Science.gov

Sample records for 2ghz homodyne sensors

  1. Human speech articulator measurements using low power, 2GHz Homodyne sensors

    SciTech Connect

    Barnes, T; Burnett, G C; Holzrichter, J F

    1999-06-29

    Very low power, short-range microwave ''radar-like'' sensors can measure the motions and vibrations of internal human speech articulators as speech is produced. In these animate (and also in inanimate acoustic systems) microwave sensors can measure vibration information associated with excitation sources and other interfaces. These data, together with the corresponding acoustic data, enable the calculation of system transfer functions. This information appears to be useful for a surprisingly wide range of applications such as speech coding and recognition, speaker or object identification, speech and musical instrument synthesis, noise cancellation, and other applications.

  2. Pulse homodyne field disturbance sensor

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two.

  3. Pulse homodyne field disturbance sensor

    DOEpatents

    McEwan, T.E.

    1997-10-28

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two. 12 figs.

  4. Full-wave receiver architecture for the homodyne motion sensor

    DOEpatents

    Haugen, Peter C.; Dallum, Gregory E.; Welsh, Patrick A.; Romero, Carlos E.

    2015-09-29

    A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting of a RF signal received at the receiver input, thereby enhancing receiver sensitivity.

  5. Full-wave receiver architecture for the homodyne motion sensor

    DOEpatents

    Haugen, Peter C; Dallum, Gregory E; Welsh, Patrick A; Romero, Carlos E

    2013-11-19

    A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting of a RF signal received at the receiver input, thereby enhancing receiver sensitivity.

  6. Multichannel homodyne receiver

    DOEpatents

    Landt, J.A.

    1981-01-19

    A homodyne radar transmitter/receiver device which produces a single combined output which contains modulated backscatter information for all phase conditions of both modulated and unmodulated backscatter signals is described. The device utilizes taps along coaxial transmission lines, strip transmission line, and waveguides which are spaced by 1/8 wavelength or 1/6 wavelength, etc. This greatly reduces costs by eliminating separate transmission and reception antennas and an expensive arrangement of power splitters and mixers utilized in the prior art.

  7. Multichannel homodyne receiver

    DOEpatents

    Landt, Jeremy A.

    1982-01-01

    A homodyne radar transmitter/receiver device which produces a single combined output which contains modulated backscatter information for all phase conditions of both modulated and unmodulated backscatter signals. The device utilizes taps along coaxial transmission lines, strip transmission line, and waveguides which are spaced by 1/8 wavelength or 1/6 wavelength, etc. This greatly reduces costs by eliminating separate transmission and reception antennas and an expensive arrangement of power splitters and mixers utilized in the prior art.

  8. Homodyne monitoring of postselected decay

    NASA Astrophysics Data System (ADS)

    Tan, D.; Foroozani, N.; Naghiloo, M.; Kiilerich, A. H.; Mølmer, K.; Murch, K. W.

    2017-08-01

    We use homodyne detection to monitor the radiative decay of a superconducting qubit. According to the classical theory of conditional probabilities, the excited-state population differs from an exponential decay law if it is conditioned upon a later projective qubit measurement. Quantum trajectory theory accounts for the expectation values of general observables, and we use experimental data to show how a homodyne detection signal is conditioned upon both the initial state and the finally projected state of a decaying qubit. We observe, in particular, how anomalous weak values occur in continuous weak measurement for certain pre- and postselected states. Subject to homodyne detection, the density matrix evolves in a stochastic manner, but it is restricted to a specific surface in the Bloch sphere. We show that a similar restriction applies to the information associated with the postselection, and thus bounds the predictions of the theory.

  9. Dynamic light scattering homodyne probe

    NASA Technical Reports Server (NTRS)

    Meyer, William V. (Inventor); Cannell, David S. (Inventor); Smart, Anthony E. (Inventor)

    2002-01-01

    An optical probe for analyzing a sample illuminated by a laser includes an input optical fiber operably connectable to the laser where the input optical fiber has an entrance end and an exit end. The probe also includes a first beam splitter where the first beam splitter is adapted to transmit an alignment portion of a light beam from the input fiber exit end and to reflect a homodyning portion of the light beam from the input fiber. The probe also includes a lens between the input fiber exit end and the first beam splitter and a first and a second output optical fiber, each having an entrance end and an exit end, each exit end being operably connectable to respective optical detectors. The probe also includes a second beam splitter which is adapted to reflect at least a portion of the reflected homodyning portion into the output fiber entrance ends and to transmit light from the laser scattered by the sample into the entrance ends.

  10. Homodyne estimation of Gaussian quantum discord.

    PubMed

    Blandino, Rémi; Genoni, Marco G; Etesse, Jean; Barbieri, Marco; Paris, Matteo G A; Grangier, Philippe; Tualle-Brouri, Rosa

    2012-11-02

    We address the experimental estimation of Gaussian quantum discord for a two-mode squeezed thermal state, and demonstrate a measurement scheme based on a pair of homodyne detectors assisted by Bayesian analysis, which provides nearly optimal estimation for small value of discord. In addition, though homodyne detection is not optimal for Gaussian discord, the noise ratio to the ultimate quantum limit, as dictated by the quantum Cramer-Rao bound, is limited to about 10 dB.

  11. 2-GHz frequency-domain fluorometer

    NASA Astrophysics Data System (ADS)

    Lakowicz, Joseph R.; Laczko, Gabor; Gryczynski, Ignacy

    1986-10-01

    We developed a frequency-domain fluorometer which operates from 4 to 2000 MHz. The modulated excitation is provided by the harmonic content of a laser pulse train (3.76 MHz, 5 ps) from a synchronously pumped and cavity dumped dye laser. The phase angle and modulation of the emission are measured with a microchannel-plate photomultiplier (PMT). Cross-correlation detection is performed outside the PMT. The high-frequency signals for cross correlation were obtained by multiplication of the output from a 500-MHz frequency synthesizer. The performance was verified in several ways, including measurement of known time delays and examination of standard fluorophores. The detector displayed no detectable color effect, with the 300-600-nm difference being less than 5 ps. The precision of the measurements is adequate to detect differences of 20 ps for decay times of 500 ps. A correlation time of 53 ps was found for indole in water at 20 °C. The shortest correlation time we measured was 15 ps for indole in methanol/water (75/25) at 40 °C. Also, the 2-GHz data reveal the time-dependent ((t)1/2) terms found in the presence of collisional quenching. The degree of random error is about 0.3° of phase and 0.005 in modulation throughout the frequency range.

  12. Homodyne en face optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yaqoob, Zahid; Fingler, Jeff; Heng, Xin; Yang, Changhuei

    2006-06-01

    We demonstrate, for what we believe to be the first time, the use of a 3×3 fiber-optic coupler to realize a homodyne optical coherence tomography (OCT) system for en face imaging of highly scattering tissues and turbid media. The homodyne OCT setup exploits the inherent phase shifts between different output ports of a 3×3 fiber-optic coupler to extract amplitude information of a sample. Our homodyne en face OCT system features a measured resolution of 14 μm axially and 9.4 μm laterally with a 90 dB signal-to-noise ratio at 10 μs integration time. En face OCT imaging of a stage 52 Xenopus laevis was successfully demonstrated at a depth of 600 μm within the sample.

  13. Multilayer optical disc system using homodyne detection

    NASA Astrophysics Data System (ADS)

    Kurokawa, Takahiro; Ide, Tatsuro; Tanaka, Yukinobu; Watanabe, Koichi

    2014-09-01

    A write/read system using high-productivity multilayer optical discs was developed. The recording medium used in the system consists of planar recording layers and a separated guide layer, and is fabricated by web coating and lamination process. The recording layers in the medium are made of one-photon-absorption material, on which data can be recorded with a normal laser diode. The developed system is capable of focusing and tracking on the medium and amplifying readout signals by using phase-diversity homodyne detection. A highly layer-selective focusing method using homodyne detection was also proposed. This method obtains stable focus-error signals with clearly separated S-shaped curves even when layer spacing is quite narrow, causing large interlayer crosstalk. Writing on the medium and reading with the signal amplification effect of homodyne detection was demonstrated. In addition, the effectiveness of the method was experimentally evaluated.

  14. Terahertz homodyne self-mixing transmission spectroscopy

    SciTech Connect

    Mohr, Till Breuer, Stefan; Blömer, Dominik; Patel, Sanketkumar; Schlosser, Malte; Birkl, Gerhard; Elsäßer, Wolfgang; Simonetta, Marcello; Deninger, Anselm; Giuliani, Guido

    2015-02-09

    A compact homodyne self-mixing terahertz spectroscopy concept is experimentally investigated and confirmed by calculations. This method provides amplitude and phase information of the terahertz radiation emitted by a photoconductive antenna in a transmission experiment where a rotating chopper wheel serves as a feedback mirror. As a proof-of-principle experiment the frequency-dependent refractive index of Teflon is measured.

  15. Homodyning and heterodyning the quantum phase

    NASA Technical Reports Server (NTRS)

    Dariano, Giacomo M.; Macchiavello, C.; Paris, M. G. A.

    1994-01-01

    The double-homodyne and the heterodyne detection schemes for phase shifts between two synchronous modes of the electromagnetic field are analyzed in the framework of quantum estimation theory. The probability operator-valued measures (POM's) of the detectors are evaluated and compared with the ideal one in the limit of strong local reference oscillator. The present operational approach leads to a reasonable definition of phase measurement, whose sensitivity is actually related to the output r.m.s. noise of the photodetector. We emphasize that the simple-homodyne scheme does not correspond to a proper phase-shift measurements as it is just a zero-point detector. The sensitivity of all detection schemes are optimized at fixed energy with respect to the input state of radiation. It is shown that the optimal sensitivity can be actually achieved using suited squeezed states.

  16. Homodyne detection for the enhancement of antibunching

    SciTech Connect

    Vyas, R.; Wang, C.; Singh, S.

    1996-09-01

    We propose a scheme based on homodyne detection for enhancing antibunching in second-harmonic generation and multiatom optical bistability. We show that depending on the reflectivity of the beam splitter, relative field strengths, and relative phase it is possible to achieve perfect antibunching in the superposed field. We also discuss other nonclassical effects exhibited by the superposed field and present curves to illustrate the behavior. {copyright} {ital 1996 The American Physical Society.}

  17. Homodyne impulse radar hidden object locator

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules.

  18. Homodyne impulse radar hidden object locator

    DOEpatents

    McEwan, T.E.

    1996-04-30

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules. 15 figs.

  19. Detection of interference phase by digital computation of quadrature signals in homodyne laser interferometry.

    PubMed

    Rerucha, Simon; Buchta, Zdenek; Sarbort, Martin; Lazar, Josef; Cip, Ondrej

    2012-10-19

    We have proposed an approach to the interference phase extraction in the homodyne laser interferometry. The method employs a series of computational steps to reconstruct the signals for quadrature detection from an interference signal from a non-polarising interferometer sampled by a simple photodetector. The complexity trade-off is the use of laser beam with frequency modulation capability. It is analytically derived and its validity and performance is experimentally verified. The method has proven to be a feasible alternative for the traditional homodyne detection since it performs with comparable accuracy, especially where the optical setup complexity is principal issue and the modulation of laser beam is not a heavy burden (e.g., in multi-axis sensor or laser diode based systems).

  20. Atom-Based Sensing of Weak Radio Frequency Electric Fields Using Homodyne Readout.

    PubMed

    Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Sheng, Jiteng; Shaffer, James P

    2017-02-20

    We utilize a homodyne detection technique to achieve a new sensitivity limit for atom-based, absolute radio-frequency electric field sensing of 5 μV cm(-1) Hz(-1/2). A Mach-Zehnder interferometer is used for the homodyne detection. With the increased sensitivity, we investigate the dominant dephasing mechanisms that affect the performance of the sensor. In particular, we present data on power broadening, collisional broadening and transit time broadening. Our results are compared to density matrix calculations. We show that photon shot noise in the signal readout is currently a limiting factor. We suggest that new approaches with superior readout with respect to photon shot noise are needed to increase the sensitivity further.

  1. Atom-Based Sensing of Weak Radio Frequency Electric Fields Using Homodyne Readout

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Sheng, Jiteng; Shaffer, James P.

    2017-02-01

    We utilize a homodyne detection technique to achieve a new sensitivity limit for atom-based, absolute radio-frequency electric field sensing of 5 μV cm‑1 Hz‑1/2. A Mach-Zehnder interferometer is used for the homodyne detection. With the increased sensitivity, we investigate the dominant dephasing mechanisms that affect the performance of the sensor. In particular, we present data on power broadening, collisional broadening and transit time broadening. Our results are compared to density matrix calculations. We show that photon shot noise in the signal readout is currently a limiting factor. We suggest that new approaches with superior readout with respect to photon shot noise are needed to increase the sensitivity further.

  2. Atom-Based Sensing of Weak Radio Frequency Electric Fields Using Homodyne Readout

    PubMed Central

    Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Sheng, Jiteng; Shaffer, James P.

    2017-01-01

    We utilize a homodyne detection technique to achieve a new sensitivity limit for atom-based, absolute radio-frequency electric field sensing of 5 μV cm−1 Hz−1/2. A Mach-Zehnder interferometer is used for the homodyne detection. With the increased sensitivity, we investigate the dominant dephasing mechanisms that affect the performance of the sensor. In particular, we present data on power broadening, collisional broadening and transit time broadening. Our results are compared to density matrix calculations. We show that photon shot noise in the signal readout is currently a limiting factor. We suggest that new approaches with superior readout with respect to photon shot noise are needed to increase the sensitivity further. PMID:28218308

  3. Optical homodyne tomography with polynomial series expansion

    SciTech Connect

    Benichi, Hugo; Furusawa, Akira

    2011-09-15

    We present and demonstrate a method for optical homodyne tomography based on the inverse Radon transform. Different from the usual filtered back-projection algorithm, this method uses an appropriate polynomial series to expand the Wigner function and the marginal distribution, and discretize Fourier space. We show that this technique solves most technical difficulties encountered with kernel deconvolution-based methods and reconstructs overall better and smoother Wigner functions. We also give estimators of the reconstruction errors for both methods and show improvement in noise handling properties and resilience to statistical errors.

  4. Conditional homodyne detection of light with squeezed quadrature fluctuations

    SciTech Connect

    Vines, Justin; Vyas, Reeta; Singh, Surendra

    2006-08-15

    We discuss the detection of field quadrature fluctuations in conditional homodyne detection experiments and possible sources of error in such an experiment. We also present modifications to these experiments to help eliminate such errors and extend their range of applicability.

  5. DC-offset-free homodyne interferometer and its nonlinearity compensation.

    PubMed

    Hu, Pengcheng; Zhu, Jinghao; Zhai, Xiaoyu; Tan, JiuBin

    2015-04-06

    This study presents an analysis of the cyclic nonlinearity in the homodyne interferometer starting from the interference principle. We present the design for an enhanced homodyne interferometer without DC offset, for which the nonlinearity model will not be influenced by the intensity of the measurement beam. Our experimental results show that the enhanced interferometer can suppress the nonlinearity to less than 0.5 nm with a system calibration involving gain adjustment and phase-correction methods.

  6. Generating optimal states for a homodyne Bell test

    SciTech Connect

    Daffer, Sonja; Knight, Peter L.

    2005-09-15

    We present a scheme that produces a conditionally prepared state that can be used for a Bell test based on homodyne detection. The state is near optimal for Bell-inequality violations based on quadrature-phase homodyne measurements that use correlated photon-number states. The scheme utilizes a Gaussian entanglement distillation protocol and uses only beam splitters and photodetection to conditionally prepare a non-Gaussian state from a source of two-mode squeezed states with low squeezing parameter.

  7. Balanced homodyne readout for quantum limited gravitational wave detectors.

    PubMed

    Fritschel, Peter; Evans, Matthew; Frolov, Valery

    2014-02-24

    Balanced homodyne detection is typically used to measure quantum-noise-limited optical beams, including squeezed states of light, at audio-band frequencies. Current designs of advanced gravitational wave interferometers use some type of homodyne readout for signal detection, in part because of its compatibility with the use of squeezed light. The readout scheme used in Advanced LIGO, called DC readout, is however not a balanced detection scheme. Instead, the local oscillator field, generated from a dark fringe offset, co-propagates with the signal field at the anti-symmetric output of the beam splitter. This article examines the alternative of a true balanced homodyne detection for the readout of gravitational wave detectors such as Advanced LIGO. Several practical advantages of the balanced detection scheme are described.

  8. Spheroid imaging of phase-diversity homodyne OCT

    NASA Astrophysics Data System (ADS)

    Senda, Naoko; Osawa, Kentaro

    2017-02-01

    Non-invasive 3D imaging technique is essential for regenerative tissues evaluation. Optical coherence tomography (OCT) is one of 3D imaging tools with no staining and is used extensively for fundus examination. We have developed Phase-Diversity Homodyne OCT which enables cell imaging because of high resolution, whereas conventional OCT was not used for cell imaging because of low resolution. We demonstrated non-invasive imaging inside living spheroids with Phase-Diversity Homodyne OCT. Spheroids are spheroidal cell aggregates and used as regenerative tissues. Cartilage cells were cultured in low-adhesion 96-well plates and spheroids were manufactured. Cell membrane and cytoplasm of spheroid were imaged with OCT.

  9. Optical homodyne tomography of information carrying laser beams

    NASA Astrophysics Data System (ADS)

    Wu, Jinwei; Lam, Ping Koy; Gray, Malcolm; Bachor, Hans Albert

    1998-08-01

    Optical homodyne tomography (OHT) is a tool that allows the reconstruction of Wigner functions for each detection frequency of a propagating optical beam. It can measure probability distribution functions (PDF's) of the field amplitude for any given quadrature of interest. We demonstrate OHT for a range of classical optical states with constant and time varying modulations and show the advantage of OHT over conventional homodyne detection. The OHT simultaneously determines the signal to noise ratio in both amplitude and phase quadratures. We show that highly non-Gaussian Wigner functions can be obtained from incoherent superpositions of optical states.

  10. Vacuum fluctuations and the conditional homodyne detection of squeezed light

    NASA Astrophysics Data System (ADS)

    Carmichael, H. J.; Nha, Hyunchul

    2004-08-01

    Conditional homodyne detection of quadrature squeezing is compared with standard nonconditional detection. Whereas the latter identifies nonclassicality in a quantitative way, as a reduction of the noise power below the shot noise level, conditional detection makes a qualitative distinction between vacuum state squeezing and squeezed classical noise. Implications of this comparison for the realistic interpretation of vacuum fluctuations (stochastic electrodynamics) are discussed.

  11. Homodyne detection with on-off detector systems

    NASA Astrophysics Data System (ADS)

    Lipfert, T.; Sperling, J.; Vogel, W.

    2015-11-01

    Phase-sensitive properties of light play a crucial role in a variety of quantum optical phenomena, which have been mostly discussed in the framework of photoelectric detection theory. However, modern detection schemes, such as arrays of on-off detectors, are not based on photoelectric counting. We demonstrate that the theory of homodyning with such click-counting detectors can be established by using a proper detection model. For practical applications, a variety of typically occurring imperfections are rigorously analyzed and directly observable nonclassicality criteria are studied. Fundamental examples demonstrate the general functionality of our technique. Thus, our approach of homodyne detection with on-off detector systems is able to bridge the gap between imperfect detection and the phase resolution demands for modern applications of quantum light.

  12. Homodyne digital interferometry for a sensitive fiber frequency reference.

    PubMed

    Ngo, Silvie; McRae, Terry G; Gray, Malcolm B; Shaddock, Daniel A

    2014-07-28

    Digitally enhanced homodyne interferometry enables robust interferometric sensitivity to be achieved in an optically simple configuration by shifting optical complexity into the digital signal processing regime. We use digitally enhanced homodyne interferometry in a simple, all-fiber Michelson interferometer to achieve a frequency reference stability of better than 20 Hz/√Hz from 10 mHz to 1 Hz, satisfying, for the first time in an all fiber system, the stability requirements for the Gravity Recovery and Climate Experiment Follow On mission. In addition, we have demonstrated stability that satisfies the future mission objectives at frequencies down to 1 mHz. This frequency domain stability translates into a fractional Allan deviation of 3.3 × 10(-17) for an integration time of 55 seconds.

  13. Noise characteristics of heterodyne/homodyne frequency-domain measurements

    PubMed Central

    Kupinski, Matthew A.

    2012-01-01

    Abstract. We theoretically develop and experimentally validate the noise characteristics of heterodyne and/or homodyne measurements that are widely used in frequency-domain diffusive imaging. The mean and covariance of the modulated heterodyne output are derived by adapting the random amplification of a temporal point process. A multinomial selection rule is applied to the result of the temporal noise analysis to additionally model the spatial distribution of intensified photons measured by a charge-coupled device (CCD), which shows that the photon detection efficiency of CCD pixels plays an important role in the noise property of detected photons. The approach of using a multinomial probability law is validated from experimental results. Also, experimentally measured characteristics of means and variances of homodyne outputs are in agreement with the developed theory. The developed noise model can be applied to all photon amplification processes. PMID:22352646

  14. Quantum homodyne tomography of a two-photon Fock state.

    PubMed

    Ourjoumtsev, Alexei; Tualle-Brouri, Rosa; Grangier, Philippe

    2006-06-02

    We present a continuous-variable experimental analysis of a two-photon Fock state of free-propagating light. This state is obtained from a pulsed nondegenerate parametric amplifier, which produces two intensity-correlated twin beams. Counting two photons in one beam projects the other beam in the desired two-photon Fock state, which is analyzed by using a pulsed homodyne detection. The Wigner function of the measured state is clearly negative. We developed a detailed analytic model which allows a fast and efficient analysis of the experimental results.

  15. Analyzing the total structural intensity in beams using a homodyne laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Freschi, Agnaldo A.; Pereira, Allan K.; Ahmida, Khaled M.; Frejlich, Jaime; Arruda, Jose R. d. F.

    1998-06-01

    The total structural intensity in beams can be considered as composed of three kinds of waves: bending, longitudinal, and torsional. In passive and active control applications, it is useful to separate each of these components in order to evaluate its contribution to the total structural intensity flowing through the beam. In this paper, a z-shaped beam is used in order to allow the three kinds of waves to propagate. The contributions of the structural intensity due to the three kinds of waves are computed from measurements made over the surface of the beam with a simple homodyne interferometric laser vibrometer. The optical sensor incorporates some additional polarizing optics to a Michelson type interferometer to generate two optical signals in quadrature, which are processed to display velocities and/or displacements. This optical processing scheme is used to remove the directional ambiguity from the velocity measurement and allows to detect nearly all backscattered light collected from the object. This paper investigates the performance of the laser vibrometer in the estimation of the different wave components. The results are validated by comparing the total structural intensity computed from the laser measurements with the measured input power. Results computed from measurements using PVDF sensors are also shown, and compared with the non-intrusive laser measurements.

  16. Phase stabilized homodyne of infrared scattering type scanning near-field optical microscopy

    SciTech Connect

    Xu, Xiaoji G.; Gilburd, Leonid; Walker, Gilbert C.

    2014-12-29

    Scattering type scanning near-field optical microscopy (s-SNOM) allows sub diffraction limited spatial resolution. Interferometric homodyne detection in s-SNOM can amplify the signal and extract vibrational responses based on sample absorption. A stable reference phase is required for a high quality homodyne-detected near-field signal. This work presents the development of a phase stabilization mechanism for s-SNOM to provide stable homodyne conditions. The phase stability is found to be better than 0.05 rad for the mid infrared light source. Phase stabilization results in improved near field images and vibrational spectroscopies. Spatial inhomogeneities of the boron nitride nanotubes are measured and compared.

  17. Negative Wigner function at telecommunication wavelength from homodyne detection

    NASA Astrophysics Data System (ADS)

    Baune, Christoph; Fiurášek, Jaromír; Schnabel, Roman

    2017-06-01

    Quantum states of light having a Wigner function with negative values represent a key resource in quantum communication and quantum information processing. Here we present the generation of such a state at the telecommunication wavelength of 1550 nm. The state is generated by means of photon subtraction from a weakly squeezed vacuum state and is heralded by the "click" of a single photon counter. Balanced homodyne detection is applied to reconstruct the Wigner function, also yielding the state's photon-number distribution. The heralding photons are frequency up-converted to 532 nm to allow for the use of a room-temperature (silicon) avalanche photodiode. The Wigner function reads W (0 ,0 )=-0.063 ±0.004 at the origin of phase space, which certifies negativity with more than 15 standard deviations.

  18. Versatile wideband balanced detector for quantum optical homodyne tomography

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Barrios, E.; MacRae, A.; Cairns, E.; Huntington, E. H.; Lvovsky, A. I.

    2012-11-01

    We present a comprehensive theory and an easy to follow method for the design and construction of a wideband homodyne detector for time-domain quantum measurements. We show how one can evaluate the performance of a detector in a specific time-domain experiment based on the electronic spectral characteristic of that detector. We then present and characterize a high-performance detector constructed using inexpensive, commercially available components such as low-noise high-speed operational amplifiers and high-bandwidth photodiodes. Our detector shows linear behavior up to a level of over 13 dB clearance between shot noise and electronic noise, in the range from DC to 100 MHz. The detector can be used for measuring quantum optical field quadratures both in the continuous-wave and pulsed regimes with standard commercial mode-locked lasers.

  19. On-Chip Architecture for Self-Homodyned Nonclassical Light

    NASA Astrophysics Data System (ADS)

    Fischer, Kevin A.; Kelaita, Yousif A.; Sapra, Neil V.; Dory, Constantin; Lagoudakis, Konstantinos G.; Müller, Kai; Vučković, Jelena

    2017-04-01

    In the last decade, there has been remarkable progress on the practical integration of on-chip quantum photonic devices, yet quantum-state generators remain an outstanding challenge. Simultaneously, the quantum-dot photonic-crystal-resonator platform has demonstrated a versatility for creating nonclassical light with tunable quantum statistics thanks to a newly discovered self-homodyning interferometric effect that preferentially selects the quantum light over the classical light when using an optimally tuned Fano resonance. In this work, we propose a general structure for the cavity quantum electrodynamical generation of quantum states from a waveguide-integrated version of the quantum-dot photonic-crystal-resonator platform, which is specifically tailored for preferential quantum-state transmission. We support our results with rigorous finite-difference time-domain and quantum-optical simulations and show how our proposed device can serve as a robust generator of highly pure single- and even multiphoton states.

  20. Quantum hacking on quantum key distribution using homodyne detection

    NASA Astrophysics Data System (ADS)

    Huang, Jing-Zheng; Kunz-Jacques, Sébastien; Jouguet, Paul; Weedbrook, Christian; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu

    2014-03-01

    Imperfect devices in commercial quantum key distribution systems open security loopholes that an eavesdropper may exploit. An example of one such imperfection is the wavelength-dependent coupling ratio of the fiber beam splitter. Utilizing this loophole, the eavesdropper can vary the transmittances of the fiber beam splitter at the receiver's side by inserting lights with wavelengths different from what is normally used. Here, we propose a wavelength attack on a practical continuous-variable quantum key distribution system using homodyne detection. By inserting light pulses at different wavelengths, this attack allows the eavesdropper to bias the shot-noise estimation even if it is done in real time. Based on experimental data, we discuss the feasibility of this attack and suggest a prevention scheme by improving the previously proposed countermeasures.

  1. Homodyne BPSK-based optical inter-satellite communication links

    NASA Astrophysics Data System (ADS)

    Lange, Robert; Smutny, Berry

    2007-02-01

    Summer 2007, Tesat will verify laser communication terminals based on homodyne BPSK (binary phase shift keying) in-orbit. A 5.625 Gbps LEO-LEO laser communication link, established between the German satellite TerraSAR-X and the US satellite NFIRE, shall demonstrate the performance and advantages of laser communication. End of 2006, a further program has been kicked-off to demonstrate the performance of ~2 Gbps LEO-GEO laser communication links. The link is part of a data relais from the German LEO satellite TanDEM-X via a Geo satellite to ground. The LEO-to-GEO laser commmunication link can be extended to further ~2 Gpbs GEO-GEO, and GEO-to-ground links.

  2. Efficiency analysis of homodyne detection for a coherent lidar with adaptive optics

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wang, Liang; Yao, Kainan; Cao, Jingtai; Huang, Danian; Gu, Haijun

    2016-12-01

    For a coherent lidar, the efficiency of homodyne detection is a significant factor. Adaptive optics (AO) is an effective way to correct the turbulence-induced wavefront distortions. Based on our previous works, an expression for the homodyne detection efficiency is given. The results of the numerical simulation show that the atmospheric coherent length has an influence on the homodyne detection efficiency for a fixed atmospheric Greenwood frequency and a closed-loop control bandwidth. In addition, an experimental AO system is employed to verify the effect of the AO on the coherent lidar. The results show that the homodyne detection efficiency is obviously improved after aberrations are corrected. The conclusion of this paper provides a reference for designing an AO system for a coherent lidar.

  3. 1.2-GHz gated single-photon detector with simple filtering

    NASA Astrophysics Data System (ADS)

    Liu, Junliang; Zhang, Chunfang; Li, Yongfu; Wang, Zuqiang

    2014-10-01

    A 1.2-GHz gated infrared single-photon detector based on InGaAs/InP avalanche photodiode (APD) is designed. The APD is working in Geiger mode, gated by 1.2-GHz pseudo-sine wave signal, cooled by a 4-stage Peltier cooler with fancooling. A group of simple 9th order Bessel LC low-pass filters are used to suppress the transient response of the APD by 60 dB. The typical detection efficiency, dark-count probability and afterpulse probability of the detector were 15.1%, 3.76×10-6 /gate and 1.26%, respectively. The detector is based on commercially available inexpensive devices and can be manufactured easily.

  4. Design of a Low Voltage CMOS LNA at 2 GHz with Substrate-Bias

    NASA Astrophysics Data System (ADS)

    Wan Muhamad Hatta, S. F.; Soin, N.

    2008-11-01

    A low-voltage (1.5V), 2 GHz cascode CMOS low noise amplifier (LNA) has been designed and simulated using Silvaco's SMARTSPICE RF. The proposed design employs substrate bias of 0.5V and utilizes inductive source degeneration. This paper further presents an analysis on the effect of substrate bias on the MOSFET's threshold voltage as well as the transconductance. The simulated power gain (S21) is of 5.2 dB and a noise figure (NF) of 2.2975 dB is achieved at the operating frequency of 2 GHz. The Input Referred 1dB Compression Point (P1dB) and the third-order intercept point (IP3) are -12.891 dB and -1.6844 dB respectively.

  5. Open area 2 × 2 MIMO channel model for 2 GHz low-elevation links with diversity and capacity applications

    NASA Astrophysics Data System (ADS)

    Zelený, J.; Pérez-Fontán, F.; Pechac, P.; Mariño-Espiñeira, P.

    2017-05-01

    In civil surveillance applications, unmanned aerial vehicles (UAV) are being increasingly used in floods, fires, and law enforcement scenarios. In order to transfer large amounts of information from UAV-mounted cameras, relays, or sensors, large bandwidths are needed in comparison to those required for remotely commanding the UAV. This demands the use of higher-frequency bands, in all probability in the vicinity of 2 or 5 GHz. Novel hardware developments need propagation channel models for the ample range of operational scenarios envisaged, including multiple-input, multiple-output (MIMO) deployments. These configurations may enable a more robust transmission by increasing either the carrier-to-noise ratio statistics or the achievable capacity. In this paper, a 2 × 2 MIMO propagation channel model for an open-field environment capable of synthesizing a narrowband time series at 2 GHz is described. Maximal ratio combining diversity and capacity improvements are also evaluated through synthetic series and compared with measurement results. A simple flat, open scenario was evaluated based on which other, more complex environments can be modeled.

  6. 12.2-GHz methanol maser MMB follow-up catalogue - IV. Longitude range 20°-60°

    NASA Astrophysics Data System (ADS)

    Breen, S. L.; Ellingsen, S. P.; Caswell, J. L.; Green, J. A.; Voronkov, M. A.; Avison, A.; Fuller, G. A.; Quinn, L. J.

    2016-07-01

    This is the fourth and final instalment of a series of catalogues presenting 12.2-GHz methanol maser observations made towards each of the 6.7-GHz methanol masers detected in the Methanol Multibeam (MMB) survey. This final portion of the survey covers the 20°-60° longitude range, increasing the 12.2-GHz follow-up range to the full MMB coverage of 186° ≥ l ≤ 60° and |b| ≤ 2°. Towards a total of 260 6.7-GHz MMB methanol masers (we were unable to observe five of the MMB sources in this longitude range) we detect 116 12.2-GHz masers counterparts, 64 of which were discovered in this survey. Including data from the literature, we find that there are 12.2-GHz methanol masers towards 47.1 per cent of the 6.7-GHz methanol masers in this portion of the Galaxy. Across the entire MMB survey range, we find a detection rate of 45.3 per cent. We find that the detection rate of 12.2-GHz methanol masers as a function of Galactic longitude is not uniform and there is an excess of masers with broad velocity ranges at longitudes near 30° and 330°. Comparing the occurrence of 12.2-GHz methanol masers with MMB-targeted CO observations has shown that those outflows associated with a 12.2-GHz source have a larger average dynamical time-scale than those associated with only 6.7-GHz methanol masers, supporting the notion that the 12.2-GHz masers are associated with a later phase of high-mass star formation.

  7. Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector

    SciTech Connect

    Wittmann, Christoffer; Sych, Denis; Leuchs, Gerd; Takeoka, Masahiro

    2010-06-15

    We investigate quantum measurement strategies capable of discriminating two coherent states probabilistically with significantly smaller error probabilities than can be obtained using nonprobabilistic state discrimination. We apply a postselection strategy to the measurement data of a homodyne detector as well as a photon number resolving detector in order to lower the error probability. We compare the two different receivers with an optimal intermediate measurement scheme where the error rate is minimized for a fixed rate of inconclusive results. The photon number resolving (PNR) receiver is experimentally demonstrated and compared to an experimental realization of a homodyne receiver with postselection. In the comparison, it becomes clear that the performance of the PNR receiver surpasses the performance of the homodyne receiver, which we prove to be optimal within any Gaussian operations and conditional dynamics.

  8. Proposal for a loophole-free Bell test using homodyne detection.

    PubMed

    García-Patrón, R; Fiurásek, J; Cerf, N J; Wenger, J; Tualle-Brouri, R; Grangier, Ph

    2004-09-24

    We propose a feasible optical setup allowing for a loophole-free Bell test with efficient homodyne detection. A non-Gaussian entangled state is generated from a two-mode squeezed vacuum by subtracting a single photon from each mode, using beam splitters and standard low-efficiency single-photon detectors. A Bell violation exceeding 1% is achievable with 6 dB squeezed light and a homodyne efficiency around 95%. A detailed feasibility analysis, based upon the recent experimental generation of single-mode non-Gaussian states, suggests that this method opens a promising avenue towards a complete experimental Bell test.

  9. Single-Bit All-Digital Frequency Synthesis Using Homodyne Sigma-Delta Modulation.

    PubMed

    Sotiriadis, Paul P

    2017-02-01

    All-digital frequency synthesis using bandpass sigma-delta modulation to achieve spectrally clean single-bit output is presented and mathematically analyzed resulting in a complete model to predict the stability and output spectrum. The quadrature homodyne filter architecture is introduced resulting in efficient implementations of carrier-frequency-centered bandpass filters for the modulator. A multiplierless version of the quadrature homodyne filter architecture is also introduced to reduce complexity while maintaining a clean in-band spectrum. MATLAB and SIMULINK simulation results present the potential capabilities of the synthesizer architectures and validate the accuracy of the developed theoretical framework.

  10. M-ary-state phase-shift-keying discrimination below the homodyne limit

    SciTech Connect

    Becerra, F. E.; Fan, J.; Polyakov, S. V.; Migdall, A.; Baumgartner, G.; Goldhar, J.; Kosloski, J. T.

    2011-12-15

    We investigate a strategy for M-ary discrimination of nonorthogonal phase states with error rates below the homodyne limit. This strategy uses feed forward to update a reference field and signal nulling for the state discrimination. We experimentally analyze the receiver performance using postprocessing and a Bayesian strategy to emulate the feed-forward process. This analysis shows that for a moderate system detection efficiency, it is possible to surpass the homodyne error limit for quadrature phase-shift keying signals using feed forward.

  11. Homodyne versus photon-counting quantum trajectories for dissipative Kerr resonators with two-photon driving

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Minganti, Fabrizio; Lolli, Jared; Ciuti, Cristiano

    2017-07-01

    We investigate two different kinds of quantum trajectories for a nonlinear photon resonator subject to two-photon pumping, a configuration recently studied for the generation of photonic Schrödinger cat states. In the absence of feedback control and in the strong-driving limit, the steady-state density matrix is a statistical mixture of two states with equal weight. While along a single photon-counting trajectory the systems intermittently switches between an odd and an even cat state, we show that upon homodyne detection the situation is different. Indeed, homodyne quantum trajectories reveal switches between coherent states of opposite phase.

  12. TEM10 homodyne detection as an optimal small-displacement and tilt-measurement scheme

    NASA Astrophysics Data System (ADS)

    Delaubert, V.; Treps, N.; Lassen, M.; Harb, C. C.; Fabre, C.; Lam, P. K.; Bachor, H.-A.

    2006-11-01

    We present a detailed description of small displacement and tilt measurements of a Gaussian beam using split detectors and TEM10 homodyne detectors. Theoretical analysis and an experimental demonstration of measurements of these two conjugate variables are given. A comparison between the experimental efficiency of each scheme proves that the standard split detection is only 64% efficient relative to the TEM10 homodyne detection, which is optimal for beam displacement and tilt. We also demonstrate experimentally that squeezed light in the appropriate spatial modes allows measurements beyond the quantum noise limit for both types of detectors. Finally, we explain how to choose the detection scheme best adapted to a given application.

  13. Homodyne Detection Using Photorefractive Materials as Beam Splitters.

    NASA Astrophysics Data System (ADS)

    Boutsikaris, Leonidas

    longer vary exponentially with distance through the material. Furthermore, it is found that the relative size (Gaussian beam waists) of the two beams incident on the photorefractive crystal may affect the shape of the output beams, depending on the amount of energy coupling. The main implication of this research is the possible use of two wave mixing in photorefractive materials for homodyne detection of amplitude or phase modulated optical signals.

  14. A Study of Dielectric Properties of Proteinuria between 0.2 GHz and 50 GHz

    PubMed Central

    Mun, Peck Shen; Ting, Hua Nong; Ong, Teng Aik; Wong, Chew Ming; Ng, Kwan Hong; Chong, Yip Boon

    2015-01-01

    This paper investigates the dielectric properties of urine in normal subjects and subjects with chronic kidney disease (CKD) at microwave frequency of between 0.2 GHz and 50 GHz. The measurements were conducted using an open-ended coaxial probe at room temperature (25°C), at 30°C and at human body temperature (37°C). There were statistically significant differences in the dielectric properties of the CKD subjects compared to those of the normal subjects. Statistically significant differences in dielectric properties were observed across the temperatures for normal subjects and CKD subjects. Pearson correlation test showed the significant correlation between proteinuria and dielectric properties. The experimental data closely matched the single-pole Debye model. The relaxation dispersion and relaxation time increased with the proteinuria level, while decreasing with the temperature. As for static conductivity, it increased with proteinuria level and temperature. PMID:26066351

  15. 2 GHz clock quantum key distribution over 260 km of standard telecom fiber.

    PubMed

    Wang, Shuang; Chen, Wei; Guo, Jun-Fu; Yin, Zhen-Qiang; Li, Hong-Wei; Zhou, Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2012-03-15

    We report a demonstration of quantum key distribution (QKD) over a standard telecom fiber exceeding 50 dB in loss and 250 km in length. The differential phase shift QKD protocol was chosen and implemented with a 2 GHz system clock rate. By careful optimization of the 1 bit delayed Faraday-Michelson interferometer and the use of the superconducting single photon detector (SSPD), we achieved a quantum bit error rate below 2% when the fiber length was no more than 205 km, and of 3.45% for a 260 km fiber with 52.9 dB loss. We also improved the quantum efficiency of SSPD to obtain a high key rate for 50 km length.

  16. Working-point control technique for the homodyne interferometry in hydrophone calibration

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Xing, Guangzhen

    2015-02-01

    The stabilization of a homodyne type Michelson interferometer for calibrating the high frequency hydrophone is presented in this article. For the detection of the ultrasonic field, a 5 um thickness pellicle was inserted in water moving in sympathy with the ultrasonic wave. To ensure high signal to noise ratio at high frequencies, a 5 MHz focusing transducer was driven by high voltage and harmonics of the shocked ultrasonic field could be activated. Nevertheless, the homodyne interferometer suffered from the drawback of signal fading caused by the low frequency noise in environment, including acoustic noise and water surface agitation. Direct Current Phase Tracking was utilized to maintain the quadrature working point for the interferometer. Most of environmental noises could be effectively compensated while stabilization was maintained. A piezoelectric actuator supporting the reference mirror was utilized as the stabilizing element whose output was frequency independent over the low frequency disturbances, usually below 200 Hz. The ultrasonic signal fading caused by environmental disturbances could be solved while the negative electric feedback loop was operating. The displacement and voltage output of the hydrophone under test were then processed by DFT to derive the fundamental and harmonic components. Under plane wave conditions, the ultrasonic pressure could be derived by the detected displacement with a stabilized homodyne interferometer, and the hydrophone could then be calibrated. Measurement results indicated that the hydrophone calibration system based on the active stabilization of homodyne interferometry was sound in theory and feasible in practice.

  17. Homodyne chiral polarimetry for measuring thermo-optic refractive index variations.

    PubMed

    Twu, Ruey-Ching; Wang, Jhao-Sheng

    2015-10-10

    Novel reflection-type homodyne chiral polarimetry is proposed for measuring the refractive index variations of a transparent plate under thermal impact. The experimental results show it is a simple and useful method for providing accurate measurements of refractive index variations. The measurement can reach a resolution of 7×10-5.

  18. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    NASA Astrophysics Data System (ADS)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n -mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [

    F. Dell’Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)
    ], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.

  19. In-orbit verification of optical inter-satellite communication links based on homodyne BPSK

    NASA Astrophysics Data System (ADS)

    Smutny, Berry; Lange, Robert; Kämpfner, Hartmut; Dallmann, Daniel; Mühlnikel, Gerd; Reinhardt, Martin; Saucke, Karen; Sterr, Uwe; Wandernoth, Bernhard; Czichy, Reinhard

    2008-02-01

    Laser communication terminals based on homodyne BPSK are under in-orbit verification in LEO-to-ground and duplex LEO-LEO 5.65 Gbps links. With the LEO-to-ground link beacon-less acquisition has been verified as a reliable and quick acquisition procedure with acquisition times less than one minute.

