Science.gov

Sample records for 2h evaporator pot

  1. 242-16H 2H EVAPORATOR POT SAMPLING FINAL REPORT

    SciTech Connect

    Krementz, D; William Cheng, W

    2008-06-11

    Due to the materials that are processed through 2H Evaporator, scale is constantly being deposited on the surfaces of the evaporator pot. In order to meet the requirements of the Nuclear Criticality Safety Analysis/Evaluation (NCSA/NCSE) for 2H Evaporator, inspections of the pot are performed to determine the extent of scaling. Once the volume of scale reaches a certain threshold, the pot must be chemically cleaned to remove the scale. Prior to cleaning the pot, samples of the scale are obtained to determine the concentration of uranium and plutonium and also to provide information to assist with pot cleaning. Savannah River National Laboratory (SRNL) was requested by Liquid Waste Organization (LWO) Engineering to obtain these samples from two locations within the evaporator. Past experience has proven the difficulty of successfully obtaining solids samples from the 2H Evaporator pot. To mitigate this risk, a total of four samplers were designed and fabricated to ensure that two samples could be obtained. Samples had previously been obtained from the cone surface directly below the vertical access riser using a custom scraping tool. This tool was fabricated and deployed successfully. A second scraper was designed to obtain sample from the nearby vertical thermowell and a third scraper was designed to obtain sample from the vertical pot wall. The newly developed scrapers both employed a pneumatically actuated elbow. The scrapers were designed to be easily attached/removed from the elbow assembly. These tools were fabricated and deployed successfully. A fourth tool was designed to obtain sample from the opposite side of the pot under the tube bundle. This tool was fabricated and tested, but the additional modifications required to make the tool field-ready could not be complete in time to meet the aggressive deployment schedule. Two samples were obtained near the pot entry location, one from the pot wall and the other from the evaporator feed pipe. Since a third

  2. Analysis Of 2H-Evaporator Scale Pot Bottom Sample [HTF-13-11-28H

    SciTech Connect

    Oji, L. N.

    2013-07-15

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material from the 2H evaporator has been performed so that the evaporator can be chemically cleaned beginning July of 2013. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from the bottom cone sections of the 2H-evaporator pot. The sample holder from the 2H-evaporator wall was virtually empty and was not included in the analysis. It is worth noting that after the delivery of these 2H-evaporator scale samples to SRNL for the analyses, the plant customer determined that the 2H evaporator could be operated for additional period prior to requiring cleaning. Therefore, there was no need for expedited sample analysis as was presented in the Technical Task Request. However, a second set of 2H evaporator scale samples were expected in May of 2013, which would need expedited sample analysis. X-ray diffraction analysis (XRD) confirmed the bottom cone section sample from the 2H-evaporator pot consisted of nitrated cancrinite, (a crystalline sodium aluminosilicate solid), clarkeite and uranium oxide. There were also mercury compound XRD peaks which could not be matched and further X-ray fluorescence (XRF) analysis of the sample confirmed the existence of elemental mercury or mercuric oxide. On ''as received'' basis, the scale contained an average of 7.09E+00 wt % total uranium (n = 3; st.dev. = 8.31E-01 wt %) with a U-235 enrichment of 5.80E-01 % (n = 3; st.dev. = 3.96E-02 %). The measured U-238 concentration was 7.05E+00 wt % (n=3, st

  3. Analysis Of 2H-Evaporator Scale Wall [HTF-13-82] And Pot Bottom [HTF-13-77] Samples

    SciTech Connect

    Oji, L. N.

    2013-09-11

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material has been performed so that uranium and plutonium isotopic analysis can be input into a Nuclear Criticality Safety Assessment (NCSA) for scale removal by chemical cleaning. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from two different locations within the evaporator pot; the bottom cone sections of the 2H-evaporator pot [Sample HTF-13-77] and the wall 2H-evaporator [sample HTF-13-82]. X-ray diffraction analysis (XRD) confirmed that both the 2H-evaporator pot scale and the wall samples consist of nitrated cancrinite (a crystalline sodium aluminosilicate solid) and clarkeite (a uranium oxyhydroxide mineral). On ''as received'' basis, the bottom pot section scale sample contained an average of 2.59E+00 {+-} 1.40E-01 wt % total uranium with a U-235 enrichment of 6.12E-01 {+-} 1.48E-02 %, while the wall sample contained an average of 4.03E+00 {+-} 9.79E-01 wt % total uranium with a U-235 enrichment of 6.03E-01% {+-} 1.66E-02 wt %. The bottom pot section scale sample analyses results for Pu-238, Pu-239, and Pu-241 are 3.16E-05 {+-} 5.40E-06 wt %, 3.28E-04 {+-} 1.45E-05 wt %, and <8.80E-07 wt %, respectively. The evaporator wall scale samples analysis values for Pu-238, Pu-239, and Pu-241 averages 3.74E-05 {+-} 6.01E-06 wt %, 4.38E-04 {+-} 5.08E-05 wt %, and <1.38E-06 wt %, respectively. The Pu-241 analyses results, as presented, are upper limit values. For these two evaporator scale samples obtained at two different

  4. RESULTS OF THE 2H EVAPORATOR ACID CLEANING AND IN-POT NEUTRALIZATION

    SciTech Connect

    Wilmarth, B; Phillip Norris, P; Terry Allen, T

    2007-05-29

    The estimated 200 gallons of sodium aluminosilicate scale (NAS) present in the 242-16H Evaporator pot prior to chemical cleaning was subjected to four batches of 1.5 M (9 wt%) nitric acid. Each batch was neutralized with 19 M (50 wt %) sodium hydroxide (caustic) before transfer to Tank 38. The chemical cleaning process began on November 20, 2006, and was terminated on December 10, 2006. An inspection of the pot's interior was performed and based on data gathered during that inspection; the current volume of scale in the pot is conservatively estimated to be 36.3 gallons, which is well below the 200 gallon limit specified in the Technical Safety Requirements. In addition, the performance during all aspects of cleaning agreed well with the flowsheet developed at the bench and pilot scale. There were some lessons learned during the cleaning outage and are detailed in appendices of this report.

  5. ANALYSIS OF 2H-EVAPORATOR SCALE WALL [HTF-13-82] AND POT BOTTOM [HTF-13-77] SAMPLES

    SciTech Connect

    Oji, L.

    2013-06-21

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material has been performed so that uranium and plutonium isotopic analysis can be input into a Nuclear Criticality Safety Assessment (NCSA) for scale removal by chemical cleaning. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2Hevaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from the bottom cone sections of the 2H-evaporator pot [Sample HTF-13-77] and the wall 2H-evaporator [sample HTF-13-82]. X-ray diffraction analysis (XRD) confirmed that both the 2H-evaporator pot scale and the wall samples consist of nitrated cancrinite (a crystalline sodium aluminosilicate solid) and clarkeite (a uranium oxy-hydroxide mineral). On “as received” basis, the bottom pot section scale sample contained an average of 2.59E+00 ± 1.40E-01 wt % total uranium with a U-235 enrichment of 6.12E-01 ± 1.48E-02 %, while the wall sample contained an average of 4.03E+00 ± 9.79E-01 wt % total uranium with a U-235 enrichment of 6.03E-01% ± 1.66E-02 wt %. The bottom pot section scale sample analyses results for Pu-238, Pu-239, and Pu-241 are 3.16E- 05 ± 5.40E-06 wt %, 3.28E-04 ± 1.45E-05 wt %, and <8.80E-07 wt %, respectively. The evaporator wall scale samples analysis values for Pu-238, Pu-239, and Pu-241 averages 3.74E-05 ± 6.01E-06 wt %, 4.38E-04 ± 5.08E-05 wt %, and <1.38E-06 wt %, respectively. The Pu-241 analyses results, as presented, are upper limit values. These results are provided so that SRR can calculate the equivalent uranium-235 concentrations for the NCSA. Results confirm that

  6. Calculation of the Aluminosilicate Half-Life Formation Time in the 2H Evaporator

    SciTech Connect

    Fondeur, F.F.

    2000-09-21

    The 2H Evaporator contains large quantities of aluminosilicate solids deposited on internal fixtures. The proposed cleaning operations will dissolve the solids in nitric acid. Operations will then neutralize the waste prior to transfer to a waste tank. Combining recent calculations of heat transfer for the 2H Evaporator cleaning operations and laboratory experiments for dissolution of solid samples from the pot, the authors estimated the re-formation rate for aluminosilicates during cooling. The results indicate a half-life formation of 17 hours when evaporator solution cools from 60 degrees C and 9 hours when cooled from 90 degrees C.

  7. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    SciTech Connect

    Oji, L.

    2014-09-23

    .8 hours. Based on averaging the two half-lives from the 2H scale acid dissolution in 1.25 and 1.5 M nitric acid solutions, a reasonable half-live for the dissolution of 2H scales in dilute nitric acid is 11.7 ± 1.3 hours. The plant operational time for chemically cleaning (soaking) the 2H evaporator with dilute nitric acid is 32 hours. It therefore may require about 3 half-lives or less to completely dissolve most of the scales in the Evaporator pot which come into contact with the dilute nitric acid solution. On a mass basis, the Al-to-Si ratio for the scale dissolution in 1.5 M nitric acid averaged 1.30 ± 0.20 and averaged 1.18 ± 0.10 for the 2H scale dissolution in 1.25 M nitric acid. These aluminum-to-silicon ratios are in fairly good agreement with ratios from previous studies. Therefore, there is still more aluminum in the 2H evaporator scales than silicon which implies that there are no significant changes in scale properties which will exclude nitric acid as a viable protic solvent for aluminosilicate scale buildup dissolution from the 2H evaporator. Overall, the monitoring of the scale decomposition reaction in 1.25 and 1.5 M nitric acid may be better ascertained through the determination of aluminum concentration in solution than monitoring silicon in solution. Silicon solution chemistry may lead to partial precipitating of silicon with time as the scale and acid solution is heated.

  8. The evaporation of gender policies in the patriarchal cooking pot.

    PubMed

    Longwe, S H

    1997-05-01

    The author argues that gender-oriented policies tend to evaporate within the bureaucracy of the typical international development agency. An agency is described as a "patriarchal cooking pot" upon which the lid normally remains closed. The pot is filled with patriarchal bias, implicit in the agency's values, ideology, development theory, organizational systems, and procedures. Policies for women's advancement are thrown into the pot into which there is considerable input, but no output. Officially, the policy exists, but the pot does not. However, over time the gender policies will likely evaporate in the pot because they threaten the internal patriarchal tradition of the agency, and because such policies would upset the close, brotherly relationship with recipient governments of developing countries. This article attempts to shed light upon the process of policy evaporation.

  9. Performance evaluation of indirect evaporative cooler using clay pot

    NASA Astrophysics Data System (ADS)

    Ramkumar, R.; Ragupathy, A.

    2016-05-01

    The aim of the experimental study is to investigate the performance of indirect evaporator cooler in hot and humid regions. A novel approach is implemented in the cooler using clay pot with different position (single, double and three pots) and different orientation as aligned and staggered position for potential and feasibility study. The clay pot is the ceramic material where the water filled inside the pot and due to the property of porosity, the water comes outer surface of the pot and contact with the air passing over the pot surface and air get cooled. A test rig was designed and fabricated to collect experimental data. The clay pots were arranged in aligned and staggered position. In our study heat transfer was analysed with various air velocity of 1m/s to 5m/s. The air temperature, relative humidity, pressure drop and effectiveness were measured and the performance of the evaporative cooler was evaluated. The analysis of the data indicated that cooling effectiveness improve with decrease of air velocity at staggered position. It was shown that staggered position has the higher performance (57%) at 1 m/s air velocity comparison with aligned position values at three pots position.

  10. 2F and 2H evaporator loop evaluation closure report

    SciTech Connect

    Bates, W.F.

    1994-01-28

    As a result of the Concentrate Transfer System (CTS) tank ventilation system contamination event, a task team was formed to evaluate instrument loops associated with waste reduction equipment. During the event a conductivity probe designed to provide an alarm and initiate an interlock failed to respond to the presence of liquid. An investigation revealed that the probe had become disconnected from the loop. The daily functional check of the conductivity probe circuit only tested the circuit continuity from the ventilation unit to the control room and did not actually test the probe. To test the continuity, a test switch was used to simulate the conducting probe. Because the functional check did not test each part of the loop, the test could be satisfactorily completed even though the probe itself was inoperable. The function of the task team was to develop a list of loops and interlocks prioritized by importance and likelihood of similar failure. The team evaluated the associated loop calibration and functional test procedures to verify that they are adequate to ensure loop performance on a periodic frequency. This report documents the evaluation findings and associated actions required prior to startup of the 2F and 2H evaporators.

  11. Results of Chemical Cleaning the 242-16H (2H) Evaporator at the Savannah River Site

    SciTech Connect

    Martino, C.J.

    2001-10-19

    The operation of the 242-16H (2H) Evaporator was curtailed in October 1999 due to the presence of an aluminosilicate scale that contained sodium diuranate with a uranium-235 enrichment of approximately 3 percent. The scale had built to the point where steam lifting of the evaporator concentrates was ineffective. Work performed by SRTC during calendar years 1998-2000 had shown that dilute nitric acid was an effective chemical cleaning agent. An overall cleaning flowsheet was developed in calendar year 2000 that addressed numerous safety issues associated with cleaning the pot, neutralizing the uranium-bearing acid and discharging the neutralized solutions to a waste tank. Beginning in May 2001, a depleted uranium and nitric acid mixture was added to the 2H Evaporator pot and heated to elevated temperatures. As a result of this action, the pot was cleaned and returned to service as can be seen in Figure 1. This report summarizes the key conclusions from this work.

  12. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    SciTech Connect

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have

  13. Characterization Results for the 2014 HTF 3H & 2H Evaporator Overhead Samples

    SciTech Connect

    Washington, A.

    2015-05-11

    This report tabulates the radiochemical analysis of the 3H and 2H evaporator overhead samples for 137Cs, 90Sr, and 129I to meet the requirements in the Effluent Treatment Project (ETP) Waste Acceptance Criteria (WAC) (rev. 6). This report identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. All data was found to be within the ETP WAC (rev. 6) specification for the Waste Water Collection Tanks (WWCT).

  14. RESULTS OF CAUSTIC DISSOLUTION OF ALUMINOSILICATE SCALE AND CHARACTERIZATION DATA FOR SAMPLES FROM THE EVAPORATOR POT AND GRAVITY DRAIN LINE

    SciTech Connect

    Wilmarth, B; Rita Sullivan, R; Chris Martino, C

    2006-08-21

    The build-up of sodium aluminosilicate scale in the 2H Evaporator system continues to cause operational difficulties. The use of a nitric acid cleaning operation proved successful in 2001. However, the operation required additional facilities to support spent cleaning solution neutralization and was quite costly. A proposed caustic cleaning flowsheet has many advantages over the acid flowsheet. Therefore, samples were retrieved from the evaporator system (gravity drain line and pot) for both chemical and radiological characterization and dissolution testing. The characterization of these scale samples showed the presence of nitrated cancrinite along with a dehydrated zeolite. Small amounts of depleted uranium were also found in these samples as expected and the amount of uranium ranged from 0.5 wt% to 2 wt%. Dissolution in sodium hydroxide solutions of various caustic concentrations showed that the scale slowly dissolves at elevated temperature (90 C). Data from similar testing indicate that the scale removed from the GDL in 2005 dissolves slower than that removed in 1997. Differences in the particle size of these samples of scale may well explain the measured dissolution rate differences.

  15. Simulated Waste Testing Of Glycolate Impacts On The 2H-Evaporator System

    SciTech Connect

    Martino, C. J.

    2013-08-13

    Glycolic acid is being studied as a total or partial replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste tank farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the tank farm were addressed via a literature review, but several outstanding issues remained. This report documents the non-radioactive simulant tests impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The testing for which non-radioactive simulants could be used involved the following: the partitioning of glycolate into the evaporator condensate, the impacts of glycolate on metal solubility, and the impacts of glycolate on the formation and dissolution of sodium aluminosilicate scale within the evaporator. The following are among the conclusions from this work: Evaporator condensate did not contain appreciable amounts of glycolate anion. Of all tests, the highest glycolate concentration in the evaporator condensate was 0.38 mg/L. A significant portion of the tests had glycolate concentration in the condensate at less than the limit of quantification (0.1 mg/L). At ambient conditions, evaporator testing did not show significant effects of glycolate on the soluble components in the evaporator concentrates. Testing with sodalite solids and silicon containing solutions did not show significant effects of glycolate on sodium aluminosilicate formation or dissolution.

  16. Consecutive condensation, C-N and N-N bond formations: a copper- catalyzed one-pot three-component synthesis of 2H-indazole.

    PubMed

    Kumar, Manian Rajesh; Park, Ahbyeol; Park, Namjin; Lee, Sunwoo

    2011-07-01

    2H-Indazoles are synthesized using copper-catalyzed, one-pot, three-component reactions of 2-bromobenzaldehydes, primary amines, and sodium azide. A copper catalyst plays the key role in the formation of C-N and N-N bonds. This method has a broad substrate scope with a high tolerance for a variety of functional groups. PMID:21644532

  17. Reconstructing lake evaporation history and the isotopic composition of precipitation by a coupled δ18O-δ2H biomarker approach

    NASA Astrophysics Data System (ADS)

    Hepp, Johannes; Tuthorn, Mario; Zech, Roland; Mügler, Ines; Schlütz, Frank; Zech, Wolfgang; Zech, Michael

    2015-10-01

    Over the past decades, δ18O and δ2H analyses of lacustrine sediments became an invaluable tool in paleohydrology and paleolimnology for reconstructing the isotopic composition of past lake water and precipitation. However, based on δ18O or δ2H records alone, it can be challenging to distinguish between changes of the precipitation signal and changes caused by evaporation. Here we propose a coupled δ18O-δ2H biomarker approach that provides the possibility to disentangle between these two factors. The isotopic composition of long chain n-alkanes (n-C25, n-C27, n-C29, n-C31) were analyzed in order to establish a 16 ka Late Glacial and Holocene δ2H record for the sediment archive of Lake Panch Pokhari in High Himalaya, Nepal. The δ2Hn-alkane record generally corroborates a previously established δ18Osugar record reporting on high values characterizing the deglaciation and the Older and the Younger Dryas, and low values characterizing the Bølling and the Allerød periods. Since the investigated n-alkane and sugar biomarkers are considered to be primarily of aquatic origin, they were used to reconstruct the isotopic composition of lake water. The reconstructed deuterium excess of lake water ranges from +57‰ to -85‰ and is shown to serve as proxy for the evaporation history of Lake Panch Pokhari. Lake desiccation during the deglaciation, the Older Dryas and the Younger Dryas is affirmed by a multi-proxy approach using the Hydrogen Index (HI) and the carbon to nitrogen ratio (C/N) as additional proxies for lake sediment organic matter mineralization. Furthermore, the coupled δ18O and δ2H approach allows disentangling the lake water isotopic enrichment from variations of the isotopic composition of precipitation. The reconstructed 16 ka δ18Oprecipitation record of Lake Panch Pokhari is well in agreement with the δ18O records of Chinese speleothems and presumably reflects the Indian Summer Monsoon variability.

  18. Thermodynamic Modeling of the SRS Evaporators: Part III. Temperature, Evaporation, and Composition Effects on Process Control Strategy

    SciTech Connect

    Jantzen, C.M.

    2003-04-08

    Accumulations of two solid phases (a nitrated aluminosilicate) and sodium diuranate, in the form of scale, caused the SRS 2H Evaporator pot to become completely inoperable in October 1999. The accumulation of the sodium diuranate phase, which selectively precipitated with the aluminosilicate phase, caused criticality concerns in the 2H Evaporator. In order to understand the role of steady state saturation on the scale formation, solutions processed from the SRS 2H, 2F, and 3H Evaporators were evaluated with a commercially available thermodynamic equilibrium code known as Geochemist's Workbench.

  19. Evaporator Cleaning Studies

    SciTech Connect

    Wilmarth, W.R.

    1999-04-15

    Operation of the 242-16H High Level Waste Evaporator proves crucial to liquid waste management in the H-Area Tank Farm. Recent operational history of the Evaporator showed significant solid formation in secondary lines and in the evaporator pot. Additional samples remain necessary to ensure material identity in the evaporator pot. Analysis of these future samples will provide actinide partitioning information and dissolution characteristics of the solid material from the pot to ensure safe chemical cleaning.

  20. Thermodynamic Modeling of the SRS Evaporators: Part II. The 3H System

    SciTech Connect

    Jantzen, C.M.

    2001-10-02

    Accumulations of two solid phases have formed scale deposits in the Savannah River Site 2H Evaporator system since late 1996. The aluminosilicate scale deposits caused the evaporator pot to become inoperable in October 1999. Accumulations of the diuranate phase have caused criticality concerns in the SRS 2H Evaporator. In order to ensure that similar deposits are not and will not form in the SRS 3H Evaporator, thermodynamically derived activity diagrams specific to the feeds processed from Tanks 30 and 32 are evaluated in this report.

  1. Pot/Lid Illusion

    PubMed Central

    Kennedy, John M.

    2016-01-01

    A new everyday visual size illusion is presented—the Pot/Lid illusion. Observers choose an unduly large lid for a pot. We ask whether the optic slant of the pot brim would increase its apparent size or if vision underestimates the size of tilted lids.

  2. Pot/Lid Illusion

    PubMed Central

    Kennedy, John M.

    2016-01-01

    A new everyday visual size illusion is presented—the Pot/Lid illusion. Observers choose an unduly large lid for a pot. We ask whether the optic slant of the pot brim would increase its apparent size or if vision underestimates the size of tilted lids. PMID:27698990

  3. [Tin bubble pots].

    PubMed

    Renner, Claude

    2006-01-01

    In the sixteenth century Ambroise Pard uses of an hermetic pewter pot to obtain a beef-tea as a medical therapy. He describes the protocol to prepare it and the way to ordain the beef-tea to patients. The same hermetic spheric pewter pot is always in use in the middle of nineteenth century. At that period the discovery of creatin confirms the usefulness of that medical pewter pot who seems to be an only French production.

  4. [Tin bubble pots].

    PubMed

    Renner, Claude

    2006-01-01

    In the sixteenth century Ambroise Pard uses of an hermetic pewter pot to obtain a beef-tea as a medical therapy. He describes the protocol to prepare it and the way to ordain the beef-tea to patients. The same hermetic spheric pewter pot is always in use in the middle of nineteenth century. At that period the discovery of creatin confirms the usefulness of that medical pewter pot who seems to be an only French production. PMID:17152601

  5. Evaporating firewalls

    NASA Astrophysics Data System (ADS)

    Van Raamsdonk, Mark

    2014-11-01

    In this note, we begin by presenting an argument suggesting that large AdS black holes dual to typical high-energy pure states of a single holographic CFT must have some structure at the horizon, i.e. a fuzzball/firewall, unless the procedure to probe physics behind the horizon is state-dependent. By weakly coupling the CFT to an auxiliary system, such a black hole can be made to evaporate. In a case where the auxiliary system is a second identical CFT, it is possible (for specific initial states) that the system evolves to precisely the thermofield double state as the original black hole evaporates. In this case, the dual geometry should include the "late-time" part of the eternal AdS black hole spacetime which includes smooth spacetime behind the horizon of the original black hole. Thus, if a firewall is present initially, it evaporates. This provides a specific realization of the recent ideas of Maldacena and Susskind that the existence of smooth spacetime behind the horizon of an evaporating black hole can be enabled by maximal entanglement with a Hawking radiation system (in our case the second CFT) rather than prevented by it. For initial states which are not finely-tuned to produce the thermofield double state, the question of whether a late-time infalling observer experiences a firewall translates to a question about the gravity dual of a typical high-energy state of a two-CFT system.

  6. Streamer Evaporation

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Wang, A.-H.; Wu, S. T.; Nerney, S. F.

    1998-01-01

    Evaporation is the consequence of heating near the top of streamers in ideal Magnetohydrodynamics (MHD) models, where the plasma is weakly contained by the magnetic field. Heating causes slow opening of field lines and release of new solar wind. It was discovered in simulations and, due to the absence of loss mechanisms, the ultimate end point is the complete evaporation of the streamer. Of course streamers do not behave in this way because there are losses by thermal conduction and radiation. Physically, heating is also expected to depend on ambient conditions. We use our global MHD model with thermal conduction to examine the effect of changing the heating scale height. We also apply and extend an analytic model of streamers developed by Pneuman (1968) to show that steady streamers are unable to contain plasma for temperatures near the cusp greater than approximately 2 x 10(exp 6) K.

  7. Group evaporation

    NASA Technical Reports Server (NTRS)

    Shen, Hayley H.

    1991-01-01

    Liquid fuel combustion process is greatly affected by the rate of droplet evaporation. The heat and mass exchanges between gas and liquid couple the dynamics of both phases in all aspects: mass, momentum, and energy. Correct prediction of the evaporation rate is therefore a key issue in engineering design of liquid combustion devices. Current analytical tools for characterizing the behavior of these devices are based on results from a single isolated droplet. Numerous experimental studies have challenged the applicability of these results in a dense spray. To account for the droplets' interaction in a dense spray, a number of theories have been developed in the past decade. Herein, two tasks are examined. One was to study how to implement the existing theoretical results, and the other was to explore the possibility of experimental verifications. The current theoretical results of group evaporation are given for a monodispersed cluster subject to adiabatic conditions. The time evolution of the fluid mechanic and thermodynamic behavior in this cluster is derived. The results given are not in the form of a subscale model for CFD codes.

  8. Textured Sling Pots

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2010-01-01

    Clay is one of the most satisfying mediums for children to work with. It's relatively inexpensive, and the texture and changes that take place with the clay during firing make it irresistible. Molding clay from rolled-out slabs of clay is an easy way to make simple, shallow vessels or display pots. In this article, the author describes how her…

  9. Let's Make Pots.

    ERIC Educational Resources Information Center

    Sicuranza, Linda

    2001-01-01

    Describes a project for high school chemistry students that links science with art: making glazed ceramic pots. Includes materials list, base glaze recipe, step-by-step procedures for setting up a lab, and the time frame involved. Text for students covers the history of earthenware pottery, fundamentals of working with clay, description of the…

  10. Streamer Evaporation

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Wang, A. H.; Wu, Shi T.; Nerney, S.

    1998-01-01

    Evaporation is the consequence of slow plasma heating near the tops of streamers where the plasma is only weakly contained by the magnetic field. The form it takes is the slow opening of field lines at the top of the streamer and transient formation of new solar wind. It was discovered in polytropic model calculations, where due to the absence of other energy loss mechanisms in magnetostatic streamers, its ultimate endpoint is the complete evaporation of the streamer. This takes, for plausible heating rates, weeks to months in these models. Of course streamers do not behave this way, for more than one reason. One is that there are losses due to thermal conduction to the base of the streamer and radiation from the transition region. Another is that streamer heating must have a characteristic time constant and depend on the ambient physical conditions. We use our global Magnetohydrodynamics (MHD) model with thermal conduction to examine a few examples of the effect of changing the heating scale height and of making ad hoc choices for how the heating depends on ambient conditions. At the same time, we apply and extend the analytic model of streamers, which showed that streamers will be unable to contain plasma for temperatures near the cusp greater than about 2xl0(exp 6) K. Slow solar wind is observed to come from streamers through transient releases. A scenario for this that is consistent with the above physical process is that heating increases the near-cusp temperature until field lines there are forced open. The subsequent evacuation of the flux tubes by the newly forming slow wind decreases the temperature and heating until the flux tubes are able to reclose. Then, over a longer time scale, heating begins to again refill the flux tubes with plasma and increase the temperature until the cycle repeats itself. The calculations we report here are first steps towards quantitative evaluation of this scenario.

  11. 'Pot of Gold'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Pot of Gold' (upper left), located near the base of the 'Columbia Hills' in Gusev Crater. The rock's nodules and layered appearance have inspired rover team members to investigate the rock's detailed chemistry in coming sols. This picture was taken on sol 158 (June 13, 2004).

  12. Spice, pot, and stroke.

    PubMed

    Brust, John C M

    2013-12-10

    The endocannabinoid system includes 2 types of G-protein coupled receptors: CB1 (mostly in the brain) and CB2 (in peripheral lymphoid tissue). The major cannabinoid ligands are arachidonylethanolamine ("anandamide," the Sanskrit word for bliss) and 2-arachidonylglycerol ("2AG"). It is by binding to CB1 receptors that δ-9-tetrahydrocannabinol (THC), the principal psychoactive ingredient in marijuana ("pot"), produces its intended subjective effects.

  13. Characterization of samples from the 242-16F Evaporator

    SciTech Connect

    Wilmarth, W.R.

    2000-05-12

    The authors chemically characterized a sample of solid material from the 242-16F Evaporator pot. The small size of the sample limited the extent of the characterization to elemental analysis and radiometric counting of a dissolved sample. Analysis of the solid phase(s) did not occur. Results of these studies are included in this report.

  14. No-warp potted circuits

    NASA Technical Reports Server (NTRS)

    Robinson, W. W.

    1979-01-01

    Sponge inserts compensate for potting-compound expansion and relieve thermal stresses on circuit boards. Technique quality of production runs on PC boards intended for applications in environments less severe than those for aerospace equipment. Pads reduce weight of modules because they weigh far less than potting compound they displace.

  15. Beyond the Melting Pot Reconsidered.

    ERIC Educational Resources Information Center

    Anderson, Elijah

    2000-01-01

    Discusses the 1963 book, "Beyond the Melting Pot," which suggested that eventually the problem of different ethnicities in the U.S. would be resolved and society would become one melting pot. Examines how changes in immigration and economic structures have affected the issue, noting the devastating effect of the dominant culture's denigration of…

  16. Application of Ionic Liquids in Pot-in-Pot Reactions.

    PubMed

    Çınar, Simge; Schulz, Michael D; Oyola-Reynoso, Stephanie; Bwambok, David K; Gathiaka, Symon M; Thuo, Martin

    2016-01-01

    Pot-in-pot reactions are designed such that two reaction media (solvents, catalysts and reagents) are isolated from each other by a polymeric membrane similar to matryoshka dolls (Russian nesting dolls). The first reaction is allowed to progress to completion before triggering the second reaction in which all necessary solvents, reactants, or catalysts are placed except for the starting reagent for the target reaction. With the appropriate trigger, in most cases unidirectional flux, the product of the first reaction is introduced to the second medium allowing a second transformation in the same glass reaction pot--albeit separated by a polymeric membrane. The basis of these reaction systems is the controlled selective flux of one reagent over the other components of the first reaction while maintaining steady-state catalyst concentration in the first "pot". The use of ionic liquids as tools to control chemical potential across the polymeric membranes making the first pot is discussed based on standard diffusion models--Fickian and Payne's models. Besides chemical potential, use of ionic liquids as delivery agent for a small amount of a solvent that slightly swells the polymeric membrane, hence increasing flux, is highlighted. This review highlights the critical role ionic liquids play in site-isolation of multiple catalyzed reactions in a standard pot-in-pot reaction. PMID:26927045

  17. Application of Ionic Liquids in Pot-in-Pot Reactions.

    PubMed

    Çınar, Simge; Schulz, Michael D; Oyola-Reynoso, Stephanie; Bwambok, David K; Gathiaka, Symon M; Thuo, Martin

    2016-01-01

    Pot-in-pot reactions are designed such that two reaction media (solvents, catalysts and reagents) are isolated from each other by a polymeric membrane similar to matryoshka dolls (Russian nesting dolls). The first reaction is allowed to progress to completion before triggering the second reaction in which all necessary solvents, reactants, or catalysts are placed except for the starting reagent for the target reaction. With the appropriate trigger, in most cases unidirectional flux, the product of the first reaction is introduced to the second medium allowing a second transformation in the same glass reaction pot--albeit separated by a polymeric membrane. The basis of these reaction systems is the controlled selective flux of one reagent over the other components of the first reaction while maintaining steady-state catalyst concentration in the first "pot". The use of ionic liquids as tools to control chemical potential across the polymeric membranes making the first pot is discussed based on standard diffusion models--Fickian and Payne's models. Besides chemical potential, use of ionic liquids as delivery agent for a small amount of a solvent that slightly swells the polymeric membrane, hence increasing flux, is highlighted. This review highlights the critical role ionic liquids play in site-isolation of multiple catalyzed reactions in a standard pot-in-pot reaction.

  18. One-pot synthesis of (-)-oseltamivir and mechanistic insights into the organocatalyzed Michael reaction.

    PubMed

    Mukaiyama, Takasuke; Ishikawa, Hayato; Koshino, Hiroyuki; Hayashi, Yujiro

    2013-12-23

    The one-pot sequential synthesis of (-)-oseltamivir has been achieved without evaporation or solvent exchange in 36% yield over seven reactions. The key step was the asymmetric Michael reaction of pentan-3-yloxyacetaldehyde with (Z)-N-2-nitroethenylacetamide, catalyzed by a diphenylprolinol silyl ether. The use of a bulky O-silyl-substituted diphenylprolinol catalyst, chlorobenzene as a solvent, and HCO2 H as an acid additive, were key to produce the first Michael adduct in both excellent yield and excellent diastereo- and enantioselectivity. Investigation into the effect of acid demonstrated that an acid additive accelerates not only the E-Z isomerization of the enamines derived from pentan-3-yloxyacetaldehyde with diphenylprolinol silyl ether, but also ring opening of the cyclobutane intermediate and the addition reaction of the enamine to (Z)-N-2-nitroethenylacetamide. The transition-state model for the Michael reaction of pentan-3-yloxyacetaldehyde with (Z)-N-2-nitroethenylacetamide was proposed by consideration of the absolute configuration of the major and minor isomers of the Michael product with the results of the Michael reaction of pentan-3-yloxyacetaldehyde with phenylmaleimide and naphthoquinone.

  19. Synthesis of [2H7]indatraline.

    PubMed

    Allmendinger, L; Wanner, K T

    2014-11-01

    Deuterium-labelled indatraline was synthesized in high efficiency employing a Friedel-Crafts alkylation of [(2)H6]benzene with (E)-3-(3,4-dichlorophenyl)acrylic acid as a key step. The desired labelling of the final compound was ascertained in two ways, by incorporation of [(2)H6]benzene in the target molecule and additionally by deuterium transfer to the non-deuterated aryl moiety of the Friedel-Crafts alkylation product from [(2)H6]benzene, the latter thus serving as reagent and solvent. PMID:25382822

  20. Aluminosilicate Formation in High Level Waste Evaporators: A Mechanism for Uranium Accumulation

    SciTech Connect

    Wilmarth, W.R.

    2002-02-08

    High level waste Evaporators at the Savannah River Site (SRS) process radioactive waste to concentrate supernate and thus conserve tank space. In June of 1997, difficulty in evaporator operation was initially observed. This operational difficulty evidenced itself as a plugging of the evaporator's gravity drain line (GDL). The material blocking the GDL was determined to be a sodium aluminosilicate. Following a mechanical cleaning of the GDL, the evaporator was returned to service until October 1999. At this time massive deposits were discovered in the evaporator pot. As a result of the changes in evaporator chemistry and the resulting formation of aluminosilicate deposits in the evaporator, a comprehensive research and development program has been undertaken. This program is underway in order to assist in understanding the new evaporator chemistry and gain insight into the deposition phenomena. Key results from testing in FY01 have demonstrated that the chemistry of the evaporator feed favors aluminosilicate formation. Both the reaction kinetics and particle growth of the aluminosilicate material under SRS evaporator conditions has been demonstrated to occur within the residence times utilized in the SRS evaporator operation. Batch and continuous-flow experiments at known levels of supersaturation have shown a significant correlation between the deposition of aluminosilicates and mixing intensity in the vessel. Advances in thermodynamic modeling of the evaporator chemistry have been accomplished. The resulting thermodynamic model has been related to the operational history of the evaporator, is currently assisting in feed selection, and could potentially assist in expanding the operating envelopes technical baselines for evaporator operation.

  1. Table Salt from Seawater (Solar Evaporation). What We Take from Our Environment. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Science Education Center.

    This module discusses methods of obtaining table salt from seawater. Topic areas considered include: (1) obtaining salt by solar evaporation of seawater in holes; (2) obtaining salt by boiling seawater in pots; (3) how table salt is obtained from seawater in the Philippines; and (4) methods of making salt by solar evaporation of seawater in the…

  2. Postural orthostatic tachycardia syndrome (POTS).

    PubMed

    Sidhu, Bharat; Obiechina, Nonyelum; Rattu, Noman; Mitra, Shanta

    2013-09-16

    Postural orthostatic tachycardia syndrome (POTS) is a heterogeneous group of conditions characterised by autonomic dysfunction and an exaggerated sympathetic response to assuming an upright position. Up till recently, it was largely under-recognised as a clinical entity. There is now consensus about the definition of POTS as a greater than 30/min heart rate increase on standing from a supine position (greater than 40/min increase in 12-19-year-old patients) or an absolute heart rate of greater than 120/min within 10 min of standing from a supine position and in the absence of hypotension, arrhythmias, sympathomimetic drugs or other conditions that cause tachycardia. We present two cases of POTS, followed by a discussion of its pathogenesis, pathophysiology, epidemiology and management.

  3. Edible Pot Sends Toddlers to Colorado ERs

    MedlinePlus

    ... html Edible Pot Sends Toddlers to Colorado ERs Cannabis-laced candy, baked goods look irresistible to kids, ... being exposed to pot, researchers found. Edible products -- cannabis-laced brownies, cookies, candy and the like -- were ...

  4. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A; Dakin, B.; Hoeschele, M.

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  5. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  6. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  7. Caenorhabditis elegans POT-1 and POT-2 repress telomere maintenance pathways.

    PubMed

    Shtessel, Ludmila; Lowden, Mia Rochelle; Cheng, Chen; Simon, Matt; Wang, Kyle; Ahmed, Shawn

    2013-02-01

    Telomeres are composed of simple tandem DNA repeats that protect the ends of linear chromosomes from replicative erosion or inappropriate DNA damage response mechanisms. The mammalian Protection Of Telomeres (POT1) protein interacts with single-stranded telomeric DNA and can exert positive and negative effects on telomere length. Of four distinct POT1 homologs in the roundworm Caenorhabditis elegans, deficiency for POT-1 or POT-2 resulted in progressive telomere elongation that occurred because both proteins negatively regulate telomerase. We created a POT-1::mCherry fusion protein that forms discrete foci at C. elegans telomeres, independent of POT-2, allowing for live analysis of telomere dynamics. Transgenic pot-1::mCherry repressed telomerase in pot-1 mutants. Animals deficient for pot-1, but not pot-2, displayed mildly enhanced telomere erosion rates in the absence of the telomerase reverse transcriptase, trt-1. However, trt-1; pot-1 double mutants exhibited delayed senescence in comparison to trt-1 animals, and senescence was further delayed in trt-1; pot-2; pot-1 triple mutants, some of which survived robustly in the absence of telomerase. Our results indicate that POT-1 and POT-2 play independent roles in suppressing a telomerase-independent telomere maintenance pathway but may function together to repress telomerase.

  8. Dissociative recombination of N2H+

    NASA Astrophysics Data System (ADS)

    dos Santos, S. Fonseca; Ngassam, V.; Orel, A. E.; Larson, Å.

    2016-08-01

    The direct and indirect mechanisms of dissociative recombination of N2H+ are theoretically studied. At low energies, the electron capture is found to be driven by recombination into bound Rydberg states, while at collision energies above 0.1 eV, the direct capture and dissociation along electronic resonant states becomes important. Electron-scattering calculations using the complex Kohn variational method are performed to obtain the scattering matrix as well as energy positions and autoionization widths of resonant states. Potential-energy surfaces of electronic bound states of N2H and N2H+ are computed using structure calculations with the multireference configuration interaction method. The cross section for the indirect mechanism is calculated using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Here vibrational excitations of the ionic core from v =0 to v =1 and v =2 for all three normal modes are considered and autoionization is neglected. The cross section for the direct dissociation along electronic resonant states is computed with wave-packet calculations using the multiconfiguration time-dependent Hartree method, where all three internal degrees of freedom are considered. The calculated cross sections are compared to measurements.

  9. Flash evaporator systems test

    NASA Technical Reports Server (NTRS)

    Dietz, J. B.

    1976-01-01

    A flash evaporator heat rejection system representative of that proposed for the space shuttle orbiter underwent extensive system testing at the NASA Johnson Space Center (JSC) to determine its operational suitability and to establish system performance/operational characteristics for use in the shuttle system. During the tests the evaporator system demonstrated its suitability to meet the shuttle requirements by: (1) efficient operation with 90 to 95% water evaporation efficiency, (2) control of outlet temperature to 40 + or - 2 F for partial heat load operation, (3) stability of control system for rapid changes in Freon inlet temperature, and (4) repeated dormant-to-active device operation without any startup procedures.

  10. CAPSULE REPORT: EVAPORATION PROCESS

    EPA Science Inventory

    Evaporation has been an established technology in the metal finishing industry for many years. In this process, wastewaters containing reusable materials, such as copper, nickel, or chromium compounds are heated, producing a water vapor that is continuously removed and condensed....

  11. An inexpensive and reliable atmometer for estimating evaporation from sandy surfaces

    NASA Astrophysics Data System (ADS)

    Worth, G. D.; Holawe, F.; McIntyre, G. N.

    1994-12-01

    A modern modification to an inexpensive atmometer, of long-standing design, is demonstrated. In field experiments, Cantoni atmometers were observed to respond sharply to variations in solar radiation. Furthermore, this inexpensive instrument correlates well with the more expensive Livingston atmometer, and has proved to be a reliable indicator of potential evaporation from small pots of wet sand, mounted as micro-lysimeters.

  12. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  13. Mixed feed evaporator

    DOEpatents

    Vakil, Himanshu B.; Kosky, Philip G.

    1982-01-01

    In the preparation of the gaseous reactant feed to undergo a chemical reaction requiring the presence of steam, the efficiency of overall power utilization is improved by premixing the gaseous reactant feed with water and then heating to evaporate the water in the presence of the gaseous reactant feed, the heating fluid utilized being at a temperature below the boiling point of water at the pressure in the volume where the evaporation occurs.

  14. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  15. Thz Spectroscopy of D_2H^+

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Pearson, John; Amano, Takayoshi

    2015-06-01

    Pure rotational transitions of D_2H^+ observed by high-resolution spectroscopy have been limited so far to the J = 110-101 transition at 691.7 GHz, J=220-211 at 1.370 THz, and J=111-000 at 1.477 THz. As this ion is a light asymmetric-top molecule, spectroscopic characterization and prediction of other rotational transition frequencies are not straightforward. In this presentation, we extended the measurements up to 2 THz by using the JPL frequency multiplier chains, and observed three new THz lines and re-measured the three known transitions. D_2H^+ was generated in an extended negative glow discharge cell cooled to liquid nitrogen temperature. Six rotational transition frequencies together with the combination differences derived from three fundamental bands were subject to least square analysis to determine the molecular constants. New THz measurements are definitely useful for better characterization of spectroscopic properties. The improved molecular constants provide better predictions of other unobserved rotational transitions. T. Hirao and T. Amano, Ap. J.,597, L85 (2003) K. M. Evenson et al cited by O. L. Polyansky and A. R. W. McKellar, J. Chem. Phys., 92, 4039 (1990) O. Asvany et al, Phys. Rev. Lett., 100, 233004 (2008)

  16. Silicones As Connector-Potting Compounds

    NASA Technical Reports Server (NTRS)

    Bouquet, Frank L.; Bickler, Marjorie S.

    1988-01-01

    Report evaluates silicone potting materials for electrical connectors. Describes tests of connector specimens made with CV-2510 and DC-6-1104 silicones with dibutyl tin dilaurate catalyst and evaluates test results in light of previously published test results for polyurethanes. Discusses requirements for connector-potting materials, methods used to evaluate silicones, techniques for preparing specimens, and results of tests. Identifies commercial sources of silicone potting materials.

  17. Design and performance of a 4He-evaporator at <1.0 K

    NASA Astrophysics Data System (ADS)

    Das, N. K.; Pradhan, J.; Naser, Md. Z. A.; Roy, A.; Mandal, B. Ch.; Mallik, C.; Bhandari, R. K.

