyzed 281 cases and 1105 population-matched controls from a multicenter study in Colombia, evaluating the association through logistic regression. We found that the HABP2 G534E variant was not significantly associated with NMTC risk (P=0.843) in this Hispanic group. We also stratified available clinical data by multiple available clinicopathological variables and further analyzed the effect of HABP2 on NMTC presentation. However, we failed to detect associations between HABP2 G534E and NMTC risk, regardless of disease presentation (P≥0.273 for all cases). Therefore, without any significant associations between the HABP2 G534E variant and NMTC risk, we conclude that the variant is not causal of NMTC in this Hispanic population. PMID:27097599

  16. Encouraging vehicle-to-grid (V2G) participation through premium tariff rates

    NASA Astrophysics Data System (ADS)

    Richardson, David B.

    2013-12-01

    The provision of vehicle-to-grid (V2G) services to an electric grid by electric vehicles (EVs) can potentially reduce the cost of vehicle ownership through revenue generation. Recent studies indicate that yearly vehicle profit from V2G may not be sufficient to induce widespread participation. This paper investigates the feasibility of a premium tariff rate for V2G power, similar to current feed-in-tariff (FIT) programs for renewable energy. Using Ontario, Canada as a case study, an hourly time-series model for a fleet of commuter EVs is created. Tariff rates for V2G peak power are calculated based on the same return on investment as the current FIT for renewable energy in Ontario. The tariff rates are competitive with the renewable energy tariffs, especially when EVs are allowed to provide ancillary services to the grid in addition to peak power. Despite the guaranteed rate of return, yearly vehicle profit is low. Two variations are considered to increase vehicle profit, thereby enhancing the attractiveness of V2G. A higher return on investment is favored over direct benefits offered to EV owners. A higher return on investment may be justifiable based on the higher level of risk inherent in V2G when compared to renewable energy.

  17. The HABP2 G534E polymorphism does not increase nonmedullary thyroid cancer risk in Hispanics.

    PubMed

    Bohórquez, Mabel E; Estrada, Ana P; Stultz, Jacob; Sahasrabudhe, Ruta; Williamson, John; Lott, Paul; Duque, Carlos S; Donado, Jorge; Mateus, Gilbert; Bolaños, Fernando; Vélez, Alejandro; Echeverry, Magdalena; Carvajal-Carmona, Luis G

    2016-05-01

    Familial nonmedullary thyroid cancer (NMTC) has not been clearly linked to causal germline variants, despite the large role that genetic factors play in risk. Recently, HABP2 G534E (rs7080536A) has been implicated as a causal variant in NMTC. We have previously shown that the HABP2 G534E variant is not associated with TC risk in patients from the British Isles. Hispanics are the largest and the youngest minority in the United States and NMTC is now the second most common malignancy in women from this population. In order to determine if the HABP2 G534E variant played a role in NMTC risk among Hispanic populations, we analyzed 281 cases and 1105 population-matched controls from a multicenter study in Colombia, evaluating the association through logistic regression. We found that the HABP2 G534E variant was not significantly associated with NMTC risk (P=0.843) in this Hispanic group. We also stratified available clinical data by multiple available clinicopathological variables and further analyzed the effect of HABP2 on NMTC presentation. However, we failed to detect associations between HABP2 G534E and NMTC risk, regardless of disease presentation (P≥0.273 for all cases). Therefore, without any significant associations between the HABP2 G534E variant and NMTC risk, we conclude that the variant is not causal of NMTC in this Hispanic population. PMID:27097599

  18. Numerical models for ac loss calculation in large-scale applications of HTS coated conductors

    NASA Astrophysics Data System (ADS)

    Quéval, Loïc; Zermeño, Víctor M. R.; Grilli, Francesco

    2016-02-01

    Numerical models are powerful tools to predict the electromagnetic behavior of superconductors. In recent years, a variety of models have been successfully developed to simulate high-temperature-superconducting (HTS) coated conductor tapes. While the models work well for the simulation of individual tapes or relatively small assemblies, their direct applicability to devices involving hundreds or thousands of tapes, e.g., coils used in electrical machines, is questionable. Indeed, the simulation time and memory requirement can quickly become prohibitive. In this paper, we develop and compare two different models for simulating realistic HTS devices composed of a large number of tapes: (1) the homogenized model simulates the coil using an equivalent anisotropic homogeneous bulk with specifically developed current constraints to account for the fact that each turn carries the same current; (2) the multi-scale model parallelizes and reduces the computational problem by simulating only several individual tapes at significant positions of the coil’s cross-section using appropriate boundary conditions to account for the field generated by the neighboring turns. Both methods are used to simulate a coil made of 2000 tapes, and compared against the widely used H-formulation finite-element model that includes all the tapes. Both approaches allow faster simulations of large number of HTS tapes by 1-3 orders of magnitudes, while maintaining good accuracy of the results. Both models can therefore be used to design and optimize large-scale HTS devices. This study provides key advancement with respect to previous versions of both models. The homogenized model is extended from simple stacks to large arrays of tapes. For the multi-scale model, the importance of the choice of the current distribution used to generate the background field is underlined; the error in ac loss estimation resulting from the most obvious choice of starting from a uniform current distribution is revealed.

  19. Optimization of a condensed-neon cooling system for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    NASA Astrophysics Data System (ADS)

    Felder, B.; Miki, M.; Tsuzuki, K.; Izumi, M.; Hayakawa, H.

    2010-06-01

    The axial-gap synchronous machine developed in our laboratory is based on Gd-bulk HTS field-pole magnets, able to trap a part of the magnetic flux they are submitted to when cooled down below Tc. At the liquid nitrogen temperature, by the Pulsed-Field Magnetization (PFM), 1.04 T was trapped in 60 mm-diameter and 20 mm-thickness magnets, leading to an output power of the motor of 10 kW at 720 rpm. To enhance this performance, we have to increase the total amount of trapped flux in the bulk, the shortest way being to decrease the temperature of the bulk HTS. Thus, we focused on the improvement of the condensed-neon cooling system, a closed-cycle thermosyphon, so that it provided enough cooling power to lead the rotor plate enclosing the magnets to a low temperature. The present study implied coming out with a new fin-oriented design of the condensation chamber; hence, the numeric calculations and FEM software (ANSYS) heat transfer simulations were conducted for various shapes and positions of the fins. The trapezoidal design offering the best efficiency was then manufactured for testing in a heat-load test configuration, leading to cooling times divided by three and a maximum heat load endured of 55 W.

  20. Results of KEPCO HTS cable system tests and design of hybrid cryogenic system

    NASA Astrophysics Data System (ADS)

    Lim, J. H.; Sohn, S. H.; Yang, H. S.; Hwang, S. D.; Kim, D. L.; Ryoo, H. S.; Choi, H. O.

    2010-11-01

    In order to investigate the compatibility as a power utility facility, Korea Electric Power Corporation (KEPCO) had installed a 22.9 kV, 1250 A, 100 m long high temperature superconducting (HTS) power cable system. Using the HTS cable, various tests have been performed to investigate electrical and thermo-mechanical properties. Since 2005, a series of thermal cycle tests between liquid nitrogen (LN 2) and ambient temperatures have been conducted using a vacuum-pump driven open-loop cryogenic system with a capacity of 3 kW. In the tests, although the open-loop cryogenic system was reliable to operate the HTS cable system, it was not effective in economic view point because LN 2 consumption was larger than expected. In order to secure against unexpected emergencies and solve the problem of LN 2 consumption, a hybrid cryogenic system was designed and installed. A stirling cryocooler was employed and combined with the open-loop cryogenic system. Considering the average heat load at rated condition, the cooling capacity of the cryocooler was determined to 4 kW at 77 K. In this paper, results of performance tests and the design of the hybrid cooling system are presented.

  1. Development of a field pole of 1 MW-class HTS motor

    NASA Astrophysics Data System (ADS)

    Yuan, S.; Kimura, Y.; Miki, M.; Felder, B.; Tsuzuki, K.; Ida, T.; Izumi, M.; Umemoto, K.; Aizawa, K.; Yokoyama, M.

    2010-06-01

    We report a field-pole high-temperature superconductor (HTS) magnet designed for 1 MW-class motor for propulsion. The field pole is assembled to the rotor of the radial-type motor. Each field pole is composed of HTS-Bi2223 tape wound into coils which have been piled up as a double pancake coils. In the design concept of the motor, we employ field poles without iron core. We prepared the test field-pole coil, whose dimension is smaller than the designed one for 1 MW, and tested its performances after cooling under self-field and external magnetic field. We verified the operation with the minimum bend radius of the coils required in the motor design, while keeping an optimal current which is lower than the critical current of the field-pole coil. The test HTS field poles were successfully cooled down and operated under a magnetic field ranging up to 5 T. We report the results of the test field-pole coil and the manufacture of a practical racetrack coil with Bi2223 and discuss the adaptability to 1 MW-class motors.

  2. Experimental Study of Local Micro-forming for Bi-HTS

    SciTech Connect

    Zeng Pan; Lu Yongjin; Lei Liping; Qu Timing; Fang Gang

    2010-06-15

    The Bi-HTS (BSCCO high temperature superconductor) tape now has become the product in an industrial way, which has been available to apply in electric and electron fields. The main way to manufacture Bi-HTS tape is to use the technique of oxide powder in silver tube (OPIT), which involves the multi-step drawing and rolling with plastic deformation, which obviously belongs to a type of the micro-forming in macro-scale processing. There are two main characteristics founded: (a) contact and friction between silver and BSCCO surfaces, (b) interface between two materials. A series of micro-tensile experiments of silver foil with thicknesses of 0.03, 0.06 and 0.1 mm are designed to investigate the behaviors of silver with various scale of sizes. And the surface topography measurements have been carried out to analyze the changes in surface topography. Based upon experiments, some topics are researched which are referred to inhomogeneous, local effect, size effect, grain and micro-structure affecting, surface roughness, long-distance sausage phenomenon. Further the local breakdown of silver by Bi-HTS powder during process is analyzed through failure criterion. The results of this work will bring out an important exploration value to the theory and computation of micro-forming.

  3. Development of an HTS hydroelectric power generator for the hirschaid power station

    NASA Astrophysics Data System (ADS)

    Fair, Ruben; Lewis, Clive; Eugene, Joseph; Ingles, Martin

    2010-06-01

    This paper describes the development and manufacture of a 1.7MW, 5.25kV, 28pole, 214rpm hydroelectric power generator consisting of superconducting HTS field coils and a conventional stator. The generator is to be installed at a hydro power station in Hirschaid, Germany and is intended to be a technology demonstrator for the practical application of superconducting technology for sustainable and renewable power generation. The generator is intended to replace and uprate an existing conventional generator and will be connected directly to the German grid. The HTS field winding uses Bi-2223 tape conductor cooled to about 30K using high pressure helium gas which is transferred from static cryocoolers to the rotor via a bespoke rotating coupling. The coils are insulated with multi-layer insulation and positioned over laminated iron rotor poles which are at room temperature. The rotor is enclosed within a vacuum chamber and the complete assembly rotates at 214rpm. The challenges have been significant but have allowed Converteam to develop key technology building blocks which can be applied to future HTS related projects. The design challenges, electromagnetic, mechanical and thermal tests and results are presented and discussed together with applied solutions.

  4. Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    2015-02-01

    This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.

  5. Magnetizing technique for permanent magnets by intense static fields generated by HTS bulk magnets: Numerical Analysis

    NASA Astrophysics Data System (ADS)

    N. Kawasaki; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.; Terasawa, T.; Itoh, Y.

    A demagnetized Nd-Fe-B permanent magnet was scanned in the strong magnetic field space just above the magnetic pole containing a HTS bulk magnet which generates the magnetic field 3.4 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. The finite element method was carried out for the static field magnetization of a permanent magnet using a HTS bulk magnet. Previously, our research group experimentally demonstrated the possibility of full magnetization of rare earth permanent magnets with high-performance magnetic properties with use of the static field of HTS bulk magnets. In the present study, however, we succeeded for the first time in visualizing the behavior of the magnetizing field of the bulk magnet during the magnetization process and the shape of the magnetic field inside the body being magnetized. By applying this kind of numerical analysis to the magnetization for planned motor rotors which incorporate rare-earth permanent magnets, we hope to study the fully magnetized regions for the new magnetizing method using bulk magnets and to give motor designing a high degree of freedom.

  6. Non-destructive inspection using HTS SQUID on aluminum liner covered by CFRP

    NASA Astrophysics Data System (ADS)

    Hatsukade, Y.; Yotsugi, K.; Sakaguchi, Y.; Tanaka, S.

    2007-10-01

    An eddy-current-based SQUID non-destructive inspection (NDI) system to detect deep-lying cracks in multi-layer composite-Al vessels was developed taking advantage of the uncontested sensitivity of HTS-SQUID in low-frequency range. An HTS-SQUID gradiometer was mounted in a pulse tube cryocooler. A pair of differential coils with C-shaped ferrite cores was employed to induce an enhanced eddy current in an Al vessel wrapped in a carbon fiber reinforced plastic (CFRP) cover. Ellipsoidal dome-shaped Al liners containing through cracks, which were made by pressure cycle tests, in the CFRP covers with total thickness of 6 mm (CFPR 3 mm, and Al 3 mm) were inspected by the system. While inducing eddy currents in the vessels with excitation fields at 100 Hz or 7 kHz, the vessels were rotated under the HTS-SQUID. Above the cracks, anomalous signals due to the cracks were clearly detected at both frequencies. These results suggested the SQUID-NDI technique would be a possible candidate for inspection of high-pressure multi-layer composite-Al vessels.

  7. Structural design of the toroidal configuration of the HTS SMES cooling system

    NASA Astrophysics Data System (ADS)

    Yeom, H. K.; Koh, D. Y.; Ko, J. S.; Kim, H. B.; Hong, Y. J.; Kim, S. H.; Seong, K. C.

    2011-11-01

    The superconducting magnetic energy storage (SMES) system is working on around 30 K, because the magnet is made of high temperature superconductor. To maintain the cryogenic temperature, the superconducting coil is cooled by cryogen, helium gas or liquid neon. But there are some weak points in the cryogen cooling system. For example periodic charge of the cryogen and size is big and so on. So, we have designed the conduction cooling system for toroidal configuration HTS SMES. The toroidal type HTS SMES has some merits, so it is very small magnetic field leakage, and magnetic field applied perpendicular to the tape surface can be reduced. Our system has 28 numbers of HTS double pancake coils and they are arrayed toroidal configuration. The toroidal inner radius is 162 mm, and outer radius is 599 mm, and height is about 162 mm. In this study, we have designed the cooling structure and analyzed temperature distribution of cooling path, thermal stress and deformation of the cooling structure.

  8. Power electronics performance in cryogenic environment: evaluation for use in HTS power devices

    NASA Astrophysics Data System (ADS)

    Pereira, P.; Valtchev, S.; Pina, J.; Gonçalves, A.; Ventim Neves, M.; Rodrigues, A. L.

    2008-02-01

    Power electronics (PE) plays a major role in electrical devices and systems, namely in electromechanical drives, in motor and generator controllers, and in power grids, including high-voltage DC (HVDC) power transmission. PE is also used in devices for the protection against grid disturbances, like voltage sags or power breakdowns. To cope with these disturbances, back-up energy storage devices are used, like uninterruptible power supplies (UPS) and flywheels. Some of these devices may use superconductivity. Commercial PE semiconductor devices (power diodes, power MOSFETs, IGBTs, power Darlington transistors and others) are rarely (or never) experimented for cryogenic temperatures, even when designed for military applications. This means that its integration with HTS power devices is usually done in the hot environment, raising several implementation restrictions. These reasons led to the natural desire of characterising PE under extreme conditions, e. g. at liquid nitrogen temperatures, for use in HTS devices. Some researchers expect that cryogenic temperatures may increase power electronics' performance when compared with room-temperature operation, namely reducing conduction losses and switching time. Also the overall system efficiency may increase due to improved properties of semiconductor materials at low temperatures, reduced losses, and removal of dissipation elements. In this work, steady state operation of commercial PE semiconductors and devices were investigated at liquid nitrogen and room temperatures. Performances in cryogenic and room temperatures are compared. Results help to decide which environment is to be used for different power HTS applications.

  9. Design and development of 500 m long HTS cable system in the KEPCO power grid, Korea

    NASA Astrophysics Data System (ADS)

    Sohn, S. H.; Lim, J. H.; Yang, B. M.; Lee, S. K.; Jang, H. M.; Kim, Y. H.; Yang, H. S.; Kim, D. L.; Kim, H. R.; Yim, S. W.; Won, Y. J.; Hwang, S. D.