  20. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    SciTech Connect

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n-mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [F. Dell'Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.

  1. The 2.2 GHz Surface Acoustic Wave (SAW) oscillator development Ku-band frequency source development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Two 2.2 GHz SAW oscillators using aluminum nitride on sapphire (AlN/Al2O3) delay lines were fabricated. The oscillators were electronically temperature compensated and characterized. One of the oscillators was used as the frequency reference for the Ku band source; the second oscillator is available for continued evaluation. A 15 GHz frequency source was designed and fabricated. The 15 GHz source consists of a Ku band FET oscillator which is phase locked to the frequency multiplied (X7) output of the 2.2 GHz SAW reference source. The Ku band source was built using microstrip circuit designs, which are hybrid compatible. Two wafer runs of 2.2 GHz TED devices were fabricated and evaluated. The devices were mounted on microstrip test substrates and evaluated as 15 GHz divide by 7 circuits. The device evaluation indicated that in their present form the TED is not a practical circuit element.

  2. Comprehensive model for studying noise induced by self-homodyne detection of backward Rayleigh scattering in optical fibers.

    PubMed

    Fleyer, Michael; Cahill, James P; Horowitz, Moshe; Menyuk, Curtis R; Okusaga, Olukayode

    2015-10-05

    Backward Rayleigh scattering in optical fibers due to the fluctuations that are "frozen-in" to the fiber during the manufacturing process may limit the performance of optical sensors and bidirectional coherent optical communication systems. In this manuscript we describe a comprehensive model for studying intensity noise induced by spontaneous Rayleigh backscattering in optical systems that are based on self-homodyne detection. Our model includes amplitude and frequency noise of the laser source, random distribution of the scatterers along the fiber, and phase noise induced in fibers due to thermal and mechanical fluctuations. The model shows that at frequencies above about 10 kHz the noise spectrum is determined by the laser white frequency noise. The laser flicker frequency noise becomes the dominant effect at lower frequencies. The noise amplitude depends on the laser polarization. A very good agreement between theory and experiment is obtained for fibers with a length between 500 m to 100 km and for a laser with a linewidth below 5 kHz.

  3. A comparison between heterodyne and homodyne interferometry to realise the SI unit of acoustic pressure in water

    NASA Astrophysics Data System (ADS)

    Koukoulas, Triantafillos; Robinson, Stephen; Rajagopal, Srinath; Zeqiri, Bajram

    2016-04-01

    Optical approaches for hydrophone calibrations offer significant advantages over existing methods based on reciprocity. In particular, heterodyne and homodyne interferometry can accurately measure particle velocity and displacements at a specific point in space thus enabling the acoustical pressure to be measured in an absolute, direct, assumption-free manner, with traceability through the SI definition of the metre. The calibration of a hydrophone can then be performed by placing the active element of the sensor at the point where the acoustic pressure field was measured and monitoring its electrical output. However, it is crucial to validate the performance and accuracy of such optical methods by direct comparison rather than through device calibration. Here we report on the direct comparison of two such optical interferometers used in underwater acoustics and ultrasonics in terms of acoustic pressure estimation and their associated uncertainties in the frequency range 200 kHz-3.5 MHz, with results showing agreement better than 1% in terms of pressure and typical expanded uncertainties better than 3% for both reported methods.

  4. Dielectric properties of human ovary follicular fluid at 9.2 GHz.

    PubMed

    Gorobchenko, Olga A; Gerodes, Anna G; Nardid, Oleg A; Nikolov, Oleg T

    2010-10-01

    The influence of the follicle size, rapid freezing to -196 degrees capital ES, Cyrillic and cryopreservation in liquid nitrogen within a period of one month of the human ovary follicular fluid (FF) on its dielectric properties is studied by the microwave dielectric method. The FF was obtained from dominant follicles of patients who received treatment for infertility by extracorporal fertilization. We have measured the real part (epsilon') of the complex permittivity of the native and frozen follicular fluids at the room temperature. A resonator type ultra high frequency (UHF) dielectrometer at the frequency of 9.2 GHz has been used. We have also obtained the values of the total protein, hormones and glucose concentration in the FF. It was found that rapid freezing reduces epsilon' of the FF. It can result from the bound water increase in the system. It was also found the rise in permittivity and the total protein concentration with the increase of a follicle size, which could be explained by protein dehydration as a result of its clustering and aggregation. 2010 Elsevier B.V. All rights reserved.

  5. Self-homodyne free-space optical communication system based on orthogonally polarized binary phase shift keying.

    PubMed

    Cai, Guangyu; Sun, Jianfeng; Li, Guangyuan; Zhang, Guo; Xu, Mengmeng; Zhang, Bo; Yue, Chaolei; Liu, Liren

    2016-06-10

    A self-homodyne laser communication system based on orthogonally polarized binary phase shift keying is demonstrated. The working principles of this method and the structure of a transceiver are described using theoretical calculations. Moreover, the signal-to-noise ratio, sensitivity, and bit error rate are analyzed for the amplifier-noise-limited case. The reported experiment validates the feasibility of the proposed method and demonstrates its advantageous sensitivity as a self-homodyne communication system.

  6. Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication.

    PubMed

    Chen, Jian; Sickler, Jason W; Fendel, Peter; Ippen, Erich P; Kärtner, Franz X; Wilken, Tobias; Holzwarth, Ronald; Hänsch, Theodor W

    2008-05-01

    Generation of low-timing-jitter 150 fs pulse trains at 1560 nm with 2 GHz repetition rate is demonstrated by locking a 200 MHz fundamental polarization additive-pulse mode-locked erbium fiber laser to high-finesse external Fabry-Perot cavities. The timing jitter and relative intensity noise of the repetition-rate multiplied pulse train are investigated.

  7. Homodyne detection of short-range Doppler radar using a forced oscillator model

    NASA Astrophysics Data System (ADS)

    Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote

    2017-03-01

    This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis.

  8. Homodyne detection of short-range Doppler radar using a forced oscillator model

    PubMed Central

    Kittipute, Kunanon; Saratayon, Peerayudh; Srisook, Suthasin; Wardkein, Paramote

    2017-01-01

    This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis. PMID:28252000

  9. Optical inter-satellite links based on homodyne BPSK modulation: heritage, status, and outlook

    NASA Astrophysics Data System (ADS)

    Lange, Robert; Smutny, Berry

    2005-04-01

    For a number of reasons homodyne BPSK (binary phase shift keying) is superior to all other optical modulation schemes. Since BPSK has been verified as a reliable technique for space applications, laser communication terminals based on this modulation scheme are ready for in-orbit verification, which is the goal of the running LCTSX program. With this, an optical satellite-to-ground link shall be established to verify the impact the atmosphere has on a homodyne BPSK based communication link as well as the pointing and tracking performance of a laser communication terminal. In a follow-on program, an optical inter-satellite link will be established to verify the communication performance.

  10. Graphical rule of transforming continuous-variable graph states by local homodyne detection

    SciTech Connect

    Zhang Jing

    2010-09-15

    Graphical rule, describing that any single-mode homodyne detection turns a given continuous-variable (CV) graph state into a new one, is presented. Employing two simple graphical rules--local complement operation and vertex deletion (single quadrature-amplitude x measurement)--the graphical rule for any single-mode quadrature component measurement can be obtained. The shape of CV weighted graph state may be designed and constructed easily from a given larger graph state by applying this graphical rule.

  11. Deterministic creation and stabilization of entanglement in circuit QED by homodyne-mediated feedback control

    SciTech Connect

    Liu Zhuo; Kuang Luelin; Hu Kai; Xu Luting; Wei Suhua; Guo Lingzhen; Li Xinqi

    2010-09-15

    In a solid-state circuit QED system, we demonstrate that a homodyne-current-based feedback can create and stabilize highly entangled two-qubit states in the presence of a moderate noisy environment. Particularly, we present an extended analysis for the current-based Markovian feedback, which leads to an improved feedback scheme. We show that this is essential to achieve a desirable control effect by the use of dispersive measurement.

  12. Pilot-tone-based self-homodyne detection using optical nonlinear wave mixing.

    PubMed

    Cao, Yinwen; Ziyadi, Morteza; Almaiman, Ahmed; Mohajerin-Ariaei, Amirhossein; Liao, Peicheng; Bao, Changjing; Alishahi, Fatemeh; Fallahpour, Ahmad; Shamee, Bishara; Willner, Asher J; Akasaka, Youichi; Ikeuchi, Tadashi; Wilkinson, Steven; Langrock, Carsten; Fejer, Martin M; Touch, Joseph; Tur, Moshe; Willner, Alan E

    2017-05-01

    An all-optical pilot-tone-based self-homodyne detection scheme using nonlinear wave mixing is experimentally demonstrated. Two scenarios are investigated using (1) multiple wavelength-division-multiplexed channels with sufficient power of the pilot tones and (2) a single channel with a low-power pilot tone. The eye diagram and bit error rate of the system are studied by tuning various parameters such as pump power, relative phase, and pilot-to-signal ratio.

  13. A higher dimensional homodyne filter for phase sensitive partial Fourier reconstruction of magnetic resonance imaging.

    PubMed

    Paul, Joseph Suresh; Krishna Swamy Pillai, Uma

    2015-11-01

    The aim of this paper is to introduce procedural steps for extension of the 1D homodyne phase correction for k-space truncation in all gradient encoding directions. Compared to the existing method applied to 2D partial k-space, signal losses introduced by the phase correction filter are observed to be minimal for the modified approach. In addition, the modified form of phase correction retains the inherent property of homodyne filtering for elimination of incidental phase artifacts due to truncation. In parallel imaging, this new form of homodyne filtering is shown to be effective for minimizing the signal losses, when each of the channel k-spaces is truncated along both phase and frequency-encode directions. This is illustrated with 2D partial k-space for flow compensated multichannel susceptibility weighted imaging. Extension of this method to 3D partial k-space shows improved reconstruction of flow information in phase contrast magnetic resonance angiography with reduced blur and enhanced background suppression.

  14. Generation and homodyne detection of continuous-variable entangled optical beams with a large wavelength difference

    SciTech Connect

    Guo Xiaomin; Xie Changde; Li Yongmin

    2011-08-15

    We present a scheme for generating and homodyne detecting of continuous-variable entanglement of bright optical beams with a large wavelength difference by utilizing an optical parametric oscillator (OPO) and an optical parametric amplifier (OPA) simultaneously. Entangled optical beams at 0.8 and 1.5 {mu}m are generated from the OPA; the seed beams injected in the OPA as well as the local oscillators at the two wavelengths needed for homodyne detection are provided by the OPO. The entangler is a ring resonator involving a second-order nonlinear crystal that is pumped from two opposite directions. In one direction the pump power is above the oscillation threshold and the optical nonlinear resonator operates as an OPO. In the other direction the pump power is below the threshold and it operates as a phase-sensitive frequency nondegenerate optical parametric amplifier. Our scheme combines the advantages of both OPO and OPA quantum optical devices and opens another avenue for preparation and homodyne detection of high quality bright entangled light with a large wavelength difference.

  15. VizieR Online Data Catalog: 93.2GHz observations of 9C sources (Davies+, 2013)

    NASA Astrophysics Data System (ADS)

    Davies, M. L.; Stefan, I. I.; Bolton, R. C.; Carpenter, J. M.; Franzen, T. M. O.; Grainge, K. J. B.; Green, D. A.; Hobson, M. P.; Hurley-Walker, N.; Lasenby, A. N.; Olamaie, M.; Perrott, Y. C.; Pooley, G. G.; Riley, J. M.; Rodriguez-Gonzalvez, C.; Saunders, R. D. E.; Scaife, A. M. M.; Schammel, M. P.; Scott, P. F.; Shimwell, T. W.; Titterington, D. J.; Waldram, E. M.; Whittam, I. H.

    2013-11-01

    In this paper, results are presented from 93.2-GHz observations of 80 9C sources from the samples of Bolton et al. 2004, Cat. J/MNRAS/354/485. The six 10.4-m diameter and nine 6.1-m diameter CARMA (Combined Array for Research in Millimeter-wave Astronomy) antennas were used to make 93.2-GHz observations of the sources in the 00h field in nine days between 2008 August 18 and 2008 October 4, and of the sources in the 15h field in nine days between 2009 June 14 and 2009 June 30. The Arcminute Microkelvin Imager Large Array (AMI LA) was used to carry out observations at 15.7GHz of the 00h-field sources between 2008 August 21 and 2008 August 24 and the 15h-field sources between 2009 June 16 and 2009 June 20. (1 data file).

  16. Efficient AlGaN/GaN Linear and Digital-Switch-Mode Power Amplifiers for Operation at 2GHz

    NASA Astrophysics Data System (ADS)

    Maroldt, Stephan; Wiegner, Dirk; Vitanov, Stanislav; Palankovski, Vassil; Quay, Rüdiger; Ambacher, Oliver

    This work addresses the enormous efficiency and linearity potential of optimized AlGaN/GaN high-electron mobility transistors (HEMT) in conventional Doherty linear base-station amplifiers at 2.7GHz. Supported by physical device simulation, the work further elaborates on the use of AlGaN/GaN HEMTs in high-speed current-switch-mode class-D (CMCD)/class-S MMICs for data rates of up to 8Gbit/s equivalent to 2GHz RF-operation. The device needs for switch-mode operation are derived and verified by MMIC results in class-S and class-D operation. To the authors' knowledge, this is the first time 2GHz-equivalent digital-switch-mode RF-operation is demonstrated with GaN HEMTs with high efficiency.

  17. 0.8-5.2GHz Broad-Band SiGe-MMIC Quadrature Mixer for Software Defined Radio Receiver

    NASA Astrophysics Data System (ADS)

    Murakami, Keishi; Suematsu, Noriharu; Tsutsumi, Koji; Kanazawa, Gakushi; Sekine, Tomotsugu; Kubo, Hiroshi; Isota, Yoji

    For the next generation wireless terminals used in the software defined radio (SDR), multi-band / multi-mode transceivers and their MMIC are required which cover the wide RF frequency range from several hundreds MHz up to several GHz. In this paper, 0.8-5.2GHz broad-band SiGe-MMIC quadrature mixer (Q-MIX) for multi-band / multi-mode direct conversion receiver has been developed. By using a static type frequency divider as a 90 degrees local (LO) power divider, measured error vector magnitude (EVM) of less than 3.1% can be achieved in the cases of 0.8/2.1GHz W-CDMA and 5.2GHz wireless Local Area Network (LAN) (IEEE 802.11a) reception. This Q-MIX also shows broad-band characteristic for base-band signal and is applicable for 4G cellular. By using fabricated Q-MIX, a multi-band / multi-mode (1.9GHz (3rd generation cellular (W-CDMA)) / 5.2GHz (4th generation cellular (Multi-Carrier (MC)-CDMA))) receiver has been developed and it has firstly demonstrated the successful reception of motion picture via W-CDMA and MC-CDMA.

  18. Violation of Bell's inequality by a generalized einstein-podolsky-rosen state using homodyne detection

    PubMed

    Kuzmich; Walmsley; Mandel

    2000-08-14

    Using homodyning with weak coherent fields and photon counting, we have observed violations of Bell-type inequalities by the generalized Einstein-Podolsky-Rosen state produced in a pulsed nondegenerate optical parametric amplifier, as predicted by Grangier et al. [Phys. Rev. A 38, 3132 (1988)]. The maximum observed visibility of the interference pattern was (89+/-4)%. This interference can be regarded as a manifestation of nonlocality in the sense described by Banaszek and Wodkiewicz [Phys. Rev. A 58, 4345 (1998)]. We have investigated the interference both theoretically and experimentally and have measured the influence of dispersion and phase matching.

  19. Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification.

    PubMed

    Wenger, Jérôme; Tualle-Brouri, Rosa; Grangier, Philippe

    2004-06-01

    A new scheme is described for the generation of pulsed squeezed light by use of femtosecond pulses that have been parametrically deamplified through a single pass in a thin (100-microm) potassium niobate crystal with a significant deamplification of approximately -3 dB. The quantum noise of each pulse is registered in the time domain by single-shot homodyne detection operated with femtosecond pulses; the best squeezed quadrature variance was 1.87 dB below the shot-noise level. Such a scheme provides a basic resource for time-resolved quantum communication protocols.

  20. Concept study for a compact homodyne astrophysics spectrometer for exoplanets (CHASE)

    NASA Astrophysics Data System (ADS)

    Hosseini, Sona; Webster, Chris; Fischer, Debra; Shkolnik, Evgenya; Nikzad, Shouleh; Vasisht, Gautam; Traub, Wesley

    2016-07-01

    In this concept study, we are targeting to build a new instrument to sequentially observe exoplanet atmospheres and their parent's stellar spectra over a significant time in NUV and FUV. The Compact Homodyne Astrophysics Spectrometer for Exoplanets (CHASE) offers integrated spectra over a wide field-of-view (FOV 40arcsec) in high spectral resolution (R>105) in a miniaturized architecture using no (or a small < 1m) primary mirror. CHASE's wide FOV is compatible with the relaxed pointing requirements of current CubeSats and SmallSats which makes it readily qualifiable for space in a compact format and have the potential to enable major scientific breakthroughs.

  1. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection.

    PubMed

    Wang, Zinan; Zhang, Li; Wang, Song; Xue, Naitian; Peng, Fei; Fan, Mengqiu; Sun, Wei; Qian, Xianyang; Rao, Jiarui; Rao, Yunjiang

    2016-01-25

    We demonstrate a novel distributed acoustic sensing (DAS) system based on phase-sensitive optical time-domain reflectometry (Φ-OTDR). Both the phase and the amplitude of the Rayleigh scattering (RS) light can be demodulated in real-time. The technique is based on I/Q demodulation and homodyne detection using a 90° optical hybrid. The theoretical analysis is given, and as a proof of the concept, the dynamic strain sensing is experimentally demonstrated, with a sensing range of 12.566 km and a spatial resolution of 10 m.

  2. Control of integrated micro-resonator wavelength via balanced homodyne locking.

    PubMed

    Cox, Jonathan A; Lentine, Anthony L; Trotter, Douglas C; Starbuck, Andrew L

    2014-05-05

    We describe and experimentally demonstrate a method for active control of resonant modulators and filters in an integrated photonics platform. Variations in resonance frequency due to manufacturing processes and thermal fluctuations are corrected by way of balanced homodyne locking. The method is compact, insensitive to intensity fluctuations, minimally disturbs the micro-resonator, and does not require an arbitrary reference to lock. We demonstrate long-term stable locking of an integrated filter to a laser swept over 1.25 THz. In addition, we show locking of a modulator with low bit error rate while the chip temperature is varied from 5 to 60° C.

  3. Homodyne-like detection for coherent state-discrimination in the presence of phase noise

    NASA Astrophysics Data System (ADS)

    Bina, Matteo; Allevi, Alessia; Bondani, Maria; Olivares, Stefano

    2017-05-01

    We propose an innovative strategy to discriminate between two coherent states affected by either uniform or gaussian phase noise. The strategy is based on a homodyne-like detection scheme with photon-number-resolving detectors in the regime of low-intensity local oscillator. The experimental implementation of the detection scheme involves two hybrid photodetectors, whose outputs are used in post processing to calculate the shot-by-shot photon-number difference. The performance of this strategy is quantified in terms of the error probability in discriminating the noisy coherent signals as a function of the characteristic noise parameters.

  4. Human oral mucosal epithelial cell sheets imaging with high-resolution phase-diversity homodyne OCT

    NASA Astrophysics Data System (ADS)

    Senda, Naoko; Osawa, Kentaro

    2015-03-01

    There is a need for development of non-invasive technique to evaluate regenerative tissues such as cell sheets for transplantation. We demonstrated non-invasive imaging inside living cell sheets of human oral mucosal epithelial cells by phase-diversity homodyne optical coherence tomography (OCT). The new method OCT developed in Hitachi enables cell imaging because of high resolution (axial resolution; ~2.6 μm, lateral resolution; ~1 μm, in the air). Nuclei inside cell sheets were imaged with sufficient spatial resolution to identify each cell. It suggested that the new method OCT could be useful for non-invasive cell sheet evaluation test.

  5. 80 Gbit/s, 256 QAM coherent transmission over 150 km with an injection-locked homodyne receiver.

    PubMed

    Kasai, Keisuke; Wang, Yixin; Beppu, Shohei; Yoshida, Masato; Nakazawa, Masataka

    2015-11-02

    We demonstrate an 80 Gbit/s, 5 Gsymbol/s 256 QAM coherent optical transmission by employing an injection-locked homodyne detection circuit based on both fiber lasers and LDs. With either circuit, low phase noise carrier-phase synchronization between the transmitted data signal and an LO were achieved with a phase noise variance of only 0.2 degrees. As a result, we have successfully transmitted an 80 Gbit/s data signal over 150 km with a simple receiver configuration. This is the highest QAM multiplicity yet realized with injection-locked homodyne detection.

  6. 47 CFR 25.139 - NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....2 GHz to 12.7 GHz band. (a) NGSO FSS licensees shall maintain a subscriber database in a format that... database to enable the MVDDS licensee to determine whether the proposed MVDDS transmitting site meets the...

  7. 47 CFR 25.139 - NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....2 GHz to 12.7 GHz band. (a) NGSO FSS licensees shall maintain a subscriber database in a format that... database to enable the MVDDS licensee to determine whether the proposed MVDDS transmitting site meets the...

  8. 47 CFR 25.139 - NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....2 GHz to 12.7 GHz band. (a) NGSO FSS licensees shall maintain a subscriber database in a format that... database to enable the MVDDS licensee to determine whether the proposed MVDDS transmitting site meets the...

  9. 47 CFR 25.139 - NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....2 GHz to 12.7 GHz band. (a) NGSO FSS licensees shall maintain a subscriber database in a format that... database to enable the MVDDS licensee to determine whether the proposed MVDDS transmitting site meets the...

  10. Vacuum state squeezing versus squeezed classical noise: a test using conditional homodyne detection

    NASA Astrophysics Data System (ADS)

    Carmichael, Howard J.

    2003-05-01

    Measurement of the squeezed fluctuations of an optical field by the method of conditional homodyne detection is discussed. It is shown that conditional homodyne detection is able to distinguish qualitatively between vacuum-state squeezing and squeezed classical noise. Whereas for conventional squeezed-light detection, only a quantitative distinction can be made, based on the setting of the shot-noise level, under conditional detection, the presence of classical noise changes the actual shape of the measured correlation function. The correlations show a positive peak due to the unsqeezed classical noise frequencies, set inside the negative dip associated with the squeezed fluctuations. The width in time of the positive peak is the larger of the detector response time and the inverse of the classical noise bandwidth. The fundamental distinction between vacuum-state squeezing and squeezed classical noise is that there is no positive peak, even in the limiting form of a delta-function, when the unsqueezed frequencies correspond to vacuum state modes. Implications for the literal interpretation of vacuum fluctuations, such as is adopted in stochastic electrodynamics, are discussed. The ideas are presented in general terms and illustrated by an example which treats the generation and detection of broadband squeezed light, including finite-bandwidth classical noise, within the framework of the quantum trajectory theory of cascaded open systems.

  11. Atomic homodyne detection of continuous-variable entangled twin-atom states.

    PubMed

    Gross, C; Strobel, H; Nicklas, E; Zibold, T; Bar-Gill, N; Kurizki, G; Oberthaler, M K

    2011-11-30

    Historically, the completeness of quantum theory has been questioned using the concept of bipartite continuous-variable entanglement. The non-classical correlations (entanglement) between the two subsystems imply that the observables of one subsystem are determined by the measurement choice on the other, regardless of the distance between the subsystems. Nowadays, continuous-variable entanglement is regarded as an essential resource, allowing for quantum enhanced measurement resolution, the realization of quantum teleportation and quantum memories, or the demonstration of the Einstein-Podolsky-Rosen paradox. These applications rely on techniques to manipulate and detect coherences of quantum fields, the quadratures. Whereas in optics coherent homodyne detection of quadratures is a standard technique, for massive particles a corresponding method was missing. Here we report the realization of an atomic analogue to homodyne detection for the measurement of matter-wave quadratures. The application of this technique to a quantum state produced by spin-changing collisions in a Bose-Einstein condensate reveals continuous-variable entanglement, as well as the twin-atom character of the state. Our results provide a rare example of continuous-variable entanglement of massive particles. The direct detection of atomic quadratures has applications not only in experimental quantum atom optics, but also for the measurement of fields in many-body systems of massive particles.

  12. Deterministic preparation of superpositions of vacuum plus one photon by adaptive homodyne detection: experimental considerations

    NASA Astrophysics Data System (ADS)

    Dalla Pozza, Nicola; Wiseman, Howard M.; Huntington, Elanor H.

    2015-01-01

    The preparation stage of optical qubits is an essential task in all the experimental setups employed for the test and demonstration of quantum optics principles. We consider a deterministic protocol for the preparation of qubits as a superposition of vacuum and one photon number states, which has the advantage to reduce the amount of resources required via phase-sensitive measurements using a local oscillator (‘dyne detection’). We investigate the performances of the protocol using different phase measurement schemes: homodyne, heterodyne, and adaptive dyne detection (involving a feedback loop). First, we define a suitable figure of merit for the prepared state and we obtain an analytical expression for that in terms of the phase measurement considered. Further, we study limitations that the phase measurement can exhibit, such as delay or limited resources in the feedback strategy. Finally, we evaluate the figure of merit of the protocol for different mode-shapes handily available in an experimental setup. We show that even in the presence of such limitations simple feedback algorithms can perform surprisingly well, outperforming the protocols when simple homodyne or heterodyne schemes are employed.

  13. Intersatellite laser ranging with homodyne optical phase locking for Space Advanced Gravity Measurements mission.

    PubMed

    Yeh, Hsien-Chi; Yan, Qi-Zhong; Liang, Yu-Rong; Wang, Ying; Luo, Jun

    2011-04-01

    In this paper, we present the scheme and the preliminary results of an intersatellite laser ranging system that is designed for the Earth's gravity recovery mission proposed in China, called Space Advanced Gravity Measurements (SAGM). The proposed intersatellite distance is about 100 km and the precision of inter-satellite range monitoring is 10 nm/Hz(1/2) at 0.1 Hz. To meet the needs, we designed a transponder-type intersatellite laser ranging system by using a homodyne optical phase locking technique, which is different from the heterodyne optical phase-locked loop used in GRACE follow-on mission. Since an ultrastable oscillator is unnecessary in the homodyne phase-locked loop, the measurement error caused by the frequency instability of the ultrastable oscillator need not be taken into account. In the preliminary study, a heterodyne interferometer with 10-m baseline (measurement arm-length) was built up to demonstrate the validity of the measurement scheme. The measurement results show that a resolution of displacement measurement of about 3.2 nm had been achieved. © 2011 American Institute of Physics

  14. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. 25.136 Section 25.136..., 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. In addition to the technical requirements specified in § 25.213, earth stations operating in the 1.6/2.4 GHz and 1.5/1.6 GHz Mobile Satellite...

  15. STATISTICAL PROPERTIES OF 12.2 GHz METHANOL MASERS ASSOCIATED WITH A COMPLETE SAMPLE OF 6.7 GHz METHANOL MASERS

    SciTech Connect

    Breen, S. L.; Caswell, J. L.; Green, J. A.; Voronkov, M. A.; Ellingsen, S. P.; Fuller, G. A.; Quinn, L. J.; Avison, A.

    2011-06-01

    We present definitive detection statistics for 12.2 GHz methanol masers toward a complete sample of 6.7 GHz methanol masers detected in the Methanol Multibeam survey south of declination -20{sup 0}. In total, we detect 250 12.2 GHz methanol masers toward 580 6.7 GHz methanol masers. This equates to a detection rate of 43.1%, which is lower than that of previous significant searches of comparable sensitivity. Both the velocity ranges and the flux densities of the target 6.7 GHz sources surpass that of their 12.2 GHz companion in almost all cases. Eighty percent of the detected 12.2 GHz methanol maser peaks are coincident in velocity with the 6.7 GHz maser peak. Our data support an evolutionary scenario whereby the 12.2 GHz sources are associated with a somewhat later evolutionary stage than the 6.7 GHz sources devoid of this transition. Furthermore, we find that the 6.7 GHz and 12.2 GHz methanol sources increase in luminosity as they evolve. In addition to this, evidence for an increase in velocity range with evolution is presented. This implies that it is not only the luminosity but also the volume of gas conducive to the different maser transitions that increases as the sources evolve. Comparison with GLIMPSE mid-infrared sources has revealed a coincidence rate between the locations of the 6.7 GHz methanol masers and GLIMPSE point sources similar to that achieved in previous studies. Overall, the properties of the GLIMPSE sources with and without 12.2 GHz counterparts are similar. There is a higher 12.2 GHz detection rate toward those 6.7 GHz methanol masers that are coincident with extended green objects.

  16. 47 CFR 25.222 - Blanket Licensing provisions for Earth Stations on Vessels (ESVs) receiving in the 10.95-11.2 GHz...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Blanket Licensing provisions for Earth Stations on Vessels (ESVs) receiving in the 10.95-11.2 GHz (space-to-Earth), 11.45-11.7 GHz (space-to-Earth), 11.7-12.2 GHz (space-to-Earth) bands and transmitting in the 14.0-14.5 GHz (Earth-to-space) band...

  17. 47 CFR 25.222 - Blanket Licensing provisions for Earth Stations on Vessels (ESVs) receiving in the 10.95-11.2 GHz...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Blanket Licensing provisions for Earth Stations on Vessels (ESVs) receiving in the 10.95-11.2 GHz (space-to-Earth), 11.45-11.7 GHz (space-to-Earth), 11.7-12.2 GHz (space-to-Earth) frequency bands and transmitting in the 14.0-14.5 GHz (Earth-to-space...

  18. 47 CFR 25.222 - Blanket Licensing provisions for Earth Stations on Vessels (ESVs) receiving in the 10.95-11.2 GHz...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Blanket Licensing provisions for Earth Stations on Vessels (ESVs) receiving in the 10.95-11.2 GHz (space-to-Earth), 11.45-11.7 GHz (space-to-Earth), 11.7-12.2 GHz (space-to-Earth) bands and transmitting in the 14.0-14.5 GHz (Earth-to-space) band...

  19. 47 CFR 25.222 - Blanket Licensing provisions for Earth Stations on Vessels (ESVs) receiving in the 10.95-11.2 GHz...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Blanket Licensing provisions for Earth Stations on Vessels (ESVs) receiving in the 10.95-11.2 GHz (space-to-Earth), 11.45-11.7 GHz (space-to-Earth), 11.7-12.2 GHz (space-to-Earth) frequency bands and transmitting in the 14.0-14.5 GHz (Earth-to-space...

  20. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. 25.136 Section 25.136..., 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. In addition to the technical requirements specified in § 25.213, earth stations operating in the 1.6/2.4 GHz and 1.5/1.6 GHz Mobile Satellite Services...

  1. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile-Satellite Services. 25.136 Section 25.136..., 1.5/1.6 GHz, and 2 GHz Mobile-Satellite Services. In addition to the technical requirements specified in § 25.213, earth stations operating in the 1.6/2.4 GHz and 1.5/1.6 GHz Mobile-Satellite Services...

  2. A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2 GHz.

    PubMed

    McFerran, J J; Nenadovic, L; Swann, W C; Schlager, J B; Newbury, N R

    2007-10-01

    We demonstrate a fundamentally mode-locked fiber laser with a repetition frequency in excess of 2 GHz at a central wavelength of 1.535 mum. Co-doped ytterbium-erbium fiber provides the gain medium for the laser, affording high gain per unit length, while a semiconductor saturable absorber mirror (SAM) provides the pulse shaping mechanism in a standing wave cavity. Results are shown confirming cw mode-locking for 1 GHz and 2 GHz repetition frequency systems. The response of the frequency comb output to pump power variations is shown to follow a single pole response. The timing jitter of a 540MHz repetition-rate laser has been suppressed to below 100 fs through phase-lead compensated feedback to the pump power. Alternatively, a single comb line of a 850MHz repetition-rate laser has been phase-locked to a narrow linewidth cw laser with an in-loop phase jitter of 0.06 rad(2). The laser design is compatible with low-noise oscillator applications.

  3. In vivo photoacoustic imaging of blood vessels using a homodyne interferometer with zero-crossing triggering

    NASA Astrophysics Data System (ADS)

    Lu, Jiao; Gao, Yingzhe; Ma, Zhenhe; Zhou, Hongxian; Wang, Ruikang K.; Wang, Yi

    2017-03-01

    We demonstrate a quasinoncontact photoacoustic imaging method using a homodyne interferometer with a long coherence length laser. The generated photoacoustic signal is detected by a system that is locked at its maximum sensitivity through the use of balanced detection and zero-crossing triggering. The balanced detector is substantially equalized, so its output is zero when the system reaches the maximum sensitivity. The synchronization approach is used to trigger the excitation and detection of the photoacoustic signal. The system is immune to ambient vibrations. A thin water layer on the sample surface is used to reduce the effect of the rough tissue surface. The performance of the system is demonstrated by in vivo imaging of the microvasculature in mouse ears.

  4. Self-homodyne measurement of a dynamic Mollow triplet in the solid state

    NASA Astrophysics Data System (ADS)

    Fischer, Kevin A.; Müller, Kai; Rundquist, Armand; Sarmiento, Tomas; Piggott, Alexander Y.; Kelaita, Yousif; Dory, Constantin; Lagoudakis, Konstantinos G.; Vučković, Jelena

    2016-03-01

    The study of the light-matter interaction at the quantum scale has been enabled by the cavity quantum electrodynamics (CQED) architecture, in which a quantum two-level system strongly couples to a single cavity mode. Originally implemented with atoms in optical cavities, CQED effects are now also observed with artificial atoms in solid-state environments. Such realizations of these systems exhibit fast dynamics, making them attractive candidates for devices including modulators and sources in high-throughput communications. However, these systems possess large photon out-coupling rates that obscure any quantum behaviour at large excitation powers. Here, we have used a self-homodyning interferometric technique that fully employs the complex mode structure of our nanofabricated cavity to observe a quantum phenomenon known as the dynamic Mollow triplet. We expect this interference to facilitate the development of arbitrary on-chip quantum state generators, thereby strongly influencing quantum lithography, metrology and imaging.

  5. Observing optical coherence across Fock layers with weak-field homodyne detectors.

    PubMed

    Donati, Gaia; Bartley, Tim J; Jin, Xian-Min; Vidrighin, Mihai-Dorian; Datta, Animesh; Barbieri, Marco; Walmsley, Ian A

    2014-11-27

    Quantum properties of optical modes are typically assessed by observing their photon statistics or the distribution of their quadratures. Both particle- and wave-like behaviours deliver important information and each may be used as a resource in quantum-enhanced technologies. Weak-field homodyne (WFH) detection provides a scheme that combines the wave- and particle-like descriptions. Here we show that it is possible to observe a wave-like property such as the optical coherence across Fock basis states in the detection statistics derived from discrete photon counting. We experimentally demonstrate these correlations using two WHF detectors on each mode of two classes of two-mode entangled states. Furthermore, we theoretically describe the response of WHF detection on a two-mode squeezed state in the context of generalized Bell inequalities. Our work demonstrates the potential of this technique as a tool for hybrid continuous/discrete-variable protocols on a phenomenon that explicitly combines both approaches.

  6. Observing optical coherence across Fock layers with weak-field homodyne detectors

    NASA Astrophysics Data System (ADS)

    Donati, Gaia; Bartley, Tim J.; Jin, Xian-Min; Vidrighin, Mihai-Dorian; Datta, Animesh; Barbieri, Marco; Walmsley, Ian A.

    2014-11-01

    Quantum properties of optical modes are typically assessed by observing their photon statistics or the distribution of their quadratures. Both particle- and wave-like behaviours deliver important information and each may be used as a resource in quantum-enhanced technologies. Weak-field homodyne (WFH) detection provides a scheme that combines the wave- and particle-like descriptions. Here we show that it is possible to observe a wave-like property such as the optical coherence across Fock basis states in the detection statistics derived from discrete photon counting. We experimentally demonstrate these correlations using two WHF detectors on each mode of two classes of two-mode entangled states. Furthermore, we theoretically describe the response of WHF detection on a two-mode squeezed state in the context of generalized Bell inequalities. Our work demonstrates the potential of this technique as a tool for hybrid continuous/discrete-variable protocols on a phenomenon that explicitly combines both approaches.

  7. The analysis of bit error ratio for self-homodyning coherent detection system

    NASA Astrophysics Data System (ADS)

    Jia, Xiaoyang; Tong, Shoufeng; Li, Xiaoyan; Ma, Tingting

    2017-02-01

    BER measures the accuracy of data transmission within specified time, which is an important parameter to evaluate the performance of communication system. First, this paper analyzes the influence factors of BER for DPSK self-homodyning coherent detection system such as modulation format, atmospheric turbulence, coherent demodulation. We take it into consideration that atmospheric channel will affect the transmission signal ,simulated the DPSK self-coherent detection system in different weather conditions and analyzed the results. The simulation results shows that the bit error rate of 10 Gb/s self-coherent detection system reaches 10-10 ,when the weather condition is light haze. It indicates that self-coherent detection system has great potential in satellite-ground laser communication.

  8. A novel implementation of homodyne time interval analysis method for primary vibration calibration

    NASA Astrophysics Data System (ADS)

    Sun, Qiao; Zhou, Ling; Cai, Chenguang; Hu, Hongbo

    2011-12-01

    In this paper, the shortcomings and their causes of the conventional homodyne time interval analysis (TIA) method is described with respect to its software algorithm and hardware implementation, based on which a simplified TIA method is proposed with the help of virtual instrument technology. Equipped with an ordinary Michelson interferometer and dual channel synchronous data acquisition card, the primary vibration calibration system using the simplified method can perform measurements of complex sensitivity of accelerometers accurately, meeting the uncertainty requirements laid down in pertaining ISO standard. The validity and accuracy of the simplified TIA method is verified by simulation and comparison experiments with its performance analyzed. This simplified method is recommended to apply in national metrology institute of developing countries and industrial primary vibration calibration labs for its simplified algorithm and low requirements on hardware.

  9. Scanning balanced-path homodyne I/Q-interferometer scheme and its applications.

    PubMed

    Eang, Seang Hor; Yoon, Seunghyun; Park, Jun Gyu; Cho, Kyuman

    2015-06-01

    The balanced-path scheme of a heterodyne interferometer proposed by Yoon et al. has been applied to the scanning homodyne I/Q-interferometer. This provides an 11-dB improvement on common vibration rejection over the heterodyne scheme and, thereby, allows high sensitivity and high stability phase and amplitude measurements for high-speed scanning interferometer applications. It is shown that our new scanning interferometer scheme is very useful for diagnosing a sample that requires complex analysis. As an example, our new scanning interferometer scheme has been applied for obtaining phase and amplitude images of the protein biochip samples prepared by using the sandwich ELISA. The amplitude images are used for diagnosing homogeneity of the sample, while the phase images are used for measuring the phase difference between samples treated with different concentrations of IL-5.

  10. Coherent pulse detection and multi-channel coherent detection based on a single balanced homodyne receiver.

    PubMed

    Lee, Wangkuen; Izadpanah, Hoss; Delfyett, Peter J; Menendez, Ron; Etemad, Shahab

    2007-03-05

    The performance of coherent pulse detection (CPD) and multichannel coherent detection (MCCD) based on a single dual-balanced homodyne receiver was experimentally demonstrated using a gratingcoupled hybridly mode-locked semiconductor laser. Compared with direct detection, a high coherent gain of over 10 dB, as well as an SNR improvement of over 5 dB, was obtained in both detection schemes. Our experimental results have confirmed that the coherent detection processes in CPD and MCCD are nearly the same based on a square-root LO power dependence. Nevertheless, the MCCD scheme has shown an advantage in a path-length error over the CPD scheme, revealing 2~3 dB improvement in sensitivities.

  11. Balancing efficiencies by squeezing in realistic eight-port homodyne detection

    SciTech Connect

    Pellonpaeae, Juha-Pekka; Schultz, Jussi; Paris, MatteoG. A.

    2011-04-15

    We address measurements of covariant phase observables (CPOs) by means of realistic eight-port homodyne detectors. We do not assume equal quantum efficiencies for the four photodetectors and investigate the conditions under which the measurement of a CPO may be achieved. We show that balancing the efficiencies using an additional beam splitter allows us to achieve a CPO at the price of reducing the overall effective efficiency, and prove that it is never a smearing of the ideal CPO achievable with unit quantum efficiency. An alternative strategy based on employing a squeezed vacuum as a parameter field is also suggested, which allows one to increase the overall efficiency in comparison to the passive case using only a moderate amount of squeezing. Both methods are suitable for implementation with current technology.

  12. Homodyne laser interferometer involving minimal quadrature phase error to obtain subnanometer nonlinearity.

    PubMed

    Cui, Junning; He, Zhangqiang; Jiu, Yuanwei; Tan, Jiubin; Sun, Tao

    2016-09-01

    The demand for minimal cyclic nonlinearity error in laser interferometry is increasing as a result of advanced scientific research projects. Research shows that the quadrature phase error is the main effect that introduces cyclic nonlinearity error, and polarization-mixing cross talk during beam splitting is the main error source that causes the quadrature phase error. In this paper, a new homodyne quadrature laser interferometer configuration based on nonpolarization beam splitting and balanced interference between two circularly polarized laser beams is proposed. Theoretical modeling indicates that the polarization-mixing cross talk is elaborately avoided through nonpolarizing and Wollaston beam splitting, with a minimum number of quadrature phase error sources involved. Experimental results show that the cyclic nonlinearity error of the interferometer is up to 0.6 nm (peak-to-valley value) without any correction and can be further suppressed to 0.2 nm with a simple gain and offset correction method.