    2012-12-01

    A helium evaporator for obtaining 1 K temperature has been built and tested in laboratory. This will function primarily as the precooling stage for the circulating helium isotopic gas mixture. This works on evaporative cooling by way of pumping out the vapour from the top of the pot. A precision needle valve is used initially to fill up the pot and subsequently a permanent flow impedance maintains the helium flow from the bath into the pot to replenish the evaporative loss of helium. Considering the cooling power of 10 mW @1.0 K, a 99.0 cm3 helium evaporator was designed, fabricated from OFE copper and tested in the laboratory. A pumping station comprising of a roots pump backed by a dry pump was used for evacuation. The calibrated RuO thermometer and kapton film heater were used for measuring the temperature and cooling power of the system respectively. The continuously filled 1 K bath is tested in the laboratory and found to offer a temperature less than 1.0 K by withdrawing vapour from the evaporator. In order to minimize the heat load and to prevent film creep across the pumping tube, size optimization of the pumping line and pump-out port has been performed. The results of test run along with relevant analysis, mechanical fabrication of flow impedance are presented here.

  18. How do drops evaporate?

    NASA Astrophysics Data System (ADS)

    Murisic, Nebojsa; Kondic, Lou

    2007-11-01

    The problem of evaporating drops with non-pinned contact line, although seemingly trivial, so far lacks satisfactory theoretical description. In particular, there has been much discussion regarding appropriate evaporative mass flux model. We make an attempt to resolve this issue by comparing our experimental data with the results of several mathematical models for evaporating drops. After describing experimental procedure, we propose several models for mass flux and develop a governing equation for evolution of drop's thickness. Two-dimensional numerical results are then compared to the experimental results, and the most appropriate mass flux model is identified. Finally, we propose the governing equation for the full 3D system and present some new numerical results related to curious phenomena, where so-called ``octopus-shaped'' instabilities appear ahead of the contact line of volatile dropsootnotetextY. Gotkis, I. Ivanov, N. Murisic, L. Kondic, Phys. Rev. Lett. 97, 186101 (2006)..

  19. Design and prototype studies of the TOTEM Roman pot detectors

    NASA Astrophysics Data System (ADS)

    Oriunno, Marco; Battistin, Michele; David, Eric; Guglielmini, Paolo; Joram, Christian; Radermacher, Ernst; Ruggiero, Gennaro; Wu, Jihao; Vacek, Vaclav; Vins, Vaclav

    2007-10-01

    The Roman pots of the TOTEM experiment at LHC will be equipped with edgeless silicon micro-strip detectors. A detector package consists of 10 detector planes cooled at -15C in vacuum. The detector resolution is 20 μm, the overall alignment precision has to be better than 30 μm. The detector planes are composed of a kapton hybrid glued on a substrate made of low expansion alloy, CE07 with 70% Si and 30% Al. An evaporative cooling system based on the fluorocarbon C3F8 with oil-free compressors has been adopted. The throttling of the fluid is done locally through capillaries. A thermo-mechanical prototype has been assembled. The results fully match the requirements and the expectations of calculations. They show a low thermal gradient on the cards and a uniform temperature distribution over the 10 planes.

  20. Hot air drum evaporator

    DOEpatents

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  1. Osmium(IV) complexes with 1H- and 2H-indazoles: tautomer identity versus spectroscopic properties and antiproliferative activity.

    PubMed

    Büchel, Gabriel E; Stepanenko, Iryna N; Hejl, Michaela; Jakupec, Michael A; Keppler, Bernhard K; Heffeter, Petra; Berger, Walter; Arion, Vladimir B

    2012-08-01

    A one-pot synthesis of osmium(IV) complexes with two different tautomers of indazole, 1H-indazole and 2H-indazole, namely (H(2)ind)[Os(IV)Cl(5)(2H-ind)] (1) and (H(2)ind)[Os(IV)Cl(5)(1H-ind)] (2) is reported. Both compounds have been comprehensively characterized by NMR spectroscopy, ESI (electrospray ionization) mass spectrometry, electronic absorption spectroscopy, IR spectroscopy, cyclic voltammetry and tested for antiproliferative activity in vitro in three human cancer cell lines, CH1 (ovarian carcinoma), A549 (non-small cell lung cancer) and SW480 (colon carcinoma), as well as in vivo in a Hep3B SCID mouse xeno-transplantation model. 2H-Indazole tautomer stabilization in 1 has been confirmed by X-ray diffraction.

  2. Osmium(IV) complexes with 1H- and 2H-indazoles: Tautomer identity versus spectroscopic properties and antiproliferative activity

    PubMed Central

    Büchel, Gabriel E.; Stepanenko, Iryna N.; Hejl, Michaela; Jakupec, Michael A.; Keppler, Bernhard K.; Heffeter, Petra; Berger, Walter; Arion, Vladimir B.

    2012-01-01

    A one-pot synthesis of osmium(IV) complexes with two different tautomers of indazole, 1H-indazole and 2H-indazole, namely (H2ind)[OsIVCl5(2H-ind)] (1) and (H2ind)[OsIVCl5(1H-ind)] (2) is reported. Both compounds have been comprehensively characterized by NMR spectroscopy, ESI (electrospray ionization) mass spectrometry, electronic absorption spectroscopy, IR spectroscopy, cyclic voltammetry and tested for antiproliferative activity in vitro in three human cancer cell lines, CH1 (ovarian carcinoma), A549 (non-small cell lung cancer) and SW480 (colon carcinoma), as well as in vivo in a Hep3B SCID mouse xeno-transplantation model. 2H-Indazole tautomer stabilization in 1 has been confirmed by X-ray diffraction. PMID:22687494

  3. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    SciTech Connect

    Stone, M

    2005-04-30

    The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first major recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream

  4. Evaporation from the ocular surface.

    PubMed

    Mathers, William

    2004-03-01

    Evaporation from the ocular surface is dramatically reduced by the lipid layer which covers it. With this layer intact, evaporation represents a small loss of water for which the lacrimal gland easily compensates. When tear production is compromised evaporation becomes important, especially since evaporation in almost all ocular surface disease states and any surface perturbation, including contact lens wear, increases evaporation significantly. How the barrier function of the lipid layer accomplishes this reduction in evaporation is not understood and is probably quite complex as is the structure of the lipid layer. Improving this barrier function remains an important and elusive goal.

  5. Report on Analyses of WAC Samples of Evaporator Overheads - 2004

    SciTech Connect

    Oji, L

    2005-03-18

    In November and December of 2004, the Tank Farm submitted annual samples from 2F, 2H and 3H Evaporator Overhead streams for characterization to verify compliance with the new Effluent Treatment Facility (ETF) Waste Acceptance Criteria (WAC) and to look for organic species. With the exception of slightly high ammonia in the 2F evaporator overheads and high radiation control guide number for the 3H and 2F evaporator overhead samples, all the overheads samples were found to be in compliance with the Effluent Treatment Facility WAC. The ammonium concentration in the 2F-evaporator overhead, at 33 mg/L, was above the ETF waste water collection tank (WWCT) limits of 28 mg/L. The RCG Number for the 3H and 2F evaporator samples at, respectively, 1.38E-02 and 8.24E-03 were higher than the WWCT limit of 7.69E-03. The analytical detection limits for americium-241 and radium-226 in the evaporator samples were not consistently met because of low WWCT detection limits and insufficient evaporator samples.

  6. MOVES2014: Evaporative Emissions Report

    EPA Science Inventory

    Vehicle evaporative emissions are now modeled in EPA’s MOVES according to physical processes, permeation, tank vapor venting, liquid leaks, and refueling emissions. With this update, the following improvements are being incorporated into MOVES evaporative emissions methodology, a...

  7. Temporal and spatial distributions of δ18O and δ2H in precipitation in Romania

    NASA Astrophysics Data System (ADS)

    Nagavciuc, Viorica; Bădăluță, Carmen-Andreea; Perșoiu, Aurel

    2015-04-01

    Stable isotope ratios of meteoric water have an important role in climatic, paleoclimatic, hydrological and meteorological studies. While such data are available from most of Europe, so far, in Romania (East Central Europe), no systematic study of the stable isotopic composition of precipitation exists. In this context, the aim of this study is to analyze the isotopic composition of rainwater, its temporal and spatial distribution, the identification of the main factors influencing these variations and the creation of the first map of spatial distribution of stable isotopes in precipitation in Romania. Between March 2012 and March 2014 we have collected monthly samples from 22 stations in Romania, which were subsequently analyzed for their δ18O and δ2H at the Stable Isotopes Laboratory, Stefan cel Mare University, Suceava, Romania. Precipitation in W and NW Romania plot along the GMWL, while those in the East are slightly below it, on an evaporative trend. The LMWL for Romania is defined as δ2H=7,27*δ18O + 6,92. The W-E gradient in the distribution of δ18O and δ2H are less marked than the N-S ones, with local influences dominating in areas of strong evaporation (intramountain basins, rain-shadow areas etc). In SW, and especially in autumn and winter, Meditteranean cyclones carry moisture from the Eastern Mediterranean, the δ18O and δ2H values in precipitation in the area plotting between the GMWL and the Eastern Mediterranean Meteoric Water Line. The isotopic composition of rainwater in Romania correlates well with air temperature, and is influenced to a lesser extent by other factors such as the amount of precipitation, topography configuration, the effect of continentalism and season of the year.

  8. Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Almlie, Jay C.

    2010-01-01

    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  9. Photo-induced reactions in the ion-molecule complex Mg+-OCNC2H5

    NASA Astrophysics Data System (ADS)

    Sun, Ju-Long; Liu, Haichuan; Han, Ke-Li; Yang, Shihe

    2003-06-01

    Ion-molecule complexes of magnesium cation with ethyl isocyanate were produced in a laser-ablation supersonic expansion nozzle source. Photo-induced reactions in the 1:1 complexes have been studied in the spectral range of 230-410 nm. Photodissociation mass spectrometry revealed the persistent product Mg+ from nonreactive quenching throughout the entire wavelength range. As for the reactive channels, the photoproducts, Mg+OCN and C2H5+, were produced only in the blue absorption band of the complex with low yields. The action spectrum of Mg+(OCNC2H5) consists of two pronounced peaks on the red and blue sides of the Mg+ 32P←32S atomic transition. The ground state geometry of Mg+-OCNC2H5 was fully optimized at B3LYP/6-31+G** level by using GAUSSIAN 98 package. The calculated absorption spectrum of the complex using the optimized structure of its ground state agrees well with the observed action spectrum. Photofragment branching fractions of the products are almost independent of the photolysis photon energy for the 3Px,y,z excitations. The very low branching ratio of reactive products to nonreactive fragment suggests that evaporation is the main relaxation pathway in the photo-induced reactions of Mg+(OCNC2H5).

  10. College Students Using More Pot, Fewer Opioids

    MedlinePlus

    ... More Pot, Fewer Opioids Nearly 5 percent use marijuana daily, survey finds To use the sharing features ... 2016 (HealthDay News) -- American college students' use of marijuana continues to increase, but the appeal of other ...

  11. Cognitive impairments associated with CFS and POTS

    PubMed Central

    Shanks, Lindzi; Jason, Leonard A.; Evans, Meredyth; Brown, Abigail

    2013-01-01

    Chronic fatigue syndrome (CFS) is characterized by fatigue, sleep dysfunction, and cognitive deficits (Fukuda et al., 1994). Research surrounding cognitive functioning among patients with CFS has found difficulty with memory, attention, and information processing. A similar disorder, postural tachycardia syndrome (POTS), is characterized by increased heart rate, fatigue, and mental cloudiness (Raj et al., 2009). Potential implications of cognitive deficits for patients with CFS and/or POTS are discussed, including difficulties with school and/or employment. A few biological theories (i.e., kindling, impairments in the central nervous system, and difficulty with blood flow) have emerged as potential explanations for the cognitive deficits reported in both CFS and POTS Future research should continue to examine possible explanations for cognitive impairments in CFS and POTS, and ultimately use this information to try and reduce cognitive impairments for these patients. PMID:23720636

  12. A Short Course in The Melting Pot.

    ERIC Educational Resources Information Center

    Cuff, Bill; Churchard, Tim

    1983-01-01

    Describes how the events of a week of outdoor education for 40 migrant teenagers of various cultural backgrounds moved from racial and geographic discord to cooperation, proving that the melting pot is still working. (SB)

  13. Beyond the Melting Pot: 35 Years Later.

    ERIC Educational Resources Information Center

    Alba, Richard

    2000-01-01

    Introduces a set of essays that revisit, "Beyond the Melting Pot," a book about ethnicity, race, and the American city, first published in 1963. The essays assess how well the book's interpretations apply to the contemporary immigration metropolis. (SM)

  14. Evaporation kinetics of laboratory-generated secondary organic aerosols at elevated relative humidity.

    PubMed

    Wilson, Jacqueline; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla

    2015-01-01

    Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semisolid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on α-pinene SOA particles generated, evaporated, and aged at <5%, 50 and 90% RH, and on limonene SOA particles at <5% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30-70% of the particle mass evaporates in 2 h, followed by a much slower evaporation rate. Evaporation kinetics at <5% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses; with aging at elevated RH leading to a more significant effect. In all cases, the observed SOA evaporation is nearly size-independent.

  15. Alcohol Chemistry: Tentative Detections of Two New Interstellar Big Molecules CH_3OC_2H_5 and (C_2H_5)_2O

    NASA Astrophysics Data System (ADS)

    Kuan, Y.-J.; Charnley, S. B.; Wilson, T. L.; Ohishi, M.; Huang, H.-C.; Snyder, L. E.

    1999-05-01

    Recent modeling of gas-grain chemistry demonstrated that many of the organic species are not the products of grain-surface reactions but are in fact synthesized in the warm gas from simpler species produced on grains. To test gas-grain chemistry, in particular alcohol chemistry, we have thus searched for (C_2H_5)_2O (diethyl ether) and CH_3OC_2H_5 (methyl ethyl ether), using the NRAO 12-m, in the giant molecular cloud cores Sgr B2(N), W51 e1/e2 and Orion-KL, where alcohols have been evaporated from ice mantles. In addition, we have also used the BIMA array to observe the 3-mm transitions of the two molecules toward Sgr B2. The preliminary 12-m results indicate clean detections of various line transitions of the two molecular species in the 1-mm, 2-mm and 3-mm regimes in all 3 molecular cloud cores. Furthermore our BIMA maps show a clear concentration of CH_3OH toward Sgr B2(N), the Large Molecule Heimat; sole detections of CH_3OC_2H_5 and (C_2H_5)_2O toward Sgr B2(N), instead of the more evolved Sgr B2(M), are also observed unambiguously as predicted by alcohol chemistry. Our detections of the two complex molecules not only further confirm the gas-grain chemistry but also require specifically that methanol (CH_3OH) and ethanol (C_2H_5OH) to be formed in grain mantles. In addition, the detections of diethyl ether and methyl ethyl ether lead to the discovery of two new molecules, including the largest ever, (C_2H_5)_2O. This work was partially supported by: NSC grants 87-2112-M-003-007 and 88-2112-M-003-013 of Taiwan, National Taiwan Normal University, Academia Sinica Institute of Astronomy and Astrophysics, NSF AST 96-13999, the University of Illinois, and NASA's Exobiology Program.

  16. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  17. Method of evaporation

    NASA Technical Reports Server (NTRS)

    Dufresne, Eugene R.

    1987-01-01

    Liquids, such as juices, milk, molten metal and the like are concentrated by forming uniformly-sized, small droplets in a precision droplet forming assembly and deploying the droplets in free fall downwardly as a central column within an evacuated column with cool walls. A portion of the solvent evaporates. The vapor flows to the wall, condenses, and usually flows down the wall as a film to condensate collector and drain. The vertical column of freely falling droplets enters the splash guard. The condensate can be collected, sent to other towers or recycled.

  18. Miniature electron bombardment evaporation source: evaporation rate measurement

    NASA Astrophysics Data System (ADS)

    Nehasil, V.; Mašek, K.; Moreau, O.; Matolín, V.

    1997-03-01

    Miniature electron beam evaporation sources which operate on the principle of vaporization of source material, in the form of a tip, by electron bombardment are produced by several companies specialised in UHV equipment. These sources are used primarily for materials that are normally difficult to deposit due to their high evaporation temperature. They are appropriate for special applications, like heteroepitaxial thin films growth that require very low and well controlled deposition rate. We propose a simple and easily applicable method of evaporation rate control. The method is based on the measurement of ion current produced by electron bombardment of evaporated atoms. In order to be able to determine the ion current - evaporation flux calibration curves we measured the absolute values of evaporation flux by means of Bayard-Alpert ion gauge.

  19. An XPS investigation of the interaction of CH 4, C 2H 2, C 2H 4 and C 2H 6 with a barium surface

    NASA Astrophysics Data System (ADS)

    Verhoeven, J. A. Th.; Van Doveren, H.

    1982-12-01

    The generation and pumping of hydrocarbon gases by a barium getter layer in electronic vacuum devices has been investigated by characterizing a barium film in an ultra high vacuum equipment by means of XPS before, during and after exposures to respectively CH 4, C 2H 2, C 2H 4 and C 2H 6. The reaction conditions (temperatures and pretreatment of the surface, background pressure and exposure doses) closely resemble those in electronic vacuum devices. The probability that a barium layer will react with CH 4 and C 2H 6 was below the detection limit. C 2H 2 and C 2H 4 give rise to the formation of barium carbide compounds and with a high reaction probability. In addition, the interaction with C 2H 2 reveals the formation of carbon-containing surface complexes. Investigations by means of XPS on the C Is spectral features show the presence of at least two groups of carbon-containing surface complexes, which behave differently in response to moderate heating and to an exposure to water vapour. In cases where oxygen is present at the surface, oxygen-containing (hydro) carbon adsorbates are present too. XPS observations of the behaviour of these surface complexes show similarities with reaction steps in the mechanisms proposed for the hydrogenation of CO in the Fischer-Tropsch synthesis of hydrocarbons. Low-pressure hydrogenation of these adsorbates containing hydrocarbons and oxygen can led to the formation of hydrocarbon gases in electronic vacuum devices.

  20. Quantitation of methadone enantiomers in humans using stable isotope-labeled (2H3)-, (2H5)-, and (2H8)Methadone

    SciTech Connect

    Nakamura, K.; Hachey, D.L.; Kreek, M.J.; Irving, C.S.; Klein, P.D.

    1982-01-01

    A new technique for simultaneous stereoselective kinetic studies of methadone enantiomers was developed using three deuterium-labeled forms of methadone and GLC-chemical-ionization mass spectrometry. A racemic mixture (1:1) of (R)-(-)-(2H5)methadone (l-form) and (S)-(R)-(2H3)methadone (d-form) was administered orally in place of a single daily dose of unlabeled (+/-)-(2H0)methadone in long-term maintenance patients. Racemic (+/-)-(2H8)methadone was used as an internal standard for the simultaneous quantitation of (2H0)-, (2H3)-, and (2H5)methadone in plasma and urine. A newly developed extraction procedure, using a short, disposable C18 reversed-phase cartridge and improved chemical-ionization procedures employing ammonia gas, resulted in significant reduction of the background impurities contributing to the ions used for isotopic abundance measurements. These improvements enabled the measurement of labeled plasma methadone levels for 120 hr following a single dose. This methodology was applied to the study of methadone kinetics in two patients; in both patients, the analgesically active l-enantiomer of the drug had a longer plasma elimination half-life and a smaller area under the plasma disappearance curve than did the inactive d-form.

  1. Pd(0)-Catalyzed Direct C-H Functionalization of 2-H-4-Benzylidene Imidazolones: Friendly and Large-Scale Access to GFP and Kaede Protein Fluorophores.

    PubMed

    Muselli, Mickaël; Baudequin, Christine; Perrio, Cécile; Hoarau, Christophe; Bischoff, Laurent

    2016-04-11

    The first one-pot synthesis of N-substituted 2-H-4-benzylidene imidazolones and their subsequent palladium-catalyzed and copper-assisted direct C2-H arylation and alkenylation with aryl- and alkenylhalides are described. This innovative synthesis is step-economical, azide-free, high yielding, highly flexible in the introduction of a variety of electronically different groups, and can be operated on large-scale. Moreover, the method allows direct access to C2-arylated or alkenylated imidazolone-based green fluorescent protein (GFP) and Kaede protein fluorophores, including ortho-hydroxylated models. PMID:26960963

  2. Installing and maintaining evaporative coolers

    SciTech Connect

    Otterbein, R.

    1996-05-01

    In the spring, many people in the western United States will be starting up or replacing evaporative coolers, or buying them for the first time. Proper installation and maintenance of these systems is very important, and recent improvements in the technology change how to best handle these tasks. Topics covered in this article include the following: evaporative cooler types; cooler maintenance; sizing evaporative coolers; A/C Add-on; Blower Orientation and cooler location; increasing air flow. 5 figs.

  3. Representative shuttle evaporative heat sink

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1978-01-01

    The design, fabrication, and testing of a representative shuttle evaporative heat sink (RSEHS) system which vaporizes an expendable fluid to provide cooling for the shuttle heat transport fluid loop is reported. The optimized RSEHS minimum weight design meets or exceeds the shuttle flash evaporator system requirements. A cold trap which cryo-pumps flash evaporator exhaust water from the CSD vacuum chamber test facility to prevent water contamination of the chamber pumping equipment is also described.

  4. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  5. Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure

    ERIC Educational Resources Information Center

    Canpolat, Nurtac

    2006-01-01

    This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written…

  6. Hollow Fiber Ground Evaporator Unit Testing

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus

    2010-01-01

    A candidate technology for 1-atmosphere suited heat rejection was developed and tested at NASA Johnson Space Center. The concept is to use a collection of microporous hydrophobic tubes potted between inlet and outlet headers with water as coolant. A pump provides flow between headers through the tubes which are subjected to fan driven cross flow of relatively dry air. The forced ventilation would sweep out the water vapor from the evaporation of the coolant rejecting heat from the coolant stream. The hollow fibers are obtained commercially (X50-215 Celgard) which are arranged in a sheet containing 5 fibers per linear inch. Two engineering development units were produced that vary the fold direction of the fiber sheets relative to the ventilation. These units were tested at inlet water temperatures ranging from 20 deg C to 30 deg C, coolant flow rates ranging from 10 to 90 kg/hr, and at three fan speeds. These results were used to size a system that could reject heat at a rate of 340 W.

  7. EVAPORATION OF FRUITS AND VEGETABLES

    PubMed Central

    Cruess, W. V.

    1921-01-01

    More and more the world is utilizing dried fruits and vegetables, the war having given impetus to the preparation of the latter. Here are plain statements of processes and values deduced from scientific institution investigations. Evaporation is in its infancy while sun drying is very ancient. Evaporated products are better looking but more costly. ImagesFigure 1Figure 2Figure 3 PMID:18010426

  8. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, John D.; Gross, Mark E.

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  9. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  10. Modeling Treated LAW Feed Evaporation

    SciTech Connect

    DANIEL, WE

    2004-07-08

    This task examines the potential of the treated waste feed blends to form sodium-aluminum silicate precipitates when evaporated using the zeolite database. To investigate the behavior of the blended pretreated waste feed, an OLI Environmental Simulation Package Software (OLI ESP) model of the treated low activity waste (LAW) evaporator was built. A range of waste feed compositions representative of Envelope A, B, and C were then fed into the OLI model to predict various physical and chemical properties of the evaporator concentrates. Additional runs with treated LAW evaporator were performed to compare chemical and physical property model predictions and experimental results for small-scale radioactive tests of the treated feed evaporation process.

  11. Evaporation from heterogeneous soil surfaces

    NASA Astrophysics Data System (ADS)

    Lehmann, P.; Or, D.

    2009-04-01

    Evaporation rate is a key process of water exchange between soil surfaces and atmosphere and is controlled by both atmospheric demand and soil hydraulic properties. Initially high evaporation rates are sustained by capillary-induced water flow from receding drying front to evaporating surface. In heterogeneous soils air invades preferentially coarse-textured regions whereas fine textured surface regions remain water saturated. We investigated experimentally and numerically effects of hydraulic coupling on drying rate of heterogeneous porous media. Laboratory experiments with vertical contrasts between fine (0.1-0.5 mm) and coarse sand (0.3-0.9 mm) showed that the period of high drying rate was extended compared to evaporation from homogeneous materials. Water flow from coarse material to supply water evaporated from fine textured surface was monitored by neutron radiography imaging. Due to the high hydraulic conductivity of the coarse material the viscous head loss could be neglected for flow distances analyzed in the experiments (< 600 mm). We proposed a model to explore effects of hydraulic coupling on evaporation for a wide range of soil textural classes at plot scale. When the drying front in the coarse reaches a certain characteristic depth (defined by the pore size distribution) no water evaporates from the coarse surface, yet, subsurface flow from coarse to the fine textured inclusion persists and feeds enhanced evaporation rate. Assuming energy input was not limiting, evaporation from the fine textured inclusion may increase to compensate reduction of evaporating surface. For loam or silt as inclusion in sandy material, water was extracted from regions with more than 10 m in distance before flow was limited by viscous effects. In case of clay inclusions the radius of water extraction was smaller due to enhanced viscous resistance. The findings of the numerical study can be applied as well to assess the effect of shrubs or compacted trafficked zones on the

  12. Groundwater changes in evaporating basins using gypsum crystals' isotopic compositions

    NASA Astrophysics Data System (ADS)

    Gatti, E.; Bustos, D.; Allwood, A.; Coleman, M. L.

    2014-12-01

    While the dynamics of groundwater evaporation are well known, it is still challenging to reconstruct the water patterns in areas where water is not available anymore. We selected a specific location in White Sands National Monument (WSNM), New Mexico, to validate a method to extract information from hydrated minerals regarding past groundwater evaporation patterns in evaporitic basins. WSNM has gypsum (CaSO4.2H2O) dunes and crystals precipitated from the evaporation of an ancient lake. Our approach aims to extract the water of crystallization of gypsum and measure its oxygen and hydrogen isotopic compositions, in order to reconstruct the groundwater history of the area. The idea is that as the mother brine evaporates its isotopic composition changes continuously, recorded as water of crystallization in successive growth zones of gypsum. To check if the isotopic composition of the salt could effectively differentiate between distinctive humidity conditions, the methodology was tested first on synthetic gypsum grown under controlled humidity and temperature conditions. T and RH% were maintained constant in a glove box and precipitated gypsum was harvested every 24 hours. d2H and d18O of water of crystallization from the synthetic gypsum was extracted using a specially developed technique on a TC/EA. The brine was measured using a Gas Bench II for d18O and an H-Device for d2H on a Thermo Finnigan MAT 253 mass spectrometer. With the method tested, we measured natural gypsum. In order to identify the growth zones we mapped the surface of the crystals using an experimental space flight XRF instrument. Crystals were then sampled for isotopic analyses. Preliminary results suggest that site-specific groundwater changes can be described by the isotopic variations. We will show that the methodology is a reliable and fast method to quantify hydrological changes in a targeted environment. The study is currently ongoing but the full dataset will be presented at the conference.

  13. 3. OVERALL VIEW OF TWIN POTS RESERVOIR, LOOKING SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OVERALL VIEW OF TWIN POTS RESERVOIR, LOOKING SOUTHEAST - High Mountain Dams in Upalco Unit, Twin Pots Dam, Ashley National Forest, 10.1 miles North of Mountain Home, Mountain Home, Duchesne County, UT

  14. 36. POT IN OVEN NO. 9. MEASURING STICK IS USED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. POT IN OVEN NO. 9. MEASURING STICK IS USED TO MAKE SURE THAT POT IS ALL THE WAY IN. - Seneca Glass Company Factory, Beechurst Avenue between Sixth & Eighth Streets, Morgantown, Monongalia County, WV

  15. Rapid Evaporation of microbubbles

    NASA Astrophysics Data System (ADS)

    Gautam, Jitendra; Esmaeeli, Asghar

    2008-11-01

    When a liquid is heated to a temperature far above its boiling point, it evaporates abruptly. Boiling of liquid at high temperatures can be explosive and destructive, and poses a potential hazard for a host of industrial processes. Explosive boiling may occur if a cold and volatile liquid is brought into contact with a hot and non-volatile liquid, or if a liquid is superheated or depressurized rapidly. Such possibilities are realized, for example, in the depressurization of low boiling point liquefied natural gas (LNG) in the pipelines or storage tanks as a result of a leak. While boiling of highly heated liquids can be destructive at macroscale, the (nearly) instantaneous pace of the process and the release of large amount of kinetic energy make the phenomena extremely attractive at microscale where it is possible to utilize the released energy to derive micromechanical systems. For instance, there is currently a growing interest in micro-explosion of liquid for generation of micro bubbles for actuation purposes. The aim of the current study is to gain a fundamental understanding of the subject using direct numerical simulations. In particular, we seek to investigate the boundary between stable and unstable nucleus growth in terms of the degree of liquid superheat and to compare the dynamics of unstable and stable growth.

  16. Culturable fungi in potting soils and compost.

    PubMed

    Haas, Doris; Lesch, Susanne; Buzina, Walter; Galler, Herbert; Gutschi, Anna Maria; Habib, Juliana; Pfeifer, Bettina; Luxner, Josefa; Reinthaler, Franz F

    2016-11-01

    In the present study the spectrum and the incidence of fungi in potting soils and compost was investigated. Since soil is one of the most important biotopes for fungi, relatively high concentrations of fungal propagules are to be expected. For detection of fungi, samples of commercial soils, compost and soils from potted plants (both surface and sub-surface) were suspended and plated onto several mycological media. The resulting colonies were evaluated qualitatively and quantitatively. The results from the different sampling series vary, but concentrations on the surface of potted plants and in commercial soils are increased tenfold compared to compost and sub-surface soils. Median values range from 9.5 × 10(4) colony forming units (CFU)/g to 5.5 × 10(5) CFU/g. The spectrum of fungi also varies in the soils. However, all sampling series show high proportion of Aspergillus and Penicillium species, including potentially pathogenic species such as Aspergillus fumigatus. Cladosporium, a genus dominant in the ambient air, was found preferably in samples which were in contact with the air. The results show that potentially pathogenic fungi are present in soils. Immunocompromised individuals should avoid handling soils or potted plants in their immediate vicinity.

  17. Painting, Poetry and Pots of Basil.

    ERIC Educational Resources Information Center

    Hodges, Gabrielle Cliff

    1995-01-01

    Argues that how and why a particular range of texts are selected, read, and taught determines the extent to which they contribute to a pupil's development. Shows how the teaching of John Keats's "Isabella or the Pot of Basil" and paintings by William Holman Hunt and John Everett Millais meet the challenges of the new Order for English. (TB)

  18. 16. MAN LADLING GLASS FROM POT. STEAM IS CAUSED BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. MAN LADLING GLASS FROM POT. STEAM IS CAUSED BY WATER COOLING MOLTEN GLASS IN POT. NOTE GLASS THAT HAS POURED OVER THE SIDE OF THE POT. - Seneca Glass Company Factory, Beechurst Avenue between Sixth & Eighth Streets, Morgantown, Monongalia County, WV

  19. Experimental analysis of the Italian coffee pot ``moka''

    NASA Astrophysics Data System (ADS)

    Gianino, Concetto

    2007-01-01

    I describe an experiment involving the moka Italian coffee pot. The pot is an ingenious device for making coffee that uses the liquid-vapor equation of state of the water and Darcy's law of linear filtration. The filtration coefficient of coffee is measured and a steam engine model is used to estimate the efficiency of the coffee pot.

  20. Temperature and pressure dependent rate coefficients for the reaction of C2H4 + HO2 on the C2H4O2H potential energy surface.

    PubMed

    Guo, JunJiang; Xu, JiaQi; Li, ZeRong; Tan, NingXin; Li, XiangYuan

    2015-04-01

    The potential energy surface (PES) for reaction C2H4 + HO2 was examined by using the quantum chemical methods. All rates were determined computationally using the CBS-QB3 composite method combined with conventional transition state theory(TST), variational transition-state theory (VTST) and Rice-Ramsberger-Kassel-Marcus/master-equation (RRKM/ME) theory. The geometries optimization and the vibrational frequency analysis of reactants, transition states, and products were performed at the B3LYP/CBSB7 level. The composite CBS-QB3 method was applied for energy calculations. The major product channel of reaction C2H4 + HO2 is the formation C2H4O2H via an OH(···)π complex with 3.7 kcal/mol binding energy which exhibits negative-temperature dependence. We further investigated the reactions related to this complex, which were ignored in previous studies. Thermochemical properties of the species involved in the reactions were determined using the CBS-QB3 method, and enthalpies of formation of species were compared with literature values. The calculated rate constants are in good agreement with those available from literature and given in modified Arrhenius equation form, which are serviceable in combustion modeling of hydrocarbons. Finally, in order to illustrate the effect for low-temperature ignition of our new rate constants, we have implemented them into the existing mechanisms, which can predict ethylene ignition in a shock tube with better performance.

  1. Temperature and pressure dependent rate coefficients for the reaction of C2H4 + HO2 on the C2H4O2H potential energy surface.

    PubMed

    Guo, JunJiang; Xu, JiaQi; Li, ZeRong; Tan, NingXin; Li, XiangYuan

    2015-04-01

    The potential energy surface (PES) for reaction C2H4 + HO2 was examined by using the quantum chemical methods. All rates were determined computationally using the CBS-QB3 composite method combined with conventional transition state theory(TST), variational transition-state theory (VTST) and Rice-Ramsberger-Kassel-Marcus/master-equation (RRKM/ME) theory. The geometries optimization and the vibrational frequency analysis of reactants, transition states, and products were performed at the B3LYP/CBSB7 level. The composite CBS-QB3 method was applied for energy calculations. The major product channel of reaction C2H4 + HO2 is the formation C2H4O2H via an OH(···)π complex with 3.7 kcal/mol binding energy which exhibits negative-temperature dependence. We further investigated the reactions related to this complex, which were ignored in previous studies. Thermochemical properties of the species involved in the reactions were determined using the CBS-QB3 method, and enthalpies of formation of species were compared with literature values. The calculated rate constants are in good agreement with those available from literature and given in modified Arrhenius equation form, which are serviceable in combustion modeling of hydrocarbons. Finally, in order to illustrate the effect for low-temperature ignition of our new rate constants, we have implemented them into the existing mechanisms, which can predict ethylene ignition in a shock tube with better performance. PMID:25774424

  2. Heterozygous FA2H mutations in autism spectrum disorders

    PubMed Central

    2013-01-01

    Background Widespread abnormalities in white matter development are frequently reported in cases of autism spectrum disorders (ASD) and could be involved in the disconnectivity suggested in these disorders. Homozygous mutations in the gene coding for fatty-acid 2-hydroxylase (FA2H), an enzyme involved in myelin synthesis, are associated with complex leukodystrophies, but little is known about the functional impact of heterozygous FA2H mutations. We hypothesized that rare deleterious heterozygous mutations of FA2H might constitute risk factors for ASD. Methods We searched deleterious mutations affecting FA2H, by genotyping 1256 independent patients with ASD genotyped using Genome Wide SNP arrays, and also by sequencing in independent set of 186 subjects with ASD and 353 controls. We then explored the impact of the identified mutations by measuring FA2H enzymatic activity and expression, in transfected COS7 cells. Results One heterozygous deletion within 16q22.3-q23.1 including FA2H was observed in two siblings who share symptoms of autism and severe cognitive impairment, axial T2-FLAIR weighted MRI posterior periventricular white matter lesions. Also, two rare non-synonymous mutations (R113W and R113Q) were reported. Although predictive models suggested that R113W should be a deleterious, we did not find that FA2H activity was affected by expression of the R113W mutation in cultured COS cells. Conclusions While our results do not support a major role for FA2H coding variants in ASD, a screening of other genes related to myelin synthesis would allow us to better understand the role of non-neuronal elements in ASD susceptibility. PMID:24299421

  3. Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin.

    PubMed

    Havenith, George; Bröde, Peter; den Hartog, Emiel; Kuklane, Kalev; Holmer, Ingvar; Rossi, Rene M; Richards, Mark; Farnworth, Brian; Wang, Xiaoxin

    2013-03-15

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has found little use in recent literature. In this experiment a thermal manikin, (MTNW, Seattle, WA) was used to determine the effective cooling power of moisture evaporation. The manikin measures both heat loss and mass loss independently, allowing a direct calculation of an effective latent heat of evaporation (λeff). The location of the evaporation was varied: from the skin or from the underwear or from the outerwear. Outerwear of different permeabilities was used, and different numbers of layers were used. Tests took place in 20°C, 0.5 m/s at different humidities and were performed both dry and with a wet layer, allowing the breakdown of heat loss in dry and evaporative components. For evaporation from the skin, λeff is close to the theoretical value (2,430 J/g) but starts to drop when more clothing is worn, e.g., by 11% for underwear and permeable coverall. When evaporation is from the underwear, λeff reduction is 28% wearing a permeable outer. When evaporation is from the outermost layer only, the reduction exceeds 62% (no base layer), increasing toward 80% with more layers between skin and wet outerwear. In semi- and impermeable outerwear, the added effect of condensation in the clothing opposes this effect. A general formula for the calculation of λeff was developed.

  4. Explosive evaporation in solar flares

    NASA Technical Reports Server (NTRS)

    Fisher, George H.

    1987-01-01

    This paper develops a simple analytical model for the phenomenon of 'explosive evaporation' driven by nonthermal electron heating in solar flares. The model relates the electron energy flux and spectrum, plus details of the preflare atmosphere, to the time scale for explosive evaporation to occur, the maximum pressure and temperature to be reached, rough estimates for the UV pulse emission flux and duration, and the evolution of the blueshifted component of the soft X-ray lines. An expression is given for the time scale for buildup to maximum pressures and the onset of rapid motion of the explosively evaporating plasma. This evaporation can excite a rapid response of UV line and continuum emission. The emission lines formed in the plasma approach a given emissivity-weighted blueshift speed.

  5. Dual manifold heat pipe evaporator

    DOEpatents

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  6. Dual manifold heat pipe evaporator

    DOEpatents

    Adkins, Douglas R.; Rawlinson, K. Scott

    1994-01-01

    An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

  7. Horst Meyer and Quantum Evaporation

    NASA Astrophysics Data System (ADS)

    Balibar, S.

    2016-11-01

    With their 1963 article in Cryogenics Horst Meyer and his collaborators triggered intense research activity on the evaporation of superfluid helium. Discussing this subject with him in 1975 was enlightening. Fifty years later, the analogy between the photoelectric effect and the evaporation of superfluid helium in the low temperature limit is not yet clear, although remarkable progress has been made in its observation and its understanding. This special issue of the Journal of Low Temperature Physics is an opportunity to recall the history of quantum evaporation, and to express my gratitude to Horst Meyer. It describes quickly most of the experimental and theoretical works which have been published on quantum evaporation during the last 50 years, but it is not a comprehensive review of this fascinating subject.

  8. Evaporation from open microchannel grooves.

    PubMed

    Kachel, Sibylle; Zhou, Ying; Scharfer, Philip; Vrančić, Christian; Petrich, Wolfgang; Schabel, Wilhelm

    2014-02-21

    The evaporation of water from open u-shaped microchannel grooves was investigated with particular emphasis on the roles of channel width and air flow conditions. Given the small dimensions of the microchannels, all measurements were conducted in a range where convection and diffusion are of equal importance and known correlations for the calculation of mass transfer coefficients cannot be applied. The evaporation rates were measured using a new optical method and a gravimetric method. Both measurement methods yielded mass transfer coefficients that are in agreement with each other. The observed relation between mass transfer coefficient, air velocity and channel width vastly differs from the predictions obtained from macroscopic structures. With respect to diagnostic devices we conclude that analyte concentration in an open microchannel groove strongly increases even within short times due to the evaporation process and we show that wider channels are more favourable in terms of minimizing the relative evaporation rate.

  9. Horst Meyer and Quantum Evaporation

    NASA Astrophysics Data System (ADS)

    Balibar, S.

    2016-06-01

    With their 1963 article in Cryogenics Horst Meyer and his collaborators triggered intense research activity on the evaporation of superfluid helium. Discussing this subject with him in 1975 was enlightening. Fifty years later, the analogy between the photoelectric effect and the evaporation of superfluid helium in the low temperature limit is not yet clear, although remarkable progress has been made in its observation and its understanding. This special issue of the Journal of Low Temperature Physics is an opportunity to recall the history of quantum evaporation, and to express my gratitude to Horst Meyer. It describes quickly most of the experimental and theoretical works which have been published on quantum evaporation during the last 50 years, but it is not a comprehensive review of this fascinating subject.

  10. Evaporation Tower With Prill Nozzles

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Tower more efficient than conventional evaporation equipment. Liquids such as milk and fruit juice concentrated by passing them through tiny nozzle to form droplets, then allowing droplets to fall through evacuated tower with cooled walls.

  11. C2H observations toward the Orion Bar

    NASA Astrophysics Data System (ADS)

    Nagy, Z.; Ossenkopf, V.; Van der Tak, F. F. S.; Faure, A.; Makai, Z.; Bergin, E. A.

    2015-06-01

    Context. The ethynyl radical (C2H) is one of the first radicals to be detected in the interstellar medium. Its higher rotational transitions have recently become available with the Herschel Space Observatory. Aims: We aim to constrain the physical parameters of the C2H emitting gas toward the Orion Bar. Methods: We analyze the C2H line intensities measured toward the Orion Bar CO+ Peak and Herschel/HIFI maps of C2H, CH, and HCO+ and a NANTEN map of [Ci]. We interpret the observed C2H emission using the combination of Herschel/HIFI and NANTEN data with radiative transfer and PDR models. Results: Five rotational transitions of C2H (from N = 6-5 up to N = 10-9) have been detected in the HIFI frequency range toward the CO+ peak of the Orion Bar. Based on the five detected C2H transitions, a single component rotational diagram analysis gives a rotation temperature of ~64 K and a beam-averaged C2H column density of 4 × 1013 cm-2. The rotational diagram is also consistent with a two-component fit, resulting in rotation temperatures of 43 ± 0.2 K and 123 ± 21 K and in beam-averaged column densities of ~8.3 × 1013 cm-2 and ~2.3 × 1013 cm-2 for the three lower-N and for the three higher-N transitions, respectively. The measured five rotational transitions cannot be explained by any single parameter model. According to a non-LTE model, most of the C2H column density produces the lower-N C2H transitions and traces a warm (Tkin ~ 100-150 K) and dense (n(H2) ~ 105-106 cm-3) gas. A small fraction of the C2H column density is required to reproduce the intensity of the highest-N transitions (N = 9-8 and N = 10-9) originating in a high-density (n(H2) ~5 × 106 cm-3) hot (Tkin ~ 400 K) gas. The total beam-averaged C2H column density in the model is 1014 cm-2. A comparison of the spatial distribution of C2H to those of CH, HCO+, and [Ci] shows the best correlation with CH. Conclusions: Both the non-LTE radiative transfer model and a simple PDR model representing the Orion Bar

  12. Evaporation waves in superheated dodecane

    NASA Astrophysics Data System (ADS)

    Simões-Moreira, J. R.; Shepherd, J. E.

    1999-03-01

    We have observed propagating adiabatic evaporation waves in superheated liquid dodecane, C12H26. Experiments were performed with a rapid decompression apparatus at initial temperatures of 180 300°C. Saturated dodecane in a tube was suddenly depressurized by rupturing a diaphragm. Motion pictures and still photographic images, and pressure and temperature data were obtained during the evaporation event that followed depressurization. Usually, a front or wave of evaporation started at the liquid free surface and propagated into the undisturbed regions of the metastable liquid. The evaporation wave front moved with a steady mean velocity but the front itself was unstable and fluctuating in character. At low superheats, no waves were observed until a threshold superheat was exceeded. At moderate superheats, subsonic downstream states were observed. At higher superheats, the downstream flow was choked, corresponding to a Chapman Jouguet condition. At the most extreme superheat tested, a vapour content of over 90% was estimated from the measured data, indicating a nearly complete evaporation wave. Our results are interpreted by modelling the evaporation wave as a discontinuity, or jump, between a superheated liquid state and a two-phase liquid vapour downstream state. Reasonable agreement is found between the model and observations; however, there is a fundamental indeterminacy that prevents the prediction of the observed wave speeds.

  13. DWPF Recycle Evaporator Simulant Tests

    SciTech Connect

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  14. A 'Pot of Gold' Rich with Nuggets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This close-up image taken by the Mars Exploration Rover Spirit highlights the nodular nuggets that cover the rock dubbed 'Pot of Gold.' These nuggets appear to stand on the end of stalk-like features. The surface of the rock is dotted with fine-scale pits. Data from the rover's scientific instruments have shown that Pot of Gold contains the mineral hematite, which can be formed with or without water.

    Scientists are planning further observations of this rock, which they hope will yield more insight into the hematite's origins as well as how the enigmatic nuggets formed.