    2010-11-01

    In Korea, two long-term field demonstrations for high temperature superconducting (HTS) cable have been carried out for several years; Korea Electric Power Corporation (KEPCO) and LS Cable Ltd. (LSC) independently. Encouraged at the result of the projects performed in parallel, a new project targeting the real grid operation was launched in the fourth quarter of 2008 with the Korean government’s financial support. KEPCO and LSC are jointly collaborating in the selection of substation, determination of cable specification, design of cryogenic system, and the scheme of protection coordination. A three phase 500 m long HTS cable at a distribution level voltage of 22.9 kV is to be built at 154/22.9 kV Icheon substation located in near Seoul. A hybrid cryogenic system reflecting the contingency plan is being designed including cryocoolers. The HTS cable system will be installed in the second quarter of 2010, being commissioned by the fall of 2010. This paper describes the objectives of the project and design issues of the cable and cryogenic system in detail.

  10. [Treating anisometric amblyopia with HTS Amblyopia iNet Software--preliminary results].

    PubMed

    Avram, Elena; Stănilă, Adriana

    2013-01-01

    Amblyopia or "lazy eye" represents a disorder of the visual system characterized by poor vision in an eye that is otherwise physically normal. Anisometropia, the condition in which the two eyes have an unequal refractive error, is considered the second most common cause of amblyopia. The purpose of this study is to determine the efficiency of HTS Amblyopia iNet Software by studying the progress of visual acuity, contrast sensitivity and stereopsis vision in anisometropic amblyopic children. 5 patients (age: 5-13 years), treated with HTS Amblyopia iNet Software at OftaTotal Clinic from Sibiu, between 2010-2013, participated in this clinical trial. Initially, visual acuity ranged from 0.25 to 0.8, contrast sensitivity from 1.35 to 1.65 Log. Unit. and 1 patient presented stereoscopic vision. After treatment, visual acuity ranged from 0.8 to 1, contrast sensitivity from 1.35 to 1.95 Log. Unit., also all patients presented stereoscopic vision. HTS Amblyopia iNet Software represents an effective modern approach in the treatment of anisometropic amblyopia. PMID:24386790

  11. Wire chambers revisited.

    PubMed

    Ott, R J

    1993-04-01

    Detectors used for radioisotope imaging have, historically, been based on scintillating crystal/photomultiplier combinations in various forms. From the rectilinear scanner through to modern gamma cameras and positron cameras, the basic technology has remained much the same. Efforts to overcome the limitations of this form of technology have foundered on the inability to reproduce the required sensitivity, spatial resolution and sensitive area at acceptable cost. Multiwire proportional chambers (MWPCs) have long been used as position-sensitive charged particle detectors in nuclear and high-energy physics. MWPCs are large-area gas-filled ionisation chambers in which large arrays of fine wires are used to measure the position of ionisation produced in the gas by the passage of charged particles. The important properties of MWPCs are high-spatial-resolution, large-area, high-count-rate performance at low cost. For research applications, detectors several metres square have been built and small-area detectors have a charged particle resolution of 0.4 mm at a count rate of several million per second. Modification is required to MWPCs for nuclear medicine imaging. As gamma rays or X-rays cannot be detected directly, they must be converted into photo- or Compton scatter electrons. Photon-electron conversion requires the use of high atomic number materials in the body of the chamber. Pressurised xenon is the most useful form of "gas only" photon-electron convertor and has been used successfully in a gamma camera for the detection of gamma rays at energies below 100 keV. This camera has been developed specifically for high-count-rate first-pass cardiac imaging. This high-pressure xenon gas MWPC is the key to a highly competitive system which can outperform scintillator-based systems. The count rate performance is close to a million counts per second and the intrinsic spatial resolution is better than the best scintillator-based camera. The MWPC camera produces quantitative

  12. Plasma arc torch with coaxial wire feed

    DOEpatents

    Hooper, Frederick M

    2002-01-01

    A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

  13. Californium Recovery from Palladium Wire

    SciTech Connect

    Burns, Jon D.

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratory’s Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60°C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  14. Loss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction

    PubMed Central

    Castillo-Quan, Jorge Iván; Bartolome, Fernando; Angelova, Plamena R.; Li, Li; Pope, Simon; Cochemé, Helena M.; Khan, Shabana; Asghari, Shabnam; Bhatia, Kailash P.; Hardy, John; Abramov, Andrey Y.; Partridge, Linda

    2015-01-01

    The PLA2G6 gene encodes a group VIA calcium-independent phospholipase A2 beta enzyme that selectively hydrolyses glycerophospholipids to release free fatty acids. Mutations in PLA2G6 have been associated with disorders such as infantile neuroaxonal dystrophy, neurodegeneration with brain iron accumulation type II and Karak syndrome. More recently, PLA2G6 was identified as the causative gene in a subgroup of patients with autosomal recessive early-onset dystonia-parkinsonism. Neuropathological examination revealed widespread Lewy body pathology and the accumulation of hyperphosphorylated tau, supporting a link between PLA2G6 mutations and parkinsonian disorders. Here we show that knockout of the Drosophila homologue of the PLA2G6 gene, iPLA2-VIA, results in reduced survival, locomotor deficits and organismal hypersensitivity to oxidative stress. Furthermore, we demonstrate that loss of iPLA2-VIA function leads to a number of mitochondrial abnormalities, including mitochondrial respiratory chain dysfunction, reduced ATP synthesis and abnormal mitochondrial morphology. Moreover, we show that loss of iPLA2-VIA is strongly associated with increased lipid peroxidation levels. We confirmed our findings using cultured fibroblasts taken from two patients with mutations in the PLA2G6 gene. Similar abnormalities were seen including elevated mitochondrial lipid peroxidation and mitochondrial membrane defects, as well as raised levels of cytoplasmic and mitochondrial reactive oxygen species. Finally, we demonstrated that deuterated polyunsaturated fatty acids, which inhibit lipid peroxidation, were able to partially rescue the locomotor abnormalities seen in aged flies lacking iPLA2-VIA gene function, and restore mitochondrial membrane potential in fibroblasts from patients with PLA2G6 mutations. Taken together, our findings demonstrate that loss of normal PLA2G6 gene activity leads to lipid peroxidation, mitochondrial dysfunction and subsequent mitochondrial membrane

  15. Antenna coupled photonic wire lasers.

    PubMed

    Kao, Tsung-Yu; Cai, Xiaowei; Lee, Alan W M; Reno, John L; Hu, Qing

    2015-06-29

    Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450 mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements. PMID:26191717

  16. A secure 2G-RFID-Sys mechanism for applying to the medical emergency system.

    PubMed

    Chen, Yu-Yi; Wang, Yao-Jen; Jan, Jinn-Ke

    2013-06-01

    In the Medical Emergency System, any moment of delay in an emergency such as ambulance dispatch, ambulance diversion and clinical handover communication can significantly reduce a patient's chance of survival. Without the disadvantage of centralized management, a new type of RFID application named 2G-RFID-Sys will be more efficient. It is suitable for the tagged ambulance dispatch management in a huge range. In this article, the prototype of 2G-RFID-Sys and the responsibility of each participant are refined. We take an example of applying the 2G-RFID-Sys to the Medical Emergency System, the traffic condition of the ambulance will be able to ensure. PMID:23519704

  17. Mechanism of Polyubiquitin Chain Recognition by the Human Ubiquitin Conjugating Enzyme Ube2g2*

    PubMed Central

    Bocik, William E.; Sircar, Aroop; Gray, Jeffrey J.; Tolman, Joel R.

    2011-01-01

    Ube2g2 is a human ubiquitin conjugating (E2) enzyme involved in the endoplasmic reticulum-associated degradation pathway, which is responsible for the identification and degradation of unfolded and misfolded proteins in the endoplasmic reticulum compartment. The Ube2g2-specific role is the assembly of Lys-48-linked polyubiquitin chains, which constitutes a signal for proteasomal degradation when attached to a substrate protein. NMR chemical shift perturbation and paramagnetic relaxation enhancement approaches were employed to characterize the binding interaction between Ube2g2 and ubiquitin, Lys-48-linked diubiquitin, and Lys-63-linked diubiquitin. Results demonstrate that ubiquitin binds to Ube2g2 with an affinity of 90 μm in two different orientations that are rotated by 180° in models generated by the RosettaDock modeling suite. The binding of Ube2g2 to Lys-48- and Lys-63-linked diubiquitin is primarily driven by interactions with individual ubiquitin subunits, with a clear preference for the subunit containing the free Lys-48 or Lys-63 side chain (i.e. the distal subunit). This preference is particularly striking in the case of Lys-48-linked diubiquitin, which exhibits an ∼3-fold difference in affinities between the two ubiquitin subunits. This difference can be attributed to the partial steric occlusion of the subunit whose Lys-48 side chain is involved in the isopeptide linkage. As such, these results suggest that Lys-48-linked polyubiquitin chains may be designed to bind certain proteins like Ube2g2 such that the terminal ubiquitin subunit carrying the reactive Lys-48 side chain can be positioned properly for chain elongation regardless of chain length. PMID:21098018

  18. Designing potentials by sculpturing wires

    SciTech Connect

    Della Pietra, Leonardo; Aigner, Simon; Groth, Soenke; Hagen, Christoph von; Schmiedmayer, Joerg; Bar-Joseph, Israel; Lezec, Henri J.

    2007-06-15

    Magnetic trapping potentials for atoms on atom chips are determined by the current flow in the chip wires. By modifying the shape of the conductor we can realize specialized current flow patterns and therefore microdesign the trapping potentials. We have demonstrated this by nano-machining an atom chip using the focused ion beam technique. We built a trap, a barrier, and using a Bose-Einstein Condensate as a probe we showed that by polishing the conductor edge the potential roughness on the selected wire can be reduced. Furthermore, we give different other designs and discuss the creation of a one-dimensional magnetic lattice on an atom chip.

  19. Wire Detection Algorithms for Navigation

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Camps, Octavia I.

    2002-01-01

    In this research we addressed the problem of obstacle detection for low altitude rotorcraft flight. In particular, the problem of detecting thin wires in the presence of image clutter and noise was studied. Wires present a serious hazard to rotorcrafts. Since they are very thin, their detection early enough so that the pilot has enough time to take evasive action is difficult, as their images can be less than one or two pixels wide. Two approaches were explored for this purpose. The first approach involved a technique for sub-pixel edge detection and subsequent post processing, in order to reduce the false alarms. After reviewing the line detection literature, an algorithm for sub-pixel edge detection proposed by Steger was identified as having good potential to solve the considered task. The algorithm was tested using a set of images synthetically generated by combining real outdoor images with computer generated wire images. The performance of the algorithm was evaluated both, at the pixel and the wire levels. It was observed that the algorithm performs well, provided that the wires are not too thin (or distant) and that some post processing is performed to remove false alarms due to clutter. The second approach involved the use of an example-based learning scheme namely, Support Vector Machines. The purpose of this approach was to explore the feasibility of an example-based learning based approach for the task of detecting wires from their images. Support Vector Machines (SVMs) have emerged as a promising pattern classification tool and have been used in various applications. It was found that this approach is not suitable for very thin wires and of course, not suitable at all for sub-pixel thick wires. High dimensionality of the data as such does not present a major problem for SVMs. However it is desirable to have a large number of training examples especially for high dimensional data. The main difficulty in using SVMs (or any other example-based learning

  20. A study on the improvement of protective relay system for the utility application of HTS power cable

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Park, M.; Park, I. K.; Lee, S. R.; Park, J. D.; Kwon, Y. K.; Yu, I. K.

    2009-10-01

    In this paper, the analysis and improvement of protective relay systems are performed with respect to HTS (High Temperature Superconducting) power cable applied in a model power system. The over current relay and differential relay with proposed new decision making algorithm are implemented under a couple of fault conditions, a single line-to-ground fault and three phase short circuit. According to the analysis results, there is not a particular aspect for the protection system of HTS power cable, but the impedance variation of HTS power cable should be taken into account under the fault conditions. In the case of the differential relay system, the induced current ratio based fault detection scheme is proposed and applied for the bus to bus connection of HTS power cable protection. The circuit breaker operates according to the proposed algorithm well. The results obtained through the analysis of the simulation would provide more useful data for the protection system design of HTS power cables and their installation in power systems.

  1. Anode wire aging tests with selected gases

    SciTech Connect

    Kadyk, J.; Wise, J.; Hess, D.; Williams, M. )

    1990-04-01

    As a continuation of earlier wire aging investigations, additional candidates for wire chamber gas and wire have been tested. These include the gases: argon/ethane, HRS gas, dimethyl ether, carbon dioxide/ethane, and carbon tetrafluoride/isobutane. Wires used were: gold- plated tungsten, Stablohm, Nicotin, and Stainless Steel. Measurements were made of the effects upon wire aging of impurities from plumbing materials or contamination from various types of oil. Attempts were made to induce wire aging by adding measured amounts of oxygen and halogen (methyl chloride) with negative results. In this paper, the possible role of electronegativity in the wire aging process is discussed, and measurements of electronegativity are made with several single carbon Freons, using both an electron capture detector and a wire chamber operating with dimethyl ether.

  2. Electrical wire insulation and electromagnetic coil

    DOEpatents

    Bich, George J.; Gupta, Tapan K.

    1984-01-01

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  3. Quality control of microelectronic wire bonds

    NASA Technical Reports Server (NTRS)

    Thiel, R. A.; Schmidt, G. D.

    1975-01-01

    Report evaluates ultrasonic bonding of small-diameter aluminum wire joined to ceramic substrates metalized with thin-film and thick-film gold. Quick testing technique for nondestructive location of poor wire bonds is also presented.

  4. Put Your Cable Wiring to the Test.

    ERIC Educational Resources Information Center

    Day, C. William

    2001-01-01

    Discusses why schools and universities should use testing procedures in any wire bid specification for cable wiring and also know how experienced the installers are in testing and installing structured cabling systems. Key cabling terms are included. (GR)

  5. New insulation constructions for aerospace wiring applications

    NASA Technical Reports Server (NTRS)

    Slenski, George

    1994-01-01

    Outlined in this presentation is the background to insulation constructions for aerospace wiring applications, the Air Force wiring policy, the purpose and contract requirements of new insulation constructions, the test plan, and the test results.

  6. A manually set magnetic wire counter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Magnetic storage wire counter design principles are given. Magnetic storage wire was coupled with two phase propagational driver in manual set counter shift register. Time delay between magnetic counter domain insertion and corresponding output pulse provides counting functions.

  7. Technique for stripping Teflon insulated wire

    NASA Technical Reports Server (NTRS)

    Babb, B. D.

    1967-01-01

    Cryogenic stripping of Teflon insulated wire leaves no residue and produces no physical damage. After the wire is immersed in liquid nitrogen, bent slightly, and returned to room temperature, the Teflon is removed by fingernails or flat-nosed pliers.

  8. Wire Capture Programs for Macintosh and IBM.

    ERIC Educational Resources Information Center

    Wiley, Gale

    1989-01-01

    Discusses wire capture programs (computer programs which gather and process wire services such as the Associated Press or United Press) for computer labs in journalism departments. Describes details of such programs for Macintosh, IBM, and IBM clones. (SR)

  9. Electrical Wire Insulation and Electromagnetic Coil

    SciTech Connect

    Bich, G. J.; Gupta, T. K.

    1984-01-31

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  10. 77 FR 45320 - Approval and Promulgation of Implementation Plans; Mississippi; 110(a)(2)(G) Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ...EPA is proposing to approve, through parallel processing, a draft revision to the Mississippi State Implementation Plan (SIP), submitted by the Mississippi Department of Environmental Quality (MDEQ), on July 13, 2012. The draft revisions pertain to Clean Air Act (CAA) section 110(a)(2)(G) for the 1997 annual and 2006 24-hour fine particulate matter (PM2.5) National Ambient Air......

  11. 77 FR 61279 - Approval and Promulgation of Implementation Plans; Mississippi; 110(a)(2)(G) Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... section 110(a)(2)(G). EPA's July 31, 2012 (77 FR 45320), proposed approval was contingent upon Mississippi... July 18, 1997 (62 FR 38652), EPA promulgated a new annual PM 2.5 NAAQS and on October 17, 2006 (71 FR... below. See EPA's July 31, 2012, proposed rulemaking at 77 FR 45320 for more detail. Section 110(a)...