  13. EPR of Cu2+ prion protein constructs at 2 GHz using the g(perpendicular) region to characterize nitrogen ligation.

    PubMed

    Hyde, James S; Bennett, Brian; Walter, Eric D; Millhauser, Glenn L; Sidabras, Jason W; Antholine, William E

    2009-04-22

    A double octarepeat prion protein construct, which has two histidines, mixed with copper sulfate in a 3:2 molar ratio provides at most three imidazole ligands to each copper ion to form a square-planar Cu(2+) complex. This work is concerned with identification of the fourth ligand. A new (to our knowledge) electron paramagnetic resonance method based on analysis of the intense features of the electron paramagnetic resonance spectrum in the g( perpendicular) region at 2 GHz is introduced to distinguish between three and four nitrogen ligands. The methodology was established by studies of a model system consisting of histidine imidazole ligation to Cu(2+). In this spectral region at 2 GHz (S-band), g-strain and broadening from the possible rhombic character of the Zeeman interaction are small. The most intense line is identified with the M(I) = +1/2 extra absorption peak. Spectral simulation demonstrated that this peak is insensitive to cupric A(x) and A(y) hyperfine interaction. The spectral region to the high-field side of this peak is uncluttered and suitable for analysis of nitrogen superhyperfine couplings to determine the number of nitrogens. The spectral region to the low-field side of the intense extra absorption peak in the g( perpendicular) part of the spectrum is sensitive to the rhombic distortion parameters A(x) and A(y). Application of the method to the prion protein system indicates that two species are present and that the dominant species contains four nitrogen ligands. A new loop-gap microwave resonator is described that contains approximately 1 mL of frozen sample.

  14. 40-Gb/s QPSK and 20-Gb/s PSK with inserted pilot symbols using self-homodyne detection.

    PubMed

    Lu, Guo-Wei; Nakamura, Moriya; Kamio, Yukiyoshi; Miyazaki, Tetsuya

    2007-06-11

    We proposed and experimentally demonstrated 40-Gb/s quadrature phase-shifted keying (QPSK) and 20-Gb/s binary phase-shifted keying (PSK) transmission systems with inserted pilot symbols, using a return-to-zero radio frequency (RZ-RF) driving signal in the transmitter and self-homodyne direct detection in the receiver. Different from other existing homodyne or conventional differential PSK/QPSK systems, the proposed PSK and QPSK modulation formats do not need any complicated pre-coder, post-processor or local oscillator. In the proposed QPSK systems, simultaneous detection of in-phase and quadature components is successfully achieved by using one Mach-Zehnder delay interferometer and following balanced detector, which significantly reduces the system complexity and implementation cost.

  15. Simultaneous all-optical phase noise mitigation and automatically locked homodyne reception of an incoming QPSK data signal.

    PubMed

    Mohajerin-Ariaei, Amirhossein; Ziyadi, Morteza; Almaiman, Ahmed; Cao, Yinwen; Alishahi, Fatemeh; Chitgarha, Mohammad Reza; Fallahpour, Ahmad; Yang, Jeng-Yuan; Bao, Changjing; Liao, Peicheng; Shamee, Bishara; Akasaka, Youichi; Sekiya, Motoyoshi; Touch, Joseph D; Tur, Moshe; Langrock, Carsten; Fejer, Martin M; Willner, Alan E

    2016-10-15

    Simultaneous phase noise mitigation and automatic phase/frequency-locked homodyne reception is demonstrated for a 20-32 Gbaud QPSK signal. A phase quantization function is realized to squeeze the phase noise of the signal by optical wave mixing of the signal, its third-order harmonic, and their corresponding delayed variant conjugates, converting the noisy input into a noise-mitigated signal. In a simultaneous nonlinear process, the noise-mitigated signal is automatically phase- and frequency-locked with a "local" pump laser, avoiding the need for feedback or phase/frequency tracking for homodyne detection. Open eye-diagrams are obtained for in-phase and quadrature-phase components of the signal and ∼2  dB OSNR gain is achieved at BER 10-3.

  16. 16-QAM optical packet switching and real-time self-homodyne detection using polarization-multiplexed pilot-carrier.

    PubMed

    Shinada, Satoshi; Nakamura, Moriya; Kamio, Yukiyoshi; Wada, Naoya

    2012-12-10

    We demonstrated 20-Gbit/s 16 quadrature amplitude modulation (16-QAM) optical packet switching and real-time detection using self-homodyne. A prototype modulator consisting of an in-phase and quadrature (I-Q) modulator and monolithically integrated polarization beam splitters generated modulated signals and polarization-multiplexed pilot-carriers simultaneously. Self-homodyne detection using the pilot-carrier was resilient to phase noise and self-phase modulation, and the constellation was obtained in real time without digital signal processing. A low-polarization-dependent (Pb,La)(Zr,La)O(3) (PLZT) optical switch in the optical packet switch handled both 16-QAM optical packets and the polarization multiplexed pilot-carrier. Even after packet switching, a clear constellation diagram was obtained, and error-free operation was confirmed in real-time using a packet bit-error rate tester (BERT).

  17. 47 CFR 25.139 - NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false NGSO FSS coordination and information sharing... Earth Stations § 25.139 NGSO FSS coordination and information sharing between MVDDS licensees in the 12.2 GHz to 12.7 GHz band. (a) NGSO FSS licensees shall maintain a subscriber database in a format that...

  18. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz Mobile-Satellite Service and 2 GHz Mobile-Satellite...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... information specified in § 25.114. Non-U.S. licensed systems shall comply with the provisions of § 25.137. (2... within the described geographic area; (iii) That a system proposed to operate using non-geostationary... service within U.S. territorial geographic areas, and the amount of unused system capacity. 2 GHz Mobile...

  19. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Space Stations § 25.143 Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz... satellites, the blanket license will cover a specified number of space stations to operate in a specified... Requirements—(1) General Requirements. Each application for a space station system authorization in the 1.6/2.4...

  20. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Space Stations § 25.143 Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz... satellites, the blanket license will cover a specified number of space stations to operate in a specified... Requirements—(1) General Requirements. Each application for a space station system authorization in the 1.6/2.4...

  1. Digital algorithms for parallel pipelined single-detector homodyne fringe counting in laser interferometry

    NASA Astrophysics Data System (ADS)

    Rerucha, Simon; Sarbort, Martin; Hola, Miroslava; Cizek, Martin; Hucl, Vaclav; Cip, Ondrej; Lazar, Josef

    2016-12-01

    The homodyne detection with only a single detector represents a promising approach in the interferometric application which enables a significant reduction of the optical system complexity while preserving the fundamental resolution and dynamic range of the single frequency laser interferometers. We present the design, implementation and analysis of algorithmic methods for computational processing of the single-detector interference signal based on parallel pipelined processing suitable for real time implementation on a programmable hardware platform (e.g. the FPGA - Field Programmable Gate Arrays or the SoC - System on Chip). The algorithmic methods incorporate (a) the single detector signal (sine) scaling, filtering, demodulations and mixing necessary for the second (cosine) quadrature signal reconstruction followed by a conic section projection in Cartesian plane as well as (a) the phase unwrapping together with the goniometric and linear transformations needed for the scale linearization and periodic error correction. The digital computing scheme was designed for bandwidths up to tens of megahertz which would allow to measure the displacements at the velocities around half metre per second. The algorithmic methods were tested in real-time operation with a PC-based reference implementation that employed the advantage pipelined processing by balancing the computational load among multiple processor cores. The results indicate that the algorithmic methods are suitable for a wide range of applications [3] and that they are bringing the fringe counting interferometry closer to the industrial applications due to their optical setup simplicity and robustness, computational stability, scalability and also a cost-effectiveness.

  2. Phase-noise limitations in continuous-variable quantum key distribution with homodyne detection

    NASA Astrophysics Data System (ADS)

    Corvaja, Roberto

    2017-02-01

    In continuous-variables quantum key distribution with coherent states, the advantage of performing the detection by using standard telecoms components is counterbalanced by the lack of a stable phase reference in homodyne detection due to the complexity of optical phase-locking circuits and to the unavoidable phase noise of lasers, which introduces a degradation on the achievable secure key rate. Pilot-assisted phase-noise estimation and postdetection compensation techniques are used to implement a protocol with coherent states where a local laser is employed and it is not locked to the received signal, but a postdetection phase correction is applied. Here the reduction of the secure key rate determined by the laser phase noise, for both individual and collective attacks, is analytically evaluated and a scheme of pilot-assisted phase estimation proposed, outlining the tradeoff in the system design between phase noise and spectral efficiency. The optimal modulation variance as a function of the phase-noise amount is derived.

  3. Highly sensitive simple homodyne phase detector for ultrasonic pulse-echo measurements

    NASA Astrophysics Data System (ADS)

    Grossmann, John; Suslov, Alexey; Yong, Grace; Boatner, Lynn A.; Svitelskiy, Oleksiy

    2016-04-01

    We have designed and built a modern versatile research-grade instrument for ultrasound pulse-echo probing of the elastic properties of a wide range of materials under laboratory conditions. The heart of the instrument lies in an AD8302 microchip: a gain and phase detector from Analog Devices, Inc. To construct the device, we have implemented a schematic that utilizes the homodyne principle for signal processing instead of the traditional superheterodyne approach. This design allows one to measure phase shifts with high precision and linearity over the entire range of 0°-360°. The system is simple in construction and usage; it makes ultrasound measurements easily accessible to a broad range of researchers. It was tested by measuring the temperature dependence of the ultrasound speed and attenuation in a KTa0.92Nb0.08O3 (KTN) single crystal at a frequency of ˜40 MHz. The tests were performed in the vicinity of the ferroelectric transitions where the large variations of the speed and attenuation demand a detector with outstanding characteristics. The described detector has a wide dynamic range and allows for measuring in a single run over the whole temperature range of the ferroelectric transitions, rather than just in limited intervals available previously. Moreover, due to the wide dynamic range of the gain measurements and high sensitivity this instrument was able to reveal previously unresolvable features associated with the development of the ferroelectric transitions of KTN crystals.

  4. Optical beat interference noise reduction in OFDMA optical access link using self-homodyne balanced detection

    NASA Astrophysics Data System (ADS)

    Jung, Sang-Min; Won, Yong-Yuk; Han, Sang-Kook

    2013-12-01

    A Novel technique for reducing the OBI noise in optical OFDMA-PON uplink is presented. OFDMA is a multipleaccess/ multiplexing scheme that can provide multiplexing operation of user data streams onto the downlink sub-channels and uplink multiple access by means of dividing OFDM subcarriers as sub-channels. The main issue of high-speed, single-wavelength upstream OFDMA-PON arises from optical beating interference noise. Because the sub-channels are allocated dynamically to multiple access users over same nominal wavelength, it generates the optical beating interference among upstream signals. In this paper, we proposed a novel scheme using self-homodyne balanced detection in the optical line terminal (OLT) to reduce OBI noise which is generated in the uplink transmission of OFDMA-PON system. When multiple OFDMA sub-channels over the same nominal wavelength are received at the same time in the proposed architecture, OBI noises can be removed using balanced detection. Using discrete multitone modulation (DMT) to generate real valued OFDM signals, the proposed technique is verified through experimental demonstration.

  5. Highly sensitive simple homodyne phase detector for ultrasonic pulse-echo measurements.

    PubMed

    Grossmann, John; Suslov, Alexey; Yong, Grace; Boatner, Lynn A; Svitelskiy, Oleksiy

    2016-04-01

    We have designed and built a modern versatile research-grade instrument for ultrasound pulse-echo probing of the elastic properties of a wide range of materials under laboratory conditions. The heart of the instrument lies in an AD8302 microchip: a gain and phase detector from Analog Devices, Inc. To construct the device, we have implemented a schematic that utilizes the homodyne principle for signal processing instead of the traditional superheterodyne approach. This design allows one to measure phase shifts with high precision and linearity over the entire range of 0°-360°. The system is simple in construction and usage; it makes ultrasound measurements easily accessible to a broad range of researchers. It was tested by measuring the temperature dependence of the ultrasound speed and attenuation in a KTa0.92Nb0.08O3 (KTN) single crystal at a frequency of ∼40 MHz. The tests were performed in the vicinity of the ferroelectric transitions where the large variations of the speed and attenuation demand a detector with outstanding characteristics. The described detector has a wide dynamic range and allows for measuring in a single run over the whole temperature range of the ferroelectric transitions, rather than just in limited intervals available previously. Moreover, due to the wide dynamic range of the gain measurements and high sensitivity this instrument was able to reveal previously unresolvable features associated with the development of the ferroelectric transitions of KTN crystals.

  6. Homodyne full-field interferometer for measuring dynamic surface phenomena in microstructures

    NASA Astrophysics Data System (ADS)

    Lipiäinen, Lauri; Kokkonen, Kimmo; Kaivola, Matti

    2017-01-01

    We describe a stabilized homodyne full-field interferometer capable of measuring vertical surface deformations of microstructures in the time domain. The interferometer is stabilized to a chosen operation point by obtaining a feedback signal from a non-moving, freely selectable, reference region on the sample surface. The stabilized full-field interferometer enables detection of time-dependent changes in the surface profile with nanometer scale vertical resolution, while the temporal resolution of the measurement is ultimately limited by the refresh rate of the camera only. The lateral resolution of the surface deformation is determined by the combination of the imaging optics together with the pixel size of the camera. The setup is used to measure the deformation of an Aluminum nitride membrane as a function of time-dependent pressure change. The data analysis allows for unambiguous determination of surface deformations over multiple fringes of the interferogram, hence enabling the study of a wide range of physical phenomena with varying magnitude of vertical surface movement.

  7. Demonstration of a low bandwidth 1.06-micron optical phase-locked loop for coherent homodyne communication

    NASA Technical Reports Server (NTRS)

    Day, T.; Farinas, A. D.; Byer, R. L.

    1990-01-01

    A type II 1.06-micron optical phase-locked loop (OPLL) for use in a coherent homodyne receiver is discussed. Diode-laser-pumped solid-state lasers are used for both the local oscillator and transmitter, because their phase noise is significantly lower than that of diode lasers. Closed-loop RMS phase noise of less than 12 mrad (0.69 deg) is achieved, and modulation-demodulation in bulk modulators at rates from 20 kHz to 20 MHz with less than 19 deg of modulation depth is demonstrated.

  8. 120 Gbit/s injection-locked homodyne coherent transmission of polarization-multiplexed 64 QAM signals over 150 km.

    PubMed

    Wang, Yixin; Kasai, Keisuke; Yoshida, Masato; Nakazawa, Masataka

    2014-12-15

    We describe an injection-locked 64 QAM homodyne coherent transmission, which is the highest QAM multiplicity realized with an injection locking technique. The frequency locking range of the local oscillator (LO) was as wide as 1 GHz. The phase noise was only 0.2 deg, which is 1/3 of that obtained with our previous OVCO-based OPLL (0.6 deg.). As a result, a 120 Gbit/s polarization-multiplexed 64 QAM signal was successfully transmitted over 150 km with a simple receiver configuration and low DSP complexity.

  9. Prediction of ionizing radiation effects induced performance degradation in homodyne BPSK based inter-satellite optical communication systems

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Zhao, Shanghong; Gong, Zizheng; Zhao, Jing; Li, Xuan; Dong, Chen

    2016-03-01

    Ionizing radiation effects induced on-orbit performance degradation in homodyne binary phase shift keying (BPSK) based inter-satellite optical communication system is predicted in this paper. Essential optoelectronic devices involved in optical communication system were irradiated by Co60 gamma ray and ionizing radiation environment of three general orbits was analyzed. On this basis, variations of terminal performance loss and system BER degradation along with on-orbit working time were simulated. Influences of terminal location and orbit environment were further discussed. Radiation protection on laser transmitters requires more strengthening, especially for those located in MEO and GEO satellites.

  10. Simple, real-time method for removing the cyclic error of a homodyne interferometer with a quadrature detector system

    SciTech Connect

    Keem, Taeho; Gonda, Satoshi; Misumi, Ichiko; Huang, Qianxiang; Kurosawa, Tomizo

    2005-06-10

    The cyclic error of a homodyne interferometer is caused mainly by phase mixing due to the imperfection of polarizing optical components such as polarizing beam splitters. In Appl. Opt. 43, 2443 (2004), we concentrated on the relationship between these imperfect optical characteristics and the cyclic error and found the preamplifier-gains condition for removing the cyclic error. Here we demonstrate the cyclic error correction method experimentally and show that the method can be applied in real time. We obtained 0.04-nm cyclic errors, with a standard deviation above 5 {mu}m.

  11. ESTIMATION METHOD OF THE HOMODYNED K-DISTRIBUTION BASED ON THE MEAN INTENSITY AND TWO LOG-MOMENTS

    PubMed Central

    DESTREMPES, FRANÇOIS; PORÉE, JONATHAN

    2013-01-01

    The homodyned K-distribution appears naturally in the context of random walks and provides a useful model for the distribution of the received intensity in a wide range of non-Gaussian scattering configurations, including medical ultrasonics. An estimation method for the homodyned K-distribution based on the first moment of the intensity and two log-moments (XU method), namely the X and U-statistics previously studied in the special case of the K-distribution, is proposed as an alternative to a method based on the first three moments of the intensity (MI method) or the amplitude (MA method), and a method based on the signal-to-noise ratio (SNR), the skewness and the kurtosis of two fractional orders of the amplitude (labeled RSK method). Properties of the X and U statistics for the homodyned K-distribution are proved, except for one conjecture. Using those properties, an algorithm based on the bisection method for monotonous functions was developed. The algorithm has a geometric rate of convergence. Various tests were performed to study the behavior of the estimators. It was shown with simulated data samples that the estimations of the parameters 1/α and 1/(κ + 1) of the homodyned K-distribution are preferable to the direct estimations of the clustering parameter α and the structure parameter κ (with respective relative root mean squared errors (RMSEs) of 0.63 and 0.13 as opposed to 1.04 and 4.37, when N = 1000). Tests on simulated ultrasound images with only diffuse scatterers (up to 10 per resolution cell) indicated that the XU estimator is overall more reliable than the other three estimators for the estimation of 1/α, with relative RMSEs of 0.79 (MI), 0.61 (MA), 0.53 (XU) and 0.67 (RSK). For the parameter 1/(κ + 1), the relative RMSEs were equal to 0.074 (MI), 0.075 (MA), 0.069 (XU) and 0.100 (RSK). In the case of a large number of scatterers (11 to 20 per resolution cell), the relative RMSEs of 1/α were equal to 1.43 (MI), 1.27 (MA), 1.25 (XU) and 1

  12. Homodyne High-Harmonic Spectroscopy: Coherent Imaging of a Unimolecular Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Beaudoin Bertrand, Julien

    At the heart of high harmonic generation lies a combination of optical and collision physics entwined by a strong laser field. An electron, initially tunnel-ionized by the field, driven away then back in the continuum, finally recombines back to rest in its initial ground state via a radiative transition. The emitted attosecond (atto=10-18) XUV light pulse carries all the information (polarization, amplitude and phase) about the photorecombination continuum-to-ground transition dipolar field. Photorecombination is related to the time-reversed photoionization process. In this perspective, high-harmonic spectroscopy extends well-established photoelectron spectroscopy, based on charged particle detection, to a fully coherent one, based on light characterization. The main achievement presented in this thesis is to use high harmonic generation to probe femtosecond (femto=10-15) chemical dynamics for the first time. Thanks to the coherence imposed by the strong driving laser field, homodyne detection of attosecond pulses from excited molecules undergoing dynamics is achieved, the signal from unexcited molecules acting as the reference local oscillator. First, applying time-resolved high-harmonic spectroscopy to the photodissociation of a diatomic molecule, Br2 → Br + Br, allows us to follow the break of a chemical bond occurring in a few hundreds of femtoseconds. Second, extending it to a triatomic (NO2) lets us observe both the previously unseen (but predicted) early femtosecond conical intersection dynamics followed by the late picosecond statistical photodissociation taking place in the reaction NO2 → NO + O. Another important realization of this thesis is the development of a complementary technique to time-resolved high-harmonic spectroscopy called LAPIN, for Linked Attosecond Phase INterferometry. When combined together, time-resolved high-harmonic spectroscopy and LAPIN give access to the complex photorecombination dipole of aligned excited molecules. These

  13. Spatial averaging of fields from half-wave dipole antennas and corresponding SAR calculations in the NORMAN human voxel model between 65 MHz and 2 GHz

    NASA Astrophysics Data System (ADS)

    Findlay, R. P.; Dimbylow, P. J.

    2009-04-01

    If an antenna is located close to a person, the electric and magnetic fields produced by the antenna will vary in the region occupied by the human body. To obtain a mean value of the field for comparison with reference levels, the Institute of Electrical and Electronic Engineers (IEEE) and International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommend spatially averaging the squares of the field strength over the height the body. This study attempts to assess the validity and accuracy of spatial averaging when used for half-wave dipoles at frequencies between 65 MHz and 2 GHz and distances of λ/2, λ/4 and λ/8 from the body. The differences between mean electric field values calculated using ten field measurements and that of the true averaged value were ~15% in the 600 MHz to 2 GHz range. The results presented suggest that the use of modern survey equipment, which takes hundreds rather than tens of measurements, is advisable to arrive at a sufficiently accurate mean field value. Whole-body averaged and peak localized SAR values, normalized to calculated spatially averaged fields, were calculated for the NORMAN voxel phantom. It was found that the reference levels were conservative for all whole-body SAR values, but not for localized SAR, particularly in the 1-2 GHz region when the dipole was positioned very close to the body. However, if the maximum field is used for normalization of calculated SAR as opposed to the lower spatially averaged value, the reference levels provide a conservative estimate of the localized SAR basic restriction for all frequencies studied.

  14. Spatial averaging of fields from half-wave dipole antennas and corresponding SAR calculations in the NORMAN human voxel model between 65 MHz and 2 GHz.

    PubMed

    Findlay, R P; Dimbylow, P J

    2009-04-21

    If an antenna is located close to a person, the electric and magnetic fields produced by the antenna will vary in the region occupied by the human body. To obtain a mean value of the field for comparison with reference levels, the Institute of Electrical and Electronic Engineers (IEEE) and International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommend spatially averaging the squares of the field strength over the height the body. This study attempts to assess the validity and accuracy of spatial averaging when used for half-wave dipoles at frequencies between 65 MHz and 2 GHz and distances of lambda/2, lambda/4 and lambda/8 from the body. The differences between mean electric field values calculated using ten field measurements and that of the true averaged value were approximately 15% in the 600 MHz to 2 GHz range. The results presented suggest that the use of modern survey equipment, which takes hundreds rather than tens of measurements, is advisable to arrive at a sufficiently accurate mean field value. Whole-body averaged and peak localized SAR values, normalized to calculated spatially averaged fields, were calculated for the NORMAN voxel phantom. It was found that the reference levels were conservative for all whole-body SAR values, but not for localized SAR, particularly in the 1-2 GHz region when the dipole was positioned very close to the body. However, if the maximum field is used for normalization of calculated SAR as opposed to the lower spatially averaged value, the reference levels provide a conservative estimate of the localized SAR basic restriction for all frequencies studied.

  15. Electromagnetic radiation from ingested sources in the human intestine between 150 MHz and 1.2 GHz.

    PubMed

    Chirwa, Lawrence C; Hammond, Paul A; Roy, Scott; Cumming, David R S

    2003-04-01

    The conventional method of diagnosing disorders of the human gastro-intestinal (GI) tract is by sensors embedded in cannulae that are inserted through the anus, mouth, or nose. However, these cannulae cause significant patient discomfort and cannot be used in the small intestine. As a result, there is considerable ongoing work in developing wireless sensors that can be used in the small intestine. The radiation characteristics of sources in the GI tract cannot be readily calculated due to the complexity of the human body and its composite tissues, each with different electrical characteristics. In addition, the compact antennas used are electrically small, making them inefficient radiators. This paper presents radiation characteristics for sources in the GI tract that should allow for the optimum design of more efficient telemetry systems. The characteristics are determined using the finite-difference time-domain method with a realistic antenna model on an established fully segmented human body model. Radiation intensity outside the body was found to have a Gaussian-form relationship with frequency. Maximum radiation occurs between 450 and 900 MHz. The gut region was found generally to inhibit vertically polarized electric fields more than horizontally polarized fields.

  16. Violation of a Bell-type inequality in the homodyne measurement of light in an Einstein-Podolsky-Rosen state

    NASA Astrophysics Data System (ADS)

    Kuzmich, A.; Walmsley, I. A.; Mandel, L.

    2001-12-01

    An optical Einstein-Podolsky-Rosen (EPR) state is produced in the spontaneous parametric down-conversion of an ultrashort classical pump pulse. It is shown both theoretically and experimentally that this results in the violation of a Bell-type inequality of the kind proposed by Grangier et al. The experiment is based on measuring interference between the light in the EPR state and weak light pulses in a coherent state. The maximum observed visibility of the interference pattern was (89+/-4)%. This interference can be regarded as a manifestation of nonlocality in the sense described by Banaszek and Wodkiewicz, even though the EPR state has a positive Wigner function. We develop the theory of two-channel homodyne detection with ultrafast pulses and then apply it to the EPR state generated in a type-II collinear geometry. Particular attention is paid to the investigation of how dispersion and phase matching influence the violation of local realism.

  17. Nonlinearity analysis in homodyne multi-pass interferometer with Jones matrix and correction with Fourier harmonic components method

    NASA Astrophysics Data System (ADS)

    Li, Qi; Li, Shi; Shi, Yushu; Li, Wei; Gao, Sitian

    2014-09-01

    The nonlinearity of the interferometer is an essential error in nanoscale measurements influenced by anisotropic gain and nonorthogonality of imperfect polarization components. In this paper, polarization error and the corresponding nonlinearity correction method are studied. The paper is divided into two parts, in the first part, main research focuses on the polarization mixing effect of multi-pass interferometer, besides this, polarization beam splitter and retardation plate are also analyzed, then a final synthetic evaluation is obtained through Jones matrix. In the second part, a harmonic separation method of interferometer signals is researched, the method first decomposes signals into Fourier series, then uses least square fitting to estimate coefficients of main terms of series. In the correction process, the primary phase angle is obtained through coefficients of base series and trigonometric formulas; the finer phase angle is obtained through coefficients of harmonics and Taylor expansion. Experimental results demonstrate that the nonlinearity of homodyne interferometer is significantly reduced in nanometer measurements.

  18. Super-resolving quantum radar: Coherent-state sources with homodyne detection suffice to beat the diffraction limit

    SciTech Connect

    Jiang, Kebei; Lee, Hwang; Gerry, Christopher C.; Dowling, Jonathan P.

    2013-11-21

    There has been much recent interest in quantum metrology for applications to sub-Raleigh ranging and remote sensing such as in quantum radar. For quantum radar, atmospheric absorption and diffraction rapidly degrades any actively transmitted quantum states of light, such as N00N states, so that for this high-loss regime the optimal strategy is to transmit coherent states of light, which suffer no worse loss than the linear Beer's law for classical radar attenuation, and which provide sensitivity at the shot-noise limit in the returned power. We show that coherent radar radiation sources, coupled with a quantum homodyne detection scheme, provide both longitudinal and angular super-resolution much below the Rayleigh diffraction limit, with sensitivity at shot-noise in terms of the detected photon power. Our approach provides a template for the development of a complete super-resolving quantum radar system with currently available technology.

  19. Gamma radiation impact on performance of OOK, DPSK and homodyne BPSK based optical inter-satellite communication system

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Zhao, Shanghong; Gong, Zizheng; Hou, Rui; Qiang, Ruoxin

    2015-09-01

    Performance of optical inter-satellite communication system is influenced by the harsh space radiation environment. Gamma radiation effects on main devices of communication system are analyzed and on the basis of existing experimental data, performance degradation of on off keying (OOK), differential phase shift keying (DPSK) and homodyne binary phase shift keying (BPSK) based system under 1 kGy gamma irradiation is simulated. Variation of Q factors and bit error ratio of these systems with different radiation position are achieved and discussed. The result shows that it is more urgent to improve the radiation hardness of transmitter, and the introduction of local laser is a considerable method to reduce gamma radiation impact on system performance.

  20. Cell sheets image validation of phase-diversity homodyne OCT and effect of the light irradiation on cells

    NASA Astrophysics Data System (ADS)

    Senda, Naoko; Osawa, Kentaro

    2016-04-01

    Optical coherence tomography (OCT) is one of powerful 3D tissue imaging tools with no fluorescence staining. We have reported that Phase-Diversity Homodyne OCT developed in Hitachi could be useful for non-invasive regeneration tissue evaluation test. The OCT enables cell imaging because of high resolution (axial resolution; ~2.6 μm, lateral resolution; ~1 μm, in the air), whereas conventional OCT was not used for cell imaging because of low resolution (10~20 μm). Furthermore, the OCT has advantage over other 3D imaging devices in cost because the light source and the objective were originally used as an optical pickup of compact disc. In this report, we aimed to assess effectiveness and safety of Phase-Diversity Homodyne OCT cell imaging. Effectiveness of OCT was evaluated by imaging a living cell sheet of human oral mucosal epithelial cells. OCT images were compared with reflection confocal microscopy (RCM) images, because confocal optical system is the highest resolution (<1 μm) 3D in vivo imaging technique. Similar nuclei images were confirmed with OCT and RCM, which suggested the OCT has enough resolution to image nuclei inside a cell sheet. Degree of differentiation could be estimated using OCT images, which becomes possible because the size of cells depends on distribution of differentiation. Effect of the OCT light irradiation on cells was studied using NIH/3T3 cells. Light irradiation, the exposure amount of which is equivalent to OCT, had no impact on cell shape, cell viability, and proliferation rate. It suggested that the light irradiation has no cell damage under the condition.

  1. Combined FEC-, line-, and syncbit-coding scheme for a high-sensitive and low-complexity optical PSK-homodyne system

    NASA Astrophysics Data System (ADS)

    Rapp, Christoph; Wandernoth, Bernhard

    1995-04-01

    A new combined modulation and coding scheme for optical PSK-homodyne transmission is proposed. The new system is designed with scope to the realization of a very compact and high sensitive coherent PSK homodyne system with considerable small hardware complexity. This is achieved by using a combined coding scheme for synchronization information (syncbit method), spectral shaping and forward error correction. Applications of this technique could be in the future small and lightweight optical terminals for space communications, but also possibly in the future coherent optical FDMA-fiber networks. Without using the syncbit- coding option, this method is also very well suited for optical direct detection schemes, in which an optimal combination of line- and channel coding is needed.

  2. Simplification of millimeter-wave radio-over-fiber system employing heterodyning of uncorrelated optical carriers and self-homodyning of RF signal at the receiver.

    PubMed

    Islam, A H M Razibul; Bakaul, Masuduzzaman; Nirmalathas, Ampalavanapillai; Town, Graham E

    2012-02-27

    A simplified millimeter-wave (mm-wave) radio-over-fiber (RoF) system employing a combination of optical heterodyning in signal generation and radio frequency (RF) self-homodyning in data recovery process is proposed and demonstrated. Three variants of the system are considered in which two independent uncorrelated lasers with a frequency offset equal to the desired mm-wave carrier frequency are used to generate the transmitted signal. Uncorrelated phase noise in the resulting mm-wave signal after photodetection was overcome by using RF self-homodyning in the data recovery process. Theoretical analyses followed by experimental results and simulated characterizations confirm the system's performance. A key advantage of the system is that it avoids the need for high-speed electro-optic and electronic devices operating at the RF carrier frequency at both the central station and base stations.

  3. High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes.

    PubMed

    Namekata, N; Takesue, H; Honjo, T; Tokura, Y; Inoue, S

    2011-05-23

    We have demonstrated quantum key distribution (QKD) over 100 km using single-photon detectors based on InGaAs/InP avalanche photodiodes (APDs). We implemented the differential phase shift QKD (DPS-QKD) protocol with electrically cooled and 2-GHz sinusoidally gated APDs. The single-photon detector has a dark count probability of 2.8 × 10(-8) (55 counts per second) with a detection efficiency of 6 %, which enabled us to achieve 24 kbit/s secure key rate over 100 km of optical fiber. The DPS-QKD system offers better performances in a practical way than those achieved using superconducting single-photon detectors. Moreover, the distance that secure keys against the general individual attacks can be distributed has been extended to 160 km.

  4. Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory.

    PubMed

    Bimbard, Erwan; Boddeda, Rajiv; Vitrant, Nicolas; Grankin, Andrey; Parigi, Valentina; Stanojevic, Jovica; Ourjoumtsev, Alexei; Grangier, Philippe

    2014-01-24

    We experimentally demonstrate that a nonclassical state prepared in an atomic memory can be efficiently transferred to a single mode of free-propagating light. By retrieving on demand a single excitation from a cold atomic gas, we realize an efficient source of single photons prepared in a pure, fully controlled quantum state. We characterize this source using two detection methods, one based on photon-counting analysis and the second using homodyne tomography to reconstruct the density matrix and Wigner function of the state. The latter technique allows us to completely determine the mode of the retrieved photon in its fine phase and amplitude details and demonstrate its nonclassical field statistics by observing a negative Wigner function. We measure a photon retrieval efficiency up to 82% and an atomic memory coherence time of 900  ns. This setup is very well suited to study interactions between atomic excitations and use them in order to create and manipulate more sophisticated quantum states of light with a high degree of experimental control.

  5. System simulation method for fiber-based homodyne multiple target interferometers using short coherence length laser sources

    NASA Astrophysics Data System (ADS)

    Fox, Maik; Beuth, Thorsten; Streck, Andreas; Stork, Wilhelm

    2015-09-01

    Homodyne laser interferometers for velocimetry are well-known optical systems used in many applications. While the detector power output signal of such a system, using a long coherence length laser and a single target, is easily modelled using the Doppler shift, scenarios with a short coherence length source, e.g. an unstabilized semiconductor laser, and multiple weak targets demand a more elaborated approach for simulation. Especially when using fiber components, the actual setup is an important factor for system performance as effects like return losses and multiple way propagation have to be taken into account. If the power received from the targets is in the same region as stray light created in the fiber setup, a complete system simulation becomes a necessity. In previous work, a phasor based signal simulation approach for interferometers based on short coherence length laser sources has been evaluated. To facilitate the use of the signal simulation, a fiber component ray tracer has since been developed that allows the creation of input files for the signal simulation environment. The software uses object oriented MATLAB code, simplifying the entry of different fiber setups and the extension of the ray tracer. Thus, a seamless way from a system description based on arbitrarily interconnected fiber components to a signal simulation for different target scenarios has been established. The ray tracer and signal simulation are being used for the evaluation of interferometer concepts incorporating delay lines to compensate for short coherence length.

  6. Self-homodyne 24×32-QAM superchannel receiver enabled by all-optical comb regeneration using brillouin amplification.

    PubMed

    Lorences-Riesgo, Abel; Mazur, Mikael; Eriksson, Tobias A; Andrekson, Peter A; Karlsson, Magnus

    2016-12-26

    We demonstrate and characterize an all-optical self-homodyne (SH) frequency superchannel enabled by comb regeneration at the receiver. In order to generate the superchannel, we use a frequency comb with 26 carriers spaced by 25 GHz at the transmitter, from which 24 carriers are modulated with polarization-multiplexed 32 quadrature amplitude modulation (PM 32-QAM) data. To enable comb regeneration at the receiver side, the two central carriers remain unmodulated. High fidelity comb regeneration is achieved by filtering the two unmodulated carriers with an approximately 25 MHz wide optical filter based on Brillouin amplification before a parametric mixer. The carriers from the regenerated comb are then used as local oscillator for SH detection. We demonstrate that all 24 carriers can be detected with an optical signal-to-noise ratio (OSNR) penalty lower than 2.5 dB in a back-to-back scenario. We also demonstrate that the whole superchannel can be transmitted through 120 km of single-mode fiber (SMF) and be detected with bit-error rate (BER) below 0.015.

  7. A high dynamic range method for the direct readout of a dynamic phase change in homodyne interferometers

    NASA Astrophysics Data System (ADS)

    Marçal, L. A. P.; Kitano, C.; Higuti, R. T.; Nader, G.; Silva, E. C. N.

    2012-12-01

    Piezoelectric flextensional actuators (PFAs) are an efficient alternative to systems that demand nano-positioning of devices, such as in nanotechnology. Optical techniques constitute an excellent choice for contactless measurement of nano-displacements. In particular, optical interferometry constitutes an adequate choice for characterizing PFAs. There are several types of interferometers, as well as optical phase demodulation methods, used in practice. One interesting class of demodulation methods uses the spectrum of the photo-detected signal and its intrinsic properties when there is a harmonically varying time-domain modulating signal. In this work, a low cost homodyne Michelson interferometer, associated with simple electronic circuits for signal conditioning and acquisition, is used. A novel dynamic phase demodulation method, named Jm&Jm + 2, is proposed, which uses only the magnitude spectrum of the photo-detected signal, without the need to know its phase spectrum. The method is passive, direct, self-consistent, without problems of phase ambiguity and immune to fading, and presents a dynamic range from 0.45 to 100 rad displacements (between 22.6 nm and 5 µm, for λ = 632.8 nm). When applied to the measurement of half-wave voltage in a proof-of-concept Pockels cell, it presents errors smaller than 0.9% when compared to theory. For the estimation of PFA displacement, it allows the measurement of linearity and frequency response curves, with excellent results.

  8. Realization of a robust homodyne quadrature laser interferometer by performing wave plate yawing to realize ultra-low error sensitivity.

    PubMed

    Cui, Junning; He, Zhangqiang; Tan, Jiubin; Sun, Tao

    2016-10-03

    The deviation of wave plates' optical axes from their intended angles, which may result from either instability or assembly error, is the main cause of quadrature phase error in homodyne quadrature laser interferometers (HQLIs). The quadrature phase error sensitivity to wave plate angle deviations, which is an effective measure of HQLI robustness, is further amplified by beam splitter imperfections. In this paper, a new HQLI design involving non-polarization beam splitting is presented, and a method of making this HQLI robust by yawing the wave plates in the measurement and reference arms is proposed. The theoretical analysis results indicate that ultra-low quadrature phase error sensitivities to wave plate angle deviations can be realized and that non-polarizing beam splitter imperfections can be adequately compensated for. The experimental results demonstrate that the proposed method can reduce the quadrature phase error sensitivity by more than 1 order of magnitude, from a theoretical value of 1.4°/1° to 0.05°/1°.

  9. Michelson interferometric fiber sensor for beam vibration control

    NASA Astrophysics Data System (ADS)

    Chou, Chan-Shin

    1994-05-01

    A fiber-optic Michelson interferometer is employed for sensing the vibration of a cantilevered beam. A small section of the sensing fiber arm is attached to the beam to sense the vibration of the beam. The active homodyne technique is used to obtain an electrical output which is proportional to the vibrational signal of the beam. A closed-loop control system comprises a pair of sensors and actuators, which are mounted nearly at the same point of the vibrating body, and an inverting power amplifier. The fiber sensor and a piezoelectric actuator are co- located on the root of the cantilevered beam. The fiber sensed signal is amplified and inverted, then fed into a piezoelectric actuator for exerting a dynamic control force on the body. Experimental results show that vibration of the beam is substantially reduced by applying a single control system with the fiber-optic Michelson interferometric vibration sensor.

  10. Calibration methods of a 2 GHz evanescent microwave magnetic probe for noncontact and nondestructive metal characterization for corrosion, defects, conductivity, and thickness nonuniformities

    SciTech Connect

    Wang Run; Li, Frank; Tabib-Azar, Massood

    2005-05-15

    A near-field magnetic-dipole probe suitable for noncontact and nondestructive imaging of metals is described and the effects of resonator coupling strength, operation frequency, and the probe wire tip geometry on the conductivity resolution of the probe are experimentally determined. Using a simplified circuit model of the resonator, we were able to interpret the system's output and predict the magnitude of reflected wave and relate it to the properties of the samples under investigation. Thus, the probe was calibrated to perform quantitative conductivity measurements with the ability to detect metal nonuniformities with 1% accuracy and 5x10{sup -3}{sigma} and 2x10{sup -2}{sigma} conductivity resolutions at 2 GHz operation frequency for both the critical and over-coupling probes, respectively. We also discussed the calibration results of probes with different coupling strengths over a 0.91 {omega}/square resistive sample. The calibration results of a critical-coupled resonator probe were also compared with a microstrip transmission line probe. It was observed that the resonator probe has 100 times higher conductivity resolution than that of the transmission line probe. Furthermore, we characterized and compared the calibration results of probes with tip wires of different diameters. Images obtained by an evanescent microwave probe are presented.

  11. Effects of static and dynamic higher-order optical modes in balanced homodyne readout for future gravitational waves detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Teng; Danilishin, Stefan L.; Steinlechner, Sebastian; Barr, Bryan W.; Bell, Angus S.; Dupej, Peter; Gräf, Christian; Hennig, Jan-Simon; Houston, E. Alasdair; Huttner, Sabina H.; Leavey, Sean S.; Pascucci, Daniela; Sorazu, Borja; Spencer, Andrew; Wright, Jennifer; Strain, Kenneth A.; Hild, Stefan

    2017-03-01

    With the recent detection of gravitational waves (GWs), marking the start of the new field of GW astronomy, the push for building more sensitive laser-interferometric gravitational wave detectors (GWDs) has never been stronger. Balanced homodyne detection (BHD) allows for a quantum-noise (QN) limited readout of arbitrary light field quadratures, and has therefore been suggested as a vital building block for upgrades to Advanced LIGO and third-generation observatories. In terms of the practical implementation of BHD, we develop a full framework for analyzing the static optical high-order modes (HOMs) occurring in the BHD paths related to the misalignment or mode matching at the input and output ports of the laser interferometer. We find the effects of HOMs on the quantum-noise limited sensitivity is independent of the actual interferometer configuration; e.g. Michelson and Sagnac interferometers are affected in the same way. We show that misalignment of the output ports of the interferometer (output misalignment) only affects the high-frequency part of the quantum-noise limited sensitivity (detection noise). However, at low frequencies, HOMs reduce the interferometer response and the radiation pressure noise (back-action noise) by the same amount and hence the quantum-noise limited sensitivity is not negatively affected in that frequency range. We show that the misalignment of the laser into the interferometer (input misalignment) produces the same effect as output misalignment and additionally decreases the power inside the interferometer. We also analyze dynamic HOM effects, such as beam jitter created by the suspended mirrors of the BHD. Our analyses can be directly applied to any BHD implementation in a future GWD. Moreover, we apply our analytical techniques to the example of the speed meter proof-of-concept experiment under construction in Glasgow. We find that for our experimental parameters, the performance of our seismic isolation system in the BHD paths is

  12. Fiber Optic Sensors for Smart Materials and Structures

    NASA Technical Reports Server (NTRS)

    Singh, H.; Chang, C. C.; Boyer, T.; Sirkis, J. S.