    This image was taken by Spirit's microscopic imager on sol 162 (June 17, 2004). The observed area is 3 centimeters by 3 centimeters (1.2 inches by 1.2 inches)

  15. Calculation of Reactive-evaporation Rates of Chromia

    SciTech Connect

    Holcomb, G.R.

    2008-04-01

    A methodology is developed to calculate Cr-evaporation rates from Cr2O3 with a flat planar geometry. Variables include temperature, total pressure, gas velocity, and gas composition. The methodology was applied to solid-oxide, fuel cell conditions for metallic interconnects and to advanced-steam turbines conditions. The high velocities and pressures of the advanced steam turbine led to evaporation predictions as high as 5.18 9 10-8 kg/m2/s of CrO2(OH)2(g) at 760 °C and 34.5 MPa. This is equivalent to 0.080 mm per year of solid Cr loss. Chromium evaporation is expected to be an important oxidation mechanism with the types of nickel-base alloys proposed for use above 650 °C in advanced-steam boilers and turbines. It is shown that laboratory experiments, with much lower steam velocities and usually much lower total pressure than found in advanced steam turbines, would best reproduce chromium-evaporation behavior with atmospheres that approach either O2 + H2O or air + H2O with 57% H2O.

  16. Valve and dash-pot assembly

    DOEpatents

    Chang, Shih-Chih

    1986-01-01

    A dash-pot valve comprising a cylinder submerged in the fluid of a housing and having a piston attached to a plunger projecting into the path of closing movement of a pivotal valve member. A vortex chamber in said cylinder is provided with tangentially directed inlets to generate vortex flow upon retraction of said plunger and effect increasing resistance against said piston to progressively retard the closing rate of said valve member toward its seat.

  17. Improved valve and dash-pot assembly

    DOEpatents

    Chang, S.C.

    1985-04-23

    A dash-pot valve comprises a cylinder submerged in the fluid of a housing and have a piston attached to a plunger projecting into the path of closing movement of a pivotal valve member. A vortex chamber in said cylinder is provided with targentially directed inlets to generate vortex flow upon retraction of said plunger and effect increasing resistance against said piston to progressively retard the closing rate of said valve member toward its seat.

  18. 'Pot of Gold' Close-up

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows a close-up of the rock dubbed 'Pot of Gold' (left), which is located near the base of the 'Columbia Hills' in Gusev Crater. Scientists are intrigued by this unusual-looking, nodule-covered rock and plan to investigate its detailed chemistry in coming sols. This picture was taken on sol 159 (June 14, 2004).

  19. Gas-phase CO2, C2H2, and HCN toward Orion-KL

    NASA Astrophysics Data System (ADS)

    Boonman, A. M. S.; van Dishoeck, E. F.; Lahuis, F.; Doty, S. D.; Wright, C. M.; Rosenthal, D.

    2003-03-01

    The infrared spectra toward Orion-IRc2, Peak 1 and Peak 2 in the 13.5-15.5 mu m wavelength range are presented, obtained with the Short Wavelength Spectrometer on board the Infrared Space Observatory. The spectra show absorption and emission features of the vibration-rotation bands of gas-phase CO2, HCN, and C2H2, respectively. Toward the deeply embedded massive young stellar object IRc2 all three bands appear in absorption, while toward the shocked region Peak 2 CO2, HCN, and C2H2 are seen in emission. Toward Peak 1 only CO2 has been detected in emission. Analysis of these bands shows that the absorption features toward IRc2 are characterized by excitation temperatures of ~ 175-275 K, which can be explained by an origin in the shocked plateau gas. HCN and C2H2 are only seen in absorption in the direction of IRc2, whereas the CO2 absorption is probably more widespread. The CO2 emission toward Peak 1 and 2 is best explained with excitation by infrared radiation from dust mixed with the gas in the warm component of the shock. The similarity of the CO2 emission and absorption line shapes toward IRc2, Peak 1 and Peak 2 suggests that the CO2 is located in the warm component of the shock (T ~ 200 K) toward all three positions. The CO2 abundances of ~ 10-8 for Peak 1 and 2, and of a few times 10-7 toward IRc2 can be explained by grain mantle evaporation and/or reformation in the gas-phase after destruction by the shock. The HCN and C2H2 emission detected toward Peak 2 is narrower (T ~ 50-150 K) and originates either in the warm component of the shock or in the extended ridge. In the case of an origin in the warm component of the shock, the low HCN and C2H2 abundances of ~ 10-9 suggest that they are destroyed by the shock or have only been in the warm gas for a short time (t <~ 104 yr). In the case of an origin in the extended ridge, the inferred abundances are much higher and do not agree with predictions from current chemical models at low temperatures. Based on

  20. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.

    2004-01-01

    Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -1) (1000-7 microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite

  1. Synthesis and characterization of visible-active molybdenum disulfide (2H-MoS2) nanospheres

    NASA Astrophysics Data System (ADS)

    Cheah, A. J.; Chiu, W. S.; Khiew, P. S.; Radiman, S.; Hamid, M. A. A.

    2015-07-01

    In current study, a novel 2H-MoS2 nanospheres were successfully synthesized and underwent structural- as well as optical-property characterizations. The MoS2 were prepared by one pot hydrothermal approach through adopting L-cysteine as environmentally-benignchalcogenide precursor. TEM image shows that the as-synthesized MoS2 appear to be spherical in shape with size distribution in the range of 120 nm - 180 nm. HRTEM lattice-fringes imaging further elucidate that the interlayer spacing at the edges is equal to be 0.62 nm that correspond to (002) plane stacking. Also, the HRTEM image clearly-illustrate that the internal microstructure of MoS2 composed of randomly-arrayed alternating layers, which render the postulation that the formation of nanosphere is driven by self-assembly of individual layers into globular morphology. XRD diffractogram that appear to be broad and unresolved reveal the partially crystalline nature of the sample. Optical-absorption spectra depicts the sample is visible active with featureless absorption, which can attribute to indirect transition of the excitions generated. By using Tauc plot, the bandgap energy is determined to be 1.75 eV, which reflect the nanospheres are indeed visible-active nanostructures.

  2. Salt stains from evaporating droplets.

    PubMed

    Shahidzadeh, Noushine; Schut, Marthe F L; Desarnaud, Julie; Prat, Marc; Bonn, Daniel

    2015-01-01

    The study of the behavior of sessile droplets on solid substrates is not only associated with common everyday phenomena, such as the coffee stain effect, limescale deposits on our bathroom walls , but also very important in many applications such as purification of pharmaceuticals, de-icing of airplanes, inkjet printing and coating applications. In many of these processes, a phase change happens within the drop because of solvent evaporation, temperature changes or chemical reactions, which consequently lead to liquid to solid transitions in the droplets. Here we show that crystallization patterns of evaporating of water drops containing dissolved salts are different from the stains reported for evaporating colloidal suspensions. This happens because during the solvent evaporation, the salts crystallize and grow during the drying. Our results show that the patterns of the resulting salt crystal stains are mainly governed by wetting properties of the emerging crystal as well as the pathway of nucleation and growth, and are independent of the evaporation rate and thermal conductivity of the substrates. PMID:26012481

  3. Salt stains from evaporating droplets

    PubMed Central

    Shahidzadeh, Noushine; Schut, Marthe F. L.; Desarnaud, Julie; Prat, Marc; Bonn, Daniel

    2015-01-01

    The study of the behavior of sessile droplets on solid substrates is not only associated with common everyday phenomena, such as the coffee stain effect, limescale deposits on our bathroom walls , but also very important in many applications such as purification of pharmaceuticals, de-icing of airplanes, inkjet printing and coating applications. In many of these processes, a phase change happens within the drop because of solvent evaporation, temperature changes or chemical reactions, which consequently lead to liquid to solid transitions in the droplets. Here we show that crystallization patterns of evaporating of water drops containing dissolved salts are different from the stains reported for evaporating colloidal suspensions. This happens because during the solvent evaporation, the salts crystallize and grow during the drying. Our results show that the patterns of the resulting salt crystal stains are mainly governed by wetting properties of the emerging crystal as well as the pathway of nucleation and growth, and are independent of the evaporation rate and thermal conductivity of the substrates. PMID:26012481

  4. Tubular sublimatory evaporator heat sink

    NASA Technical Reports Server (NTRS)

    Webbon, B. W. (Inventor)

    1977-01-01

    An evaporative refrigerator or cooler comprising a bundle of spaced, porous walled tubes closed at one of their ends and vented to a vacuum at the other end is disclosed. The tube bundle is surrounded by a water jacket having a hot water inlet distribution manifold and a cooled water outlet through a plenum chamber. Hot water is pumped into the jacket to circulate around the tubes, and when this water meets the vacuum existing inside the tubes, it evaporates thereby cooling the water in the jacket. If cooling proceeds to the point where water penetrating or surrounding all or part of the tubes freezes, operation continues with local sublimation of the ice on the tubes while the circulating water attempts to melt the ice. Both sublimation and evaporation may take place simultaneously in different regions of the device.

  5. Analysis of the moisture evaporation process during vacuum freeze-drying of koumiss and shubat

    NASA Astrophysics Data System (ADS)

    Shingisov, Azret Utebaevich; Alibekov, Ravshanbek Sultanbekovich

    2016-10-01

    The equation for the calculating of a moisture evaporation rate in the vacuum freeze-drying, wherein as a driving force instead of the generally accepted in the drying theory of ∆t temperature difference, ∆p pressure difference, ∆c concentration difference, a difference of water activity in the product and the relative air humidity (a_{w} - φ) is suggested. By using the proposed equation, the processes of vacuum freeze-drying of koumiss and shubat were analyzed, and it was found two drying periods: constant and falling. On the first drying period, a moisture evaporation rate of koumiss is j = 2.75 × 10-3 kg/(m2 h) and of shubat is j = 2.37 × 10-3 kg/(m2 h). On the second period, values decrease for koumiss from j = 2.65 × 10-3 kg/(m2 h) to j = 1.60 × 10-3 kg/(m2 h), and for shubat from j = 2.25 × 10-3 kg/(m2 h) to j = 1.62 × 10-3 kg/(m2 h). Specific humidity for koumiss is ueq = 0.61 kg/kg and for shubat is ueq = 0.58 kg/kg. The comparative analyze of the experimental data of the moisture evaporation rate versus the theoretical calculation shows that the approximation reliability is R2 = 0.99. Consequently, the proposed equation is useful for the analyzing a moisture evaporation rate during a vacuum freeze-drying of dairy products, including cultured milk foods.

  6. Improving evaporators for crystallizing solutions

    SciTech Connect

    Korbanov, V.N.; Gaidash, N.I.; Kibitkin, V.N.; Mitkevich, E.M.; Nikolenko, V.N.

    1985-07-01

    The authors describe and evaluate the new evaporators with forced circulation and a heat exchange surface of 630 m that have recently been introduced for the production of calcium chloride from still wastes in soda plants. A diagram illustrates the construction of the new apparatus and charts present data on the dependence of heat transfer on the thickness of the walls of the heating pipes, the dependence of the entrainment of calcium chloride by secondary steam on the level of the solution in the vacuum aparatus, and on the performance of the evaporator over time.

  7. Evaporation of primordial black holes

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.

    The usual explanation of the isotropy of the universe is that inflation would have smoothed out any inhomogeneities. However, if the universe was initially fractal or in a foam like state, an overall inflation would have left it in the same state. I suggest that the universe did indeed begin with a tangled web of wormholes connecting pairs of black holes but that the inflationary expansion was unstable: wormholes that are slightly smaller correspond to black holes that are hotter than the cosmological background and evaporate away. This picture is supported by calculations with Raphael Bousso of the evaporation of primordial black holes in the s-wave and large N approximations.

  8. Revisiting Mt. Kilimanjaro: Do n-alkane biomarkers in soils reflect the δ2H isotopic composition of precipitation?

    NASA Astrophysics Data System (ADS)

    Zech, M.; Zech, R.; Rozanski, K.; Hemp, A.; Gleixner, G.; Zech, W.

    2014-06-01

    During the last decade compound-specific deuterium (δ2H) analysis of plant leaf wax-derived n-alkanes has become a promising and popular tool in paleoclimate research. This is based on the widely accepted assumption that n-alkanes in soils and sediments generally reflect δ2H of precipitation (δ2Hprec). Recently, several authors suggested that δ2H of n-alkanes (δ2H,sub>n-alkanes) can also be used as proxy in paleoaltimetry studies. Here we present results from a δ2H transect study (~1500 to 4000 m a.s.l.) carried out on precipitation and soil samples taken from the humid southern slopes of Mt. Kilimanjaro. Contrary to earlier suggestions, a distinct altitude effect in δ2Hprec is present above ~2000 m a.s.l., i.e. δ2Hprec values become more negative with increasing altitude. The compound-specific δ2H values of nC27 and nC29 do not confirm this altitudinal trend, but rather become more positive both in the O-layers (organic layers) and the Ah-horizons (mineral topsoils). Although our δ2Hn-alkane results are in agreement with previously published results from the southern slopes of Mt. Kilimanjaro (Peterse et al., 2009, BG, 6, 2799-2807), a major re-interpretation is required given that the δ2Hn-alkane results do not reflect the δ2Hprec results. The theoretical framework for this re-interpretation is based on the evaporative isotopic enrichment of leaf water associated with transpiration process. Modelling results show that relative humidity, decreasing considerably along the southern slopes of Mt. Kilimanjaro (from 78% at ~ 2000 m a.s.l. to 51% at 4000 m a.s.l.), strongly controls δ2Hleaf water. The modelled δ2H leaf water enrichment along the altitudinal transect matches well the measured 2H leaf water enrichment as assessed by using the δ2Hprec and δ2Hn-alkane results and biosynthetic fractionation during n-alkane biosynthesis in leaves. Given that our results clearly demonstrate that n-alkanes in soils do not simply reflect δ2Hprec but rather δ2

  9. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Abbas, M.; LeClaire, A.; Romani, P. N.; Simon-Miller, A. A.

    2004-01-01

    The abundances of hydrocarbons such as acetylene (C2H2) and ethane (C2H6) in Jupiter's atmosphere are important physical quantities, constraining our models of the chemical and dynamical processes. However, our knowledge of these quantities and their vertical and latitudinal variations has remained sparse. The flyby of the Cassini spacecraft with Jupiter at the end of 2000 provided an excellent opportunity to observe the infrared spectrum with the Composite Infrared Spectrometer (CIRS) instrument, mapping the spatial variation of emissions from 10-1400 cm-1. CIRS spectra taken at the highest resolution (0.5 cm-1) in early December 2000 have been analysed to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 of CH4, and in the troposphere at 100-400 mbar, via the hydrogen collision-induced continuum absorption at 600-800 cm. Simultaneously, we have searched for meridional abundance variations in C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIM resolution, introducing a non-uniqueness into the retrievals, which means that vertical gradient and column abundance cannot be simultaneously found without additional constraints. If we assume the profile shapes from photochemical model calculations, we show that the column abundance of C2H2 must decrease sharply towards the poles, while C2H6 is constant or slightly increasing. The relevance of these results to current photochemical and dynamical knowledge of Jupiter's atmosphere is discussed.

  10. Evaluation of an electrochemical N2/H2 gas separator

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Wynveen, R. A.; Carlson, J. N.

    1973-01-01

    A program was successfully completed to evaluate an electrochemical nitrogen/hydrogen (N2/H2) separator for use in a spacecraft nitrogen (N2) generator. Based on the technical data obtained a N2/H2 separator subsystem consisting of an organic polymer gas permeator first stage and an electrochemical second and third stage was estimated to have the lowest total spared equivalent weight, 257 kg (566 lb), for a 15 lb/day N2 generation rate. A pre-design analysis of the electrochemical N2/H2 separator revealed that its use as a first stage resulted in too high a power requirement to be competitive with the organic polymer membrane and the palladium-silver membrane separation methods. As a result, program emphasis was placed on evaluating the electrochemical. A parametric test program characterized cell performance and established second- and third-stage electrochemical N2/H2 separator operating conditions. A design verification test was completed on the second and third stages. The second stage was then successfully endurance tested for 200 hours.

  11. [Postural orthostatic tachycardia syndrome (POTS)--pathophysiology, diagnostics, and treatment].

    PubMed

    Rek, Marta; Kaczmarek, Krzysztof; Cygankiewicz, Iwona; Wranicz, Jerzy K; Ptaszyński, Paweł

    2014-01-01

    Postural orthostatic tachycardia syndrome (POTS) is one of the most common presentation of orthostatic intolerance. The syndrome is described as a multifactorial affliction. Main symptoms consist of persistent orthostatic tachycardia (heart rate increase at least 30 beats/min, lasting at least 10 min after assumic vertical position) with high noradrenalin serum concentration (measured in stand-up position). Additionally patients with POTS tend to have lover total blood volume. POTS is generally classified into dysatonomia disorders Symptoms in patients affected with POTS are chronic. The syndrome occurs predominantly in young women (approximately 80%). Due to complexity and variable intensity of symptoms POTS can severely impair daily activity and quality of life in otherwise healthy people. The correct diagnosis and identification of potential pathophysiological mechanisms of POTS is necessary before treatment administration. Adequate therapy can significantly reduce symptoms giving the patients a chance for a normal life.

  12. One-pot synthesis of (-)-Ambrox.

    PubMed

    Yang, Shaoxiang; Tian, Hongyu; Sun, Baoguo; Liu, Yongguo; Hao, Yanfeng; Lv, Yanyu

    2016-01-01

    (-)-Ambrox is recognised as the prototype of all ambergris odorants. Widely used in perfumery, (-)-Ambrox is an important ingredient due to its unique scent and excellent fixative function. An environmentally friendly and practical preparation of (-)-Ambrox is still unavailable at present although a lot of attention has been paid to this hot research topic for many years. A one-pot synthesis of (-)-Ambrox was studied starting from (-)-sclareol through oxidation with hydrogen peroxide in the presence of a quaternary ammonium phosphomolybdate catalyst {[C5H5NC16H33] [H2PMo12O40]}, which gave the product a 20% overall yield. PMID:27581945

  13. Forced-Flow Evaporative Cooler

    NASA Technical Reports Server (NTRS)

    Ellis, Wilbert E.; Niggemann, Richard E.

    1987-01-01

    Evaporative cooler absorbs heat efficiently under unusual gravitational conditions by using centrifugal force and vapor vortexes to maintain good thermal contact between heat-transfer surface and vaporizable coolant. System useful for cooling electronic or other equipment under low gravity encountered in spacecraft or under multiple-gravity conditions frequently experienced in high-performance airplanes.

  14. Membrane evaporator/sublimator investigation

    NASA Technical Reports Server (NTRS)

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    Data are presented on a new evaporator/sublimator concept using a hollow fiber membrane unit with a high permeability to liquid water. The aim of the program was to obtain a more reliable, lightweight and simpler Extra Vehicular Life Support System (EVLSS) cooling concept than is currently being used.

  15. The infrared spectra of C2H4(+) and C2H3 trapped in solid neon.

    PubMed

    Jacox, Marilyn E; Thompson, Warren E

    2011-02-14

    When a mixture of ethylene in a large excess of neon is codeposited at 4.3 K with a beam of neon atoms that have been excited in a microwave discharge, two groups of product absorptions appear in the infrared spectrum of the deposit. Similar studies using C(2)H(4)-1-(13)C and C(2)D(4) aid in product identification. The first group of absorptions arises from a cation product which possesses two identical carbon atoms, giving the first infrared identification of two fundamentals of C(2)H(4)(+) and three of C(2)D(4)(+), as well as a tentative identification of ν(9) of C(2)H(4)(+). The positions of these absorptions are consistent with the results of density functional calculations and of earlier photoelectron studies. All of the members of the second group of product absorptions possess two inequivalent carbon atoms. They are assigned to the vinyl radical, C(2)H(3), and to C(2)D(3), in agreement with other recent infrared assignments for those species.

  16. Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter.

    PubMed

    Sada, P V; Bjoraker, G L; Jennings, D E; McCabe, G H; Romani, P N

    1998-12-01

    We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties. PMID:11878354

  17. Search for the isomers of C2H3NO and C2H3NS in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    With about 40% of all the known interstellar and circumstellar molecules having their isomeric analogues as known astromolecules, isomerism remains one of the leading themes in interstellar chemistry. In this regard, the recent detection of methyl isocyanate (with a number of isomeric analogues) in the Sgr B2(N) giant molecular cloud opens a new window for the possible astronomical detection of other C_2H_3NO isomers. The present work looks at the possibility of detecting other isomers of methyl isocyanate by considering different factors such as thermodynamic stability of the different isomers with respect to the Energy, Stability and Abundance (ESA) relationship, effect of interstellar hydrogen bonding with respect to the formation these isomers on the surface of the interstellar dust grains, possible formation routes for these isomers, spectroscopic parameters for potential astromolecules among these isomers, chemical modeling among other studies. The same studies are repeated for the C_2H_3NS isomers which are the isoelectroninc analogues of the C_2H_3NO isomers taking into account the unique chemistry of S and O-containing interstellar molecular species. Among the C_2H_3NS isomers, methyl isothiocyanate remains the most potential candidate for astronomical observation.

  18. Refractive index and birefringence of 2H silicon carbide

    NASA Technical Reports Server (NTRS)

    Powell, J. A.

    1972-01-01

    The refractive indices of 2H SiC were measured over the wavelength range 435.8 to 650.9 nm by the method of minimum deviation. At the wavelength lambda = 546.1 nm, the ordinary index n sub 0 was 2.6480 and the extraordinary index n sub e was 2.7237. The estimated error (standard deviation) in the measured values is 0.0006 for n sub 0 and 0.0009 for n sub e. The experimental data were curve fitted to the Cauchy equation for the index of refraction as a function of wavelength. The birefringence of 2H SiC was found to vary from 0.0719 at lambda = 650.9 nm to 0.0846 at lambda = 435.8 nm.

  19. Potted High Voltage Modules For Space Application

    NASA Astrophysics Data System (ADS)

    Herty, Frank

    2011-10-01

    The European Space Mission GOCE, the Mercury mis- sion BepiColombo and the new High Efficiency Multistage Plasma (HEMP) thruster for the SGEO telecom mission have triggered the development of high voltage power supplies at Astrium Satellites covering different classes of output power (20W up to 1.4kW) and voltages (1kV up to 10kV). These supplies are equipped with encapsulated high voltage modules which have been designed as core functional blocks. The potting material - based on epoxy resin - was developed by Astrium Satellites. It is space-qualified for more than 30 years. Many types of high voltage modules have been manufactured since then, starting from transformer modules for the ERS mission to the modules used for electric propulsion. Technical trends, improvements and future goals of this technology are presented and discussed. New and re- fined processes are presented like the encapsulation of high-power toroidal transformers and the void-free electrical shielding by means of thin copper sheets which are laminated onto the surface of the potting material.

  20. Charge transfer in energetic Li^2+ - H collisions

    NASA Astrophysics Data System (ADS)

    Mancev, I.

    2008-07-01

    The total cross sections for charge transfer in Li^2+ - H collisions have been calculated, using the four-body first Born approximation with correct boundary conditions (CB1-4B) and four-body continuum distorted wave method (CDW-4B) in the energy range 10 - 5000 keV/amu. Present results call for additional experimental data at higher impact energies than presently available.

  1. Thermodynamic properties of solid C2H4

    PubMed Central

    Ma, Shao-mu; Eyring, Henry

    1979-01-01

    The significant structures procedure of liquids has been used to calculate the thermodynamic properties of solid C2H4. Two degeneracy terms were used to describe the behavior in the vicinities of the two phase transitions. The calculated entropy and specific heat agree well with experimental results from a few kelvins to the melting point. Less satisfactory agreement is obtained for compressibility and thermal expansion coefficients. This simple model represents surprisingly well the phase transitions in the solid state. PMID:16592659

  2. C(2)H(4) metabolism in morning glory flowers.

    PubMed

    Beyer, E M; Sundin, O

    1978-06-01

    Flowers of Ipomoea tricolor Cav. (cv. Heavenly Blue) were cut at various stages of development and evaluated for their ability to metabolize ethylene. Freshly cut buds or flowers were treated in glass containers for 8 hours with 6 mul/liter of highly purified (14)C(2)H(4). Following removal of dissolved (14)C(2)H(4), radioactivity was determined for the different flower tissues and trappd CO(2). (14)C(2)H(4) oxidation to (14)CO(2) and tissue incorporation occurred at very low to nondetectable levels 2 to 3 days prior to flower opening. About 1 day prior to full bloom, just at the time when mature buds become responsive to ethylene (Kende and Hanson, Plant Physiol 1976, 57: 523-527), there was a dramatic increase in the capacity of the buds to oxidize (14)C(2)H(4) to (14)CO(2). This activity continued to increase until the flower was fully opened reaching a peak activity of 2,500 dpm per three flowers per 8 hours. It then declined as the flower closed and rapidly senesced. A similar but smaller peak occurred in tissue incorporation and it was followed by a second peak during late flower senescence. This first peak in tissue incorporation and the dramatic peak in ethylene oxidation slightly preceded a large peak of natural ethylene production which accompanied flower senescence. The ethylene metabolism observed was clearly dependent on cellular metabolism and did not involve microorganisms since heat killing destroyed this activity and badly contaminated heat-killed flowers were unable to metabolize ethylene.

  3. Analysis of energy use in tomato evaporation

    SciTech Connect

    Rumsey, T.; Conant, T.

    1980-01-01

    Field performance data for four tomato product evaporators are presented and analyzed. Steam and feed flow rates along with steam economies were measured and are compared to steady state theoretical evaporator models.

  4. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  5. Isotopic Compositions of Evaporative Fluxes

    NASA Astrophysics Data System (ADS)

    Feng, X.; Lauder, A. M.; Kopec, B. G.; Dade, W. B.; Virginia, R. A.; Posmentier, E. S.

    2013-12-01

    The isotopic fluxes of evaporation from a water surface are typically computed using a one-dimensional model, originally conceptualized by Craig and Gordon (1965) and further developed and adapted to different natural settings (such as transpiration, open surface evaporation, etc.) by various investigators. These models have two distinguishing characteristics. First, there exists a laminar layer where molecular diffusion away from the water-air interface causes kinetic isotopic fractionation. The magnitude of this fractionation is controlled by the diffusion/transport coefficient of each vapor isotopologue in air and their concentration gradients, the latter being controlled by relative humidity, isotopic ratios of ambient air, and turbulent conditions (such as wind and surface roughness). Second, the horizontal variations are ignored. In particular, the effect of horizontal advection on isotopic variations in the ambient air is not considered. The research reported here addresses the effects of relinquishing the simplifying assumptions in both of these areas. We developed a model, in which the simplification of a purely laminar layer is dropped. Instead, we express the vertical transport coefficient as the sum of the molecular diffusivity, that differs for each water isotopologue, and the turbulent diffusivity that increases linearly with height but does not vary among water isotopologues. With this model, the kinetic isotopic effect reduces with height in the vicinity of the water surface, and the net isotopic fractionation through the boundary layer can be integrated. The advantage of this conceptualization is that the magnitude of kinetic isotopic fractionation can be assessed directly with changing environmental conditions, such as humidity and wind speed, rather than approximated by discontinuous empirical functions of the environmental conditions, as in the conventional models mentioned above. To address the effect of lateral heterogeneity, we expanded the

  6. The distribution of ND2H in LDN 1689N

    NASA Astrophysics Data System (ADS)

    Gerin, M.; Lis, D. C.; Philipp, S.; Güsten, R.; Roueff, E.; Reveret, V.

    2006-08-01

    Aims.Finding tracers of the innermost regions of prestellar cores is important for understanding their chemical and dynamical evolution before the onset of gravitational collapse. While classical molecular tracers, such as CO and CS, have been shown to be strongly depleted in cold, dense gas by condensation on grain mantles, it has been a subject of discussion to what extent nitrogen-bearing species, such as ammonia, are affected by this process. As deuterium fractionation is efficient in cold, dense gas, deuterated species are excellent tracers of prestellar cores. A comparison of the spatial distribution of neutral and ionized deuterated species with the dust continuum emission can thus provide important insights into the physical and chemical structure of such regions. Methods: .We study the spatial distribution of the ground-state 335.5 GHz line of ND2H in LDN 1689N, using APEX, and compare it with the distribution of the DCO+(3-2) line, as well as the 350 μm dust continuum emission observed with the SHARC II bolometer camera at CSO. Results: .While the distribution of the ND2H emission in LDN 1689N is generally similar to that of the 350 μm dust continuum emission, the peak of the ND2H emission is offset by ~10'' to the East from the dust continuum and DCO+ emission peak. ND2H and ND3 share the same spatial distribution. The observed offset between the ND2H and DCO+ emission is consistent with the hypothesis that the deuterium peak in LDN 1689N is an interaction region between the outflow shock from IRAS 16293-2422 and the dense ambient gas. We detect the J = 4 → 3 line of H13CO+ at 346.998 GHz in the image side band serendipitously. This line shows the same spatial distribution as DCO+(3-2), and peaks close to the 350 μm emission maximum which provides further support for the shock interaction scenario.

  7. BF₃·OEt₂ mediated metal-free one-pot sequential multiple annulation cascade (SMAC) synthesis of complex and diverse tetrahydroisoquinoline fused hybrid molecules.

    PubMed

    Shinde, Anand H; Vidyacharan, Shinde; Sharada, Duddu S

    2016-03-28

    A highly efficient and distinct BF3·OEt2 mediated metal-free SMAC protocol for the synthesis of complex and diverse hybrid molecules viz. indazole fused tetrahydroisoquinolinoquinoxalines, and tetrahydroisoquinolinodiazepine has been developed. The transformation is based on sequential cascade processes involving 2H-indazole formation and deprotection Pictet-Spengler cyclization steps in one-pot fashion. The protocol demonstrates the utility of sequential multiple annulations in a cascade fashion. The present one-pot protocol uses the Solid State Melt Reaction (SSMR) strategy for the synthesis of the intermediate 2H-indazole. The method is operationally simple and represents a new approach for C-C, three C-N and N-N bond formation with a wide substrate scope. PMID:26935814

  8. Dynamics of complete wetting liquid under evaporation

    NASA Astrophysics Data System (ADS)

    Pham, Chi-Tuong; Berteloot, Guillaume; Lequeux, FranC.{C.}Ois; Limat, Laurent

    2009-11-01

    We study the dynamics of a contact line under evaporation and complete wetting conditions taking into account the divergent nature of evaporation near the border of the liquid, as evidenced by Deegan et al. [Nature 389, 827]. The model we propose shows the existence of a precursor film at the edge of the liquid. The length of the precursor film is controlled by Hamacker constant and evaporative flux. Past the precursor film, Tanner's law is generalized accounting for evaporative effects.

  9. Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging

    SciTech Connect

    Detre, J.A.; Subramanian, V.H.; Mitchell, M.D.; Smith, D.S.; Kobayashi, A.; Zaman, A.; Leigh, J.S. Jr. )

    1990-05-01

    Cerebral blood flow (CBF) was measured in cat brain in vivo at 2.7 T using 2H NMR to monitor the washout of deuterated saline injected into both carotid arteries via the lingual arteries. In anesthetized cats, global CBF varied directly with PaCO{sub 2} over a range of 20-50 mm Hg, and the corresponding global CBF values ranged from 25 to 125 ml.100 g-1.min-1. Regional CBF was measured in a 1-cm axial section of cat brain using intracarotid deuterated saline and gradient-echo 2H NMR imaging. Blood flow images with a maximum pixel resolution of 0.3 x 0.3 x 1.0 cm were generated from the deuterium signal washout at each pixel. Image derived values for CBF agreed well with other determinations, and decreased significantly with hypocapnia.

  10. The rate of the reaction between C2H and C2H2 at interstellar temperatures.

    PubMed

    Herbst, E; Woon, D E

    1997-11-01

    The reaction between the radical C2H and the stable hydrocarbon C2H2 is one of the simplest neutral-neutral hydrocarbon reactions in chemical models of dense interstellar clouds and carbon-rich circumstellar shells. Although known to be rapid at temperatures > or = 300 K, the reaction has yet to be studied at lower temperatures. We present here ab initio calculations of the potential surface for this reaction and dynamical calculations to determine its rate at low temperature. Despite a small potential barrier in the exit channel, the calculated rate is large, showing that this reaction and, most probably, more complex analogs contribute to the formation of complex organic molecules in low-temperature sources.

  11. The rate of the reaction between C2H and C2H2 at interstellar temperatures

    NASA Technical Reports Server (NTRS)

    Herbst, E.; Woon, D. E.

    1997-01-01

    The reaction between the radical C2H and the stable hydrocarbon C2H2 is one of the simplest neutral-neutral hydrocarbon reactions in chemical models of dense interstellar clouds and carbon-rich circumstellar shells. Although known to be rapid at temperatures > or = 300 K, the reaction has yet to be studied at lower temperatures. We present here ab initio calculations of the potential surface for this reaction and dynamical calculations to determine its rate at low temperature. Despite a small potential barrier in the exit channel, the calculated rate is large, showing that this reaction and, most probably, more complex analogs contribute to the formation of complex organic molecules in low-temperature sources.

  12. Emittance formula for slits and pepper-pot measurement

    SciTech Connect

    Zhang, M.

    1996-10-01

    In this note, a rigid formula for slits and pepper-pot emittance measurement is derived. The derivation is based on the one- dimensional slit measurement setup. A mathematical generalization of the slit emittance formula to the pepper-pot measurement is discussed.

  13. Thermal resistances of solder-boss/potting compound combinations

    NASA Technical Reports Server (NTRS)

    Veilleux, E. D.

    1968-01-01

    Formulas, which can be used as a design tool, are derived to calculate the thermal resistance of solder-boss/potting compound combinations, for different depths of a solder boss, in electronic cordwood modules. Since the solder boss is the heat source, its shape and position will affect the thermal resistance of the surrounding potting compound.

  14. Monitoring and statistical modelling of sedimentation in gully pots.

    PubMed

    Post, J A B; Pothof, I W M; Dirksen, J; Baars, E J; Langeveld, J G; Clemens, F H L R

    2016-01-01

    Gully pots are essential assets designed to relief the downstream system by trapping solids and attached pollutants suspended in runoff. This study applied a methodology to develop a quantitative gully pot sedimentation and blockage model. To this end, sediment bed level time series from 300 gully pots, spanning 15 months, were collected. A generalised linear mixed modelling (GLMM) approach was applied to model and quantify the accumulation of solids in gully pots and to identify relevant physical and catchment properties that influence the complex trapping processes. Results show that the retaining efficiency decreases as sediment bed levels increase. Two typical silting evolutions were identified. Approximately 5% of all gully pots experienced progressive silting, eventually resulting in a blockage. The other gully pots show stabilising sediment bed levels. The depth of the sand trap, elapsed time since cleaning and the road type were identified to be the main properties discriminating progressive accumulation from stabilising sediment bed levels. Furthermore, sediment bed levels exhibit no residual spatial correlation, indicating that the vulnerability to a blockage is reduced as adjacent gully pots provide a form of redundancy. The findings may aid to improve maintenance strategies in order to safeguard the performance of gully pots. PMID:26512802

  15. Beyond the Melting Pot: The Contemporary Relevance of a Classic?

    ERIC Educational Resources Information Center

    Kasinitz, Philip

    2000-01-01

    Discusses the 1963 book, "Beyond the Melting Pot," which challenged the melting pot myth, calling it a well-written book about ethnicity and about New York and examining how it relates to questions of cultural pluralism. Calls the book relevant to the study of New York and the United States today, though New York City has changed significantly.…

  16. On Beyond the Melting Pot, 35 Years After.

    ERIC Educational Resources Information Center

    Glazer, Nathan

    2000-01-01

    Discusses the 1963 book, "Beyond the Melting Pot," which examined the feasibility of America becoming a melting pot. Suggests that the book presents outdated ideas and questions how relevant it is to issues raised by race, ethnicity, and minority groups today. Notes that in retrospect, the book makes three erroneous assumptions or expectations.…

  17. An Enduring Vision: The Melting Pot That Did Happen.

    ERIC Educational Resources Information Center

    Portes, Alejandro

    2000-01-01

    Discusses the 1963 book, "Beyond the Melting Pot," which argued that the melting pot never happened and neither assimilation nor cultural pluralism occurred (at least in New York City). Concludes that this is a landmark book because it challenges the canonical assimilation story, provides a new set of standards for expert knowledge in the field,…

  18. 21 CFR 131.130 - Evaporated milk.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk....

  19. 21 CFR 131.130 - Evaporated milk.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk....

  20. 21 CFR 131.130 - Evaporated milk.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk....

  1. 21 CFR 131.130 - Evaporated milk.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk....

  2. 21 CFR 131.130 - Evaporated milk.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk....

  3. Iodine retention during evaporative volume reduction

    DOEpatents

    Godbee, H.W.; Cathers, G.I.; Blanco, R.E.

    1975-11-18

    An improved method for retaining radioactive iodine in aqueous waste solutions during volume reduction is disclosed. The method applies to evaporative volume reduction processes whereby the decontaminated (evaporated) water can be returned safely to the environment. The method generally comprises isotopically diluting the waste solution with a nonradioactive iodide and maintaining the solution at a high pH during evaporation.

  4. Evaporation by mechanical vapor recompression

    NASA Astrophysics Data System (ADS)

    Iverson, C. H.; Coury, G. E.

    1980-04-01

    Progress in the development of a study of the application of the technologies of mechanical vapor recompression and falling film evaporation as applied to the beet sugar industry is reported. Progress is reported in the following areas: technical literature search; report on visit to European factories using these technologies; energy balance studies of factories offered by the industry as candidates for the demonstration plants; and report on energy balance studies and the recommendations as to the site for the demonstration plant.

  5. Does groundwater enhance evaporative cooling?

    NASA Astrophysics Data System (ADS)

    Rouholahnejad, E.

    2015-12-01

    Evaporation is a key process in land-climate interactions, not only because it directly regulates the hydrological cycle, but also because it contributes to the Earth's energy balance. Due to its feedbacks on large-scale water processes and its impact on the dynamics of the atmosphere, it has been considered as a driver of droughts and heatwaves1-3. While evaporation from ocean surfaces is likely to increase with rising temperatures, it is unclear whether evapotranspiration from land surfaces could similarly increase, due to possible limitations imposed by soil moisture and vegetation physiology4. Observations suggest that groundwater (hereafter GW) has an important role in hydrological budgets and soil moisture variability in many regions, supplying moisture for evapotranspiration during dry seasons5, 6. Although modeling studies suggest that GW is often close enough to the surface to interact with the atmosphere7, 8, the soil water storage is often underestimated by land surface models. This is most likely due to neglecting the lateral movement of water from topographically higher altitudes to valley bottoms and its convergence close to the land surface, as well as the upward movement of water in the capillary fringe.The focus of this study is to understand where and when GW may significantly enhance the availability of soil water for evapotranspiration. We also quantified the potential contribution of GW to evapotranspiration in the areas where GW is a major supply. We used the global network of eddy covariance observations9 (FLUXNET) along with global modeled GW depth10 and GLEAM ET model estimates11 to address the current gap in modelling ET due to neglecting GW supply. Having identified areas where GW is tightly coupled with the atmosphere through evaporation processes, the study provides the basis to examine the "air conditioning effect" of GW and test the idea if GW enhances evaporation to the extent that leads to a cooler temperatures and wetter climates.

  6. CO2/H(+) sensing: peripheral and central chemoreception.

    PubMed

    Lahiri, Sukhamay; Forster, Robert E

    2003-10-01

    H(+) is maintained constant in the internal environment at a given body temperature independent of external environment according to Bernard's principle of "milieu interieur". But CO2 relates to ventilation and H(+) to kidney. Hence, the title of the chapter. In order to do this, sensors for H(+) in the internal environment are needed. The sensor-receptor is CO2/H(+) sensing. The sensor-receptor is coupled to integrate and to maintain the body's chemical environment at equilibrium. This chapter dwells on this theme of constancy of H(+) of the blood and of the other internal environments. [H(+)] is regulated jointly by respiratory and renal systems. The respiratory response to [H(+)] originates from the activities of two groups of chemoreceptors in two separate body fluid compartments: (A) carotid and aortic bodies which sense arterial P(O2) and H(+); and (B) the medullary H(+) receptors on the ventrolateral medulla of the central nervous system (CNS). The arterial chemoreceptors function to maintain arterial P(O2) and H(+) constant, and medullary H(+) receptors to maintain H(+) of the brain fluid constant. Any acute change of H(+) in these compartments is taken care of almost instantly by pulmonary ventilation, and slowly by the kidney. This general theme is considered in Section 1. The general principles involving cellular CO2 reactions mediated by carbonic anhydrase (CA), transport of CO2 and H(+) are described in Section 2. Since the rest of the chapter is dependent on these key mechanisms, they are given in detail, including the role of Jacobs-Stewart Cycle and its interaction with carbonic anhydrase. Also, this section deals briefly with the mechanisms of membrane depolarization of the chemoreceptor cells because this is one mechanism on which the responses depend. The metabolic impact of endogenous CO2 appears in the section with a historical twist, in the context of acclimatization to high altitude (Section 3). Because low P(O2) at high altitude stimulates

  7. Synthesis, crystal structure and physico-chemical properties of 3,3'-[(4-hydroxyphenyl)methyl] bis-(4-hydroxy-2H-chromen-2-one).

    PubMed

    Elenkova, Denitsa; Morgenstern, Bernd; Manolov, Ilia; Milanova, Maria

    2014-01-01

    The compound 3,3'-[(4-Hydroxyphenyl)methyl]bis-(4-hydroxy-2H-chromen-2-one) was synthesized by the Knoevenagel reaction. Crystals, suitable for X-ray data collection, were grown by slow evaporation from an ethanol solution. The product 3,3'-[(4-Hydroxyphenyl)methyl]bis-(4-hydroxy-2H-chromen-2-one) · ethanol crystallizes in the monoclinic system, space group P2(1)/n. The ultraviolet/visible absorption spectra in different solvents were recorded. Sensitivity of the compound to solvent polarity and hydrogen bonding with protic (ethanol, H(2)O) and aprotic (dimethylsulfoxide, acetonitrile) solvents was detected. Based on (1)H-NMR spectroscopy as well as on potentiometric and UV/vis titration experiments the acid dissociation constants for 3,3'-[(4-Hydroxyphenyl)methyl]bis-(4-hydroxy-2H-chromen-2-one) were estimated. PMID:25551711

  8. Dynamics of evaporative colloidal patterning

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Wu, Ning; Mandre, Shreyas; Aizenberg, Joanna; Mahadevan, L.

    2015-09-01

    Drying suspensions often leave behind complex patterns of particulates, as might be seen in the coffee stains on a table. Here, we consider the dynamics of periodic band or uniform solid film formation on a vertical plate suspended partially in a drying colloidal solution. Direct observations allow us to visualize the dynamics of band and film deposition, where both are made of multiple layers of close packed particles. We further see that there is a transition between banding and filming when the colloidal concentration is varied. A minimal theory of the liquid meniscus motion along the plate reveals the dynamics of the banding and its transition to the filming as a function of the ratio of deposition and evaporation rates. We also provide a complementary multiphase model of colloids dissolved in the liquid, which couples the inhomogeneous evaporation at the evolving meniscus to the fluid and particulate flows and the transition from a dilute suspension to a porous plug. This allows us to determine the concentration dependence of the bandwidth and the deposition rate. Together, our findings allow for the control of drying-induced patterning as a function of the colloidal concentration and evaporation rate.

  9. Telomere Replication Stress Induced by POT1 Inactivation Accelerates Tumorigenesis.

    PubMed

    Pinzaru, Alexandra M; Hom, Robert A; Beal, Angela; Phillips, Aaron F; Ni, Eric; Cardozo, Timothy; Nair, Nidhi; Choi, Jaehyuk; Wuttke, Deborah S; Sfeir, Agnel; Denchi, Eros Lazzerini

    2016-06-01

    Genome sequencing studies have revealed a number of cancer-associated mutations in the telomere-binding factor POT1. Here, we show that when combined with p53 deficiency, depletion of murine POT1a in common lymphoid progenitor cells fosters genetic instability, accelerates the onset, and increases the severity of T cell lymphomas. In parallel, we examined human and mouse cells carrying POT1 mutations found in cutaneous T cell lymphoma (CTCL) patients. Inhibition of POT1 activates ATR-dependent DNA damage signaling and induces telomere fragility, replication fork stalling, and telomere elongation. Our data suggest that these phenotypes are linked to impaired CST (CTC1-STN1-TEN1) function at telomeres. Lastly, we show that proliferation of cancer cells lacking POT1 is enabled by the attenuation of the ATR kinase pathway. These results uncover a role for defective telomere replication during tumorigenesis.