  12. Security Enhancement Mechanism Based on Contextual Authentication and Role Analysis for 2G-RFID Systems

    PubMed Central

    Tang, Wan; Chen, Min; Ni, Jin; Yang, Ximin

    2011-01-01

    The traditional Radio Frequency Identification (RFID) system, in which the information maintained in tags is passive and static, has no intelligent decision-making ability to suit application and environment dynamics. The Second-Generation RFID (2G-RFID) system, referred as 2G-RFID-sys, is an evolution of the traditional RFID system to ensure better quality of service in future networks. Due to the openness of the active mobile codes in the 2G-RFID system, the realization of conveying intelligence brings a critical issue: how can we make sure the backend system will interpret and execute mobile codes in the right way without misuse so as to avoid malicious attacks? To address this issue, this paper expands the concept of Role-Based Access Control (RBAC) by introducing context-aware computing, and then designs a secure middleware for backend systems, named Two-Level Security Enhancement Mechanism or 2L-SEM, in order to ensure the usability and validity of the mobile code through contextual authentication and role analysis. According to the given contextual restrictions, 2L-SEM can filtrate the illegal and invalid mobile codes contained in tags. Finally, a reference architecture and its typical application are given to illustrate the implementation of 2L-SEM in a 2G-RFID system, along with the simulation results to evaluate how the proposed mechanism can guarantee secure execution of mobile codes for the system. PMID:22163983

  13. The effect of a BRN 3.1 deletion on the temperature response to 2G

    NASA Technical Reports Server (NTRS)

    Murakami, D. M.; Erkman, L.; Rosenfeld, M. G.; Fuller, C. A.

    1998-01-01

    Researchers studied the effect of 2G exposure on body temperature in Wild type and BRN 3.1 Knockout mice to determine the feasibility to using BRN 3.1 Knockout mice as an animal model of the effects of altered gravitational fields on vestibular system physiology.

  14. Effects of 2 G hypergravity exposure on Bobwhite (Colinus virginianus) and Japanese quail (Coturnix coturnix japonica)

    NASA Technical Reports Server (NTRS)

    Ronca, April E.; Baer, Lisa A.; Everett, Erin M.; Shaughnessey, Rebecca; Foushee, Rebecca E.

    2004-01-01

    We compared reproductive fitness and early postnatal growth of Bobwhite (Colinus virginianus) and Japanese (Coturnix coturnix japonica) quail incubated and hatched during 2 G centrifugation. Fertilized Bobwhite and Japanese quail eggs were placed in portable incubators on the 8-ft International Space Station Test Bed (ISSTB) Centrifuge at NASA Ames Research Center. The quail eggs were incubated throughout hatching and reared until Postnatal day (P)4 at either 1.0, 1.2 or 2.0 G. Two days before hatching, candling revealed significantly greater numbers of viable Bobwhite than Japanese quail eggs at all g-loads. Bobwhite quail exhibited significantly better hatching success at all g-loads than did Japanese quail. Bobwhite hatchlings were sensitive to gravitational loading as evidenced by reduced postnatal body mass and length of 2 G hatchlings relative to 1 G control hatchlings. In contrast, mass and length of Japanese quail hatchlings were unaffected by 1.2 or 2 G exposure. Together, our findings provide evidence for superior viability and hatching success in Bobwhite quail relative to Japanese quail, coupled with greater sensitivity of postnatal body growth and development to 2 G loading. Bobwhite quail may be better suited than Japanese quail for scientific studies on space biology platforms.

  15. Overview of Shipyard coast line with Piers G1, G2, G3, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of Shipyard coast line with Piers G-1, G-2, G-3, G-4, and G-5 in view, view facing east-southeast - U.S. Naval Base, Pearl Harbor, Pier & Quay Walls, Entrance to Dry Dock No. 2 & Repair Wharfs, east & west sides of Dry Dock No. 2 & west side of Dry Dock No. 3, Pearl City, Honolulu County, HI

  16. Security enhancement mechanism based on contextual authentication and role analysis for 2G-RFID systems.

    PubMed

    Tang, Wan; Chen, Min; Ni, Jin; Yang, Ximin

    2011-01-01

    The traditional Radio Frequency Identification (RFID) system, in which the information maintained in tags is passive and static, has no intelligent decision-making ability to suit application and environment dynamics. The Second-Generation RFID (2G-RFID) system, referred as 2G-RFID-sys, is an evolution of the traditional RFID system to ensure better quality of service in future networks. Due to the openness of the active mobile codes in the 2G-RFID system, the realization of conveying intelligence brings a critical issue: how can we make sure the backend system will interpret and execute mobile codes in the right way without misuse so as to avoid malicious attacks? To address this issue, this paper expands the concept of Role-Based Access Control (RBAC) by introducing context-aware computing, and then designs a secure middleware for backend systems, named Two-Level Security Enhancement Mechanism or 2L-SEM, in order to ensure the usability and validity of the mobile code through contextual authentication and role analysis. According to the given contextual restrictions, 2L-SEM can filtrate the illegal and invalid mobile codes contained in tags. Finally, a reference architecture and its typical application are given to illustrate the implementation of 2L-SEM in a 2G-RFID system, along with the simulation results to evaluate how the proposed mechanism can guarantee secure execution of mobile codes for the system. PMID:22163983

  17. 78 FR 57219 - Proposed Collection; Comment Request for Form W-2G

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ...(c)(2)(A)). Currently, the IRS is soliciting comments concerning Form W-2G, Certain Gambling Winnings...@irs.gov . SUPPLEMENTARY INFORMATION: Title: Certain Gambling Winnings. OMB Number: 1545-0238. Form... certain gambling winnings to withhold tax and to report the winnings to the IRS. IRS uses the...

  18. 76 FR 36618 - Proposed Collection; Comment Request for Form W-2G

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ...(c)(2)(A)). Currently, the IRS is soliciting comments concerning Form W-2G, Certain Gambling Winnings... through the Internet, at Allan.M.Hopkins@irs.gov . SUPPLEMENTARY INFORMATION: Title: Certain Gambling..., 3402(q), and 3406 require payers of certain gambling winnings to withhold tax and to report...

  19. REACH. Residential Electrical Wiring Units.

    ERIC Educational Resources Information Center

    Ansley, Jimmy; Ennis, Mike

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of residential electrical wiring. The instructional units focus on grounded outlets, service entrance, and blueprint reading. Each unit follows a typical format…

  20. Flexible substrate for printed wiring

    NASA Technical Reports Server (NTRS)

    Asakura, M.; Yabe, K.; Tanaka, H.; Soda, A.

    1982-01-01

    A very flexible substrate for printed wiring is disclosed which is composed of a blend of phenoxy resin-polyisocyanate-brominated epoxy resin in which the equivalent ration of the functional groups is hydroxyl grouped: isocyanate group: epoxy group = 1:0.2 to 2:0.5 to 3. The product has outstanding solder resistance and is applied to metal without using adhesives.

  1. Health care's 100 most wired.

    PubMed

    Solovy, A; Serb, C

    1999-02-01

    They're wired all right, and America's 100 most techno-savvy hospitals and health systems share one more thing: a commitment to using technology to link with employees, patients, suppliers, and insurers. "We want to be a health care travel agency for our community," says one chief information officer. "And we see Internet technology as a key." PMID:10081454

  2. Regeneration: New Neurons Wire Up.

    PubMed

    Raymond, Pamela A

    2016-09-12

    Functional repair of damage in the nervous system requires re-establishment of precise patterns of synaptic connectivity. A new study shows that after selective ablation, zebrafish retinal neurons regenerate and reconstruct some, although not all, of their stereotypic wiring. PMID:27623258

  3. Fabrication of tungsten wire needles

    SciTech Connect

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading.

  4. Plated wire random access memories

    NASA Technical Reports Server (NTRS)

    Gouldin, L. D.

    1975-01-01

    A program was conducted to construct 4096-work by 18-bit random access, NDRO-plated wire memory units. The memory units were subjected to comprehensive functional and environmental tests at the end-item level to verify comformance with the specified requirements. A technical description of the unit is given, along with acceptance test data sheets.

  5. Wire-Wrap Chatter Detector

    NASA Technical Reports Server (NTRS)

    Fisch, G. Z.; Borden, T. J.

    1982-01-01

    Monitoring circuit responds to changes in resistance as little as 0.1 ohm. Has been used to detect defective wire-wrap connections during thermal and vibration tests. Defect is indicated to operator by light-emitting diode and by increase in count on a two-digit display.

  6. Ultrasonic Calibration Wire Test Phantom

    SciTech Connect

    Lehman, S K; Fisher, K A; Werve, M; Chambers, D H

    2004-09-24

    We designed and built a phantom consisting of vertical wires maintained under tension to be used as an ultrasonic test, calibration, and reconstruction object for the Lawrence Livermore National Laboratory annular array scanner. We provide a description of the phantom, present example data sets, preliminary reconstructions, example metadata, and MATLAB codes to read the data.

  7. Transport Through Carbon Nanotube Wires

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    This viewgraph presentation deals with the use of carbon nanotubes as a transport system. Contact, defects, tubular bend, phonons, and mechanical deformations all contribute to reflection within the nanotube wire. Bragg reflection, however, is native to an ideal energy transport system. Transmission resistance depends primarily on the level of energy present. Finally, the details regarding coupling between carbon nanotubes and simple metals are presented.

  8. Novel Wiring Technologies for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  9. Further Studies Of Hot-Wire Anemometry

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert; Logan, Pamela; Bershader, Daniel

    1990-01-01

    Report discusses factors affecting readings of hot-wire anemometer in turbulent supersonic boundary layer. Represents extension of work described in "Hot-Wire Anemometry Versus Laser-Induced Fluorescence" (ARC-11802). Presents theoretical analysis of responses of hot-wire probe to changes in flow; also compares measurements by hot-wire probe with measurements of same flows by laser-induced fluorescence (LIF).

  10. Different mechanical properties in Seldinger guide wires

    PubMed Central

    Schummer, Wolfram

    2015-01-01

    Background and Aims: Most central venous catheters are placed using Seldinger guide wires. EN ISO 11070 is the guideline for testing guide wire flexing performance and tensile strength, and we can safely assume that guide wires in use meet these requirements. Unfortunately, EN ISO 11070 guidelines do not reflect the clinical requirements and we continue to see mechanical failures and their associated complications. Material and Methods: This in vitro study was performed in an accredited laboratory. With regard to flexing, we: (1) Established the minimum flexing performance needed to meet clinical requirements, (2) developed flexing performance tests which mimic clinical requirement, and (3) evaluated the mechanical properties of various guide wires relative to these requirements. With regard to tensile strength, we used the testing method prescribed in ISO 11070, but did not end the test at 5 Newton (N). We continued until the guide wire was damaged, or we reached maximum tractive force. We then did a wire-to-wire comparison. We examined two basic wire constructions, monofil and core and coil. Results: Tensile strength: All wires tested, except one, met EN ISO 11070 requirements for 5 N tensile strength. The mean of the wire types tested ranged from 15.06 N to 257.76 N. Flexing performance: None of the wires kinked. The monofil had no evidence of bending. Two core/coil wires displayed minor bending (angle 1.5°). All other wires displayed bending angles between 22.5° and 43.0°. Conclusion: We recommend that: (1) Clinicians use guide wires with high-end mechanical properties, (2) EN ISO 11070 incorporate our flexing test into their testing method, raise the flexing requirement to kink-proof, (3) and raise the tensile strength requirement to a minimum of 30 N, and (3) all manufacturers and suppliers be required to display mechanical properties of all guide wire, and guide wire kits sold. PMID:26702209

  11. NEMA wire and cable standards development programs

    NASA Technical Reports Server (NTRS)

    Baird, Robert W.

    1994-01-01

    The National Electrical Manufacturers Association (NEMA) is the nation's largest trade association for manufacturers of electrical equipment. Its member companies produce components, end-use equipment and systems for the generation, transmission, distribution, control and use of electricity. The wire and cable division is presented in 6 sections: building wire and cable, fabricated conductors, flexible cords, high performance wire and cable, magnet wire, and power and control cable. Participating companies are listed.

  12. Alterations of Body Mass Gain of Neonates (P7&P14) During Certrifugation AT 2G

    NASA Technical Reports Server (NTRS)

    Baer, L. A.; Corbin, B. J.; Wade, C. E.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Previous research has shown animal body mass to be significantly affected by centrifugation. At the onset of centrifugation, animals have a selective loss of fat, causing an initial body mass loss. Body mass gain will resume at the same rate as uncentrifuged animals, but this subsequent gain will be lower. For this study, two different ages of Sprague Hawley neonate families were observed during centrifugation. Eight litters (dam with eight neonates) of postnatal day (PN) seven and four litters (dam with ten neonates) of PN 14 were separated into two separate groups each, centrifuge (+2G(sub z)) and environmental controls (EC) and placed into either the centrifuge or an animal holding unit in the centrifuge rotunda for a total of 16 days. P7: Total litter start mass of +2G(sub z) litter = 138.90 g/end = 311.0 g EC litter = 150.85 g/end = 516.9 g. P14: Total litter start mass of +2G(sub z) litter = 287.70 g/end = 762.5g; EC litter = 245 g/end = 942.9 g. An initial body mass loss was observed in both groups of +2G(sub z) animals for two days after the onset of centrifugation, but then an increase began to occur. Literature suggests adult animals at +2G(sub z), will have an initial loss, but will resume similar growth rates over time as compared to control animals. The P7 +2G(sub z) animals began to gain body mass, but showed a significantly slower growth rate than their EC animals for the duration of the test (pace). The P14 +2G(sub z) animals began to show similar growth rates to their EC after day nine. At day 16, both groups of +2Gz animals were significantly smaller than the EC animals (pace). At +2Gz, animals experience an initial body mass loss. Older animals are able to resume similar growth rates as their controls, but younger animals showed growth rates to be significantly reduced.

  13. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. Trailing cables for mobile equipment shall contain one or...

  14. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. Trailing cables for mobile equipment shall contain one or...

  15. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. Trailing cables for mobile equipment shall contain one or...

  16. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. Trailing cables for mobile equipment shall contain one or...

  17. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. Trailing cables for mobile equipment shall contain one or...

  18. 49 CFR 236.838 - Wire, shunt.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wire, shunt. 236.838 Section 236.838 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Wire, shunt. A wire forming part of a shunt circuit....

  19. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Guy wires. 57.12047 Section 57.12047 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Electricity Surface and Underground § 57.12047 Guy wires. Guy wires of...

  20. Getting "Wired" for McLuhan's Cyberculture.

    ERIC Educational Resources Information Center

    McMurdo, George

    1995-01-01

    Examines the introduction of the computing magazine, "Wired", into the United Kingdom's (UK) market. Presents conversations with the founder and editorial staff of the UK edition, and discusses the accessibility of "Wired" via the World Wide Web. Describes 10 articles from United States "Wired" back-issues and presents critiques of a utopian…

  1. 49 CFR 393.28 - Wiring systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring...

  2. Home and School Technology: Wired versus Wireless.

    ERIC Educational Resources Information Center

    Van Horn, Royal

    2001-01-01

    Presents results of informal research on smart homes and appliances, structured home wiring, whole-house audio/video distribution, hybrid cable, and wireless networks. Computer network wiring is tricky to install unless all-in-one jacketed cable is used. Wireless phones help installers avoid pre-wiring problems in homes and schools. (MLH)

  3. Ab-initio study of encapsulated and functionalized silicon nanotube with a monoatomically thin Cu wire

    SciTech Connect

    Chandel, Surjeet Kumar; Ahluwalia, P. K.; Sharma, Raman; Kumar, Arun

    2015-06-24

    First principle calculations based on DFT have been performed to study the interaction of monoatomically thin Cu wire with silicon nanotube in armchair configuration having chirality (6, 6) both by placing it inside (encapsulation) and outside (functionalisation) the tube. The lowest energy for positioning monoatomically thin Cu wire inside and outside surfaces of SiNT were found to possess cohesive energies of 4.03 eV and 4.02 eV respectively and hence the stability of both SiNTs is found to be almost same. However, From the electronic band structures study, the conductance in case of SiNT for the encapsulated and functionalized positioning of the Cu wire have been found to be 2G{sub 0} and 4G{sub 0} respectively showing enhanced conductance for the functionalized SiNT.