    1996-01-01

    In this paper we describe recently developed fiber sensors which are capable of monitoring the health of smart-structures. The unobstrusive geometry of these sensors make them an excellent choice for embedding the sensor in composite materials to measure internal states of strain in structures and materials. Some of these sensors have gage lengths that can be tailored from tens of microns to many meters. We will describe various demodulation schemes (Pseudo-Heterodyne, Synthetic-Heterodyne, Homodyne, Differential-Cross Multiplier, and Single Channel Phase-Tracker) to obtain high bandwidth measurements, enabling measurement of static to high frequency impact generated strains with a dynamic response exceeding tens of thousands of microstrains. In addition, we will show that we can tailor the fiber sensor to either measure only strain and reject temperature response or measure only the temperature, or measure both temperature and strain simultaneously. We will also demonstrate the ability to measure multiple strain components inside a host simultaneously using a single fiber sensor embedded in the host using a certain sensor type and transverse strain immunity using another sensor type. Additionally we will show the ability to measure temperature up to 100 C using fiber optic sensors.

  13. Fiber Optic Sensors for Smart Materials and Structures

    NASA Technical Reports Server (NTRS)

    Singh, H.; Chang, C. C.; Boyer, T.; Sirkis, J. S.

    1996-01-01

    In this paper we describe recently developed fiber sensors which are capable of monitoring the health of smart-structures. The unobstrusive geometry of these sensors make them an excellent choice for embedding the sensor in composite materials to measure internal states of strain in structures and materials. Some of these sensors have gage lengths that can be tailored from tens of microns to many meters. We will describe various demodulation schemes (Pseudo-Heterodyne, Synthetic-Heterodyne, Homodyne, Differential-Cross Multiplier, and Single Channel Phase-Tracker) to obtain high bandwidth measurements, enabling measurement of static to high frequency impact generated strains with a dynamic response exceeding tens of thousands of microstrains. In addition, we will show that we can tailor the fiber sensor to either measure only strain and reject temperature response or measure only the temperature, or measure both temperature and strain simultaneously. We will also demonstrate the ability to measure multiple strain components inside a host simultaneously using a single fiber sensor embedded in the host using a certain sensor type and transverse strain immunity using another sensor type. Additionally we will show the ability to measure temperature up to 100 C using fiber optic sensors.

  14. Damping constant in a free layer in nanoscale CoFeB/MgO magnetic tunnel junctions investigated by homodyne-detected ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Shinozaki, Motoya; Hirayama, Eriko; Kanai, Shun; Sato, Hideo; Matsukura, Fumihiro; Ohno, Hideo

    2017-01-01

    We investigate the damping constant of a free layer with a perpendicular magnetic easy axis in nanoscale CoFeB/MgO magnetic tunnel junctions (MTJs) with a reference layer with an in-plane easy direction. The built-in noncollinear magnetization configuration in the MTJs allows us to measure homodyne-detected ferromagnetic resonance without tilting the magnetization direction of the free layer from the device normal. The damping constants determined from the spectral linewidths after the subtraction of the inhomogeneous broadening are nearly independent of the device diameter ranging from 70 to 100 nm, and take values similar to those reported for blanket CoFeB films.

  15. A deep/wide 1-2 GHz snapshot survey of SDSS Stripe 82 using the Karl G. Jansky Very Large Array in a compact hybrid configuration

    NASA Astrophysics Data System (ADS)

    Heywood, I.; Jarvis, M. J.; Baker, A. J.; Bannister, K. W.; Carvalho, C. S.; Hardcastle, M.; Hilton, M.; Moodley, K.; Smirnov, O. M.; Smith, D. J. B.; White, S. V.; Wollack, E. J.

    2016-08-01

    We have used the Karl G. Jansky Very Large Array to image ˜100 deg2 of SDSS Stripe 82 at 1-2 GHz. The survey consists of 1026 snapshot observations of 2.5 min duration, using the hybrid CnB configuration. The survey has good sensitivity to diffuse, low surface brightness structures and extended radio emission, making it highly synergistic with existing 1.4 GHz radio observations of the region. The principal data products are continuum images, with 16 × 10 arcsec resolution, and a catalogue containing 11 782 point and Gaussian components resulting from fits to the thresholded Stokes-I brightness distribution, forming approximately 8948 unique radio sources. The typical effective 1σ noise level is 88 μJy beam-1. Spectral index estimates are included, as derived from the 1 GHz of instantaneous bandwidth. Astrometric and photometric accuracy are in excellent agreement with existing narrowband observations. A large-scale simulation is used to investigate clean bias, which we extend into the spectral domain. Clean bias remains an issue for snapshot surveys with the VLA, affecting our total intensity measurements at the ˜1σ level. Statistical spectral index measurements are in good agreement with existing measurements derived from matching separate surveys at two frequencies. At flux densities below ˜35σ the median in-band spectral index measurements begin to exhibit a bias towards flatness that is dependent on both flux density and the intrinsic spectral index. In-band spectral curvature measurements are likely to be unreliable for all but the very brightest components. Image products and catalogues are publicly available via an FTP server.

  16. Key comparison SIM.EM.RF-K5b.CL: scattering coefficients by broad-band methods, 2 GHz-18 GHz — type N connector

    NASA Astrophysics Data System (ADS)

    Silva, H.; Monasterios, G.

    2016-01-01

    The first key comparison in microwave frequencies within the SIM (Sistema Interamericano de Metrología) region has been carried out. The measurands were the S-parameters of 50 ohm coaxial devices with Type-N connectors and were measured at 2 GHz, 9 GHz and 18 GHz. SIM.EM.RF-K5b.CL was the identification assigned and it was based on a parent CCEM key comparison named CCEM.RF-K5b.CL. For this reason, the measurements standards and their nominal values were selected accordingly, i.e. two one-port devices (a matched and a mismatched load) to cover low and high reflection coefficients and two attenuators (3dB and 20 dB) to cover low and high transmission coefficients. This key comparison has met the need for ensuring traceability in high-frequency measurements across America by linking SIM's results to CCEM. Six NMIs have participated in this comparison which was piloted by the Instituto Nacional de Tecnología Industrial (Argentina). A linking method of multivariate values was proposed and implemented in order to allow the linking of 2-dimensional results. KEY WORDS FOR SEARCH Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  17. Miniaturized fiber-optic Michelson-type interferometric sensors

    NASA Technical Reports Server (NTRS)

    Murphy, Kent A.; Miller, William V., III; Tran, Tuan A.; Vengsarkar, Ashish M.; Claus, Richard O.

    1991-01-01

    A novel, miniaturized Michelson-type fiber-optic interferometric sensor that is relatively insensitive to temperature drifts is presented. A fused-biconical tapered coupler is cleaved immediately after the coupled length and polished down to the region of the fused cladding, but short of the interaction region. The end of one core is selectively coated with a reflective surface and is used as the reference arm; the other core serves as the sensing arm. The detection of surface acoustic waves, microdisplacements, and magnetic fields is reported. The sensor is shown to be highly stable in comparison to a classic homodyne, uncompensated Michelson interferometer, and signal-to-noise ratios of 65 dB have been obtained.

  18. Miniaturized fiber-optic Michelson-type interferometric sensors

    NASA Technical Reports Server (NTRS)

    Murphy, Kent A.; Miller, William V., III; Tran, Tuan A.; Vengsarkar, Ashish M.; Claus, Richard O.

    1991-01-01

    A novel, miniaturized Michelson-type fiber-optic interferometric sensor that is relatively insensitive to temperature drifts is presented. A fused-biconical tapered coupler is cleaved immediately after the coupled length and polished down to the region of the fused cladding, but short of the interaction region. The end of one core is selectively coated with a reflective surface and is used as the reference arm; the other core serves as the sensing arm. The detection of surface acoustic waves, microdisplacements, and magnetic fields is reported. The sensor is shown to be highly stable in comparison to a classic homodyne, uncompensated Michelson interferometer, and signal-to-noise ratios of 65 dB have been obtained.

  19. Miniaturized fiber-optic Michelson-type interferometric sensors.

    PubMed

    Murphy, K A; Miller Iii, W V; Tran, T A; Vengsarkar, A M; Claus, R O

    1991-12-01

    We present a novel, miniaturized Michelson-type fiber-optic interferometric sensor that is relatively insensitive to temperature drifts. A fused-biconical tapered coupler is cleaved immediately after the coupled length and polished down to the region of the fused cladding, but short of the interaction region. The end of one core is selectively coated with a reflective surface and is used as the reference arm; the other core serves as the sensing arm. We report the detection of surface acoustic waves, microdisplacements, and magnetic fields. The sensor is shown to be highly stable in comparison to a classic homodyne, uncompensated Michelson interferometer, and signal-to-noise ratios of 65 dB have been obtained.

  20. Suppression of optical beat interference-noise in orthogonal frequency division multiple access-passive optical network link using self-homodyne balanced detection

    NASA Astrophysics Data System (ADS)

    Won, Yong-Yuk; Jung, Sang-Min; Han, Sang-Kook

    2014-08-01

    A new technique, which reduces optical beat interference (OBI) noise in orthogonal frequency division multiple access-passive optical network (OFDMA-PON) links, is proposed. A self-homodyne balanced detection, which uses a single laser for the optical line terminal (OLT) as well as for the optical network unit (ONU), reduces OBI noise and also improves the signal to noise ratio (SNR) of the discrete multi-tone (DMT) signal. The proposed scheme is verified by transmitting quadrature phase shift keying (QPSK)-modulated DMT signal over a 20-km single mode fiber. The optical signal to noise ratio (OSNR), that is required for BER of 10-5, is reduced by 2 dB in the balanced detection compared with a single channel due to the cancellation of OBI noise in conjunction with the local laser.

  1. Direct and indirect measures of speech articulator motions using low power EM sensors

    SciTech Connect

    Barnes, T; Burnett, G; Gable, T; Holzrichter, J F; Ng, L

    1999-05-12

    Low power Electromagnetic (EM) Wave sensors can measure general properties of human speech articulator motions, as speech is produced. See Holzrichter, Burnett, Ng, and Lea, J.Acoust.Soc.Am. 103 (1) 622 (1998). Experiments have demonstrated extremely accurate pitch measurements (< 1 Hz per pitch cycle) and accurate onset of voiced speech. Recent measurements of pressure-induced tracheal motions enable very good spectra and amplitude estimates of a voiced excitation function. The use of the measured excitation functions and pitch synchronous processing enable the determination of each pitch cycle of an accurate transfer function and, indirectly, of the corresponding articulator motions. In addition, direct measurements have been made of EM wave reflections from articulator interfaces, including jaw, tongue, and palate, simultaneously with acoustic and glottal open/close signals. While several types of EM sensors are suitable for speech articulator measurements, the homodyne sensor has been found to provide good spatial and temporal resolution for several applications.

  2. Microwave Deflection Sensor

    NASA Technical Reports Server (NTRS)

    Shores, Paul; Kobayashi, Herb; Ngo, Phong; Lichtenberg, C. L.

    1988-01-01

    Doppler-radar instrument measures small deflections or vibrations of reflecting surface. Acting as interferometric micrometer, instrument includes combination of analog and digital circuits measuring change in phase of radar return due to movement of reflecting surface along signal-propagation path. Includes homodyne Doppler-radar transceiver and digital signal-processing circuitry to measure change in phase shift as target deflects.

  3. Optical homodyne RZ-QPSK transmission through wind tunnel at 3.8 and 1.55 μm via wavelength conversion

    NASA Astrophysics Data System (ADS)

    Cho, Pak S.; Harston, Geof; Büchter, Kai-Daniel F.; Soreide, David; Saint Clair, Jonathan M.; Sohler, Wolfgang; Achiam, Yaakov; Shpantzer, Isaac

    2009-05-01

    Atmospheric absorption, scattering, and turbulence are impairments in practical high-speed free-space laser communications. These atmospheric effects can be mitigated by choosing the proper transmission wavelength. It is well known that the MWIR (~3.8 μm) has many low-absorption spectral lines suitable for low-loss propagation. Also, MWIR can be more robust to turbulence in the weak-turbulence regime. Since high-speed laser transceivers are not available in the MWIR, a 3.8-μm signal can be generated and detected using a 1.55-μm telecom transceiver via wavelength conversion. Free-space transmission of optical homodyne RZ-QPSK through a turbulent channel at 3.8 μm has been investigated. A pair of Ti:PPLN-based nonlinear wavelength converters were used to down- and up-convert from 1.55 to 3.8 and back to 1.55 μm at the transmitter and at the homodyne receiver, respectively. The converted RZQPSK signal was transmitted through a tabletop wind tunnel that produces a weak turbulent path. Comparison of 1.55 and 3.8 μm transmission through the wind tunnel shows that under weak-turbulence 3.8 μm transmission is more robust than 1.55 μm. Under the same turbulence condition, the scintillation index measured at 3.8 μm is consistently lower than that at 1.55 μm. Extrapolated scintillation indexes for 3.8 and 1.55 μm using the Rytov variance (~ λ-7/6 ) and independent measurement at 632.8 nm are consistent with the RZ-QPSK scintillation data for 3.8 and 1.55 μm. Under the most severe turbulence condition, the average bit-error-rate of 3.8-μm transmission is better than that of 1.55-μm giving an estimated receiver sensitivity improvement of at least 6 dB.

  4. Speech Articulator and User Gesture Measurements Using Micropower, Interferometric EM-Sensors

    SciTech Connect

    Holzrichter, J F; Ng, L C

    2001-02-06

    Very low power, GHz frequency, ''radar-like'' sensors can measure a variety of motions produced by a human user of machine interface devices. These data can be obtained ''at a distance'' and can measure ''hidden'' structures. Measurements range from acoustic induced, 10-micron amplitude vibrations of vocal tract tissues, to few centimeter human speech articulator motions, to meter-class motions of the head, hands, or entire body. These EM sensors measure ''fringe motions'' as reflected EM waves are mixed with a local (homodyne) reference wave. These data, when processed using models of the system being measured, provide real time states of interface positions or other targets vs. time. An example is speech articulator positions vs. time in the user's body. This information appears to be useful for a surprisingly wide range of applications ranging from speech coding synthesis and recognition, speaker or object identification, noise cancellation, hand or head motions for cursor direction, and other applications.

  5. Speech Articulator and User Gesture Measurements Using Micropower, Interferometric EM-Sensore

    SciTech Connect

    Holzrichter, J.F.

    2000-09-15

    Very low power, GHz frequency, ''radar-like'' sensors can measure a variety of motions produced by a human user of machine interface devices. These data can be obtained ''at a distance'' and can measure ''hidden'' structures. Measurements range from acoustic induced 10-micron amplitude vibrations of vocal tract tissues, to few centimeter human speech articulator motions, to meter-class motions of the head, hands, or entire body. These EM sensors measure ''fringe motions' as reflected EM waves are mixed with a local (homodyne) reference wave. These data, when processed using models of the system being measured, provide real time states of interface positions vs. time. An example is speech articulator positions vs. time in the user's body. This information appears to be useful for a surprisingly wide range of applications ranging from speech coding and recognition, speaker or object identification, noise cancellation, hand or head motions for cursor direction, and other applications.

  6. Analytical Evaluation of the Effect of Cross-Polarization-induced Crosstalk on the BER Performance of a PDM-QPSK Coherent Homodyne Optical Transmission System

    NASA Astrophysics Data System (ADS)

    Taher, K. A.; Majumder, S. P.

    2017-05-01

    An analytical approach is developed to find the effect of cross-polarization (XPol)-induced crosstalk on the bit error rate (BER) performance of a polarization division multiplex (PDM) quadrature phase shift keying (QPSK) optical transmission system with polarization diversity receiver. Analytical expression for the XPol-induced crosstalk and signal to crosstalk plus noise ratio (SCNR) are developed at the output of polarization diversity PDM-QPSK coherent optical homodyne receiver conditioned on a given value of mean misalignment angle. Considering Maxwellian distribution for the pdf of the misalignment angle, the average SCNR and average BER are derived. Results show that there is significant deterioration in the BER performance and power penalty due to XPol-induced crosstalk. Penalties in signal power are found to be 8.85 dB, 11.28 dB and 12.59 dB correspondingly for LO laser power of -10 dBm, -5 dBm and 0 dBm at a data rate of 100 Gbps, mean misalignment angle of 7.5 degree and BER of 10-9 compared to the signal power without crosstalk.

  7. Ellipse fitting by nonlinear constraints to demodulate quadrature homodyne interferometer signals and to determine the statistical uncertainty of the interferometric phase

    NASA Astrophysics Data System (ADS)

    Köning, Rainer; Wimmer, Gejza; Witkovský, Viktor

    2014-11-01

    Optical interferometers are widely used in dimensional metrology applications. Among them are many quadrature homodyne interferometers. These exhibit two sinusoidal interference signals shifted, in the ideal case, by 90° to allow a direction sensitive detection of the motion responsible for the actual phase change. But practically encountered signals exhibit additional offsets, unequal amplitudes and a phase shift that differs from 90°. In order to demodulate the interference signals the so called Heydemann correction is used in almost all cases, i.e. an ellipse is fitted to both signals simultaneously to obtain the offsets, amplitude and the phase lag. Such methods are typically based on a simplified least squares fit that leads to a system of linear equations, which can be solved directly in one step. Although many papers related to this subject have been published already only a few of them consider the uncertainties related to this demodulation scheme. In this paper we propose a new method for fitting the ellipse, based on minimization of the geometric distance between the measured and fitted signal values, which provides locally best linear unbiased estimators (BLUEs) of the unknown model parameters, and simultaneously also estimates of the related statistical uncertainties, including the uncertainties of estimated phases and/or displacements.

  8. Current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  9. Laser Truss Sensor for Segmented Telescope Phasing

    NASA Technical Reports Server (NTRS)

    Liu, Duncan T.; Lay, Oliver P.; Azizi, Alireza; Erlig, Herman; Dorsky, Leonard I.; Asbury, Cheryl G.; Zhao, Feng

    2011-01-01

    A paper describes the laser truss sensor (LTS) for detecting piston motion between two adjacent telescope segment edges. LTS is formed by two point-to-point laser metrology gauges in a crossed geometry. A high-resolution (<30 nm) LTS can be implemented with existing laser metrology gauges. The distance change between the reference plane and the target plane is measured as a function of the phase change between the reference and target beams. To ease the bandwidth requirements for phase detection electronics (or phase meter), homodyne or heterodyne detection techniques have been used. The phase of the target beam also changes with the refractive index of air, which changes with the air pressure, temperature, and humidity. This error can be minimized by enclosing the metrology beams in baffles. For longer-term (weeks) tracking at the micron level accuracy, the same gauge can be operated in the absolute metrology mode with an accuracy of microns; to implement absolute metrology, two laser frequencies will be used on the same gauge. Absolute metrology using heterodyne laser gauges is a demonstrated technology. Complexity of laser source fiber distribution can be optimized using the range-gated metrology (RGM) approach.

  10. High-precision tilt sensor using a folded Mach-Zehnder geometry in-phase and quadrature interferometer.

    PubMed

    Park, June Gyu; Cho, Kyuman

    2016-03-20

    A new high-sensitivity homodyne in-phase and quadrature (I/Q) -interferometer scheme for measuring the tilt change of a target is presented. The new tilt sensor is a Mach-Zehnder interferometer folded by the target, in which the phase change is induced by the in-plane tilt change of the target but is not sensitive to any other motions. The interferometer is specially designed to minimize interferences caused by environmental perturbations. The induced phase is directly measured by using the I/Q-demodulation scheme. The tilt sensor exhibits an excellent sensitivity 10  prad/Hz1/2 at a frequency slightly above 1 Hz and a 0.4  prad/Hz1/2 at a frequency higher than 30 Hz.

  11. An anatomically realistic whole-body pregnant-woman model and specific absorption rates for pregnant-woman exposure to electromagnetic plane waves from 10 MHz to 2 GHz

    NASA Astrophysics Data System (ADS)

    Nagaoka, Tomoaki; Togashi, Toshihiro; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi; Watanabe, Soichi

    2007-11-01

    The numerical dosimetry of pregnant women is an important issue in electromagnetic-field safety. However, an anatomically realistic whole-body pregnant-woman model for electromagnetic dosimetry has not been developed. Therefore, we have developed a high-resolution whole-body model of pregnant women. A new fetus model including inherent tissues of pregnant women was constructed on the basis of abdominal magnetic resonance imaging data of a 26-week-pregnant woman. The whole-body pregnant-woman model was developed by combining the fetus model and a nonpregnant-woman model that was developed previously. The developed model consists of about 7 million cubical voxels of 2 mm size and is segmented into 56 tissues and organs. This pregnant-woman model is the first completely anatomically realistic voxel model that includes a realistic fetus model and enables a numerical simulation of electromagnetic dosimetry up to the gigahertz band. In this paper, we also present the basic specific absorption rate characteristics of the pregnant-woman model exposed to vertically and horizontally polarized electromagnetic waves from 10 MHz to 2 GHz.

  12. Displacement damage in bit error ratio performance of on-off keying, pulse position modulation, differential phase shift keying, and homodyne binary phase-shift keying-based optical intersatellite communication system.

    PubMed

    Liu, Yun; Zhao, Shanghong; Gong, Zizheng; Zhao, Jing; Dong, Chen; Li, Xuan

    2016-04-10

    Displacement damage (DD) effect induced bit error ratio (BER) performance degradations in on-off keying (OOK), pulse position modulation (PPM), differential phase-shift keying (DPSK), and homodyne binary phase shift keying (BPSK) based systems were simulated and discussed under 1 MeV neutron irradiation to a total fluence of 1×1012  n/cm2 in this paper. Degradation of main optoelectronic devices included in communication systems were analyzed on the basis of existing experimental data. The system BER degradation was subsequently simulated and the variations of BER with different neutron irradiation location were also achieved. The result shows that DD on an Er-doped fiber amplifier (EDFA) is the dominant cause of system degradation, and a BPSK-based system performs better than the other three systems against DD. In order to improve radiation hardness of communication systems against DD, protection and enhancement of EDFA are required, and the use of a homodyne BPSK modulation scheme is a considered choice.

  13. Optimal Signal Filtration in Optical Sensors with Natural Squeezing of Vacuum Noises

    NASA Technical Reports Server (NTRS)

    Gusev, A. V.; Kulagin, V. V.

    1996-01-01

    The structure of optimal receiver is discussed for optical sensor measuring a small displacement of probe mass. Due to nonlinear interaction of the field and the mirror, a reflected wave is in squeezed state (natural squeezing), two quadratures of which are correlated and therefore one can increase signal-to-noise ratio and overcome the SQL. A measurement procedure realizing such correlation processing of two quadratures is clarified. The required combination of quadratures can be produced via mixing of pump field reflected from the mirror with local oscillator phase modulated field in duel-detector homodyne scheme. Such measurement procedure could be useful not only for resonant bar gravitational detector but for laser longbase interferometric detectors as well.

  14. Ground-Based Dual Frequency X- (9.6 GHz) and Ku-band (17.2 GHz) Backscatter Evolution of Snow on Lake Ice in the Subarctic Hudson Bay Lowlands

    NASA Astrophysics Data System (ADS)

    Gunn, G. E.; Duguay, C.; Kelly, R. E.

    2012-12-01

    Fully polarimetric dual-frequency ground based scatterometer observations were collected at X- (9.6 GHz) and Ku-band (17.2 GHz) at four sites over Malcolm Ramsey Lake, Manitoba, as part of the Canadian Snow and Ice Experiment (CASIX). Correlative snow and ice information collected adjacent to scatterometer acquisitions serve to characterize the influence of in-situ properties on backscatter variations, aiding in property retrieval algorithm development. This study presents the winter backscatter evolution at X- and Ku-band for a typical shallow subarctic tundra lake in winter. Backscatter is tracked through changes in snow depth, density, snow water equivalent (SWE), ice thickness, ice surface types, and bubble concentration within the ice volume. For floating ice, backscatter increases are coincident with increases in SWE, ice thickness, and bubble concentration. Where ice freezes to bed, both X- and Ku-band backscatter drop considerably, consistent with the removal of the high dielectric contrast normally present at the ice/water interface. Snow removal experiments at all sites reveal a slight Ku-band VV sensitivity to the overlying snowpack (~2-3 dB), while X-band backscatter remains solely sensitive to the ice conditions. Overall, both X- and Ku-band are predominantly sensitive to changes in the ice cover over a range of approximately 10 - 12 dB (VV, HH), with backscatter increases coincident to the inclusion of high density bubbles in the ice. This experiment is the first ground-based X-/Ku- band investigation of backscatter signatures for snow on lake ice, and contributes to the scientific objectives of the proposed satellite Cold Regions Hydrology High-resolution Observatory (CoReH2O).

  15. Smart sensors

    NASA Astrophysics Data System (ADS)

    Corsi, Carlo

    2006-08-01

    The term "Smart Sensors" refer to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics and intelligence applications. In a broad sense, they include any sensor systems covering the whole electromagnetic spectrum: this paper deals specifically with a new class of smart sensors in infrared spectral bands whose developments started some years ago, when it was recognized that the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic infrared detector array technology could be combined to develop new generations of infrared smart sensor systems with much improved performance. So, sophisticated signal processing operations have been developed for these new systems by integrating microcomputers and other VLSI signal processors within or next to the sensor arrays on the same focal plane avoiding complex computing located far away from the sensors. Recently this approach is achieving higher goals by a new and revolutionary sensors concept which introduce inside the sensor some of the basic function of living eyes, such as dynamic stare, dishomogenity compensation, spatial and temporal filtering. New objectives and requirements of these new focal plane processors are presented for this type of new infrared smart sensor systems. This paper is concerned with the processing techniques for only the front end of the focal plane processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by "smart" and pattern correlation threshold.

  16. Smart sensors

    NASA Astrophysics Data System (ADS)

    Corsi, Carlo

    1991-09-01

    The term 'smart sensors' refers to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics, and intelligence applications. In a broad sense, they include any sensor system covering the whole electromagnetic spectrum: this paper deals specifically with a new class of smart sensors in infrared spectral bands whose developments started some years ago, when it was recognized that the rapid advances of very large scale integration (VLSI) processor technology and mosaic infrared detector array technology could be combined to develop new generations of infrared smart sensor systems with much improved performances. Thus, sophisticated signal processing operations will be developed for these new systems by integrating microcomputers and other VLSI signal processors within or next to the sensor arrays, on the same focal plane, avoiding complex computing located far away from the sensors. Recently this approach has achieved higher goals by a new and revolutionary sensor concept which introduces inside the sensor some of the basic functions of living eyes, such as dynamic stare, dishomogeneity compensation, spatial and temporal filtering. New objectives and requirements of these new focal plane processors are presented for this type of new infrared smart sensor system. This paper concerns the processing techniques limited to the front end of the focal plane processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by a smart pattern correlation thresholding.

  17. Sensor web

    NASA Technical Reports Server (NTRS)

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  18. Aptamer Sensors

    PubMed Central

    Marrazza, Giovanna

    2017-01-01

    In the last years, great progress has been accomplished in the development of aptamer sensors with different transducers. In order to improve the sensitivity of these biosensors, several methodologies have been employed. In this Special Issue, the state of art and the future trends in the field of aptamer sensors have been explored. PMID:28054983

  19. Temperature Sensor

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Weed Instrument Inc. produces a line of thermocouples - temperature sensors - for a variety of industrial and research uses. One of the company's newer products is a thermocouple specially designed for high accuracy at extreme temperatures above 3,000 degrees Fahrenheit. Development of sensor brought substantial increases in Weed Instrument sales and employment.

  20. Chemical sensors

    DOEpatents

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  1. Research sensors

    NASA Technical Reports Server (NTRS)

    Englund, David R.

    1987-01-01

    The program described covers development of sensors and sensing techniques for research applications on aeropropulsion systems. In general, the sensors are used in-situ to measure the environment at a given location within a turbine engine, or to measure the response of an engine component to the imposed environment. Locations of concern are generally in the gas path and, for the most part, are within the hot section. Specific parameters of concern are dynamic gas temperature, heat flux, airfoil surface temperature, and strain on airfoils and combustor liners. In order to minimize the intrusiveness of surface-mounted sensors, a considerable effort was expended to develop thin-film sensors for surface temperature, strain, and heat flux measurements. Most of the work described is sufficiently advanced that sensors were used and useful data were obtained. The notable exception is the work to develop a high-temperature static strain measuring capability; this work is still in progress.

  2. Smart Sensors

    NASA Astrophysics Data System (ADS)

    Corsi, C.

    2007-01-01

    The term "Smart Sensors" refers to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics and intelligence applications. Recently this approach is achieving higher goals by a new and revolutionary sensors concept which introduced inside the sensor some of the basic functions of living eyes, such as dynamic stare, non-uniformity compensation, spatial and temporal filtering. New objectives and requirements are presented for this type of new infrared smart sensor systems. This paper is concerned with the front end of FPA microbolometers processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by "smart" and pattern correlation thresholding.

  3. Detection of water leaks in supply pipes using continuous wave sensor operating at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Bimpas, Matthaios; Amditis, Angelos; Uzunoglu, Nikolaos

    2010-03-01

    An innovative sensor technique has been developed to detect water leaks in supply pipes, especially in cases where the existing prevailing methods do not offer reliable solution, such as in PVC pipelines or for minor leaks. The presented system uses a Continuous Wave (CW) Doppler sensing unit operating at 2.45 GHz, consisting of a low power transmitter, a homodyne receiver and a digital signal processing unit. The operation principle is the detection of the Doppler frequency shift of the reflected electromagnetic wave by slightly moving water that leaks out of a pipe. A first prototype has already been developed and tested in test sites as well as in real water leaking conditions. The system has additionally been compared to the commercially available water leaking methods, verifying its reliability and accuracy in the detection of water leaks.

  4. Attitude sensor

    NASA Technical Reports Server (NTRS)

    Newcomb, A. L., Jr.; Price, A. G. (Inventor)

    1973-01-01

    A device for controlling the attitude of a spacecraft is described. The device consists of two light sensors on a spacecraft that are mounted beneath a baffle which divides the light from a light source such as the sun or a star. The divided light reflects off of two reflective surfaces onto the two light sensors. When the spacecraft assumes its normal attitude, the baffle divides the light source into two equal parts, causing the two light sensors to produce equal outputs. When the light is equally detected, the stabilizing system is disconnected. Deviations from the normal attitude cause unequal distribution of the light source and energize the stabilizing system.

  5. Sensor technology

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M.

    1988-01-01

    The objective is to provide necessary expertise and technology to advance space remote sensing of terrestrial, planetary, and galactic phenomena through the use of electromagnetic and electro-optic properties of gas, liquid, and solid state materials technology. The Sensor Technology Program is divided into two subprograms: a base research and development part and a Civil Space Technology Initiative (CSTI) part. The base research and development consists of research on artificially grown materials such as quantum well and superlattice structure with the potential for new and efficient means for detecting electromagnetic phenomena. Research is also being done on materials and concepts for detector components and devices for measuring high energy phenomena such as UV, X-, and gamma rays that are required observables in astrophysis and solar physics missions. The CSTI program is more mission driven and is balanced among four major disciplines: detector sensors; submillimeter wave sensors; LIDAR/DIAL sensors; and cooler technology.

  6. Wireless sensor

    DOEpatents

    Lamberti, Vincent E.; Howell, JR, Layton N.; Mee, David K.; Sepaniak, Michael J.

    2016-02-09

    Disclosed is a sensor for detecting a target material. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon exposure to vapor or liquid from the target material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The target material is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  7. Research sensors

    NASA Technical Reports Server (NTRS)

    Englund, David R.

    1988-01-01

    The work described is part of a program (Englund and Seasholtz, 1988) to develop sensors and sensing techniques for research applications on aircraft turbine engines. In general, the sensors are used to measure the environment at a given location within a turbine engine or to measure the response of an engine component to the imposed environment. Locations of concern are generally in the gas path and, for the most part, are within the hot section. Specific parameters of concern are dynamic gas temperature, heat flux, airfoil surface temperature, and strain on airfoils and combustor liners. To minimize the intrusiveness of surface-mounted sensors, a considerable effort was expended to develop thin-film sensors for surface temperature, strain, and heat flux measurements. In addition, an optical system for viewing the interior of an operating combustor was developed. Most of the work described is sufficiently advanced that the sensors were used and useful data were obtained. The notable exception is the work to develop a high-temperature static strain measuring capability; the work is still in progress.

  8. Water Sensors

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mike Morris, former Associate Director of STAC, formed pHish Doctor, Inc. to develop and sell a pH monitor for home aquariums. The monitor, or pHish Doctor, consists of a sensor strip and color chart that continually measures pH levels in an aquarium. This is important because when the level gets too high, ammonia excreted by fish is highly toxic; at low pH, bacteria that normally break down waste products stop functioning. Sales have run into the tens of thousands of dollars. A NASA Tech Brief Technical Support Package later led to a salt water version of the system and a DoE Small Business Innovation Research (SBIR) grant for development of a sensor for sea buoys. The company, now known as Ocean Optics, Inc., is currently studying the effects of carbon dioxide buildup as well as exploring other commercial applications for the fiber optic sensor.

  9. Chemical sensor

    NASA Technical Reports Server (NTRS)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  10. Sensor apparatus

    DOEpatents

    Deason, Vance A [Idaho Falls, ID; Telschow, Kenneth L [Idaho Falls, ID

    2009-12-22

    A sensor apparatus and method for detecting an environmental factor is shown that includes an acoustic device that has a characteristic resonant vibrational frequency and mode pattern when exposed to a source of acoustic energy and, futher, when exposed to an environmental factor, produces a different resonant vibrational frequency and/or mode pattern when exposed to the same source of acoustic energy.

  11. Gas sensor

    DOEpatents

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  12. Chemical sensors

    DOEpatents

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1991-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising (a) a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, operatively coupled to (b) a transducer capable of directly converting said expansion or contraction to a measurable electrical response.

  13. Tunable mechanical monolithic sensor with interferometric readout for low frequency seismic noise measurement

    NASA Astrophysics Data System (ADS)

    Acernese, F.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.

    2008-03-01

    This paper describes a mechanical monolithic sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric-discharge-machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation make it a very compact instrument, very sensitive in the low-frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve both for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result, for example, is that the measured natural resonance frequency of the instrument is 70 mHz with a Q = 140 in air without thermal stabilization, demonstrating the feasibility of a monolithic FP sensor with a natural resonance frequency of the order of mHz with a more refined mechanical tuning. Results on the readout system based on polarimetric homodyne Michelson interferometer is discussed.

  14. Extended Kalman Doppler tracking and model determination for multi-sensor short-range radar

    NASA Astrophysics Data System (ADS)

    Mittermaier, Thomas J.; Siart, Uwe; Eibert, Thomas F.; Bonerz, Stefan

    2016-09-01

    A tracking solution for collision avoidance in industrial machine tools based on short-range millimeter-wave radar Doppler observations is presented. At the core of the tracking algorithm there is an Extended Kalman Filter (EKF) that provides dynamic estimation and localization in real-time. The underlying sensor platform consists of several homodyne continuous wave (CW) radar modules. Based on In-phase-Quadrature (IQ) processing and down-conversion, they provide only Doppler shift information about the observed target. Localization with Doppler shift estimates is a nonlinear problem that needs to be linearized before the linear KF can be applied. The accuracy of state estimation depends highly on the introduced linearization errors, the initialization and the models that represent the true physics as well as the stochastic properties. The important issue of filter consistency is addressed and an initialization procedure based on data fitting and maximum likelihood estimation is suggested. Models for both, measurement and process noise are developed. Tracking results from typical three-dimensional courses of movement at short distances in front of a multi-sensor radar platform are presented.

  15. Corrosion sensor

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1994-04-26

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

  16. Pressure sensor

    DOEpatents

    Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.

    2015-09-29

    Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  17. Corrosion sensor

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  18. Sensor assembly

    DOEpatents

    Bennett, Thomas E.; Nelson, Drew V.

    2004-04-13

    A ribbon-like sensor assembly is described wherein a length of an optical fiber embedded within a similar lengths of a prepreg tow. The fiber is ""sandwiched"" by two layers of the prepreg tow which are merged to form a single consolidated ribbon. The consolidated ribbon achieving a generally uniform distribution of composite filaments near the embedded fiber such that excess resin does not ""pool"" around the periphery of the embedded fiber.

  19. Chemical sensors

    DOEpatents

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1992-06-09

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

  20. Chemical sensors

    DOEpatents

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1992-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material.

  1. Hydrogen sensor

    DOEpatents

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  2. Influenza sensor

    DOEpatents

    Swanson, Basil I.; Song, Xuedong; Unkefer, Clifford; Silks, III, Louis A.; Schmidt, Jurgen G.

    2003-09-30

    A sensor for the detection of tetrameric multivalent neuraminidase within a sample is disclosed, where a positive detection indicates the presence of a target virus within the sample. Also disclosed is a trifunctional composition of matter including a trifunctional linker moiety with groups bonded thereto including (a) an alkyl chain adapted for attachment to a substrate, (b) a fluorescent moiety capable of generating a fluorescent signal, and (c) a recognition moiety having a spacer group of a defined length thereon, the recognition moiety capable of binding with tetrameric multivalent neuraminidase.

  3. Influenza Sensor

    DOEpatents

    Swanson, Basil I.; Song, Xuedong; Unkefer, Clifford; Silks, III, Louis A.; Schmidt, Jurgen G.

    2005-05-17

    A sensor for the detection of tetrameric multivalent neuraminidase within a sample is disclosed, where a positive detection indicates the presence of a target virus within the sample. Also disclosed is a trifunctional composition of matter including a trifunctional linker moiety with groups bonded thereto including (a) an alkyl chain adapted for attachment to a substrate, (b) a fluorescent moiety capable of generating a fluorescent signal, and (c) a recognition moiety having a spacer group of a defined length thereon, the recognition moiety capable of binding with tetrameric multivalent neuraminidase.

  4. Influenza Sensor

    DOEpatents

    Swanson, Basil I.; Song, Xuedong; Unkefer, Clifford; Silks, III, Louis A.; Schmidt, Jurgen G.

    2006-03-28

    A sensor for the detection of tetrameric multivalent neuraminidase within a sample is disclosed, where a positive detection indicates the presence of a target virus within the sample. Also disclosed is a trifunctional composition of matter including a trifunctional linker moiety with groups bonded thereto including (a) an alkyl chain adapted for attachment to a substrate, (b) a fluorescent moiety capable of generating a fluorescent signal, and (c) a recognition moiety having a spacer group of a defined length thereon, the recognition moiety capable of binding with tetrameric multivalent neuraminidase.

  5. Semiconductor sensors

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C. (Inventor); Lagowski, Jacek (Inventor)

    1977-01-01

    A semiconductor sensor adapted to detect with a high degree of sensitivity small magnitudes of a mechanical force, presence of traces of a gas or light. The sensor includes a high energy gap (i.e., .about. 1.0 electron volts) semiconductor wafer. Mechanical force is measured by employing a non-centrosymmetric material for the semiconductor. Distortion of the semiconductor by the force creates a contact potential difference (cpd) at the semiconductor surface, and this cpd is determined to give a measure of the force. When such a semiconductor is subjected to illumination with an energy less than the energy gap of the semiconductors, such illumination also creates a cpd at the surface. Detection of this cpd is employed to sense the illumination itself or, in a variation of the system, to detect a gas. When either a gas or light is to be detected and a crystal of a non-centrosymmetric material is employed, the presence of gas or light, in appropriate circumstances, results in a strain within the crystal which distorts the same and the distortion provides a mechanism for qualitative and quantitative evaluation of the gas or the light, as the case may be.

  6. Microcantilever sensor

    DOEpatents

    Thundat, T.G.; Wachter, E.A.

    1998-02-17

    An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere. 16 figs.

  7. Microcantilever sensor

    DOEpatents

    Thundat, Thomas G.; Wachter, Eric A.

    1998-01-01

    An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere.

  8. Force sensor

    DOEpatents

    Grahn, Allen R.

    1993-01-01

    A force sensor and related method for determining force components. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  9. Force sensor

    DOEpatents

    Grahn, A.R.

    1993-05-11

    A force sensor and related method for determining force components is described. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  10. Sensors, Update 1

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Göpel, Wolfgang; Hesse, Joachim

    1996-12-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Treatments include current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Furthermore, the sensor market as well as peripheral aspects such as standards are covered. Each volume is divided into four sections. Sensor Technology, reviews highlights in applied and basic research, Sensor Applications, covers new or improved applications of sensors, Sensor Markets, provides an overview of suppliers and market trends for a particular section, and Sensor Standards, reviews recent legislation and requirements for sensors. With this unique combination of information in each volume, Sensors Update will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  11. Sensors for Entertainment.

    PubMed

    Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon

    2016-07-15

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on "Sensors for Entertainment", developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  12. Mass Sensor

    SciTech Connect

    Adams, B.E.

    2001-01-18

    The purpose of this CRADA was to use Honeywell's experience in low temperature cofire ceramics and traditional ceramics to assemble a relatively low-cost, mass-producible miniature mass analyzer. The specific design, given to us by Mass Sensors, LLC, was used to test for helium. The direct benefit for the participant was to have a prototype unit assembled for the purpose of proof of concept and the ability to secure venture capital investors. From that, the company would begin producing their own product for sale. The consumer/taxpayer benefits come from the wide variety of industries that can utilize this technology to improve quality of life. Medical industry can use this technology to improve diagnostic ability; manufacturing industry can use it for improved air, water, and soil monitoring to minimize pollution; and the law enforcement community can use this technology for identification of substances. These are just a few examples of the benefit of this technology. The benefits to DOE were in the area of process improvement for cofire and ceramic materials. From this project we demonstrated nonlinear thickfilm fine lines and spaces that were 5-mil wide with 5-mil spaces; determined height-to diameter-ratios for punched and filled via holes; demonstrated the ability to punch and fill 5-mil microvias; developed and demonstrated the capability to laser cut difficult geometries in 40-mil ceramic; developed and demonstrated coupling LTCC with standard alumina and achieving hermetic seals; developed and demonstrated three-dimensional electronic packaging concepts; and demonstrated printing variable resistors within 1% of the nominal value and within a tightly defined ratio. The capability of this device makes it invaluable for many industries. The device could be used to monitor air samples around manufacturing plants. It also could be used for monitoring automobile exhaust, for doing blood gas analysis, for sampling gases being emitted by volcanoes, for studying

  13. Using a 1.2 GHz bandwidth reflective semiconductor optical amplifier with seeding light by 64-quadrature amplitude modulation orthogonal frequency division multiplexing modulation to achieve a 10-gbits/s upstream rate in long-reach passive optical network access

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Wu, Yu-Fu

    2012-01-01

    We use a commercially available 1.2 GHz bandwidth reflective semiconductor optical amplifier (RSOA)--based optical network unit (ONU) to achieve 10-gbits/s upstream traffic for an optical orthogonal frequency division multiplexing (OFDM) long-reach passive optical network (LR-PON). This is the first time the 64--quadrature amplitude modulation (QAM) OFDM format has been applied to RSOA-ONU to achieve a 75 km fiber transmission length. In the proposed LR-PON, the upstream power penalty of 5.2 dB at the bit error rate of 3.8×10-3 is measured by using a 64-QAM OFDM modulation after the 75 km fiber transmission without dispersion compensation.