  10. Theoretical kinetics of O + C2H4

    DOE PAGES

    Li, Xiaohu; Jasper, Ahren W.; Zádor, Judit; Miller, James A.; Klippenstein, Stephen J.

    2016-06-01

    The reaction of atomic oxygen with ethylene is a fundamental oxidation step in combustion and is prototypical of reactions in which oxygen adds to double bonds. For 3O+C2H4 and for this class of reactions generally, decomposition of the initial adduct via spin-allowed reaction channels on the triplet surface competes with intersystem crossing (ISC) and a set of spin-forbidden reaction channels on the ground-state singlet surface. The two surfaces share some bimolecular products but feature different intermediates, pathways, and transition states. In addition, the overall product branching is therefore a sensitive function of the ISC rate. The 3O+C2H4 reaction has beenmore » extensively studied, but previous experimental work has not provided detailed branching information at elevated temperatures, while previous theoretical studies have employed empirical treatments of ISC. Here we predict the kinetics of 3O+C2H4 using an ab initio transition state theory based master equation (AITSTME) approach that includes an a priori description of ISC. Specifically, the ISC rate is calculated using Landau–Zener statistical theory, consideration of the four lowest-energy electronic states, and a direct classical trajectory study of the product branching immediately after ISC. The present theoretical results are largely in good agreement with existing low-temperature experimental kinetics and molecular beam studies. Good agreement is also found with past theoretical work, with the notable exception of the predicted product branching at elevated temperatures. Above ~1000 K, we predict CH2CHO+H and CH2+CH2O as the major products, which differs from the room temperature preference for CH3+HCO (which is assumed to remain at higher temperatures in some models) and from the prediction of a previous detailed master equation study.« less

  11. 'Pot of Gold' and 'Rotten Rocks'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Pot of Gold' (upper left), located near the base of the 'Columbia Hills' in Gusev Crater. Scientists are intrigued by this unusual-looking, nodule-covered rock and plan to investigate its detailed chemistry in coming sols. This picture was taken on sol 159 (June 14, 2004).

    To the right is a set of rocks referred to as 'Rotten Rocks' for their resemblance to rotting loaves of bread. The insides of these rocks appear to have been eroded, while their outer rinds remain more intact. These outer rinds are reminiscent of those found on rocks at Meridiani Planum's 'Eagle Crater.' This image was captured on sol 158 (June 13, 2004).

  12. Panic in the potting shed. The association between Legionella longbeachae serogroup 1 and potting soils in Australia.

    PubMed

    Ruehlemann, S A; Crawford, G R

    1996-01-01

    Is gardening a health hazard? Legionella longbeachae, a potential cause of pneumonia, has been found in Australian potting media. However, further research is needed to determine its clinical relevance in this situation. This did not stop the popular media linking two deaths from Legionella infection in Queensland to potting mix exposure.

  13. Panic in the potting shed. The association between Legionella longbeachae serogroup 1 and potting soils in Australia.

    PubMed

    Ruehlemann, S A; Crawford, G R

    1996-01-01

    Is gardening a health hazard? Legionella longbeachae, a potential cause of pneumonia, has been found in Australian potting media. However, further research is needed to determine its clinical relevance in this situation. This did not stop the popular media linking two deaths from Legionella infection in Queensland to potting mix exposure. PMID:8559094

  14. Near-Infrared Spectroscopy of Ethynyl Radical, C2H

    NASA Astrophysics Data System (ADS)

    Le, Anh T.; Hall, Gregory; Sears, Trevor

    2016-06-01

    The ethynyl radical, C_2H, is a reactive intermediate important in various combustion processes and also widely observed in the interstellar medium. In spite of extensive previous spectroscopic studies, the characterization of the near infrared transitions from the tilde{X}2Σ+ state to the mixed vibrational overtone and tilde{A}2Π states is incomplete. A strong band of C_2H at 7064 cm-1 was first observed in a neon matrix and assigned as the tilde{A}2Π(002)1 - tilde{X}2Σ+ transition by Forney et al. Subsequent theoretical work of Tarroni and Carter attributed the strong absorptions in this region to transitions terminating in two upper states, each a mixture of vibrationally excited tilde{X} states and different zero-order tilde{A}-state bending levels: a 2Σ+ symmetry combination of tilde{X}(0,20,3) and tilde{A}(0,3,0)0κ and a 2Π symmetry combination of tilde{X}(0,31,3) and tilde{A}(0,0,2)1. Transitions to them from the zero point level of the tilde{X} state are calculated to differ in energy by less than 10 cm-1 and to be within a factor of two in intensity. Diode laser transient absorption was used to record Doppler-limited spectra between 7020 and 7130 cm-1, using 193 nm photolysis of CF_3C_2H as a source of C_2H. Two interleaved, rotationally resolved bands were observed, consistent with a 2Σ - 2Σ transition at 7088 cm-1 and a 2Π - 2Σ transition at 7108 cm-1, in good accord with the Tarroni and Carter calculation. Progress on the assignment and fitting of the spectra will be reported. Acknowledgements: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences, and Biosciences. D. Forney, M.E. Jacox, and W.E. Thompson, J. Mol. Spectrosc. 170, 178 (1995). R. Tarroni and S. Carter, Mol. Phys. 102, 2167 (2004)

  15. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  16. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  17. B2H6 PLAD Doped PMOS Device Performance

    SciTech Connect

    Fang, Z.; Miller, T.; Winder, E.; Persing, H.; Arevalo, E.; Gupta, A.; Parrill, T.; Singh, V.; Qin, S.; McTeer, A.

    2006-11-13

    Plasma doping (PLAD) achieves high wafer throughput by directly extracting ions across the plasma sheath. PLAD profiles are typically surface peaked instead of retrograde as obtained from beamline (BL) implant. It may require optimization of PLAD energy and dose in order to match BL doping results. From device optimization point of view, it is necessary to understand the impact of doping parameters to device characteristics. In this paper we present the PMOS device performance with the poly gate and source drain (SD) implants carried out using B2H6 PLAD. The BL control conditions are 2-5 keV 11B+ 4-6x1015 cm-2. Equivalent device performance for p+ poly gate doping is obtained using PLAD with B2H6 / H2. In SD doping using same gas mixture, nearly 50% reduction in SD contact resistance is observed in the PLAD splits. The reduction in SD contact resistance leads to 10-15% increase in device on-current, hence demonstrating the process advantages of using PLAD in addition to having a high wafer throughput.

  18. Using water stable isotopes to assess evaporation and water residence time of lakes in EPA’s National Lakes Assessment.

    EPA Science Inventory

    Stable isotopes of water (18O and 2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and water isotopes integrate information about basic hydrological processes such as evaporation as a percentage of inflow (E/I), w...

  19. Tunable catalytic activity of solid solution metal-organic frameworks in one-pot multicomponent reactions.

    PubMed

    Aguirre-Díaz, Lina María; Gándara, Felipe; Iglesias, Marta; Snejko, Natalia; Gutiérrez-Puebla, Enrique; Monge, M Ángeles

    2015-05-20

    The aim of this research is to establish how metal-organic frameworks (MOFs) composed of more than one metal in equivalent crystallographic sites (solid solution MOFs) exhibit catalytic activity, which is tunable by virtue of the metal ions ratio. New MOFs with general formula [InxGa1-x(O2C2H4)0.5(hfipbb)] were prepared by the combination of Ga and In. They are isostructural with their monometal counterparts, synthesized with Al, Ga, and In. Differences in their behavior as heterogeneous catalysts in the three-component, one pot Strecker reaction illustrate the potential of solid solution MOFs to provide the ability to address the various stages involved in the reaction mechanism.

  20. Putting the "vap" into evaporation

    NASA Astrophysics Data System (ADS)

    Shuttleworth, W. J.

    2007-01-01

    In the spirit of the Special Issue of HESS to which it contributes, this paper documents the origin and development of the science of natural evaporation from land surfaces over the last 30-35 years, since the symposium A View from the Watershed was held to commemorate the opening of the new Institute of Hydrology (IH) building in 1973. Important subsequent technical progress includes the ability to measure routinely the diurnal cycle of near-surface meteorological variables using automatic weather stations, and of surface energy and momentum exchanges using automated implementations of the Bowen Ratio/Energy Budget technique and the Eddy Correlation technique, along with the capability to estimate the "fetch" for which these measurements apply. These improvements have been complemented by new methods to measure the separate components of evaporation, including: the interception process using randomly relocated below-canopy gauges, transpiration fluxes from individual leaves/shoots using porometers and from plants/plant components using stem-flow gauges and soil evaporation using micro-lysimeters and soil moisture depletion methods. In recent years progress has been made in making theory-based area-average estimates of evaporation using scintillometers, and model-based area-average estimates by assembling many streams of relevant data into Land Data Assimilation Systems. Theoretical progress has been made in extending near-surface turbulence theory to accommodate the effect of the "excess" boundary layer resistance to leaf-to-air transfer of energy and mass fluxes relative to that for momentum, and to allow for observed shortcoming in stability factors in the transition layer immediately above vegetation. Controversy regarding the relative merits of multi-layer model and "big leaf" representations of whole-canopy exchanges has been resolved in favour of the latter approach. Important gaps in the theory of canopy-atmosphere interactions have been filled, including

  1. Experimental study of evaporation of horizontal films of water-salt solutions

    NASA Astrophysics Data System (ADS)

    Elistratov, S. L.; Morozov, V. S.

    2015-01-01

    The present studies were carried out for the horizontal films (thin layers) of water and water solutions of NaCl, CaCl2, LiCl, and LiBr with different solubility characteristics, as well as with specific features of formation and decay of water hydrates. Required volume of solution Vo of given weight concentration ξo, preliminary heated to the working surface temperature, was put in one step on the horizontal bottom of the bowl, heated to working temperature tCT, by means of volume batchers Thermo Scientific. After evaporation completion, the final mass of solution and form of their residue were registered. At the final stage of evaporation formation of NaCl crystals and water hydrates of CaCl2 · 2H2O, LiCl · H2O, and LiBr · 2H2O occurred.

  2. Evaporative oxidation treatability test report

    SciTech Connect

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.

  3. Mobile evaporator corrosion test results

    SciTech Connect

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80{degrees}C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either {open_quotes}satisfactory{close_quotes} (2-20 mpy) or {open_quotes}excellent{close_quotes} (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment.

  4. Evaporation and combustion of sprays

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1983-01-01

    A description is provided of recent spray evaporation and combustion models, taking into account turbulent two- and three-dimensional spray processes found in furnaces, gas turbine combustors, and internal combustion engines. Within the class of spray models of interest, two major categories are distinguished, including locally homogeneous flow (LHF) models and separated flow (SF) models. SF models are of the greatest practical importance, but LHF models have distinct advantages in some cases. Attention is also given to recent progress on modeling interactions between drops and the flow in both dilute and dense sprays, involving sprays having low and high liquid volume fractions, respectively.

  5. Organic Evaporator steam valve failure

    SciTech Connect

    Jacobs, R. A.

    1992-09-29

    DWPF Technical has requested an analysis of the capacity of the organic Evaporator (OE) condenser (OEC) be performed to determine its capability in the case where the OE steam flow control valve fails open. Calculations of the OE boilup and the OEC heat transfer coefficient indicate the OEC will have more than enough capacity to remove the heat at maximum OE boilup. In fact, the Salt Cell Vent Condenser (SCVC) should also have sufficient capacity to handle the maximum OE boilup. Therefore it would require simultaneous loss of OEC and/or SCVC condensing capacity for the steam valve failure to cause high benzene in the Process Vessel Vent System (PVVS).

  6. Both water source and atmospheric water impact leaf wax n-alkane 2H/1H values of hydroponically grown angiosperm trees

    NASA Astrophysics Data System (ADS)

    Tipple, B. J.; Berke, M. A.; Hambach, B.; Roden, J. S.; Ehleringer, J. R.

    2013-12-01

    The extent to which both water source and leaf water 2H-enrichment affect the δ2H values of terrestrial plant leaf waxes is an area of active research as ecologists seek a mechanistic understanding of the environmental determinants of leaf wax isotope values before applying δ2H values of leaf waxes to reconstruct past hydrologic conditions. To elucidate the effects of both water source and atmospheric water vapor on δ2H values of leaf waxes for broad-leaved angiosperms, we analyzed hydrogen isotope ratios of high-molecular weight n-alkanes from two tree species that were grown throughout the spring and summer (five months) in a hydroponic system under controlled atmospheric conditions. Here, 12 subpopulations each of Populus fremontii and Betula occidentalis saplings were grown under one of six source different waters ranging in hydrogen isotope ratio values from -120 to +180 ‰ and under either 40 % or 75 % relative humidity conditions. We found n-alkane δ2H values of both species were linearly related to source water δ2H values with differences in slope associated with differing atmospheric humidity. A Craig-Gordon model was used to predict the δ2H values of leaf water and, by extension, n-alkane δ2H values under the range of growth conditions. The modeled leaf water values were found to be linearly related to observed n-alkane δ2H values with a statistically indistinguishable slope between the high and low humidity treatments. These leaf wax observations support a constant biosynthetic fractionation factor between evaporatively-enriched leaf water and n-alkanes for each species. However, we found the calculated biosynthetic fractionation between modeled leaf-water and n-alkane to be different between the two species. We submit that these dissimilarities were due to model inputs and not differences in the specific-species biochemistry. Nonetheless, these results are significant as they indicated that the δ2H value of atmospheric water vapor and

  7. The ultraviolet spectrum of Herbig-Haro object 2H

    NASA Technical Reports Server (NTRS)

    Brugel, E. W.; Seab, C. G.; Shull, J. M.

    1982-01-01

    IUE spectra of Herbig-Haro object 2H are presented. The spectra show a strong 'excess' UV continuum and prominent emission lines of C, N, O, Si, Mg, and possibly Al. The continuum, F(lambda), exhibits a turnover shortward of about 1450 A, confirming for the first time the H0 two-photon nature of the emission source. A possible absorption feature near 1680 A, which could result from a new grain or molecular constituent in these protostellar objects is also noted. Recently computed models of steady shocks into partially ionized gas reproduce the two-photon spectral shape, but its observed intensity relative to H-beta and the Balmer continuum is anomalously high. It is suggested that a range of shock velocities, 70-100 km/s, or nonsteady, 'truncated' shocks may be responsible. Future high-sensitivity UV observations of HH objects may be used to probe grain extinction curves in star-forming regions.

  8. Vibrational and Rotational Spectroscopy of CD_2H^+

    NASA Astrophysics Data System (ADS)

    Asvany, Oskar; Jusko, Pavol; Brünken, Sandra; Schlemmer, Stephan

    2016-06-01

    The lowest rotational levels (J=0-5) of the CD_2H^+ ground state have been probed by high-resolution rovibrational and pure rotational spectroscopy in a cryogenic 22-pole ion trap. For this, the ν_1 rovibrational band has been revisited, detecting 107 transitions, among which 35 are new. The use of a frequency comb system allowed to measure the rovibrational transitions with high precision and accuracy, typically better than 1 MHz. The high precision has been confirmed by comparing combination differences in the ground and vibrationally excited state. For the ground state, this allowed for equally precise predictions of pure rotational transitions, 24 of which have been measured directly by a novel IR - mm-wave double resonance method. M.-F. Jagod et al, J. Molec. Spectrosc. 153, 666, 1992 S. Gartner et al, J. Phys. Chem. A 117, 9975, 2013

  9. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks-Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  10. Detailed Studies of Hydrocarbon Radicals: C2H Dissociation

    SciTech Connect

    Wittig, Curt

    2014-10-06

    A novel experimental technique was examined whose goal was the ejection of radical species into the gas phase from a platform (film) of cold non-reactive material. The underlying principle was one of photo-initiated heat release in a stratum that lies below a layer of CO2 or a layer of amorphous solid water (ASW) and CO2. A molecular precursor to the radical species of interest is deposited near or on the film's surface, where it can be photo-dissociated. It proved unfeasible to avoid the rampant formation of fissures, as opposed to large "flakes." This led to many interesting results, but resulted in our aborting the scheme as a means of launching cold C2H radical into the gas phase. A journal article resulted that is germane to astrophysics but not combustion chemistry.

  11. 2H NMR studies of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  12. Doping dependent plasmon dispersion in 2 H -transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Müller, Eric; Büchner, Bernd; Habenicht, Carsten; König, Andreas; Knupfer, Martin; Berger, Helmuth; Huotari, Simo

    2016-07-01

    We report the behavior of the charge carrier plasmon of 2 H -transition metal dichalcogenides (TMDs) as a function of intercalation with alkali metals. Intercalation and concurrent doping of the TMD layers have a substantial impact on plasmon energy and dispersion. While the plasmon energy shifts are related to the intercalation level as expected within a simple homogeneous electron gas picture, the plasmon dispersion changes in a peculiar manner independent of the intercalant and the TMD materials. Starting from a negative dispersion, the slope of the plasmon dispersion changes sign and grows monotonously upon doping. Quantitatively, the increase of this slope depends on the orbital character (4 d or 5 d ) of the conduction bands, which indicates a decisive role of band structure effects on the plasmon behavior.

  13. Preliminary Results of Testing of Flow Effects on Evaporator Scaling

    SciTech Connect

    Hu, M.Z.

    2002-02-15

    This investigation has focused on the effects of fluid flow on solids deposition from solutions that simulate the feed to the 2H evaporator at the Savannah River Site. Literature studies indicate that the fluid flow (or shear) affects particle-particle and particle-surface interactions and thus the phenomena of particle aggregation in solution and particle deposition (i.e., scale formation) onto solid surfaces. Experimental tests were conducted with two configurations: (1) using a rheometer to provide controlled shear conditions and (2) using controlled flow of reactive solution through samples of stainless steel tubing. All tests were conducted at 80 C and at high silicon and aluminum concentrations, 0.133 M each, in solutions containing 4 M sodium hydroxide and 1 A4 each of sodium nitrate and sodium nitrite. Two findings from these experiments are important for consideration in developing approaches for reducing or eliminating evaporator scaling problems: (1) The rheometer tests suggested that for the conditions studied, maximum solids deposition occurs at a moderate shear rate, approximately 12 s{sup -1}. That value is expected to be on the order of shear rates that will occur in various parts of the evaporator system; for instance, a 6 gal/min single-phase liquid flow through the 2-in. lift or gravity drain lines would result in a shear rate of approximately 16 s{sup -1}. These results imply that engineering approaches aimed at reducing deposits through increased mixing would need to generate shear near all surfaces significantly greater than 12 s{sup -1}. However, further testing is needed to set a target value for shear that is applicable to evaporator operation. This is because the measured trend is not statistically significant at the 95% confidence interval due to variability in the results. In addition, testing at higher temperatures and lower concentrations of aluminum and silicon would more accurately represent conditions in the evaporator. Without

  14. 2H and 18O Freshwater Isoscapes of Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, Wolfram; Hoogewerff, Jurian; Kemp, Helen; Frew, Danny

    2013-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwaters by the Scottish Environment Protection Agency (SEPA) fulfils legislative requirements with regards to water quality but new scientific methods involving stable isotope analysis present an opportunity combining these mandatory monitoring schemes with fundamental research to inform and deliver on current and nascent government policies [1] through gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and food security. For example, 2H and 18O isoscapes of Scottish freshwater could be used to underpin research and its applications in: • Climate change - Using longitudinal changes in the characteristic isotope composition of freshwater lochs and reservoirs as proxy, isoscapes will provide a means to assess if and how changes in temperature and weather patterns might impact on precipitation patterns and amount. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish soft fruit and Scottish Whisky. During 2011 and 2012, with the support of SEPA more than 110 samples from freshwater lochs and reservoirs were collected from 127 different locations across Scotland including the Highlands and Islands. Here we present the results of this sampling and analysis exercise isotope analyses in form of 2H and 18O isoscapes with an unprecedented grid resolution of 26.5 × 26.5 km (or 16.4 × 16.4 miles). [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland

  15. [Medical pots of Yakushi Buddha in Japan].

    PubMed

    Okuda, Jun; Noro, Yukio; Ito, Shiro

    2005-01-01

    The origin of Yakushi buddha (Bhaisajyaguru in Sanscrit, buddha of healing) is not clearly known. It has been proposed the original statue of Yakushi buddha may have been conceived from Varna, a god in Brahminism, believed to be a god of justice who possessed medicines and prolonged life. It is believed that Yakushi buddha appeared in Japan when the buddhism was imported from Korea and China in VI century, Yakushi buddha was believed more profoundly in Japan, compared with Korea and China.The reasons are probably as follows: Yakushi buddha is buddha of healing, Emperor Temmu (672-685) built Yakushi-ji temple in Nara, Emperor Shomu (724-749) built Kokubun-ji temples at principal towns. The principal statues of buddha in these temples are Yakushi buddha. In Japan, there are 252 Yakushi Buddha statues in Buddhistical Temples, which are listed in Important Cultural Property including 14 National Treasures. Belief in Yakushi Buddha was especially prevalent from the 7th to the 13th centuries in Japan. The oldest wooden Yakushi Buddha statue is in the Horin-ji temple in Nara. Among the 252 Yakushi Buddha statues, 224 are in wood, 15 are in copper, 6 are in picture and etc. 212 (84,1%) have medicinal pots (or rarely, a bowl) on the palm of left hand. However, these medicinal containers are wooden blocks. Very recently, it was found that Yakushi Buddha statue in the Suho-Kokubun-ji temple (Yamaguchi Prefecture, Japan) has a medicinal pot on the palm of the left hand in which an offering (220 g materials) was found. The date on the reverse side of lid places the offering at October 12, 1699. The offering is composed of five cereals (rice, barley, wheat, soybean, adzuki bean), five medicinal plants (Acori Graminei, Acori Calami, Radix Ginseng, Flos Caryophylli, Lignum Santali Albi), and five minerals (rock crystals, purple and blue glasse, CaCO3, particles, silver and golden foils). DNA analysis proved those three randomly selected seeds of rice all belongs to the template

  16. [Medical pots of Yakushi Buddha in Japan].

    PubMed

    Okuda, Jun; Noro, Yukio; Ito, Shiro

    2005-01-01

    The origin of Yakushi buddha (Bhaisajyaguru in Sanscrit, buddha of healing) is not clearly known. It has been proposed the original statue of Yakushi buddha may have been conceived from Varna, a god in Brahminism, believed to be a god of justice who possessed medicines and prolonged life. It is believed that Yakushi buddha appeared in Japan when the buddhism was imported from Korea and China in VI century, Yakushi buddha was believed more profoundly in Japan, compared with Korea and China.The reasons are probably as follows: Yakushi buddha is buddha of healing, Emperor Temmu (672-685) built Yakushi-ji temple in Nara, Emperor Shomu (724-749) built Kokubun-ji temples at principal towns. The principal statues of buddha in these temples are Yakushi buddha. In Japan, there are 252 Yakushi Buddha statues in Buddhistical Temples, which are listed in Important Cultural Property including 14 National Treasures. Belief in Yakushi Buddha was especially prevalent from the 7th to the 13th centuries in Japan. The oldest wooden Yakushi Buddha statue is in the Horin-ji temple in Nara. Among the 252 Yakushi Buddha statues, 224 are in wood, 15 are in copper, 6 are in picture and etc. 212 (84,1%) have medicinal pots (or rarely, a bowl) on the palm of left hand. However, these medicinal containers are wooden blocks. Very recently, it was found that Yakushi Buddha statue in the Suho-Kokubun-ji temple (Yamaguchi Prefecture, Japan) has a medicinal pot on the palm of the left hand in which an offering (220 g materials) was found. The date on the reverse side of lid places the offering at October 12, 1699. The offering is composed of five cereals (rice, barley, wheat, soybean, adzuki bean), five medicinal plants (Acori Graminei, Acori Calami, Radix Ginseng, Flos Caryophylli, Lignum Santali Albi), and five minerals (rock crystals, purple and blue glasse, CaCO3, particles, silver and golden foils). DNA analysis proved those three randomly selected seeds of rice all belongs to the template

  17. Hydrodynamic Instabilities Produced by Evaporation

    NASA Astrophysics Data System (ADS)

    Romo-Cruz, Julio Cesar Ruben; Hernandez-Zapata, Sergio; Ruiz-Chavarria, Gerardo

    2012-11-01

    When a liquid layer (alcohol in the present work) is in an environment where its relative humidity is less than 100 percent evaporation appears. When RH is above a certain threshold the liquid is at rest. If RH decreases below this threshold the flow becomes unstable, and hydrodynamic cells develop. The aim of this work is to understand the formation of those cells and its main features. Firstly, we investigate how the cell size depends on the layer width. We also study how temperature depends on the vertical coordinate when the cells are present. An inverse temperature gradient is found, that is, the bottom of liquid layer is colder than the free surface. This shows that the intuitive idea that the cells are due to a direct temperature gradient, following a Marangoni-like process, does not work. We propose the hypothesis that the evaporation produce a pressure gradient that is responsible of the cell development. On the other hand, using a Schlieren technique we study the topography of the free surface when cells are present. Finally the alcohol vapor layer adjacent to the liquid surface is explored using scattering experiments, giving some insight on the plausibility of the hypothesis described previously. Authors acknowledge support by DGAPA-UNAM under project IN116312 ``Vorticidad y ondas no lineales en fluidos.''

  18. Ab initio study of {sup 2}H(d,{gamma}){sup 4}He, {sup 2}H(d,p){sup 3}H, and {sup 2}H(d,n){sup 4}He reactions and the tensor force

    SciTech Connect

    Arai, K.; Aoyama, S.; Suzuki, Y.; Descouvemont, P.; Baye, D.

    2012-11-12

    The {sup 2}H(d,p){sup 3}H, {sup 2}H(d,n){sup 3}He, and {sup 2}H(d,{gamma}){sup 4}He reactions at low energies are studied with realistic nucleon-nucleon interactions in an ab initio approach. The obtained astrophysical S-factors are all in very good agreement with experiment. The most important channels for both transfer and radiative capture are all found to dominate thanks to the tensor force.

  19. Observations on an evaporative, elbow thermosyphon

    SciTech Connect

    Lock, G.S.H.; Fu, J. )

    1993-05-01

    The performance of the evaporative elbow system was found to be superior to that of the nonevaporative system, but comparable to the performance of the linear system. The parametric role of the evaporator wall temperature, the condenser wall temperature, and the vapor saturation temperature was demonstrated, each revealing a similar monotonic effect. With the evaporator upright, the data were found to be similar to, but displaced from, the upright condenser data. The upright evaporator gave the better performance, but not overwhelmingly so. The limit of performance with the condenser upright was found to be dictated by evaporator dryout. In the upright evaporator configuration, the limit may be attributed to flooding in the poorly draining condenser; this limit was indistinguishable from geyser behavior at low vapor pressures. 16 refs., 3 figs.

  20. Pot-in-pot reactions: Heterogenization of homogeneous reaction processes for otherwise impossible cascades

    NASA Astrophysics Data System (ADS)

    Thuo, Martin

    Many excellent examples of homogeneous catalysts have been developed that elegantly and efficiently catalyze one reaction. Although the use of catalysts is ubiquitous in chemical synthesis, reactions must be carried out sequentially; else the catalysts/reagents may poison one another or require incompatible reaction conditions. These limitations make synthesis of vital molecules a tedious, expensive, and wasteful process. The process of multi-step synthesis is also not environmentally benign based on the sheer volume of waste generated per step. To overcome some of these limitations, catalysts have been site-isolated from each other therefore facilitating several steps in one reaction pot. However, available site-isolation methods have major shortcomings. Therefore, a general approach that works with already known chemistry and catalysts---without the need for further modification, is desired. This thesis reports a new approach to catalyst site-isolation. We exploited the advantages of both heterogeneous and homogeneous processes to develop new cascade reaction sequences by employing polydimethylsiloxane thimbles as selective semi-permeable walls. These thimbles allow small organic molecules to diffuse through while retaining polar reagents and/or organometallic catalysts. A felicitous choice of reaction conditions led to the development of pot-in-pot reactions, a new concept in organic catalysis. To demonstrate how dynamic this new techniques is, we performed 2- and 3-step cascade reactions. This new approach circumvents the need to isolate intermediates, therefore enabling synthesis of otherwise challenging molecules. The genesis of our work was the occlusion of an organometallic catalyst in polydimethylsiloxane to perform catalysis in water. Also, by simply occluding the catalyst in a polymer matrix, it was possible to dictate whether the catalyst gave a metathesis or an isomerization product. Since the work summarized herein demonstrates site-isolation of a

  1. 50. Taken from highline; "B" furnace slag pots, pipe is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Taken from high-line; "B" furnace slag pots, pipe is main blast furnace gas line from "C" furnace dust catcher; levy, slag hauler, removing slag. Looking east - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  2. Evaluation Of Potting Materials For Use In Extreme Cold

    NASA Technical Reports Server (NTRS)

    Acosta, Ernesto

    1992-01-01

    Tests help identify noncracking combinations of materials. Aid evaluation of potting materials for copper coils used at low temperatures to measure magnetic fields. Also determine effects of distribution of microballoons, voids, and porosity. Materials also evaluated for ease of use.

  3. Development of improved potting and conformal coating compounds

    NASA Technical Reports Server (NTRS)

    Webster, J. A.

    1969-01-01

    Improved organic potting and conformal coating materials protect fragile electronic components and circuitry from mechanical shock and vibration, moisture, and corrosion. These materials meet specifications covering resistance to cycling, radiation, flammability, and sterilizing agents for certain space applications.

  4. Computer model studies of a solar cooker: A finned pot

    SciTech Connect

    Pejack, E.R.

    1992-12-31

    A mathematical model of a box-type solar cooker, accounting for the solar energy input and internal heat exchange among the pot, walls, top cover and air has been developed and reported earlier. The model considers the variable sun angle and intensity, box and reflector orientation, heat losses, cooking time, wind, and other variables. In the present application of the model, an extended surface, or fin, is attached to the pot. The fin acts to increase the direct solar radiation to the pot-fin system as well as add surface area for convection from the air in the box. Results for specific geometries of fins with variable length and thickness show that the food temperatures can be appreciably increased with the finned pot.

  5. Apparatus and method for evaporator defrosting

    DOEpatents

    Mei, Viung C.; Chen, Fang C.; Domitrovic, Ronald E.

    2001-01-01

    An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.

  6. Dynamics of complete wetting liquid under evaporation

    NASA Astrophysics Data System (ADS)

    Pham, Chi-Tuong; Berteloot, Guillaume; Lequeux, François; Limat, Laurent

    2008-11-01

    The dynamics of a contact line under evaporation and total wetting conditions is studied taking into account the divergent nature of evaporation near the border of the liquid, as evidenced by Deegan et al. [Nature 389, 827 (1997)]. Complete wetting is assumed to be due to Van der Waals interactions. The existence of a precursor film at the edge of the liquid is shown analytically and numerically. The length of the precursor film is controlled by Hamacker constant and evaporative flux. Past the precursor film, Tanner's law is generalized accounting for evaporative effects.

  7. Portable brine evaporator unit, process, and system

    DOEpatents

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  8. Pattern formation in evaporating drops

    NASA Astrophysics Data System (ADS)

    Li, Fang-I.

    The redistribution of organic solutes during drop evaporation is a nanoscale self assembly process with relevance to technologies ranging from inkjet printing of organic displays to synthesis of bio-smart interfaces for sensing and screening. Atomic force microscopy studies comparing the behavior of different generation dendrimers with different surface chemistry in two solvent alcohols on mica substrates confirm that the detailed morphologies of condensed dendrimer ring structures resulting from micro-droplet evaporation sensitively depend on the surface chemistry, the solute evaporation rate and the dendrimer generation. For the dilute concentration studied here the presence of periodically 'scalloped' molecular rings is ubiquitous. The instability wavelength of the scalloped rings is found to be proportional to the width of the ring, similar to observations of the rim instability in dewetting holes. The effect of the surface chemistry of the dendrimer molecules is obvious in the detailed structure of the self assembled rings. Varying the chain length of solvent alcohol leads to modification of ring patterns. The influence of dendrimer generation on ring structure primarily reflects the increase in dendrimer density with generation number. The evolution of G2-50%C12 -pentanol rings as a function of dendrimer concentration is also described. High surface mobility and phase transformation phenomena in condensed, micro-scale dendrimer structures are documented, again using atomic force microscopy. Stratified dendrimer rings undergo dramatic temperature, time and dendrimer generation dependent morphological changes associated with large-scale molecular rearrangements and partial melting. These transformations produce ring structures consisting of a highly stable first monolayer of the scalloped structure in equilibrium with spherical cap shaped dendrimer islands that form at the center of each pre-existing scallop (creating a 'pearl necklace' structure). Analysis of

  9. An assessment of the isotopic (2H/18O) integrity of water samples collected and stored by unattended precipitation totalizers

    NASA Astrophysics Data System (ADS)

    Terzer, Stefan; Wassenaar, Leonard I.; Douence, Cedric; Araguas-Araguas, Luis

    2016-04-01

    The IAEA-WMO Global Network of Isotopes in Precipitation (GNIP) provides worldwide δ18O and δ2H data for numerous hydrological and climatological studies. The traditional GNIP sample collection method relies on weather station operators to accumulate precipitation obtained from manual rain gauges. Over the past decades, widespread weather station automatization resulted in the increased use of unattended precipitation totalizers that accumulate and store the rainwater in the field for up to one month. Several low-tech measures were adopted to prevent in situ secondary evaporative isotopic enrichment (SEE) of totalized water samples (i.e. disequilibrium isotopic fractionation after precipitation is stored in the collection device). These include: (a) adding a 0.5-1 cm floating layer of paraffin oil to the totalizer bottle, (b) using an intake tube leading from the collection funnel and submerged to the bottom of the totalizer bottle, or (c) placing a table tennis ball in the funnel aiming to reduce evaporation of the collected water from the receiving bottle to the atmosphere. We assessed the isotopic integrity of stored rainwater samples for three totalizers under controlled settings: each aforementioned totalizer was filled with a 100 or 500 mL of isotopically known water and installed in the field with the intake funnels sheltered to prevent rainwater collection. Potential evapotranspiration (PET) was obtained from on-site meteorological recordings. Stored evaporative loss from each totalizer was evaluated on a monthly basis; gravimetrically and by analysing δ18O and δ2H of the stored water, for a period of 6 months and a cumulative PET of ˜500 mm. The gravimetric and isotope results revealed that for smaller water volumes (100 ml, corresponding to ca. 5 mm of monthly precipitation), negligible isotope enrichment (δ18O) was observed in the paraffin-oil based totalizer, whereas unacceptable evaporative isotope effects were observed for the ball

  10. One-pot approach to 1,2-disubstituted indoles via Cu(II)-catalyzed coupling/cyclization under aerobic conditions and its application for the synthesis of polycyclic indoles.

    PubMed

    Gao, Jilong; Shao, Yingying; Zhu, Jiaoyan; Zhu, Jiaqi; Mao, Hui; Wang, Xiaoxia; Lv, Xin

    2014-10-01

    A straightforward assembly of 1,2-disubstituted indoles has been developed through a Cu(II)-catalyzed domino coupling/cyclization process. Under aerobic conditions, a wide range of 1,2-disubstituted indole derivatives were efficiently and facilely synthesized from 2-alkynylanilines and boronic acids. 2-(2-Bromoaryl)-1-aryl-1H-indoles, which were selectively generated in one pot under the Cu catalysis, afforded the indolo[1,2-f]phenanthridines via Pd-catalyzed intramolecular direct C(sp(2))-H arylation. The one-pot tandem approaches to the polycyclic indole derivatives were also successfully achieved. PMID:25211172

  11. Hydrochemistry and 18O/16O and 2H/1H Ratios of Ugandan Waters

    NASA Astrophysics Data System (ADS)

    Gebremichael, M. G.; Jasechko, S.

    2013-12-01

    Today, 70% of the 35 million people living in Uganda have access to an improved water source, ranking Uganda 148 out of 179 nations reporting in 2010 (Millennium Development Goals Indicators). 80% of Ugandans rely on groundwater as their primary drinking water source, collecting at springs or from shallow wells. Similarly, 80% of Ugandans rely upon agriculture - usually rain fed - as their primary income source. Despite lack of access to protected water sources faced by 10 million Ugandans, and the importance of the blue economy to Uganda's continued development, a country-wide investigation of the chemistry and the stable oxygen and hydrogen isotope compositions of waters has yet to be completed. Here we present 250 analyses of 18O/16O, 2H/1H and dissolved ion concentrations of Ugandan lakes, rivers, groundwaters and springs collected during July, 2013. We use the new data to characterize regional scale groundwater recharge sources, advection pathways and interactions with surface waters. Large lakes - Albert, Edward and Victoria - show increases in 18O/16O and 2H/1H ratios consistent with open water evaporation, and are shown to be distinct from nearby groundwaters, suggesting minimal recharge from large lakes to the subsurface. Salinities of eastern Ugandan groundwaters are elevated relative to samples collected from the central and western regions, suggesting that longer groundwater residence times and enhanced water-rock interactions characterize these waters. Springs from western Uganda show a shift in 18O/16O to higher values as a result of hydrothermal water-rock exchanges. Dissolved ion and noble gas concentrations show potential for use in assessing geothermal energy resources, perhaps aiding the Ugandan Ministry for Energy, Minerals and Development to meet their goal of increasing renewable energy from 4% (current) to 61% of total use by 2017 (Nyakabwa-Atwoki, 2013). Millennium Development Goals Indicators. mdgs.un.org/unsd/mdg/data.aspx Nyakabwa

  12. Evaporating Global Charges in Braneworld

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Gabadadze, Gregory

    2002-09-01

    In braneworld models the global charges, such as baryon or lepton number, are not conserved. The global-charge non-conservation is a rather model-independent feature which arises due to quantum fluctuations of the brane worldvolume. These fluctuations create ``baby branes'' that can capture some global charges and carry them away into the bulk of higher-dimensional space. Such processes are exponentially suppressed at low-energies, but can be significant at high enough temperatures or energies. These effects can lead to a new, intrinsically high-dimensional mechanism of baryogenesis. Baryon asymmetry might be produced due either to evaporation into the baby branes, or creation of the baryon number excess in collisions of two Brane Universes.

  13. Model dependence of the {sup 2}H electric dipole moment

    SciTech Connect

    Afnan, I. R.; Gibson, B. F.

    2010-12-15

    Background: Direct measurement of the electric dipole moment (EDM) of the neutron is in the future; measurement of a nuclear EDM may well come first. The deuteron is one nucleus for which exact model calculations are feasible. Purpose: We explore the model dependence of deuteron EDM calculations. Methods: Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variation in the nucleon-nucleon interaction. We write the EDM as the sum of two terms, the first depending on the target wave function with plane-wave intermediate states, and the second depending on intermediate multiple scattering in the {sup 3}P{sub 1} channel, the latter being sensitive to the off-shell behavior of the {sup 3}P{sub 1} amplitude. Results: We compare the full calculation with the plane-wave approximation result, examine the tensor force contribution to the model results, and explore the effect of short-range repulsion found in realistic, contemporary potential models of the deuteron. Conclusions: Because one-pion exchange dominates the EDM calculation, separable potential model calculations will provide an adequate description of the {sup 2}H EDM until such time as a measurement better than 10% is obtained.

  14. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei.

    PubMed Central

    Vercesi, A E; Moreno, S N; Docampo, R

    1994-01-01

    The use of digitonin to permeabilize the plasma membrane of Trypanosoma brucei procyclic and bloodstream trypomastigotes allowed the identification of a non-mitochondrial nigericin-sensitive Ca2+ compartment. The proton ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was able to cause Ca2+ release from this compartment, which was also sensitive to sodium orthovanadate. Preincubation of the cells with the vacuolar H(+)-ATPase inhibitor bafilomycin A1 greatly reduced the nigericin-sensitive Ca2+ compartment. Bafilomycin A1 inhibited the initial rate of ATP-dependent non-mitochondrial Ca2+ uptake and stimulated the initial rate of nigericin-induced Ca2+ release by permeabilized procyclic trypomastigotes. ATP-dependent and bafilomycin A1- and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl)-sensitive Acridine Orange uptake was demonstrated in permeabilized cells. Under these conditions Acridine Orange was concentrated in abundant cytoplasmic round vacuoles by a process inhibited by bafilomycin A1, NBD-Cl, nigericin, and Ca2+. Vanadate or EGTA significantly increased Acridine Orange uptake, while Ca2+ released Acridine Orange from these preparations, thus suggesting that the dye and Ca2+ were being accumulated in the same acidic vacuole. Acridine Orange uptake was reversed by nigericin, bafilomycin A1 and NH4Cl. The results are consistent with the presence of a Ca2+/H(+)-ATPase system pumping Ca2+ into an acidic vacuole, that we tentatively named the acidocalcisome. Images Figure 5 PMID:7998937

  15. Catastrophic evaporation of rocky planets

    NASA Astrophysics Data System (ADS)

    Perez-Becker, Daniel; Chiang, Eugene

    2013-08-01

    Short-period exoplanets can have dayside surface temperatures surpassing 2000 K, hot enough to vaporize rock and drive a thermal wind. Small enough planets evaporate completely. We construct a radiative hydrodynamic model of atmospheric escape from strongly irradiated, low-mass rocky planets, accounting for dust-gas energy exchange in the wind. Rocky planets with masses ≲ 0.1 M⊕ (less than twice the mass of Mercury) and surface temperatures ≳2000 K are found to disintegrate entirely in ≲10 Gyr. When our model is applied to Kepler planet candidate KIC 12557548b - which is believed to be a rocky body evaporating at a rate of dot{M} gtrsim 0.1 M_{{{oplus }}} Gyr-1 - our model yields a present-day planet mass of ≲ 0.02 M⊕ or less than about twice the mass of the Moon. Mass-loss rates depend so strongly on planet mass that bodies can reside on close-in orbits for Gyr with initial masses comparable to or less than that of Mercury, before entering a final short-lived phase of catastrophic mass-loss (which KIC 12557548b has entered). Because this catastrophic stage lasts only up to a few per cent of the planet's life, we estimate that for every object like KIC 12557548b, there should be 10-100 close-in quiescent progenitors with sub-day periods whose hard-surface transits may be detectable by Kepler - if the progenitors are as large as their maximal, Mercury-like sizes (alternatively, the progenitors could be smaller and more numerous). According to our calculations, KIC 12557548b may have lost ˜70 per cent of its formation mass; today we may be observing its naked iron core.

  16. Analysis of tank 4 (FTF-4-15-22, 23) surface and subsurface supernatant samples in support of enrichment control, corrosion control and evaporator feed qualification programs

    SciTech Connect

    Oji, L. N.

    2015-09-09

    This report provides the results of analyses on Savannah River Site Tank 4 surface and subsurface supernatant liquid samples in support of the Enrichment Control Program (ECP), the Corrosion Control Program (CCP) and the Evaporator Feed Qualification (EFQ) Program. The purpose of the ECP sample taken from Tank 4 in August 2015 was to determine if the supernatant liquid would be “acceptable feed” to the 2H and 3H evaporator systems.

  17. Nanofluid Drop Evaporation: Experiment, Theory, and Modeling

    NASA Astrophysics Data System (ADS)

    Gerken, William James

    Nanofluids, stable colloidal suspensions of nanoparticles in a base fluid, have potential applications in the heat transfer, combustion and propulsion, manufacturing, and medical fields. Experiments were conducted to determine the evaporation rate of room temperature, millimeter-sized pendant drops of ethanol laden with varying amounts (0-3% by weight) of 40-60 nm aluminum nanoparticles (nAl). Time-resolved high-resolution drop images were collected for the determination of early-time evaporation rate (D2/D 02 > 0.75), shown to exhibit D-square law behavior, and surface tension. Results show an asymptotic decrease in pendant drop evaporation rate with increasing nAl loading. The evaporation rate decreases by approximately 15% at around 1% to 3% nAl loading relative to the evaporation rate of pure ethanol. Surface tension was observed to be unaffected by nAl loading up to 3% by weight. A model was developed to describe the evaporation of the nanofluid pendant drops based on D-square law analysis for the gas domain and a description of the reduction in liquid fraction available for evaporation due to nanoparticle agglomerate packing near the evaporating drop surface. Model predictions are in relatively good agreement with experiment, within a few percent of measured nanofluid pendant drop evaporation rate. The evaporation of pinned nanofluid sessile drops was also considered via modeling. It was found that the same mechanism for nanofluid evaporation rate reduction used to explain pendant drops could be used for sessile drops. That mechanism is a reduction in evaporation rate due to a reduction in available ethanol for evaporation at the drop surface caused by the packing of nanoparticle agglomerates near the drop surface. Comparisons of the present modeling predictions with sessile drop evaporation rate measurements reported for nAl/ethanol nanofluids by Sefiane and Bennacer [11] are in fairly good agreement. Portions of this abstract previously appeared as: W. J

  18. Global distributions of C2H6, C2H2, HCN, and PAN retrieved from MIPAS reduced spectral resolution measurements

    NASA Astrophysics Data System (ADS)

    Wiegele, A.; Glatthor, N.; Höpfner, M.; Grabowski, U.; Kellmann, S.; Linden, A.; Stiller, G.; von Clarmann, T.