  4. A Novel Flow Cytometric HTS Assay Reveals Functional Modulators of ATP Binding Cassette Transporter ABCB6

    PubMed Central

    Chavan, Hemantkumar; Young, Susan; Ma, Xiaochao; Waller, Anna; Garcia, Matthew; Perez, Dominique; Chavez, Stephanie; Strouse, Jacob J.; Haynes, Mark K.; Bologa, Cristian G.; Oprea, Tudor I.; Tegos, George P.; Sklar, Larry A.; Krishnamurthy, Partha

    2012-01-01

    ABCB6 is a member of the adenosine triphosphate (ATP)-binding cassette family of transporter proteins that is increasingly recognized as a relevant physiological and therapeutic target. Evaluation of modulators of ABCB6 activity would pave the way toward a more complete understanding of the significance of this transport process in tumor cell growth, proliferation and therapy-related drug resistance. In addition, this effort would improve our understanding of the function of ABCB6 in normal physiology with respect to heme biosynthesis, and cellular adaptation to metabolic demand and stress responses. To search for modulators of ABCB6, we developed a novel cell-based approach that, in combination with flow cytometric high-throughput screening (HTS), can be used to identify functional modulators of ABCB6. Accumulation of protoporphyrin, a fluorescent molecule, in wild-type ABCB6 expressing K562 cells, forms the basis of the HTS assay. Screening the Prestwick Chemical Library employing the HTS assay identified four compounds, benzethonium chloride, verteporfin, tomatine hydrochloride and piperlongumine, that reduced ABCB6 mediated cellular porphyrin levels. Validation of the identified compounds employing the hemin-agarose affinity chromatography and mitochondrial transport assays demonstrated that three out of the four compounds were capable of inhibiting ABCB6 mediated hemin transport into isolated mitochondria. However, only verteporfin and tomatine hydrochloride inhibited ABCB6’s ability to compete with hemin as an ABCB6 substrate. This assay is therefore sensitive, robust, and suitable for automation in a high-throughput environment as demonstrated by our identification of selective functional modulators of ABCB6. Application of this assay to other libraries of synthetic compounds and natural products is expected to identify novel modulators of ABCB6 activity. PMID:22808084

  5. Cryogenic experiences during W7-X HTS-current lead tests

    NASA Astrophysics Data System (ADS)

    Richter, Thomas; Lietzow, Ralph

    2014-01-01

    The Karlsruhe Institute of Technology (KIT) was responsible for design, production and test of the High Temperature Superconductor (HTS) current leads (CL) for the stellerator Wendelstein 7-X (W7-X). 16 current leads were delivered. Detailed prototype tests as well as the final acceptance tests were performed at KIT, using a dedicated test cryostat assembled beside and connected to the main vacuum vessel of the TOSKA facility. A unique feature is the upside down orientation of the current leads due to the location of the power supplies in the basement of the experimental area of W7-X. The HTS-CL consists of three main parts: the cold end for the connection to the bus bar at 4.5 K, the HTS part operating in the temperature range from 4.5 K to 65 K and a copper heat exchanger (HEX) in the temperature range from 65 K to room temperature, which is cooled with 50 K helium. Therefore in TOSKA it is possible to cool test specimens simultaneously with helium at two different temperature levels. The current lead tests included different scenarios with currents up to 18.2 kA. In total, 10 cryogenic test campaigns with a total time of about 24 weeks were performed till beginning of 2013. The test facility as well as the 2 kW cryogenic plant of ITEP showed a very good reliability. However, during such a long and complex experimental campaign, one has to deal with failures, technical difficulties and incidents. The paper gives a summary of the test performance comprising the test preparation and operation. This includes the performance and reliability of the refrigerator and the test facility with reference to the process measuring and control system, the data acquisition system, as well as the building infrastructure.

  6. Design of Conduction-cooled HTS Coils for a Rotating Gantry

    NASA Astrophysics Data System (ADS)

    Takayama, Shigeki; Koyanagi, Kei; Yamaguchi, Akiko; Tasaki, Kenji; Kurusu, Tsutomu; Ishii, Yusuke; Amemiya, Naoyuki; Ogitsu, Toru; Noda, Koji

    Carbon ion cancer therapy is becoming more widespread due to its high curative effects and low burden on patients. Carbon ions are delivered to patients through electromagnets on a rotating gantry.A rotating gantry is attractive because it allows carbon ions to irradiate a tumor from any direction without changing the posture of the patient. On the other hand, because of the high magnetic rigidity of carbon ions, the weight of a rotating gantry for carbon cancer therapy is about three times higher than one for proton cancer therapy, according to our estimation. The use of high-temperature superconducting (HTS) magnets has been considered for reducing the size of the rotating gantry for carbon cancer therapy. The target weight is 200 t or less,which is equivalent to the weight of a typical rotating gantry for proton cancer therapy.In this study, the magnet layout of the rotating gantry and the superconducting magnets were designed from the viewpoint of beam optics.When applying high-temperature superconductors to accelerator magnets, there are some issues that should be considered, for example, the influence of tape magnetization and manufacturing accuracy on the field quality, the thermal stability of the conduction-cooled HTS coils under an alternating magnetic field, and methods to protect the coils from thermal runaway caused by an anomalous thermal input such as that due to beam loss. First, the thermal stability of the conduction-cooled HTS coils was simulated numerically, and the thermal runaway current was calculated in a static situation.

  7. Cryogenic experiences during W7-X HTS-current lead tests

    SciTech Connect

    Richter, Thomas; Lietzow, Ralph

    2014-01-29

    The Karlsruhe Institute of Technology (KIT) was responsible for design, production and test of the High Temperature Superconductor (HTS) current leads (CL) for the stellerator Wendelstein 7-X (W7-X). 16 current leads were delivered. Detailed prototype tests as well as the final acceptance tests were performed at KIT, using a dedicated test cryostat assembled beside and connected to the main vacuum vessel of the TOSKA facility. A unique feature is the upside down orientation of the current leads due to the location of the power supplies in the basement of the experimental area of W7-X. The HTS-CL consists of three main parts: the cold end for the connection to the bus bar at 4.5 K, the HTS part operating in the temperature range from 4.5 K to 65 K and a copper heat exchanger (HEX) in the temperature range from 65 K to room temperature, which is cooled with 50 K helium. Therefore in TOSKA it is possible to cool test specimens simultaneously with helium at two different temperature levels. The current lead tests included different scenarios with currents up to 18.2 kA. In total, 10 cryogenic test campaigns with a total time of about 24 weeks were performed till beginning of 2013. The test facility as well as the 2 kW cryogenic plant of ITEP showed a very good reliability. However, during such a long and complex experimental campaign, one has to deal with failures, technical difficulties and incidents. The paper gives a summary of the test performance comprising the test preparation and operation. This includes the performance and reliability of the refrigerator and the test facility with reference to the process measuring and control system, the data acquisition system, as well as the building infrastructure.

  8. Two Methods for a First Order Hardware Gradiometer Using Two HTS SQUID's

    SciTech Connect

    Espy, M.A.; Flynn, E.R.; Kraus, R.H., Jr.; Matlachov, A.

    1998-09-15

    Two different systems for noise cancellation (first order gradiometers) have been developed using two similar high temperature superconducting (HTS) SQUIDs. ''Analog'' gradiometry is accomplished in hardware by either (1) subtracting the signals from the sensor and background SQUIDs at a summing amplifier (parallel technique) or (2) converting the inverted background SQUID signal to a magnetic field at the sensor SQUID (series technique). Balance levels achieved are 2000 and 1000 at 20 Hz for the parallel and series methods respectively. The balance level as a function of frequency is also presented. The effect which time delays in the two sets of SQUID electronics have on this balance level is presented and discussed.

  9. Two methods for a first order hardware gradiometer using two HTS SQUIDs

    SciTech Connect

    Espy, M.A.; Flynn, E.R.; Kraus, R.H. Jr.; Matlachov, A.

    1998-12-31

    Two different systems for noise cancellation (first order gradiometers) have been developed using two similar high temperature superconducting (HTS) SQUIDs. Analog gradiometry is accomplished in hardware by either (1) subtracting the signals from the sensor and background SQUIDs at a summing amplifier (parallel technique) or (2) converting the inverted background SQUID signal to a magnetic field at the sensor SQUID (series technique). Balance levels achieved are 2000 and 1000 at 20 Hz for the parallel and series methods respectively. The balance level as a function of frequency is also presented. The effect which time delays in the two sets of SQUID electronics have on this balance level is presented and discussed.

  10. The status and prospects for flywheels and SMES that incorporate HTS

    NASA Astrophysics Data System (ADS)

    Wolsky, A. M.

    2002-08-01

    With one firm offering to provide SMES with HTS current leads and several other entities developing flywheels with bearings that incorporate bulk ReBaCuO, the progress made toward meeting their technical goals appears promising. Another question needs attention from the research, development, and demonstration (RD&D) community: “Will technical success yield equipment that will sell?” Here, we recall what is being done and review issues touching on the specifications for equipment that customers might want. These specifications pose technical challenges that have received little attention from the community.

  11. Development of a Flat-plate Cryogenic Oscillating Heat Pipe for Improving HTS Magnet Cooling

    NASA Astrophysics Data System (ADS)

    Natsume, K.; Mito, T.; Yanagi, N.; Tamura, H.

    A new method of including cryogenic oscillating heat pipes (OHPs) in the HTS coil windings as a thermal transport device has been studied. In this work, two type of OHPs are tested in low temperature. Employed working fluids are H2, Ne, N2. We have attained high performance thermal property using a bent-pipe cryogenic OHP as a prototype. Obtained effective conductivities have reached to 46000 W/m K. Then a flat-plate cryogenic OHP has been developed, that is suitable for imbedding in magnet windings. Preliminary experiments have been conducted and the result has been promising.

  12. Characterization of Hybrid Ferroelectric/HTS Thin Films for Tunable Microwave Components

    NASA Technical Reports Server (NTRS)

    Winters, M. D.; Mueller, C. H.; Bhasin, K. B.; Miranda, F. A.

    1996-01-01

    Since the discovery of High-Temperature-Superconductors (HTS) in 1986, a diversity of HTS-based microwave components has been demonstrated. Because of their low conductor losses, HTS-based components are very attractive for integration into microwave circuits for space communication systems. Recent advancements have made deposition of ferroelectric thin films onto HTS thin films possible. Due to the sensitivity of the ferroelectric's dielectric constant (epsilon(sub r)) to an externally applied electric field (E), ferroelectric/superconducting structures could be used in the fabrication of low loss, tunable microwave components. In this paper, we report on our study of Ba(0.5)Sr(0.5)TiO3/YBa2Cu3O(7-delta) and Ba(0.08)Sr(0.92)TiO3/YBa2Cu3O(7-delta) ferroelectric/superconducting thin films on lanthanum aluminate (LaAlO3) substrates. For the (Ba:Sr, 0.50:0.50) epitaxial sample, a epsilon(sub r) of 425 and a loss tangent (tan delta) of 0.040 were measured at 298 K, 1.0 MHz, and zero applied E. For the same sample, a epsilon(sub r) of 360 and tan delta of 0.036 were obtained at 77 K, 1.0 MHz, and zero applied E. Variations in epsilon(sub r) from 180 to 360 were observed over an applied E range of 0V/cm less than or equal to E less than or equal to 5.62 x 10(exp 4) V/cm with little change in tan delta. However, the range of epsilon(sub r) variation for the polycrystalline (Ba:Sr, 0.08:0.92) sample over 0V/cm less than or equal to E less than or equal to 4.00 x 10(exp 4) V/cm was only 3.6 percent while tan delta increased markedly. These results indicate that a lack of epitaxy between the ferroelectric and superconducting layers decreases tuning and increases microwave losses.

  13. High Temperature Superconducting Degaussing-Cooling Two Hts Coils with One Cryocooler for the Littoral Combat Ship

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, B. K.; Golda, E. M.; Kephart, J. T.

    2008-03-01

    The concept of creating a high temperature superconducting degaussing system has previously been studied by the Navy and shown to provide significant weight savings over conventional copper based degaussing systems. Modeling efforts have shown that in a HTS Degaussing System (HTSDG) for the Littoral Combat Ship, the dominant costs are cryocoolers. In an effort to minimize the number of cryocoolers, a two coil demonstrator cooled by one cryocooler has been constructed at NSWCCD Philadelphia. The demonstration consists of two 22 m long sections of flexible cryostat that are electrically isolated but connected in series through two junction boxes for serial gas flow. Within each cryostat section, 12 turns of HTS represent a vertical and horizontal degaussing coil. Use of Helium as the working fluid reduces safety impacts and allows higher current density in the HTS conductor due to lower temperature operation. Design, testing results, and lessons learned from the installation and operation of this cable are presented in this paper.

  14. Plate-fin Heat-exchangers for a 10 kW Brayton Cryocooler and a 1 km HTS Cable

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Gwak, Kyung Hyun; Jung, Seyong; Yang, Hyung Suk; Hwang, Si-Dole

    Plate-fin heat exchangers (PFHX) are designed and fabricated for a cryogenic cooling system, serving for a 10 kW Brayton cryocooler and a 1 km HTS transmission cable under development in Korea. To achieve compactness and thermal efficiency at the same time, a recuperative HX for Brayton cycle and a sub-cooling HX of liquid nitrogen for HTS cable are designed as integrated parts. A key design feature is focused on the coldest part of sub-cooling HX, where the streams of liquid nitrogen and refrigerant (helium gas) are arranged as two-pass cross-flow so that the risk of freeze-out of liquid nitrogen can be reduced. Details of hardware PFHX design are presented and discussed towards its immediate application to the HTS cable system.

  15. Probe molecules (PrM) approach in adverse outcome pathway (AOP) based high throughput screening (HTS): in vivo discovery for developing in vitro target methods

    EPA Science Inventory

    Efficient and accurate adverse outcome pathway (AOP) based high-throughput screening (HTS) methods use a systems biology based approach to computationally model in vitro cellular and molecular data for rapid chemical prioritization; however, not all HTS assays are grounded by rel...

  16. Modeling of a 22.9 kV 50 MVA superconducting power cable based on PSCAD/EMTDC for application to the Icheon substation in Korea

    NASA Astrophysics Data System (ADS)

    Lee, S.; Yoon, J.; Lee, B.; Yang, B.

    2011-11-01

    Two projects for high temperature superconducting (HTS) power cable have been carried out in Korea since 2001. One of them is a HTS cable project in DAPAS (Development of Advanced Power system by Applied Superconductivity technologies) program funded by the Ministry of Education, Science and Technology. In this project, LS Cable Ltd. (LSC) and Korea Electrotechnology Research Institute (KERI) jointly developed a 22.9 kV, 50 MVA, 3 phase, 100 m HTS cable using first generation (1G) HTS wire in 2006. The HTS cable system has been tested in a power test center of Korea Electric Power Corporation (KEPCO). LSC and KEPCO have been developing a 22.9 kV, 50 MVA, 3 phase, 500 m HTS cable system using second generation (2G) HTS wire since 2008, based on the technology of the DAPAS project. This project is called as GENI (Green Superconducting Electric Power Network at the Icheon Substation) project. The target of GENI project is to install and operate the HTS cable system in the Icheon substation located in near Seoul. In order to analyze the Icheon substation power system employing the HTS cable, an analysis model of the HTS cable is necessary. This paper describes the development of an analysis model for the 22.9 kV, 50 MVA HTS cable that will be applied to the Icheon substation in Korea.

  17. Frequency response in short thermocouple wires

    NASA Technical Reports Server (NTRS)

    Forney, L. J.; Meeks, E. L.; Ma, J.; Fralick, G. C.

    1992-01-01

    Theoretical expressions are derived for the steady state frequency response of a thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for a nonuniform wire with unequal material properties and wire diameters across the junction. The amplitude ratio at low frequency omega approaches 0 agrees with the results of Scadron and Warshawsky (1952) for a steady state temperature distribution. Moreover, the frequency response for a nonuniform wire in the limit of infinite length l approaches infinity is shown to reduce to a simple expression that is analogous to the classic first order solution for a thermocouple wire with uniform properties. Theoretical expressions are also derived for the steady state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire and a two material wire with unequal material properties across the junction. For the case of a one material supported wire, an exact solution is derived which compares favorably with an approximate expression that only matches temperatures at the support junction. Moreover, for the case of a two material supported wire, an analytical expression is derived that closely correlates numerical results. Experimental measurements are made for the steady state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire (type K) and a two material wire (type T) with unequal material properties across the junction. The data for the amplitude ratio and phase angle are correlated to within 10 pct. with the theoretical predictions of Forney and Fralick (1991). This is accomplished by choosing a natural frequency omega sub n for the wire data to correlate the first order response at large gas temperature frequencies. It is found that a large bead size, however, will increase the amplitude ratio at

  18. Analysis of the hematopoietic tissue in Pleurodeles waltl newts exposed to 2 g hypergravity

    NASA Astrophysics Data System (ADS)

    Domaratskaya, Elena; Nikonova, Tatyana M.; Grigoryan, Eleonora N.; Dvorochkin, Natalya; Yousuf, Rukhsana; Almeida, Eduardo; Butorina, Nina N.