  14. Wireless sensor platform

    DOEpatents

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    2017-08-08

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  15. Microwave bio-sensor based on symmetrical split ring resonator with spurline filters for therapeutic goods detection.

    PubMed

    Alahnomi, Rammah A; Zakaria, Z; Ruslan, E; Ab Rashid, S R; Mohd Bahar, Amyrul Azuan; Shaaban, Azizah

    2017-01-01

    A novel symmetrical split ring resonator (SSRR) based microwave sensor with spurline filters for detecting and characterizing the properties of solid materials has been developed. Due to the weak perturbation in the interaction of material under test (MUT) and planar microwave sensor, spurline filters were embedded to the SSRR microwave sensor which effectively enhanced Q-factor with suppressing the undesired harmonic frequency. The spurline filter structures force the presented sensor to resonate at a fundamental frequency of 2.2 GHz with the capabilities of suppressing rejected harmonic frequency and miniaturization in circuit size. A wide bandwidth rejection is achieved by using double spurlines filters with high Q-factor achievement (up to 652.94) compared to single spurline filter. The new SSRR sensor with spurline filters displayed desired properties such as high sensitivity, accuracy, and performance with a 1.3% typical percentage error in the measurement results. Furthermore, the sensor has been successfully applied for detecting and characterizing solid materials (such as Roger 5880, Roger 4350, and FR4) and evidently demonstrated that it can suppress the harmonic frequency effectively. This novel design with harmonic suppression is useful for various applications such as food industry (meat, fruit, vegetables), biological medicine (derived from proteins and other substances produced by the body), and Therapeutic goods (antiseptics, vitamins, anti-psychotics, and other medicines).

  16. Phase coded, micro-power impulse radar motion sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.

  17. Phase coded, micro-power impulse radar motion sensor

    DOEpatents

    McEwan, T.E.

    1996-05-21

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.

  18. Sensor response rate accelerator

    DOEpatents

    Vogt, Michael C.

    2002-01-01

    An apparatus and method for sensor signal prediction and for improving sensor signal response time, is disclosed. An adaptive filter or an artificial neural network is utilized to provide predictive sensor signal output and is further used to reduce sensor response time delay.

  19. Wireless ferroelectric resonating sensor.

    PubMed

    Viikari, Ville; Seppa, Heikki; Mattila, Tomi; Alastalo, Ari

    2010-04-01

    This paper presents a passive wireless resonating sensor that is based on a ferroelectric varactor. The sensor replies with its data at an intermodulation frequency when a reader device illuminates it at 2 closely located frequencies. The paper derives a theoretical equation for the response of such a sensor, verifies the theory by simulations, and demonstrates a temperature sensor based on a ferroelectric varactor.

  20. Nanotube Sensors

    NASA Technical Reports Server (NTRS)

    McEuen, Paul L.

    2002-01-01

    Under this project, we explored the feasibility of utilizing carbon nanotubes in sensing applications. The grant primarily supported a graduate student, who worked on a number of aspects of the electrical properties of carbon nanotubes in collaboration with other researchers in my group. The two major research accomplishments are described below. The first accomplishment is the demonstration that solution carbon nanotube transistors functioned well in an electrolyte environment. This was important for two reasons. First, it allowed us to explore the ultimate limits of nanotube electronic performance by using the electrolyte as a highly effective gate, with a dielectric constant of approximately 80 and an effective insulator thickness of approximately 1 nm. Second, it showed that nanotubes function well under biologically relevant conditions (salty water) and therefore offer great promise as biological sensors. The second accomplishment was the demonstration that a voltage pulse applied to an AFM tip could be used to electrically cut carbon nanotubes. We also showed that a carefully applied pulse could also 'nick' a nanotube, creating a tunnel barrier without completely breaking the tube. Nicking was employed to make, for example, a quantum dot within a nanotube.

  1. Nanotube Sensors

    NASA Technical Reports Server (NTRS)

    McEuen, Paul L.

    2002-01-01

    Under this project, we explored the feasibility of utilizing carbon nanotubes in sensing applications. The grant primarily supported a graduate student, who worked on a number of aspects of the electrical properties of carbon nanotubes in collaboration with other researchers in my group. The two major research accomplishments are described below. The first accomplishment is the demonstration that solution carbon nanotube transistors functioned well in an electrolyte environment. This was important for two reasons. First, it allowed us to explore the ultimate limits of nanotube electronic performance by using the electrolyte as a highly effective gate, with a dielectric constant of approximately 80 and an effective insulator thickness of approximately 1 nm. Second, it showed that nanotubes function well under biologically relevant conditions (salty water) and therefore offer great promise as biological sensors. The second accomplishment was the demonstration that a voltage pulse applied to an AFM tip could be used to electrically cut carbon nanotubes. We also showed that a carefully applied pulse could also 'nick' a nanotube, creating a tunnel barrier without completely breaking the tube. Nicking was employed to make, for example, a quantum dot within a nanotube.

  2. Fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Hesse, J.; Sohler, W.

    1984-01-01

    A survey of the developments in the field of fiber optics sensor technology is presented along with a discussion of the advantages of optical measuring instruments as compared with electronic sensors. The two primary types of fiber optics sensors, specifically those with multiwave fibers and those with monowave fibers, are described. Examples of each major sensor type are presented and discussed. Multiwave detectors include external and internal fiber optics sensors. Among the monowave detectors are Mach-Zender interferometers, Michelson interferometers, Sagnac interferometers (optical gyroscopes), waveguide resonators, and polarimeter sensors. Integrated optical sensors and their application in spectroscopy are briefly discussed.

  3. EDITORIAL: Humidity sensors Humidity sensors

    NASA Astrophysics Data System (ADS)

    Regtien, Paul P. L.

    2012-01-01

    produced at relatively low cost. Therefore, they find wide use in lots of applications. However, the method requires a material that possesses some conflicting properties: stable and reproducible relations between air humidity, moisture uptake and a specific property (for instance the length of a hair, the electrical impedance of the material), fast absorption and desorption of the water vapour (to obtain a short response time), small hysteresis, wide range of relative humidity (RH) and temperature-independent output (only responsive to RH). For these reasons, much research is done and is still going on to find suitable materials that combine high performance and low price. In this special feature, three of the four papers report on absorption sensors, all with different focus. Aziz et al describe experiments with newly developed materials. The surface structure is extensively studied, in view of its ability to rapidly absorb water vapour and exhibit a reproducible change in the resistance and capacitance of the device. Sanchez et al employ optical fibres coated with a thin moisture-absorbing layer as a sensitive humidity sensor. They have studied various coating materials and investigated the possibility of using changes in optical properties of the fibre (here the lossy mode resonance) due to a change in humidity of the surrounding air. The third paper, by Weremczuk et al, focuses on a cheap fabrication method for absorption-based humidity sensors. The inkjet technology appears to be suitable for mass fabrication of such sensors, which is demonstrated by extensive measurements of the electrical properties (resistance and capacitance) of the absorbing layers. Moreover, they have developed a model that describes the relation between humidity and the electrical parameters of the moisture-sensitive layer. Despite intensive research, absorption sensors still do not meet the requirements for high accuracy applications. The dew-point temperature method is more appropriate

  4. Sensors, Update 2

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Göpel, Wolfgang; Hesse, Joachim

    1996-10-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Coverage includes current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Furthermore, the sensor market as well as peripheral aspects such as standards are covered. Each volume is divided into four sections. Sensor Technology, reviews highlights in applied and basic research, Sensor Applications, covers new or improved applications of sensors, Sensor Markets, provides a survey of suppliers and market trends for a particular area. With this unique combination of information in each volume, Sensors Update will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  5. Sensor sentinel computing device

    DOEpatents

    Damico, Joseph P.

    2016-08-02

    Technologies pertaining to authenticating data output by sensors in an industrial environment are described herein. A sensor sentinel computing device receives time-series data from a sensor by way of a wireline connection. The sensor sentinel computing device generates a validation signal that is a function of the time-series signal. The sensor sentinel computing device then transmits the validation signal to a programmable logic controller in the industrial environment.

  6. Evaluation of infrasound sensors

    SciTech Connect

    Kromer, R.P.; McDonald, T.S.

    1998-08-01

    Sandia is evaluating the performance of various infrasound sensors that could be used as part of the International Monitoring Systems (IMS). Specifications for infrasound stations are outlined in CTBT/PC/II/1/Add.2. This document specifies minimum requirements for sensor, digitizer and system. The infrasound sensors evaluation task has the following objectives: provide an overview of the sensors presently in use; evaluate these sensors with respect to the requirements of the IMS.

  7. Sensor modules for wireless distributed sensor networks

    SciTech Connect

    Lee, A P; McConaghy, C F; Simon, J N; Benett, W; Jones, L; Trevino, J

    1999-02-22

    A national security need as well as environmental monitoring need exists for networks of sensors. The advantages of a network of sensors over a single sensor are improved range, sensitivity, directionality, and data readability. Depending upon the particular application, sensors can be acoustic, chemical, biological, thermal or inertial. A major desire in these sensor networks is to have the individual sensor and associated electronics small and low enough in power that the battery can also be small and of long life. Smaller, low power sensor nodes can allow more nodes per network. A typical network for security applications is depicted in Figure 1. Here a number of sensor nodes are deployed around a central hub node in a star configuration. In this scenario the hubs communicate with each other and ultimately relay information to a satellite. Future networks might follow this scenario or some other network architecture such as a hopping network where individual nodes communicate directly with each other. The focus of our research has been on development of the small low power nodes and less on the overall network topology. However, some consideration of the network must be given when designing the nodes and some consideration of the nodes must be given when designing the network. An individual sensor node contains not only the sensor but also the sensor interface electronics, analog to digital (A/D) converter, logic, RF communication link, antenna, and the battery. Future nodes will also contain some form of signal processing to allow more sophisticated network architectures. The FY98 goal for this project was to make a sensor node with a physical form factor of a 2 inch x 2 inch x 2 inch cube.

  8. Sensors, Update 9

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Göpel, Wolfgang; Hesse, Joachim

    2001-10-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Coverage includes current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Each volume is divided into three sections. Sensor Technology, reviews highlights in applied and basic research, Sensor Applications, covers new or improved applications of sensors, Sensor Markets, provides a survey of suppliers and market trends for a particular area. With this unique combination of information in each volume, Sensors Update will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  9. Sensors, Update 10

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Fedder, Gary K.; Korvink, Jan G.

    2002-04-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Coverage includes current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Each volume is divided into three sections. Sensor Technology, reviews highlights in applied and basic research, Sensor Applications, covers new or improved applications of sensors, Sensor Markets, provides a survey of suppliers and market trends for a particular area. With this unique combination of information in each volume, Sensors Update will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  10. Sensors, Update 12

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Fedder, Gary K.; Korvink, Jan G.

    2003-04-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Coverage includes current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Each volume is divided into three sections. Sensor Technology, reviews highlights in applied and basic research, Sensor Applications, covers new or improved applications of sensors, Sensor Markets, provides a survey of suppliers and market trends for a particular area. With this unique combination of information in each volume, Sensors Update will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  11. Sensors, Update 8

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Göpel, Wolfgang; Hesse, Joachim

    2001-02-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Coverage includes current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Each volume is divided into three sections: Sensor Technology reviews highlights in applied and basic research, while Sensor Applications covers new or improved applications of sensors, and Sensor Markets provides a survey of suppliers and market trends for a particular area. With this unique combination of information in each volume, Sensors Update will be invaluable to scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  12. Coupled wave sensor technology

    SciTech Connect

    Maki, M.C.

    1988-01-01

    Buried line guided radar sensors have been used successfully for a number of years to provide perimeter security for high value resources. This paper introduces a new complementary sensor advancement at Computing Devices termed 'coupled wave device technology' (CWD). It provides many of the inherent advantages of leakey cable sensors, such as terrain-following and the ability to discriminate between humans and small animals. It also is able to provide a high or wide detection zone, and allows the sensor to be mounted aerially and adjacent to a wall or fence. Several alternative sensors have been developed which include a single-line sensor, a dual-line hybrid sensor that combines the elements of ported coax and CWD technology, and a rapid-deployment portable sensor for temporary or mobile applications. A description of the technology, the sensors, and their characteristics is provided.

  13. Acousto-optical interaction bandwidth of more than 2 GHz

    NASA Astrophysics Data System (ADS)

    Petrov, Vladimir V.

    1996-12-01

    The way of extension of acousto-optical interaction frequency bandwidth to more than one octave is suggested. The main principle used for this aim is to design the electro-acoustical multi-element transducer with variable, along its length, parameters. In such a case to each frequency point inside chosen band exists the region of the transducer's length where, from one hand, the condition for good excitation of sound waves is fulfilled and from the other hand the Bragg condition is also fulfilled because of closed coincidence of real and necessary frequency dependencies of Bragg angle and of the angle of sound wave front inclination. This window moves from one end of the transducer to the other when frequency changes from minimum to maximum one inside the band. The closer real angle frequency dependence follows to necessary one than larger the length of transducer can be done and than more higher the diffraction efficiency can be reached.

  14. Absolute measurement of the cosmic microwave background at 2 GHz

    NASA Astrophysics Data System (ADS)

    Bersanelli, M.; Bensadoun, M.; de Amici, G.; Levin, S.; Limon, M.; Smoot, G. F.; Vinje, W.

    1994-04-01

    We measured the intensity of the cosmic microwave background (CMB) radiation at a frequency of 2.0 GHz (15 cm wavelength) with a ground-based total-power radio-frequency (RF) gain radiometer calibrated at the antenna aperture with a quasi-free space cold load. The observations were performed from a remote, high-altitude site near the Amundsen-Scott South Pole Station to minimize systematic effects. The measured thermodynamic temperature of the CMB is TCMB = 2.55 +/- 0.14 K (68% confidence level), the limiting factors in the accuracy being the subtraction of the atmospheric and Galactic contributions. The atmospheric emission was evaluated both by direct measurements and by extrapolation from our higher frequency data. The Galactic emission was determined by scaling low-frequency maps and was checked with differential drift scans. Our result is approximately 1 sigma lower than the recent accurate value of TCMB obtained by Cosmic microwave Background Explorer (COBE)-FIRAS above 60 GHz. The temperature of the sky (i.e., CMB plus Galaxy and extragalactic sources) at the south celestial pole with approximately 22 deg resolution is TA, Sky = 2.83 +/- 0.10 K, and its accuracy is limited by the subtraction of atmospheric emission.

  15. Learning sensor models for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Ertin, Emre

    2007-04-01

    Sensor data generation is a key component of high fidelity design and testing of applications at scale. In addition to its utility in validation of applications and network services, it provides a theoretical basis for the design of algorithms for efficient sampling, compression and exfiltration of the sensor readings. Modeling of the environmental processes that gives rise to sensor readings is the core problem in physical sciences. Sensor modeling for wireless sensor networks combine the physics of signal generation and propagation with models of transducer saturation and fault models for hardware. In this paper we introduce a novel modeling technique for constructing probabilistic models for censored sensor readings. The model is an extension of the Gaussian process regression and applies to continuous valued readings subject to censoring. We illustrate the performance of the proposed technique in modeling wireless propagation between nodes of a wireless sensor network. The model can capture the non-isotropic nature of the propagation characteristics and utilizes the information from the packet reception failures. We use measured data set from the Kansei sensor network testbed using 802.15.4 radios.

  16. Analyzing Single Giant Unilamellar Vesicles With a Slotline-Based RF Nanometer Sensor.

    PubMed

    Cui, Yan; Kenworthy, Anne K; Edidin, Michael; Divan, Ralu; Rosenmann, Daniel; Wang, Pingshan

    2016-04-01

    Novel techniques that enable reagent free detection and analysis of single cells are of great interest for the development of biological and medical sciences as well as point-of-care health service technologies. Highly sensitive and broadband radio-frequency (RF) sensors are promising candidates for such a technique. In this work, we present a highly sensitive and tunable RF sensor, which is based on interference processes and built with a 100 nm slotline structure. The highly concentrated RF fields, up to ~1.76×10(7) V/m, enable strong interactions between Giant unilamellar vesicles (GUVs) and fields for high sensitivity operations. We also provide two modeling approaches to extract cell dielectric properties from measured scattering parameters. GUVs of different molecular compositions are synthesized and analyzed with the RF sensor at ~2 GHz, ~2.5 GHz, and ~2.8 GHz with an initial |S21 | min of ~-100 dB. Corresponding GUV dielectric properties are obtained. A one-dimensional scanning of single GUV is also demonstrated.

  17. Analyzing Single Giant Unilamellar Vesicles With a Slotline-Based RF Nanometer Sensor

    PubMed Central

    Cui, Yan; Kenworthy, Anne K.; Edidin, Michael; Divan, Ralu; Rosenmann, Daniel; Wang, Pingshan

    2016-01-01

    Novel techniques that enable reagent free detection and analysis of single cells are of great interest for the development of biological and medical sciences as well as point-of-care health service technologies. Highly sensitive and broadband radio-frequency (RF) sensors are promising candidates for such a technique. In this work, we present a highly sensitive and tunable RF sensor, which is based on interference processes and built with a 100 nm slotline structure. The highly concentrated RF fields, up to ~1.76×107 V/m, enable strong interactions between Giant unilamellar vesicles (GUVs) and fields for high sensitivity operations. We also provide two modeling approaches to extract cell dielectric properties from measured scattering parameters. GUVs of different molecular compositions are synthesized and analyzed with the RF sensor at ~2 GHz, ~2.5 GHz, and ~2.8 GHz with an initial |S21|min of ~−100 dB. Corresponding GUV dielectric properties are obtained. A one-dimensional scanning of single GUV is also demonstrated. PMID:27713585

  18. Multi Sensor Array

    NASA Technical Reports Server (NTRS)

    Immer, Christopher; Voska, Ned (Technical Monitor)

    2002-01-01

    This paper presents viewgraphs on the Multi Sensor Array. The topics include: 1) MSA Algorithm; 2) Types of Sensors for the MSA; 3) How to test the MSA; 4) Monte Carlo Simulation; and 5) Accelerated Life Tests.

  19. Miniature Biomimetic Acoustic Sensors

    DTIC Science & Technology

    1999-08-01

    micro-sensors 5. Microscale bio-sound detectors. Stereocilia as actuators: 1. Similar to crustacean /insect stridulatory pegs 2. Micro-Sonar/Sodar emitting arrays, Handheld Sonars, Air-Coupled Acoustic Sensors.

  20. Sensors for Process Control

    NASA Astrophysics Data System (ADS)

    Tschulena, G.

    1988-01-01

    Sensors are one of the key elements for the automation in the manufacturing and process technology. The sensor field is presently within a restructuring process, directed to a stronger utilization of solid state technologies. This restructuring is governed by the utilization of solid state physical effects, by the use of reproducible fabrication techniques, and by the market driving forces. The state of the art of sensors in modern fabrication techniques will be demonstrated in examples, namely for sensors in silicon technology, in thin film technology and in thick film/screen printing technology. Some important physical and technological problems to be solved for the development of new and advanced sensor families will be outlined. Sensor development is strongly directed to the minaturization of devices and to the integration of different sensors to multisensors, as well as the integration between sensors and microelectronics.

  1. Air Sensor Toolbox

    EPA Pesticide Factsheets

    Air Sensor Toolbox provides information to citizen scientists, researchers and developers interested in learning more about new lower-cost compact air sensor technologies and tools for measuring air quality.

  2. Wake Vortex Sensors Requirements Overview

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1997-01-01

    The presentation includes discussions of primary wake vortex system requirements, evolution models, sensor evolution, site specific sensor tradeoffs, wake sensor functions, deployment considerations, the operational test bed system and additional sensor requirements.

  3. Fiber optic geophysical sensors

    DOEpatents

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  4. Digital Sensor Technology

    SciTech Connect

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  5. Giant magnetoresistive sensor

    DOEpatents

    Stearns, Daniel G.; Vernon, Stephen P.; Ceglio, Natale M.; Hawryluk, Andrew M.

    1999-01-01

    A magnetoresistive sensor element with a three-dimensional micro-architecture is capable of significantly improved sensitivity and highly localized measurement of magnetic fields. The sensor is formed of a multilayer film of alternately magnetic and nonmagnetic materials. The sensor is optimally operated in a current perpendicular to plane mode. The sensor is useful in magnetic read/write heads, for high density magnetic information storage and retrieval.

  6. Secure Sensor Platform

    SciTech Connect

    Troy Ross, Barry Schoeneman

    2010-08-25

    The Secure Sensor Platform (SSP) software provides a framework of functionality to support the development of low-power autonomous sensors for nuclear safeguards. This framework provides four primary functional blocks of capabilities required to implement autonomous sensors. The capabilities are: communications, security, power management, and cryptography. Utilizing this framework establishes a common set of functional capabilities for seamless interoperability of any sensor based upon the SSP concept.

  7. Acoustic Humidity Sensor

    NASA Technical Reports Server (NTRS)

    Shakkottai, Parthasarathy; Kwack, Eug Y.; Venkateshan, Shakkottai

    1990-01-01

    Industrial humidity sensor measures volume fraction of water in air via its effect on speed of sound. Only portion of sensor exposed to sensed atmosphere is pair of stainless-steel tubes, one containing dry air and other containing moist air. Counters measure intervals between reflected pulses. Sensor rugged enough for use in harsh environments like those used to control drying of paper in paper mills, where most humidity sensors do not survive.

  8. Extreme Velocity Wind Sensor

    NASA Technical Reports Server (NTRS)

    Perotti, Jose; Voska, Ned (Technical Monitor)

    2002-01-01

    This presentation provides an overview of the development of new hurricane wind sensor (Extreme Velocity Wind Sensor) for the Kennedy Space Center (KSC) which is designed to withstand winds of up to three hundred miles an hour. The proposed Extreme Velocity Wind Sensor contains no moveable components that would be exposed to extreme wind conditions. Topics covered include: need for new hurricane wind sensor, conceptual design, software applications, computational fluid dynamic simulations of design concept, preliminary performance tests, and project status.

  9. Directional Acoustic Density Sensor

    DTIC Science & Technology

    2010-09-13

    fluctuations of fluid density at a point . (2) DESCRIPTION OF THE PRIOR ART [0004] Conventional vector sensors measure particle velocity, v (vx,Vytvz...dipole-type or first order sensor that is realized by measuring particle velocity at a point , (which is the vector sensor sensing approach for...underwater sensors), or by measuring the gradient of the acoustic pressure at two closely spaced (less than the wavelength of an acoustic wave) points as it

  10. First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles.

    PubMed

    Gabl, R; Feucht, H-D; Zeininger, H; Eckstein, G; Schreiter, M; Primig, R; Pitzer, D; Wersing, W

    2004-01-15

    A novel integrated bio-sensor technology based on thin-film bulk acoustic wave resonators on silicon is presented and the feasibility of detecting DNA and protein molecules proofed. The detection principle of these sensors is label-free and relies on a resonance frequency shift caused by mass loading of an acoustic resonator, a principle very well known from quartz crystal micro balances. Integrated ZnO bulk acoustic wave resonators with resonance frequencies around 2 GHz have been fabricated, employing an acoustic mirror for isolation from the silicon substrate. DNA oligos have been thiol-coupled to the gold electrode by on-wafer dispensing. In a further step, samples have either been hybridised or alternatively a protein has been coupled to the receptor. The measurement results show the new bio-sensor being capable of both, detecting proteins as well as the DNA hybridisation without using a label. Due to the substantially higher oscillation frequency, these sensors already show much higher sensitivity and resolution comparable to quartz crystal micro balances. The potential for these sensors and sensors arrays as well as technological challenges will be discussed in detail.

  11. Micro sun sensor

    NASA Technical Reports Server (NTRS)

    Liebe, C. C.; Mobasser, S.; Wrigley, C. J.; Bae, Y.; Howard, A.; Schroeder, J.

    2002-01-01

    A new generation of sun sensors is emerging. These sun sensors utilize an imaging detector and the sun sensor determines the sun angles based on an image of fringes or centroids on the detector plane. Typically determines the sun angle in two axes.

  12. Sensors for Entertainment

    PubMed Central

    Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon

    2016-01-01

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on “Sensors for Entertainment”, developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored. PMID:27428981

  13. SALAD helicopter integrated sensor

    SciTech Connect

    Soo Hoo, M.S.

    1988-08-01

    The theory and operation of an integrated acoustic and seismic sensor for use with the SALAD helicopter detection system is presented. This sensor incorporates a microphone, geophone, acoustic preamplifier, and tamper indicating features in a buryable, compact aluminum package. This sensor is intended for deployment within a pre-selected, controlled media.

  14. Automotive vehicle sensors

    SciTech Connect

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  15. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  16. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  17. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  18. Development of transition edge sensors with rf-SQUID based multiplexing system for the HOLMES experiment

    NASA Astrophysics Data System (ADS)

    Puiu, A.; Becker, D.; Bennett, D.; Faverzani, M.; Ferri, E.; Fowler, J.; Gard, J.; Hays-Wehle, J.; Hilton, G.; Giachero, A.; Maino, M.; Mates, J.; Nucciotti, A.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L.

    2017-09-01

    Measuring the neutrino mass is one the most compelling issue in particle physics. HOLMES is an experiment funded by the European Research Council for a direct measurement of neutrino mass. HOLMES will perform a precise measurement of the end point of the Electron Capture decay spectrum of 163Ho in order to extract information on neutrino mass with a sensitivity as low as 1 eV. HOLMES, in its final configuration will deploy a 1000 pixel array of low temperature microcalorimeters: each calorimeter consists of an absorber, where the Ho atoms will be implanted, coupled to a Transition Edge Sensor thermometer. The detectors will be kept at the working temperature of ∼70 mK using a dilution refrigerator. In order to gather the required 3 × 1013 events in a three year long data taking with a pile up fraction as low as 10‑4, detectors must fulfill rather high speed and resolution requirements, i.e. 10 µs rise time and 4 eV resolution. To ensure such performances with an efficient read out technique for very large detectors array kept at low temperature inside a cryostat is no trivial matter: at the moment, the most appealing read out technique applicable to large arrays of Transition Edge Sensors is rf-SQUID multiplexing. It is based on the use of rf-SQUIDs as input devices with flux ramp modulation for linearisation purposes; the rf-SQUID is then coupled to a super-conductive λ/4-wave resonator in the GHz range, and the modulated signal is finally read out using the homodyne technique.

  19. Rotorwash wind sensor evaluation

    NASA Astrophysics Data System (ADS)

    Meyerhoff, Curtis L.; Lake, Robert E.; Gordge, Dennis N.

    1993-08-01

    This project's purpose was to assess and document the ability of the Qualimetrics, Inc. model 2132 wind sensor (a cup and vane type sensor) to measure a rotor wash flow field as compared to the TSI, Inc. model 204D ion beam deflection sensor. The tests concentrated on the sensor's ability to capture dynamic characteristics of a helicopter rotor wash flow field. The project was conducted from April to November 1992 and consisted of quantitative laboratory and field testing. The laboratory testing included 9.5 hours of wind tunnel test time, subjecting each sensor to three step input tests at velocities of 20 knots, 50 knots, and 80 knots. Field test data were collected during one hour of SH-60B helicopter hover time at heights of 15 and 25 feet above ground level at distances of 35 and 70 feet from the wind sensors. Aircraft gross weights ranged between 19,600 and 20,500 pounds. All field test data were obtained in ambient wind conditions of approximately 8 knots at 40 degrees relative to the aircraft nose, -40 feet pressure altitude in an ambient temperature of 85 F. Laboratory data analysis indicates the model 2132 cup and vane sensor's time constant values were significantly higher than those of the model 204D ion beam sensor and varied relative to wind tunnel velocity settings. This indicates the model 2132 sensor's ability to accurately capture oscillations in a dynamic flow field is significantly less than the model 204D sensor. The model 2132 sensor did detect periodic or pulsating velocity magnitudes, but failed to capture significant oscillations as compared to the model 204D sensor. Comparative analysis of all field test event data indicate the model 2132 sensor only detected frequencies below 1.5 Hz and only captured an average of 46 percent of the model 204D sensor's maximum amplitude pulse values that were below 1.5 Hz. The model 2132 sensor's inability to capture many of the maximum pulse amplitudes is evidence of the sensor's limited capability to

  20. Virtual Sensor Test Instrumentation

    NASA Technical Reports Server (NTRS)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  1. Multifuctional integrated sensors (MFISES).

    SciTech Connect

    Homeijer, Brian D.; Roozeboom, Clifton

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and the real world applications of the sensors systems.

  2. Sensor mount assemblies and sensor assemblies

    SciTech Connect

    Miller, David H

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  3. Silicon force sensor

    SciTech Connect

    Galambos, Paul C.; Crenshaw, Thomas B.; Nishida, Erik E.; Burnett, Damon J.; Lantz, Jeffrey W.

    2016-07-05

    The various technologies presented herein relate to a sensor for measurement of high forces and/or high load shock rate(s), whereby the sensor utilizes silicon as the sensing element. A plate of Si can have a thinned region formed therein on which can be formed a number of traces operating as a Wheatstone bridge. The brittle Si can be incorporated into a layered structure comprising ductile and/or compliant materials. The sensor can have a washer-like configuration which can be incorporated into a nut and bolt configuration, whereby tightening of the nut and bolt can facilitate application of a compressive preload upon the sensor. Upon application of an impact load on the bolt, the compressive load on the sensor can be reduced (e.g., moves towards zero-load), however the magnitude of the preload can be such that the load on the sensor does not translate to tensile stress being applied to the sensor.

  4. Multimission unattended ground sensor

    NASA Astrophysics Data System (ADS)

    Prado, Gervasio; Succi, George P.; Fitzgerald, James; Clapp, Daniel; Gampert, Robert; Martel, Philip O.

    2002-08-01

    Technological advances in a number of fields have allowed SenTech to develop a highly capable Unattended Ground Sensor (UGS) able to perform a number of critical missions such as ground and air vehicle surveillance, personnel detection and tracking and sniper localization. These sensors have also been combined with electro-optic sensors to provide target images and improved tracking accuracy. Processing is done in a highly integrated processing module developed under DARPA's IUGS program. Acoustic sensors have been engineered to achieve a three-pound unit with a 15 day field life and long range VHF communications. These sensors will be delivered in early 2002 for testing during field exercises. Extensive testing of the algorithms and software has been conducted over the last few years at a variety of government-sponsored tests and demonstrations. A Gateway unit has been developed which can manage the operation of an eight-sensor field and perform two-dimensional sensor fusion.

  5. Digital Sensor Technology

    SciTech Connect

    Thomas, Ken D.; Quinn, Edward L.; Mauck, Jerry L.; Bockhorst, Richard M.

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  6. Smart temperature sensors

    NASA Astrophysics Data System (ADS)

    Shahinpoor, Mohsen; Martinez, David R.

    1999-07-01

    This paper discusses the conceptual design of a family of specially-designed temperature surety sensors made with shape-memory alloys (SMA). These sensors are capable of detecting a one time temperature excursion or variance form a predetermined temperature range. The propose designs can also be used to detect a one-time temperature rise and persistence above a certain pre-selected critical temperature. In that respect, these sensors relate to a family of one-time thaw sensors detecting whether or not frozen food items or other frozen products or objects experience a thawing-refreezing process in their journey from point A to point B. The proposed sensor can also detect a one time temperature excursion into non-allowable temperatures for non-frozen food, as well as pharmaceutical or other medical products. The essential design of these smart sensor is a lever arm attached to an SMA wire whose temperature is initially below Austenite start temperature or well into the Martensite region. As a given product experiences an undesirable temperature range which pushes the SMA material into the Austenite region the wire contracts and moves the lever arm outside a display window area and exposes either a red working indicator or a graduated scale calibrated to the range of temperature excursion experienced by the product. The sensor is designed such that if the temperature returns to normal the excursion indication will not disappear, but will permanently shown the amount of excursion above the temperature surety region for that product. Several possible design variations are presented and discussed. The proposed embodiments include a rupture type thaw sensor made with short SMA springs or bellows, SMA foil roll-up type sensors, SMA wire-loaded shutter type thaw sensors, SMA torsion strut-loaded shutter type thaw sensors, multiple shutter SMA wire-loaded thaw sensors, multiple shutter, SMA torsion-rod-loaded thaw sensors, and rupture-Type SMA spring-loaded thaw sensors.

  7. HEAT Sensor: Harsh Environment Adaptable Thermionic Sensor

    SciTech Connect

    Limb, Scott J.

    2016-05-31

    This document is the final report for the “HARSH ENVIRONMENT ADAPTABLE THERMIONIC SENSOR” project under NETL’s Crosscutting contract DE-FE0013062. This report addresses sensors that can be made with thermionic thin films along with the required high temperature hermetic packaging process. These sensors can be placed in harsh high temperature environments and potentially be wireless and self-powered.

  8. Solid State Humidity Sensors

    NASA Astrophysics Data System (ADS)

    Chang, Song-Lin

    There are only a few solid state humidity sensors available today. Most of those sensors use a porous oxide material as a principal part of the device. The devices work on the basis of a change in resistance as the moisture in the air varies. In this experiment, two solid state humidity sensors have been developed for use under practical conditions. One is a Polymer Oxide Semiconductor device with a POLYOX film that absorbs the moisture from the air. The amount of water dipoles absorbed by the polymer is a function of relative humidity. This sensor can measure relative humidity from 20% to 90%. The other is a Dew Point sensor. The sensor is in contact with the upper surface of a miniature Peltier cooler. Water molecules deposited on the sensor surface cause the electrical current through the sensor to increase. The operator adjusts the temperature of the Peltier cooler until a saturated current through the sensor is reached. About one min. is required to measure low relative humidities. The Dew Point sensor can measure a range of relative humidities of 30% to 80%.

  9. Compliant Tactile Sensors

    NASA Technical Reports Server (NTRS)

    Torres-Jara, Eduardo R.

    2011-01-01

    Tactile sensors are currently being designed to sense interactions with human hands or pen-like interfaces. They are generally embedded in screens, keyboards, mousepads, and pushbuttons. However, they are not well fitted to sense interactions with all kinds of objects. A novel sensor was originally designed to investigate robotics manipulation where not only the contact with an object needs to be detected, but also where the object needs to be held and manipulated. This tactile sensor has been designed with features that allow it to sense a large variety of objects in human environments. The sensor is capable of detecting forces coming from any direction. As a result, this sensor delivers a force vector with three components. In contrast to most of the tactile sensors that are flat, this one sticks out from the surface so that it is likely to come in contact with objects. The sensor conforms to the object with which it interacts. This augments the contact's surface, consequently reducing the stress applied to the object. This feature makes the sensor ideal for grabbing objects and other applications that require compliance with objects. The operational range of the sensor allows it to operate well with objects found in peoples' daily life. The fabrication of this sensor is simple and inexpensive because of its compact mechanical configuration and reduced electronics. These features are convenient for mass production of individual sensors as well as dense arrays. The biologically inspired tactile sensor is sensitive to both normal and lateral forces, providing better feedback to the host robot about the object to be grabbed. It has a high sensitivity, enabling its use in manipulation fingers, which typically have low mechanical impedance in order to be very compliant. The construction of the sensor is simple, using inexpensive technologies like silicon rubber molding and standard stock electronics.

  10. MITRE sensor layer prototype

    NASA Astrophysics Data System (ADS)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  11. Working Group Report: Sensors

    SciTech Connect

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  12. Magnetic current sensor

    NASA Technical Reports Server (NTRS)

    Black, Jr., William C. (Inventor); Hermann, Theodore M. (Inventor)

    1998-01-01

    A current determiner having an output at which representations of input currents are provided having an input conductor for the input current and a current sensor supported on a substrate electrically isolated from one another but with the sensor positioned in the magnetic fields arising about the input conductor due to any input currents. The sensor extends along the substrate in a direction primarily perpendicular to the extent of the input conductor and is formed of at least a pair of thin-film ferromagnetic layers separated by a non-magnetic conductive layer. The sensor can be electrically connected to a electronic circuitry formed in the substrate including a nonlinearity adaptation circuit to provide representations of the input currents of increased accuracy despite nonlinearities in the current sensor, and can include further current sensors in bridge circuits.

  13. Yeast Based Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of yeast based sensors have been developed as analytical tools. Yeasts are known as facultative anaerobes. Facultative anaerobes can survive in both aerobic and anaerobic conditions. The yeast based sensor consisted of a DO electrode and an immobilized omnivorous yeast. In yeast based sensor development, many kinds of yeast have been employed by applying their characteristics to adapt to the analyte. For example, Trichosporon cutaneum was used to estimate organic pollution in industrial wastewater. Yeast based sensors are suitable for online control of biochemical processes and for environmental monitoring. In this review, principles and applications of yeast based sensors are summarized.

  14. Intelligent Sensors Security

    PubMed Central

    Bialas, Andrzej

    2010-01-01

    The paper is focused on the security issues of sensors provided with processors and software and used for high-risk applications. Common IT related threats may cause serious consequences for sensor system users. To improve their robustness, sensor systems should be developed in a restricted way that would provide them with assurance. One assurance creation methodology is Common Criteria (ISO/IEC 15408) used for IT products and systems. The paper begins with a primer on the Common Criteria, and then a general security model of the intelligent sensor as an IT product is discussed. The paper presents how the security problem of the intelligent sensor is defined and solved. The contribution of the paper is to provide Common Criteria (CC) related security design patterns and to improve the effectiveness of the sensor development process. PMID:22315571

  15. Liquid level sensor

    SciTech Connect

    Kulkarni, Atul; Karekar, R.N.; Aiyer, R.C.

    2005-10-15

    The article reports an idea of using a simple, cantilever-type load cell with a rod as a level sensor for continuous liquid level measurements. The sensor is based on the principle of the Archimedes buoyancy principle. The density and geometry of the rod govern the choice of the load cell. The length of the rod is governed by the height of the tank. A series of cyclic tests have demonstrated a highly repeatable response of the sensor. The accuracy of this low-cost sensor is field tested and found to be {+-}0.5% of the full range, for a 10 m level of water in a tank, and is working reliably for the period of 18 months. The sensor range can be easily extended to lower and higher tank heights. The sensor is crowned by its easy installation and calibration.

  16. Cloud cover sensor

    NASA Technical Reports Server (NTRS)

    Laue, E. G. (Inventor)

    1982-01-01

    An apparatus is described which provides a numerical indication of the cloudiness at a particular time of a day. The apparatus includes a frame holding several light sensors such as photovoltaic cells, with a direct sensor mounted to directly face the Sun and indirect sensors mounted to face different portions of the sky not containing the Sun. A light shield shields the direct sensor from most of the sky except a small portion containing the Sun, and also shields each of the indirect sensors from direct sunlight. The relative values of the outputs from the direct and indirect sensors, enables the generation of a numerical indication of the degree of cloudiness at a particular time of day.

  17. Sensors reduce car emissions

    SciTech Connect

    Paula, G.

    1996-11-01

    Advanced control and diagnostic sensors play a key role in antipollution devices such as catalytic converters, electronic fuel injection, and exhaust-gas recirculation systems. Technologies such as catalytic converters, electronic fuel injection, and exhaust-gas recirculation (EGR) systems have decreased automobile emissions approximately 90 percent from their 1960 levels. The cornerstone of many of these emissions-control technologies are sensors that provide feedback and control. Any sensor--particularly those installed under an automobile hood--must withstand harsh conditions, such as intense heat, shock, continual vibration, corrosive gases, and electromagnetic fields. As a result microelectromechanical-system sensors, though widely used in automobiles, have not been applied to emissions monitoring and pollution control because they are not rugged enough to survive inside an engine. Most automobile sensors use mature technologies, but newer technologies such as fiber-optic sensors will be installed in vehicles within the next few years.

  18. Capacitive chemical sensor

    DOEpatents

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  19. Clementine sensor suite

    SciTech Connect

    Ledebuhr, A.G.

    1994-11-15

    LLNL designed and built the suite of six miniaturized light-weight space-qualified sensors utilized in the Clementine mission. A major goal of the Clementine program was to demonstrate technologies originally developed for Ballistic Missile Defense Organization Programs. These sensors were modified to gather data from the moon. This overview presents each of these sensors and some preliminary on-orbit performance estimates. The basic subsystems of these sensors include optical baffles to reject off-axis stray light, light-weight ruggedized optical systems, filter wheel assemblies, radiation tolerant focal plane arrays, radiation hardened control and readout electronics and low mass and power mechanical cryogenic coolers for the infrared sensors. Descriptions of each sensor type are given along with design specifications, photographs and on-orbit data collected.

  20. Beam imaging sensor

    DOEpatents

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  1. Bioinspired Sensor Systems

    PubMed Central

    del Valle, Manel

    2011-01-01

    This editorial summarizes and classifies the contributions presented by different authors to the special issue of the journal Sensors dedicated to Bioinspired Sensor Systems. From the coupling of sensor arrays or networks, plus computer processing abilities, new applications to mimic or to complement human senses are arising in the context of ambient intelligence. Principles used, and illustrative study cases have been presented permitting readers to grasp the current status of the field. PMID:22346637

  2. Advanced Sensors for TBI

    DTIC Science & Technology

    2014-07-01

    Major Findings: Currently, the first lot of pre-etched silicon-on-insulator wafers have been built. Those wafers are now entering processing to...etched wafers on in a custom designed bending apparatus. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...first wafer -scale, absolute pressure sensor in a similar ultra-thin form factor as the contact stress sensor. These sensors are under development

  3. Rolamite acceleration sensor

    DOEpatents

    Abbin, Joseph P.; Briner, Clifton F.; Martin, Samuel B.

    1993-01-01

    A rolamite acceleration sensor which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently.

  4. Rolamite acceleration sensor

    DOEpatents

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  5. Sensor Data Integrity

    DTIC Science & Technology

    2008-12-01

    for Centre for Autonomous Systems 3 CHAPTER 1. PRESENTATION OF THE SYSTEM 4 1.2 The Sensors All exteroceptive sensors are mounted on a sensor frame on...Payload. This concerns internal data from the vehicule , such as status of braking, wheel velocity etc. . . Note that this category of data is only...Excellence for Autonomous Systems is a partnership between AUSTRALIAN CENTRE FOR FIELD ROBOTICS | The University of Sydney ARTIFICIAL INTELLIGENCE GROUP

  6. Remote electrochemical sensor

    DOEpatents

    Wang, Joseph; Olsen, Khris; Larson, David

    1997-01-01

    An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

  7. Miniature Airflow Sensor

    NASA Technical Reports Server (NTRS)

    Kershner, D. D.