    2011-08-01

    Vertical profiles of mixing ratios of C2H6, C2H2, HCN, and PAN were retrieved from MIPAS reduced spectral resolution nominal mode limb emission measurements. The retrieval strategy followed that of the analysis of MIPAS high resolution measurements, with occasional adjustments to cope with the reduced spectral resolution under which MIPAS is operated since 2005. Largest mixing ratios are found in the troposphere, and reach 1.2 ppbv for C2H6, 1 ppbv for HCN, 600 pptv for PAN, and 450 pptv for C2H2. The estimated precision in case of significantly enhanced mixing ratios (including measurement noise and propagation of uncertain parameters randomly varying in the time domain) and altitude resolution are typically 10 %, 3-4.5 km for C2H6, 15 %, 4-6 km for HCN, 6 %, 2.5-3.5 km for PAN, and 7 %, 2.5-4 km for C2H2.

  19. One-pot synthesis, structural characterization, UV-Vis and electrochemical analyses of new Schiff base complexes of Fe(III), Ni(II) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Back, Davi Fernando; de Oliveira, Gelson Manzoni; Fontana, Liniquer Andre; Ramão, Brenda Fiorin; Roman, Daiane; Iglesias, Bernardo Almeida

    2015-11-01

    The complexes [Ni(Pyr2tetam-2H)]·2H2O (1) (Pyr2tetam = (pyridoxyl)2-N1,N4-triethylenetetramine), [Fe(Pyr2tetam-2H)](ClO4)·H2O (2) and [Cu(Pyrtetam-H)](ClO4) (3) (Pyrtetam = pyridoxyl-N1-triethylenetetramine) were obtained through one pot reactions of triethylenetetramine, pyridoxal chloridrate, triethylamine and the metal salts Ni(ClO4)2·6H2O, Fe(ClO4)2·6H2O and Cu(ClO4)2·6H2O. In complexes 1 and 2 the metal centers present a distorted octahedral coordination, while complex 3 shows a square pyramidal configuration. The structures were characterized through X-ray diffractometry, IR and UV-Vis spectra. Cyclic voltammograms of the title compounds are also presented and discussed.

  20. Evaporation mitigation using floating modular devices

    NASA Astrophysics Data System (ADS)

    Hassan, M. Mahmudul; Peirson, William Leslie; Neyland, Bryce M.; Fiddis, Nicholas McQuistan

    2015-11-01

    Reducing evaporation losses from open water storages is of paramount importance in the improvement of water security in arid countries, including Australia. Widespread adoption of evaporation mitigation techniques has been prevented by their high capital and maintenance or operating costs. The use of clean, floating recycled materials to mitigate evaporation technique has been investigated systematically at sites within both the coastal and semi-arid zones of Australia. Evaporation reduction systematically increases with the proportion of covered surface. Evaporation is reduced by 43% at coastal site and 37% at arid zone site at the maximum packing densities achievable for a single layer of floating devices. The study highlights the importance of both long-term investigations and the climatic influences in the robust quantification of evaporation mitigation. The effects of solar radiation, temperature, wind speed and relative humidity on the evaporation rate at both study sites have been determined in terms of both the classical Penman model and FAO Penman Monteith model with corresponding pan coefficients quantified. FAO Penman Monteith model better estimates evaporation from the open reference tank.

  1. Advanced evaporator technology progress report FY 1992

    SciTech Connect

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A.

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  2. Ultrasonic spray evaporative air coolers. Final report

    SciTech Connect

    Not Available

    1982-04-01

    Theoretical and experimental studies on the development of an energy-efficient evaporative air cooling device employing ultrasonic spray nozzles is discussed. The following works were performed during the project period: (1) Feasibility study of a breadboard model of the evaporative cooler, (2) design of a prototype cooling unit for laboratory and field studies, and (3) preliminary survey of potential applications.

  3. Representational Issues in Students Learning about Evaporation

    ERIC Educational Resources Information Center

    Tytler, Russell; Prain, Vaughan; Peterson, Suzanne

    2007-01-01

    This study draws on recent research on the central role of representation in learning. While there has been considerable research on students' understanding of evaporation, the representational issues entailed in this understanding have not been investigated in depth. The study explored students' engagement with evaporation phenomena through…

  4. 242-A evaporator vacuum condenser system

    SciTech Connect

    Smith, V.A.

    1994-09-28

    This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation.

  5. 2H NMR studies of glycerol dynamics in protein matrices.

    PubMed

    Herbers, C R; Sauer, D; Vogel, M

    2012-03-28

    We use (2)H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids. PMID:22462878

  6. 2H NMR studies of glycerol dynamics in protein matrices

    NASA Astrophysics Data System (ADS)

    Herbers, C. R.; Sauer, D.; Vogel, M.

    2012-03-01

    We use 2H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  7. Full-dimensional quantum dynamics study of the H2 + C2H → H + C2H2 reaction on an ab initio potential energy surface.

    PubMed

    Chen, Liuyang; Shao, Kejie; Chen, Jun; Yang, Minghui; Zhang, Dong H

    2016-05-21

    This work performs a time-dependent wavepacket study of the H2 + C2H → H + C2H2 reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H2 + C2H↔H + C2H2, H + C2H2 → HCCH2, and HCCH2 radial isomerization reaction regions. The reaction dynamics of H2 + C2H → H + C2H2 are investigated using full-dimensional quantum dynamics method. The initial-state selected reaction probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H2 vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C2H slightly inhibits the reaction. The excitations of two stretching modes of C2H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values.

  8. Ion-neutral reaction of the C2H2N+ cation with C2H2: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Fathi, P.; Geppert, W. D.; Kaiser, A.; Ascenzi, D.

    2016-03-01

    The ion-neutral reactions of the C2H2N+ cation with C2H2 have been investigated using a Guided Ion Beam Mass Spectrometer (GIB-MS). The following ionic products were observed: CH3+, C2H2+, C2H3+, HNC+ /HCN+ , HCNH+, C3H+ , C2N+ , C3H3+, HCCN+ and C4H2N+ . Theoretical calculations have been carried out to propose reaction pathways leading to the observed products. These processes are of relevance for the generation of long chain nitrogen-containing species and they may be of interest for the chemistry of Titan's ionosphere or circumstellar envelopes.

  9. Theoretical study of the C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    The successive C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O (ketene) are determined using large-basis sets and a high level of correlation treatment. For CH4, C2H2, and C2H4 the computed values are in excellent agreement with experiment. Using these results, the values 107.9 + or - 2.0 and 96.7 + or - 2.0 kcal/mol are recommended for the C-H bond dissociation energies of H2C2O and HC2O, respectively.

  10. Controlling water evaporation through self-assembly.

    PubMed

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation. PMID:27573848

  11. Water evaporation in silica colloidal deposits.

    PubMed

    Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier

    2013-10-15

    The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits.

  12. Controlling water evaporation through self-assembly.

    PubMed

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  13. Synthesis and characterization of visible-active molybdenum disulfide (2H-MoS{sub 2}) nanospheres

    SciTech Connect

    Cheah, A. J. Chiu, W. S.; Khiew, P. S.; Radiman, S. Hamid, M. A. A.

    2015-07-22

    In current study, a novel 2H-MoS{sub 2} nanospheres were successfully synthesized and underwent structural- as well as optical-property characterizations. The MoS{sub 2} were prepared by one pot hydrothermal approach through adopting L-cysteine as environmentally-benignchalcogenide precursor. TEM image shows that the as-synthesized MoS{sub 2} appear to be spherical in shape with size distribution in the range of 120 nm – 180 nm. HRTEM lattice-fringes imaging further elucidate that the interlayer spacing at the edges is equal to be 0.62 nm that correspond to (002) plane stacking. Also, the HRTEM image clearly-illustrate that the internal microstructure of MoS{sub 2} composed of randomly-arrayed alternating layers, which render the postulation that the formation of nanosphere is driven by self-assembly of individual layers into globular morphology. XRD diffractogram that appear to be broad and unresolved reveal the partially crystalline nature of the sample. Optical-absorption spectra depicts the sample is visible active with featureless absorption, which can attribute to indirect transition of the excitions generated. By using Tauc plot, the bandgap energy is determined to be 1.75 eV, which reflect the nanospheres are indeed visible-active nanostructures.

  14. Quantifying nonisothermal subsurface soil water evaporation

    NASA Astrophysics Data System (ADS)

    Deol, Pukhraj; Heitman, Josh; Amoozegar, Aziz; Ren, Tusheng; Horton, Robert

    2012-11-01

    Accurate quantification of energy and mass transfer during soil water evaporation is critical for improving understanding of the hydrologic cycle and for many environmental, agricultural, and engineering applications. Drying of soil under radiation boundary conditions results in formation of a dry surface layer (DSL), which is accompanied by a shift in the position of the latent heat sink from the surface to the subsurface. Detailed investigation of evaporative dynamics within this active near-surface zone has mostly been limited to modeling, with few measurements available to test models. Soil column studies were conducted to quantify nonisothermal subsurface evaporation profiles using a sensible heat balance (SHB) approach. Eleven-needle heat pulse probes were used to measure soil temperature and thermal property distributions at the millimeter scale in the near-surface soil. Depth-integrated SHB evaporation rates were compared with mass balance evaporation estimates under controlled laboratory conditions. The results show that the SHB method effectively measured total subsurface evaporation rates with only 0.01-0.03 mm h-1difference from mass balance estimates. The SHB approach also quantified millimeter-scale nonisothermal subsurface evaporation profiles over a drying event, which has not been previously possible. Thickness of the DSL was also examined using measured soil thermal conductivity distributions near the drying surface. Estimates of the DSL thickness were consistent with observed evaporation profile distributions from SHB. Estimated thickness of the DSL was further used to compute diffusive vapor flux. The diffusive vapor flux also closely matched both mass balance evaporation rates and subsurface evaporation rates estimated from SHB.

  15. Computations of turbulent evaporating sprays

    NASA Technical Reports Server (NTRS)

    Aggarwal, S. K.; Chitre, S.

    1989-01-01

    A computational study of turbulent evaporating sprays is reported. The major focus is to examine the sensitivity of the vaporization behavior of turbulent sprays to the transient liquid-phase processes. Three models considered to represent these processes are the thin skin, infinite diffusion, and diffusion limit models. Favre-averaged equations with k-epsilon-g turbulence model are employed for the gas phase. The Lagrangian approach with a stochastic separated flow method is used for the liquid phase where the effects of gas turbulence on droplet trajectories and interphase transport rates are considered using random-walk computations. Also the variable-property effects are considered in detail. Results indicate that, depending upon the boiling temperature and heat of vaporization of the fuel considered, the vaporization behavior of turbulent sprays may be quite sensitive to the modeling of transient liquid-phase processes. Thus, it is important that for most hydrocarbon fuels these processes be adequately represented in any comprehensive spray computations. The present results also provide further support to the conclusions of earlier studies which have been based on simplified spray configurations.

  16. Isolation of Legionella longbeachae serogroup 1 from potting mixes.

    PubMed

    Steele, T W; Lanser, J; Sangster, N

    1990-01-01

    Following a statewide outbreak of legionellosis due to Legionella longbeachae serogroup 1 in South Australia in 1988 and 1989, studies were performed to find a source of the organism. A number of water and soil samples with and without acid decontamination were examined for L. longbeachae by using a selective medium containing vancomycin, aztreonam, and pimafucin. There were no isolations of L. longbeachae from water samples. Organisms resembling L. longbeachae were isolated from a number of samples of potting mixes and from soil surrounding plants in pots collected from the homes of four patients. The organisms were found to persist for 7 months in two potting mixes stored at room temperature. Legionellae were isolated with difficulty from potting mixes which were allowed to dry out. Identification of isolates as L. longbeachae serogroup 1 was confirmed by quantitative DNA hybridization and serological tests. Restriction-fragment-length-polymorphism studies showed minor differences between patient and environmental isolates but differentiated these readily from L. longbeachae serogroup 2 and other antigenically related legionellae. The isolation of L. longbeachae from some potting mixes and the prolonged survival of the organisms in this medium suggest that soil rather than water is the natural habitat of this species and may be the source of human infections.

  17. Isolation of Legionella longbeachae serogroup 1 from potting mixes.

    PubMed Central

    Steele, T W; Lanser, J; Sangster, N

    1990-01-01

    Following a statewide outbreak of legionellosis due to Legionella longbeachae serogroup 1 in South Australia in 1988 and 1989, studies were performed to find a source of the organism. A number of water and soil samples with and without acid decontamination were examined for L. longbeachae by using a selective medium containing vancomycin, aztreonam, and pimafucin. There were no isolations of L. longbeachae from water samples. Organisms resembling L. longbeachae were isolated from a number of samples of potting mixes and from soil surrounding plants in pots collected from the homes of four patients. The organisms were found to persist for 7 months in two potting mixes stored at room temperature. Legionellae were isolated with difficulty from potting mixes which were allowed to dry out. Identification of isolates as L. longbeachae serogroup 1 was confirmed by quantitative DNA hybridization and serological tests. Restriction-fragment-length-polymorphism studies showed minor differences between patient and environmental isolates but differentiated these readily from L. longbeachae serogroup 2 and other antigenically related legionellae. The isolation of L. longbeachae from some potting mixes and the prolonged survival of the organisms in this medium suggest that soil rather than water is the natural habitat of this species and may be the source of human infections. Images PMID:1968736

  18. 242-A evaporator safety analysis report

    SciTech Connect

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  19. Tank 26 Evaporator Feed Pump Transfer Analysis

    SciTech Connect

    Tamburello, David; Dimenna, Richard; Lee, Si

    2009-02-11

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.

  20. Water repellency diminishes peatland evaporation after wildfire

    NASA Astrophysics Data System (ADS)

    Kettridge, N.; Lukenbach, M.; Hokanson, K. J.; Devito, K. J.; Petrone, R. M.; Hopkinson, C.; Waddington, J. M.

    2015-12-01

    Peatlands are a critically important global carbon reserve. There is increasing concern that such ecosystems are vulnerable to projected increases in wildfire severity under a changing climate. Severe fires may exceed peatland ecological resilience resulting in the long term degradation of this carbon store. Evaporation provides the primary mechanisms of water loss from such environments and can regulate the ecological stress in the initial years after wildfire. We examine variations in evaporation within burned peatlands after wildfire through small scale chamber and large scale remote sensing measurements. We show that near-surface water repellency limits peatland evaporation in these initial years post fire. Water repellent peat produced by the fire restricts the supply of water to the surface, reducing evaporation and providing a strong negative feedback to disturbance. This previously unidentified feedback operates at the landscape scale. High surface temperatures that result from large reductions in evaporation within water repellent peat are observed across the 60,000 ha burn scar three months after the wildfire. This large scale reduction in evaporation promotes high water table positions at a landscape scale which limits the rate of peat decomposition and supports the post fire ecohydrological recovery of the peatlands. However, severe burns are shown to exceed this negative feedback response. Deep burns at the peatland margins remove the hydrophobic layer, increasing post fire evaporation and leaving the peatland vulnerable to drying and associated ecological shifts.

  1. Vapor compression evaporator concentrates, recovers alcohol

    SciTech Connect

    Miller, M.N.; Robe, K.; Bacchetti, J.A.

    1982-11-01

    This article focuses on presenting a solution to the high energy cost of operating a steam heated, single effect evaporator used by Monsanto Industrial Chemical Company at a plant in Seattle, Wash., to produce vanillin from pulp and paper mill sulfite. Use of the single effect flash evaporator resulted in high energy usage due not only to the ''single effect'' use of steam, but also because energy consumption was reduced only slightly at low operating rates. The solution to this problem was the replacement of the single effect evaporator with a vapor recompression evaporator. Operating for over 1 1/2 years, the vapor recompression evaporator system has had no significant maintenance problems. The system operates with only 1/60th the steam consumption and 15% of the total energy consumption of the previous evaporator and has had no tube fouling. Also, since the distillate is condensed within the evaporator, less cooling water is required, allowing two heat exchangers to be taken out of service. When operating at less than design capacity, the energy consumption drops almost linearly with the feed rate. At low feed rates, a by-pass valve unloads the compressor to reduce energy consumption. Total energy consumption, now 15% of the previous level, results in an estimated pay-back of less than three years.

  2. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3.

    PubMed

    Xie, Lijuan; Liu, Fudong; Ren, Limin; Shi, Xiaoyan; Xiao, Feng-Shou; He, Hong

    2014-01-01

    Cu-SSZ-13 samples prepared by a novel one-pot synthesis method achieved excellent NH3-SCR performance and high N2 selectivity from 150 to 550 °C after ion exchange treatments. The selected Cu3.8-SSZ-13 catalyst was highly resistant to large space velocity (800 000 h(-1)) and also maintained high NOx conversion in the presence of CO2, H2O, and C3H6 in the simulated diesel exhaust. Isolated Cu(2+) ions located in three different sites were responsible for its excellent NH3-SCR activity. Primary results suggest that the one-pot synthesized Cu-SSZ-13 catalyst is a promising candidate as an NH3-SCR catalyst for the NOx abatement from diesel vehicles.

  3. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3.

    PubMed

    Xie, Lijuan; Liu, Fudong; Ren, Limin; Shi, Xiaoyan; Xiao, Feng-Shou; He, Hong

    2014-01-01

    Cu-SSZ-13 samples prepared by a novel one-pot synthesis method achieved excellent NH3-SCR performance and high N2 selectivity from 150 to 550 °C after ion exchange treatments. The selected Cu3.8-SSZ-13 catalyst was highly resistant to large space velocity (800 000 h(-1)) and also maintained high NOx conversion in the presence of CO2, H2O, and C3H6 in the simulated diesel exhaust. Isolated Cu(2+) ions located in three different sites were responsible for its excellent NH3-SCR activity. Primary results suggest that the one-pot synthesized Cu-SSZ-13 catalyst is a promising candidate as an NH3-SCR catalyst for the NOx abatement from diesel vehicles. PMID:24295053

  4. Electron swarm parameters in pure C2H2 and in C2H2-Ar mixtures and electron collision cross sections for the C2H2 molecule

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoshiharu

    2010-09-01

    Electron swarm parameters (the drift velocity and the longitudinal diffusion coefficient) were measured in pure C2H2 and also in C2H2-Ar mixtures containing 0.517% and 5.06% acetylene over wide E/N ranges. These swarm parameters were analysed using a Boltzmann equation analysis and a set of electron collision cross sections for the C2H2 molecule was derived so that it was consistent with the present swarm data and published ionization coefficient. The present result suggested the presence of a Ramsauer-Townsend minimum in the elastic momentum transfer cross section at 0.08 eV and prominent threshold and resonance peaks in the ν4/ν5 vibrational excitation cross section. The present cross section set was also confirmed to be consistent with the published experimental total cross section of C2H2.

  5. A Pot-Economical Approach to the Total Synthesis of Sch-725674.

    PubMed

    Bodugam, Mahipal; Javed, Salim; Ganguly, Arghya; Torres, Jessica; Hanson, Paul R

    2016-02-01

    A pot-economical total synthesis of antifungal Sch-725674, 1, is reported. The approach takes advantage of a number of one-pot, sequential transformations, including a phosphate tether-mediated one-pot, sequential RCM/CM/chemoselective hydrogenation protocol, a one-pot tosylation/acrylation sequence, and a one-pot, sequential Finkelstein reaction/Boord olefination/acetonide deprotection procedure to streamline the synthesis route by reducing isolation and purification procedures, thus saving time. Overall, an asymmetric route has been developed that is efficiently accomplished in seven pots from phosphate (S,S)-triene and with minimal purification. PMID:26760683

  6. A Pot-Economical Approach to the Total Synthesis of Sch-725674.

    PubMed

    Bodugam, Mahipal; Javed, Salim; Ganguly, Arghya; Torres, Jessica; Hanson, Paul R

    2016-02-01

    A pot-economical total synthesis of antifungal Sch-725674, 1, is reported. The approach takes advantage of a number of one-pot, sequential transformations, including a phosphate tether-mediated one-pot, sequential RCM/CM/chemoselective hydrogenation protocol, a one-pot tosylation/acrylation sequence, and a one-pot, sequential Finkelstein reaction/Boord olefination/acetonide deprotection procedure to streamline the synthesis route by reducing isolation and purification procedures, thus saving time. Overall, an asymmetric route has been developed that is efficiently accomplished in seven pots from phosphate (S,S)-triene and with minimal purification.

  7. Castration of the Vietnamese pot-bellied boar: 8 cases.

    PubMed

    Østevik, Liv; Elmas, Colette; Rubio-Martinez, Luis M

    2012-09-01

    Surgical techniques for castration of the Vietnamese pot-bellied boar and outcome are described. Vietnamese pot-bellied pig (VPBP) boars (n = 8) were admitted for castration. Data retrieved from medical records (2002-2011) for these pigs included signalment, history, reason for castration, perioperative management, surgical technique, and complications. Follow-up information was obtained from owners. A scrotal approach with closed technique was used for 6 boars with normally descended testes. A scrotal approach and open technique was used in 1 inguinal cryptorchid boar. In a hemicastrated abdominal cryptorchid boar an ipsilateral parainguinal approach was used. No complications occurred. Castration of the Vietnamese pot-bellied boar is associated with minimal complications and a satisfactory cosmetic outcome. We recommend the routine closure of the external inguinal rings, a simple and fast procedure that may prevent post-castration inguinal herniation. PMID:23450857

  8. Are hot Neptunes partially evaporated hot Jupiters?

    NASA Astrophysics Data System (ADS)

    Boué, G.; Figueira, P.; Correia, A. C. M.; Santos, N. C.

    2011-10-01

    The detection of short period planets (hot Jupiters and their lower mass counterparts, hot Neptunes and super-Earths) still defies the models of planet formation and evolution. Several possibilities have been proposed to explain the nature and formation process of the lower mass population, including in situ formation, disk migration, planet-planet scattering and kozai evolution, and the evaporation of a higher mass hot Jupiter. Using dynamical models and the best estimates for evaporation velocities, we show that under reasonable (and observed) physical conditions, hot Jupiter evaporation may explain the observed population of hot Neptunes/super-Earths.

  9. Are Hot Neptunes Partialy Evaporated Hot Jupiters?

    NASA Astrophysics Data System (ADS)

    Santos, Nuno; Boue, G.; Figueira, P.; Correia, A.

    2011-09-01

    The detection of short period planets (hot Jupiters and their lower mass counterparts, hot neptunes and super-earths) still defies the models of planet formation and evolution. Several possibilities have been proposed to explain the nature and formation process of the lower mass population, including in situ formation, disk migration, planet-planet scattering and kozai evolution, and the evaporation of a higher mass hot Jupiter. Using dynamical models and the best estimates for evaporation velocities, we show that under reasonable (and observed) physical conditions, hot Jupiter evaporation can explain the observed population of hot Neptunes/super-Earths.

  10. On the evaporation of ammonium sulfate solution

    SciTech Connect

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  11. On the evaporation of ammonium sulfate solution.

    PubMed

    Drisdell, Walter S; Saykally, Richard J; Cohen, Ronald C

    2009-11-10

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 +/- 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly. PMID:19861551

  12. Combined effects of underlying substrate and evaporative cooling on the evaporation of sessile liquid droplets.

    PubMed

    Wang, Yilin; Ma, Liran; Xu, Xuefeng; Luo, Jianbin

    2015-07-28

    The evaporation of pinned, sessile droplets resting on finite thickness substrates was investigated numerically by extending the combined field approach to include the thermal properties of the substrate. By this approach, the combined effects of the underlying substrate and the evaporative cooling were characterized. The results show that the influence of the substrate on the droplet evaporation depends largely on the strength of the evaporative cooling. When the evaporative cooling is weak, the influence of substrate is also weak. As the strength of evaporative cooling increases, the influence of the substrate becomes more and more pronounced. Further analyses indicated that it is the cooling at the droplet surface and the temperature dependence of the saturation vapor concentration that relate the droplet evaporation to the underlying substrate. This indicates that the evaporative cooling number, Ec, can be used to identify the influence of the substrate on the droplet evaporation. The theoretical predictions by the present model are compared and found to be in good agreement with the experimental measurements. The present work may contribute to the body of knowledge concerning droplet evaporation and may have applications in a wide range of industrial and scientific processes.

  13. A method for reducing encapsulation stress to ferrite pot cores

    SciTech Connect

    Sanchez, R.O.

    1994-08-01

    This paper describes a method of reducing the mechanical stress caused when a ferrite pot core is encapsulated in a rigid epoxy. the stresses are due to the differences of coefficient of thermal expansion between the two materials. A stress relief medium, phenolic micro-balloon-filled, syntactic polysulfide, is molded into the shape of the pot core. The molded polysulfide is bonded to the core prior to encapsulation. The new package design has made a significant difference in the ability to survive temperature cycles.

  14. Experimental Investigation of Evaporation Behavior of Polonium and Rare-Earth Elements in Lead-Bismuth Eutectic Pool

    SciTech Connect

    Shuji Ohno; Shinya Miyahara; Yuji Kurata; Ryoei Katsura; Shigeru Yoshida

    2006-07-01

    Equilibrium evaporation behavior was experimentally investigated for polonium ({sup 210}Po) in liquid lead-bismuth eutectic (LBE) and for rare-earth elements gadolinium (Gd) and europium (Eu) in LBE to understand and clarify the transfer behavior of toxic impurities from LBE coolant to a gas phase. The experiments utilized the 'transpiration method' in which saturated vapor in an isothermal evaporation pot was transported by inert carrier gas and collected outside of the pot. While the previous paper ICONE12-49111 has already reported the evaporation behavior of LBE and of tellurium in LBE, this paper summarizes the outlines and the results of experiments for important impurity materials {sup 210}Po and rare-earth elements which are accumulated in liquid LBE as activation products and spallation products. In the experiments for rare-earth elements, non-radioactive isotope was used. The LBE pool is about 330-670 g in weight and has a surface area of 4 cm x 14 cm. {sup 210}Po experiments were carried out with a smaller test apparatus and radioactive {sup 210}Po produced through neutron irradiation of LBE in the Japan Materials Testing Reactor (JMTR). We obtained fundamental and instructive evaporation data such as vapor concentration, partial vapor pressure of {sup 210}Po in the gas phase, and gas-liquid equilibrium partition coefficients of the impurities in LBE under the temperature condition between 450 and 750 deg. C. The {sup 210}Po test revealed that Po had characteristics to be retained in LBE but was still more volatile than LBE solvent. A part of Eu tests implied high volatility of rare-earth elements comparable to that of Po. This tendency is possibly related to the local enrichment of the solute near the pool surface and needs to be investigated more. These results are useful and indispensable for the evaluation of radioactive materials transfer to the gas phase in LBE-cooled nuclear systems. (authors)

  15. Cell-free conversion of 1 prime -deoxy- sup 2 H-ABA to sup 2 H-ABA in extracts from Cercospora rosicola

    SciTech Connect

    Al-Nimri, L.; Coolbaugh, R.C. )

    1990-05-01

    The characteristics of the enzyme converting 1{prime}-deoxy-ABA into ABA have been studied in the fungus C. rosicola. Enzyme extracts were prepared from cold-pressed mycelia of C. rosicola. The suspension was a high speed supernatant and a microsomal fraction. A cell-free system was developed to convert 1{prime}-deoxy-{sup 2}H-ABA into {sup 2}H-ABA using a reaction mixture containing 300 {mu}l enzyme extract, 10 {mu}m 1{prime}-deoxy-{sup 2}H-ABA. The reaction products were chromatographed by reverse phase HPLC. The presumptive ABA fractions were collected and {sup 2}H-ABA was quantified by GC-MS using a {sup 2}H-(2Z, 4E)-ABA standard curve. 1{prime}-deoxy-{sup 2}H-ABA was converted to an average of 1.47 pmole {sup 2}H-ABA/mg protein per min. Most of the enzymic activity was found in the microsomal fraction. The reaction required NADPH and was enhanced by FAD. The reaction was not inhibited by triarimol.

  16. Evaporation analysis for Tank SX-104

    SciTech Connect

    Barrington, C.A.

    1994-10-01

    Decreases in historical interstitial liquid level measurements in tank SX-104 were compared to predictions of a numerical model based upon diffusion of water through a porous crust. The analysis showed that observed level decreases could be explained by evaporation.

  17. Lattice-Boltzmann simulations of droplet evaporation.

    PubMed

    Ledesma-Aguilar, Rodrigo; Vella, Dominic; Yeomans, Julia M

    2014-11-01

    We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. PMID:25186667

  18. Potential Evaporation in North America Through 2100

    NASA Video Gallery

    This animation shows the projected increase in potential evaporation through the year 2100, relative to 1980, based on the combined results of multiple climate models. The maximum increase across N...

  19. Effects of nanoparticles on nanofluid droplet evaporation

    SciTech Connect

    Chen, Ruey-Hung; Phuoc, Tran X.; Martello, Donald

    2010-09-01

    Laponite, Fe2O3 and Ag nanoparticles were added to deionized water to study their effect of evaporation rates. The results show that these nanofluid droplets evaporate at different rates (as indicated by the evaporation rate constant K in the well known D2-law) from the base fluid. Different particles lead to different values of K. As the particle concentration increases due to evaporation. K values of various Ag and Fe2O3 nanofluids go through a transition from one value to another, further demonstrating the effect of increasing nanoparticle concentration. The implication for the heat of vaporization (hfg) is discussed.

  20. New Directions for Evaporative Cooling Systems.

    ERIC Educational Resources Information Center

    Robison, Rita

    1981-01-01

    New energy saving technology can be applied to older cooling towers; in addition, evaporative chilling, a process that links a cooling tower to the chilling equipment, can reduce energy use by 80 percent. (Author/MLF)

  1. High-Capacity Heat-Pipe Evaporator

    NASA Technical Reports Server (NTRS)

    Oren, J. A.; Duschatko, R. J.; Voss, F. E.; Sauer, L. W.

    1989-01-01

    Heat pipe with cylindrical heat-input surface has higher contact thermal conductance than one with usual flat surface. Cylindrical heat absorber promotes nearly uniform flow of heat into pipe at all places around periphery of pipe, helps eliminate hotspots on heat source. Lugs in aluminum pipe carry heat from outer surface to liquid oozing from capillaries of wick. Liquid absorbs heat, evaporates, and passes out of evaporator through interlug passages.

  2. IMPACT OF EVAPORATION ON AQUEOUS TEAR LOSS

    PubMed Central

    McCulley, James P.; Uchiyama, Eduardo; Aronowicz, Joel D.; Butovich, Igor A.

    2006-01-01

    Purpose To determine the impact of evaporation on preocular aqueous tear (AT) loss in normal subjects (controls) and patients with keratoconjunctivitis sicca (KCS). Methods Eighteen patients (32 eyes) with KCS with or without associated meibomian gland dysfunction (MGD) and 11 sex-matched controls had AT evaporation determined between relative humidity (RH) of 20% and 45% using an evaporometer. AT volume, flow, and turnover were determined with a fluorophotometer. Results Evaporative rates increased significantly when the RH was changed from 40%–45% to 20%–25% (P < .001). This change was similar in all groups and on average accounted for a 99.43% increase. There were no statistically significant differences in evaporative rate between controls, the KCS alone group, and the KCS/MGD group. Dry eye patients exhibited a decreased tear turnover when compared to controls. Evaporative contribution to tear loss at 40%–45% RH was 23.47% for controls, 30.99% for “classic” KCS patients, and 25.44% for KCS/MGD patients. At 20%–25% RH, the evaporative contribution was 41.66% for controls, 57.67% for classic KCS patients, and 50.28% for KCS/MGD patients. Conclusions RH significantly impacts evaporation regardless of the presence of dry eye disease and probably accounts for the increased dry eye symptoms in people (controls and dry eye patients) in conditions of low RH (eg, deserts, airplane cabins, cold dry seasons). Contribution of evaporation to tear loss tends to be higher than previously described. The percent contribution is dependent on environmental conditions such as RH. There was a trend toward increased contribution to AT loss in dry eye patients vs controls, but statistical significance was not reached. PMID:17471332

  3. Waste Feed Evaporation Physical Properties Modeling

    SciTech Connect

    Daniel, W.E.

    2003-08-25

    This document describes the waste feed evaporator modeling work done in the Waste Feed Evaporation and Physical Properties Modeling test specification and in support of the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) project. A private database (ZEOLITE) was developed and used in this work in order to include the behavior of aluminosilicates such a NAS-gel in the OLI/ESP simulations, in addition to the development of the mathematical models. Mathematical models were developed that describe certain physical properties in the Hanford RPP-WTP waste feed evaporator process (FEP). In particular, models were developed for the feed stream to the first ultra-filtration step characterizing its heat capacity, thermal conductivity, and viscosity, as well as the density of the evaporator contents. The scope of the task was expanded to include the volume reduction factor across the waste feed evaporator (total evaporator feed volume/evaporator bottoms volume). All the physical properties were modeled as functions of the waste feed composition, temperature, and the high level waste recycle volumetric flow rate relative to that of the waste feed. The goal for the mathematical models was to predict the physical property to predicted simulation value. The simulation model approximating the FEP process used to develop the correlations was relatively complex, and not possible to duplicate within the scope of the bench scale evaporation experiments. Therefore, simulants were made of 13 design points (a subset of the points used in the model fits) using the compositions of the ultra-filtration feed streams as predicted by the simulation model. The chemistry and physical properties of the supernate (the modeled stream) as predicted by the simulation were compared with the analytical results of experimental simulant work as a method of validating the simulation software.

  4. Modeling Evaporation of Drops of Different Kerosenes

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2007-01-01

    A mathematical model describes the evaporation of drops of a hydrocarbon liquid composed of as many as hundreds of chemical species. The model is intended especially for application to any of several types of kerosenes commonly used as fuels. The concept of continuous thermodynamics, according to which the chemical composition of the evaporating multicomponent liquid is described by use of a probability distribution function (PDF). However, the present model is more generally applicable than is its immediate predecessor.

  5. Environmental, trophic, and ecological factors influencing bone collagen δ2H

    NASA Astrophysics Data System (ADS)

    Topalov, Katarina; Schimmelmann, Arndt; David Polly, P.; Sauer, Peter E.; Lowry, Mark

    2013-06-01

    Organic deuterium/hydrogen stable isotope ratios (i.e., 2H/1H, expressed as δ2H value in ‰) in animal tissues are related to the 2H/1H in diet and ingested water. Bone collagen preserves the biochemical 2H/1H isotopic signal in the δ2H value of collagen's non-exchangeable hydrogen. Therefore, δ2H preserved in bone collagen has the potential to constrain environmental and trophic conditions, which is of interest to researchers studying of both living and fossil vertebrates. Our data examine the relationship of δ2H values of collagen with geographic variation in δ2H of meteoric waters, with local variations in the ecology and trophic level of species, and with the transition from mother's milk to adult diet. Based on 97 individuals from 22 marine and terrestrial vertebrates (predominately mammals), we found the relationships of collagen δ2H to both geographic variation in meteoric water δ2H (R2 = 0.55) and to δ15N in bone collagen (R2 = 0.17) statistically significant but weaker than previously reported. The second strongest control on collagen δ2H in our data is dietary, with nearly 50 percent of the variance in δ2H explained by trophic level (R2 = 0.47). Trophic level effects potentially confound the local meteoric signal if not held constant: herbivores tend to have the lowest δ2H values, omnivores have intermediate ones, and carnivores have the highest values. Body size (most likely related to mass-specific metabolic rates) has a strong influence on collagen δ2H (R2 = 0.30), by causing greater sensitivity in smaller animals to seasonal climate variations and/or high evapotranspiration leading to 2H-enrichment in tissues. In marine mammals weaning produces a dramatic effect on collagen δ2H with adult values being universally higher than pup values (R2 = 0.79). Interestingly, the shift in δ15N at weaning is downward, even though normally hydrogen and nitrogen isotope ratios are positively correlated with one another in respect to trophic level. Our

  6. Sheet Membrane Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  7. Droplet evaporation on a soluble substrate

    NASA Astrophysics Data System (ADS)

    Mailleur, Alexandra; Pirat, Christophe; Colombani, Jean; CNES Collaboration

    2015-11-01

    Stains left by evaporated droplets are ubiquitous in everyday life as well as in industrial processes. Whatever the composition of the evaporating liquid (colloidal suspensions, biological fluids...), the stains are mostly constituted by a deposit at the periphery of the dried drop, similar to a coffee stain (Deegan, 1997). All these studies have been carried with non-reacting solids. In this presentation, we focus on the behavior of a pure-water droplet evaporating on a soluble substrate which is more complex, since three phenomena are strongly interacting: the dissolution of the substrate, the diffusion/convection of the dissolved species into the drop and the evaporation of the liquid. NaCl and KCl single crystals have been chosen for this experimental study as they are fast-dissolving solids. We have observed that the dissolution induces a pinning of the triple line from the beginning of the evaporation, leading to a decrease of the contact angle in time. At the end of the evaporation, a peripheral deposit is always formed, proof of an outward flow inside the drop (coffee-ring effect). The authors would like to thank the CNES for the financial support.

  8. Evaporation-induced cavitation in nanofluidic channels

    PubMed Central

    Duan, Chuanhua; Karnik, Rohit; Lu, Ming-Chang; Majumdar, Arun

    2012-01-01

    Cavitation, known as the formation of vapor bubbles when liquids are under tension, is of great interest both in condensed matter science as well as in diverse applications such as botany, hydraulic engineering, and medicine. Although widely studied in bulk and microscale-confined liquids, cavitation in the nanoscale is generally believed to be energetically unfavorable and has never been experimentally demonstrated. Here we report evaporation-induced cavitation in water-filled hydrophilic nanochannels under enormous negative pressures up to -7 MPa. As opposed to receding menisci observed in microchannel evaporation, the menisci in nanochannels are pinned at the entrance while vapor bubbles form and expand inside. Evaporation in the channels is found to be aided by advective liquid transport, which leads to an evaporation rate that is an order of magnitude higher than that governed by Fickian vapor diffusion in macro- and microscale evaporation. The vapor bubbles also exhibit unusual motion as well as translational stability and symmetry, which occur because of a balance between two competing mass fluxes driven by thermocapillarity and evaporation. Our studies expand our understanding of cavitation and provide new insights for phase-change phenomena at the nanoscale. PMID:22343530

  9. TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect

    Tamburello, D; Si Lee, S; Richard Dimenna, R

    2008-09-30

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth.

  10. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2009-01-27

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tank toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.

  11. Acoustic Signature of Evaporation from Porous Media

    NASA Astrophysics Data System (ADS)

    Grapsas, N. K.; Shokri, N.

    2012-12-01

    During evaporation from saturated porous media, rapid interfacial jumps at the pore scale, known as Haines jumps, occur as air invades the pore network and displaces the evaporating fluid. This process produces crackling noises that can be detected using an acoustic emission (AE) machine. In this study, we investigated the acoustic signature of evaporation from porous media using Hele-Shaw cells packed with seven types of sand and glass beads differing in particle size distribution and surface roughness. Each sample was saturated with dyed water, left to evaporate under constant atmospheric conditions on a digital balance in an environmental chamber, and digitally imaged every 20 minutes to quantify phase distribution. An AE sensor was fixed to each column to record the features of observed AE events (hits) such as amplitude, absolute energy, and duration. Results indicate that the cumulative number of hits is strongly related to evaporative mass loss through time in all configurations. Additionally, the cumulative number of hits shares an inverse relationship with particle size and roughness. Finally, image analysis of the liquid phase distribution during evaporation reveals a strong correlation between the area invaded by air and the cumulative AE hits detected in each column. This confirms that AEs are generated by receding liquid menisci and the propagation of drying fronts in porous media. These results suggest that AE techniques may potentially be used to non-invasively analyze the drying of porous media.

  12. Estimating soil water evaporation using radar measurements

    NASA Technical Reports Server (NTRS)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

    1988-01-01

    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  13. Water repellency diminishes peatland evaporation after wildfire

    NASA Astrophysics Data System (ADS)

    Kettridge, Nick; Lukenbach, Max; Hokanson, Kelly; Devito, Kevin; Hopkinson, Chris; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2016-04-01

    Peatlands are a critically important global carbon reserve. There is increasing concern that such ecosystems are vulnerable to projected increases in wildfire severity under a changing climate. Severe fires may exceed peatland ecological resilience resulting in the long term degradation of this carbon store. Evaporation provides the primary mechanisms of water loss from such environments and can regulate the ecological stress in the initial years after wildfire. We examine variations in evaporation within burned peatlands after wildfire through small scale chamber and large scale remote sensing measurements. We show that near-surface water repellency limits peatland evaporation in these initial years post fire. Water repellent peat produced by the fire restricts the supply of water to the surface, reducing evaporation and providing a strong negative feedback to disturbance. This previously unidentified feedback operates at the landscape scale. High surface temperatures that result from large reductions in evaporation within water repellent peat are observed across the 60,000 ha burn scar three months after the wildfire. This promotes high water table positions at a landscape scale which limit the rate of peat decomposition and supports the post fire ecohydrological recovery of the peatlands. However, severe burns are shown to exceed this negative feedback response. Deep burns at the peatland margins remove the hydrophobic layer, increasing post fire evaporation and leaving the peatland vulnerable to drying and associated ecological shifts.

  14. Evaporation mitigation by floating modular devices

    NASA Astrophysics Data System (ADS)

    Hassan, M. M.; Peirson, W. L.

    2016-05-01

    Prolonged periods of drought and consequent evaporation from open water bodies in arid parts of Australia continue to be a threat to water availability for agricultural production. Over many parts of Australia, the annual average evaporation exceeds the annual precipitation by more than 5 times. Given its significance, it is surprising that no evaporation mitigation technique has gained widespread adoption to date. High capital and maintenance costs of manufactured products are a significant barrier to implementation. The use of directly recycled clean plastic containers as floating modular devices to mitigate evaporation has been investigated for the first time. A six-month trial at an arid zone site in Australia of this potential cost effective solution has been undertaken. The experiment was performed using clean conventional drinking water bottles as floating modules on the open water surface of 240-L tanks with three varying degrees of covering (nil, 34% and 68%). A systematic reduction in evaporation is demonstrated during the whole study period that is approximately linearly proportional to the covered surface. These results provide a potential foundation for robust evaporation mitigation with the prospect of implementing a cost-optimal design.

  15. Evaporation Heat Transfer of Ammonia and Pressure Drop of Warm Water for Plate Type Evaporator

    NASA Astrophysics Data System (ADS)

    Kushibe, Mitsuteru; Lkegami, Yasuyuki; Monde, Masanori; Uehara, Haruo

    The performance test of three types of plate type evaporators for spring thermal energy conversion and ocean thermal energy conversion carried out. Ammonia is utilized as working fluid and warm water is utilized as heat source. An empirical correlation is proposed in order to predict the mean evaporation heat transfer coefficient of ammonia and heat transfer coefficient of warm water for plate type evaporators. The mean heat transfer coefficient and friction factor of warm water were compared with other researches.

  16. Probing the aromaticity of the [(HtAc)3(μ2-H)6], [(HtTh)3(μ2-H)6],+, and [(HtPa)3(μ2-H)6] clusters

    NASA Astrophysics Data System (ADS)

    Ramírez-Tagle, Rodrigo; Alvarado-Soto, Leonor; Arratia-Perez, Ramiro; Bast, Radovan; Alvarez-Thon, Luis

    2011-09-01

    In this study we report about the aromaticity of the prototypical [(HtAc)3(μ2-H)6], [(HtTh)3(μ2-H)6]+, and [(HtPa)3(μ2-H)6] clusters via two magnetic criteria: nucleus-independent chemical shifts (NICS) and the magnetically induced current density. All-electron density functional theory calculations were carried out using the two-component zeroth-order regular approach and the four-component Dirac-Coulomb Hamiltonian, including scalar and spin-orbit relativistic effects. Four-component current density maps and the integration of induced ring-current susceptibilities clearly show that the clusters [(HtAc)3(μ2-H)6] and [(HtTh)3(μ2-H)6]+ are non-aromatic whereas [(HtPa)3(μ2-H)6] is anti-aromatic. However, for the thorium cluster we find a discrepancy between the current density plots and the classification through the NICS index. Our results also demonstrate the increasing influence of f orbitals, on bonding and magnetic properties, with increasing atomic number in these clusters. We think that the enhanced electron mobility in [(HtPa)3(μ2-H)6] is due the significant 5f character of its valence shell. Also the participation of f orbitals in bonding is the reason why the protactinium cluster has the shortest bond lengths of the three clusters. This study provides another example showing that the magnetically induced current density approach can give more reliable results than the NICS index.