    2012-07-01

    Gravity is an important factor in creating biologically-relevant mechanical loads, and in spaceflight living organisms encounter both microgravity as well as hypergravity conditions. Here we studied the influence of hypergravity on the hematopoietic tissue of P. waltl newts in parallel with tissue regeneration experiments of the newt lens and tail. At day 9 post-surgery one group of newts was subjected to centrifugation at 2 g (2G, 12 days), while another was kept at 1 g. In addition, a basal control in wet mats, at 1g, (BC, 1G), and an aquarium control, neutrally buoyant, (AC, low G), were also performed. Differential blood counts and histological analysis of the spleen and liver were carried out in experimental and control groups of animals. At day 21 post-surgery in all groups (AC, 1G, and 2G), the number of neutrophils in the blood was significantly lower than in BC indicating a decrease in the inflammation induced by surgery. The 2G group however, showed numbers of neutrophils significantly higher than AC (neutrally buoyant) animals. This result suggests that post-operative inflammation can persist longer at 2 g that under unloaded aquarium conditions. In contrast we did not observe any significant differences in lymphocyte numbers between any experimental and control groups. Histological examination of the liver and spleen also did not show any significant morphological alterations due to hypergravity. These results indicate that 12 day exposure to hypergravity at 2 g, had only partial influence on newt hematopoiesis, possibly extending the duration of surgery-related inflammatory responses. Data obtained with newts in our previous experiments on Foton-M2 and Foton-M3 flights in microgravity also showed only slight effect on blood cells. Furthermore microgravity also did not cause any morphological changes in the hematopoietic and lymphoid tissues, and did not impair the proliferative capacity of newt hematopoietic cells. In sum these results indicate the

  19. The nucleation mechanism of wire explosion

    NASA Astrophysics Data System (ADS)

    Tkachenko, S. I.; Vorob'ev, V. S.; Malyshenko, S. P.

    2004-02-01

    This study deals with the nucleation mechanism of electric explosion of wires allowing estimation of wire parameters at the start of the explosion for a wide range of experimental conditions. We analyse the dependence of the limit value of the energy deposited during the initial resistive phase of heating of the wire on the parameters of the wire and circuit as well as the size distribution of metal particles formed on electrical explosion of the wire. We discuss the correspondence of these results with previously published experimental data.

  20. A Novel Electrical Insulating Material for 275 kV High-Voltage HTS Cable with Low Dielectric Loss

    NASA Astrophysics Data System (ADS)

    Hayakawa, N.; Nishimachi, S.; Maruyama, O.; Ohkuma, T.; Liu, J.; Yagi, M.

    2014-05-01

    In the case of high temperature superconducting (HTS) power transmission cables at high voltage operation, the electrical insulation technique in consideration of the dielectric loss reduction becomes crucial. In this paper, we focused on a Tyvek/polyethylene (PE) sheet, instead of the conventional polypropylene laminated paper (PPLP). We obtained the dielectric characteristics (epsilonr, tanδ) and partial discharge inception strength (PDIE) of PPLP, Tyvek and Tyvek/PE. We pointed out that the dielectric loss of 275 kV HTS cable with Tyvek/PE insulation will be reduced to 21 % of that with PPLP, and the total electrical loss including the AC loss will be reduced to 41 %.

  1. Electromagnetic scattering by a straight thin wire

    NASA Technical Reports Server (NTRS)

    Shamansky, Harry T.; Dominek, Allen K.; Peters, Leon, Jr.

    1989-01-01

    The traveling-wave energy, which multiply diffracts on a straight thin wire, is represented as a sum of terms, each with a distinct physical meaning, that can be individually examined in the time domain. Expressions for each scattering mechanism on a straight thin wire are cast in the form of four basic electromagnetic wave concepts: diffraction, attachment, launch, and reflection. Using the basic mechanisms from P. Ya. Ufimtsev (1962), each of the scattering mechanisms is included into the total scattered field for the straight thin wire. Scattering as a function of angle and frequency is then compared to the moment-method solution. These analytic expressions are then extended to a lossy wire with a simple approximate modification using the propagation velocity on the wire as derived from the Sommerfeld wave on a straight lossy wire. Both the perfectly conducting and lossy wire solutions are compared to moment-method results, and excellent agreement is found. As is common with asymptotic solutions, when the electrical length of wire is smaller than 0.2 lambda the results lose accuracy. The expressions modified to approximate the scattering for the lossy thin wire yield excellent agreement even for lossy wires where the wire radius is on the order of skin depth.

  2. SpaceWire Data Handling Demonstration System

    NASA Astrophysics Data System (ADS)

    Mills, S.; Parkes, S. M.; O'Gribin, N.

    2007-08-01

    The SpaceWire standard was published in 2003 with the aim of providing a standard for onboard communications, defining the physical and data link layers of an interconnection, in order to improve reusability, reliability and to reduce the cost of mission development. The many benefits which it provides mean that it has already been used in a number of missions, both in Europe and throughout the world. Recent work by the SpaceWire community has included the development of higher level protocols for SpaceWire, such as the Remote Memory Access Protocol (RMAP) which can be used for many purposes, including the configuration of SpaceWire devices. Although SpaceWire has become very popular, the various ways in which it can be used are still being discovered, as are the most efficient ways to use it. At the same time, some in the space industry are not even aware of SpaceWire's existence. This paper describes the SpaceWire Data Handling Demonstration System that has been developed by the University of Dundee. This system simulates an onboard data handling network based on SpaceWire. It uses RMAP for all communication, and so demonstrates how SpaceWire and standardised higher level protocols can be used onboard a spacecraft. The system is not only a good advert for those who are unfamiliar with the benefits of SpaceWire, it is also a useful tool for those using SpaceWire to test ideas.

  3. NASA wiring for space applications program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman

    1995-01-01

    An overview of the NASA Wiring for Space Applications Program and its relationship to NASA's space technology enterprise is given in viewgraph format. The mission of the space technology enterprise is to pioneer, with industry, the development and use of space technology to secure national economic competitiveness, promote industrial growth, and to support space missions. The objectives of the NASA Wiring for Space Applications Program is to improve the safety, performance, and reliability of wiring systems for space applications and to develop improved wiring technologies for NASA flight programs and commercial applications. Wiring system failures in space and commercial applications have shown the need for arc track resistant wiring constructions. A matrix of tests performed versus wiring constructions is presented. Preliminary data indicate the performance of the Tensolite and Filotex hybrid constructions are the best of the various candidates.

  4. Wire Crimp Connectors Verification using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.

  5. High Tc superconductors - Composite wire fabrication

    NASA Astrophysics Data System (ADS)

    Jin, S.; Sherwood, R. C.; van Dover, R. B.; Tiefel, T. H.; Johnson, D. W., Jr.

    1987-07-01

    The fabrication of fine-wire, composite superconductors consisting of a high-conductivity normal metal shell, such as Ag or Cu/Ni/Au, and a superconducting core of Ba2YCu3O oxide is described. The functions of the normal metal shell and the importance of using the proper diffusion barrier metals are discussed. A resistivity-temperature curve for the composite wire Ag/Ba2YCu3O7 is examined, and the compound inside the finished wire is analyzed using X-ray diffraction. It is observed that the zero-field critical current density of the wire at 77 K is about 175 A/sq cm and the superconducting core is continuous and retains phase composition after wire drawing and heat treatment. The supplying of oxygen to the core of the long wire during heat treatments is studied. The data reveal that it is possible to process ceramic superconductors into a desirable composite wire form.

  6. A temperature tracking SPICE2G.6 macromodel of the 6N134 optocoupler

    SciTech Connect

    Helms, C.; Perry, G.

    1992-09-01

    The popular circuit simulator platform SPICE2G.6 was chosen for the development of an advanced macromodel for the 6N134 optocoupler. The subcircuit model presented in this paper properly simulates DC and transient characteristics over the temperature range {minus}55 to 125{degrees}C using a single parameter set and the .TEMP statement available within SPICE. The model`s limitations and predictive accuracy relative to measured data are described.

  7. A temperature tracking SPICE2G. 6 macromodel of the 6N134 optocoupler

    SciTech Connect

    Helms, C. ); Perry, G. )

    1992-01-01

    The popular circuit simulator platform SPICE2G.6 was chosen for the development of an advanced macromodel for the 6N134 optocoupler. The subcircuit model presented in this paper properly simulates DC and transient characteristics over the temperature range {minus}55 to 125{degrees}C using a single parameter set and the .TEMP statement available within SPICE. The model's limitations and predictive accuracy relative to measured data are described.

  8. Novel TCAP Mutation c.32C>A Causing Limb Girdle Muscular Dystrophy 2G

    PubMed Central

    Francis, Amirtharaj; Sunitha, Balaraju; Vinodh, Kandavalli; Polavarapu, Kiran; Katkam, Shiva Krishna; Modi, Sailesh; Bharath, M. M. Srinivas; Gayathri, Narayanappa; Nalini, Atchayaram; Thangaraj, Kumarasamy

    2014-01-01

    TCAP encoded telethonin is a 19 kDa protein, which plays an important role in anchoring titin in Z disc of the sarcomere, and is known to cause LGMD2G, a rare muscle disorder characterised by proximal and distal lower limb weakness, calf hypertrophy and loss of ambulation. A total of 300 individuals with ARLGMD were recruited for this study. Among these we identified 8 clinically well characterised LGMD2G cases from 7 unrelated Dravidian families. Clinical examination revealed predominantly proximo - distal form of weakness, scapular winging, muscle atrophy, calf hypertrophy and foot drop, immunoblot showed either complete absence or severe reduction of telethonin. Genetic analysis revealed a novel nonsense homozygous mutation c.32C>A, p.(Ser11*) in three patients of a consanguineous family and an 8 bp homozygous duplication c.26_33dupAGGTGTCG, p.(Arg12fs31*) in another patient. Both mutations possibly lead to truncated protein or nonsense mediated decay. We could not find any functionally significant TCAP mutation in the remaining 6 samples, except for two other polymorphisms, c.453A>C, p.( = ) and c.-178G>T, which were found in cases and controls. This is the first report from India to demonstrate TCAP association with LGMD2G. PMID:25055047

  9. Novel TCAP mutation c.32C>A causing limb girdle muscular dystrophy 2G.

    PubMed

    Francis, Amirtharaj; Sunitha, Balaraju; Vinodh, Kandavalli; Polavarapu, Kiran; Katkam, Shiva Krishna; Modi, Sailesh; Bharath, M M Srinivas; Gayathri, Narayanappa; Nalini, Atchayaram; Thangaraj, Kumarasamy

    2014-01-01

    TCAP encoded telethonin is a 19 kDa protein, which plays an important role in anchoring titin in Z disc of the sarcomere, and is known to cause LGMD2G, a rare muscle disorder characterised by proximal and distal lower limb weakness, calf hypertrophy and loss of ambulation. A total of 300 individuals with ARLGMD were recruited for this study. Among these we identified 8 clinically well characterised LGMD2G cases from 7 unrelated Dravidian families. Clinical examination revealed predominantly proximo-distal form of weakness, scapular winging, muscle atrophy, calf hypertrophy and foot drop, immunoblot showed either complete absence or severe reduction of telethonin. Genetic analysis revealed a novel nonsense homozygous mutation c.32C>A, p.(Ser11*) in three patients of a consanguineous family and an 8 bp homozygous duplication c.26_33dupAGGTGTCG, p.(Arg12fs31*) in another patient. Both mutations possibly lead to truncated protein or nonsense mediated decay. We could not find any functionally significant TCAP mutation in the remaining 6 samples, except for two other polymorphisms, c.453A>C, p.( = ) and c.-178G>T, which were found in cases and controls. This is the first report from India to demonstrate TCAP association with LGMD2G. PMID:25055047

  10. The architecture of the avian retina following exposure to chronic 2 G

    NASA Technical Reports Server (NTRS)

    Orlando, R. G.; Negulesco, J. A.

    1980-01-01

    Rhode Island Red female chicks at 2 weeks posthatch were subjected, for 7 d, to either earth gravity of 1 G or a 2-G hypergravity environment by chronic whole-body centrifugation. Animals were sacrificed at 3 weeks posthatch and the eyes were enucleated, fixed in 10% BNF, doubly embedded, sectioned at 7-8 microns and routinely processed with H & E for histological examination. Compared to normogravity controls, animal exposure for 1 week to the chronic effects of 2-G resulted in a significantly decreased mean width of the photoreceptor, inner nuclear, and inner plexiform retinal layers. The outer nuclear, outer plexiform, and ganglion cell layers of the retina appeared minimally affected by the hypergravity state since the mean width of these layers showed no noticeable differences from earth gravity control animals. The present anatomic findings suggest a reduction in the detection of motion or rapid changes in illumination by the avian retina when the animal is exposed at a 2-G environment.

  11. Design and fabrication of 5 GHz band pass filter using circle-type HTS bulk resonator

    NASA Astrophysics Data System (ADS)

    Saito, A.; Teshima, H.; Ono, S.; Hirano, H.; Hirano, S.; Ohshima, S.

    2007-10-01

    We designed and fabricated a transmit band pass filter (BPF) using circle-type high temperature superconductor (HTS) bulk resonators. A Dy-Ba-Cu-O bulk was fabricated using a modified quench and melt growth (QMG) process and cut into specimens of 8.40 and 8.44 mm in diameter and 0.5 mm thick for use as the HTS bulk resonators. A three-pole stripline (SL) BPF was designed based on a Chebyshev function and the frequency response and electromagnetic field of the filter were simulated using a three-dimensional electromagnetic field simulator. From the results of the simulation, the center frequency, bandwidth, insertion loss, and ripple of the designed filter were 4.97 GHz, 100 MHz, 0.03 dB, and 0.048 dB, respectively. In the experimental results on the actual fabricated filter, the filtering response was clearly observed; however, the center frequency of 5.46 GHz was higher than that of the simulation. The simulated maximum surface current in the resonators of the SL filter was approximately 86% smaller than that of a conventional hairpin filter. Furthermore, the measured response of the Dy-Ba-Cu-O bulk filter at an input power of 20 dBm was almost the same as that at 0 dBm. These results mean that an SL filter using a Dy-Ba-Cu-O bulk resonator may be practicable as a high-power transmit BPF.

  12. Development of HTS-SQUID magnetometer system with high slew rate for exploration of mineral resources

    NASA Astrophysics Data System (ADS)

    Hato, T.; Tsukamoto, A.; Adachi, S.; Oshikubo, Y.; Watanabe, H.; Ishikawa, H.; Sugisaki, M.; Arai, E.; Tanabe, K.

    2013-11-01

    For the transient electromagnetic (TEM) method using a high-temperature superconducting interference device (HTS-SQUID), we have developed a magnetometer system with a wide dynamic range, a high slew rate, and superior transportability. To achieve high tolerance to a higher excitation magnetic field, we utilized a SQUID magnetometer containing ramp-edge junctions with La0.1Er0.95Ba1.95Cu3Oy and SmBa2Cu3Oy electrode layers, which was fabricated by using an HTS multi-layer fabrication technique. To operate the magnetometer stably in a rapidly changing magnetic field, we chose the proper materials for the RF shield of liquid nitrogen (LN2) glass Dewar and cables. The white noise level and the slew rate of the system were measured to be 30 fT Hz-1/2 and 10.5 mT s-1, respectively. The resultant signal-to-noise ratio was higher than that of the previous system and improved the exploration depth, which was successfully demonstrated in field tests. The weight of the Dewar, which retains the LN2 for 17 h, is 2.5 kg. The total weight of our system including the LN2 Dewar, a probe with a flux-locked loop (FLL) circuit, a battery, a receiver, and a 30 m-long cable between the FLL and the receiver is as low as 25.6 kg.

  13. Statistical Evaluation of HTS Assays for Enzymatic Hydrolysis of β-Keto Esters

    PubMed Central

    Dold, S. -M.; Zimmermann, S.; Hamacher, K.; Schmitz, K.; Rudat, J.

    2016-01-01

    β-keto esters are used as precursors for the synthesis of β-amino acids, which are building blocks for some classes of pharmaceuticals. Here we describe the comparison of screening procedures for hydrolases to be used for the hydrolysis of β-keto esters, the first step in the preparation of β-amino acids. Two of the tested high throughput screening (HTS) assays depend on coupled enzymatic reactions which detect the alcohol released during ester hydrolysis by luminescence or absorption. The third assay detects the pH shift due to acid formation using an indicator dye. To choose the most efficient approach for screening, we assessed these assays with different statistical methods—namely, the classical Z’-factor, standardized mean difference (SSMD), the Kolmogorov-Smirnov-test, and t-statistics. This revealed that all three assays are suitable for HTS, the pH assay performing best. Based on our data we discuss the explanatory power of different statistical measures. Finally, we successfully employed the pH assay to identify a very fast hydrolase in an enzyme-substrate screening. PMID:26730596

  14. Preparation of novel HTS films and tunnel junctions for advanced C3I sensor applications

    NASA Astrophysics Data System (ADS)

    Taylor, Benjamin J.; Emery, Teresa H.; Berggren, Susan A. E.; Leese de Escobar, Anna M.; Jeon, Inho; Maple, M. B.