    1984-01-01

    Miniature flow-angle and airspeed sensor quickly mounted on light aircraft wing with two-sided tape since conventional sensors are restricted to large aircraft. Sensor operates as free-trailing wind vane selfalineing in airstream through two independent axes. Vane attached to wing surface through hollow mounting boom that fits on mounting plate attached to wing with two-sided neoprene-foam tape. Method shown strong enough for loads of low-speed flight.

  8. Contact stress sensor

    DOEpatents

    Kotovsky, Jack

    2014-02-11

    A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  9. Contact stress sensor

    DOEpatents

    Kotovsky, Jack [Oakland, CA

    2012-02-07

    A contact stress sensor includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a thermal compensator and a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  10. Transient multivariable sensor evaluation

    DOEpatents

    Vilim, Richard B.; Heifetz, Alexander

    2017-02-21

    A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.

  11. Air Conditioning Overflow Sensor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.

  12. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  13. Air Conditioning Overflow Sensor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.

  14. Networked Sensor Arrays

    SciTech Connect

    R. J. Tighe

    2002-10-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical.

  15. Fiber optic geophysical sensors

    DOEpatents

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  16. Smart Sensor Demonstration Payload

    NASA Technical Reports Server (NTRS)

    Schmalzel, John; Bracey, Andrew; Rawls, Stephen; Morris, Jon; Turowski, Mark; Franzl, Richard; Figueroa, Fernando

    2010-01-01

    Sensors are a critical element to any monitoring, control, and evaluation processes such as those needed to support ground based testing for rocket engine test. Sensor applications involve tens to thousands of sensors; their reliable performance is critical to achieving overall system goals. Many figures of merit are used to describe and evaluate sensor characteristics; for example, sensitivity and linearity. In addition, sensor selection must satisfy many trade-offs among system engineering (SE) requirements to best integrate sensors into complex systems [1]. These SE trades include the familiar constraints of power, signal conditioning, cabling, reliability, and mass, and now include considerations such as spectrum allocation and interference for wireless sensors. Our group at NASA s John C. Stennis Space Center (SSC) works in the broad area of integrated systems health management (ISHM). Core ISHM technologies include smart and intelligent sensors, anomaly detection, root cause analysis, prognosis, and interfaces to operators and other system elements [2]. Sensor technologies are the base fabric that feed data and health information to higher layers. Cost-effective operation of the complement of test stands benefits from technologies and methodologies that contribute to reductions in labor costs, improvements in efficiency, reductions in turn-around times, improved reliability, and other measures. ISHM is an active area of development at SSC because it offers the potential to achieve many of those operational goals [3-5].

  17. Microfabricated Formaldehyde Gas Sensors

    PubMed Central

    Flueckiger, Jonas; Ko, Frank K.; Cheung, Karen C.

    2009-01-01

    Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation. PMID:22291561

  18. Panoramic attitude sensor

    NASA Technical Reports Server (NTRS)

    Meek, I. C.

    1976-01-01

    Each subassembly, design analysis, and final calibration data on all assemblies for the Panormic Attitude Sensor (PAS) are described. The PAS is used for course attitude determination on the International Ultraviolet Explorer Spacecraft (IUE). The PAS contains a sun sensor which is sensitive only to the sun's radiation and a mechanically scanned sensor which is sensitive to the earth, moon, and the sun. The signals from these two sensors are encoded and sent back in the telemetry data stream to determine the spacecraft attitude.

  19. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)

    1999-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  20. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  1. Perforated diode neutron sensors

    NASA Astrophysics Data System (ADS)

    McNeil, Walter J.

    A novel design of neutron sensor was investigated and developed. The perforated, or micro-structured, diode neutron sensor is a concept that has the potential to enhance neutron sensitivity of a common solid-state sensor configuration. The common thin-film coated diode neutron sensor is the only semiconductor-based neutron sensor that has proven feasible for commercial use. However, the thin-film coating restricts neutron counting efficiency and severely limits the usefulness of the sensor. This research has shown that the perforated design, when properly implemented, can increase the neutron counting efficiency by greater than a factor of 4. Methods developed in this work enable detectors to be fabricated to meet needs such as miniaturization, portability, ruggedness, and adaptability. The new detectors may be used for unique applications such as neutron imaging or the search for special nuclear materials. The research and developments described in the work include the successful fabrication of variant perforated diode neutron detector designs, general explanations of fundamental radiation detector design (with added focus on neutron detection and compactness), as well as descriptive theory and sensor design modeling useful in predicting performance of these unique solid-state radiation sensors. Several aspects in design, fabrication, and operational performance have been considered and tested including neutron counting efficiency, gamma-ray response, perforation shapes and depths, and silicon processing variations. Finally, the successfully proven technology was applied to a 1-dimensional neutron sensor array system.

  2. Multi-sensor electrometer

    NASA Technical Reports Server (NTRS)

    Gompf, Raymond (Inventor); Buehler, Martin C. (Inventor)

    2003-01-01

    An array of triboelectric sensors is used for testing the electrostatic properties of a remote environment. The sensors may be mounted in the heel of a robot arm scoop. To determine the triboelectric properties of a planet surface, the robot arm scoop may be rubbed on the soil of the planet and the triboelectrically developed charge measured. By having an array of sensors, different insulating materials may be measured simultaneously. The insulating materials may be selected so their triboelectric properties cover a desired range. By mounting the sensor on a robot arm scoop, the measurements can be obtained during an unmanned mission.

  3. Improved Capacitive Liquid Sensor

    NASA Technical Reports Server (NTRS)

    Waldman, Francis A.

    1992-01-01

    Improved capacitive sensor used to detect presence and/or measure thickness of layer of liquid. Electrical impedance or admittance of sensor measured at prescribed frequency, and thickness of liquid inferred from predetermined theoretical or experimental relationship between impedance and thickness. Sensor is basically a three-terminal device. Features interdigitated driving and sensing electrodes and peripheral coplanar ground electrode that reduces parasitic effects. Patent-pending because first to utilize ground plane as "shunting" electrode. System less expensive than infrared, microwave, or refractive-index systems. Sensor successfully evaluated in commercial production plants to characterize emulsions, slurries, and solutions.

  4. Ion mobility sensor

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2005-08-23

    An ion mobility sensor which can detect both ion and molecules simultaneously. Thus, one can measure the relative arrival times between various ions and molecules. Different ions have different mobility in air, and the ion sensor enables measurement of ion mobility, from which one can identify the various ions and molecules. The ion mobility sensor which utilizes a pair of glow discharge devices may be designed for coupling with an existing gas chromatograph, where various gas molecules are already separated, but numbers of each kind of molecules are relatively small, and in such cases a conventional ion mobility sensor cannot be utilized.

  5. Smart and Intelligent Sensors

    NASA Technical Reports Server (NTRS)

    Lansaw, John; Schmalzel, John; Figueroa, Jorge

    2009-01-01

    John C. Stennis Space Center (SSC) provides rocket engine propulsion testing for NASA's space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has undergone acceptance testing at SSC before going to Kennedy Space Center (KSC) for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that uses Liquid Hydrogen (LH2) as the fuel. As NASA moves to the new ARES V launch system, the main engines on the new vehicle, as well as the upper stage engine, are currently base lined to be cryogenic rocket engines that will also use LH2. The main rocket engines for the ARES V will be larger than the SSME, while the upper stage engine will be approximately half that size. As a result, significant quantities of hydrogen will be required during the development, testing, and operation of these rocket engines.Better approaches are needed to simplify sensor integration and help reduce life-cycle costs. 1.Smarter sensors. Sensor integration should be a matter of "plug-and-play" making sensors easier to add to a system. Sensors that implement new standards can help address this problem; for example, IEEE STD 1451.4 defines transducer electronic data sheet (TEDS) templates for commonly used sensors such as bridge elements and thermocouples. When a 1451.4 compliant smart sensor is connected to a system that can read the TEDS memory, all information needed to configure the data acquisition system can be uploaded. This reduces the amount of labor required and helps minimize configuration errors. 2.Intelligent sensors. Data received from a sensor be scaled, linearized; and converted to engineering units. Methods to reduce sensor processing overhead at the application node are needed. Smart sensors using low-cost microprocessors with integral data acquisition and communication support offer the means to add these capabilities. Once a processor is embedded, other features can be added; for example, intelligent sensors can make

  6. Nanophotonic Sensor Integration and Coherent Feedback

    DTIC Science & Technology

    2012-02-01

    cavity QED . Also, as well as, theoretical research on coherent feedback control of dispersive bistability and on a nonlinear interferometry approach...bistability in cavity QED ……………………………………………. 10 10 Steady-state homodyne distributions………………………………………….. 11 11 Correlation functions...play a crucial role in cavity QED research with single emitters such as quantum dots or diamond nv-centers. Whereas atomic and solid-state cavity QED

  7. Semantic Sensor Web

    NASA Astrophysics Data System (ADS)

    Sheth, A.; Henson, C.; Thirunarayan, K.

    2008-12-01

    Sensors are distributed across the globe leading to an avalanche of data about our environment. It is possible today to utilize networks of sensors to detect and identify a multitude of observations, from simple phenomena to complex events and situations. The lack of integration and communication between these networks, however, often isolates important data streams and intensifies the existing problem of too much data and not enough knowledge. With a view to addressing this problem, the Semantic Sensor Web (SSW) [1] proposes that sensor data be annotated with semantic metadata that will both increase interoperability and provide contextual information essential for situational knowledge. Kno.e.sis Center's approach to SSW is an evolutionary one. It adds semantic annotations to the existing standard sensor languages of the Sensor Web Enablement (SWE) defined by OGC. These annotations enhance primarily syntactic XML-based descriptions in OGC's SWE languages with microformats, and W3C's Semantic Web languages- RDF and OWL. In association with semantic annotation and semantic web capabilities including ontologies and rules, SSW supports interoperability, analysis and reasoning over heterogeneous multi-modal sensor data. In this presentation, we will also demonstrate a mashup with support for complex spatio-temporal-thematic queries [2] and semantic analysis that utilize semantic annotations, multiple ontologies and rules. It uses existing services (e.g., GoogleMap) and semantics enhanced SWE's Sensor Observation Service (SOS) over weather and road condition data from various sensors that are part of Ohio's transportation network. Our upcoming plans are to demonstrate end to end (heterogeneous sensor to application) semantics support and study scalability of SSW involving thousands of sensors to about a billion triples. Keywords: Semantic Sensor Web, Spatiotemporal thematic queries, Semantic Web Enablement, Sensor Observation Service [1] Amit Sheth, Cory Henson, Satya

  8. Carbon nanotube sensors

    NASA Astrophysics Data System (ADS)

    Dai, Liming

    2002-07-01

    Measurement represents one of the oldest methods used by human beings to better understand and control the world. Many measurement systems are primarily physical sensors, which measure time, temperature, weight, distance, and various other physical parameters. The need for cheaper, faster, and more accurate meansurements has been a driving force for the development of new systems and technologies for measurements of materials, both chemical and biological. In fact, chemical and biological sensors (or biosensors) are the evolved products of physical measurement technologies. Chemical sensors are measurement devices that convert a chemical or physical change of a specific analyte into a measurable signal, whose magnitude is normally proportional to the concentration of the analyte. On the other hand, biosensors are a subset of chemical sensors that employ a biological sensing element connected to a transducer to recognize the physiochemical change and to produce the measurable signal from particular analytes, which are not necessary to be biological materials themselves, although sometimes they are. Depending on the basis of the transduction principle, chemical and biological sensors can be classified into three major classes with different transducers: sensors with electrical transducers, sensors with optical transducers, and sensors with other transducers (e.g. mass change). The unique properties of carbon nanotubes have led to their use in areas as diverse as sensors, actuators, field-emitting flat panel displays, energy and gas storages (Dai and Mau, 2001). As we shall see below, the principles for carbon nanotube sensors to detect the nature of gases and to determine their concentrations are based on change in electrical properties induced by charge transfer with the gas molecules (e.g. O2, H2, CO2) or in mass due to physical adsorption. This article provides a status report on the research and development of carbon nanotube sensors.

  9. A low power on-chip class-E power amplifier for remotely powered implantable sensor systems

    NASA Astrophysics Data System (ADS)

    Ture, Kerim; Kilinc, Enver G.; Dehollain, Catherine

    2015-06-01

    This paper presents a low power fully integrated class-E power amplifier and its integration with remotely powered sensor system. The class-E power amplifier is suitable solution for low-power applications due to its high power efficiency. However, the required high inductance values which make the on-chip integration of the power amplifier difficult. The designed power amplifier is fully integrated in the remotely powered sensor system and fabricated in 0.18 μm CMOS process. The power is transferred to the implantable sensor system at 13.56 MHz by using an inductively coupled remote powering link. The induced AC voltage on the implant coil is converted into a DC voltage by a passive full-wave rectifier. A voltage regulator is used to suppress the ripples and create a clean and stable 1.8 V supply voltage for the sensor and communication blocks. The data collected from the sensors is transmitted by on-off keying modulated low-power transmitter at 1.2 GHz frequency. The transmitter is composed of a LC tank oscillator and a fully on-chip class-E power amplifier. An additional output network is used for the power amplifier which makes the integration of the power amplifier fully on-chip. The integrated power amplifier with 0.2 V supply voltage has a drain efficiency of 31.5% at -10 dBm output power for 50 Ω load. The measurement results verify the functionality of the power amplifier and the remotely powered implantable sensor system. The data communication is also verified by using a commercial 50 Ω chip antenna and has 600 kbps data rate at 1 m communication distance.

  10. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Quick, William H. (Inventor); August, Rudolf R. (Inventor); James, Kenneth A. (Inventor); Strahan, Jr., Virgil H. (Inventor); Nichols, Donald K. (Inventor)

    1980-01-01

    An inexpensive, lightweight fiber optic micro-sensor that is suitable for applications which may require remote temperature sensing. The disclosed temperature sensor includes a phosphor material that, after receiving incident light stimulation, is adapted to emit phosphorescent radiation output signals, the amplitude decay rate and wavelength of which are functions of the sensed temperature.

  11. Advancing Sensor Web Interoperability

    SciTech Connect

    Shankar, Mallikarjun; Gorman, Bryan L.; Smith, Cyrus M.

    2005-01-01

    SensorNet is a framework being developed at Oak Ridge National Laboratory to tie together sensor data from all over the country to create a real-time detection and alert system for various threats, whether they are chemical, radiological, biological, nuclear, or explosive.

  12. Wireless Sensors Network (Sensornet)

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.

  13. Air Sensor Guidebook

    EPA Science Inventory

    This Air Sensor Guidebook has been developed by the U.S. EPA to assist those interested in potentially using lower cost air quality sensor technologies for air quality measurements. Its development was in direct response to a request for such a document following a recent scienti...

  14. Stripe sensor tomography.

    PubMed

    Barbic, Mladen; Vltava, Lvcian; Barrett, Christopher P; Emery, Teresa H; Scherer, Axel

    2008-03-01

    We introduce a general concept of tomographic imaging for the case of an imaging sensor that has a stripelike shape. We first show that there is no difference, in principle, between two-dimensional tomography using conventional electromagnetic or particle radiation and tomography where a stripe sensor is mechanically scanned over a sample at a sequence of different angles. For a single stripe detector imaging, linear motion and angular rotation are required. We experimentally demonstrate single stripe sensor imaging principle using an elongated inductive coil detector. By utilizing an array of parallel stripe sensors that can be individually addressed, two-dimensional imaging can be performed with rotation only, eliminating the requirement for linear motion, as we also experimentally demonstrate with parallel coil array. We conclude that imaging with a stripe-type sensor of particular width and thickness (where the width is much larger than the thickness) is resolution limited only by the thickness (smaller parameter) of the sensor. We give examples of multiple sensor families where this imaging technique may be beneficial such as magnetoresistive, inductive, superconducting quantum interference device, and Hall effect sensors, and, in particular, discuss the possibilities of the technique in the field of magnetic resonance imaging.

  15. Sensors Workshop summary report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A review of the efforts of three workshops is presented. The presentation describes those technological developments that would contribute most to sensor subsystem optimization and improvement of NASA's data acquisition capabilities, and summarizes the recommendations of the sensor technology panels from the most recent workshops.

  16. Air Sensor Guidebook

    EPA Science Inventory

    This Air Sensor Guidebook has been developed by the U.S. EPA to assist those interested in potentially using lower cost air quality sensor technologies for air quality measurements. Its development was in direct response to a request for such a document following a recent scienti...

  17. Steerable Capacitive Proximity Sensor

    NASA Technical Reports Server (NTRS)

    Jenstrom, Del T.; Mcconnell, Robert L.

    1994-01-01

    Steerable capacitive proximity sensor of "capaciflector" type based partly on sensing units described in GSC-13377 and GSC-13475. Position of maximum sensitivity adjusted without moving sensor. Voltage of each driven shield adjusted separately to concentrate sensing electric field more toward one side or other.

  18. Integrated sensor bus

    NASA Astrophysics Data System (ADS)

    Rutka, M. J.

    1994-03-01

    In this thesis an integrated sensor bus interface is presented. The proposed bus offers a number of interface procedures to enhance the system flexibility. It enables a 13-bit data exchange per message frame, automatic addressing, device clearing and resetting, and handling of service-request and polling procedures. Chapter 1 provides an overview of the existing data transmission technologies. It presents the most popular digital buses along with their application fields. Also other research activities on sensor buses are described. Chapter 2 deals with the requirements which have to be imposed on the desired sensor bus. It shows both communication and compatibility requirements. Chapter 3 introduces the proposed sensor bus. It presents the interface structure together with implemented bus procedures. The detailed description of the proposed sensor bus protocol is given in Chapter 4. It is divided into two parts; a logical layer description (i.e., sensor bus protocol) and a physical layer description (i.e., transmission medium and electrical characteristics). Chapter 5 deals with the compatibility issue. It investigates differences between typical processes used for sensors and digital circuits. Chapter 6 shows the design of a sensor bus interface prototype. In Chapter 7 the performance of the fabricated interface is discussed.

  19. Sensors research and technology

    NASA Technical Reports Server (NTRS)

    Cutts, James A.

    1988-01-01

    Information on sensors research and technology is given in viewgraph form. Information is given on sensing techniques for space science, passive remote sensing techniques and applications, submillimeter coherent sensing, submillimeter mixers and local oscillator sources, non-coherent sensors, active remote sensing, solid state laser development, a low vibration cooler, separation of liquid helium and vapor phase in zero gravity, and future plans.

  20. Durability of oxygen sensors

    NASA Astrophysics Data System (ADS)

    Snapp, L.

    1985-03-01

    This report describes the results of dynamometer and vehicle durability testing from a variety of sources, as well as common causes of failure for oxygen sensors. The data indicates that oxygen sensors show low failure rates, even at mileages of 80,000 miles and beyond.

  1. Attitude Sensor Pseudonoise

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.; Lennox, Scott E.

    2005-01-01

    Even assuming perfect attitude sensors and gyros, sensor measurements on a vibrating spacecraft have apparent errors. These apparent sensor errors, referred to as pseudonoise, arise because gyro and sensor measurements are performed at discrete times. This paper explains the concept of pseudonoise, quantifies its behavior, and discusses the effect of vibrations that are nearly commensurate with measurement periods. Although pseudonoise does not usually affect attitude determination it does affect sensor performance evaluation. Attitude rates are usually computed from differences between pairs of accumulated angle measurements at different times and are considered constant in the periods between measurements. Propagation using these rates does not reproduce exact instantaneous spacecraft attitudes except at the gyro measurement times. Exact sensor measurements will therefore be inconsistent with estimates based on the propagated attitude. This inconsistency produces pseudonoise. The characteristics of pseudonoise were determined using a simple, one-dimensional model of spacecraft vibration. The statistical properties of the deviations of measurements from model truth were determined using this model and a range of different periods of sensor and rate measurements. This analysis indicates that the magnitude of pseudonoise depends on the ratio of the spacecraft vibration period to the time between gyro measurements and can be as much as twice the amplitude of the vibration. In cases where the vibration period and gyro or sensor measurement period are nearly commensurate, unexpected changes in pseudonoise occur.

  2. Wearable Optical Chemical Sensors

    NASA Astrophysics Data System (ADS)

    Lobnik, Aleksandra

    Wearable sensors can be used to provide valuable information about the wearer's health and/or monitor the wearer's surroundings, identify safety concerns and detect threats, during the wearer's daily routine within his or her natural environment. The "sensor on a textile", an integrated sensor capable of analyzing data, would enable early many forms of detection. Moreover, a sensor connected with a smart delivery system could simultaneously provide comfort and monitoring (for safety and/or health), non-invasive measurements, no laboratory sampling, continuous monitoring during the daily activity of the person, and possible multi-parameter analysis and monitoring. However, in order for the technology to be accessible, it must remain innocuous and impose a minimal intrusion on the daily activities of the wearer. Therefore, such wearable technologies should be soft, flexible, and washable in order to meet the expectations of normal clothing. Optical chemical sensors (OCSs) could be used as wearable technology since they can be embedded into textile structures by using conventional dyeing, printing processes and coatings, while fiber-optic chemical sensors (FOCSs) as well as nanofiber sensors (NFSs) can be incorporated by weaving, knitting or laminating. The interest in small, robust and sensitive sensors that can be embedded into textile structures is increasing and the research activity on this topic is an important issue.

  3. Nanophotonic Image Sensors.

    PubMed

    Chen, Qin; Hu, Xin; Wen, Long; Yu, Yan; Cumming, David R S

    2016-09-01

    The increasing miniaturization and resolution of image sensors bring challenges to conventional optical elements such as spectral filters and polarizers, the properties of which are determined mainly by the materials used, including dye polymers. Recent developments in spectral filtering and optical manipulating techniques based on nanophotonics have opened up the possibility of an alternative method to control light spectrally and spatially. By integrating these technologies into image sensors, it will become possible to achieve high compactness, improved process compatibility, robust stability and tunable functionality. In this Review, recent representative achievements on nanophotonic image sensors are presented and analyzed including image sensors with nanophotonic color filters and polarizers, metamaterial-based THz image sensors, filter-free nanowire image sensors and nanostructured-based multispectral image sensors. This novel combination of cutting edge photonics research and well-developed commercial products may not only lead to an important application of nanophotonics but also offer great potential for next generation image sensors beyond Moore's Law expectations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. New Sensor Technology

    NASA Technical Reports Server (NTRS)

    Covault, Craig

    2005-01-01

    The three instruments on the Orbiter Boom Sensor System (OBSS) will use a mix of U.S. and Canadian developed laser, television, infrared, and 3D imaging technologies. The sensors are the: 1) Laser Dynamic Range Imager (LDRI); 2) Intensified Television Camera (ITVC); 3) Laser Camera System (LCS).

  5. Fibres For Sensors

    NASA Astrophysics Data System (ADS)

    Payne, D. N.

    1984-11-01

    Sensors which rely on the external modulation of the properties of an optical fibre (intrinsic sensors) are receiving much attention since they can be made extremely sensitive, and can be used for distributed measurements. Distributed sensing provides some particularly exciting prospects for acoustic, magnetic and electric field monitoring. To date, however, the great majority of experimental and commercial fibre sensors employ telecommunications-grade fibres, largely as a result of their ready availability. Not only does this policy frequently lead to a design compromise, but in some cases makes the performance marginal or untenable as a result of excessive environmental sensitivity. Despite this, little attention has been given to the design of special sensor fibres with enhanced (or depressed) sensitivity to specific measurands. The position is somewhat better with respect to fibres designed to eliminate sensor polarisation problems (e.g. polar isation-maintaining fibres), but even here further work is required to provide the performance demanded.

  6. Pressure Measurement Sensor

    NASA Technical Reports Server (NTRS)

    1997-01-01

    FFPI Industries Inc. is the manufacturer of fiber-optic sensors that furnish accurate pressure measurements in internal combustion chambers. Such an assessment can help reduce pollution emitted by these engines. A chief component in the sensor owes its seven year- long development to Lewis Research Center funding to embed optical fibers and sensors in metal parts. NASA support to Texas A&M University played a critical role in developing this fiber optic technology and led to the formation of FFPI Industries and the production of fiber sensor products. The simple, rugged design of the sensor offers the potential for mass production at low cost. Widespread application of the new technology is forseen, from natural gas transmission, oil refining and electrical power generation to rail transport and the petrochemical paper product industry.

  7. Sensor Fish Communicator

    SciTech Connect

    2016-06-09

    The Sensor Fish collects information that can be used to evaluate conditions encountered by juvenile salmonids and other fish as they pass through hydroelectric dams on their way to the ocean. Sensor Fish are deployed in turbines, spillways, and sluiceways and measure changes in pressure, angular rate of change, and linear acceleration during passage. The software is need to make Sensor Fish fully functional and easy to use. Sensor Fish Communicator (SFC) links to Sensor Fish, allowing users to control data collection settings and download data. It may also be used to convert native raw data (.raw2) files into Comma Separated Variable (.csv) files and plot the results. The multiple capabilities of the SFC allow hardware communication, data conversion, and data plotting with one application.

  8. Integrated IR sensors

    NASA Astrophysics Data System (ADS)

    Tom, Michael; Trujillo, Edward

    1994-06-01

    Integrated infrared (IR) sensors which exploit modular avionics concepts can provide features such as operational flexibility, enhanced stealthiness, and ease of maintenance to meet the demands of tactical, airborne sensor systems. On-board, tactical airborne sensor systems perform target acquisition, tracking, identification, threat warning, missile launch detection, and ground mapping in support of situation awareness, self-defense, navigation, target attack, weapon support, and reconnaissance activities. The use of sensor suites for future tactical aircraft such as US Air Force's multirole fighter require a blend of sensor inputs and outputs that may vary over time. It is expected that special-role units of these tactical aircraft will be formed to conduct tasks and missions such as anti-shipping, reconnaissance, or suppression of enemy air defenses.

  9. Fiber optic gas sensor

    NASA Technical Reports Server (NTRS)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  10. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  11. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  12. Nanowire sensor, sensor array, and method for making the same

    NASA Technical Reports Server (NTRS)

    Yun, Minhee (Inventor); Myung, Nosang (Inventor); Vasquez, Richard (Inventor); Homer, Margie (Inventor); Ryan, Margaret (Inventor); Yen, Shiao-Pin (Inventor); Fleurial, Jean-Pierre (Inventor); Bugga, Ratnakumar (Inventor); Choi, Daniel (Inventor); Goddard, William (Inventor)

    2012-01-01

    The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores.

  13. Power for sensors; sensors for power

    NASA Astrophysics Data System (ADS)

    Siegel, Mel

    2016-10-01

    As sensors are increasingly deployed in locations removed from mains power and increasingly expected to operate for times that are long compared to battery lifetimes we look to means for "harvesting" or "scavenging" energy from the sensors' operating environments. Whereas many sensors are "parametric" - their interaction with the environment causes a change in one or more of their electrical parameters - many other are true transducers - they perform their sensing function by extracting energy from their environment. These kinds of sensors can thus serve - under suitable operating conditions - both as measuring devices and as power supplies. In this paper we review this background, review the fundamental restrictions on our ability to extract energy from the environment, enumerate and summarize sensing principles that are promising candidates to double as power supplies, and provide several examples that span the range from already off-the-shelf at low cost to in laboratory prototype stage to sufficiently speculative that there might be reasonable doubt regarding whether they can actually work even in principle. Possibilities examined across this spectrum include thermal noise, ambient RF scavenging (briefly), thermoelectricity, piezoelectricity, pyroelectricity, and electrochemistry, especially including electrochemistry facilitated by microorganisms.

  14. Roadmap on optical sensors

    NASA Astrophysics Data System (ADS)

    Ferreira, Mário F. S.; Castro-Camus, Enrique; Ottaway, David J.; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M.; Pellegrino, Paul M.; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin

    2017-08-01

    Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both

  15. Realistic Sensor Tasking Strategies

    NASA Astrophysics Data System (ADS)

    Frueh, C.; Fiedler, H.; Herzog, J.

    2016-09-01

    Efficient sensor tasking is a crucial step in building up and maintaining a catalog of space objects at the highest possible orbit quality. Sensor resources are limited; sensor location and setup (hardware and processing software) influence the quality of observations for initial orbit determination or orbit improvement that can be obtained. Furthermore, improved sensing capabilities are expected to lead to an increase of objects that are sought to be maintained in a catalog, easily reaching over 100'000 objects. Sensor tasking methods hence need to be computationally efficient in order to be successfully applied to operational systems, and need to take realistic constraints, such as limited visibility of objects, time-varying probability of detection and the specific capabilities in software and hardware for the specific sensors into account. This paper shows a method to formulate sensor tasking as an optimization problem and introduces a new method to provide fast and computationally efficient real time, near optimal sensor tasking solutions. Simulations are preformed using the USSTRATCOM TLE catalog of all geosynchronous objects. The results are compared to state of the art observation strategies.

  16. Chemochromic Hydrogen Sensors

    NASA Technical Reports Server (NTRS)

    Wiggins, Bryan C.

    2007-01-01

    As fossil fuel supplies decline, hydrogen is quickly becoming an increasingly important fuel source. Currently hydrogen is the prime fuel of today's space vehicles (e.g., Space Shuttle) and featured as a fuel for some prototype vehicles such as the BMW seven series model. Hydrogen is a colorless, odorless gas with a 4% lower explosive limit which makes leak detection a priority. In an effort to support the use of hydrogen, a chemochromic (color changing) sensor was developed that is robust, simple to use, and does not require active operation. It can be made into a thin tape which can be conveniently used for leak detection at flanges, valves, or outlets. Chemochromic sensors can be either reversible or irreversible; however, irreversible chemochromic sensors will be analyzed in this report. The irreversible sensor is useful during hazardous operations when personnel cannot be present. To actively monitor leaks, testing of the irreversible sensor against environmental effects was completed and results indicated this material is suitable for outdoor use in the harsh beachside environment of Kennedy Space Center. The experiments in this report will give additional results to the environmental testing by adding solid rocket booster residue as a variable. The primary motivation for these experiments is to prepare the sensors for the launch pad environment at the Kennedy Space Center. In an effort to simulate the atmosphere at the pads before and after launch, the chemochromic sensors are exposed to solid rocket residue under various conditions.

  17. Plasma Sensor Suite

    NASA Astrophysics Data System (ADS)

    Matlis, Eric; Bowles, Patrick; Corke, Thomas

    2008-11-01

    Progress has been made towards the development of a new class of sensors which have the potential to overcome the temperature limitations found in conventional sensors, thus addressing an important measurement challenge faced in the measurement of high speed flows. The new approach is based on the a.c.-driven mass-flow laboratory plasma anemometer developed by Matlis et al. and uses a weakly ionized glow discharge encapsulated between two electrodes as the sensing element. These sensors will feature proven elements of the technology used in the plasma anemometer, but will be extended for high-temperature, multiparameter operation. The sensitivity to different parameters can be provided by the design and orientation of the electrodes. The objective is to replace conventional sensors which provide diagnostics in the laboratory but are known to fail in real-world applications with a suite of rugged sensors optimized to measure wall shear-stress, pressure, temperature, heat flux, mass-flow, strain, and gas species. The advantages of the plasma sensor are that it has no mechanical parts (like a pressure transducer diaphragm) to fatigue or break, its operation is insensitive to temperature, it has a very high frequency response (2MHz +), and its output can be received wirelessly. These advantages over other sensors makes it ideal for use in high speed flows.

  18. The calibration of the spectroscopic diode laser sensor for the water vapour diagnostics at output of singlet oxygen generator for COIL

    NASA Astrophysics Data System (ADS)

    Megenin, A. V.; Chernyshov, A. K.; Azyazov, V. N.

    2005-06-01

    A1GaAs/GaAs quantum-well diode laser (824 nm) with the short external cavity was used for water diagnostics in the pumped out gas cell. The laser provided the 63 GHz continuous tuning of the optical frequency by the scanning of a pump current and a spectral linewidth of oscillation was less than 0,2 GHz. The experimentally obtained dependence of a second derivative amplitude on the vapour pressure coincides well with the calculated curve in the range of 0,4-20 Torr. The change of output signal close to linear was recorded at a pressure in the sample gas cell less than 5 Ton. The minimum concentration of H20, which is still measured by the diode laser sensor is estimated at a level 1,5x1015 molecule/cm3.

  19. Advanced sensors technology survey

    NASA Technical Reports Server (NTRS)

    Cooper, Tommy G.; Costello, David J.; Davis, Jerry G.; Horst, Richard L.; Lessard, Charles S.; Peel, H. Herbert; Tolliver, Robert

    1992-01-01

    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed.

  20. Embedded Sensor Networks

    NASA Astrophysics Data System (ADS)

    Iyengar, Sitharama S.

    Embedded sensor networks are distributed systems for sensing and in situ processing of spatially and temporally dense data from resource-limited and harsh environments such as seismic zones, ecological contamination sites are battle fields. From an application point of view, many interesting questions arise from sensor network technology that go far beyond the networking/computing aspects of the embedded system. This talk presents an overview of various open problems that are both of mathematical and engineering interests. These problems include sensor-centric quality of routing/energy optimization among other graph theoretic problems.

  1. Flexible Plasmonic Sensors

    PubMed Central

    Shir, Daniel; Ballard, Zachary S.; Ozcan, Aydogan

    2016-01-01

    Mechanical flexibility and the advent of scalable, low-cost, and high-throughput fabrication techniques have enabled numerous potential applications for plasmonic sensors. Sensitive and sophisticated biochemical measurements can now be performed through the use of flexible plasmonic sensors integrated into existing medical and industrial devices or sample collection units. More robust sensing schemes and practical techniques must be further investigated to fully realize the potentials of flexible plasmonics as a framework for designing low-cost, embedded and integrated sensors for medical, environmental, and industrial applications. PMID:27547023

  2. Electrocatalytic cermet sensor

    DOEpatents

    Shoemaker, Erika L.; Vogt, Michael C.

    1998-01-01

    A sensor for O.sub.2 and CO.sub.2 gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer.

  3. Electrocatalytic cermet sensor

    DOEpatents

    Shoemaker, E.L.; Vogt, M.C.

    1998-06-30

    A sensor is described for O{sub 2} and CO{sub 2} gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer. 16 figs.

  4. Sensor Suitcase Tablet Software

    SciTech Connect

    2016-10-06

    The Retrocommissioning Sensor Suitcase is targeted for use in small commercial buildings of less than 50,000 square feet of floor space that regularly receive basic services such as maintenance and repair, but don't have in-house energy management staff or buildings experts. The Suitcase is designed to be easy-to-use by building maintenance staff, or other professionals such as telecom and alarm technicians. The software in the hand-held is designed to guide the staff to input the building and system information, deploy the sensors in proper location, configure the sensor hardware, and start the data collection.

  5. Electrochemical micro sensor

    DOEpatents

    Setter, Joseph R.; Maclay, G. Jordan

    1989-09-12

    A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.

  6. Wireless passive radiation sensor

    DOEpatents

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  7. Remote electrochemical sensor

    DOEpatents

    Wang, J.; Olsen, K.; Larson, D.

    1997-10-14

    An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

  8. [Columbia Sensor Diagrams]. Revised

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A two dimensional graphical event sequence of the time history of relevant sensor information located in the left wing and wheel well areas of the Space Shuttle Columbia Orbiter is presented. Information contained in this graphical event sequence include: 1) Sensor location on orbiter and its associated wire bindle in X-Y plane; 2) Wire bundle routing; 3) Description of each anomalous sensor event; 4) Time annotation by (a) GMT, (b) time relative to LOS, (c) time history bar, and (d) ground track; and 5) Graphical display of temperature rise (based on delta temperature from point it is determined to be anomalous).

  9. RF current sensor

    DOEpatents

    Moore, James A.; Sparks, Dennis O.

    1998-11-10

    An RF sensor having a novel current sensing probe and a voltage sensing probe to measure voltage and current. The current sensor is disposed in a transmission line to link all of the flux generated by the flowing current in order to obtain an accurate measurement. The voltage sensor is a flat plate which operates as a capacitive plate to sense voltage on a center conductor of the transmission line, in which the measured voltage is obtained across a resistance leg of a R-C differentiator circuit formed by the characteristic impedance of a connecting transmission line and a capacitance of the plate, which is positioned proximal to the center conductor.

  10. Uncooled thermal imaging sensors for unattended sensor applications

    NASA Astrophysics Data System (ADS)

    Kohin, Margaret; Figler, Burton D.; Blackwell, Richard J.; Butler, Neal R.; Backer, Brian S.; Gurnee, Mark N.; Murphy, Bob H.

    2002-08-01

    320×240 and 640×480 small pixel uncooled microbolometer focal plane arrays have been developed that reduce overall sensor size, weight, power consumption, and cost. At the same time, these sensors still provide the high quality image resolution needed for target recognition and identification. These newly developed small uncooled thermal imaging sensors are being demonstrated in several attended and unattended sensor applications that include Unattended Ground Sensors, Micro Air Vehicles, and Infrared Helmet Sights. This paper describes recent developments at BAE SYSTEMS in uncooled microbolometer sensor technology for unattended sensor applications and presents the latest performance and image data for our 2nd generation systems.

  11. Complex pendulum biomass sensor

    SciTech Connect

    Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.

    2007-12-25

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  12. Integrated optical sensor

    DOEpatents

    Watkins, Arthur D.; Smartt, Herschel B.; Taylor, Paul L.

    1994-01-01

    An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

  13. Integrated optical sensor

    DOEpatents

    Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

    1994-01-04

    An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

  14. Microsoft Kinect Sensor Evaluation

    NASA Technical Reports Server (NTRS)

    Billie, Glennoah

    2011-01-01

    My summer project evaluates the Kinect game sensor input/output and its suitability to perform as part of a human interface for a spacecraft application. The primary objective is to evaluate, understand, and communicate the Kinect system's ability to sense and track fine (human) position and motion. The project will analyze the performance characteristics and capabilities of this game system hardware and its applicability for gross and fine motion tracking. The software development kit for the Kinect was also investigated and some experimentation has begun to understand its development environment. To better understand the software development of the Kinect game sensor, research in hacking communities has brought a better understanding of the potential for a wide range of personal computer (PC) application development. The project also entails the disassembly of the Kinect game sensor. This analysis would involve disassembling a sensor, photographing it, and identifying components and describing its operation.

  15. Biomimetic sensor design

    NASA Astrophysics Data System (ADS)

    Lee, Ju Hun; Jin, Hyo-Eon; Desai, Malav S.; Ren, Shuo; Kim, Soyoun; Lee, Seung-Wuk

    2015-11-01

    Detection of desired target chemicals in a sensitive and selective manner is critically important to protect human health, environment and national security. Nature has been a great source of inspiration for the design of sensitive and selective sensors. In this mini-review, we overview the recent developments in bio-inspired sensor development. There are four major components of sensor design: design of receptors for specific targets; coating materials to integrate receptors to transducing machinery; sensitive transducing of signals; and decision making based on the sensing results. We discuss the biomimetic methods to discover specific receptors followed by a discussion about bio-inspired nanocoating material design. We then review the recent developments in phage-based bioinspired transducing systems followed by a discussion of biomimetic pattern recognition-based decision making systems. Our review will be helpful to understand recent approaches to reverse-engineer natural systems to design specific and sensitive sensors.

  16. Modular sensor network node

    DOEpatents

    Davis, Jesse Harper Zehring; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick; Kyker, Ronald Dean

    2008-06-10

    A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

  17. Capacitance pressure sensor

    DOEpatents

    Eaton, William P.; Staple, Bevan D.; Smith, James H.

    2000-01-01

    A microelectromechanical (MEM) capacitance pressure sensor integrated with electronic circuitry on a common substrate and a method for forming such a device are disclosed. The MEM capacitance pressure sensor includes a capacitance pressure sensor formed at least partially in a cavity etched below the surface of a silicon substrate and adjacent circuitry (CMOS, BiCMOS, or bipolar circuitry) formed on the substrate. By forming the capacitance pressure sensor in the cavity, the substrate can be planarized (e.g. by chemical-mechanical polishing) so that a standard set of integrated circuit processing steps can be used to form the electronic circuitry (e.g. using an aluminum or aluminum-alloy interconnect metallization).

  18. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  19. Electronic Nose System Sensors

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Jet Propulsion Laboratory has designed and built an electronic nose system -- ENose -- to take on the duty of staying alert for smells that could indicate hazardous conditions in a closed spacecraft environment. Its sensors (shown here) are tailored so they conduct electricity differently when an air stream carries a particular chemical across them. JPL has designed and built a 3-pound flight version. The active parts are 32 sensors, each with a different mix of polymers saturated with carbon. When certain chemicals latch onto a sensor, they change how the sensor conducts electricity. This signal tells how much of a compound is in the air. The electronic nose flown aboard STS-95 in 1998 was capable of successfully detecting 10 toxic compounds.

  20. Uncooled tunneling infrared sensor

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Rockstad, Howard K. (Inventor); Reynolds, Joseph K. (Inventor)

    1994-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane which would otherwise change deflection depending upon incident infrared radiation. The resulting infrared sensor will meet or exceed the performance of all other broadband, uncooled, infrared sensors and can be miniaturized to pixel dimensions smaller than 100 .mu.m. The technology is readily implemented as a small-format linear array suitable for commercial and spacecraft applications.

  1. Uncooled tunneling infrared sensor

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)

    1995-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.

  2. Laminar-Separation Sensor

    NASA Technical Reports Server (NTRS)

    Manuel, G. S.; Carraway, D. L.; Lee, C. C.

    1991-01-01

    Reduction of viscous drag on airplanes explores limits of practical applications of natural laminar flow. Wind-tunnel and flight tests conducted to explore abilities of hot-film sensors to identify separation of laminar flow as principal mode of amplification of instability leading to transition from laminar to turbulent flow. Two different laminar-separation-sensor configurations developed and used to detect boundary-layer transitions. Results show hot-film laminar-separation-sensor technique viable means for detecting existence of transition as well as for indicating reversed flow in laminar-separation bubble. Refinement of sensor configurations provides tools necessary to explore, in all speed regimes, practical limits of laminar-flow applications and viscous-drag-reduction technology.

  3. Magnetic infrasound sensor

    DOEpatents

    Mueller, Fred M.; Bronisz, Lawrence; Grube, Holger; Nelson, David C.; Mace, Jonathan L.