  17. Probing the aromaticity of the [(H(t)Ac)3(μ2-H)6], [(H(t)Th)3(μ2-H)6],(+), and [(H(t)Pa)3(μ2-H)6] clusters.

    PubMed

    Ramírez-Tagle, Rodrigo; Alvarado-Soto, Leonor; Arratia-Perez, Ramiro; Bast, Radovan; Alvarez-Thon, Luis

    2011-09-14

    In this study we report about the aromaticity of the prototypical [(H(t)Ac)(3)(μ(2)-H)(6)], [(H(t)Th)(3)(μ(2)-H)(6)](+), and [(H(t)Pa)(3)(μ(2)-H)(6)] clusters via two magnetic criteria: nucleus-independent chemical shifts (NICS) and the magnetically induced current density. All-electron density functional theory calculations were carried out using the two-component zeroth-order regular approach and the four-component Dirac-Coulomb Hamiltonian, including scalar and spin-orbit relativistic effects. Four-component current density maps and the integration of induced ring-current susceptibilities clearly show that the clusters [(H(t)Ac)(3)(μ(2)-H)(6)] and [(H(t)Th)(3)(μ(2)-H)(6)](+) are non-aromatic whereas [(H(t)Pa)(3)(μ(2)-H)(6)] is anti-aromatic. However, for the thorium cluster we find a discrepancy between the current density plots and the classification through the NICS index. Our results also demonstrate the increasing influence of f orbitals, on bonding and magnetic properties, with increasing atomic number in these clusters. We think that the enhanced electron mobility in [(H(t)Pa)(3)(μ(2)-H)(6)] is due the significant 5f character of its valence shell. Also the participation of f orbitals in bonding is the reason why the protactinium cluster has the shortest bond lengths of the three clusters. This study provides another example showing that the magnetically induced current density approach can give more reliable results than the NICS index.

  18. Probing the aromaticity of the [(H(t)Ac)3(μ2-H)6], [(H(t)Th)3(μ2-H)6],(+), and [(H(t)Pa)3(μ2-H)6] clusters.

    PubMed

    Ramírez-Tagle, Rodrigo; Alvarado-Soto, Leonor; Arratia-Perez, Ramiro; Bast, Radovan; Alvarez-Thon, Luis

    2011-09-14

    In this study we report about the aromaticity of the prototypical [(H(t)Ac)(3)(μ(2)-H)(6)], [(H(t)Th)(3)(μ(2)-H)(6)](+), and [(H(t)Pa)(3)(μ(2)-H)(6)] clusters via two magnetic criteria: nucleus-independent chemical shifts (NICS) and the magnetically induced current density. All-electron density functional theory calculations were carried out using the two-component zeroth-order regular approach and the four-component Dirac-Coulomb Hamiltonian, including scalar and spin-orbit relativistic effects. Four-component current density maps and the integration of induced ring-current susceptibilities clearly show that the clusters [(H(t)Ac)(3)(μ(2)-H)(6)] and [(H(t)Th)(3)(μ(2)-H)(6)](+) are non-aromatic whereas [(H(t)Pa)(3)(μ(2)-H)(6)] is anti-aromatic. However, for the thorium cluster we find a discrepancy between the current density plots and the classification through the NICS index. Our results also demonstrate the increasing influence of f orbitals, on bonding and magnetic properties, with increasing atomic number in these clusters. We think that the enhanced electron mobility in [(H(t)Pa)(3)(μ(2)-H)(6)] is due the significant 5f character of its valence shell. Also the participation of f orbitals in bonding is the reason why the protactinium cluster has the shortest bond lengths of the three clusters. This study provides another example showing that the magnetically induced current density approach can give more reliable results than the NICS index. PMID:21932909

  19. Effects of the local structure dependence of evaporation fields on field evaporation behavior

    SciTech Connect

    Yao, Lan; Marquis, Emmanuelle A.; Withrow, Travis; Restrepo, Oscar D.; Windl, Wolfgang

    2015-12-14

    Accurate three dimensional reconstructions of atomic positions and full quantification of the information contained in atom probe microscopy data rely on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe microscopy has only limited quantitative justification. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This model reproduces key features observed experimentally in terms of sequence of evaporation, evaporation maps, and depth resolution, and provides insights into the physical limit for spatial resolution.

  20. Stable isotope estimates of evaporation: inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments

    EPA Science Inventory

    Stable isotope ratios of water (delta18O and delta2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and isotope ratios integrate information about basic hydrologic processes such as evaporation as a percentage of inflow (E/I) and ...

  1. Hydrogen-deuterium exchange of diborane in superacid solution through diboranonium (B sub 2 H sub 7 sup + ) and diboranium (B sub 2 H sub 5 sup + ) ions

    SciTech Connect

    Olah, G.A.; Aniszfeld, R.; Surya Prakash, G.K.; Williams, R.E.; Lammertsma, K.; Guener, O.F.

    1988-11-09

    The slow proton/deuterium exchange of B{sub 2}H{sub 6} in the superacidic FSO{sub 3}D SbF{sub 5}/SO{sub 2}ClF medium at low temperature involving the corresponding isotopomeric diboranonium ions B{sub 2}H{sub 7}{sup +} is reported here. The structure of the B{sub 2}H{sub 7}{sup +} ion has also been probed by ab inito theoretical calculations. The H/D exchange is rationalized by the pathway that deuteriation occurs exclusively on an unbridged (terminal B-H) bond resulting in a B{sub 2}H{sub 6}D{sup +} ion which is expected to undergo polytopol (bond-to-bond) rearrangement scrambling all hydrogens and deuteriums followed by proton loss leading to the exchanged product. 18 references.

  2. Melting Pot Influences on Secondary English Curriculum Policy

    ERIC Educational Resources Information Center

    Skerrett, Allison

    2009-01-01

    This article explores how racial, cultural, and linguistic diversity are addressed in secondary English curriculum policy in Massachusetts, U.S.A. Data are analyzed through theories of the sociology of knowledge and the myth of the United States melting pot. Analysis revealed that curriculum policy privileged Eurocentric literature and the English…

  3. Multicultural Education in Cyprus: A Pot of Multicultural Assimilation?

    ERIC Educational Resources Information Center

    Angelides, Panayiotis; Stylianou, Tasoula; Leigh, James

    2004-01-01

    In this paper, we attempt to answer the question: "is the Cypriot educational system a melting pot of every alien civilization and a kettle of cultural assimilation that perpetuates biases, cliches, racist behaviours and cultivates the idea that the different have no place among us?" We closely examine the case of a girl from Iran in a Cypriot…

  4. Breaking Monotony: A Reflective Study of Teaching Decorative Pot Making

    ERIC Educational Resources Information Center

    Nortey, Samuel; Okai, Frederick E.; Bodjawah, Edwin K.

    2013-01-01

    In art, the idea of pots being circular and cylindrical is an intuitive proposition that defines why potters have, up to the present, made wonderful decorations in the round. It is believed that potters do not want to subvert or break away from their tradition, perhaps because the art started as family craft. In this study, the authors describe…

  5. Analysis of the January 2006 Pepper-Pot Experiments

    SciTech Connect

    Westenskow, G; Chambers, F; Bieniosek, F; Henestroza, E

    2006-03-22

    Between January 9-12, 2006 a series of experiments were performed on the DARHT-II injector to measure the beam's emittance. Part of these experiments were pepper-pot measurements. This note describes the analysis of the data, and our conclusions from the experiments.

  6. Some Unsettling Thoughts about Settling in with Pot.

    ERIC Educational Resources Information Center

    Hawley, Richard A.

    1978-01-01

    Popular culture now considers marijuana harmless, but research shows it has definite physiological and neurological effects, effacing memory and attention and producing cell damage and learning deficits. Young people turn to pot to escape the emotional pressures of adolescence. Parents and schools can help adolescents by setting firm prohibitions.…

  7. 50 CFR 622.40 - Limitations on traps and pots.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF, AND SOUTH ATLANTIC Management Measures § 622.40 Limitations on traps and pots. (a) Tending—(1) Caribbean EEZ. A fish trap or Caribbean spiny lobster trap in the Caribbean EEZ may be pulled or tended only by a person (other than...

  8. 50 CFR 622.40 - Limitations on traps and pots.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF, AND SOUTH ATLANTIC Management Measures § 622.40 Limitations on traps and pots. (a) Tending—(1) Caribbean EEZ. A fish trap or Caribbean spiny lobster trap in the Caribbean EEZ may be pulled or tended only by a person (other than...

  9. 50 CFR 622.40 - Limitations on traps and pots.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF, AND SOUTH ATLANTIC Management Measures § 622.40 Limitations on traps and pots. (a) Tending—(1) Caribbean EEZ. A fish trap or Caribbean spiny lobster trap in the Caribbean EEZ may be pulled or tended only by a person (other than...

  10. Interior of main shucking room. The castiron pot belly stove ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of main shucking room. The cast-iron pot belly stove at center heated the room. Note the concrete tables and shucking stands lining the walls. - J.C. Lore Oyster House, 14430 Solomons Island Road, Solomons, Calvert County, MD

  11. Our Educational Melting Pot: Have We Reached the Boiling Point?

    ERIC Educational Resources Information Center

    Lauderdale, Katherine Lynn, Ed.; Bonilla, Carlos A., Ed.

    The articles and excerpts in this collection illustrate the complexity of the melting pot concept. Multiculturalism has become a watchword in American life and education, but it may be that in trying to atone for past transgressions educators and others are simply going too far. These essays illustrate some of the problems of a multicultural…

  12. The role of isovalency in the reactions of the cyano (CN), boron monoxide (BO), silicon nitride (SiN), and ethynyl (C2H) radicals with unsaturated hydrocarbons acetylene (C2H2) and ethylene (C2H4).

    PubMed

    Parker, D S N; Mebel, A M; Kaiser, R I

    2014-04-21

    The classification of chemical reactions based on shared characteristics is at the heart of the chemical sciences, and is well exemplified by Langmuir's concept of isovalency, in which 'two molecular entities with the same number of valence electrons have similar chemistries'. Within this account we further investigate the ramifications of the isovalency of four radicals with the same X(2)Σ(+) electronic structure - cyano (CN), boron monoxide (BO), silicon nitride (SiN), and ethynyl (C2H), and their reactions with simple prototype hydrocarbons acetylene (C2H2) and ethylene (C2H4). The fact that these four reactants own the same X(2)Σ(+) electronic ground state should dictate the outcome of their reactions with prototypical hydrocarbons holding a carbon-carbon triple and double bond. However, we find that other factors come into play, namely, atomic radii, bonding orbital overlaps, and preferential location of the radical site. These doublet radical reactions with simple hydrocarbons play significant roles in extreme environments such as the interstellar medium and planetary atmospheres (CN, SiN and C2H), and combustion flames (C2H, BO). PMID:24418936

  13. Evaporation over fresh and saline water surfaces

    NASA Astrophysics Data System (ADS)

    Abdelrady, Ahmed; Timmermans, Joris; Vekerdy, Zoltan

    2013-04-01

    Evaporation over large water bodies has a crucial role in the global hydrological cycle. Evaporation occurs whenever there is a vapor pressure deficit between a water surface and the atmosphere, and the available energy is sufficient. Salinity affects the density and latent heat of vaporization of the water body, which reflects on the evaporation rate. Different models have been developed to estimate the evaporation process over water surfaces using earth observation data. Most of these models are concerned with the atmospheric parameters. However these models do not take into account the influence of salinity on the evaporation rate; they do not consider the difference in the energy needed for vaporization. For this purpose an energy balance model is required. Several energy balance models that calculate daily evapotranspiration exist, such as the surface energy balance system (SEBS). They estimate the heat fluxes by integration of satellite data and hydro-meteorological field data. SEBS has the advantage that it can be applied over a large scale because it incorporates the physical state of the surface and the aerodynamic resistances in the daily evapotranspiration estimation. Nevertheless this model has not used over water surfaces. The goal of this research is to adapt SEBS to estimate the daily evaporation over fresh and saline water bodies. In particular, 1) water heat flux and roughness of momentum and heat transfer estimation need to be updated, 2) upscaling to daily evaporation needs to be investigated and finally 3) integration of the salinity factor to estimate the evaporation over saline water needs to be performed. Eddy covariance measurements over the Ijsselmeer Lake (The Netherlands) were used to estimate the roughness of momentum and heat transfer at respectively 0.0002 and 0.0001 m. Application of these values over Tana Lake (freshwater), in Ethiopia showed latent heat to be in a good agreement with the measurements, with RMSE of 35.5 Wm-2and r

  14. Simultaneous spreading and evaporation: recent developments.

    PubMed

    Semenov, Sergey; Trybala, Anna; Rubio, Ramon G; Kovalchuk, Nina; Starov, Victor; Velarde, Manuel G

    2014-04-01

    The recent progress in theoretical and experimental studies of simultaneous spreading and evaporation of liquid droplets on solid substrates is discussed for pure liquids including nanodroplets, nanosuspensions of inorganic particles (nanofluids) and surfactant solutions. Evaporation of both complete wetting and partial wetting liquids into a nonsaturated vapour atmosphere are considered. However, the main attention is paid to the case of partial wetting when the hysteresis of static contact angle takes place. In the case of complete wetting the spreading/evaporation process proceeds in two stages. A theory was suggested for this case and a good agreement with available experimental data was achieved. In the case of partial wetting the spreading/evaporation of a sessile droplet of pure liquid goes through four subsequent stages: (i) the initial stage, spreading, is relatively short (1-2 min) and therefore evaporation can be neglected during this stage; during the initial stage the contact angle reaches the value of advancing contact angle and the radius of the droplet base reaches its maximum value, (ii) the first stage of evaporation is characterised by the constant value of the radius of the droplet base; the value of the contact angle during the first stage decreases from static advancing to static receding contact angle; (iii) during the second stage of evaporation the contact angle remains constant and equal to its receding value, while the radius of the droplet base decreases; and (iv) at the third stage of evaporation both the contact angle and the radius of the droplet base decrease until the drop completely disappears. It has been shown theoretically and confirmed experimentally that during the first and second stages of evaporation the volume of droplet to power 2/3 decreases linearly with time. The universal dependence of the contact angle during the first stage and of the radius of the droplet base during the second stage on the reduced time has been

  15. Primary branching ratios for the low-temperature reaction of state-prepared N2+ with CH4, C2H2, and C2H4.

    PubMed

    Gichuhi, Wilson K; Suits, Arthur G

    2011-06-30

    Product branching ratios (BRs) are reported for ion-molecule reactions of state-prepared nitrogen cation (N(2)(+)) with methane (CH(4)), acetylene (C(2)H(2)). and ethylene (C(2)H(4)) at low temperature using a modified ion imaging apparatus. These reactions are performed in a supersonic nozzle expansion characterized by a rotational temperature of 40 ± 5K. For the N(2)(+) + CH(4) reaction, a BR of 0.83:0.17 is obtained for the dissociative charge-transfer (CT) reaction that gives rise to the formation of CH(3)(+) and CH(2)(+) product ions, respectively. The N(2)(+) + C(2)H(2) ion-molecule reaction proceeds through a nondissociative CT process that results in the sole formation of C(2)H(2)(+) product ions. The reaction of N(2)(+) with C(2)H(4) leads to the formation of C(2)H(3)(+) and C(2)H(2)(+) product ions with a BR of 0.74:0.26, respectively. The reported BR for the N(2)(+) + C(2)H(4) reaction is supportive of a nonresonant dissociative CT mechanism similar to the one that accompanies the N(2)(+) + CH(4) reaction. No dependence of the branching ratios on N(2)(+) rotational level was observed. In addition to providing direct insight into the dynamics of the state-prepared N(2)(+) ion-molecule reactions with the target neutral hydrocarbon molecules, the reported low-temperature BRs are also important for accurate modeling of the nitrogen-dominated upper atmosphere of Saturn's moon, Titan.

  16. Nickel Catalysis Enables Oxidative C(sp(2) )-H/C(sp(2) )-H Cross-Coupling Reactions between Two Heteroarenes.

    PubMed

    Cheng, Yangyang; Wu, Yimin; Tan, Guangyin; You, Jingsong

    2016-09-26

    Nickel can be used to promote oxidative C(sp(2) )-H/C(sp(2) )-H cross-coupling between two heteroarenes. The reaction scope can be extended to aromatic carboxamides as the coupling partner. The reaction exhibits high functional-group compatibility and broad substrate scope. The silver oxidant can be recycled to reduce costs and waste, which is very useful for practical applications. PMID:27596265

  17. Microwave Spectra and Geometries of C2H2\\cdots AuI and C2H4\\cdots AuI

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna Louise; Mullaney, John Connor; Sprawling, Matt John; Tew, David Peter; Walker, Nick; Legon, Anthony

    2014-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H2\\cdots AuI and C2H4\\cdots AuI. These complexes are generated via laser ablation at 532 nm of a gold surface in the presence of CF3I and either C2H2 or C2H4 and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ, ΔJK and δJ) of each molecule have been determined as well the nuclear electric quadrupole coupling constants of gold and iodine atoms (χaa(Au}, χbb-χcc(Au), χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H2 or C2H4 subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule.

  18. Saline Evaporation from Porous Media: Characteristics of Salt Precipitation and Its Effect on Evaporation

    NASA Astrophysics Data System (ADS)

    Nachshon, U.; Weisbrod, N.; Dragila, M. I.; Grader, A. S.

    2010-12-01

    Salt precipitation as subflorescence or efflorescence crust occurs during saline solutions evaporation from porous media. Non-linear synergy between evaporation and salt precipitation processes results in a complex mechanism that has yet to be quantitatively understood. Presented here is a series of experiments and a mathematical model that shed light on these processes. Experiments include: (1) long-term column evaporation experiments to quantify changes in evaporation rates due to salt precipitation; (2) long-term Hele-Shaw evaporation experiments to visualize salt precipitation at the macro scale; and (3) CT scans of evaporated porous media pre-saturated with NaI solutions to observe salt precipitation at the pore scale. Experiments were conducted for homogeneous and heterogeneous media using a number of saline solutions (NaCl, CaSO4, KCl, CuSO4 and NaI). A mathematical model was developed to explore quantitatively the physical and chemical mechanisms involved in the evaporation-salt precipitation process. The model simulated salt precipitation and it affect on evaporation. Three new stages of evaporation are introduced and defined for saline solutions: SS1, SS2 and SS3. SS1 exhibits a low and gradual decrease in evaporation rate caused by a changing osmotic potential. During SS2, evaporation rate falls precipitously a salt precipitates. SS3 is characterized by a constant, low evaporation rate. The phenomenological similarity to the classical evaporation stages of pure water, S1, S2 and S3, are only coincidental, the three saline stages correspond to entirely different mechanisms. The mathematical model was used to also quantify the diffusion coefficient through a salt crust. Heterogeneity during saline evaporation was found to strongly control the location of salt precipitation: salt precipitation occurred mainly within the fine-pore regions which act as a wick transporting water from the coarser media. Heterogeneity also permits greater saline evaporation by

  19. Increased evaporation following widespread tree mortality limits streamflow response

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Harpold, A. A.; Gochis, D. J.; Ewers, B. E.; Reed, D. E.; Papuga, S. A.; Brooks, P. D.

    2014-07-01

    A North American epidemic of mountain pine beetle (MPB) has disturbed over 5 million ha of forest containing headwater catchments crucial to water resources. However, there are limited observations of MPB effects on partitioning of precipitation between vapor loss and streamflow, and to our knowledge these fluxes have not been observed simultaneously following disturbance. We combined eddy covariance vapor loss (V), catchment streamflow (Q), and stable isotope indicators of evaporation (E) to quantify hydrologic partitioning over 3 years in MPB-impacted and control sites. Annual control V was conservative, varying only from 573 to 623 mm, while MPB site V varied more widely from 570 to 700 mm. During wet periods, MPB site V was greater than control V in spite of similar above-canopy potential evapotranspiration (PET). During a wet year, annual MPB V was greater and annual Q was lower as compared to an average year, while in a dry year, essentially all water was partitioned to V. Ratios of 2H and 18O in stream and soil water showed no kinetic evaporation at the control site, while MPB isotope ratios fell below the local meteoric water line, indicating greater E and snowpack sublimation (Ss) counteracted reductions in transpiration (T) and sublimation of canopy-intercepted snow (Sc). Increased E was possibly driven by reduced canopy shading of shortwave radiation, which averaged 21 W m-2 during summer under control forest as compared to 66 W m-2 under MPB forest. These results show that abiotic vapor losses may limit widely expected streamflow increases.

  20. Evaporative isotope enrichment as a constraint on reach water balance along a dryland river.

    PubMed

    Gibson, John J; Sadek, Mostafa A; Stone, D J M; Hughes, Catherine E; Hankin, S; Cendon, Dioni I; Hollins, Suzanne E

    2008-03-01

    Deuterium and oxygen-18 enrichment in river water during its transit across dryland region is found to occur systematically along evaporation lines with slopes of close to 4 in (2)H-(18)O space, largely consistent with trends predicted by the Craig-Gordon model for an open-water dominated evaporating system. This, in combination with reach balance assessments and derived runoff ratios, strongly suggests that the enrichment signal and its variability in the Barwon-Darling river, Southeastern Australia is acquired during the process of evaporation from the river channel itself, as enhanced by the presence of abundant weirs, dams and other storages, rather than reflecting inherited enrichment signals from soil water evaporation in the watershed. Using a steady-state isotope mass balance analysis based on monthly (18)O and (2)H, we use the isotopic evolution of river water to re-construct a perspective of net exchange between the river and its contributing area along eight reaches of the river during a drought period from July 2002 to December 2003, including the duration of a minor flow event. The resulting scenario, which uses a combination of climatological averages and available real-time meteorological data, should be viewed as a preliminary test of the application rather than as a definitive inventory of reach water balance. As expected for a flood-driven dryland system, considerable temporal variability in exchange is predicted. While requiring additional real-time isotopic data for operational use, the method demonstrates potential as a non-invasive tool for detecting and quantifying water diversions, one that can be easily incorporated within existing water quality monitoring activities.

  1. Using 2H and 18O in assessing evaporation and water residence time of lakes in EPA’s National Lakes Assessment.

    EPA Science Inventory

    Stable isotopes of water and organic material can be very useful in monitoring programs because stable isotopes integrate information about ecological processes and record this information. Most ecological processes of interest for water quality (i.e. denitrification) require si...

  2. Elucidating proline dynamics in spider dragline silk fibre using 2H-13C HETCOR MAS NMR.

    PubMed

    Shi, Xiangyan; Yarger, Jeffery L; Holland, Gregory P

    2014-05-14

    (2)H-(13)C HETCOR MAS NMR is performed on (2)H/(13)C/(15)N-Pro enriched A. aurantia dragline silk. Proline dynamics are extracted from (2)H NMR line shapes and T1 in a site-specific manner to elucidate the backbone and side chain molecular dynamics for the MaSp2 GPGXX β-turn regions for spider dragline silk in the dry and wet, supercontracted states.

  3. DWPF Recycle Evaporator Shielded Cells Testing

    SciTech Connect

    Fellinger, T. L.; Herman, D. T.; Stone, M.E

    2005-07-01

    Testing was performed to determine the feasibility and processing characteristics of evaporation of actual Defense Waste Processing Facility (DWPF) recycle material. Samples of the Off Gas Condensate Tank (OGCT) and Slurry Mix Evaporator Condensate Tank (SMECT) were transferred from DWPF to the Savannah River National Lab (SRNL) Shielded Cells and blended with De-Ionized (DI) water and a small amount of Slurry Mix Evaporator (SME) product. A total of 3000 mL of this feed was concentrated to approximately 90 mL during a semi-batch evaporation test of approximately 17 hours. One interruption occurred during the run when the feed tube developed a split and was replaced. Samples of the resulting condensate and concentrate were collected and analyzed. The resulting analysis of the condensate was compared to the Waste Acceptance Criteria (WAC) limits for the F/H Effluent Treatment Plant (ETP). Results from the test were compared to previous testing using simulants and OLI modeling. Conclusions from this work included the following: (1) The evaporation of DWPF recycle to achieve a 30X concentration factor was successfully demonstrated. The feed blend of OGCT and SMECT material was concentrated from 3000 mL to approximately 90 mL during testing, a concentration of approximately 33X. (2) Foaming was observed during the run. Dow Corning 2210 antifoam was added seven times throughout the run at 100 parts per million (ppm) per addition. The addition of this antifoam was very effective in reducing the foam level, but the impact diminished over time and additional antifoam was required every 2 to 3 hours during the run. (3) No scale or solids formed on the evaporator vessel, but splatter was observed in the headspace of the evaporator vessel. No scaling formed on the stainless steel thermocouple. (4) The majority of the analytes met the F/H ETP WAC. However, the detection limits for selected species (Sr-90, Pu-238, Pu-240, Am-243, and Cm-244) exceeded the ETP WAC limits. (5) I

  4. Lysozyme pattern formation in evaporating droplets

    NASA Astrophysics Data System (ADS)

    Gorr, Heather Meloy

    Liquid droplets containing suspended particles deposited on a solid, flat surface generally form ring-like structures due to the redistribution of solute during evaporation (the "coffee ring effect"). The forms of the deposited patterns depend on complex interactions between solute(s), solvent, and substrate in a rapidly changing, far from equilibrium system. Solute self-organization during evaporation of colloidal sessile droplets has attracted the attention of researchers over the past few decades due to a variety of technological applications. Recently, pattern formation during evaporation of various biofluids has been studied due to potential applications in medical screening and diagnosis. Due to the complexity of 'real' biological fluids and other multicomponent systems, a comprehensive understanding of pattern formation during droplet evaporation of these fluids is lacking. In this PhD dissertation, the morphology of the patterns remaining after evaporation of droplets of a simplified model biological fluid (aqueous lysozyme solutions + NaCl) are examined by atomic force microscopy (AFM) and optical microscopy. Lysozyme is a globular protein found in high concentration, for example, in human tears and saliva. The drop diameters, D, studied range from the micro- to the macro- scale (1 microm -- 2 mm). In this work, the effect of evaporation conditions, solution chemistry, and heat transfer within the droplet on pattern formation is examined. In micro-scale deposits of aqueous lysozyme solutions (1 microm < D < 50 microm), the protein motion and the resulting dried residue morphology are highly influenced by the decreased evaporation time of the drop. The effect of electrolytes on pattern formation is also investigated by adding varying concentrations NaCl to the lysozyme solutions. Finally, a novel pattern recognition program is described and implemented which classifies deposit images by their solution chemistries. The results presented in this Ph

  5. KEPLER PLANETS: A TALE OF EVAPORATION

    SciTech Connect

    Owen, James E.; Wu, Yanqin E-mail: wu@astro.utoronto.ca

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R{sub ⊕}. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M

  6. PROCESS WATER BUILDING, TRA605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), AND STEAM EJECTOR (ALONG REAR WALL). INL NEGATIVE NO. 4377. M.H. Bartz, Photographer, 3/5/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. Freezing of Water Droplet due to Evaporation

    NASA Astrophysics Data System (ADS)

    Satoh, Isao; Fushinobu, Kazuyoshi; Hashimoto, Yu

    In this study, the feasibility of cooling/freezing of phase change.. materials(PCMs) due to evaporation for cold storage systems was experimentally examined. A pure water was used as the test PCM, since the latent heat due to evaporation of water is about 7 times larger than that due to freezing. A water droplet, the diameter of which was 1-4 mm, was suspended in a test cell by a fine metal wire (O. D.= 100μm),and the cell was suddenly evacuated up to the pressure lower than the triple-point pressure of water, so as to enhance the evaporation from the water surface. Temperature of the droplet was measured by a thermocouple, and the cooling/freezing behavior and the temperature profile of the droplet surface were captured by using a video camera and an IR thermo-camera, respectively. The obtained results showed that the water droplet in the evacuated cell is effectively cooled by the evaporation of water itself, and is frozen within a few seconds through remarkable supercooling state. When the initial temperature of the droplet is slightly higher than the room temperature, boiling phenomena occur in the droplet simultaneously with the freezing due to evaporation. Under such conditions, it was shown that the degree of supercooling of the droplet is reduced by the bubbles generated in the droplet.

  8. Gravity Effects in Condensing and Evaporating Films

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Som, S. M.; Allen, J. S.; Pedersen, P. C.

    2004-01-01

    A general overview of gravity effects in condensing and evaporating films is presented. The topics include: 1) Research Overview; 2) NASA Recognizes Critical Need for Condensation & Evaporation Research to Enable Human Exploration of Space; 3) Condensation and Evaporation Research in Reduced Gravity is Enabling for AHST Technology Needs; 4) Differing Role of Surface Tension on Condensing/Evaporating Film Stability; 5) Fluid Mechanisms in Condensing and Evaporating Films in Reduced Gravity; 6) Research Plan; 7) Experimental Configurations for Condensing Films; 8) Laboratory Condensation Test Cell; 9) Aircraft Experiment; 10) Condensation Study Current Test Conditions; 11) Diagnostics; 12) Shadowgraph Images of Condensing n- pentane Film in Unstable (-1g) Configuration; 13) Condensing n-Pentane Film in Normal Gravity (-1g) at Constant Pressure; 14) Condensing n-Pentane Film in Normal Gravity (-1g) with Cyclic Pressure; 15) Non-condensing Pumped Film in Normal Gravity (-1g); 16) Heat Transfer Coefficient in Developing, Unstable Condensing Film in Normal Gravity; 17) Heat Transfer for Unsteady Condensing Film (-1g); 18) Ultrasound Measurement of Film Thickness N-pentane Film, Stable (+1g) Configuration; and 19) Ultrasound Measurement of Film Thickness N-pentane Film, Unstable (-1g) Configuration.

  9. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Hodgson, Ed; Izenso, Mike; Chan, Weibo; Cupples, Scott

    2011-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust non-venting system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's lithium chloride Heat Pump Radiator (HPR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. The SEAR is evacuated at the onset of operations and thereafter, the water vapor absorption rate of the HPR maintains a low pressure environment for the SWME to evaporate effectively. This water vapor captured by solid LiCl in the HPR with a high enthalpy of absorption, results in sufficient temperature lift to reject most of the heat to space by radiation. After the sortie, the HPR would be heated up in a regenerator to drive off and recover the absorbed evaporant. A one-fourth scale prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The HPR was able to stably reject 60 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  10. Surface tension of evaporating nanofluid droplets

    SciTech Connect

    Chen, Ruey-Hung; Phuoc, Tran X.; Martello, Donald

    2011-05-01

    Measurements of nanofluid surface tension were made using the pendant droplet method. Three different types of nanoparticles were used - laponite, silver and Fe2O3 - with de-ionized water (DW) as the base fluid. The reported results focus on the following categories; (1) because some nanoparticles require surfactants to form stable colloids, the individual effects of the surfactant and the particles were investigated; (2) due to evaporation of the pendant droplet, the particle concentration increases, affecting the apparent surface tension; (3) because of the evaporation process, a hysteresis was found where the evaporating droplet can only achieve lower values of surface tension than that of nanofluids at the same prepared concentrations: and (4) the Stefan equation relating the apparent surface tension and heat of evaporation was found to be inapplicable for nanofluids investigated. Comparisons with findings for sessile droplets are also discussed, pointing to additional effects of nanoparticles other than the non-equilibrium evaporation process.

  11. The SNF2H chromatin remodeling enzyme has opposing effects on cytokine gene expression.

    PubMed

    Precht, Patricia; Wurster, Andrea L; Pazin, Michael J

    2010-07-01

    Cytokine gene expression is a key control point in the function of the immune system. Cytokine gene regulation is linked to changes in chromatin structure; however, little is known about the remodeling enzymes mediating these changes. Here we investigated the role of the ATP-dependent chromatin remodeling enzyme SNF2H in mouse T cells; to date, SNF2H has not been investigated in T cells. We found that SNF2H repressed expression of IL-2 and other cytokines in activated cells. By contrast, SNF2H activated expression of IL-3. The ISWI components SNF2H and ACF1 bound to the tested loci, suggesting the regulation was direct. SNF2H decreased accessibility at some binding sites within the IL2 locus, and increased accessibility within some IL3 binding sites. The changes in gene expression positively correlated with accessibility changes, suggesting a simple model that accessibility enables transcription. We also found that loss of the ISWI ATPase SNF2H reduced binding to target genes and protein expression of ACF1, a binding partner for SNF2H, suggesting complex formation stabilized ACF1. Together, these findings reveal a direct role for SNF2H in both repression and activation of cytokine genes.

  12. The SNF2H Chromatin Remodeling Enzyme Has Opposing Effects on Cytokine Gene Expression

    PubMed Central

    Precht, Patricia; Wurster, Andrea L.; Pazin, Michael J.

    2010-01-01

    Cytokine gene expression is a key control point in the function of the immune system. Cytokine gene regulation is linked to changes in chromatin structure; however, little is known about the remodeling enzymes mediating these changes. Here we investigated the role of the ATP-dependent chromatin remodeling enzyme SNF2H in mouse T cells; to date, SNF2H has not been investigated in T cells. We found that SNF2H repressed expression of IL-2 and other cytokines in activated cells. By contrast, SNF2H activated expression of IL-3. The ISWI components SNF2H and ACF1 bound to the tested loci, suggesting the regulation was direct. SNF2H decreased accessibility at some binding sites within the IL2 locus, and increased accessibility within some IL3 binding sites. The changes in gene expression positively correlated with accessibility changes, suggesting a simple model that accessibility enables transcription. We also found that loss of the ISWI ATPase SNF2H reduced binding to target genes and protein expression of ACF1, a binding partner for SNF2H, suggesting complex formation stabilized ACF1. Together, these findings reveal a direct role for SNF2H in both repression and activation of cytokine genes. PMID:20471682

  13. Marangoni Convection and Deviations from Maxwells' Evaporation Model

    NASA Technical Reports Server (NTRS)

    Segre, P. N.; Snell, E. H.; Adamek, D. H.

    2003-01-01

    We investigate the convective dynamics of evaporating pools of volatile liquids using an ultra-sensitive thermal imaging camera. During evaporation, there are significant convective flows inside the liquid due to Marangoni forces. We find that Marangoni convection during evaporation can dramatically affect the evaporation rates of volatile liquids. A simple heat balance model connects the convective velocities and temperature gradients to the evaporation rates.

  14. Method for determination of {sup 18}O/{sup 16}O and {sup 2}H/{sup 1}H ratios and {sup 3}H (tritium) concentrations of xylem waters and subsurface waters using time-series sampling

    SciTech Connect

    1999-11-09

    This application describes a method for the determination of {sup 18}O/{sup 16}O and {sup 2}H/{sup 1}H ratios and {sup 3}H concentrations of xylem and subsurface waters using time-series sampling, insulating sampling chambers, and combined {sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H and {sup 3}H concentration data on transpired water. The method involves collecting water samples transpired from living plants and correcting the measured isotopic compositions of oxygen ({sup 18}O/{sup 16}O) and hydrogen ({sup 2}H/{sup 1}H and/or {sup 3}H concentrations) to account for evaporative isotopic fractionation in the leafy material of the plant.

  15. Method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H (tritium) concentrations of xylem waters and subsurface waters using time series sampling

    DOEpatents

    Smith, Brian; Menchaca, Leticia

    1999-01-01

    A method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H concentrations of xylem and subsurface waters using time series sampling, insulating sampling chambers, and combined .sup.18 O/.sup.16 O, .sup.2 H/.sup.1 H and .sup.3 H concentration data on transpired water. The method involves collecting water samples transpired from living plants and correcting the measured isotopic compositions of oxygen (.sup.18 O/.sup.16 O) and hydrogen (.sup.2 H/.sup.1 H and/or .sup.3 H concentrations) to account for evaporative isotopic fractionation in the leafy material of the plant.

  16. Visualization of an evaporating thin layer during the evaporation of a nanofluid droplet.

    PubMed

    Shin, Dong Hwan; Allen, Jeffrey S; Choi, Chang Kyoung; Lee, Seong Hyuk

    2015-02-01

    During the evaporation of a droplet, there exists an evaporating thin layer that is difficult to visualize because of optical restrictions. The present study visualized this thin layer by using a reflective-mode, confocal microscope that can provide improved signal-to-noise focal plane imaging over traditional optical microscopy while simultaneously serving as an interferometer when imaging thin liquid films. The spatial distribution of the evaporating thin layer thickness was determined from interferometric fringe analysis. Three distinct fringe patterns, or regions, were observed depending on the nanoparticle concentration. These regions are referred to as uniform, slow extension, and rapid extension. The formation of the three regions is closely associated with the variation of the evaporating thin layer thickness of a nanofluid droplet. The nanoparticle bank formed near the contact line region substantially affects the rate of change in the evaporating thin layer thickness that increases with the nanoparticle concentration. PMID:25586137

  17. Correlation of the seasonal isotopic amplitude of precipitation with annual evaporation and altitude in alpine regions.

    PubMed

    Jódar, J; Custodio, E; Liotta, M; Lambán, L J; Herrera, C; Martos-Rosillo, S; Sapriza, G; Rigo, T

    2016-04-15

    The time series of stable water isotope composition relative to IAEA-GNIP meteorological stations located in alpine zones are analyzed in order to study how the amplitude of the seasonal isotopic composition of precipitation (Aδ) varies along a vertical transect. A clear relationship between Aδ and local evaporation is obtained, with slopes of -0.87 ‰/100mm/yr and -7.3 ‰/100mm/yr for Aδ(18)O and Aδ(2)H, respectively. When all sampling points of the vertical transect receive the same moisture sources, then a linear relationship between Aδ and elevation is obtained, with vertical gradients of 0.16 ‰/100mm/yr and 1.46 ‰/100mm/yr forAδ(18)O and Aδ(2)H, respectively. PMID:26803681

  18. Correlation of the seasonal isotopic amplitude of precipitation with annual evaporation and altitude in alpine regions.

    PubMed

    Jódar, J; Custodio, E; Liotta, M; Lambán, L J; Herrera, C; Martos-Rosillo, S; Sapriza, G; Rigo, T

    2016-04-15

    The time series of stable water isotope composition relative to IAEA-GNIP meteorological stations located in alpine zones are analyzed in order to study how the amplitude of the seasonal isotopic composition of precipitation (Aδ) varies along a vertical transect. A clear relationship between Aδ and local evaporation is obtained, with slopes of -0.87 ‰/100mm/yr and -7.3 ‰/100mm/yr for Aδ(18)O and Aδ(2)H, respectively. When all sampling points of the vertical transect receive the same moisture sources, then a linear relationship between Aδ and elevation is obtained, with vertical gradients of 0.16 ‰/100mm/yr and 1.46 ‰/100mm/yr forAδ(18)O and Aδ(2)H, respectively.

  19. An efficient one-pot four-segment condensation method for protein chemical synthesis.

    PubMed

    Tang, Shan; Si, Yan-Yan; Wang, Zhi-Peng; Mei, Kun-Rong; Chen, Xin; Cheng, Jing-Yuan; Zheng, Ji-Shen; Liu, Lei

    2015-05-01

    Successive peptide ligation using a one-pot method can improve the efficiency of protein chemical synthesis. Although one-pot three-segment ligation has enjoyed widespread application, a robust method for one-pot four-segment ligation had to date remained undeveloped. Herein we report a new one-pot multisegment peptide ligation method that can be used to condense up to four segments with operational simplicity and high efficiency. Its practicality is demonstrated by the one-pot four-segment synthesis of a plant protein, crambin, and a human chemokine, hCCL21.

  20. Calculational and Experimental Investigations of the Pressure Effects on Radical - Radical Cross Combinations Reactions: C2H5 + C2H3

    NASA Technical Reports Server (NTRS)

    Fahr, Askar; Halpern, Joshua B.; Tardy, Dwight C.

    2007-01-01

    Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance

  1. Mitigating by-catch of diamondback terrapins in crab pots

    USGS Publications Warehouse

    Hart, Kristen M.; Crowder, Larry B.

    2011-01-01

    Chronic by-catch of diamondback terrapins (Malaclemys terrapin) in blue crab (Callinectes sapidus) pots is a concern for terrapin conservation along the United States Atlantic and Gulf of Mexico coasts. Despite the availability of by-catch reduction devices (BRDs) for crab pots, adoption of BRDs has not been mandated and by-catch of terrapins continues. We conducted experimental fishing studies in North Carolina's year-round blue crab fishery from 2000 to 2004 to evaluate the ability of various BRDs to reduce terrapin by-catch without a concomitant reduction in the catch of blue crabs. In 4,822 crab pot days fished, we recorded only 21 terrapin captures. Estimated capture rates were 0.003 terrapins/pot per day in hard crab experimental fishing and 0.008 terrapins/pot per day in peeler experimental fishing. All terrapin captures occurred from April to mid-May within 321.4 m of the shoreline. Longer soak times produced more dead terrapins, with 4 live and 4 dead during hard crab experimental fishing and 11 live and 2 dead during peeler experimental fishing. The 4.0-cm BRDs in fall and 4.5-cm and 5.0-cm BRDs in spring reduced the catch of legal-sized male hard crabs by 26.6%, 21.2%, and 5.7%, respectively. Only the 5.0-cm BRDs did not significantly affect the catch of legal-sized hard male crabs. However, BRDs had no measurable effect on catch of target crabs in the peeler crab fishery. Our results identify 3 complementary and economically feasible tools for blue crab fishery managers to exclude terrapins from commercially fished crab pots in North Carolina: 1) gear modifications (e.g., BRDs); 2) distance-to-shore restrictions; and 3) time-of-year regulations. These measures combined could provide a reduction in terrapin by-catch of up to 95% without a significant reduction in target crab catch.

  2. Ball feeder for replenishing evaporator feed

    DOEpatents

    Felde, David K.; McKoon, Robert H.

    1993-01-01

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  3. Structuring of polymer solutions upon solvent evaporation

    NASA Astrophysics Data System (ADS)

    Schaefer, C.; van der Schoot, P.; Michels, J. J.

    2015-02-01

    The morphology of solution-cast, phase-separated polymers becomes finer with increasing solvent evaporation rate. We address this observation theoretically for a model polymer where demixing is induced by steady solvent evaporation. In contrast to what is the case for a classical, thermal quench involving immiscible blends, the spinodal instability initially develops slowly and the associated length scale is not time invariant but decreases with time as t-1 /2. After a time lag, phase separation accelerates. Time lag and characteristic length exhibit power-law behavior as a function of the evaporation rate with exponents of -2 /3 and -1 /6 . Interestingly, at later stages the spinodal structure disappears completely while a second length scale develops. The associated structure coarsens but does not follow the usual Lifshitz-Slyozov-Wagner kinetics.

  4. [Evaporating Droplet and Imaging Slip Flows

    NASA Technical Reports Server (NTRS)

    Larson, R. G.

    2002-01-01

    In this report, we summarize work on Evaporating Droplet and Imaging Slip Flows. The work was primarily performed by post-doc Hue Hu, and partially by grad students Lei Li and Danish Chopra. The work includes studies on droplet evaporation and its effects on temperature and velocity fields in an evaporating droplet, new 3-D microscopic particle image velocimetry and direct visualization on wall slip in a surfactant solution. With the exception of the slip measurements, these projects were those proposed in the grant application. Instead of slip flow, the original grant proposed imaging electro-osmotic flows. However, shortly after the grant was issued, the PI became aware of work on electro-osmotic flows by the group of Saville in Princeton that was similar to that proposed, and we therefore elected to carry out work on imaging slip flows rather than electro-osmotic flows.

  5. Ball feeder for replenishing evaporator feed

    DOEpatents

    Felde, D.K.; McKoon, R.H.