    2015-05-01

    Research into the development of advanced RF electronics and devices having high-Temperature Superconducting (HTS) circuitry is being carried out in the Cryogenic Exploitation of RF (CERF) laboratory at SPAWAR Systems Center (SSC) - Pacific. Recently, we have developed a novel annealing process wherein a film of YBa2Cu3Ox is produced having a gradient of oxygen composition along a given direction which we refer to as YBa2Cu3O∇x. Such samples are intended for rapid experimental investigation of the evolution of electronic properties within the compound and in combination with structurally compatible functional oxide materials as integrated sensor devices. We present here an investigation as to the extent to which local oxygen content affects the ion milling process in the formation of Josephson junctions in the HTS compound YBa2Cu3O∇x. We find an abrupt transition in the profile and depth of ion milled trenches at oxygen concentrations at and below the well ordered oxygen level, O6.72. The method described here shows good potential for use in the fabrication of large numbers of uniform Josephson junctions in films of YBa2Cu3Ox, as either a complementary processing tool for grain boundary, step edge, or ion damaged formed JJs, or as a stand alone method for producing nano-bridge JJ's.

  15. Statistical Evaluation of HTS Assays for Enzymatic Hydrolysis of β-Keto Esters.

    PubMed

    Buß, O; Jager, S; Dold, S-M; Zimmermann, S; Hamacher, K; Schmitz, K; Rudat, J

    2016-01-01

    β-keto esters are used as precursors for the synthesis of β-amino acids, which are building blocks for some classes of pharmaceuticals. Here we describe the comparison of screening procedures for hydrolases to be used for the hydrolysis of β-keto esters, the first step in the preparation of β-amino acids. Two of the tested high throughput screening (HTS) assays depend on coupled enzymatic reactions which detect the alcohol released during ester hydrolysis by luminescence or absorption. The third assay detects the pH shift due to acid formation using an indicator dye. To choose the most efficient approach for screening, we assessed these assays with different statistical methods-namely, the classical Z'-factor, standardized mean difference (SSMD), the Kolmogorov-Smirnov-test, and t-statistics. This revealed that all three assays are suitable for HTS, the pH assay performing best. Based on our data we discuss the explanatory power of different statistical measures. Finally, we successfully employed the pH assay to identify a very fast hydrolase in an enzyme-substrate screening. PMID:26730596

  16. Development of 1 MW-class HTS motor for podded ship propulsion system

    NASA Astrophysics Data System (ADS)

    Umemoto, K.; Aizawa, K.; Yokoyama, M.; Yoshikawa, K.; Kimura, Y.; Izumi, M.; Ohashi, K.; Numano, M.; Okumura, K.; Yamaguchi, M.; Gocho, Y.; Kosuge, E.

    2010-06-01

    To reduce fuel consumption and lead to a major reduction of pollution from NOx, SOx and CO2, the electric ship propulsion system is one of the most prospective substitutes for conventional ship propulsion systems. In order to spread it, innovative technologies for the improvement of the power transmission are required. The high temperature superconducting technology has the possibility for a drastic reduction of power transmission loss. Recently, electric podded propulsions have become popular for large cruise vessels, icebreakers and chemical tankers because of the flexibility of the equipment arrangement and the stern hull design, and better maneuverability in harbour, etc. In this paper, a 1 MW-class High temperature superconducting (HTS) motor with high efficiency, smaller size and simple structure, which is designed and manufactured for podded propulsion, is reported. For the case of a coastal ship driven by the optimized podded propulsion in which the 1MW HTS motor is equipped, the reductions of fluid dynamic resistance and power transmission losses are demonstrated. The present research & development has been supported by the New Energy and Industrial Technology Development Organization (NEDO).

  17. Properties and applications of HTS-shielded dielectric resonators: A state-of-the-art report

    SciTech Connect

    Klein, N.; Scholen, A.; Tellmann, N.; Zuccaro, C.; Urban, K.W.

    1996-07-01

    High temperature superconductor (HTS) shielded dielectric resonators (DRs) have demonstrated to provide quality factors Q between 5 {times} 10{sup 5} and several 10{sup 6} at frequencies up to 20 GHz and levels of dissipated rf power in the range of Watts. As dielectric materials, high purity single crystals of sapphire, LaAlO{sub 3}, and rutile exhibit sufficiently low microwave losses. There are two main areas of application which are considered to benefit from HTS-shielded DRs, namely low-phase-noise oscillators for radar systems and digital communication, and high-power filters for satellite communication. Projections for phase noise are {minus}145 dBc/Hz at 1 kHz offset from the carrier frequency, a value of {minus}110 dBc/Hz at 1 kHz was measured recently for an oscillator with a carrier frequency of 5.6 GHz. Modeling of filters based on resonators with Qs in the 10{sup 6} range indicates their ability to reduce the rf power dissipation apparent in the output multiplexers of communication satellite payloads. Presently, schemes for resonator coupling and tuning while maintaining high Qs are under development.

  18. Single and three-phase AC losses in HTS superconducting power transmission line prototype cables

    SciTech Connect

    Daney, D.E.; Boenig, H.J.; Maley, M.P.; Coulter, J.Y.; Fleshler, S.

    1997-11-01

    AC losses in two, one-meter-long lengths of HTS prototype multi-strand conductors (PMC`s) are measured with a temperature-difference calorimeter. Both single-phase and three-phase losses are examined with ac currents up to 1,000 A rms. The calorimeter, designed specifically for these measurements, has a precision of 1 mW. PMC {number_sign}1 has two helically-wound, non-insulated layers of HTS tape (19 tapes per layer), each layer wrapped with opposite pitch. PMC {number_sign}2 is identical except for insulation between the layers. The measured ac losses show no significant effect of interlayer insulation and depend on about the third power of the current--a result in agreement with the Bean-Norris model adapted to the double-helix configuration. The three-phase losses are a factor of two higher than those exhibited by a single isolated conductor, indicating a significant interaction between phases.

  19. Design and Evaluation of 275 kV-3 kA HTS Power Cable

    NASA Astrophysics Data System (ADS)

    Yagi, M.; Mukoyama, S.; Mitsuhashi, T.; Jun, T.; Liu, J.; Nakayama, R.; Hayakawa, N.; Wang, X.; Ishiyama, A.; Amemiya, N.; Hasegawa, T.; Saitoh, T.; Ohkuma, T.; Maruyama, O.

    A 275 kV 3 kA high temperature superconducting (HTS) cable has been developed in the Materials & Power Applications of Coated Conductors (M-PACC) project. The cable is expected to be put to practical use as the backbone power line in the future because the capacity of 1.5 GW is about the same as overhead transmission lines. The 30 m cable has been designed on the basis of design values that had been obtained by various voltage tests, AC loss measurement tests, short circuit tests, and other elementary tests. Cable insulation was determined by the design stresses and test conditions based on IEC, JEC (Japan electrical standards), and other HTS demonstrations. This cable was also designed to withstand the short circuit test of 63 kA for 0.6 seconds and to have low losses, including AC loss and dielectric loss of 0.8 W/m at 3kA, 275 kV. Based on the design, a 30 m cable was manufactured, and short samples during this manufacturing process were confirmed to have the designed characteristics. Furukawa Electric prepared a demonstration of the 30 m cable with two terminations and a cable joint. The long-term test under a current of 3 kA, and test voltage determined from 30 years of insulation degradation has been conducted since November 2012 at Shenyang in China.

  20. Thermal and mechanical properties of advanced impregnation materials for HTS cables and coils

    NASA Astrophysics Data System (ADS)

    Bagrets, N.; Otten, S.; Weiss, K.-P.; Kario, A.; Goldacker, W.

    2015-12-01

    In the growing field of high-temperature superconducting (HTS) applications, finding an appropriate impregnation material for cables and coils remains a challenging task. In HTS cables and coils, tapes have to be able to withstand mechanical loads during operation. Impregnation is playing a role as mechanical stabilization. However, material properties usually change significantly when going to low temperatures which can decrease performance of superconducting devices. For example, a large mismatch in thermal expansion between a conductor and impregnation material at low temperatures can lead to delamination and to degradation of the critical current. Impregnation materials can insulate tapes thermally which can lead to damage of the superconducting device in case of quench. Thus, thermal conductivity is an important property which is responsible for the temperature distribution in a superconducting cable or in a coil. Due to Lorentz forces acting on structural materials in a superconducting device, the mechanical properties of these materials should be investigated at operating temperatures of this device. Therefore, it is important to identify an advanced impregnation material meeting all specific requirements. In this paper, thermal and mechanical properties of impregnation material candidates with added fillers are presented in a temperature range from 300 K to 4 K.

  1. A Cool-down and Fault Study of a Long Length HTS Power Transmission Cable

    NASA Astrophysics Data System (ADS)

    Yuan, J.; Maguire, J.; Allais, A.; Schmidt, F.

    2006-04-01

    High temperature superconductor (HTS) power transmission cables offer significant advantages in power density over conventional copper-based cables. Currently the US Department of Energy is funding the design, development, and demonstration of the first long length, transmission level voltage, cold dielectric, underground high temperature superconductor power cable. The cable is 620 meters long and is designed for permanent installation in the Long Island Power Authority (LIPA) grid. The cable is specified to carry 574 MVA at a voltage of 138 kV and is designed to withstand a 69 kA fault current for a duration of 200ms. The superconducting state of the cable conductors is maintained by circulating sub-cooled liquid nitrogen, which flows through one phase conductor of the cable and returns through the other two. As HTS cables develop and lengths increase to what may be considered commercial, it is critical to study the cable thermal behavior during cool-down process and fault condition to avoid any possible damage to the cable core due to the thermal stress, over heating or bubble formation. This paper reviews the efforts that have been made to study the cool-down process and fault condition. Descriptions of the transient thermal and fluid model are provided. A discussion of the simulation results is also included.

  2. The Thermal Performance of a 1.5 MVA HTS Generator

    NASA Astrophysics Data System (ADS)

    Urbahn, J. A.; Ackermann, R. A.; Huang, X.; Laskaris, E. T.; Sivasubramaniam, K.; Steinbach, A.

    2004-06-01

    A 1.5-MVA high temperature superconducting ( HTS ) generator of novel design has been designed, built and successfully tested by the General Electric Company. The 1.5- MVA generator has served as the engineering prototype for a much larger 100-MVA beta unit now under design. The HTS coil in the 1.5 - MVA demonstrator is designed to operate in the range of 20-40 K and is cooled with a closed-cycle helium refrigeration system employing GM type cryocoolers. This paper will discuss the calculation of the thermal loads to the rotor from all anticipated sources. These sources include conduction losses through the coil suspension system, radiative heat loads to the cold-system components, residual gas conduction losses, helium-transfer coupling losses and lead losses. These predicted losses were compared to those measured during actual electrical testing of the rotor at 3600 RPM in order to validate the predictive calculations employed for the 100 MVA machine.

  3. HTS Flywheel from R&D to Pilot Energy Storage System

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Floegel-Delor, U.; Riedel, T.; Wippich, D.; Goebel, B.; Rothfeld, R.

    2010-06-01

    A 5 kWh / 250 kW engineering prototype Flywheel Energy Storage System (FESS) was designed and assembled in a joint project ATZ with L-3 Magnet- Motor Corp. The 0.6 t rotor is magnetically stabilized between a 1 ton magnetic HTS bearing on top and a new PM bearing. Based on the measured bearing load (max. 10000 N), Stiffness (3-4 kN/mm axial, 1.8 kN/mm radial) and rotor eigenfrequency (~ 6.5 Hz) optimum operating conditions are obtained. For industrial use the flywheel periphery is described and evaluated. A comparison and evaluation showed, both the composite rotor as well the HTS magnetic bearing are utilized more efficient in systems with larger energy storage capacity. This can provide UPS function as well as power quality (load levelling) economically and correspond to industrial requirements and demands. In a third phase starting in 2009 the parameters for larger energy storage capacity 25 - 50 kWh are calculated, investigated and the basic elements studied.

  4. How filaments can reduce AC losses in HTS coated conductors: a review

    NASA Astrophysics Data System (ADS)

    Grilli, Francesco; Kario, Anna

    2016-08-01

    Second-generation high-temperature superconductor (HTS) tapes, known also as coated conductors, are very promising tapes for HTS applications, in virtue of their extremely high critical current density, in-field behavior, and mechanical strength. Yet, the extremely large (typically in the range 1000–10 000) width-to-thickness ratio of the superconducting material makes them prone to high power dissipation in the presence of time-varying magnetic fields perpendicular to their flat face—a condition frequently met in several applications. Since the dissipation is directly proportional to the square of the superconductor's width, an obvious way of reducing it is by striating the superconductor into narrow filaments (stripes): in that case, provided that the filaments are electromagnetically uncoupled, the losses are reduced by a factor equal to the number of filaments. In the past two decades, many researchers from groups around the world have tried to apply this idea to practical conductors using different techniques. The aim of this paper is to provide a review of such efforts, focusing on the different approaches to make filamentized conductors, on the effectiveness of the AC loss reduction, and on the applicability of those techniques to long lengths.

  5. Electrical transport anisotropy of uniaxial polycrystalline samples and the effective medium approximation: An application to HTS

    NASA Astrophysics Data System (ADS)

    Cruz-García, A.; Muné, P.

    2016-08-01

    In this paper we have applied the effective medium approximation (EMA) to a polycrystalline sample made up of uniaxial crystallites with similar behavior to the high critical temperature superconductors (HTS) at the normal state (σab ≫ σc). As a result the dependence of the anisotropy parameter at the level of the sample, μ =σx /σz , on orientation probability of the grains' a-axes along a certain preferential direction, γxa is obtained. The intrinsic and shape anisotropy parameters of the crystallites constitute input data. In addition, the dependence of the orientation factor, f, which has been introduced in current models on the transport properties of HTS, is calculated as a function of γxa. These results offer a tool to interpret electrical transport measurements at normal state in granular uniaxial superconducting materials with certain texture degree, by means of the correlation between microstructure and electrical transport properties. Moreover, the comparison between the model and some experimental data suggests the presence of intragranular planar defects in the polycrystalline superconductors. They may affect the measurement of paracoherent resistivity and consequently the determination of f mainly in Bi based samples.

  6. Homogeneous Current Distribution in Multi-laminated HTS Tape Conductor for Pancake Coil of SMES

    NASA Astrophysics Data System (ADS)

    Hamajima, T.; Chiba, Y.; Atomura, N.; Takahashi, T.; Miyagi, D.; Tsuda, M.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    A multi-laminated HTS tape conductor has been recently developed to fabricate large pancake coils such as SMES. If the HTS tapes are simply laminated to form the conductor, the current distribution in the laminated tape conductor of the coil is unbalanced because of different inductances of all tapes. The pancake coil has been widely used for large magnet, because the pancake coil is tightly wound and endures large electromagnetic force. The tape transpositions at both ends of the pancake coil are effective for the coil fabrication, because it cannot damage the conductor. It is very important to analyze current distribution in the multi-laminated tape conductor used for the pancake coil. In this paper, we analyze the current distribution in the tape conductor by using circuit model, and then propose a relationship between the laminated tape number of the conductor and the pancake coil number to obtain the homogeneous current distribution. We fabricated the double pancake coil based on the relation, tested it to verify the relation and demonstrated the homogeneous current distribution in the conductor.