    2006-11-14

    A magnetic infrasound sensor is produced by constraining a permanent magnet inside a magnetic potential well above the surface of superconducting material. The magnetic infrasound sensor measures the position or movement of the permanent magnet within the magnetic potential well, and interprets the measurements. Infrasound sources can be located and characterized by combining the measurements from one or more infrasound sensors. The magnetic infrasound sensor can be tuned to match infrasound source types, resulting in better signal-to-noise ratio. The present invention can operate in frequency modulation mode to improve sensitivity and signal-to-noise ratio. In an alternate construction, the superconductor can be levitated over a magnet or magnets. The system can also be driven, so that time resolved perturbations are sensed, resulting in a frequency modulation version with improved sensitivity and signal-to-noise ratio.

  4. Thermal microphotonic sensor and sensor array

    DOEpatents

    Watts, Michael R [Albuquerque, NM; Shaw, Michael J [Tijeras, NM; Nielson, Gregory N [Albuquerque, NM; Lentine, Anthony L [Albuquerque, NM

    2010-02-23

    A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.

  5. Nanomaterials for Sensor Applications

    SciTech Connect

    Márquez, Francisco; Morant, Carmen

    2015-01-15

    A large part of the advances in nanotechnology have been directed towards the development of highspeed electronics, more efficient catalysts, and sensors. This latter group of applications has great relevance and unprecedented development potential for the coming years. Some of the main objectives for the development of sensors have focused on making more sensitive, effective and specific sensing devices. The improvement of these systems and the increase of specificity are clearly associated with a decrease in size of the components, which can lead to obtaining more rapid action, almost in real time. Nanomaterials currently used in sensor development include a long list of nanostructured systems, as for example: Metal nanotubes, nanowires, nanofibers, nanocomposites, nanorods, nanoparticles, nanostructured polymers, and different allotropes of carbon as carbon nanotubes, graphene or fullerenes, among others [1]. These nanomaterials are characterized by having unique physicochemical properties, including high electrical and thermal conductivity, extremely high surface area/volume ratio, high mechanical strength and even excellent catalytic properties [1] [2]. These materials, may exhibit relevant physicochemical behavior, such as quantization or electronic confinement effects, which can be used in the development of all kinds of sensors [2]. So far, sensors have been developed for determination and quantification of gases, radiation, biomolecules, microorganisms, etc. [2] [3]. The sensors developed so far usually use the system lock and key, wherein the selective receptor (lock) is selectively anchored to the analyte of interest (or key). This system has great limitations when analyzing the analyte in the presence of other analytes, which can alter the sensitivity or specificity of the measure, as occurs in sensors used in biomedical applications [3] [4]. One possible solution is based on the development of sensor arrays, consisting of a combination of different and

  6. Nanomaterials for Sensor Applications

    DOE PAGES

    Márquez, Francisco; Morant, Carmen

    2015-01-15

    A large part of the advances in nanotechnology have been directed towards the development of highspeed electronics, more efficient catalysts, and sensors. This latter group of applications has great relevance and unprecedented development potential for the coming years. Some of the main objectives for the development of sensors have focused on making more sensitive, effective and specific sensing devices. The improvement of these systems and the increase of specificity are clearly associated with a decrease in size of the components, which can lead to obtaining more rapid action, almost in real time. Nanomaterials currently used in sensor development include amore » long list of nanostructured systems, as for example: Metal nanotubes, nanowires, nanofibers, nanocomposites, nanorods, nanoparticles, nanostructured polymers, and different allotropes of carbon as carbon nanotubes, graphene or fullerenes, among others [1]. These nanomaterials are characterized by having unique physicochemical properties, including high electrical and thermal conductivity, extremely high surface area/volume ratio, high mechanical strength and even excellent catalytic properties [1] [2]. These materials, may exhibit relevant physicochemical behavior, such as quantization or electronic confinement effects, which can be used in the development of all kinds of sensors [2]. So far, sensors have been developed for determination and quantification of gases, radiation, biomolecules, microorganisms, etc. [2] [3]. The sensors developed so far usually use the system lock and key, wherein the selective receptor (lock) is selectively anchored to the analyte of interest (or key). This system has great limitations when analyzing the analyte in the presence of other analytes, which can alter the sensitivity or specificity of the measure, as occurs in sensors used in biomedical applications [3] [4]. One possible solution is based on the development of sensor arrays, consisting of a combination of

  7. Sensor Characteristics Reference Guide

    SciTech Connect

    none,

    2013-04-01

    The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information.

  8. Advanced Sensors for TBI

    DTIC Science & Technology

    2016-12-01

    necessary to reliably detect pressure changes in the brain swelling range of ICP. (4) The new wafer design and fabrication of the re-engineered sensors...of diaphragm diameters (200, 400, 600, 800, and 1000 µm diameter). Diaphragm diameter should affect sensitivity of the sensors. These wafer -scale... wafer . The pre-definition provides a variety of advantages to the overall process: Bench calibration and testing of sensitivity were completed

  9. Fiberoptic Sensor Market Development

    NASA Astrophysics Data System (ADS)

    Zilber, Jon

    1984-11-01

    Fiberoptic sensor technology has been developed to satisfy particular needs in specific applications (primarily in the military sector). The technology is now on the verge of commercialization in a broad range of applications in the private sector. As the technology becomes more generic, unforeseen applications will emerge. A review of the patents granted for fiberoptic sensors indicates the range and magnitude of commercial interest in this technology.

  10. Physical Intelligent Sensors

    NASA Technical Reports Server (NTRS)

    Bandhil, Pavan; Chitikeshi, Sanjeevi; Mahajan, Ajay; Figueroa, Fernando

    2005-01-01

    This paper proposes the development of intelligent sensors as part of an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the NASA s Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Integrated Systems Health Monitoring (ISHM) vision. This paper outlines progress made in the development of intelligent sensors by describing the work done till date on Physical Intelligent Sensors (PIS). The PIS discussed here consists of a thermocouple used to read temperature in an analog form which is then converted into digital values. A microprocessor collects the sensor readings and runs numerous embedded event detection routines on the collected data and if any event is detected, it is reported, stored and sent to a remote system through an Ethernet connection. Hence the output of the PIS is data coupled with confidence factor in the reliability of the data which leads to information on the health of the sensor at all times. All protocols are consistent with IEEE 1451.X standards. This work lays the foundation for the next generation of smart devices that have embedded intelligence for distributed decision making capabilities.

  11. Electrospinning Polyaniline for Sensors

    NASA Astrophysics Data System (ADS)

    Amariei, N.; Manea, L. R.; Bertea, A. P.; Cramariuc, R.; Bertea, A.; Cramariuc, O.

    2017-06-01

    Polyaniline is a conductive polymer (organic metal) with multiple uses as a sensor for mineral acids, ammonia, VOCs etc. The yield of the electrochemical reactions being proportional to the surface area, it is expected that polyaniline nanofibers to provide great opportunities for applications in electronic nanodevices. This article reviews electrospinning configurations (classic, coaxial, with 2 collectors, with rotary collector, with liquid collector etc.) used to obtain 3D structures of electrospun polyaniline, alone or mixed with other polymers, which are used in sensors.

  12. Advanced Triangulation Displacement Sensors

    NASA Technical Reports Server (NTRS)

    Poteet, Wade M.; Cauthen, Harold K.

    1996-01-01

    Advanced optoelectronic triangulation displacement sensors undergoing development. Highly miniaturized, more stable, more accurate, and relatively easy to use. Incorporate wideband electronic circuits suitable for real-time monitoring and control of displacements. Measurements expected to be accurate to within nanometers. In principle, sensors mass-produced at relatively low unit cost. Potential applications numerous. Possible industrial application in measuring runout of rotating shaft or other moving part during fabrication in "zero-defect" manufacturing system, in which measured runout automatically corrected.

  13. Passive fetal monitoring sensor

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Hall, Earl T. (Inventor); Baker, Donald A. (Inventor); Bryant, Timothy D. (Inventor)

    1992-01-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  14. Organic magnetic field sensor

    DOEpatents

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  15. Passive fetal monitoring sensor

    NASA Astrophysics Data System (ADS)

    Zuckerwar, Allan J.; Hall, Earl T.; Baker, Donald A.; Bryant, Timothy D.

    1992-08-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  16. Passive fetal monitoring sensor

    NASA Astrophysics Data System (ADS)

    1990-07-01

    The invention is an ambulatory, passive sensor for use in a fetal monitoring system. The invention incorporates piezoelectric polymer film combined with a metallic mounting plate fastened to a belt and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted from a fetus inside an expectant mother and to provide means for filtering out pressure pulses arising from other sources, such as the maternal heart.

  17. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  18. Miniature Intelligent Sensor Module

    NASA Technical Reports Server (NTRS)

    Beech, Russell S.

    2007-01-01

    An electronic unit denoted the Miniature Intelligent Sensor Module performs sensor-signal-conditioning functions and local processing of sensor data. The unit includes four channels of analog input/output circuitry, a processor, volatile and nonvolatile memory, and two Ethernet communication ports, all housed in a weathertight enclosure. The unit accepts AC or DC power. The analog inputs provide programmable gain, offset, and filtering as well as shunt calibration and auto-zeroing. Analog outputs include sine, square, and triangular waves having programmable frequencies and amplitudes, as well as programmable amplitude DC. One innovative aspect of the design of this unit is the integration of a relatively powerful processor and large amount of memory along with the sensor-signalconditioning circuitry so that sophisticated computer programs can be used to acquire and analyze sensor data and estimate and track the health of the overall sensor-data-acquisition system of which the unit is a part. The unit includes calibration, zeroing, and signalfeedback circuitry to facilitate health monitoring. The processor is also integrated with programmable logic circuitry in such a manner as to simplify and enhance acquisition of data and generation of analog outputs. A notable unique feature of the unit is a cold-junction compensation circuit in the back shell of a sensor connector. This circuit makes it possible to use Ktype thermocouples without compromising a housing seal. Replicas of this unit may prove useful in industrial and manufacturing settings - especially in such large outdoor facilities as refineries. Two features can be expected to simplify installation: the weathertight housings should make it possible to mount the units near sensors, and the Ethernet communication capability of the units should facilitate establishment of communication connections for the units.

  19. Advanced Triangulation Displacement Sensors

    NASA Technical Reports Server (NTRS)

    Poteet, Wade M.; Cauthen, Harold K.

    1996-01-01

    Advanced optoelectronic triangulation displacement sensors undergoing development. Highly miniaturized, more stable, more accurate, and relatively easy to use. Incorporate wideband electronic circuits suitable for real-time monitoring and control of displacements. Measurements expected to be accurate to within nanometers. In principle, sensors mass-produced at relatively low unit cost. Potential applications numerous. Possible industrial application in measuring runout of rotating shaft or other moving part during fabrication in "zero-defect" manufacturing system, in which measured runout automatically corrected.

  20. Wireless radiation sensor

    DOEpatents

    Lamberti, Vincent E.; Howell, Jr, Layton N.; Mee, David K.; Kress, Reid L.

    2016-08-09

    Disclosed is a sensor for detecting radiation. The sensor includes a ferromagnetic metal and a radiation sensitive material coupled to the ferromagnetic metal. The radiation sensitive material is operable to change a tensile stress of the ferromagnetic metal upon exposure to radiation. The radiation is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  1. Electron tunnel sensor technology

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Waltman, S. B.; Reynolds, J. K.; Kaiser, W. J.

    1991-01-01

    Researchers designed and constructed a novel electron tunnel sensor which takes advantage of the mechanical properties of micro-machined silicon. For the first time, electrostatic forces are used to control the tunnel electrode separation, thereby avoiding the thermal drift and noise problems associated with piezoelectric actuators. The entire structure is composed of micro-machined silicon single crystals, including a folded cantilever spring and a tip. The application of this sensor to the development of a sensitive accelerometer is described.

  2. Attitude measurement: Principles and sensors

    NASA Technical Reports Server (NTRS)

    Duchon, P.; Vermande, M. P.

    1981-01-01

    Tools used in the measurement of satellite attitude are described. Attention is given to the elements that characterize an attitude sensor, the references employed (stars, moon, Sun, Earth, magnetic fields, etc.), and the detectors (optical, magnetic, and inertial). Several examples of attitude sensors are described, including sun sensors, star sensors, earth sensors, triaxial magnetometers, and gyrometers. Finally, sensor combinations that make it possible to determine a complete attitude are considered; the SPOT attitude measurement system and a combined CCD star sensor-gyrometer system are discussed.

  3. Geographically distributed environmental sensor system

    DOEpatents

    French, Patrick; Veatch, Brad; O'Connor, Mike

    2006-10-03

    The present invention is directed to a sensor network that includes a number of sensor units and a base unit. The base station operates in a network discovery mode (in which network topology information is collected) in a data polling mode (in which sensed information is collected from selected sensory units). Each of the sensor units can include a number of features, including an anemometer, a rain gauge, a compass, a GPS receiver, a barometric pressure sensor, an air temperature sensor, a humidity sensor, a level, and a radiant temperature sensor.

  4. Assessment of sensor performance

    NASA Astrophysics Data System (ADS)

    Waldmann, C.; Tamburri, M.; Prien, R. D.; Fietzek, P.

    2010-02-01

    There is an international commitment to develop a comprehensive, coordinated and sustained ocean observation system. However, a foundation for any observing, monitoring or research effort is effective and reliable in situ sensor technologies that accurately measure key environmental parameters. Ultimately, the data used for modelling efforts, management decisions and rapid responses to ocean hazards are only as good as the instruments that collect them. There is also a compelling need to develop and incorporate new or novel technologies to improve all aspects of existing observing systems and meet various emerging challenges. Assessment of Sensor Performance was a cross-cutting issues session at the international OceanSensors08 workshop in Warnemünde, Germany, which also has penetrated some of the papers published as a result of the workshop (Denuault, 2009; Kröger et al., 2009; Zielinski et al., 2009). The discussions were focused on how best to classify and validate the instruments required for effective and reliable ocean observations and research. The following is a summary of the discussions and conclusions drawn from this workshop, which specifically addresses the characterisation of sensor systems, technology readiness levels, verification of sensor performance and quality management of sensor systems.

  5. Catalytic Membrane Sensors

    SciTech Connect

    Boyle, T.J.; Brinker, C.J.; Gardner, T.J.; Hughes, R.C.; Sault, A.G.

    1998-12-01

    The proposed "catalytic membrane sensor" (CMS) was developed to generate a device which would selectively identify a specific reagent in a complex mixture of gases. This was to be accomplished by modifying an existing Hz sensor with a series of thin films. Through selectively sieving the desired component from a complex mixture and identifying it by decomposing it into Hz (and other by-products), a Hz sensor could then be used to detect the presence of the select component. The proposed "sandwich-type" modifications involved the deposition of a catalyst layered between two size selective sol-gel layers on a Pd/Ni resistive Hz sensor. The role of the catalyst was to convert organic materials to Hz and organic by-products. The role of the membraneo was to impart both chemical specificity by molecukir sieving of the analyte and converted product streams, as well as controlling access to the underlying Pd/Ni sensor. Ultimately, an array of these CMS elements encompassing different catalysts and membranes were to be developed which would enable improved selectivity and specificity from a compiex mixture of organic gases via pattern recognition methodologies. We have successfully generated a CMS device by a series of spin-coat deposited methods; however, it was determined that the high temperature required to activate the catalyst, destroys the sensor.

  6. Sensors feel digital pressure

    SciTech Connect

    Ham, J.

    1996-05-01

    Anyone who has connected a field instrument to an analog input card for a DCS, PLC or PC-based data acquisition or control system has faced the issue of analog-to-digital (A/D) conversion. Signal conversion always involves compromises in accuracy and speed. Digital communication with fieldbus eliminates the problem, right? Not exactly; fieldbus may simply move the A/D interface from the control room to the field. The vast majority of measuring instruments have analog sensors with signals that must be converted to strings of bits somewhere, somehow. Instrument manufacturers must embrace digital technology in sensor design, not just in transmitter design. One way to address the issue is to use microsystems technology, such as microelectro-mechanical systems (MEMS). Research at Delft University of Technology in the Netherlands, for example, is aimed at fabricating devices in silicon with all the components of a data-acquisition unit integrated on one chip. These smart sensors would host the sensor itself along with signal conditioning and A/D conversion circuits, and circuits for digital interfacing with a data processor. A/D conversion is still there, but encapsulated within and characterized as part of the sensor. Single-chip integration allows more signal processing within a manageable-sized package. Also, eliminating transmission of the analog signal, even within an instrument, reduces the chance for noise pickup. Less noise means instrument accuracy closer to actual sensor accuracy. 2 figs.

  7. Implantable continuous glucose sensors.

    PubMed

    Renard, Eric

    2008-08-01

    Because of the limits of wearable needle-type or microdialysis-based enzymatic sensors in clinical use, fully implantable glucose monitoring systems (IGMS) represent a promising alternative. Long-term use reducing impact of invasiveness due to implantation, less frequent calibration needs because of a more stable tissue environment around the sensor and potential easier inclusion in a closed-loop insulin delivery system are the expected benefits of IGMS. First experiences with subcutaneous and intravenous IGMS have been recently collected in pilot studies. While no severe adverse events have been reported, biointerface issues have been responsible for the failures of IGMS. Tissue reactions around implanted subcutaneous devices and damages of intravenous sensors due to shearing forces of blood flow impaired IGMS function and longevity. In functioning systems, accuracy of glucose measurement reached satisfactory levels for average durations of about 120 days with subcutaneous IGMS and 259 days with intravenous sensors. Moreover, sensor information could help to improve time spent in normal glucose range when provided to patients wearing subcutaneous IGMS and allowed safe and effective closed-loop glucose control when intravenous sensors were connected to implanted pumps using intra-peritoneal insulin delivery. These data could open a favourable perspective for IGMS after improvement of biointerface conditions and if compatible with an affordable cost.

  8. Nanomechanical Cantilever Array Sensors

    NASA Astrophysics Data System (ADS)

    Lang, Hans; Hegner, Martin; Gerber, Christoph

    Microfabricated cantilever sensors have attracted much interest in recent years as devices for the fast and reliable detection of small concentrations of molecules in air and solution. In addition to application of such sensors for gas and chemical-vapor sensing, for example as an artificial nose, they have also been employed to measure physical properties of tiny amounts of materials in miniaturized versions of conventional standard techniques such as calorimetry, thermogravimetry, weighing, photothermal spectroscopy, as well as for monitoring chemical reactions such as catalysis on small surfaces. In the past few years, the cantilever-sensor concept has been extended to biochemical applications and as an analytical device for measurements of biomaterials. Because of the label-free detection principle of cantilever sensors, their small size and scalability, this kind of device is advantageous for diagnostic applications and disease monitoring, as well as for genomics or proteomics purposes. The use of microcantilever arrays enables detection of several analytes simultaneously and solves the inherent problem of thermal drift often present when using single microcantilever sensors, as some of the cantilevers can be used as sensor cantilevers for detection, and other cantilevers serve as passivated reference cantilevers that do not exhibit affinity to the molecules to be detected.

  9. NOx Sensor Development

    SciTech Connect

    Woo, L Y; Glass, R S

    2010-11-01

    NO{sub x} compounds, specifically NO and NO{sub 2}, are pollutants and potent greenhouse gases. Compact and inexpensive NO{sub x} sensors are necessary in the next generation of diesel (CIDI) automobiles to meet government emission requirements and enable the more rapid introduction of more efficient, higher fuel economy CIDI vehicles. Because the need for a NO{sub x} sensor is recent and the performance requirements are extremely challenging, most are still in the development phase. Currently, there is only one type of NO{sub x} sensor that is sold commercially, and it seems unlikely to meet more stringent future emission requirements. Automotive exhaust sensor development has focused on solid-state electrochemical technology, which has proven to be robust for in-situ operation in harsh, high-temperature environments (e.g., the oxygen stoichiometric sensor). Solid-state sensors typically rely on yttria-stabilized zirconia (YSZ) as the oxygen-ion conducting electrolyte and then target different types of metal or metal-oxide electrodes to optimize the response. Electrochemical sensors can be operated in different modes, including amperometric (a current is measured) and potentiometric (a voltage is measured), both of which employ direct current (dc) measurements. Amperometric operation is costly due to the electronics necessary to measure the small sensor signal (nanoampere current at ppm NO{sub x} levels), and cannot be easily improved to meet the future technical performance requirements. Potentiometric operation has not demonstrated enough promise in meeting long-term stability requirements, where the voltage signal drift is thought to be due to aging effects associated with electrically driven changes, both morphological and compositional, in the sensor. Our approach involves impedancemetric operation, which uses alternating current (ac) measurements at a specified frequency. The approach is described in detail in previous reports and several publications

  10. Next Generation Distributed Sensor Networks

    DTIC Science & Technology

    2004-09-01

    the exciting information processing problems that are being solved to effectively harvest the benefits of current and emerging nano , micro ...A number of nano and micro sensors are being introduced each month ranging from biological sensors to complex RF and optical sensors. The mass...sensor networks as one of the top ten emerging technologies. The July 2003 issue of the IEEE Proceeding is devoted to micro and nano sensors

  11. "Smart" Sensor Module

    NASA Technical Reports Server (NTRS)

    Mahajan, Ajay

    2007-01-01

    An assembly that contains a sensor, sensor-signal-conditioning circuitry, a sensor-readout analog-to-digital converter (ADC), data-storage circuitry, and a microprocessor that runs special-purpose software and communicates with one or more external computer(s) has been developed as a prototype of "smart" sensor modules for monitoring the integrity and functionality (the "health") of engineering systems. Although these modules are now being designed specifically for use on rocket-engine test stands, it is anticipated that they could also readily be designed to be incorporated into health-monitoring subsystems of such diverse engineering systems as spacecraft, aircraft, land vehicles, bridges, buildings, power plants, oilrigs, and defense installations. The figure is a simplified block diagram of the "smart" sensor module. The analog sensor readout signal is processed by the ADC, the digital output of which is fed to the microprocessor. By means of a standard RS-232 cable, the microprocessor is connected to a local personal computer (PC), from which software is downloaded into a randomaccess memory in the microprocessor. The local PC is also used to debug the software. Once the software is running, the local PC is disconnected and the module is controlled by, and all output data from the module are collected by, a remote PC via an Ethernet bus. Several smart sensor modules like this one could be connected to the same Ethernet bus and controlled by the single remote PC. The software running in the microprocessor includes driver programs for operation of the sensor, programs that implement self-assessment algorithms, programs that implement protocols for communication with the external computer( s), and programs that implement evolutionary methodologies to enable the module to improve its performance over time. The design of the module and of the health-monitoring system of which it is a part reflects the understanding that the main purpose of a health

  12. Rain Drop Charge Sensor

    NASA Astrophysics Data System (ADS)

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge

  13. Semantically-Enabled Sensor Plug & Play for the Sensor Web

    PubMed Central

    Bröring, Arne; Maúe, Patrick; Janowicz, Krzysztof; Nüst, Daniel; Malewski, Christian

    2011-01-01

    Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC’s Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research. PMID:22164033

  14. Engineering workstation: Sensor modeling

    NASA Technical Reports Server (NTRS)

    Pavel, M; Sweet, B.

    1993-01-01

    The purpose of the engineering workstation is to provide an environment for rapid prototyping and evaluation of fusion and image processing algorithms. Ideally, the algorithms are designed to optimize the extraction of information that is useful to a pilot for all phases of flight operations. Successful design of effective fusion algorithms depends on the ability to characterize both the information available from the sensors and the information useful to a pilot. The workstation is comprised of subsystems for simulation of sensor-generated images, image processing, image enhancement, and fusion algorithms. As such, the workstation can be used to implement and evaluate both short-term solutions and long-term solutions. The short-term solutions are being developed to enhance a pilot's situational awareness by providing information in addition to his direct vision. The long term solutions are aimed at the development of complete synthetic vision systems. One of the important functions of the engineering workstation is to simulate the images that would be generated by the sensors. The simulation system is designed to use the graphics modeling and rendering capabilities of various workstations manufactured by Silicon Graphics Inc. The workstation simulates various aspects of the sensor-generated images arising from phenomenology of the sensors. In addition, the workstation can be used to simulate a variety of impairments due to mechanical limitations of the sensor placement and due to the motion of the airplane. Although the simulation is currently not performed in real-time, sequences of individual frames can be processed, stored, and recorded in a video format. In that way, it is possible to examine the appearance of different dynamic sensor-generated and fused images.

  15. Soldier systems sensor fusion

    NASA Astrophysics Data System (ADS)

    Brubaker, Kathryne M.

    1998-08-01

    This paper addresses sensor fusion and its applications in emerging Soldier Systems integration and the unique challenges associated with the human platform. Technology that,provides the highest operational payoff in a lightweight warrior system must not only have enhanced capabilities, but have low power components resulting in order of magnitude reductions coupled with significant cost reductions. These reductions in power and cost will be achieved through partnership with industry and leveraging of commercial state of the art advancements in microelectronics and power sources. As new generation of full solution fire control systems (to include temperature, wind and range sensors) and target acquisition systems will accompany a new generation of individual combat weapons and upgrade existing weapon systems. Advanced lightweight thermal, IR, laser and video senors will be used for surveillance, target acquisition, imaging and combat identification applications. Multifunctional sensors will provide embedded training features in combat configurations allowing the soldier to 'train as he fights' without the traditional cost and weight penalties associated with separate systems. Personal status monitors (detecting pulse, respiration rate, muscle fatigue, core temperature, etc.) will provide commanders and highest echelons instantaneous medical data. Seamless integration of GPS and dead reckoning (compass and pedometer) and/or inertial sensors will aid navigation and increase position accuracy. Improved sensors and processing capability will provide earlier detection of battlefield hazards such as mines, enemy lasers and NBC (nuclear, biological, chemical) agents. Via the digitized network the situational awareness database will automatically be updated with weapon, medical, position and battlefield hazard data. Soldier Systems Sensor Fusion will ultimately establish each individual soldier as an individual sensor on the battlefield.

  16. Hairlike Percutaneous Photochemical Sensors

    NASA Technical Reports Server (NTRS)

    George, Thomas; Loeb, Gerald

    2004-01-01

    Instrumentation systems based on hairlike fiber-optic photochemical sensors have been proposed as minimally invasive means of detecting biochemicals associated with cancer and other diseases. The fiber-optic sensors could be mass-produced as inexpensive, disposable components. The sensory tip of a fiber-optic sensor would be injected through the patient's skin into subcutaneous tissue. A biosensing material on the sensory tip would bind or otherwise react with the biochemical(s) of interest [the analyte(s)] to produce a change in optical properties that would be measured by use of an external photonic analyzer. After use, a fiber-optic sensor could be simply removed by plucking it out with tweezers. A fiber-optic sensor according to the proposal would be of the approximate size and shape of a human hair, and its sensory tip would resemble a follicle. Once inserted into a patient's subcutaneous tissue, the sensor would even more closely resemble a hair growing from a follicle (see Figure 1). The biosensing material on the sensory tip could consist of a chemical and/or cells cultured and modified for the purpose. The biosensing material would be contained within a membrane that would cover the tip. If the membrane were not permeable by an analyte, then it would be necessary to create pores in the membrane that would be large enough to allow analyte molecules to diffuse to the biosensing material, but not so large as to allow cells (if present as part of the biosensing material) to diffuse out. The end of the fiber-optic sensor opposite the sensory tip would be inserted in a fiberoptic socket in the photonic analyzer.

  17. Coverage Control in Sensor Networks

    NASA Astrophysics Data System (ADS)

    Wang, Bang

    Sensors are devices that convert physical stimulus into recordable signals. Sensors have facilitated people to understand, monitor, and control machines and environments for many decades. A sensor node consists of not only sensor unit but also microcontroller unit, communication unit, storage unit, and power supply for producing, collecting, storing, processing, and delivering sensory data. The size and cost of a single sensor node has been reducing with the continuous advances of micro-electro-mechanical systems (MEMS) techniques. The miniaturization of sensor nodes has promoted the emergence of sensor networks, which normally consists of a large number of sensor nodes collaborating to accomplish advanced tasks. Applications of sensor networks are in a wide range, including battlefield surveillance, environmental monitoring, biological detection, smart space, industrial diagnostics, etc. Despite promising applications, there are also great challenges in designing, implementing, and operating sensor networks. Many research issues have been studied, and many solution approaches have been proposed for sensor networks. In this chapter, we provide some backgrounds and introduction about sensors, sensor nodes, and sensor networks.

  18. Underwater Sensor Nodes and Networks

    PubMed Central

    Lloret, Jaime

    2013-01-01

    Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field. PMID:24013489

  19. Sensor Characteristics Reference Guide

    SciTech Connect

    Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

    2013-04-01

    The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: • Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. • Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. • Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

  20. Micromachined Fluid Inertial Sensors.

    PubMed

    Liu, Shiqiang; Zhu, Rong

    2017-02-14

    Micromachined fluid inertial sensors are an important class of inertial sensors, which mainly includes thermal accelerometers and fluid gyroscopes, which have now been developed since the end of the last century for about 20 years. Compared with conventional silicon or quartz inertial sensors, the fluid inertial sensors use a fluid instead of a solid proof mass as the moving and sensitive element, and thus offer advantages of simple structures, low cost, high shock resistance, and large measurement ranges while the sensitivity and bandwidth are not competitive. Many studies and various designs have been reported in the past two decades. This review firstly introduces the working principles of fluid inertial sensors, followed by the relevant research developments. The micromachined thermal accelerometers based on thermal convection have developed maturely and become commercialized. However, the micromachined fluid gyroscopes, which are based on jet flow or thermal flow, are less mature. The key issues and technologies of the thermal accelerometers, mainly including bandwidth, temperature compensation, monolithic integration of tri-axis accelerometers and strategies for high production yields are also summarized and discussed. For the micromachined fluid gyroscopes, improving integration and sensitivity, reducing thermal errors and cross coupling errors are the issues of most concern.

  1. Micromachined Fluid Inertial Sensors

    PubMed Central

    Liu, Shiqiang; Zhu, Rong

    2017-01-01

    Micromachined fluid inertial sensors are an important class of inertial sensors, which mainly includes thermal accelerometers and fluid gyroscopes, which have now been developed since the end of the last century for about 20 years. Compared with conventional silicon or quartz inertial sensors, the fluid inertial sensors use a fluid instead of a solid proof mass as the moving and sensitive element, and thus offer advantages of simple structures, low cost, high shock resistance, and large measurement ranges while the sensitivity and bandwidth are not competitive. Many studies and various designs have been reported in the past two decades. This review firstly introduces the working principles of fluid inertial sensors, followed by the relevant research developments. The micromachined thermal accelerometers based on thermal convection have developed maturely and become commercialized. However, the micromachined fluid gyroscopes, which are based on jet flow or thermal flow, are less mature. The key issues and technologies of the thermal accelerometers, mainly including bandwidth, temperature compensation, monolithic integration of tri-axis accelerometers and strategies for high production yields are also summarized and discussed. For the micromachined fluid gyroscopes, improving integration and sensitivity, reducing thermal errors and cross coupling errors are the issues of most concern. PMID:28216569

  2. Image Processing Occupancy Sensor

    SciTech Connect

    2016-07-14

    The Image Processing Occupancy Sensor, or IPOS, is a novel sensor technology developed at the National Renewable Energy Laboratory (NREL). The sensor is based on low-cost embedded microprocessors widely used by the smartphone industry and leverages mature open-source computer vision software libraries. Compared to traditional passive infrared and ultrasonic-based motion sensors currently used for occupancy detection, IPOS has shown the potential for improved accuracy and a richer set of feedback signals for occupant-optimized lighting, daylighting, temperature setback, ventilation control, and other occupancy and location-based uses. Unlike traditional passive infrared (PIR) or ultrasonic occupancy sensors, which infer occupancy based only on motion, IPOS uses digital image-based analysis to detect and classify various aspects of occupancy, including the presence of occupants regardless of motion, their number, location, and activity levels of occupants, as well as the illuminance properties of the monitored space. The IPOS software leverages the recent availability of low-cost embedded computing platforms, computer vision software libraries, and camera elements.

  3. Whispering gallery mode sensors

    PubMed Central

    Foreman, Matthew R.; Swaim, Jon D.; Vollmer, Frank

    2015-01-01

    We present a comprehensive overview of sensor technology exploiting optical whispering gallery mode (WGM) resonances. After a short introduction we begin by detailing the fundamental principles and theory of WGMs in optical microcavities and the transduction mechanisms frequently employed for sensing purposes. Key recent theoretical contributions to the modeling and analysis of WGM systems are highlighted. Subsequently we review the state of the art of WGM sensors by outlining efforts made to date to improve current detection limits. Proposals in this vein are numerous and range, for example, from plasmonic enhancements and active cavities to hybrid optomechanical sensors, which are already working in the shot noise limited regime. In parallel to furthering WGM sensitivity, efforts to improve the time resolution are beginning to emerge. We therefore summarize the techniques being pursued in this vein. Ultimately WGM sensors aim for real-world applications, such as measurements of force and temperature, or alternatively gas and biosensing. Each such application is thus reviewed in turn, and important achievements are discussed. Finally, we adopt a more forward-looking perspective and discuss the outlook of WGM sensors within both a physical and biological context and consider how they may yet push the detection envelope further. PMID:26973759

  4. Electrically modulated magnetoelectric sensors

    NASA Astrophysics Data System (ADS)

    Hayes, P.; Salzer, S.; Reermann, J.; Yarar, E.; Röbisch, V.; Piorra, A.; Meyners, D.; Höft, M.; Knöchel, R.; Schmidt, G.; Quandt, E.

    2016-05-01

    Magnetoelectric thin film composites have demonstrated their potential to detect sub-pT magnetic fields if mechanical resonances (typically few hundred Hz to a few kHz) are utilized. At low frequencies (1-100 Hz), magnetic field-induced frequency conversion has enabled wideband measurements with resonance-enhanced sensitivities by using the nonlinear characteristics of the magnetostriction curve. Nevertheless, the modulation with a magnetic field with a frequency close to the mechanical resonance results in a number of drawbacks, which are, e.g., size and energy consumption of the sensor as well as potential crosstalk in sensor arrays. In this work, we demonstrate the feasibility of an electric frequency conversion of a magnetoelectric sensor which would overcome the drawbacks of magnetic frequency conversion. This magnetoelectric sensor consists of three functional layers: an exchange biased magnetostrictive multilayer showing a high piezomagnetic coefficient without applying a magnetic bias field, a non-linear piezoelectric actuation layer and a linear piezoelectric sensing layer. In this approach, the low frequency magnetic signal is shifted into the mechanical resonance of the sensor, while the electric modulation frequency is chosen to be either the difference or the sum of the resonance and the signal frequency. Using this electric frequency conversion, a limit of detection in the low nT/Hz1/2 range was shown for signals of low frequency.

  5. Autonomous sensor manager agents (ASMA)

    NASA Astrophysics Data System (ADS)

    Osadciw, Lisa A.

    2004-04-01

    Autonomous sensor manager agents are presented as an algorithm to perform sensor management within a multisensor fusion network. The design of the hybrid ant system/particle swarm agents is described in detail with some insight into their performance. Although the algorithm is designed for the general sensor management problem, a simulation example involving 2 radar systems is presented. Algorithmic parameters are determined by the size of the region covered by the sensor network, the number of sensors, and the number of parameters to be selected. With straight forward modifications, this algorithm can be adapted for most sensor management problems.

  6. Advanced sensor-simulation capability

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Kalman, Linda S.; Keller, Robert A.

    1990-09-01

    This paper provides an overview of an advanced simulation capability currently in use for analyzing visible and infrared sensor systems. The software system, called VISTAS (VISIBLE/INFRARED SENSOR TRADES, ANALYSES, AND SIMULATIONS) combines classical image processing techniques with detailed sensor models to produce static and time dependent simulations of a variety of sensor systems including imaging, tracking, and point target detection systems. Systems modelled to date include space-based scanning line-array sensors as well as staring 2-dimensional array sensors which can be used for either imaging or point source detection.

  7. Predictive sensor method and apparatus

    NASA Technical Reports Server (NTRS)

    Nail, William L. (Inventor); Koger, Thomas L. (Inventor); Cambridge, Vivien (Inventor)

    1990-01-01

    A predictive algorithm is used to determine, in near real time, the steady state response of a slow responding sensor such as hydrogen gas sensor of the type which produces an output current proportional to the partial pressure of the hydrogen present. A microprocessor connected to the sensor samples the sensor output at small regular time intervals and predicts the steady state response of the sensor in response to a perturbation in the parameter being sensed, based on the beginning and end samples of the sensor output for the current sample time interval.

  8. Optical displacement sensor

    DOEpatents

    Carr, Dustin W.

    2008-04-08

    An optical displacement sensor is disclosed which uses a vertical-cavity surface-emitting laser (VCSEL) coupled to an optical cavity formed by a moveable membrane and an output mirror of the VCSEL. This arrangement renders the lasing characteristics of the VCSEL sensitive to any movement of the membrane produced by sound, vibrations, pressure changes, acceleration, etc. Some embodiments of the optical displacement sensor can further include a light-reflective diffractive lens located on the membrane or adjacent to the VCSEL to control the amount of lasing light coupled back into the VCSEL. A photodetector detects a portion of the lasing light from the VCSEL to provide an electrical output signal for the optical displacement sensor which varies with the movement of the membrane.

  9. Lightning mapping sensor study

    NASA Technical Reports Server (NTRS)

    Norwood, V.

    1983-01-01

    A technology assessment to determine how a world-wide, continuous measurement of lightning could be achieved from a geostationary platform is provided. Various approaches to the detector sensors are presented. It was first determined that any existing detector chips would require some degree of modification in order to meet the lightning mapper sensor requirements. The elements of the system were then analyzed, categorized, and graded for study emphasis. The recommended approach for the lightning mapper sensor is to develop a monolithic array in which each detector cell has circuitry that implements a two-step photon-collecting method for a very high dynamic range with good measurement accuracy. The efficiency of the array is compatible with the use of a conventional refractive optics design having an aperture in the neighborhood of 7 to 10 cm.

  10. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  11. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  12. Magnetic Nanoparticle Sensors

    PubMed Central

    Koh, Isaac; Josephson, Lee

    2009-01-01

    Many types of biosensors employ magnetic nanoparticles (diameter = 5–300 nm) or magnetic particles (diameter = 300–5,000 nm) which have been surface functionalized to recognize specific molecular targets. Here we cover three types of biosensors that employ different biosensing principles, magnetic materials, and instrumentation. The first type consists of magnetic relaxation switch assay-sensors, which are based on the effects magnetic particles exert on water proton relaxation rates. The second type consists of magnetic particle relaxation sensors, which determine the relaxation of the magnetic moment within the magnetic particle. The third type is magnetoresistive sensors, which detect the presence of magnetic particles on the surface of electronic devices that are sensitive to changes in magnetic fields on their surface. Recent improvements in the design of magnetic nanoparticles (and magnetic particles), together with improvements in instrumentation, suggest that magnetic material-based biosensors may become widely used in the future. PMID:22408498

  13. Capacitive proximity sensor

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A proximity sensor based on a closed field circuit. The circuit comprises a ring oscillator using a symmetrical array of plates that creates an oscillating displacement current. The displacement current varies as a function of the proximity of objects to the plate array. Preferably the plates are in the form of a group of three pair of symmetric plates having a common center, arranged in a hexagonal pattern with opposing plates linked as a pair. The sensor produces logic level pulses suitable for interfacing with a computer or process controller. The proximity sensor can be incorporated into a load cell, a differential pressure gauge, or a device for measuring the consistency of a characteristic of a material where a variation in the consistency causes the dielectric constant of the material to change.

  14. Capacitive proximity sensor

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A proximity sensor based on a closed field circuit is disclosed. The circuit comprises a ring oscillator using a symmetrical array of plates that creates an oscillating displacement current. The displacement current varies as a function of the proximity of objects to the plate array. Preferably the plates are in the form of a group of three pair of symmetric plates having a common center, arranged in a hexagonal pattern with opposing plates linked as a pair. The sensor produces logic level pulses suitable for interfacing with a computer or process controller. The proximity sensor can be incorporated into a load cell, a differential pressure gauge, or a device for measuring the consistency of a characteristic of a material where a variation in the consistency causes the dielectric constant of the material to change. 14 figs.

  15. Sensor Catalogue Service

    NASA Astrophysics Data System (ADS)

    Usländer, Thomas; Kunz, Siegbert; Stumpp, Jörg; Watson, Kym

    2010-05-01

    The Fraunhofer has realized a sensor aware catalogue service capable of bridging the OGC Sensor Web and INSPIRE. The available network resources (observed features, sensors, data sources) are registered in a semantic catalogue server along with meta-data to support resource discovery by client applications. Clients can find, for example, information sources for a given region and observable phenomenon of interest. The Catalogue Harvester harvests meta-information from the capabilities of OGC SWE services and maps them to INSPIRE metadata. The semantic functions support the principles of query expansion and query refinements via the use of ontologies. The catalogue client provides means for the management of harvested SWE services and supports the formulation of enhanced search queries using the semantic functionality of the catalogue.

  16. Exhaust gas sensors

    SciTech Connect

    Hiller, J.; Miree, T.J.

    1997-02-09

    The automotive industry needed a fast, reliable, under-the-hood method of determining nitrogen oxides in automobile exhaust. Several technologies were pursued concurrently. These sensing technologies were based on light absorption, electrochemical methods, and surface mass loading. The Y-12 plant was selected to study the methods based on light absorption. The first phase was defining the detailed technical objectives of the sensors--this was the role of the automobile companies. The second phase was to develop prototype sensors in the laboratories--the national laboratories. The final phase was testing of the prototype sensors by the automobile industries. This program was canceled a few months into what was to be a three-year effort.

  17. Chemiresistor urea sensor

    DOEpatents

    Glass, Robert S.

    1997-01-01

    A sensor to detect and quantify urea in fluids resulting from hemodialysis procedures, and in blood and other body fluids. The sensor is based upon a chemiresistor, which consists of an interdigitated array of metal fingers between which a resistance measured. The interdigitated array is fabricated on a suitable substrate. The surface of the array of fingers is covered with a coating containing the enzyme urease which catalyzes the hydrolysis of urea to form the ammonium ion, the bicarbonate ion, and hydroxide-chemical products which provide the basis for the measured signal. In a typical application, the sensor could be used at bedside, in conjunction with an appropriate electronics/computer system, in order to determine the hemodialysis endpoint. Also, the chemiresistor used to detect urea, can be utilized with a reference chemiresistor which does not contain urease, and connected in a differential measurement arrangement, such that the reference chemiresistor would cancel out any fluctuations due to background effects.