    1993-03-23

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  6. Hyperfine excitation of N2H+ by H2: towards a revision of N2H+ abundance in cold molecular clouds

    NASA Astrophysics Data System (ADS)

    Lique, François; Daniel, Fabien; Pagani, Laurent; Feautrier, Nicole

    2015-01-01

    The modelling of emission spectra of molecules seen in interstellar clouds requires the knowledge of collisional rate coefficients. Among the commonly observed species, N2H+ is of particular interest since it was shown to be a good probe of the physical conditions of cold molecular clouds. Thus, we have calculated hyperfine-structure-resolved excitation rate coefficients of N2H+(X1Σ+) by H2(j = 0), the most abundant collisional partner in the cold interstellar medium. The calculations are based on a new potential energy surface, obtained from highly correlated ab initio calculations. State-to-state rate coefficients between the first hyperfine levels were calculated, for temperatures ranging from 5 to 70 K. By comparison with previously published N2H+-He rate coefficients, we found significant differences which cannot be reproduced by a simple scaling relationship. As a first application, we also performed radiative transfer calculations, for physical conditions typical of cold molecular clouds. We found that the simulated line intensities significantly increase when using the new H2 rate coefficients, by comparison with the predictions based on the He rate coefficients. In particular, we revisited the modelling of the N2H+ emission in the LDN 183 core, using the new collisional data, and found that all three of the density, gas kinetic temperature and N2H+ abundance had to be revised.

  7. Evaporation control research, 1955-58

    USGS Publications Warehouse

    Cruse, Robert R.; Harbeck, Guy Earl

    1960-01-01

    One hundred fifty-two compounds and compositions of matter were screened as potential evaporation retardants. The homologous straight-chain fatty alkanols are considered the best materials for retardants. Several methods of application of the alkanols to the reservoir surface were investigated. Although wick-type drippers for the application of liquids and cage rafts for the application of solids appear to be the most promising methods from an economic standpoint, both methods have serious disadvantages. Considerable study was given to reducing biochemical oxidation of the evaporation retardants. Copper in several forms was found adequate as a bacteriostatic agent but posed a potential hazard because of its toxicity. Many other bactericides that were tested were also toxic. Two sets of large-scale field tests have been completed and several others are still in progress. On the larger reservoirs, the reduction of evaporation was not more than 20 percent under the prevailing conditions and the application procedure used. Three major practical problems remain; namely, the effects and action of wind on the monofilm, the effects of biochemical oxidation, and the most effective method of application. Fundamental problems remaining include the effects of various impurities, and the composition of the best evaporation retardant; the long-range effects of monofilms on the limnology of a reservoir, including the transfer of oxygen and carbon dioxide; toxicological aspects of all components of any evaporation-retardant composition, plus toxicology of any composition chosen for large-scale use; and further studies of the calorimetry and thermodynamics involved in the mechanism of evaporation and its reduction by a monofilm.

  8. Simulations of Evaporating Multicomponent Fuel Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Le Clercq, Patrick

    2005-01-01

    A paper presents additional information on the subject matter of Model of Mixing Layer With Multicomponent Evaporating Drops (NPO-30505), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 55. To recapitulate: A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The model is used to perform direct numerical simulations in continuing studies directed toward understanding the behaviors of sprays of liquid petroleum fuels in furnaces, industrial combustors, and engines. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and drops, respectively, and incorporates a concept of continuous thermodynamics, according to which the chemical composition of a fuel is described by use of a distribution function. In this investigation, the distribution function depends solely on the species molar weight. The present paper reiterates the description of the model and discusses further in-depth analysis of the previous results as well as results of additional numerical simulations assessing the effect of the mass loading. The paper reiterates the conclusions reported in the cited previous article, and states some new conclusions. Some new conclusions are: 1. The slower evaporation and the evaporation/ condensation process for multicomponent-fuel drops resulted in a reduced drop-size polydispersity compared to their single-component counterpart. 2. The inhomogeneity in the spatial distribution of the species in the layer increases with the initial mass loading. 3. As evaporation becomes faster, the assumed invariant form of the molecular- weight distribution during evaporation becomes inaccurate.

  9. Four coordination polymers derived from a one-pot reaction and their controlled synthesis.

    PubMed

    Yan, Wei; Hao, Han; Zheng, Hegen

    2016-04-21

    Four different Co(ii) coordination polymers have been built by two flexible ligands 4,4'-dicarboxydiphenyl sulfone (4,4'-sdb) and 1,4-bis((1H-imidazol-1-yl)methyl) benzene (BMB) in a one-pot solvothermal reaction. The structures of and are new, and and have been reported. The crystal structures of were obtained, namely [Co(4,4'-sdb)(BMB)]n (), {[Co2(4,4'-sdb)2(BMB)]·2H2O}n (), and [Co3(4,4'-sdb)2(DMF)(H2O)3]n (), but was confirmed by PXRD. Both and are 2D layered structures with sql topology and their point symbol is {4(4)·6(2)}. These complexes have been characterized by single crystal X-ray diffraction, infrared spectroscopy, thermogravimetry, elemental analysis, and powder X-ray diffraction measurements. By changing the synthesis conditions, four different Co(ii) coordination polymers can be obtained respectively. PMID:26948000

  10. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  11. Hot air drum evaporator. [Patent application

    DOEpatents

    Black, R.L.

    1980-11-12

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  12. Evaporative cooling of antiprotons to cryogenic temperatures.

    PubMed

    Andresen, G B; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A; Hydomako, R; Jonsell, S; Kurchaninov, L; Lambo, R; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wilding, D; Wurtele, J S; Yamazaki, Y

    2010-07-01

    We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9 K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.

  13. Evaporative Cooling of Antiprotons to Cryogenic Temperatures

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Ashkezari, M. D.; Hayden, M. E.; Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Povilus, A.; So, C.; Wurtele, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A.; Madsen, N.; Werf, D. P. van der; Wilding, D.; Cesar, C. L.; Lambo, R.

    2010-07-02

    We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9 K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.

  14. Evaporation-induced assembly of biomimetic polypeptides

    SciTech Connect

    Keyes, Joseph; Junkin, Michael; Cappello, Joseph; Wu Xiaoyi; Wong, Pak Kin

    2008-07-14

    We report an evaporation assisted plasma lithography (EAPL) process for guided self-assembly of a biomimetic silk-elastinlike protein (SELP). We demonstrate the formation of SELP structures from millimeter to submicrometer range on plasma-treatment surface templates during an evaporation-induced self-assembly process. The self-assembly processes at different humidities and droplet volumes were investigated. The process occurs efficiently in a window of optimized operating conditions found to be at 70% relative humidity and 8 {mu}l volume of SELP solution. The EAPL approach provides a useful technique for the realization of functional devices and systems using these biomimetic materials.

  15. Direct Evaporative Precooling Model and Analysis

    SciTech Connect

    Shen, Bo; Ally, Moonis Raza; Rice, C Keith; Craddick, William G

    2011-01-01

    Evaporative condenser pre-cooling expands the availability of energy saving, cost-effective technology options (market engagement) and serves to expedite the range of options in upcoming codes and equipment standards (impacting regulation). Commercially available evaporative pre-coolers provide a low cost retrofit for existing packaged rooftop units, commercial unitary split systems, and air cooled chillers. We map the impact of energy savings and peak energy reduction in the 3 building types (medium office, secondary school, and supermarket) in 16 locations for three building types with four pad effectivenesses and show the effect for HVAC systems using either refrigerants R22 or R410A

  16. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, Peter

    1991-01-01

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  17. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  18. A parameterization of the evaporation of rainfall

    NASA Technical Reports Server (NTRS)

    Schlesinger, Michael E.; Oh, Jai-Ho; Rosenfeld, Daniel

    1988-01-01

    A general theoretical expression for the rainfall rate and the total evaporation rate as a function of the distance below cloud base is developed, and is then specialized to the gamma raindrop size distribution. The theoretical framework is used to analyze the data of Rosenfeld and Mintz (1988) on the radar observations of the rainfall rate as a function of the distance below cloud base, for rain falling from continental convective cells in central South Africa, obtaining a parameterization for the evaporation of rainfall.

  19. Symptom Discrimination and Habituation: A Case Study of Behavioral Treatment for Postural Orthostatic Tachycardia Syndrome (POTS).

    PubMed

    Ralston, Timothy E; Kanzler, Kathryn E

    2016-01-01

    Postural orthostatic tachycardia syndrome (POTS) is a multifaceted disorder of the autonomic nervous system that profoundly impacts physical functioning. In addition to physical consequences, many patients develop situational anxiety that causes reduced activity level, which may impede functional recovery from POTS. Despite links with anxiety, to date there have been no reports of psychological intervention for POTS. Here we report a case study of POTS in a 40-year-old female serving on active duty in the US military. Because there are no established guidelines for the psychological treatment of POTS, intervention techniques were adapted for use with the patient. Elements of cognitive behavioral therapy, including in-vivo exposure and symptom discrimination, were used to target avoidance of feared situations. Over the course of treatment, the patient learned to discriminate her POTS symptoms from anxiety and displayed a significant decrease in POTS-related functional impairment. Implications for future care are discussed.

  20. Photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 in the VUV region

    NASA Technical Reports Server (NTRS)

    Xia, T. J.; Chien, T. S.; Wu, C. Y. Robert; Judge, D. L.

    1991-01-01

    Using synchrotron radiation as a continuum light source, the photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 have been measured from their respective ionization thresholds to 1060 A. The vibrational constants associated with the nu(2) totally symmetric, out-of-plane bending vibration of the ground electronic state of PH3(+) have been obtained. The cross sections and quantum yields for producing neutral products through photoexcitation of these molecules in the given spectral regions have also been determined. In the present work, autoionization processes were found to be less important than dissociation and predissociation processes in NH3, PH3, and C2H4. Several experimental techniques have been employed in order to examine the various possible systematic errors critically.

  1. 77 FR 74283 - Clearing Requirement Determination Under Section 2(h) of the CEA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ...\\ Clearing Requirement Determination Under Section 2(h) of the CEA; Proposed Rule, 77 FR 47170 (Aug. 7, 2012... result of these failures, unprecedented governmental intervention was required to ensure the stability of... to Trade Under Section 2(h)(8) of the Commodity Exchange Act, 76 FR 77728 (Dec. 14, 2011)....

  2. SysZNF: the C2H2 zinc finger gene database.

    PubMed

    Ding, Guohui; Lorenz, Peter; Kreutzer, Michael; Li, Yixue; Thiesen, Hans-Juergen

    2009-01-01

    C2H2 zinc finger (C2H2-ZNF) genes are one of the largest and most complex gene super-families in metazoan genomes, with hundreds of members in the human and mouse genome. The ongoing investigation of this huge gene family requires computational support to catalog genotype phenotype comparisons of C2H2-ZNF genes between related species and finally to extend the worldwide knowledge on the evolution of C2H2-ZNF genes in general. Here, we systematically collected all the C2H2-ZNF genes in the human and mouse genome and constructed a database named SysZNF to deposit available datasets related to these genes. In the database, each C2H2-ZNF gene entry consists of physical location, gene model (including different transcript forms), Affymetrix gene expression probes, protein domain structures, homologs (and synteny between human and mouse), PubMed references as well as links to relevant public databases. The clustered organization of the C2H2-ZNF genes is highlighted. The database can be searched using text strings or sequence information. The data are also available for batch download from the web site. Moreover, the graphical gene model/protein view system, sequence retrieval system and some other tools embedded in SysZNF facilitate the research on the C2H2 type ZNF genes under an integrative view. The database can be accessed from the URL http://epgd.biosino.org/SysZNF.

  3. MICROWAVE SPECTRA AND GEOMETRIES OF C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna L.; Tew, David Peter; Walker, Nick; Legon, Anthony

    2015-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}. These complexes are generated via laser ablation at 532 nm of a silver surface in the presence of CF3I and either C2H_{2} or C2H_{4} and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ and ΔJK) of each molecule have been determined as well the nuclear electric quadrupole coupling constants the iodine atom (χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H_{2} or C2H_{4} subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule. These to complexes are put in the context of the recently studied H2S\\cdots AgI, OC\\cdotsAgI, H3N\\cdots AgI and (CH3)_{3N\\cdots AgI}. S.Z. Riaz, S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, Chem. Phys. Let., 531, 1-12 (2012) S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, J. Chem. Phys., 136(6), 064306 (2012) D.M. Bittner, D.P. Zaleski, S.L. Stephens, N.R. Walker, A.C. Legon, Study in progress.

  4. A 'Pot of Gold' Rich with Nuggets (Sol 163)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This close-up image taken by the Mars Exploration Rover Spirit highlights the nodular nuggets that cover the rock dubbed 'Pot of Gold.' These nuggets appear to stand on the end of stalk-like features. The surface of the rock is dotted with fine-scale pits. Data from the rover's scientific instruments have shown that Pot of Gold contains the mineral hematite, which can be formed with or without water.

    Scientists are planning further observations of this rock, which they hope will yield more insight into the hematite's origins as well as how the enigmatic nuggets formed.

    This image was taken by Spirit's microscopic imager on sol 163 (June 18, 2004). The observed area is 3 centimeters by 3 centimeters (1.2 inches by 1.2 inches).

  5. Use of fully biodegradable panels to reduce derelict pot threats to marine fauna.

    PubMed

    Bilkovic, D M; Havens, K J; Stanhope, D M; Angstadt, K T

    2012-12-01

    Fishing pots (i.e., traps) are designed to catch fish or crustaceans and are used globally. Lost pots are a concern for a variety of fisheries, and there are reports that 10-70% of deployed pots are lost annually. Derelict fishing pots can be a source of mortality for target and bycatch species for several years. Because continual removal of derelict gear can be impractical over large spatial extents, modifications are needed to disarm gear once it is lost. We tested a fully biodegradable panel with a cull or escape ring designed for placement on the sides of a crab pot that completely degrades into environmentally neutral constituents after approximately 1 year. This panel is relatively inexpensive, easy to install, and can be used in multiple fisheries. We used the blue crab (Callinectes sapidus) fishery as a test case because it is a large pot fishery and blue crab pots are similar to traps used in other pot fisheries. We had commercial fishers deploy pots with panels alongside standard pots in Chesapeake Bay (U.S.A.) to assess potential effects of our experimental pots on blue crab catch. We compared the number, biomass, and size of crabs captured between standard and experimental pots and evaluated differences in catch over a crabbing season (March-November) at five locations. There was no evidence that biodegradable panels adversely affected catch. In all locations and time periods, legal catches were comparable in abundance, biomass, and size between experimental and standard pots. Properly designed biodegradable panels appear to be a viable solution to mitigate adverse effects of derelict pots.

  6. Bi(OTf)3-catalyzed addition of isocyanides to 2H-chromene acetals: an efficient pathway for accessing 2-carboxamide-2H-chromenes.

    PubMed

    Lyu, Longyun; Jin, Ming Yu; He, Qijie; Xie, Han; Bian, Zhaoxiang; Wang, Jun

    2016-09-14

    Bismuth triflate (Bi(OTf)3) is identified as an efficient catalyst for the direct addition of isocyanides to 2H-chromene acetals. The large scope of isocyanides and chromene acetals makes them suitable substrates in this catalytic system. By this synthetic strategy, a polyfunctional molecular scaffold, 2-carboxamide-2H-chromenes could be prepared efficiently in one step up to 95% yield. In addition, this efficient and practical protocol proceeded smoothly in the gram scale even when the catalytic loading was reduced to 2 mol%. PMID:27503764

  7. State-of-the-art evaporation technology: Topical report

    SciTech Connect

    Hasfurther, V.R.; Haass, M.J.

    1986-09-01

    This report discusses evaporation theory, measurement and estimation as well as the effects of water quality on evaporation. Emissions from waste effluents is also mentioned. The theory and equations to represent evaporation using energy balances, mass transport and the combination of these two methods of analysis are presented in detail. Evaporation meters and other techniques for measuring evaporation are reviewed. A discussion of ways to estimate areal evaporation is presented along with criteria which affects evaporation pond design. The effects of chemical monolayers and salinity on the rate of evaporation is cited and discussed to indicated problems associated with most industrial waste effluents. The problem of monitoring emissions resulting from evaporation ponds associated with industrial waste emissions is also presented.

  8. Diastereoselective one-pot Knoevenagel condensation/Corey-Chaykovsky cyclopropanation.

    PubMed

    Clemens, Jeremy J; Asgian, Juliana L; Busch, Brett B; Coon, Timothy; Ernst, Justin; Kaljevic, Leonard; Krenitsky, Paul J; Neubert, Timothy D; Schweiger, Edwin J; Termin, Andreas; Stamos, Dean

    2013-01-18

    Efforts to substitute the cyclopropane ring in a series of aryl cyclopropylnitriles led to the discovery of an operationally simple one-pot method for Knoevenagel condensation and subsequent Corey-Chaykovsky cyclopropanation giving diastereomerically pure products as a racemic mixture of enantiomers. Method development and results for variably substituted aryl acetonitriles and aldehydes in the reaction are reported. A concise synthesis of (±)-bicifadine in two steps is provided to demonstrate the utility of the method. PMID:23252964

  9. The transcriptional regulator c2h2 accelerates mushroom formation in Agaricus bisporus.

    PubMed

    Pelkmans, Jordi F; Vos, Aurin M; Scholtmeijer, Karin; Hendrix, Ed; Baars, Johan J P; Gehrmann, Thies; Reinders, Marcel J T; Lugones, Luis G; Wösten, Han A B

    2016-08-01

    The Cys2His2 zinc finger protein gene c2h2 of Schizophyllum commune is involved in mushroom formation. Its inactivation results in a strain that is arrested at the stage of aggregate formation. In this study, the c2h2 orthologue of Agaricus bisporus was over-expressed in this white button mushroom forming basidiomycete using Agrobacterium-mediated transformation. Morphology, cap expansion rate, and total number and biomass of mushrooms were not affected by over-expression of c2h2. However, yield per day of the c2h2 over-expression strains peaked 1 day earlier. These data and expression analysis indicate that C2H2 impacts timing of mushroom formation at an early stage of development, making its encoding gene a target for breeding of commercial mushroom strains. PMID:27207144

  10. Amplitude Higgs mode in the 2H-NbSe2 superconductor

    NASA Astrophysics Data System (ADS)

    Méasson, M.-A.; Gallais, Y.; Cazayous, M.; Clair, B.; Rodière, P.; Cario, L.; Sacuto, A.

    2014-02-01

    We report experimental evidence for the observation of the superconducting amplitude mode, the so-called ``Higgs" mode, in the charge density wave superconductor 2H-NbSe2 using Raman scattering. By comparing 2H-NbSe2 and its isostructural partner 2H-NbS2 which shows superconductivity but lacks the charge density wave order, we demonstrate that the superconducting mode in 2H-NbSe2 owes its spectral weight to the presence of the coexisting charge density wave order. In addition, temperature dependent measurements in 2H-NbSe2 show a full spectral weight transfer from the charge density wave mode to the superconducting mode upon entering the superconducting phase. Both observations are fully consistent with a superconducting amplitude mode or Higgs mode.

  11. Estimation of Sabkha evaporation as an important sink of groundwater on the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Horovitz, Marcel; Schulz, Stephan; Köhne, John Maximilian; Rausch, Randolf; Siebert, Christian; Michelsen, Nils; Schüth, Christoph

    2013-04-01

    Arid regions like the Arabian Peninsula are limited on water resources. Hence, it is important to estimate the water balance components. On the Arabian Shelf an important natural sink term are Sabkhas (salt flats) from which shallow saline groundwater evaporates. The Sabkhas are mostly located along the coast of the Arabian Gulf and in the Rub' Al Khali basin. The first task is to map the spatial distribution of the active Sabkhas, where evaporation of groundwater is taking place. The mapping is conducted in two steps via remote sensing. In the first phase potential Sabkhas are mapped by the use of thresholds of MODIS spectral band ratios 3/2, 3/6, and 6/7. For the second step we use the thermal band information of Landsat ETM+ 7 data to distinguish the active areas inside the potential Sabkhas from inactive areas. To check for a possible seasonal trend of the spatial distribution of active Sabkhas we compare satellite images after the rain season (May) and at the end of the dry season (September). The results of the classification are verified by ground truthing points, recorded during a field trip to Saudi Arabia in November 2012. As a second stage we estimate the evaporation rate by soil column experiments. To account for the textural variability of different Sabkhas in Saudi Arabia four undisturbed soil columns were extracted from the top layer. The soil columns have a height of approximately 50 cm and a diameter of 16 cm. With the experimental setup we determine evaporation rates according to water level and temperature. To determine the source (ascending groundwater, precipitation, or seawater) of the evaporating water several samples were taken. These samples are analyzed for the (i) chemical composition and the chloride-bromide-ratio compared with reference samples, (ii) 2H-18O-signature in pore water through vertical soil profiles, and (iii) isotopic signature of sulphate compared with reference samples.

  12. Helium POT System for Maintaining Sample Temperature after Cryocooler Deactivation

    NASA Astrophysics Data System (ADS)

    Haid, B. J.

    2006-04-01

    A system for maintaining a sample at a constant temperature below 10 K after deactivating the cooling source is demonstrated. In this system, the cooling source is a 4 K GM cryocooler that is joined with the sample through an extension that consists of a helium pot and a thermal resistance. Upon stopping the cryocooler, the power applied to a heater located on the sample side of the thermal resistance is decreased gradually to maintain an appropriate temperature rise across the thermal resistance as the helium pot warms. The sample temperature is held constant in this manner without the use of solid or liquid cryogens and without mechanically disconnecting the sample from the cooler. Shutting off the cryocooler significantly reduces sample motion that results from vibration and expansion/contraction of the cold-head housing. The reduction in motion permits certain procedures that are very sensitive to sample position stability, but are performed with limited duration. A proof-of-concept system was built and operated with the helium pot pressurized to the cryocooler's charge pressure. A sample with 200 mW of continuous heat dissipation was maintained at 7 K while the cryocooler operated intermittently with a duty cycle of 9.5 minutes off and 20 minutes on.

  13. Recirculating 1-K-Pot for Pulse-Tube Cryostats

    NASA Technical Reports Server (NTRS)

    Paine, Christopher T.; Naylor, Bret J.; Prouve, Thomas

    2013-01-01

    A paper describes a 1-K-pot that works with a commercial pulse tube cooler for astrophysics instrumentation testbeds that require temperatures <1.7 K. Pumped liquid helium-4 cryostats were commonly used to achieve this temperature. However, liquid helium-4 cryostats are being replaced with cryostats using pulse tube coolers. The closed-cycle 1K-pot system for the pulse tube cooler requires a heat exchanger on the pulse tube, a flow restriction, pump-out line, and pump system that recirculates helium-4. The heat exchanger precools and liquefies helium- 4 gas at the 2.5 to 3.5 K pulse tube cold head. This closed-cycle 1-K-pot system was designed to work with commercially available laboratory pulse tube coolers. It was built using common laboratory equipment such as stainless steel tubing and a mechanical pump. The system is self-contained and requires only common wall power to operate. The lift of 15 mW at 1.1 K and base temperature of 0.97 K are provided continuously. The system can be scaled to higher heat lifts of .30 to 50 mW if desired. Ground-based telescopes could use this innovation to improve the efficiency of existing cryo

  14. Helium Pot System for Maintaining Sample Temperature after Cryocooler Deactivation

    SciTech Connect

    Haid, B J

    2005-01-26

    A system for maintaining a sample at a constant temperature below 10K after deactivating the cooling source is demonstrated. In this system, the cooling source is a GM cryocooler that is joined with the sample through an adaptor that consists of a helium pot and a resistive medium. Upon deactivating the cryocooler, the power applied to a heater located on the sample side of the resistive medium is decreased gradually to maintain an appropriate temperature rise across the resistive medium as the helium pot warms. The temperature is held constant in this manner without the use of solid or liquid cryogens and without mechanically disconnecting the sample from the cooler. Shutting off the cryocooler significantly reduces sample motion that results from vibration and expansion/contraction of the cold head housing. The reduction in motion permits certain processes that are very sensitive to sample position stability, but are not performed throughout the duration that the sample is at low-temperature. An apparatus was constructed to demonstrate this technique using a 4K GM cryocooler. Experimental and theoretical predictions indicate that when the helium pot is pressurized to the working pressure of the cryocooler's helium supply, a sample with continuous heat dissipation of several-hundred milliwatts can be maintained at 7K for several minutes when using an extension that increases the cold head length by less than 50%.

  15. High Voltage Breakdown Levels in Various EPC Potting Materials

    NASA Technical Reports Server (NTRS)

    Komm, David S.

    2006-01-01

    This viewgraph presentation reviews exploration activities at JPL into various potting materials. Since high power space-borne microwave transmitters invariably use a vacuum tube as a final power amplifier, and this tube requires high electrode voltages for operation. The associated high voltage insulation typically represents a significant fraction of the mass of the transmitter. Since mass is always a premium resource on board spacecraft, we have been investigating materials with the potential to reduce the mass required for our applications here at JPL. This paper describes electrical breakdown results obtained with various potting materials. Conathane EN-11 (polyurethane) is the traditional HVPS encapsulant at JPL, but due to temperature limitations and durability issues it was deemed inappropriate for the particular application (i.e., CloudSat radar). The choices for the best available materials were epoxies, or silicones. Epoxies are too rigid, and were deemed inadvisable. Two silicones were further investigated (i.e.,ASTM E595- 93e2: GE RTV566(R) and Dow Corning 93-500X(R), another compound was considered (i.e., DC material, Sylgard 184(R)). "Loading" (adding filler materials) the potting compound will frequently alter the final material properties. Powdered alumina and borosilicate glass known as "microballoons" were investigated as possible loading materials. The testing of the materials is described. Each of the two loading materials offers advantages and disadvantages. The advantages and disadvantages are described.

  16. High-resolution solid-state 2H NMR spectroscopy of polymorphs of glycine.

    PubMed

    Aliev, Abil E; Mann, Sam E; Rahman, Aisha S; McMillan, Paul F; Corà, Furio; Iuga, Dinu; Hughes, Colan E; Harris, Kenneth D M

    2011-11-10

    High-resolution solid-state (2)H MAS NMR studies of the α and γ polymorphs of fully deuterated glycine (glycine-d(5)) are reported. Analysis of spinning sideband patterns is used to determine the (2)H quadrupole interaction parameters, and is shown to yield good agreement with the corresponding parameters determined from single-crystal (2)H NMR measurements (the maximum deviation in quadrupole coupling constants determined from these two approaches is only 1%). From analysis of simulated (2)H MAS NMR sideband patterns as a function of reorientational jump frequency (κ) for the -N(+)D(3) group in glycine-d(5), the experimentally observed differences in the (2)H MAS NMR spectrum for the -N(+)D(3) deutrons in the α and γ polymorphs is attributed to differences in the rate of reorientation of the -N(+)D(3) group. These simulations show severe broadening of the (2)H MAS NMR signal in the intermediate motion regime, suggesting that deuterons undergoing reorientational motions at rates in the range κ ≈ 10(4)-10(6) s(-1) are likely to be undetectable in (2)H MAS NMR measurements for materials with natural isotopic abundances. The (1)H NMR chemical shifts for the α and γ polymorphs of glycine have been determined from the (2)H MAS NMR results, taking into account the known second-order shift. Further quantum mechanical calculations of (2)H quadrupole interaction parameters and (1)H chemical shifts reveal the structural dependence of these parameters in the two polymorphs and suggest that the existence of two short intermolecular C-H···O contacts for one of the H atoms of the >CH(2) group in the α polymorph have a significant influence on the (2)H quadrupole coupling and (1)H chemical shift for this site. PMID:21939265

  17. Evaporation of Topopah Spring tuff pore water

    SciTech Connect

    Dibley, M J; Knauss, K G; Rosenberg, N D

    1999-09-10

    We report on the results to date for experiments on the evaporative chemical evolution of a CaSO, rich water representative of Topopah Spring Tuff porewater from Yucca Mountain. Data include anion and cation analysis and qualitative mineral identification for a series of open system experiments, with and without crushed tuff present, conducted at sub-boiling temperatures.

  18. Evaporation of Liquid Hydrocarbon Mixtures on Titan

    NASA Astrophysics Data System (ADS)

    Luspay-Kuti, Adrienn; Chevrier, V. F.; Rivera-Valentin, E. G.; Singh, S.; Roe, L. A.; Wagner, A.

    2013-10-01

    Besides Earth, Titan is the only other known planetary body with proven stable liquids on its surface. The hydrological cycle of these liquid hydrocarbon mixtures is critical in understanding Titan’s atmosphere and surface features. Evaporation of liquid surface bodies has been indirectly observed as shoreline changes from measurements by Cassini ISS and RADAR (Hayes et al. 2011, Icarus 211, 655-671; Turtle et al. 2011, Science 18, 1414-1417.), but the long seasons of Saturn strongly limit the time span of these observations and their validity over the course of an entire Titan year. Using a novel Titan simulation chamber, the evaporation rate of liquid methane and dissolved nitrogen mixture under Titan surface conditions was derived (Luspay-Kuti et al. 2012, GRL 39, L23203), which is especially applicable to low latitude transient liquids. Polar lakes, though, are expected to be composed of a variety of hydrocarbons, primarily a mixture of ethane and methane (e.g. Cordier et al. 2009, ApJL 707, L128-L131). Here we performed laboratory simulations of ethane-methane mixtures with varying mole fraction under conditions suitable for the polar regions of Titan. We will discuss results specifically addressing the evaporation behavior as the solution becomes increasingly ethane dominated, providing quantitative values for the evaporation rate at every step. These laboratory results are relevant to polar lakes, such as Ontario Lacus, and can shed light on their stability.

  19. Soil water evaporation and crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  20. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  1. 95-1 Campaign evaporator boildown results

    SciTech Connect

    Miller, G.L.

    1994-10-10

    The Process Chemistry Laboratories were requested to support the 242-A Evaporator restart as part of the overall 222-S laboratory effort. The net purpose of these studies is to determine the characteristics of double-shell tank materials as they are processed in the evaporator. The results for the boildown study (which includes pressure and temperature versus % waste volume reduction and density of final boildown residue) supporting the 242-A Evaporator restart are reported below. The boildown was performed in a vacuum distillation apparatus with an adjustable vacuum limiting manometer and an isolatable collection graduated cylinder. The boildown was conducted over a seven hour period. The evaporation was done at 60 torr (to avoid excessive foaming and bumping of solution) for approximately half of the boildown, the pressure then being reduced to 40 torr when the reduction in solution volume allowed this to be done. Percent waste volume reduction was measured by observing the amount of condensate collected in a graduated cylinder. As the graduated cylinder became full, it was isolated from the rest of the system and the condensate removed. Pressure was set using an electronic manometer with a low pressure limiter set at the desired level. Temperature was measured using a J-type thermocouple. The apparatus was calibrated by observing the pressure versus temperature response of pure water, and comparing the values thus obtained to published values.

  2. Evaporation from an ionic liquid emulsion.

    PubMed

    Friberg, Stig E

    2007-03-15

    The conditions during evaporation in a liquid crystal-in-ionic liquid microemulsion (LC/microEm) were estimated using the phase diagram of the system. The equations for selected tie lines were established and the coordinates calculated for the sites, at which the evaporation lines crossed the tie lines. These values combined with the coordinates for the phases connecting the tie lines were used to calculate the amounts and the composition of the fractions of the two phases present in the emulsion during the evaporation. One of the emulsion phases was a lamellar liquid crystal and high energy emulsification would lead to the liquid crystal being disrupted to form vesicles. Such a system tenders a unique opportunity to study the interaction between vesicles and normal micelles, which gradually change to inverse micelles over bi-continuous structures. The amount of vesicles in the liquid phase versus the fraction liquid crystal was calculated for two extreme cases of vesicle core size and shell thickness. The limit of evaporation while retaining the vesicle structure was calculated for emulsions of different original compositions assuming the minimum continuous liquid phase to be 50% of the emulsion.

  3. Evaporation And Ignition Of Dense Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1988-01-01

    Simple theoretical model makes useful predictions of trends. Pair of reports presents theoretical model of evaporation and ignition of sprayed liquid fuel. Developed as part of research in combustion of oil and liquid fuels derived from coal, tar sand, and shale in furnace. Work eventually contributes to increase efficiency of combustion and decrease pollution generated by burning of such fuels.

  4. On the lifetimes of evaporating droplets

    NASA Astrophysics Data System (ADS)

    Wilson, Stephen; Stauber, Jutta; Duffy, Brian; Sefiane, Khellil

    2013-11-01

    The evaporation of a fluid droplet on a solid substrate is a practically important problem which has been the subject of considerable research in recent years, much of it motivated by a range of technological applications, such as the application of pesticides to plants, DNA microarray analysis, inkjet printing, micro-fabrication, and spray cooling. In particular, the lifetime of a fluid droplet is not only of fundamental scientific interest, but is also important in a number of technological applications, such as inkjet printing and spray cooling applications (in which shorter droplet lifetimes are often needed) and the application of pesticides to plants (in which longer droplet lifetimes are often needed). In this talk we will analyse the lifetimes of fluid droplets evaporating in a variety of modes and, in particular, show that the widely believed folklore that the lifetime of a droplet is always longer than that of an identical droplet evaporating in the constant radius (i.e. pinned contact line) mode and shorter than that of an identical droplet evaporating in the constant angle mode is not, in general, true.

  5. Evaporation from an ionic liquid emulsion.

    PubMed

    Friberg, Stig E

    2007-03-15

    The conditions during evaporation in a liquid crystal-in-ionic liquid microemulsion (LC/microEm) were estimated using the phase diagram of the system. The equations for selected tie lines were established and the coordinates calculated for the sites, at which the evaporation lines crossed the tie lines. These values combined with the coordinates for the phases connecting the tie lines were used to calculate the amounts and the composition of the fractions of the two phases present in the emulsion during the evaporation. One of the emulsion phases was a lamellar liquid crystal and high energy emulsification would lead to the liquid crystal being disrupted to form vesicles. Such a system tenders a unique opportunity to study the interaction between vesicles and normal micelles, which gradually change to inverse micelles over bi-continuous structures. The amount of vesicles in the liquid phase versus the fraction liquid crystal was calculated for two extreme cases of vesicle core size and shell thickness. The limit of evaporation while retaining the vesicle structure was calculated for emulsions of different original compositions assuming the minimum continuous liquid phase to be 50% of the emulsion. PMID:17207810

  6. Isotope fractionation of water during evaporation without condensation.

    PubMed

    Cappa, Christopher D; Drisdell, Walter S; Smith, Jared D; Saykally, Richard J; Cohen, Ronald C

    2005-12-29

    The microscopic events engendering liquid water evaporation have received much attention over the last century, but remain incompletely understood. We present measurements of isotope fractionation occurring during free molecular evaporation from liquid microjets and show that the isotope ratios of evaporating molecules exhibit dramatic differences from equilibrium vapor values, strong variations with the solution deuterium mole fraction, and a clear temperature dependence. These results indicate the existence of an energetic barrier to evaporation and that the evaporation coefficient of water is less than unity. These new insights into water evaporation promise to advance our understanding of the processes that control the formation and lifetime of clouds in the atmosphere. PMID:16375440

  7. Isotope fractionation of water during evaporation without condensation.

    PubMed

    Cappa, Christopher D; Drisdell, Walter S; Smith, Jared D; Saykally, Richard J; Cohen, Ronald C

    2005-12-29

    The microscopic events engendering liquid water evaporation have received much attention over the last century, but remain incompletely understood. We present measurements of isotope fractionation occurring during free molecular evaporation from liquid microjets and show that the isotope ratios of evaporating molecules exhibit dramatic differences from equilibrium vapor values, strong variations with the solution deuterium mole fraction, and a clear temperature dependence. These results indicate the existence of an energetic barrier to evaporation and that the evaporation coefficient of water is less than unity. These new insights into water evaporation promise to advance our understanding of the processes that control the formation and lifetime of clouds in the atmosphere.

  8. Tank 26F-2F Evaporator Study

    SciTech Connect

    Adu-Wusu, K.

    2012-12-19

    Tank 26F supernate sample was sent by Savannah River Remediation to Savannah River National Laboratory for evaporation test to help understand the underlying cause of the recent gravity drain line (GDL) pluggage during operation of the 2F Evaporator system. The supernate sample was characterized prior to the evaporation test. The evaporation test involved boiling the supernate in an open beaker until the density of the concentrate (evaporation product) was between 1.4 to 1.5 g/mL. It was followed by filtering and washing of the precipitated solids with deionized water. The concentrate supernate (or concentrate filtrate), the damp unwashed precipitated solids, and the wash filtrates were characterized. All the precipitated solids dissolved during water washing. A semi-quantitative X-ray diffraction (XRD) analysis on the unwashed precipitated solids revealed their composition. All the compounds with the exception of silica (silicon oxide) are known to be readily soluble in water. Hence, their dissolution during water washing is not unexpected. Even though silica is a sparingly water-soluble compound, its dissolution is also not surprising. This stems from its small fraction in the solids as a whole and also its relative freshness. Assuming similar supernate characteristics, flushing the GDL with water (preferably warm) should facilitate dissolution and removal of future pluggage events as long as build up/aging of the sparingly soluble constituent (silica) is limited. On the other hand, since the amount of silica formed is relatively small, it is quite possible dissolution of the more soluble larger fraction will cause disintegration or fragmentation of the sparingly soluble smaller fraction (that may be embedded in the larger soluble solid mass) and allow its removal via suspension in the flushing water.

  9. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    PubMed Central

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  10. The Evaporative Function of Cockroach Hygroreceptors

    PubMed Central

    Tichy, Harald; Kallina, Wolfgang

    2013-01-01

    Insect hygroreceptors associate as antagonistic pairs of a moist cell and a dry cell together with a cold cell in small cuticular sensilla on the antennae. The mechanisms by which the atmospheric humidity stimulates the hygroreceptive cells remain elusive. Three models for humidity transduction have been proposed in which hygroreceptors operate either as mechanical hygrometers, evaporation detectors or psychrometers. Mechanical hygrometers are assumed to respond to the relative humidity, evaporation detectors to the saturation deficit and psychrometers to the temperature depression (the difference between wet-bulb and dry-bulb temperatures). The models refer to different ways of expressing humidity. This also means, however, that at different temperatures these different types of hygroreceptors indicate very different humidity conditions. The present study tested the adequacy of the three models on the cockroach’s moist and dry cells by determining whether the specific predictions about the temperature-dependence of the humidity responses are indeed observed. While in previous studies stimulation consisted of rapid step-like humidity changes, here we changed humidity slowly and continuously up and down in a sinusoidal fashion. The low rates of change made it possible to measure instantaneous humidity values based on UV-absorption and to assign these values to the hygroreceptive sensillum. The moist cell fitted neither the mechanical hygrometer nor the evaporation detector model: the temperature dependence of its humidity responses could not be attributed to relative humidity or to saturation deficit, respectively. The psychrometer model, however, was verified by the close relationships of the moist cell’s response with the wet-bulb temperature and the dry cell’s response with the dry-bulb temperature. Thus, the hygroreceptors respond to evaporation and the resulting cooling due to the wetness or dryness of the air. The drier the ambient air (absolutely) and

  11. The evaporative function of cockroach hygroreceptors.

    PubMed

    Tichy, Harald; Kallina, Wolfgang

    2013-01-01

    Insect hygroreceptors associate as antagonistic pairs of a moist cell and a dry cell together with a cold cell in small cuticular sensilla on the antennae. The mechanisms by which the atmospheric humidity stimulates the hygroreceptive cells remain elusive. Three models for humidity transduction have been proposed in which hygroreceptors operate either as mechanical hygrometers, evaporation detectors or psychrometers. Mechanical hygrometers are assumed to respond to the relative humidity, evaporation detectors to the saturation deficit and psychrometers to the temperature depression (the difference between wet-bulb and dry-bulb temperatures). The models refer to different ways of expressing humidity. This also means, however, that at different temperatures these different types of hygroreceptors indicate very different humidity conditions. The present study tested the adequacy of the three models on the cockroach's moist and dry cells by determining whether the specific predictions about the temperature-dependence of the humidity responses are indeed observed. While in previous studies stimulation consisted of rapid step-like humidity changes, here we changed humidity slowly and continuously up and down in a sinusoidal fashion. The low rates of change made it possible to measure instantaneous humidity values based on UV-absorption and to assign these values to the hygroreceptive sensillum. The moist cell fitted neither the mechanical hygrometer nor the evaporation detector model: the temperature dependence of its humidity responses could not be attributed to relative humidity or to saturation deficit, respectively. The psychrometer model, however, was verified by the close relationships of the moist cell's response with the wet-bulb temperature and the dry cell's response with the dry-bulb temperature. Thus, the hygroreceptors respond to evaporation and the resulting cooling due to the wetness or dryness of the air. The drier the ambient air (absolutely) and the

  12. The evaporative function of cockroach hygroreceptors.

    PubMed

    Tichy, Harald; Kallina, Wolfgang

    2013-01-01

    Insect hygroreceptors associate as antagonistic pairs of a moist cell and a dry cell together with a cold cell in small cuticular sensilla on the antennae. The mechanisms by which the atmospheric humidity stimulates the hygroreceptive cells remain elusive. Three models for humidity transduction have been proposed in which hygroreceptors operate either as mechanical hygrometers, evaporation detectors or psychrometers. Mechanical hygrometers are assumed to respond to the relative humidity, evaporation detectors to the saturation deficit and psychrometers to the temperature depression (the difference between wet-bulb and dry-bulb temperatures). The models refer to different ways of expressing humidity. This also means, however, that at different temperatures these different types of hygroreceptors indicate very different humidity conditions. The present study tested the adequacy of the three models on the cockroach's moist and dry cells by determining whether the specific predictions about the temperature-dependence of the humidity responses are indeed observed. While in previous studies stimulation consisted of rapid step-like humidity changes, here we changed humidity slowly and continuously up and down in a sinusoidal fashion. The low rates of change made it possible to measure instantaneous humidity values based on UV-absorption and to assign these values to the hygroreceptive sensillum. The moist cell fitted neither the mechanical hygrometer nor the evaporation detector model: the temperature dependence of its humidity responses could not be attributed to relative humidity or to saturation deficit, respectively. The psychrometer model, however, was verified by the close relationships of the moist cell's response with the wet-bulb temperature and the dry cell's response with the dry-bulb temperature. Thus, the hygroreceptors respond to evaporation and the resulting cooling due to the wetness or dryness of the air. The drier the ambient air (absolutely) and the

  13. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  14. Saturn's latitudinal C 2H 2 and C 2H 6 abundance profiles from Cassini/CIRS and ground-based observations

    NASA Astrophysics Data System (ADS)

    Hesman, Brigette E.; Jennings, Donald E.; Sada, Pedro V.; Bjoraker, Gordon L.; Achterberg, Richard K.; Simon-Miller, Amy A.; Anderson, Carrie M.; Boyle, Robert J.; Nixon, Conor A.; Fletcher, Leigh N.; McCabe, George H.

    2009-07-01

    Hydrocarbons in the upper atmosphere of Saturn are known, from Voyager, ground-based, and early Cassini results, to vary in emission intensity with latitude. Of particular interest is the marked increase in hydrocarbon line intensity near the south pole during southern summer, as the increased line intensity cannot be simply explained by the increased temperatures observed in that region since the variations between C2H2 and C2H6 emission in the south pole region are different. In order to measure the latitudinal variations of hydrocarbons in Saturn's southern hemisphere we have used 3 cm-1 resolution Cassini CIRS data from 2006 and combined this with measurements from the ground in October 2006 at NASA's IRTF using Celeste, an infrared high-resolution cryogenic grating spectrometer. These two data sets have been used to infer the molecular abundances of C2H2 and C2H6 across the southern hemisphere in the 1-10 mbar altitude region. We find that the latitudinal acetylene profile follows the yearly average mean daily insolation except at the southern pole where it peaks in abundance. Near the equator (5° S) the C2H2 abundance at the 1.2 mbar level is (1.6 ± 0.19) ×10-7 and it decreases by a factor of 2.7 from the equator toward the pole. However, at the pole (∼87° S) the C2H2 abundance jumps to (1.8 ± 0.3) ×10-7, approximately the equatorial value. The C2H6 abundance near the equator at the 2 mbar level is (0.7 ± 0.1) ×10-5 and stays approximately constant until mid-latitudes where it increases gradually toward the pole, attaining a value of (1.4 ± 0.4) ×10-5 there. The increase in ethane toward the pole with the corresponding decrease in acetylene is consistent with southern hemisphere meridional winds [Greathouse, T.K., Lacy, J.H., Bézard, B., Moses, J.I., Griffith, C.A., Richter, M.J., 2005. Icarus 177, 18-31]. The localized increase in acetylene at the pole provides evidence that there is dynamical transport of hydrocarbons from the equator to the

  15. Condensation and Evaporation of Solar System Materials

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Richter, F. M.