  7. Identification of compounds that modulate retinol signaling using a cell-based qHTS assay.

    PubMed

    Chen, Yanling; Sakamuru, Srilatha; Huang, Ruili; Reese, David H; Xia, Menghang

    2016-04-01

    In vertebrates, the retinol (vitamin A) signaling pathway (RSP) controls the biosynthesis and catabolism of all-trans retinoic acid (atRA), which regulates transcription of genes essential for embryonic development. Chemicals that interfere with the RSP to cause abnormal intracellular levels of atRA are potential developmental toxicants. To assess chemicals for the ability to interfere with retinol signaling, we have developed a cell-based RARE (Retinoic Acid Response Element) reporter gene assay to identify RSP disruptors. To validate this assay in a quantitative high-throughput screening (qHTS) platform, we screened the Library of Pharmacologically Active Compounds (LOPAC) in both agonist and antagonist modes. The screens detected known RSP agonists, demonstrating assay reliability, and also identified novel RSP agonists including kenpaullone, niclosamide, PD98059 and SU4312, and RSP antagonists including Bay 11-7085, LY294002, 3,4-Methylenedioxy-β-nitrostyrene, and topoisomerase inhibitors (camptothecin, topotecan, amsacrine hydrochloride, and idarubicin). When evaluated in the P19 pluripotent cell, these compounds were found to affect the expression of the Hoxa1 gene that is essential for embryo body patterning. These results show that the RARE assay is an effective qHTS approach for screening large compound libraries to identify chemicals that have the potential to adversely affect embryonic development through interference with retinol signaling. PMID:26820057

  8. Analysis of transient state in HTS tapes under ripple DC load current

    NASA Astrophysics Data System (ADS)

    Stepien, M.; Grzesik, B.

    2014-05-01

    The paper concerns the analysis of transient state (quench transition) in HTS tapes loaded with the current having DC component together with a ripple component. Two shapes of the ripple were taken into account: sinusoidal and triangular. Very often HTS tape connected to a power electronic current supply (i.e. superconducting coil for SMES) that delivers DC current with ripples and it needs to be examined under such conditions. Additionally, measurements of electrical (and thermal) parameters under such ripple excitation is useful to tape characterization in broad range of load currents. The results presented in the paper were obtained using test bench which contains programmable DC supply and National Instruments data acquisition system. Voltage drops and load currents were measured vs. time. Analysis of measured parameters as a function of the current was used to tape description with quench dynamics taken into account. Results of measurements were also used to comparison with the results of numerical modelling based on FEM. Presented provisional results show possibility to use results of measurements in transient state to prepare inverse models of superconductors and their detailed numerical modelling.

  9. Structural Design and Analysis of a 150 kJ HTS SMES Cryogenic System

    NASA Astrophysics Data System (ADS)

    Han, Peng; Wu, Yu; Liu, Huajun; Li, Laifeng; Yang, Huihui

    A 150 kJ high temperature superconducting magnetic energy storage (HTS-SMES) system is under manufacturing in China. This paper focuses on the structural design and analysis of the SMES cryogenic system. The cryogenic system is designed and fabricated to maintain the working temperature. The system includes a vacuum vessel, its thermal radiation shield, its supporting devices, conduction plates, and current leads. Two G-M cryocoolers are used for the system cooling, the main one is connected to the HTS coils and the other is connected to the thermal shield and the lower ends of the current leads. In this study, the 3D models of the SMES cryogenic system were created with CATIA, a 3D model design software, and the analysis of the SMES cryogenic system was done by ANSYS. The mechanical analysis results on the vacuum vessel, suspension devices and supporting devices are presented, particularly the analyses on suspenders and shelf supports are of vital importance since the finished SMES system should meet vehicle-mounted requirements in long time transport. The heat load and the temperature distribution of the thermal shield were analyzed. A cooling experiment of the cryogenic system was made and the thermal shield was cooled down to about 50 K.

  10. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    NASA Astrophysics Data System (ADS)

    Chu, S. Y.; Hwang, Y. J.; Choi, S.; Na, J. B.; Kim, Y. J.; Chang, K. S.; Bae, D. K.; Lee, C. Y.; Ko, T. K.

    2011-11-01

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN 2).

  11. Remagnetization effects due to lateral displacement above a PMG on bulk HTS magnet

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wang, J. S.; Ma, G. T.; Zheng, J.; Ren, J. F.; Li, L. L.; Yang, X. F.; Ye, C. Q.; Wang, S. Y.

    2012-12-01

    For a high-Tc superconducting (HTS) maglev system with large force requirements, the use of magnetized bulk high-Tc superconductor magnets (MBSCMs) is a good candidate because of its strong flux pinning ability and corresponding high trapped flux. Different from the rare-earth permanent magnet (PM), the trapped flux of a MBSCM is sustained by the supercurrent produced by a magnetizing process, so the trapped flux is sensitive to variations of the supercurrent. The lateral displacement of a MBSCM above a PM guideway (PMG) will provide disturbance of the applied field and then alter the supercurrent as a process of remagnetization. Different magnetization histories will bring different remagnetization characteristics and consequently diverse levitation performances for a MBSCM during the lateral displacements. When the MBSCMs are applied into the HTS maglev system, the influence of lateral displacements on levitation performance should be taken into consideration. This article investigates the remagnetization characteristics of a MBSCM when it is subject to the lateral displacements above a PMG with different trapped magnetic flux and opposite magnetization polarities. Relevant analyses about the internal supercurrent configuration based on the critical state model are also included to better understand the remagnetization characteristic of a MBSCM.

  12. Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.

    2014-01-01

    We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.

  13. Consideration of sub-cooled LN2 circulation system for HTS power machines

    NASA Astrophysics Data System (ADS)

    Yoshida, Shigeru; Hirai, Hirokazu; Nara, N.; Nagasaka, T.; Hirokawa, M.; Okamoto, H.; Hayashi, H.; Shiohara, Y.

    2012-06-01

    We consider a sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The planned circulation system consists of a sub-cool heat exchanger (subcooler) and a circulation pump. The sub-cooler will be connected to a neon turbo- Brayton cycle refrigerator with a cooling power of 2 kW at 65 K. Sub-cooled LN will be delivered into the sub-cooler by the pump and cooled within it. Sub-cooled LN is adequate fluid for cooling HTS power equipment, because its dielectric strength is high and it supports a large critical current. However, a possibility of LN solidification in the sub-cooler is a considerable issue. The refrigerator will produce cold neon gas of about 60 K, which is lower than the nitrogen freezing temperature of 63 K. Therefore, we designed two-stage heat exchangers which are based on a plate-fin type and a tube-intube type. Process simulations of those heat exchangers indicate that sub-cooled LN is not frozen in either sub-cooler. The plate-fin type sub-cooler is consequently adopted for its reliability and compactness. Furthermore, we found that a cooling system with a Brayton refrigerator has the same total cooling efficiency as a cooling system with a Stirling refrigerator.

  14. Sintered wire cesium dispenser photocathode

    DOEpatents

    Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R

    2014-03-04

    A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.

  15. Parallel wire cable static load testing

    NASA Astrophysics Data System (ADS)

    Velasco Gil, Isabella C.

    This report is the result of two evaluations for the analysis of parallel wire cables. The purpose of the first assessment was to evaluate the stiffness and strength of parallel wire cables. For the methodology, three test setups were executed utilizing single wires, seven wire parallel cables, and 100 wire parallel cables as specimens. The parallel wire cables were connected with molted zinc to their sockets. The cables were manufactured by Wilolamb Construction. The results indicate that the single, seven, and 100 wire specimens had similar performance in yield stress, yield strain, modulus, and ultimate strain. However, the amount of strain decreased as the number of wires increased. Because the mechanical properties of the multi wires specimens had not significant difference, it is suggested that the zinc sockets had insignificant impact on their performance. Comparing these results to a previous test executed for parallel wire cables, there were significant differences on the ultimate capacity. It is assumed that the fabrication method of the cables were different. The second evaluation had two purposes. First, it was intended to compare the results of the single wire test from OSU to the single wire test results from Sherry Laboratories. From the analysis, it was found that the ultimate and yield loads were similar between both laboratories procedures, but their strength capacity and ultimate strain were different. It was observed that the Sherry Lab used a different method to compute the mechanical properties of the wire and that the measurement of the elongation was different to the procedures from OSU. Second, the secondary analysis was to evaluate if there is any significant difference between wires sanded at the mid-length of the specimen and wires that were not sanded. From this analysis it was observed that there was no difference between the sanded and non-sanded wires, which indicated that cross-section reduction should not be necessary for the

  16. Pin Wire Coating Trip Report

    SciTech Connect

    Spellman, G P

    2004-03-18

    A meeting to discuss the current pin wire coating problems was held at the Reynolds plant in Los Angeles on 2MAR04. The attendance list for Reynolds personnel is attached. there was an initial presentation which gave a brief history and the current status of pin wire coating at Reynolds. There was a presentation by Lori Primus on the requirements and issues for the coating. There was a presentation by Jim Smith of LANL on the chemistry and to some extent process development done to date. There was a long session covering what steps should be taken in the short term and, to a lesser extent, the long term. The coating currently being used is a blend of two polymers, polyethersulfone and polyparabanic acid (PPA) and some TiO2 filler. This system was accepted and put into production when the pin wire coating was outsourced to another company in 1974. When that company no longer was interested, the wire coating was brought in-house to Reynolds. At that time polyparabanic acid was actually a commercial product available from Exxon under the trade name Tradlon. However, it appears that the material used at Reynolds was synthesized locally. Also, it appears that a single large batch was synthesized in that time period and used up to 1997 when the supply ran out. The reason for the inclusion of TiO2 is not known although it does act as a rheological thickener. However, a more controlled thickening can be obtained with materials such as fumed silica. This material would have less likelihood of causing point imperfections in the coatings. Also, the mixing technique being used for all stages of the process is a relatively low shear ball mill process and the author recommends a high shear process such as a three roll paint mill, at least for the final mixing. Since solvent is added to the powder at Reynolds, it may be that they need to have the paint mill there.

  17. Reduced-Wiring Tactile Sensor

    NASA Technical Reports Server (NTRS)

    Ohm, Timothy R.

    1991-01-01

    Proposed tactile sensor on robot finger puts out multiplexed analog signals transmitted to control computer on fewer wires than needed to transmit equivalent digital signals. Analog output represents data on contact area of object being gripped, on position of object, and on direction and rate of slippage if any. Consists of chains of normally open switches and resistors on surface of finger. Each resistance double preceding resistance in each chain. Constant-current sources supply power to chains.

  18. The noninvasive carbon dioxide gradient (NICO2G) during hemorrhagic shock.

    PubMed

    Belenkiy, Slava M; Berry, John S; Batchinsky, Andriy I; Kendrick, Chonna; Necsoiu, Corina; Jordan, Bryan S; Salinas, José; Cancio, Leopoldo C

    2014-07-01

    Hemorrhagic shock (HS) is a setting in which both pulmonary and cutaneous perfusion may be impaired. The goals of this study were to evaluate the relationship between end-tidal (etCO2), transcutaneous (tPCO2), arterial carbon dioxide (PaCO2) and lactate during lethal HS and to assess the effect of progressive HS on those variables and on a new variable, the noninvasive CO2 gradient ([NICO2G] or the difference between tPCO2 and etCO2). Ten consciously sedated swine were hemorrhaged, by means of a computerized exponential protocol, of up to 80% estimated blood volume for 20 min. End-tidal carbon dioxide, tPCO2, PaCO2, and lactate measurements were taken at baseline and every 5 min thereafter, that is, after 25%, 44%, and 62% total blood volume hemorrhage (TBVH) and at cardiac arrest. Cardiac arrest occurred on average at 67% TBVH. Data were analyzed by linear regression and one-way repeated-measures analysis of variance and are presented as means ± SD. Forty-nine paired measurements were made. There was no overall relationship between NICO2 variables and PaCO2: PaCO2 vs. tPCO2 (r2 = 0.002, P = 0.78); PaCO2 vs. etCO2 (r2 = 0.0002, P = 0.93). Rather, NICO2G increased at each level of blood loss: 4.0 ± 24.9 at baseline, 6.3 ± 35.7 at 25% TBVH, 25.0 ± 37.6 at 44% TBVH, 55.0 ± 33.9 at 62% TBVH, and 70.0 ± 33.2 at cardiac arrest (P < 0.05). Similarly, tPCO2 increased and etCO2 decreased at each level. Linear regression of NICO2G and lactate showed a better correlation than was observed for the other two variables: NICO2G, r2 = 0.58; tPCO2, r2 = 0.46; etCO2, r2 = 0.26. During HS, NICO2 monitors lose accuracy for approximating the PaCO2 but gain usefulness as hemodynamic monitors. Also, by combining data from two different organ systems, NICO2G demonstrated improved correlation with lactate than did either etCO2 or tPCO2 alone. PMID:24667626

  19. Method and apparatus for laying wire arrays

    DOEpatents

    Horowitz, Seymour M.; Nesbitt, Dale D.

    1986-01-01

    Wire arrays (11) having a continuous wire (12) which is formed into a predetermined pattern and adhered to a backing material or substrate (13) are fabricated by applying adhesive material (16a, 16b) along opposite edge portions (17, 18) of the substrate, positioning a row of winding spools (21) along each of the edge portions and repeatedly extending the wire between and around successive spools at the opposite edge portions. The wound wire is then traveled along each spool toward the substrate and into contact with the adhesive. The spools are then removed and a coating of hardenable material (54) is applied to secure the wound wire to the substrate. Tension in the wire is relieved prior to contact of the wire with the adhesive and a small amount of slack is introduced into the wire before the final coating step. Mechanism (32) is provided for lifting the spools away from the substrate without disturbing the wound wire. The method and apparatus enable manufacture of precisely configured wire arrays without complex or costly equipment and do not require structural alterations in the substrate for the purpose of accommodating to fabrication equipment.

  20. Analysis of Conical Wire Array Z-Pinch Stability with a Center Wire

    SciTech Connect

    Martinez, D.; Presura, R.; Wright, S.; Plechaty, C.; Neff, S.; Wanex, L.; Ampleford, D. J.

    2009-01-21

    Adding a center wire on the axis of a conical wire array produces conditions suitable for studying shear flow stabilization of the Z-pinch. The conical wire array produces and axial plasma flow while the center wire introduces a radial variation of the axial velocity. Experiments of this array configuration were preformed on the 1 MA Zebra Z-pinch generator and showed stabilization of the kink instability when a center wire was present. Comparison with equivalent cylindrical wire arrays indicates that the shear flow stabilization plays a role in the stabilization of the kink instability.

  1. Thermal energy scavenger (rotating wire modules)

    SciTech Connect

    Hochstein, P.A.; Milton, H.W.; Pringle, W.L.

    1980-11-04

    A thermal energy scavenger assembly is is described including a plurality of temperature-sensitive wires made of material which exhibits shape memory due to a thermoelastic, martensitic phase transformation. The wires are placed in tension between fixed and movable plates which are, in turn, supported by a pair of wheels which are rotatably supported by a housing for rotation about a central axis. A pair of upper and lower cams are fixed to the housing and cam followers react with the respective cams. Each cam transmits forces through a pair of hydraulic pistons. One of the pistons is connected to a movable plate to which one end of the wires are connected whereby a stress is applied to the wires to strain the wires during a first phase and whereby the cam responds to the unstraining of the wires during a second phase. A housing defines fluid compartments through which hot and cold fluid passes and flows radially through the wires whereby the wires become unstrained and shorten in length when subjected to the hot fluid for causing a reaction between the cam followers and the cams to effect rotation of the wheels about the central axis of the assembly, which rotation of the wheels is extracted through beveled gearing. The wires are grouped into a plurality of independent modules with each module having a movable plate, a fixed plate and the associated hydraulic pistons and cam follower. The hydraulic pistons and cam follower of a module are disposed at ends of the wires opposite from the ends of the wires at which the same components of the next adjacent modules are disposed so that the cam followers of alternate modules react with one of the cams and the remaining cam followers of the remaining modules react with the other cam. There is also included stress limiting means in the form of coil springs associated with alternate ends of the wires for limiting the stress or strain in the wires.

  2. Experimental Study of Counterflow Cooling Using a Test Loop to Simulate the Thermal Characteristics of a HTS Cable System

    SciTech Connect

    Demko, Jonathan A

    2012-01-01

    The counterflow cooling configuration is a compact, efficient, and relatively low cost thermal management approach for long-length HTS cable systems. In the counter-flow cooling configuration the coolant flow, typically liquid nitrogen, is initially supplied through the center of the cable turning around at the far end of the cable and returning through the annular space between the cable and the inner cryostat wall, using a single cryostat. The temperature distributions along the cable and the nitrogen flow streams are extremely difficult to measure in an operating HTS cable because of the issues associated with installing thermometers on high voltage components. A 5-meter long test loop has been built that simulates a counter-flow cooled, HTS cable using a heated metal tube to simulate the cable. The test loop contains calibrated thermometers to measure the temperature distribution along the tube and the return liquid nitrogen stream. Measured temperature distributions in the return flow stream and along the tube wall for varying flow rates and heating conditions to simulate a HTS cable are presented and discussed.

  3. Profiling Environmental Chemicals in the Antioxidant Response Element Pathway using Quantitative High Throughput Screening (qHTS)

    EPA Science Inventory

    The antioxidant response element (ARE) signaling pathway plays an important role in the amelioration of oxidative stress, which can contribute to a number of diseases, including cancer. We screened 1408 NTP-provided substances in 1536-well qHTS format at concentrations ranging fr...