  18. Evaluating sensor linearity of chosen infrared sensors

    NASA Astrophysics Data System (ADS)

    Walczykowski, P.; Orych, A.; Jenerowicz, A.; Karcz, P.

    2014-11-01

    The paper describes a series of experiments conducted as part of the IRAMSWater Project, the aim of which is to establish methodologies for detecting and identifying pollutants in water bodies using aerial imagery data. The main idea is based on the hypothesis, that it is possible to identify certain types of physical, biological and chemical pollutants based on their spectral reflectance characteristics. The knowledge of these spectral curves is then used to determine very narrow spectral bands in which greatest reflectance variations occur between these pollutants. A frame camera is then equipped with a band pass filter, which allows only the selected bandwidth to be registered. In order to obtain reliable reflectance data straight from the images, the team at the Military University of Technology had developed a methodology for determining the necessary acquisition parameters for the sensor (integration time and f-stop depending on the distance from the scene and it's illumination). This methodology however is based on the assumption, that the imaging sensors have a linear response. This paper shows the results of experiments used to evaluate this linearity.

  19. Current energetic particle sensors

    NASA Astrophysics Data System (ADS)

    Fennell, J. F.; Blake, J. B.; Claudepierre, S.; Mazur, J.; Kanekal, S.; O'Brien, P.; Baker, D.; Crain, W.; Mabry, D.; Clemmons, J.

    2016-09-01

    Several energetic particle sensors designed to make measurements in the current decade are described and their technology and capabilities discussed and demonstrated. Most of these instruments are already on orbit or approaching launch. These include the Magnetic Electron Ion Spectrometers (MagEIS) and the Relativistic Electron Proton Telescope (REPT) that are flying on the Van Allen Probes, the Fly's Eye Electron Proton Spectrometers (FEEPS) flying on the Magnetospheric Multiscale (MMS) mission, and Dosimeters flying on the AC6 Cubesat mission. We focus mostly on the electron measurement capability of these sensors while providing summary comments of their ion measurement capabilities if they have any.

  20. Thin film hydrogen sensor

    DOEpatents

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  1. Nonintrusive shaft speed sensor

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, S.; Wyett, L.; Maram, J.

    1985-01-01

    Reusable rocket engines such as the Space Shuttle Main Engines (SSME), the Orbital Transfer Vehicles (OTV), etc., have throttling capabilities that require real-time, closed-loop control systems of engine propellant flows, combustion temperatures and pressures, and turbopump rotary speeds. In the case of the SSME, there are four turbopumps that require real-time measurement and control of their rotary speeds. Variable-reluctance magnetic speed sensors were designed, fabricated, and tested for all four turbopumps, resulting in the successful implementation and operation of three of these speed sensors during each of the 12 Shuttle flights.

  2. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  3. Novel nanostructured oxygen sensor

    NASA Astrophysics Data System (ADS)

    Boardman, Alan James

    New government regulations and industry requirements for medical oxygen sensors require the development of alternate materials and process optimization of primary sensor components. Current oxygen sensors are not compliant with the Restriction of Hazardous Substances (RoHS) Directive. This work focused on two areas. First, was finding suitable readily available materials for the sensor anodes. Second was optimizing the processing of the sensor cathode membrane for reduced delamination. Oxygen sensors were made using tin (Sn) and bismuth (Bi) electrodes, potassium hydroxide (KOH) and acetic acid (CH3COOH) electrolytes with platinum (Pt) and gold (Au) reference electrodes. Bi electrodes were fabricated by casting and pressing processes. Electrochemical characterization of the Sn and Bi electrodes was performed by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and sensing characterization per BSEN ISO 21647:2009 at various oxygen percentages, 0%, 20.9% and 100% oxygen levels with an automated test apparatus. The Sn anode with both electrolyte solutions showed good oxygen sensing properties and performance in a sensor. This system shows promise for replacement of Pb electrodes as required by the RoHS Directive. The Bi anode with Au cathode in both KOH and CH3COOH electrolytes showed acceptable performance and oxygen sensing properties. The Bi anodes fabricated by separate manufacturing methods demonstrated effectiveness for use in medical oxygen sensors. Gold thin films were prepared by magnetron sputtering on Flouroethylene Polymer (FEP) films. The FEP substrate temperature ranged from -77°C to 50°C. X-Ray Diffraction (XRD) and 4-point resistivity characterized the effects of substrate temperature to Au thin film particle size. XRD peak broadening and resistivity measurements showed a strong correlation of particle size to FEP substrate temperature. Particle size at 50°C was 594A and the -77°C particle size was 2.4 x 103A. Substrate

  4. Integrated rate isolation sensor

    NASA Technical Reports Server (NTRS)

    Brady, Tye (Inventor); Henderson, Timothy (Inventor); Phillips, Richard (Inventor); Zimpfer, Doug (Inventor); Crain, Tim (Inventor)

    2012-01-01

    In one embodiment, a system for providing fault-tolerant inertial measurement data includes a sensor for measuring an inertial parameter and a processor. The sensor has less accuracy than a typical inertial measurement unit (IMU). The processor detects whether a difference exists between a first data stream received from a first inertial measurement unit and a second data stream received from a second inertial measurement unit. Upon detecting a difference, the processor determines whether at least one of the first or second inertial measurement units has failed by comparing each of the first and second data streams to the inertial parameter.

  5. Small obstacle avoidance sensor.

    PubMed

    Vollmerhausen, Richard H

    2013-01-01

    This paper describes a laser ranging sensor that is suitable for applications like small unmanned aerial vehicles. The hardware consists of a diode emitter array and line-scan charge coupled devices. A structured-light technique measures ranges up to 30 meters for 64 field angles in a 90 degree field of view. Operation is eye safe, and the laser wavelength is not visible to night vision goggles. This paper describes a specific sensor design in order to illustrate performance for a given package size.

  6. Fluorescent temperature sensor

    DOEpatents

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-03-03

    The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  7. Sensor performance analysis

    NASA Technical Reports Server (NTRS)

    Montgomery, H. E.; Ostrow, H.; Ressler, G. M.

    1990-01-01

    The theory is described and the equations required to design are developed and the performance of electro-optical sensor systems that operate from the visible through the thermal infrared spectral regions are analyzed. Methods to compute essential optical and detector parameters, signal-to-noise ratio, MTF, and figures of merit such as NE delta rho and NE delta T are developed. A set of atmospheric tables are provided to determine scene radiance in the visible spectral region. The Planck function is used to determine radiance in the infrared. The equations developed were incorporated in a spreadsheet so that a wide variety of sensor studies can be rapidly and efficiently conducted.

  8. Advanced sensors and instrumentation

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Zimmerman, Joe E.; Douglas, Kevin R.; Morrison, Rusty

    1990-01-01

    NASA is currently investigating the readiness of Advanced Sensors and Instrumentation to meet the requirements of new initiatives in space. The following technical objectives and technologies are briefly discussed: smart and nonintrusive sensors; onboard signal and data processing; high capacity and rate adaptive data acquisition systems; onboard computing; high capacity and rate onboard storage; efficient onboard data distribution; high capacity telemetry; ground and flight test support instrumentation; power distribution; and workstations, video/lighting. The requirements for high fidelity data (accuracy, frequency, quantity, spatial resolution) in hostile environments will continue to push the technology developers and users to extend the performance of their products and to develop new generations.

  9. Implantable medical sensor system

    DOEpatents

    Darrow, Christopher B.; Satcher, Jr., Joe H.; Lane, Stephen M.; Lee, Abraham P.; Wang, Amy W.

    2001-01-01

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  10. Chemical sensor system

    DOEpatents

    Darrow, Christopher B.; Satcher, Jr., Joe H.; Lane, Stephen M.; Lee, Abraham P.; Wang, Amy W.

    2002-01-01

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  11. Adaptive reconfigurable distributed sensor architecture

    NASA Astrophysics Data System (ADS)

    Akey, Mark L.

    1997-07-01

    The infancy of unattended ground based sensors is quickly coming to an end with the arrival of on-board GPS, networking, and multiple sensing capabilities. Unfortunately, their use is only first-order at best: GPS assists with sensor report registration; networks push sensor reports back to the warfighter and forwards control information to the sensors; multispectral sensing is a preset, pre-deployment consideration; and the scalability of large sensor networks is questionable. Current architectures provide little synergy among or within the sensors either before or after deployment, and do not map well to the tactical user's organizational structures and constraints. A new distributed sensor architecture is defined which moves well beyond single sensor, single task architectures. Advantages include: (1) automatic mapping of tactical direction to multiple sensors' tasks; (2) decentralized, distributed management of sensor resources and tasks; (3) software reconfiguration of deployed sensors; (4) network scalability and flexibility to meet the constraints of tactical deployments, and traditional combat organizations and hierarchies; and (5) adaptability to new battlefield communication paradigms such as BADD (Battlefield Analysis and Data Dissemination). The architecture is supported in two areas: a recursive, structural definition of resource configuration and management via loose associations; and a hybridization of intelligent software agents with tele- programming capabilities. The distributed sensor architecture is examined within the context of air-deployed ground sensors with acoustic, communication direction finding, and infra-red capabilities. Advantages and disadvantages of the architecture are examined. Consideration is given to extended sensor life (up to 6 months), post-deployment sensor reconfiguration, limited on- board sensor resources (processor and memory), and bandwidth. It is shown that technical tasking of the sensor suite can be automatically

  12. Torque sensor having a spoked sensor element support structure

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J. (Inventor); Schier, J. Alan (Inventor)

    1990-01-01

    Piezoelectric sensor devices are attached across pairs of circularly arranged spokes arrayed on the periphery of an annular ring. The sensor devices each include a preloaded steel ball mounting arrangement for mounting a piezoelectric sensor element. A first circular interface plate on one side of the sensor structure attaches to alternate one of the spokes, and a circular interface plate on the opposite side of the same diameter as the first interface plate attaches to the remaining spokes.

  13. New Generation Sensor Web Enablement

    PubMed Central

    Bröring, Arne; Echterhoff, Johannes; Jirka, Simon; Simonis, Ingo; Everding, Thomas; Stasch, Christoph; Liang, Steve; Lemmens, Rob

    2011-01-01

    Many sensor networks have been deployed to monitor Earth’s environment, and more will follow in the future. Environmental sensors have improved continuously by becoming smaller, cheaper, and more intelligent. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not straightforward. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. The concept of the Sensor Web reflects such a kind of infrastructure for sharing, finding, and accessing sensors and their data across different applications. It hides the heterogeneous sensor hardware and communication protocols from the applications built on top of it. The Sensor Web Enablement initiative of the Open Geospatial Consortium standardizes web service interfaces and data encodings which can be used as building blocks for a Sensor Web. This article illustrates and analyzes the recent developments of the new generation of the Sensor Web Enablement specification framework. Further, we relate the Sensor Web to other emerging concepts such as the Web of Things and point out challenges and resulting future work topics for research on Sensor Web Enablement. PMID:22163760

  14. Automotive Sensors and MEMS Technology

    NASA Astrophysics Data System (ADS)

    Nonomura, Yutaka

    - Automotive sensors are used for emission gas purification, energy conservation, car kinematic performance, safety and ITS (intelligent transportation system). The comparison of the sensor characteristics was made for their application area. Many kinds of the principles are applied for the sensors. There are two types of sensors, such as physical and chemical one. Many of the automotive sensors are physical type such as mechanical sensors. And a gas sensor is a chemical type. The sensors have been remarkably developed with the advancement of the MEMS (Micro Electro Mechanical Systems) technology. In this paper, gas, pressure, combustion pressure, acceleration, magnetic, and angular rate sensors for automotive use are explained with their features. The sensors are key devices to control cars in the engine, power train, chassis and safety systems. The environment resistance, long term reliability, and low cost are required for the automotive sensors. They are very hard to be resolved. However, the sensor technology contributes greatly to improving global environment, energy conservation, and safety. The applications of automotive sensors will be expanded with the automobile developments.

  15. Coaxial line measurement and analysis of electromagnetic properties of soils for sensor applications

    NASA Astrophysics Data System (ADS)

    Folks, William R.; North, Ryan E.; Kelley, Julie R.; Cunningham, Amy L.; McKenna, Jason R.

    2011-06-01

    We report complex permittivity, conductivity, magnetic susceptibility, and attenuation for soils collected from a typical site in a current theater of operations. Our experimental setup consists of three network analyzers along with custombuilt sample holders and data reduction and analysis software. The sample holder has the advantage of large sample volume and a resulting higher signal to noise ratio. This system was developed to determine the electrical properties of soils over a wide frequency range from 100 Hz to 8 GHz. The lower frequencies are applicable to capacitive sensors for small shallow targets, while the higher frequencies are applicable to ground-penetrating radar (GPR) from 50 MHz to 2 GHz and beyond. S-parameter data is collected and reduced using a method, initially developed by Nicolson and Ross (1970)1, for the determination of dielectric permittivity, magnetic permeability, and loss tangent from measured Sparameter data. Experimental results are compared with site geology and mineralogy. Applications include detection of tunnels, land mines, unexploded ordinance (UXO), concrete reinforcements, and other shallow compact targets.

  16. Aerospace Sensor Systems: From Sensor Development To Vehicle Application

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2008-01-01

    This paper presents an overview of years of sensor system development and application for aerospace systems. The emphasis of this work is on developing advanced capabilities for measurement and control of aeropropulsion and crew vehicle systems as well as monitoring the safety of those systems. Specific areas of work include chemical species sensors, thin film thermocouples and strain gages, heat flux gages, fuel gages, SiC based electronic devices and sensors, space qualified electronics, and MicroElectroMechanical Systems (MEMS) as well as integrated and multifunctional sensor systems. Each sensor type has its own technical challenges related to integration and reliability in a given application. The general approach has been to develop base sensor technology using microfabrication techniques, integrate sensors with "smart" hardware and software, and demonstrate those systems in a range of aerospace applications. Descriptions of the sensor elements, their integration into sensors systems, and examples of sensor system applications will be discussed. Finally, suggestions related to the future of sensor technology will be given. It is concluded that smart micro/nano sensor technology can revolutionize aerospace applications, but significant challenges exist in maturing the technology and demonstrating its value in real-life applications.

  17. Multimodal unattended ground sensor (MMUGS)

    NASA Astrophysics Data System (ADS)

    Zong, Lei; Houser, Jeff; Damarla, T. Raju

    2006-05-01

    The U.S. Army Research Laboratory has developed a real-time multi-modal sensor for the purpose of personnel detection in urban terrain. Possible system usage includes force protection and sniper early warning. The sensor system includes a network of MMUGS sensors, a third-party gateway and user interface device. A MMUGS sensor consists of the following functions: sensing, processing, and communication. Each sensor is composed of multiple sensing modalities-acoustic, passive-infrared, and seismic. A MMUGS sensor is designed to be low cost and power efficient. This paper will first present an overview of the sensor architecture and then provide detailed descriptions of sub components. The paper will conclude with a detailed analysis of system performance. This paper is intended to provide details of the design, integration, and implementation of a MMUGS unit, and demonstrate the overall sensor system performance. This paper does not discuss the network aspect of the system and its affect on performance.

  18. Applications of Microbial Cell Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of microbial cell sensors have been developed as analytical tools. The microbial cell sensor utilizes microbes as a sensing element and a transducer. The characteristics of microbial cell sensors as sensing devices are a complete contrast to those of enzyme sensors or immunosensors, which are highly specific for the substrates of interest, although the specificity of the microbial cell sensor has been improved by genetic modification of the microbe used as the sensing element. Microbial cell sensors have the advantages of tolerance to measuring conditions, a long lifetime, and good cost performance, and have the disadvantage of a long response time. In this review, applications of microbial cell sensors are summarized.

  19. Gait Analysis Using Wearable Sensors

    PubMed Central

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications. PMID:22438763

  20. Gait analysis using wearable sensors.

    PubMed

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

  1. Wireless Sensor Networks: Monitoring and Control

    SciTech Connect

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  2. Sensor arrays for detecting microorganisms

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    2000-01-01

    A sensor array for detecting a microorganism comprising first and second sensors electrically connected to an electrical measuring apparatus, wherein the sensors comprise a region of nonconducting organic material and a region of conducting material compositionally that is different than the nonconducting organic material and an electrical path through the regions of nonconducting organic material and the conducting material. A system for identifying microorganisms using the sensor array, a computer and a pattern recognition algorithm, such as a neural net are also disclosed.

  3. Magnetic Sensors Project

    DTIC Science & Technology

    1997-09-30

    as a commercial product from Conductus . It features (1) sensitivities in field operation of 0.14 pT/Hz1/2 at 1 Hz, a factor of 50 better than typical...mechanisms in high Tc SQUID magnetic sensors. The Phase II SBIR to Conductus , Inc. sponsored by ONR 322 (Dr. J. Kravitz) has contributed directly to

  4. Wireless Sensor Networks Approach

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2003-01-01

    This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.

  5. Optical Pointing Sensor

    NASA Technical Reports Server (NTRS)

    Shields, Joel F.; Metz, Brandon C.

    2010-01-01

    The optical pointing sensor provides a means of directly measuring the relative positions of JPL s Formation Control Testbed (FCT) vehicles without communication. This innovation is a steerable infrared (IR) rangefinder that gives measurements in terms of range and bearing to a passive retroreflector.

  6. Sensor Evaluation Report

    EPA Science Inventory

    This report is the result of low cost air quality sensor performance trials conducted in the NERL’s on-site laboratories located in the Research Triangle Park, NC during 2012-2013. Such trials were viewed as highly valuable for all parties following the conclusion of the U.S. E...

  7. Supramolecular Based Membrane Sensors

    PubMed Central

    Ganjali, Mohammad Reza; Norouzi, Parviz; Rezapour, Morteza; Faridbod, Farnoush; Pourjavid, Mohammad Reza

    2006-01-01

    Supramolecular chemistry can be defined as a field of chemistry, which studies the complex multi-molecular species formed from molecular components that have relatively simpler structures. This field has been subject to extensive research over the past four decades. This review discusses classification of supramolecules and their application in design and construction of ion selective sensors.

  8. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  9. Precision liquid level sensor

    DOEpatents

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  10. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  11. Security of Sensor Networks

    DTIC Science & Technology

    2006-06-01

    8 2. Message Confidentiality ........................................................................8 3. Message Integrity...SUMMARY Security in sensor networks is an active but wide-open research field. Past experiences with other wireless technologies have shown that...layer security because, like other wireless networking technologies , the threat of interception by an adversary is always present. The security

  12. An acoustic glucose sensor.

    PubMed

    Hu, Ruifen; Stevenson, Adrian C; Lowe, Christopher R

    2012-05-15

    In vivo glucose monitoring is required for tighter glycaemic control. This report describes a new approach to construct a miniature implantable device based on a magnetic acoustic resonance sensor (MARS). A ≈ 600-800 nm thick glucose-responsive poly(acrylamide-co-3-acrylamidophenylboronic acid) (poly(acrylamide-co-3-APB)) film was polymerised on the quartz disc (12 mm in diameter and 0.25 mm thick) of the MARS. The swelling/shrinking of the polymer film induced by the glucose binding to the phenylboronate caused changes in the resonance amplitude of the quartz disc in the MARS. A linear relationship between the response of the MARS and the glucose concentration in the range ≈ 0-15 mM was observed, with the optimum response of the MARS sensor being obtained when the polymer films contained ≈ 20 mol% 3-APB. The MARS glucose sensor also functioned under flow conditions (9 μl/min) with a response almost identical to the sensor under static or non-flow conditions. The results suggest that the MARS could offer a promising strategy for developing a small subcutaneously implanted continuous glucose monitor.

  13. Sensor Evaluation Report

    EPA Science Inventory

    This report is the result of low cost air quality sensor performance trials conducted in the NERL’s on-site laboratories located in the Research Triangle Park, NC during 2012-2013. Such trials were viewed as highly valuable for all parties following the conclusion of the U.S. E...

  14. Composite sensor membrane

    DOEpatents

    Majumdar, Arun; Satyanarayana, Srinath; Yue, Min

    2008-03-18

    A sensor may include a membrane to deflect in response to a change in surface stress, where a layer on the membrane is to couple one or more probe molecules with the membrane. The membrane may deflect when a target molecule reacts with one or more probe molecules.

  15. Ultrasonic corona sensor study

    NASA Technical Reports Server (NTRS)

    Harrold, R. T.

    1976-01-01

    The overall objective of this program is to determine the feasibility of using ultrasonic (above 20 kHz) corona detection techniques to detect low order (non-arcing) coronas in varying degrees of vacuum within large high vacuum test chambers, and to design, fabricate, and deliver a prototype ultrasonic corona sensor.

  16. Carbon dioxide sensor

    DOEpatents

    Dutta, Prabir K [Worthington, OH; Lee, Inhee [Columbus, OH; Akbar, Sheikh A [Hilliard, OH

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  17. Lean blowoff detection sensor

    SciTech Connect

    Thornton, Jimmy; Straub, Douglas L.; Chorpening, Benjamin T.; Huckaby, David

    2007-04-03

    Apparatus and method for detecting incipient lean blowoff conditions in a lean premixed combustion nozzle of a gas turbine. A sensor near the flame detects the concentration of hydrocarbon ions and/or electrons produced by combustion and the concentration monitored as a function of time are used to indicate incipient lean blowoff conditions.

  18. Planar amplitude ammonia sensor

    NASA Astrophysics Data System (ADS)

    Karasinski, Pawel; Rogozinski, Roman

    2004-09-01

    The paper presents the results of investigation involving the influence of the change of launching conditions on the characteristics of amplitude ammonia sensors produced with the application of strip waveguides of different refractive profiles. Strip waveguides were produced using ion exchange technique, and the absorption sensitive films were produced using sol-gel technology.

  19. Fixed mount wavefront sensor

    DOEpatents

    Neal, Daniel R.

    2000-01-01

    A rigid mount and method of mounting for a wavefront sensor. A wavefront dissector, such as a lenslet array, is rigidly mounted at a fixed distance relative to an imager, such as a CCD camera, without need for a relay imaging lens therebetween.

  20. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  1. Electron tunnel sensor technology

    NASA Technical Reports Server (NTRS)

    Waltman, S. B.; Kaiser, W. J.

    1989-01-01

    The recent development of Scanning Tunneling Microscopy technology allows the application of electron tunneling to position detectors for the first time. The vacuum tunnel junction is one of the most sensitive position detection mechanisms available. It is also compact, simple, and requires little power. A prototype accelerometer based on electron tunneling, and other sensor applications of this promising new technology are described.

  2. Emissive sensors and devices incorporating these sensors

    DOEpatents

    Swager, Timothy M; Zhang, Shi-Wei

    2013-02-05

    The present invention generally relates to luminescent and/or optically absorbing compositions and/or precursors to those compositions, including solid films incorporating these compositions/precursors, exhibiting increased luminescent lifetimes, quantum yields, enhanced stabilities and/or amplified emissions. The present invention also relates to sensors and methods for sensing analytes through luminescent and/or optically absorbing properties of these compositions and/or precursors. Examples of analytes detectable by the invention include electrophiles, alkylating agents, thionyl halides, and phosphate ester groups including phosphoryl halides, cyanides and thioates such as those found in certain chemical warfare agents. The present invention additionally relates to devices and methods for amplifying emissions, such as those produced using the above-described compositions and/or precursors, by incorporating the composition and/or precursor within a polymer having an energy migration pathway. In some cases, the compositions and/or precursors thereof include a compound capable of undergoing a cyclization reaction.

  3. Handbook of sensor technical characteristics

    NASA Astrophysics Data System (ADS)

    Tanner, S.

    1982-07-01

    Space and terrestrial applications remote sensor systems are described. Each sensor is presented separately. Information is included on its objectives, description, technical characteristics, data products obtained, data archives location, period of operation, and measurement and potential derived parameters. Each sensor is cross indexed.

  4. Sensor system for web inspection

    DOEpatents

    Sleefe, Gerard E.; Rudnick, Thomas J.; Novak, James L.

    2002-01-01

    A system for electrically measuring variations over a flexible web has a capacitive sensor including spaced electrically conductive, transmit and receive electrodes mounted on a flexible substrate. The sensor is held against a flexible web with sufficient force to deflect the path of the web, which moves relative to the sensor.

  5. USGS VDP Infrasound Sensor Evaluation

    SciTech Connect

    Slad, George William; Merchant, Bion J.

    2016-10-01

    Sandia National Laboratories has tested and evaluated two infrasound sensors, the model VDP100 and VDP250, built in-house at the USGS Cascades Volcano Observatory. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, self-noise, dynamic range and nominal transfer function. Notable features of the VDP sensors include novel and durable construction and compact size.

  6. Handbook of sensor technical characteristics

    NASA Technical Reports Server (NTRS)

    Tanner, S.

    1982-01-01

    Space and terrestrial applications remote sensor systems are described. Each sensor is presented separately. Information is included on its objectives, description, technical characteristics, data products obtained, data archives location, period of operation, and measurement and potential derived parameters. Each sensor is cross indexed.

  7. MEMS Rate Sensors for Space

    NASA Technical Reports Server (NTRS)

    Gambino, Joel P.

    1999-01-01

    Micromachined Electro Mechanical System Rate sensors offer many advantages that make them attractive for space use. They are smaller, consume less power, and cost less than the systems currently available. MEMS Rate Sensors however, have not been optimized for use on spacecraft. This paper describes an approach to developing MEMS Rate Sensors systems for space use.

  8. Level Sensor for Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Simmons, N. E.; Schroff, R. A.

    1983-01-01

    Hot wire sensor combined with voltage-comparator circuit monitors liquid level in cryogenic-fluid storage tanks. Sensor circuit adaptable to different liquids and sensors. Constant-current source drives current through sensing probe and fixed resistor. Voltage comparator circuits interpret voltage drops to tell whether probe is immersed in liquid and is current in probe.

  9. Evaluation of soil moisture sensors

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the measurement accuracy and repeatability of the EC-5 and 5TM soil volumetric water content (SVWC) sensors, MPS-2 and 200SS soil water potential (SWP) sensors, and 200TS soil temperature sensor. Six 183cm x 183cm x 71cm wooden compartments were built inside a greenhouse, and e...

  10. Multi-Sensor Inspection Telerobot

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Hayati, S.; Volpe, R.

    1994-01-01

    This paper describes a telerobotic multi-sensor inspection system for space platforms developed at the Jet Propulsion Laboratory. A multi-sensor inspection end-effector incorporates cameras and lighting for visual inspection, as well as temperature and gas leak-detection sensors.

  11. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  12. Time-domain fiber loop ringdown sensor and sensor network

    NASA Astrophysics Data System (ADS)

    Kaya, Malik

    Optical fibers have been mostly used in fiber optic communications, imaging optics, sensing technology, etc. Fiber optic sensors have gained increasing attention for scientific and structural health monitoring (SHM) applications. In this study, fiber loop ringdown (FLRD) sensors were fabricated for scientific, SHM, and sensor networking applications. FLRD biosensors were fabricated for both bulk refractive index (RI)- and surface RI-based DNA sensing and one type of bacteria sensing. Furthermore, the effect of glucose oxidase (GOD) immobilization at the sensor head on sensor performance was evaluated for both glucose and synthetic urine solutions with glucose concentration between 0.1% and 10%. Detection sensitivities of the glucose sensors were achieved as low as 0.05%. For chemical sensing, heavy water, ranging from 97% to 10%, and several elemental solutions were monitored by using the FLRD chemical sensors. Bulk index-based FLRD sensing showed that trace elements can be detected in deionized water. For physical sensing, water and cracking sensors were fabricated and embedded into concrete. A partially-etched single-mode fiber (SMF) was embedded into a concrete bar for water monitoring while a bare SMF without any treatment was directly embedded into another concrete bar for monitoring cracks. Furthermore, detection sensitivities of water and crack sensors were investigated as 10 ml water and 0.5 mm surface crack width, respectively. Additionally fiber loop ringdown-fiber Bragg grating temperature sensors were developed in the laboratory; two sensor units for water, crack, and temperature sensing were deployed into a concrete cube in a US Department of Energy test bed (Miami, FL). Multi-sensor applications in a real concrete structure were accomplished by testing the six FLRD sensors. As a final stage, a sensor network was assembled by multiplexing two or three FLRD sensors in series and parallel. Additionally, two FLRD sensors were combined in series and

  13. Wireless sensor network

    NASA Astrophysics Data System (ADS)

    Perotti, Jose M.; Lucena, Angel R.; Mullenix, Pamela A.; Mata, Carlos T.

    2006-05-01

    Current and future requirements of aerospace sensors and transducers demand the design and development of a new family of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors and transducers will possess a certain degree of intelligence in order to provide the end user with critical data in a more efficient manner. Communication between networks of traditional or next-generation sensors can be accomplished by a Wireless Sensor Network (WSN) developed by NASA's Instrumentation Branch and ASRC Aerospace Corporation at Kennedy Space Center (KSC), consisting of at least one central station and several remote stations and their associated software. The central station is application-dependent and can be implemented on different computer hardware, including industrial, handheld, or PC-104 single-board computers, on a variety of operating systems: embedded Windows, Linux, VxWorks, etc. The central stations and remote stations share a similar radio frequency (RF) core module hardware that is modular in design. The main components of the remote stations are an RF core module, a sensor interface module, batteries, and a power management module. These modules are stackable, and a common bus provides the flexibility to stack other modules for additional memory, increased processing, etc. WSN can automatically reconfigure to an alternate frequency if interference is encountered during operation. In addition, the base station will autonomously search for a remote station that was perceived to be lost, using relay stations and alternate frequencies. Several wireless remote-station types were developed and tested in the laboratory to support different sensing technologies, such as resistive temperature devices, silicon diodes, strain gauges, pressure transducers, and hydrogen leak detectors.

  14. Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.

    PubMed

    Yurtman, Aras; Barshan, Billur

    2017-08-09

    Most activity recognition studies that employ wearable sensors assume that the sensors are attached at pre-determined positions and orientations that do not change over time. Since this is not the case in practice, it is of interest to develop wearable systems that operate invariantly to sensor position and orientation. We focus on invariance to sensor orientation and develop two alternative transformations to remove the effect of absolute sensor orientation from the raw sensor data. We test the proposed methodology in activity recognition with four state-of-the-art classifiers using five publicly available datasets containing various types of human activities acquired by different sensor configurations. While the ordinary activity recognition system cannot handle incorrectly oriented sensors, the proposed transformations allow the sensors to be worn at any orientation at a given position on the body, and achieve nearly the same activity recognition performance as the ordinary system for which the sensor units are not rotatable. The proposed techniques can be applied to existing wearable systems without much effort, by simply transforming the time-domain sensor data at the pre-processing stage.

  15. Distributed estimation for adaptive sensor selection in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Hassan Hamid, Matasm M.

    2014-05-01

    Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.

  16. Open Standards for Sensor Information Processing

    SciTech Connect

    Pouchard, Line Catherine; Poole, Stephen W; Lothian, Josh

    2009-07-01

    This document explores sensor standards, sensor data models, and computer sensor software in order to determine the specifications and data representation best suited for analyzing and monitoring computer system health using embedded sensor data. We review IEEE 1451, OGC Sensor Model Language and Transducer Model Language (TML), lm-sensors and Intelligent Platform Management Inititative (IPMI).

  17. Sensors Umbra Package v 1.0

    SciTech Connect

    Oppel, Fred J.; Hart, Brian E.; Whitford, Gregg Douglas; Xavier, Patrick G.; Rigdon, James Brian; Gottlieb, Eric Joseph; McDonald, Michael J.; Hart, Derek H.; Jungels, John; Little, Charles Q.

    2016-08-25

    This package contains modules that model sensors in Umbra. There is a mix of modalities for both accumulating and tracking energy sensors: seismic, magnetic, and radiation. Some modules fuss information from multiple sensor types. Sensor devices (e.g., seismic sensors), detect objects such as people and vehicles that have sensor properties attached (e.g., seismic properties).

  18. CMOS Integrated Carbon Nanotube Sensor

    SciTech Connect

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-05-23

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  19. Alarm sensor apparatus for closures

    DOEpatents

    Carlson, J.A.; Stoddard, L.M.

    1984-01-31

    An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or framework and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.

  20. Predictive sensor method and apparatus

    NASA Technical Reports Server (NTRS)

    Cambridge, Vivien J.; Koger, Thomas L.

    1993-01-01

    A microprocessor and electronics package employing predictive methodology was developed to accelerate the response time of slowly responding hydrogen sensors. The system developed improved sensor response time from approximately 90 seconds to 8.5 seconds. The microprocessor works in real-time providing accurate hydrogen concentration corrected for fluctuations in sensor output resulting from changes in atmospheric pressure and temperature. Following the successful development of the hydrogen sensor system, the system and predictive methodology was adapted to a commercial medical thermometer probe. Results of the experiment indicate that, with some customization of hardware and software, response time improvements are possible for medical thermometers as well as other slowly responding sensors.

  1. Alarm sensor apparatus for closures

    DOEpatents

    Carlson, James A.; Stoddard, Lawrence M.

    1986-01-01

    An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or frame work and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.

  2. Smart Sensors for Smart Hands

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1978-01-01

    Proximity, force-torque, touch and slippage sensors developed or applied by the JPL Teleoperator Project for remote manipulator control are described, including sensor data handling by computers for display and control. Examples are quoted showing the significance of these sensors for manual or computer control of manipulators. An interesting example is a proximity sensor system implemented for a four-claw JSC end effector and tested at the Shuttle Manipulator Training Facility of JSC. New sensing concepts aimed at simplifying the implementation of 'Smart Sensors for Smart Hands' in the space environment are discussed.

  3. Advanced Wireless Sensor Nodes - MSFC

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta; Richeson, Jeff

    2017-01-01

    NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.

  4. Hydrocarbon sensors and materials therefor

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2000-01-01

    An electrochemical hydrocarbon sensor and materials for use in sensors. A suitable proton conducting electrolyte and catalytic materials have been found for specific application in the detection and measurement of non-methane hydrocarbons. The sensor comprises a proton conducting electrolyte sandwiched between two electrodes. At least one of the electrodes is covered with a hydrocarbon decomposition catalyst. Two different modes of operation for the hydrocarbon sensors can be used: equilibrium versus non-equilibrium measurements and differential catalytic. The sensor has particular application for on-board monitoring of automobile exhaust gases to evaluate the performance of catalytic converters. In addition, the sensor can be utilized in monitoring any process where hydrocarbons are exhausted, for instance, industrial power plants. The sensor is low cost, rugged, sensitive, simple to fabricate, miniature, and does not suffer cross sensitivities.

  5. Two terminal micropower radar sensor

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.

  6. Two terminal micropower radar sensor

    DOEpatents

    McEwan, T.E.

    1995-11-07

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.

  7. Naval sensor data database (NSDD)

    NASA Astrophysics Data System (ADS)

    Robertson, Candace J.; Tubridy, Lisa H.

    1999-08-01

    The Naval Sensor Data database (NSDD) is a multi-year effort to archive, catalogue, and disseminate data from all types of sensors to the mine warfare, signal and image processing, and sensor development communities. The purpose is to improve and accelerate research and technology. Providing performers with the data required to develop and validate improvements in hardware, simulation, and processing will foster advances in sensor and system performance. The NSDD will provide a centralized source of sensor data in its associated ground truth, which will support an improved understanding will be benefited in the areas of signal processing, computer-aided detection and classification, data compression, data fusion, and geo-referencing, as well as sensor and sensor system design.

  8. Nuclear sensor signal processing circuit

    DOEpatents

    Kallenbach, Gene A.; Noda, Frank T.; Mitchell, Dean J.; Etzkin, Joshua L.

    2007-02-20

    An apparatus and method are disclosed for a compact and temperature-insensitive nuclear sensor that can be calibrated with a non-hazardous radioactive sample. The nuclear sensor includes a gamma ray sensor that generates tail pulses from radioactive samples. An analog conditioning circuit conditions the tail-pulse signals from the gamma ray sensor, and a tail-pulse simulator circuit generates a plurality of simulated tail-pulse signals. A computer system processes the tail pulses from the gamma ray sensor and the simulated tail pulses from the tail-pulse simulator circuit. The nuclear sensor is calibrated under the control of the computer. The offset is adjusted using the simulated tail pulses. Since the offset is set to zero or near zero, the sensor gain can be adjusted with a non-hazardous radioactive source such as, for example, naturally occurring radiation and potassium chloride.

  9. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  10. Reputation-Based Secure Sensor Localization in Wireless Sensor Networks

    PubMed Central

    He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing

    2014-01-01

    Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments. PMID:24982940

  11. Reputation-based secure sensor localization in wireless sensor networks.

    PubMed

    He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing

    2014-01-01

    Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments.

  12. INSENS sensor system

    SciTech Connect

    Myers, D.W.; Baker, J.; Benzel, D.M.; Fuess, D.A.

    1993-09-29

    This paper describes an unattended ground sensor system that has been developed for the immigration and Naturalization Service (INS). The system, known as INSENS, was developed at the Lawrence Livermore National Laboratory for use by the United States Border Patrol. This system assists in the detection of illegal entry of aliens and contraband (illegal drugs, etc.) into the United States along its land borders. Key to the system is its flexible modular design which allows future software and hardware enhancements to the system without altering the fundamental architecture of the system. Elements of the system include a sensor system capable of processing signals from multiple directional probes, a repeater system, and a handheld monitor system. Seismic, passive infrared (PIR), and magnetic probes are currently supported. The design of the INSENS system elements and their performance are described.

  13. Rigid particulate matter sensor

    SciTech Connect

    Hall, Matthew

    2011-02-22

    A sensor to detect particulate matter. The sensor includes a first rigid tube, a second rigid tube, a detection surface electrode, and a bias surface electrode. The second rigid tube is mounted substantially parallel to the first rigid tube. The detection surface electrode is disposed on an outer surface of the first rigid tube. The detection surface electrode is disposed to face the second rigid tube. The bias surface electrode is disposed on an outer surface of the second rigid tube. The bias surface electrode is disposed to face the detection surface electrode on the first rigid tube. An air gap exists between the detection surface electrode and the bias surface electrode to allow particulate matter within an exhaust stream to flow between the detection and bias surface electrodes.

  14. Internal pressure sensor

    DOEpatents

    Dowalo, James A [Blackfoot, ID

    2010-03-16

    A pressure sensor for sensing changes in pressure in an enclosed vessel may include a first chamber having at least one expandable section therein that allows that first chamber to change in length. A reference member mounted within the first chamber moves as a result of changes in length of the first chamber. A second chamber having an expandable section therein allows the second chamber to change in length in response to changes in pressure in the enclosed vessel. The second chamber is operatively associated with the first chamber so that changes in length of the second chamber result in changes in length of the first chamber. A sensor operatively associated with the reference member detects changes in position of the reference member. Changes in position of the reference member are related to changes in pressure in the enclosed vessel.

  15. Microelectromechanical inertial sensor

    DOEpatents

    Okandan, Murat [Edgewood, NM; Nielson, Gregory N [Albuquerque, NM

    2012-06-26

    A microelectromechanical (MEM) inertial sensor is disclosed which can be used to sense a linear acceleration, or a Coriolis acceleration due to an angular rotation rate, or both. The MEM inertial sensor has a proof mass which is supported on a bridge extending across an opening through a substrate, with the proof mass being balanced on the bridge by a pivot, or suspended from the bridge by the pivot. The proof mass can be oscillated in a tangential direction in the plane of the substrate, with any out-of-plane movement of the proof mass in response to a sensed acceleration being optically detected using transmission gratings located about an outer edge of the proof mass to generate a diffracted light pattern which changes with the out-of-plane movement of the proof mass.

  16. Shaft Position Optical Sensor

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A. (Inventor); Hakum, Claef F. (Inventor); Johnson, Clarence S. (Inventor)

    2001-01-01

    The present invention is an optical sensor that senses the movement of a shaft. Detection of radial movement is made when a portion of light incident on the shaft sensor-target is blocked. For detection of axial movement, a disk with flat surface is mounted and used to block a portion of light. The variation in the amount of light allowed to pass through is a measure of the position of the shaft. As proposed by this invention, significant improvement is made with respect to sensitivity and linearity of the system when the light is permanently partially blocked. To accomplish this goal this invention adds a boss to the system. To eliminate possible drift of system performance due to LED degradation or temperature variation, a feedback feature is added to the system.

  17. Elastomer degradation sensor

    SciTech Connect

    Olness, D.U.; Hirschfeld, T.B.

    1989-06-01

    This document describes the present invention which is method and apparatus using piezoelectric oscillators as elastomer degradation sensors, particularly as in situ sensors. A piezoelectric material is placed in contact with an elastomer to form an oscillating system. The piezoelectric may contact a surface of the elastomer or be embedded therein. The elastomer can be in situ in a piece of equipment or vehicle. The characteristics of the piezoelectric material, such as size, shape, and composition, and the elasticity of the elastomer determine the resonant frequency and other properties or parameters of the oscillating system. The resonant oscillation of the oscillating system is used to drive a simple electric oscillator circuit. The frequency of this oscillator circuit, and hence the resonant frequency of the oscillating system, is measured with standard frequency counting electronics. Changes in the resonance frequency of the oscillating system indicate changes in the elastic properties of the elastomer. 7 figs.

  18. Thin film hydrogen sensor

    DOEpatents

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  19. Welding Sensor System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A system originally designed for welding components of the huge Space Shuttle external tank led to a laser-based automated welder for industrial use. A laser sensor tracks the seam where two pieces of metal are to be joined, measures gaps, misfits and automatically corrects welding of torch distance and height. A small industrial computer translates the sensor's information to the weld head and records and displays weld data for control purposes and analysis. The system was modified for commercial use by Marshall Space Flight Center (MSFC), Martin Marietta and Applied Research, Inc., which produces the commercial system. Applications are in industrial welding processes that require repetitive operations and a high degree of reliability.

  20. Fiber optic hydrogen sensor

    SciTech Connect

    Butler, M.A.; Sanchez, R.; Dulleck, G.R.

    1996-05-01

    This report covers the development of fiber optic hydrogen and temperature sensors for monitoring dissolved hydrogen gas in transformer oil. The concentration of hydrogen gas is a measure of the corona and spark discharge within the transformer and reflects the state of health of the transformer. Key features of the instrument include use of palladium alloys to enhance hydrogen sensitivity, a microprocessor controlled instrument with RS-232, liquid crystal readout, and 4-20 ma. current loop interfaces. Calibration data for both sensors can be down loaded to the instrument through the RS-232 interface. This project was supported by the Technology Transfer Initiative in collaboration with J. W. Harley, Inc. through the mechanism of a cooperative research and development agreement (CRADA).