  4. Development of 66 kV/6.9 kV 2 MV A prototype HTS power transformer

    NASA Astrophysics Data System (ADS)

    Bohno, T.; Tomioka, A.; Imaizumi, M.; Sanuki, Y.; Yamamoto, T.; Yasukawa, Y.; Ono, H.; Yagi, Y.; Iwadate, K.

    2005-10-01

    We have developed the technology of the producing a HTS magnet for the power transformer. Three subjects have been mainly studied, high voltage technologies, large current and low AC loss technologies and sub-cooling system technologies to establish the technology of 66 kV/6.9 kV 10 MV A class HTS power transformer. In order to verify the validity of elemental technologies, such as high voltage technologies, large current and low AC loss technologies and sub-cooling system technologies, single-phase 2 MV A class 66 kV/6.9 kV prototype HTS transformer was manufactured and tested. In the load loss (AC loss) measurement, it was obtained that the measured value of 633 W was almost corresponding to the calculated value of 576 W at the rated operation of 2 MV A. Moreover, the breakdown was not found all voltage withstand test. These test results indicate that elemental technologies were established for the development of 66 kV/6.9 kV 10 MV A class HTS power transformer.

  5. A Vibrating Wire System For Quadrupole Fiducialization

    SciTech Connect

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization step of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method

  6. Wire ablation dynamics model and its application to imploding wire arrays of different geometries.

    PubMed

    Esaulov, A A; Kantsyrev, V L; Safronova, A S; Velikovich, A L; Shrestha, I K; Williamson, K M; Osborne, G C

    2012-10-01

    The paper presents an extended description of the amplified wire ablation dynamics model (WADM), which accounts in a single simulation for the processes of wire ablation and implosion of a wire array load of arbitrary geometry and wire material composition. To investigate the role of wire ablation effects, the implosions of cylindrical and planar wire array loads at the university based generators Cobra (Cornell University) and Zebra (University of Nevada, Reno) have been analyzed. The analysis of the experimental data shows that the wire mass ablation rate can be described as a function of the current through the wire and some coefficient defined by the wire material properties. The aluminum wires were found to ablate with the highest rate, while the copper ablation is the slowest one. The lower wire ablation rate results in a higher inward velocity of the ablated plasma, a higher rate of the energy coupling with the ablated plasma, and a more significant delay of implosion for a heavy load due to the ablation effects, which manifest the most in a cylindrical array configuration and almost vanish in a single-planar array configuration. The WADM is an efficient tool suited for wire array load design and optimization in wide parameter ranges, including the loads with specific properties needed for the inertial confinement fusion research and laboratory astrophysics experiments. The data output from the WADM simulation can be used to simplify the radiation magnetohydrodynamics modeling of the wire array plasma. PMID:23214697

  7. Wire ablation dynamics model and its application to imploding wire arrays of different geometries

    NASA Astrophysics Data System (ADS)

    Esaulov, A. A.; Kantsyrev, V. L.; Safronova, A. S.; Velikovich, A. L.; Shrestha, I. K.; Williamson, K. M.; Osborne, G. C.

    2012-10-01

    The paper presents an extended description of the amplified wire ablation dynamics model (WADM), which accounts in a single simulation for the processes of wire ablation and implosion of a wire array load of arbitrary geometry and wire material composition. To investigate the role of wire ablation effects, the implosions of cylindrical and planar wire array loads at the university based generators Cobra (Cornell University) and Zebra (University of Nevada, Reno) have been analyzed. The analysis of the experimental data shows that the wire mass ablation rate can be described as a function of the current through the wire and some coefficient defined by the wire material properties. The aluminum wires were found to ablate with the highest rate, while the copper ablation is the slowest one. The lower wire ablation rate results in a higher inward velocity of the ablated plasma, a higher rate of the energy coupling with the ablated plasma, and a more significant delay of implosion for a heavy load due to the ablation effects, which manifest the most in a cylindrical array configuration and almost vanish in a single-planar array configuration. The WADM is an efficient tool suited for wire array load design and optimization in wide parameter ranges, including the loads with specific properties needed for the inertial confinement fusion research and laboratory astrophysics experiments. The data output from the WADM simulation can be used to simplify the radiation magnetohydrodynamics modeling of the wire array plasma.

  8. Tensile deformation of NiTi wires.

    PubMed

    Gall, Ken; Tyber, Jeff; Brice, Valerie; Frick, Carl P; Maier, Hans J; Morgan, Neil

    2005-12-15

    We examine the structure and properties of cold drawn Ti-50.1 at % Ni and Ti-50.9 at % Ni shape memory alloy wires. Wires with both compositions possess a strong <111> fiber texture in the wire drawing direction, a grain size on the order of micrometers, and a high dislocation density. The more Ni rich wires contain fine second phase precipitates, while the wires with lower Ni content are relatively free of precipitates. The wire stress-strain response depends strongly on composition through operant deformation mechanisms, and cannot be explained based solely on measured differences in the transformation temperatures. We provide fundamental connections between the material structure, deformation mechanisms, and resulting stress-strain responses. The results help clarify some inconsistencies and common misconceptions in the literature. Ramifications on materials selection and design for emerging biomedical applications of NiTi shape memory alloys are discussed. PMID:16138359

  9. HTS and PCT Reliability of Chips and Flex Substrates Assembled Using a Thermosonic Flip-Chip Bonding Process

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Li; Kang, Min-Yi

    2012-09-01

    This study assesses the high-temperature storage (HTS) test and the pressure-cooker test (PCT) reliability of an assembly of chips and flexible substrates. After the chips were bonded onto the flexible substrates, specimens were utilized to assess the HTS test and PCT reliability. After the PCT and HTS tests, the die-shear test was applied to examine changes in die-shear forces. The microstructure of the test specimens was analyzed to evaluate reliability and to identify possible failure mechanisms. When the duration of the HTS test was increased, the percentage of gold bumps that peeled off from the surface of the copper pads on the chip side increased, and a crack was present at the bonding interface between the gold bumps and chip bond pads. This crack was due to thermal stress generated during the HTS test, and degraded the die-shear force of the assembly of chips and flexible substrates. After the PCT, the crack was present at the interface between deposited layers of copper electrodes after the specimens were subjected to the PCT for various durations. Moisture penetrated into the deposited layers of the copper electrodes, deposited layers lost their adhesion, and the crack progressed from the corner into the central bond area as the test duration increased. To improve the PCT reliability of assemblies of chips and flexible substrates using the thermosonic flip-chip bonding process, one must prevent moisture from penetrating into deposited layers of copper electrodes and prevent crack formation at the interface between nickel and copper layers. Underfill would be an effective approach to prevent moisture from penetrating into deposited layers during the PCT, thereby improving the reliability of the samples during the PCT.

  10. Analytical approximations for thermophysical properties of supercritical nitrogen (SCN) to be used in futuristic high temperature superconducting (HTS) cables

    NASA Astrophysics Data System (ADS)

    Dondapati, Raja Sekhar; Ravula, Jeswanth; Thadela, S.; Usurumarti, Preeti Rao

    2015-12-01

    Future power transmission applications demand higher efficiency due to the limited resources of energy. In order to meet such demand, a novel method of transmission is being developed using High Temperature Superconducting (HTS) cables. However, these HTS cables need to be cooled below the critical temperature of superconductors used in constructing the cable to retain the superconductivity. With the advent of new superconductors whose critical temperatures having reached up to 134 K (Hg based), a need arises to find a suitable coolant which can accommodate the heating loads on the superconductors. The present work proposes, Supercritical Nitrogen (SCN) to be a feasible coolant to achieve the required cooling. Further, the feasibility of proposed coolant to be used in futuristic HTS cables is investigated by studying the thermophysical properties such as density, viscosity, specific heat and thermal conductivity with respect to temperature (TC + 10 K) and pressure (PC + 10 bar). In addition, few temperature dependent analytical functions are developed for thermophysical properties of SCN which are useful in predicting thermohydraulic performance (pressure drop, pumping power and cooling capacity) using numerical or computational techniques. Also, the developed analytical functions are used to calculate the pumping power and the temperature difference between inlet and outlet of HTS cable. These results are compared with those of liquid nitrogen (LN2) and found that the circulating pumping power required to pump SCN is significantly smaller than that to pump LN2. Further, it is found that the temperature difference between the inlet and outlet is smaller as compared to that when LN2 is used, SCN can be preferred to cool long length Hg based HTS cables.

  11. The HTS barcode checker pipeline, a tool for automated detection of illegally traded species from high-throughput sequencing data

    PubMed Central

    2014-01-01

    Background Mixtures of internationally traded organic substances can contain parts of species protected by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). These mixtures often raise the suspicion of border control and customs offices, which can lead to confiscation, for example in the case of Traditional Chinese medicines (TCMs). High-throughput sequencing of DNA barcoding markers obtained from such samples provides insight into species constituents of mixtures, but manual cross-referencing of results against the CITES appendices is labor intensive. Matching DNA barcodes against NCBI GenBank using BLAST may yield misleading results both as false positives, due to incorrectly annotated sequences, and false negatives, due to spurious taxonomic re-assignment. Incongruence between the taxonomies of CITES and NCBI GenBank can result in erroneous estimates of illegal trade. Results The HTS barcode checker pipeline is an application for automated processing of sets of 'next generation’ barcode sequences to determine whether these contain DNA barcodes obtained from species listed on the CITES appendices. This analytical pipeline builds upon and extends existing open-source applications for BLAST matching against the NCBI GenBank reference database and for taxonomic name reconciliation. In a single operation, reads are converted into taxonomic identifications matched with names on the CITES appendices. By inclusion of a blacklist and additional names databases, the HTS barcode checker pipeline prevents false positives and resolves taxonomic heterogeneity. Conclusions The HTS barcode checker pipeline can detect and correctly identify DNA barcodes of CITES-protected species from reads obtained from TCM samples in just a few minutes. The pipeline facilitates and improves molecular monitoring of trade in endangered species, and can aid in safeguarding these species from extinction in the wild. The HTS barcode checker pipeline is

  12. New Pinning Strategies for Second-Generation Wires

    SciTech Connect

    Solovyov, VF; Li, Q; Rupich, M; Sathyamurthy, S; Li, XP

    2013-06-01

    In the last several years, second-generation (2G) superconducting wires have been considered for applications in rotating machines operating in the 20-40 K temperature range in 1-3 T magnetic fields. Here, we outline several novel strategies for improving the low-temperature performance of second-generation wires by utilizing the in-plane strain of thick YBCO layers manufactured by the reel-to-reel metal-organic deposition (MOD) method. First, we show that he strain-induced pinning mechanism analysis, based on the Eshelby model of the elastically-strained composites, predicts that small YBCO grain size is a critical component of a strong pinning architecture. Second, we describe how the in-plane strain can be controlled by processing parameters. Systematic changes of the in-plane structure and YBCO grain size are mapped with respect to the YBCO stability line and the Cu2O-CuO line on the Bormann-Hammond diagram. It is demonstrated that the optimum critical current density is the result of a trade-off between YBCO grain coupling and the strain-induced pinning.

  13. Wire Whip Keeps Spray Nozzle Clean

    NASA Technical Reports Server (NTRS)

    Carroll, H. R.

    1982-01-01

    Air-turbine-driven wire whip is clamped near spray-gun mount. When spray gun is installed, wire whip is in position to remove foam buildup from nozzle face. Two lengths of wire 1 to 2 inches long and about 0.03 inch in thickness are used. Foam spray would be prevented from accumulating on nozzle face by increasing purge flow and cutting vortex-generating grooves inside cap and on nozzle flats.

  14. Space Shuttle Columbia Aging Wiring Failure Analysis

    NASA Technical Reports Server (NTRS)

    McDaniels, Steven J.

    2005-01-01

    A Space Shuttle Columbia main engine controller 14 AWG wire short circuited during the launch of STS-93. Post-flight examination divulged that the wire had electrically arced against the head of a nearby bolt. More extensive inspection revealed additional damage to the subject wire, and to other wires as well from the mid-body of Columbia. The shorted wire was to have been constructed from nickel-plated copper conductors surrounded by the polyimide insulation Kapton, top-coated with an aromatic polyimide resin. The wires were analyzed via scanning electron microscope (SEM), energy dispersive X-Ray spectroscopy (EDX), and electron spectroscopy for chemical analysis (ESCA); differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were performed on the polyimide. Exemplar testing under laboratory conditions was performed to replicate the mechanical damage characteristics evident on the failed wires. The exemplar testing included a step test, where, as the name implies, a person stepped on a simulated wire bundle that rested upon a bolt head. Likewise, a shear test that forced a bolt head and a torque tip against a wire was performed to attempt to damage the insulation and conductor. Additionally, a vibration test was performed to determine if a wire bundle would abrade when vibrated against the head of a bolt. Also, an abrasion test was undertaken to determine if the polyimide of the wire could be damaged by rubbing against convolex helical tubing. Finally, an impact test was performed to ascertain if the use of the tubing would protect the wire from the strike of a foreign object.

  15. Radiofrequency Wire Recanalization of Chronically Thrombosed TIPS.

    PubMed

    Majdalany, Bill S; Elliott, Eric D; Michaels, Anthony J; Hanje, A James; Saad, Wael E A

    2016-07-01

    Radiofrequency (RF) guide wires have been applied to cardiac interventions, recanalization of central venous thromboses, and to cross biliary occlusions. Herein, the use of a RF wire technique to revise chronically occluded transjugular intrahepatic portosystemic shunts (TIPS) is described. In both cases, conventional TIPS revision techniques failed to revise the chronically thrombosed TIPS. RF wire recanalization was successfully performed through each of the chronically thrombosed TIPS, demonstrating initial safety and feasibility in this application. PMID:26902703

  16. Nondestructive Evaluation of Aircraft and Spacecraft Wiring

    NASA Technical Reports Server (NTRS)

    White, John E.; Tucholski, Edward J.; Green, Robert E., Jr.

    2004-01-01

    Spacecraft, and especially aircraft, often fry well past their original design lives and, therefore, the need to develop nondestructive evaluation procedures for inspection of vital structures in these craft is extremely important. One of the more recent problems is the degradation of wiring and wiring insulation. The present paper describes several nondestructive characterization methods which afford the possibility to detect wiring and insulation degradation in-situ prior to major problems with the safety of aircraft and spacecraft.

  17. Wrapped Wire Detects Rupture Of Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Hunt, James B.

    1990-01-01

    Simple, inexpensive technique helps protect against damage caused by continuing operation of equipment after rupture or burnout of pressure vessel. Wire wrapped over area on outside of vessel where breakthrough most likely. If wall breaks or burns, so does wire. Current passing through wire ceases, triggering cutoff mechanism stopping flow in vessel to prevent further damage. Applied in other situations in which pipes or vessels fail due to overpressure, overheating, or corrosion.

  18. Wire frame to MOVIE. BYU transfer program

    SciTech Connect

    Robbins, D.; Byers, L.D.; Benner, M.S.

    1982-12-01

    At SNLA, the primary computer-aided drafting tool is the Applicon Graphics System (AGS). The data base for mechanical parts on the AGS is a wire frame model. This report summarizes a method of adding surface information to the wire frame and passing this information up stream to MOVIE.BYU which is on a VAX computer and is used to produce shaded graphics pictures of the AGS wire frame model on a RAMTEK 9400 display terminal.

  19. Development of the Axial Instability in Low Wire Number Wire Array Z-Pinches

    SciTech Connect

    Knapp, P. F.; Bell, K. S.; Blesener, I. C.; Chalenski, D. A.; Douglass, J. D.; Greenly, J. B.; Martin, M. R.; McBride, R. D.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.; Hall, G. N.

    2009-01-21

    We are investigating the development of the axial instability, a modulation of the size of the coronal plasma that develops around each wire in wire-array Z-pinches. The modulation is a result of nonuniform ablation of material from the relatively cold wire core. It has long been known that the wavelength of this modulation is constant late in time and, since it is unique to different materials, it has come to be known as the fundamental mode. In these experiments we imaged individual wires with laser shadowgraphy early in time primarily in low wire number, large wire diameter aluminum arrays for ease of viewing. We Observe the development of this modulation from the time of initiation of coronal plasma, obtaining its dominant wavelength and amplitude growth as a function of time. We also studied the instability on coiled wires, which modify the wire ablation mechanism and completely suppress the fundamental mode[Hall2008]. time is discussed.

  20. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SAFETY, INCLUDING... Testing Maintenance Standards § 234.241 Protection of insulated wire; splice in underground...