    2003-12-01

    condensable matter (see Chapter 1.08; Grossman, 1973; Wänke et al., 1974; Grossman and Ganapathy, 1976; Grossman et al., 1977), where CI chondrites are taken to represent total condensable matter.Elemental abundance patterns ordered by volatility certainly could have been produced by partial condensation, but they could also have been caused by partial evaporation. The relative importance of these opposite processes is still subject to debate and uncertainty. It should be remembered that condensation calculations typically assume chemical equilibrium in a closed system, in which case the system has no memory of the path by which it arrived at a given state, and thus the chemical and isotopic composition of the condensed phase cannot be used to distinguish between partial condensation and partial evaporation. Humayun and Clayton (1995) have taken a somewhat different view by arguing that condensation and evaporation are distinguishable, in that evaporation, but not condensation, will produce isotopically fractionated residues. With this idea in mind, they carefully measured the potassium isotopic compositions of a broad range of solar system materials with different degrees of potassium depletion and found them to be indistinguishable. This they took as evidence that evaporation could not have been a significant process in determining the diverse elemental abundance patterns of the various solar system materials they measured, because had evaporation been important in fractionating potassium it would have also fractionated the potassium isotopes. We will qualify this line of reasoning by arguing that evaporation and condensation can under certain conditions produce isotopically fractionated condensed phases (i.e., that partial evaporation can produce isotopically heavy residues and that partial condensation can produce isotopically light condensates) but that under other conditions both can produce elemental fractionations without significant isotopic fractionation. The

  16. Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation.

    PubMed

    He, Shuying; Limi, Saima; McGreal, Rebecca S; Xie, Qing; Brennan, Lisa A; Kantorow, Wanda Lee; Kokavec, Juraj; Majumdar, Romit; Hou, Harry; Edelmann, Winfried; Liu, Wei; Ashery-Padan, Ruth; Zavadil, Jiri; Kantorow, Marc; Skoultchi, Arthur I; Stopka, Tomas; Cvekl, Ales

    2016-06-01

    Ocular lens morphogenesis is a model for investigating mechanisms of cellular differentiation, spatial and temporal gene expression control, and chromatin regulation. Brg1 (Smarca4) and Snf2h (Smarca5) are catalytic subunits of distinct ATP-dependent chromatin remodeling complexes implicated in transcriptional regulation. Previous studies have shown that Brg1 regulates both lens fiber cell differentiation and organized degradation of their nuclei (denucleation). Here, we employed a conditional Snf2h(flox) mouse model to probe the cellular and molecular mechanisms of lens formation. Depletion of Snf2h induces premature and expanded differentiation of lens precursor cells forming the lens vesicle, implicating Snf2h as a key regulator of lens vesicle polarity through spatial control of Prox1, Jag1, p27(Kip1) (Cdkn1b) and p57(Kip2) (Cdkn1c) gene expression. The abnormal Snf2h(-/-) fiber cells also retain their nuclei. RNA profiling of Snf2h(-/) (-) and Brg1(-/-) eyes revealed differences in multiple transcripts, including prominent downregulation of those encoding Hsf4 and DNase IIβ, which are implicated in the denucleation process. In summary, our data suggest that Snf2h is essential for the establishment of lens vesicle polarity, partitioning of prospective lens epithelial and fiber cell compartments, lens fiber cell differentiation, and lens fiber cell nuclear degradation. PMID:27246713

  17. New determination of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reaction rates at astrophysical energies

    SciTech Connect

    Tumino, A.; Spartà, R.; Spitaleri, C.; Pizzone, R. G.; La Cognata, M.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Mukhamedzhanov, A. M.; Typel, S.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.; Burjan, V.; Kroha, V.; Hons, Z.; Mrazek, J.; Piskor, S.; Lamia, L.

    2014-04-20

    The cross sections of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions have been measured via the Trojan Horse method applied to the quasi-free {sup 2}H({sup 3}He,p {sup 3}H){sup 1}H and {sup 2}H({sup 3}He,n {sup 3}He){sup 1}H processes at 18 MeV off the proton in {sup 3}He. For the first time, the bare nucleus S(E) factors have been determined from 1.5 MeV, across the relevant region for standard Big Bang nucleosynthesis, down to the thermal energies of deuterium burning in the pre-main-sequence (PMS) phase of stellar evolution, as well as of future fusion reactors. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from the available direct data and existing fitting curves, with substantial variations in the electron screening by more than 50%. As a consequence, the reaction rates for astrophysics experience relevant changes, with a maximum increase of up to 20% at the temperatures of the PMS phase. From a recent primordial abundance sensitivity study, it turns out that the {sup 2}H(d,n){sup 3}He reaction is quite influential on {sup 7}Li, and the present change in the reaction rate leads to a decrease in its abundance by up to 10%. The present reaction rates have also been included in an updated version of the FRANEC evolutionary code to analyze their influence on the central deuterium abundance in PMS stars with different masses. The largest variation of about 10%-15% pertains to young stars (≤1 Myr) with masses ≥1 M {sub ☉}.

  18. 14C2H4: Its Incorporation and Metabolism by Pea Seedlings under Aseptic Conditions 1

    PubMed Central

    Beyer, Elmo M.

    1975-01-01

    The effects of various treatments on the recently reported system in pea (Pisum sativum cv. Alaska), which results in (a) the incorporation of 14C2H4 into the tissue and (b) the conversion of 14C2H4 to 14CO2, was investigated using 2-day-old etiolated seedlings which exhibit a maximum response. Heat treatment (80 C, 1 min) completely inhibited both a and b, whereas homogenization completely inhibited b but only partially inhibited a. Detaching the cotyledons from the root-shoot axis immediately before exposing the detached cotyledons together with the root-shoot axis to 14C2H4 markedly reduced both a and b. Increasing the 14C2H4 concentration from 0.14 to over 100 μl/l progressively increased the rate of a and b with tissue incorporation being greater than 14C2H4 to 14CO2 conversion only below 0.3 μl/l 14C2H4. Reduction of the O2 concentration reduced both a and b, with over 99% inhibition occurring under anaerobic conditions. The addition of CO2 (5%) severely inhibited 14C2H4 to 14CO2 conversion without significantly affecting tissue incorporation. Exposure of etiolated seedlings to fluorescent light during 14C2H4 treatment was without effect. Similarly, indoleacetic acid, gibberellic acid, benzyladenine, abscisic acid, and dibutyryl cyclic adenosine monophosphate had no significant effect on either a or b. The possibilities that the incorporation of 14C2H4 into pea tissues and its conversion to 14CO2 is linked to ethylene action, or that it represents a means of reducing the endogenous ethylene level, are discussed. Several problems encountered with the use of polyethylene vials, rubber serum stoppers, Clorox, and microbial contamination are also described. Images PMID:16659286

  19. C(2)H(4): Its Incorporation and Metabolism by Pea Seedlings under Aseptic Conditions.

    PubMed

    Beyer, E M

    1975-08-01

    The effects of various treatments on the recently reported system in pea (Pisum sativum cv. Alaska), which results in (a) the incorporation of (14)C(2)H(4) into the tissue and (b) the conversion of (14)C(2)H(4) to (14)CO(2), was investigated using 2-day-old etiolated seedlings which exhibit a maximum response. Heat treatment (80 C, 1 min) completely inhibited both a and b, whereas homogenization completely inhibited b but only partially inhibited a. Detaching the cotyledons from the root-shoot axis immediately before exposing the detached cotyledons together with the root-shoot axis to (14)C(2)H(4) markedly reduced both a and b. Increasing the (14)C(2)H(4) concentration from 0.14 to over 100 mul/l progressively increased the rate of a and b with tissue incorporation being greater than (14)C(2)H(4) to (14)CO(2) conversion only below 0.3 mul/l (14)C(2)H(4). Reduction of the O(2) concentration reduced both a and b, with over 99% inhibition occurring under anaerobic conditions. The addition of CO(2) (5%) severely inhibited (14)C(2)H(4) to (14)CO(2) conversion without significantly affecting tissue incorporation. Exposure of etiolated seedlings to fluorescent light during (14)C(2)H(4) treatment was without effect. Similarly, indoleacetic acid, gibberellic acid, benzyladenine, abscisic acid, and dibutyryl cyclic adenosine monophosphate had no significant effect on either a or b.The possibilities that the incorporation of (14)C(2)H(4) into pea tissues and its conversion to (14)CO(2) is linked to ethylene action, or that it represents a means of reducing the endogenous ethylene level, are discussed.Several problems encountered with the use of polyethylene vials, rubber serum stoppers, Clorox, and microbial contamination are also described. PMID:16659286

  20. Kinetic Resolution of 2H-Azirines by Asymmetric Imine Amidation.

    PubMed

    Hu, Haipeng; Liu, Yangbin; Lin, Lili; Zhang, Yuheng; Liu, Xiaohua; Feng, Xiaoming

    2016-08-16

    Highly efficient kinetic resolution of 2H-azirines by an asymmetric imine amidation was achieved in the presence of a chiral N,N'-dioxide/Sc(III) complex, thus providing a promising method to obtain the enantioenriched 2H-azirine derivatives and protecting-group free aziridines at the same time. It is rare to find an example of N1 of an oxindole participating in a reaction over C3. Moreover, chiral 2H-azirines were stereospecifically transformed into an unprotected aziridine and α-amino ketone. PMID:27384910

  1. Relative high-resolution absorption cross sections of C2H6 at low temperatures

    NASA Astrophysics Data System (ADS)

    Hargreaves, R. J.; Bernath, P. F.; Appadoo, D. R. T.

    2015-09-01

    Synchrotron radiation has been used to record absorption cross sections of ethane, C2H6, in the far-infrared with very high spectral resolution (up to 0.00096 cm-1). C2H6 is present in the atmospheres of the Gas Giant planets and Titan but the vapor pressure at relevant atmospheric temperatures (i.e., between 70 and 200 K) is low. This makes laboratory measurements difficult. We demonstrate the effectiveness of a unique "enclosive flow" cold cell, located at the Australian Synchrotron, that enables high-resolution absorption cross sections of gaseous C2H6 to be recorded at 90 K.

  2. Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Buschek, Harald; Calise, Anthony J.

    1996-01-01

    Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.

  3. A practical way to synthesize chiral fluoro-containing polyhydro-2H-chromenes from monoterpenoids

    PubMed Central

    Mikhalchenko, Oksana S; Korchagina, Dina V; Salakhutdinov, Nariman F

    2016-01-01

    Summary Conditions enabling the single-step preparative synthesis of chiral 4-fluoropolyhydro-2H-chromenes in good yields through a reaction between monoterpenoid alcohols with para-menthane skeleton and aldehydes were developed for the first time. The BF3·Et2O/H2O system is used both as a catalyst and as a fluorine source. The reaction can involve aliphatic aldehydes as well as aromatic aldehydes containing various acceptor and donor substituents. 4-Hydroxyhexahydro-2H-chromenes were demonstrated to be capable of converting to 4-fluorohexahydro-2H-chromenes under the developed conditions, the reaction occurs with inversion of configuration. PMID:27340456

  4. Determination of the delta(2H/1H)of Water: RSIL Lab Code 1574

    USGS Publications Warehouse

    Revesz, Kinga; Coplen, Tyler B.

    2008-01-01

    Reston Stable Isotope Laboratory (RSIL) lab code 1574 describes a method used to determine the relative hydrogen isotope-ratio delta(2H,1H), abbreviated hereafter as d2H of water. The d2H measurement of water also is a component of the National Water Quality Laboratory (NWQL) schedules 1142 and 1172. The water is collected unfiltered in a 60-mL glass bottle and capped with a Polyseal cap. In the laboratory, the water sample is equilibrated with gaseous hydrogen using a platinum catalyst (Horita, 1988; Horita and others, 1989; Coplen and others, 1991). The reaction for the exchange of one hydrogen atom is shown in equation 1.

  5. A practical way to synthesize chiral fluoro-containing polyhydro-2H-chromenes from monoterpenoids.

    PubMed

    Mikhalchenko, Oksana S; Korchagina, Dina V; Volcho, Konstantin P; Salakhutdinov, Nariman F

    2016-01-01

    Conditions enabling the single-step preparative synthesis of chiral 4-fluoropolyhydro-2H-chromenes in good yields through a reaction between monoterpenoid alcohols with para-menthane skeleton and aldehydes were developed for the first time. The BF3·Et2O/H2O system is used both as a catalyst and as a fluorine source. The reaction can involve aliphatic aldehydes as well as aromatic aldehydes containing various acceptor and donor substituents. 4-Hydroxyhexahydro-2H-chromenes were demonstrated to be capable of converting to 4-fluorohexahydro-2H-chromenes under the developed conditions, the reaction occurs with inversion of configuration. PMID:27340456

  6. Effect of Variable Gravity on Evaporation of Binary Fluids in a Capillary Pore Evaporator

    NASA Technical Reports Server (NTRS)

    Girgis, Morris M.; Matta, Nabil S.; Kolli, Kiran; Brown, Leon; Bain, James, Jr.; McGown, Juantonio

    1996-01-01

    The research project focuses on experimental investigation of the capillary-pumped evaporative heat transfer phenomenon. The objective is to examine whether the heat transfer and stability of a heated meniscus in a capillary pore can be enhanced by adding trace amounts of a non-volatile solute to a solvent and to understand the changes that occur. The experimental setup consists of a single pore evaporator connected to a reservoir which supplies liquid to the evaporator. In addition to the experiments of capillary-pumped evaporation, a parallel experimental study has been conducted to systematically investigate the effects of gravity as well as the effects of bulk composition on the heat transfer characteristics of evaporating binary thin films near the contact line region along an inclined heated surface. To investigate the buoyancy effects on evaporation along an inclined heated surface, the angle of inclination from a horizontal plane was varied fro 15 C to 90 C. An optimum concentration between 0.5% and 1% decane in pentane/decane solutions has been demonstrated at different angles of inclination. Improved heat transfer was found for the geometry with the smallest angle of inclination of 15 degrees. In addition, flow visualization has revealed that at low inclination angles effective heat transfer takes place primarily due to an extension of the thin film near the contact line. At these low inclination angles, the optimum concentration is associated with enhanced wetting characteristics and reduced thermocapillary stresses along the interface.

  7. EVALUATION OF HADWACO MVR EVAPORATOR, ETV REPORT& STATEMENT

    EPA Science Inventory

    Hadwaco US, Inc., manufactures a commercial ready mechanical vapor recompression (MVR) evaporator for use in the metal finishing industry. The evaporator utilizes proven MVR and falling film principles, with the key innovation being the construction material of the heat transfer ...

  8. EVAPORATOR FLOOR, CLARIFIERS TO THE LEFT, SCALES TO THE RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EVAPORATOR FLOOR, CLARIFIERS TO THE LEFT, SCALES TO THE RIGHT, EVAPORATOR CELLS ONE, TWO AND THREE IN THE BACKGROUND. VIEW FROM NORTHWEST FROM LIME VATS - Lihue Plantation Company, Sugar Mill Building, Haleko Road, Lihue, Kauai County, HI

  9. An Investigation of Graduate Scientists' Understandings of Evaporation and Boiling.

    ERIC Educational Resources Information Center

    Goodwin, Alan; Orlik, Yuri

    2000-01-01

    Uses a video presentation of six situations relating to the evaporation and boiling of liquids and the escape of dissolved gases from solution and investigates graduate scientists' understanding of the concepts of boiling and evaporation. (Author/YDS)

  10. Non-Potassic Melts In CMAS-CO2-H2O-K2O Model Peridotite

    NASA Astrophysics Data System (ADS)

    Buisman, I.; Walter, M. J.; Keshav, S.

    2009-12-01

    relations become isobarically invariant. In contrast, the solidus in CMAS-CO2-H2O at 30 kbar is at 1000C. Above 1100C, phlogopite is no longer in equilibrium with the phase assemblage. In all the experimental charges, capsules were pierced, and a hydrous solution was seen escaping. When tested with litmus paper, in all cases at 25-50 kbar, this solution was determined to be highly basic (pH>10). Upon evaporation of the hydrous solution, a white precipitate was left behind around the piercing on the capsule wall. In CMAS-CO2-H2O, the fluid was found to be almost neutral (pH 7-8). The melt present in our experiments is carbonatitic in nature and does not contain any significant amounts of K2O. This contradicts a recent study on K2O in a natural composition (Foley et al, 2009) where carbonatitic melt had up to 13 wt% of K2O. Significantly, since K2O is perhaps all in the fluid, source regions for potassic magmas in the Earth’s mantle could not be created by metasomatism of alkali-rich, carbonatitic melts.

  11. STUDIES OF POTENTIAL INHIBITORS OF SODIUM ALUMINOSILICATE SCALES IN HIGH-LEVEL WASTE EVAPORATION

    SciTech Connect

    Wilmarth, B; Lawrence Oji, L; Terri Fellinger, T; David Hobbs, D; Nilesh Badheka, N

    2008-02-27

    The Savannah River Site (SRS) has 49 underground storage tanks used to store High Level Waste (HLW). The tank space in these tanks must be managed to support the continued operation of key facilities. The reduction of the tank volumes in these tanks are accomplished through the use of three atmospheric pressure HLW evaporators. For a decade, evaporation of highly alkaline HLW containing aluminum and silicates has produced sodium aluminosilicate scales causing both operation and criticality hazards in the 2H Evaporator System. Segregation of aluminum-rich wastes from silicate-rich wastes minimizes the amount of scale produced and reduces cleaning expenses, but does not eliminate the scaling nor increases operation flexibility in waste process. Similar issues have affected the aluminum refining industry for many decades. Over the past several years, successful commercial products have been identified to eliminate aluminosilicate fouling in the aluminum industry, but have not been utilized in a nuclear environment. Laboratory quantities of three proprietary aluminosilicate scale inhibitors have been produced and been shown to prevent formation of scales. SRNL has been actively testing these potential inhibitors to examine their radiation stability, radiolytic degradation behaviors, and downstream impacts to determine their viability within the HLW system. One of the tested polymers successfully meets the established criteria for application in the nuclear environment. This paper will describe a summary of the methodology used to prioritize laboratory testing protocols based on potential impacts/risks identified for inhibitor deployment at SRS.

  12. Evaporative cooler including one or more rotating cooler louvers

    DOEpatents

    Gerlach, David W

    2015-02-03

    An evaporative cooler may include an evaporative cooler housing with a duct extending therethrough, a plurality of cooler louvers with respective porous evaporative cooler pads, and a working fluid source conduit. The cooler louvers are arranged within the duct and rotatably connected to the cooler housing along respective louver axes. The source conduit provides an evaporative cooler working fluid to the cooler pads during at least one mode of operation.

  13. Heat-transfer calculations for a potted (solid matrix embedded) subassembly

    SciTech Connect

    Betten, P.R.

    1984-01-01

    Standard Liquid Metal Fast Breeder Reactor (LMFBR) subassemblies used in the Experimental Breeder Reactor II (EBR-II) have been investigated for fuel-bundle distortion using a destructive examination method known as potting. The potting technique embeds and permanently fixes the fuel elements in a solid matrix that can be sectioned and polished to reveal details in the internal structure of the elements or subassembly. Thus, an advantage of the potting technique is that it permits investigation of the internal structure of the subassembly in situ, as this structure would be lost or significantly altered during subassembly disassembly. However, since the elements in the subassembly are radioactive, the potting material must efficiently conduct radioactive decay heat to the environment so that the melting or softening temperatures of the potting material are not exceeded. The purpose of this paper is to present the heat transfer calculations for a potted subassembly and to recommend a simplified method for solving similar problems.

  14. (2) H and (139) La NMR Spectroscopy in Aqueous Solutions at Geochemical Pressures.

    PubMed

    Ochoa, Gerardo; Pilgrim, Corey D; Martin, Michele N; Colla, Christopher A; Klavins, Peter; Augustine, Matthew P; Casey, William H

    2015-12-14

    Nuclear spin relaxation rates of (2) H and (139) La in LaCl3 +(2) H2 O and La(ClO4 )3 +(2) H2 O solutions were determined as a function of pressure in order to demonstrate a new NMR probe designed for solution spectroscopy at geochemical pressures. The (2) H longitudinal relaxation rates (T1 ) vary linearly to 1.6 GPa, consistent with previous work at lower pressures. The (139) La T1 values vary both with solution chemistry and pressure, but converge with pressure, suggesting that the combined effects of increased viscosity and enhanced rates of ligand exchange control relaxation. This simple NMR probe design allows experiments on aqueous solutions to pressures corresponding roughly to those at the base of the Earth's continental crust. PMID:26404025

  15. Epitaxial growth and electronic structure of oxyhydride SrVO2H thin films

    NASA Astrophysics Data System (ADS)

    Katayama, Tsukasa; Chikamatsu, Akira; Yamada, Keisuke; Shigematsu, Kei; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya

    2016-08-01

    Oxyhydride SrVO2H epitaxial thin films were fabricated on SrTiO3 substrates via topotactic hydridation of oxide SrVO3 films using CaH2. Structural and composition analyses suggested that the SrVO2H film possessed one-dimensionally ordered V-H--V bonds along the out-of-plane direction. The synthesis temperature could be lowered by reducing the film thickness, and the SrVO2H film was reversible to SrVO3 by oxidation through annealing in air. Photoemission and X-ray absorption spectroscopy measurements revealed the V3+ valence state in the SrVO2H film, indicating that the hydrogen existed as hydride. Furthermore, the electronic density of states was highly suppressed at the Fermi energy, consistent with the prediction that tetragonal distortion induces metal to insulation transition.

  16. Infrared and Ultraviolet Spectra of Diborane(6): B2H6 and B2D6.

    PubMed

    Peng, Yu-Chain; Chou, Sheng-Lung; Lo, Jen-Iu; Lin, Meng-Yeh; Lu, Hsiao-Chi; Cheng, Bing-Ming; Ogilvie, J F

    2016-07-21

    We recorded absorption spectra of diborane(6), B2H6 and B2D6, dispersed in solid neon near 4 K in both mid-infrared and ultraviolet regions. For gaseous B2H6 from 105 to 300 nm, we report quantitative absolute cross sections; for solid B2H6 and for B2H6 dispersed in solid neon, we measured ultraviolet absorbance with relative intensities over a wide range. To assign the mid-infrared spectra to specific isotopic variants, we applied the abundance of (11)B and (10)B in natural proportions; we undertook quantum-chemical calculations of wavenumbers associated with anharmonic vibrational modes and the intensities of the harmonic vibrational modes. To aid an interpretation of the ultraviolet spectra, we calculated the energies of electronically excited singlet and triplet states and oscillator strengths for electronic transitions from the electronic ground state. PMID:27351464

  17. Evaporation from the shallow Lake Massaciuccoli (Tuscany, Italy) studied using stable isotopes and evaporation pan data

    NASA Astrophysics Data System (ADS)

    Baneschi, I.; Gonfiantini, R.; Guidi, M.

    2009-04-01

    Oxygen and hydrogen isotope variations monitored in Lake Massaciuccoli (7 km2, 2 m deep, seasonally variable water level) during summer 2008, were compared with those observed in a Class A evaporation pan (diameter 120.6 cm, depth 25.4 cm) placed on the lake eastern shore. Air temperature, pressure, relative humidity, wind speed and direction, solar radiation, water temperature in the lake and the pan were also measured. The pluviometer indicated that no precipitation occurred during the study period. The pan was initially filled with groundwater up to the level of 19.2 cm (219 L), depleted in heavy isotopes with respect to tha lake water. Sodium chloride was added up to the concentration of 1 g×L-1, which is assumed do not affect significantly the evaporation rate till the water volume is reduced to less than 10 %. The Cl- concentration was used to provide an estimation of the evaporated water fraction, in addition to the micrometer measuring the water level variations. The pan water was sampled every 2-3 days and Cl- and stable isotopes determined. The set of stable isotope and evaporation data enabled us to compute the parameters governing the evaporation process and the isotopic exchanges with the atmospheric moisture, according to the procedure proposed by Gonfiantini (1986). The values were applied to test three working hypotheses of water balance of Lake Massaciuccoli: (i) surface inflow and outflow of liquid water are negligible and only evaporation is important; (ii) the inflow is negligible and outflow and evaporation are both significant; (iii) the three terms of balance are all important but the losses by evaporation and outflow exceed inflow (as the lake water level was decreasing). Water exchanges with groundwater are considered negligible. The best agreement between lake and pan data was obtained with the second hypothesis, for which the fraction of water removed by evaporation was estimated to be about 40 % ot he total water losses. This residual

  18. A Ring of C2H in the Molecular Disk Orbiting TW Hya

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Qi, Chunhua; Gorti, Uma; Hily-Blant, Pierre; Oberg, Karin; Forveille, Thierry; Andrews, Sean; Wilner, David

    2015-06-01

    We have used the Submillimeter Array to image, at ˜1.″5 resolution, C2H N=3\\to 2 emission from the circumstellar disk orbiting the nearby (D = 54 pc), ˜8 Myr-old, ˜0.8 {{M}⊙ } classical T Tauri star TW Hya. The SMA imaging reveals that the C2H emission exhibits a ring-like morphology. Based on a model in which the C2H column density follows a truncated radial power-law distribution, we find that the inner edge of the ring lies at ˜45 AU, and that the ring extends to at least ˜120 AU. Comparison with previous (single-dish) observations of C2H N=4\\to 3 emission indicates that the C2H molecules are subthermally excited and, hence, that the emission arises from the relatively warm (T≳ 40 K), tenuous (n\\ll {{10}7} cm-3) upper atmosphere of the disk. Based on these results and comparisons of the SMA C2H map with previous submillimeter and scattered-light imaging, we propose that the C2H emission most likely traces particularly efficient photo-destruction of small grains and/or photodesorption and photodissociation of hydrocarbons derived from grain ice mantles in the surface layers of the outer disk. The presence of a C2H ring in the TW Hya disk hence likely serves as a marker of dust grain processing and radial and vertical grain size segregation within the disk.

  19. Recent advances in the chemistry of SmI(2)-H(2)O.

    PubMed

    Sautier, Brice; Procter, David J

    2012-01-01

    Recent work from our laboratories has shown SmI(2)-H(2)O to be a versatile, readily-accessible and non-toxic reductant that is more powerful than SmI(2). This review describes the reduction of functional groups that were previously thought to lie beyond the reach of SmI(2) and complexity-generating cyclisations and cyclisation cascades triggered by the reduction of the ester carbonyl group with SmI(2)-H(2)O.

  20. Synthesis of 2H-Indazoles by the [3 + 2] Dipolar Cycloaddition of Sydnones with Arynes

    PubMed Central

    Fang, Yuesi; Wu, Chunrui; Larock, Richard C.; Shi, Feng

    2011-01-01

    A rapid and efficient synthesis of 2H-indazoles has been developed using a [3 + 2] dipolar cycloaddition of sydnones and arynes. A series of 2H-indazoles have been prepared in good to excellent yields using this protocol, and subsequent Pd-catalyzed coupling reactions can be applied to the halogenated products to generate a structurally diverse library of indazoles. PMID:21970468

  1. Natural-abundance solid-state 2H NMR spectroscopy at high magnetic field.

    PubMed

    Aliev, Abil E; Mann, Sam E; Iuga, Dinu; Hughes, Colan E; Harris, Kenneth D M

    2011-06-01

    High-resolution solid-state (2)H NMR spectroscopy provides a method for measuring (1)H NMR chemical shifts in solids and is advantageous over the direct measurement of high-resolution solid-state (1)H NMR spectra, as it requires only the application of routine magic angle sample spinning (MAS) and routine (1)H decoupling methods, in contrast to the requirement for complex pulse sequences for homonuclear (1)H decoupling and ultrafast MAS in the case of high-resolution solid-state (1)H NMR. However, a significant obstacle to the routine application of high-resolution solid-state (2)H NMR is the very low natural abundance of (2)H, with the consequent problem of inherently low sensitivity. Here, we explore the feasibility of measuring (2)H MAS NMR spectra of various solids with natural isotopic abundances at high magnetic field (850 MHz), focusing on samples of amino acids, peptides, collagen, and various organic solids. The results show that high-resolution solid-state (2)H NMR can be used successfully to measure isotropic (1)H chemical shifts in favorable cases, particularly for mobile functional groups, such as methyl and -N(+)H(3) groups, and in some cases phenyl groups. Furthermore, we demonstrate that routine (2)H MAS NMR measurements can be exploited for assessing the relative dynamics of different functional groups in a molecule and for assessing whole-molecule motions in the solid state. The magnitude and field-dependence of second-order shifts due to the (2)H quadrupole interaction are also investigated, on the basis of analysis of simulated and experimental (1)H and (2)H MAS NMR spectra of fully deuterated and selectively deuterated samples of the α polymorph of glycine at two different magnetic field strengths.

  2. Black hole evaporation rates without spacetime.

    PubMed

    Braunstein, Samuel L; Patra, Manas K

    2011-08-12

    Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson's 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem. PMID:21902381

  3. Thermoelectric integrated membrane evaporation water recovery technology

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  4. Influence of Refrigerant Oil on Evaporator Performance

    NASA Astrophysics Data System (ADS)

    Kim, Jong Soo; Katsuta, Masafumi

    Because of the phase-out CFC Freon series required by Montreal Protocal, the conversion to HFC alternatives for vapor compression refrigeration system have been in progress. The each component design of these system should need to be reassessed, however, to improve the performance and compactness of the evaporator, an influence of the refrigerant oil on the refrigerant side heat transfer remains as an important and unsolved subject. In this article, the previous research progresses on the thermophysical properties, two-phase flow regimes and heat transfer in evaporator tube of refrigerant and oil mixture are briefly reviewed and the ability of these results to the combination of the alternative refrigerant and oil system is discussed. According to the review, the limited quantitative agreements were obtained from the perfect miscible refrigerant and oil mixture and, in particular, the much detailed research on the heat transfer mechanisms are required in future.

  5. Reactively evaporated films of copper molybdenum sulfide

    NASA Technical Reports Server (NTRS)

    Chi, K. C.; Dillon, R. O.; Bunshah, R. F.; Alterovitz, S.; Woollam, J. A.

    1978-01-01

    Films of superconducting Chevrel-phase copper molybdenum sulfide CuxMo6S8 were deposited on sapphire substrates by reactive evaporation using H2S as the reacting gas. Two superconducting temperatures (10.0 K and 5.0 K) of the films were found, corresponding to two different phases with different copper concentrations. All films were superconducting above 4.2 K and contained Chevrel-phase compound as well as free molybdenum. The critical current was measured as a function of applied field. One sample was found to deviate from the scaling law found for co-evaporated or sputtered samples, which possibly indicates a different pinning mechanism or inhomogeneity of the sample.

  6. Self similar evolution of evaporative supernova remnants

    NASA Astrophysics Data System (ADS)

    Chieze, J. P.; Lazareff, B.

    1981-02-01

    The expansion of a supernova remnant into an inhomogeneous medium of evaporating clouds can be idealized as a self-similar problem. The equations are set up and solved in the two limiting cases of negligible and dominant large scale conductivity, in the presence of an ad hoc external intercloud density equal to the product of Gamma, a parameter dependent on the evaporation parameter and the energy deposited by the supernova, with the -5/3 power of the radial distance, with Gamma equals 0 as a limiting case. While the detailed structure depends on Gamma, the global properties such as the expansion law and the total mass are to a large extent independent of this parameter, and agree with previous approximate results of McKee and Ostriker (1977). The limitations of the formal solutions are briefly discussed.

  7. Black hole evaporation rates without spacetime.

    PubMed

    Braunstein, Samuel L; Patra, Manas K

    2011-08-12

    Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson's 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem.

  8. Thermodynamic Modeling of Savannah River Evaporators

    SciTech Connect

    Weber, C.F.

    2001-08-02

    A thermodynamic model based on the code SOLGASMIX is developed to calculate phase equilibrium in evaporators and related tank wastes at the Savannah River Site (SRS). This model uses the Pitzer method to calculate activity coefficients, and many of the required Pitzer parameters have been determined in the course of this work. Principal chemical species in standard SRS simulant solutions are included, and the temperature range for most parameters has been extended above 100 C. The SOLGASMIX model and calculations using the code Geochemists Workbench are compared to actual solubility data including silicate, aluminate, and aluminosilicate solutions. In addition, SOLGASMIX model calculations are also compared to transient solubility data involving SRS simulant solutions. These comparisons indicate that the SOLGASMIX predictions closely match reliable data over the range of temperature and solution composition expected in the SRS evaporator and related tanks. Predictions using the Geochemists Workbench may be unreliable, due primarily to the use of an inaccurate activity coefficient model.

  9. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans....

  10. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans....

  11. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans....

  12. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans....

  13. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans....

  14. The structural transformation of monoclinic [(R)-C5H14N2][Cu(SO4)2(H2O)4].2H2O into orthorhombic [(R)-C5H14N2]2[Cu(H2O)6](SO4)3: crystal structures and thermal behavior

    NASA Astrophysics Data System (ADS)

    Saïd, Salem; Mhadhbi, Noureddine; Hajlaoui, Fadhel; Yahyaoui, Samia; Norquist, Alexander J.; Mhiri, Tahar; Bataille, Thierry; Naïli, Houcine

    2014-01-01

    Single crystals of [(R)-C5H14N2][Cu(SO4)2(H2O)4].2H2O (1) were grown through the slow evaporation of a solution containing H2SO4, (R)-C5H12N2 and CuSO4.5H2O. These crystals spontaneously transform to [(R)-C5H14N2]2[Cu(H2O)6](SO4)3 (2) over the course of four days at room temperature. The same single crystal on the same mounting was used for the determination of the structure of (1) and the unit cell determination of (2). A second single crystal of the transformed batch has served for the structural determination of (2). Compound 1 crystallizes in the noncentrosymmetric space group P21 (No. 4) and consists of trimeric [Cu(SO4)2(H2O)4]2- anions, [(R)-C5H14N2]2+ cations and occluded water molecules. Compound 2 crystallizes in P21212 (No. 18) and contains [Cu(H2O)6]2+ cations, [SO4]2- anions and occluded water molecules. The thermal decompositions of compounds 1 and 2 were studied by thermogravimetric analyses and temperature-dependent X-ray diffraction.

  15. A Small Molecule Inhibitor of Pot1 Binding to Telomeric DNA

    PubMed Central

    Altschuler, Sarah E.; Croy, Johnny E.; Wuttke, Deborah S.

    2012-01-01

    Chromosome ends are complex structures, consisting of repetitive DNA sequence terminating in an ssDNA overhang with many associated proteins. Because alteration of these ends is a hallmark of cancer, telomeres and telomere maintenance have been prime drug targets. The universally conserved ssDNA overhang is sequence-specifically bound and regulated by Pot1 (protection of telomeres), and perturbation of Pot1 function has deleterious effects for proliferating cells. The specificity of the Pot1/ssDNA interaction and the key involvement of this protein in telomere maintenance have suggested directed inhibition of Pot1/ssDNA binding as an efficient means of disrupting telomere function. To explore this idea, we developed a high-throughput time-resolved fluorescence resonance energy transfer (TR-FRET) screen for inhibitors of Pot1/ssDNA interaction. We conducted this screen with the DNA-binding subdomain of S. pombe Pot1 (Pot1pN), which confers the vast majority of Pot1 sequence-specificity and is highly similar to the first domain of human Pot1 (hPOT1). Screening a library of ~20,000 compounds yielded a single inhibitor, which we found interacted tightly with submicromolar affinity. Furthermore, this compound, subsequently identified as the bis-azo dye Congo red, was able to competitively inhibit hPOT1 binding to telomeric DNA. ITC and NMR chemical shift analysis suggest that CR interacts specifically with the ssDNA-binding cleft of Pot1, and that alteration of this surface disrupts CR binding. The identification of a specific inhibitor of ssDNA interaction establishes a new pathway for targeted telomere disruption. PMID:22978652

  16. A small molecule inhibitor of Pot1 binding to telomeric DNA.

    PubMed

    Altschuler, Sarah E; Croy, Johnny E; Wuttke, Deborah S

    2012-10-01

    Chromosome ends are complex structures, consisting of repetitive DNA sequence terminating in an ssDNA overhang with many associated proteins. Because alteration of the regulation of these ends is a hallmark of cancer, telomeres and telomere maintenance have been prime drug targets. The universally conserved ssDNA overhang is sequence-specifically bound and regulated by Pot1 (protection of telomeres 1), and perturbation of Pot1 function has deleterious effects for proliferating cells. The specificity of the Pot1/ssDNA interaction and the key involvement of this protein in telomere maintenance have suggested directed inhibition of Pot1/ssDNA binding as an efficient means of disrupting telomere function. To explore this idea, we developed a high-throughput time-resolved fluorescence resonance energy transfer (TR-FRET) screen for inhibitors of Pot1/ssDNA interaction. We conducted this screen with the DNA-binding subdomain of Schizosaccharomyces pombe Pot1 (Pot1pN), which confers the vast majority of Pot1 sequence-specificity and is highly similar to the first domain of human Pot1 (hPOT1). Screening a library of ∼20 000 compounds yielded a single inhibitor, which we found interacted tightly with sub-micromolar affinity. Furthermore, this compound, subsequently identified as the bis-azo dye Congo red (CR), was able to competitively inhibit hPOT1 binding to telomeric DNA. Isothermal titration calorimetry and NMR chemical shift analysis suggest that CR interacts specifically with the ssDNA-binding cleft of Pot1, and that alteration of this surface disrupts CR binding. The identification of a specific inhibitor of ssDNA interaction establishes a new pathway for targeted telomere disruption.

  17. The evaporative demand drought index: Part I 1 – Linking drought evolution to variations in evaporative demand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many operational drought indices focus primarily on precipitation and temperature when depicting hydroclimatic anomalies, and this perspective can be augmented by analyses and products that reflect the evaporative dynamics of drought. We leverage the linkage between atmospheric evaporative demand (E...

  18. Fluid Flow in An Evaporating Droplet

    NASA Technical Reports Server (NTRS)

    Hu, H.; Larson, R.

    1999-01-01

    Droplet evaporation is a common phenomenon in everyday life. For example, when a droplet of coffee or salt solution is dropped onto a surface and the droplet dries out, a ring of coffee or salt particles is left on the surface. This phenomenon exists not only in everyday life, but also in many practical industrial processes and scientific research and could also be used to assist in DNA sequence analysis, if the flow field in the droplet produced by the evaporation could be understood and predicted in detail. In order to measure the fluid flow in a droplet, small particles can be suspended into the fluid as tracers. From the ratio of gravitational force to Brownian force a(exp 4)(delta rho)(g)/k(sub B)T, we find that particle's tendency to settle is proportional to a(exp 4) (a is particle radius). So, to keep the particles from settling, the droplet size should be chosen to be in a range 0.1 -1.0 microns in experiments. For such small particles, the Brownian force will affect the motion of the particle preventing accurate measurement of the flow field. This problem could be overcome by using larger particles as tracers to measure fluid flow under microgravity since the gravitational acceleration g is then very small. For larger particles, Brownian force would hardly affect the motion of the particles. Therefore, accurate flow field could be determined from experiments in microgravity. In this paper, we will investigate the fluid flow in an evaporating droplet under normal gravity, and compare experiments to theories. Then, we will present our ideas about the experimental measurement of fluid flow in an evaporating droplet under microgravity.

  19. Hot Jupiters: how rapidly are they evaporating?

    NASA Astrophysics Data System (ADS)

    Garcia Munoz, A.; McConnell, J. C.; Caldwell, J. J.

    2005-08-01

    The detection of an extended atmosphere on the exoplanet HD 209458 b containing H, C and O and reaching as far out as 3-4 planetary radii (Vidal-Madjar et al. 2004, Astrophys. J. 604, L69-L72 ) constitutes a unique case in the study of so-called hot Jupiters. At 0.045 AU from its host star, stellar EUV radiation supplies HD 209458 b with sufficient energy so as to heat up its upper atmosphere and, presumably, power its evaporation. The goal of this work is two-fold: estimate the evaporation rate from the atmosphere of hot Jupiters, of importance for the understanding of their evolution, and predict the composition of their thermosphere, giving support to future observations. For this purpose we have built an idealized one-dimensional hydrodynamic model of the thermosphere of hot Jupiters, of particular relevance for HD 209458 b. Concentrations of H-, C- and O-bearing constituents, as well as density, velocity and temperature of the whole plasma, are solved self-consistently. The evaporation rate is fluid-dynamically constrained by the occurrence of a sonic point in the expansion of the atmospheric gas. Rapid adiabatic cooling may place an additional constraint on the thermal structure near the transition between the lower and upper atmospheres of these planets. Evaporation rates and profiles of constituents will be given for various planet-star distances, appropriate to very hot Jupiters ( ˜ 0.02 AU), hot Jupiters ( ˜ 0.05 AU) and more temperate conditions (> 0.1 AU).

  20. Evaporation flows driven by early B stars.

    NASA Astrophysics Data System (ADS)

    Peeters, Els

    2013-10-01

    Young massive OB stars significantly influence their environment as their far-UV photons (6 eV < E < 13.6 eV) dominate the physics and chemistry of the surrounding gas, creating PhotoDissociation Regions (PDRs). The incident FUV field heats and photo-dissociates the PDR and may create evaporation flows of the PDR surfaces. These photo-evaporated flows are fundamental to understanding proplyds, pillars, and the evolution of molecular clouds and hence may greatly influence the star and planet formation process. As the far-UV luminosity of the galaxy is dominated by later type B stars rather than O stars, understanding the interaction of B stars with nearby molecular clouds is key. However, for the majority of the PDRs -- those associated with lower mass B stars -- the photo-evaporation process and its relation with star formation are not well studied. Here, we propose a velocity-resolved study of the [CII] line at 158 micron with the GREAT spectrometer on board of SOFIA to study the dynamical interaction of the B2V star HD 39703 and the B0.5IVe star gamma Cas with the molecular cloud they illuminate. These regions are well-studied over a wide-wavelength range and have been observed by Spitzer/IRS in spectral mapping and Herschel/PACS in both photometry and line-mapping (cooling lines, CO). The goal of this combined SOFIA/Herschel/Spitzer study is to address the kinematic characteristics of the interaction of these two stars with the molecular cloud, determine the mass loss rate, and assess their role in triggering star formation in the PDR. In this way, we can assess the role of evaporation flows driven by early B stars in the evolution of molecular clouds.

  1. Flash evaporation of liquid monomer particle mixture

    DOEpatents

    Affinito, John D.; Darab, John G.; Gross, Mark E.

    1999-01-01

    The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer.

  2. Flash evaporation of liquid monomer particle mixture

    DOEpatents

    Affinito, J.D.; Darab, J.G.; Gross, M.E.

    1999-05-11

    The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer. 3 figs.

  3. Direct ab initio study of the C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 reactions

    NASA Astrophysics Data System (ADS)

    Mai, Tam V.-T.; Ratkiewicz, Artur; Duong, Minh v.; Huynh, Lam K.

    2016-02-01

    A kinetic study of the reactions C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 was carried out in the temperature range of 300-2500 K using high levels of electronic structure theory, namely, CCSD(T)/CBS//BH&HLYP/cc-pVDZ, and canonical variational transition state theory (CVT) with corrections for small curvature tunneling (SCT) and hindered internal rotation (HIR) treatments. It is found that variational effect is not important and both SCT and HIR corrections noticeably affect the rate constants. Being in good agreement with literature data, the calculated results provide solid basis information for the investigation of the polyaromatic hydrocarbon (PAH) + alkyl radical reaction, an important class in combustion and soot formation.

  4. EPR of Cu 2+ and VO 2+ in a cobalt saccharin complex, [Co(sac) 2(H 2O) 4]·2H 2O, single crystals

    NASA Astrophysics Data System (ADS)

    Yerli, Y.; Köksal, F.; Karadag, A.

    2003-09-01

    Cu 2+ and VO 2+ doped single crystals of [Co(sac) 2(H 2O) 4]·2H 2O (Cosacaqua) complex were investigated using EPR technique at ambient temperature. Detailed investigation of the EPR spectra indicated that the Cu 2+ and VO 2+ substitute the Co 2+. Two sites were observed for Cu 2+ and VO 2+. But each site of V 4+ corresponds two different orientations of VO 2+. The principal values of the g and the hyperfine tensors were obtained. The spectra indicate that the ground state for Cu 2+ is mainly 3 dx2- y2. The covalent bonding parameters for Cu 2+ and VO 2+ and Fermi contact terms were obtained.

  5. REASSESSMENT OF THE DISSOCIATIVE RECOMBINATION OF N{sub 2}H{sup +} AT CRYRING

    SciTech Connect

    Vigren, E.; Zhaunerchyk, V.; Hamberg, M.; Af Ugglas, M.; Larsson, M.; Thomas, R. D.; Geppert, W. D.; Kaminska, M.; Semaniak, J.

    2012-09-20

    The dissociative recombination (DR) of N{sub 2}H{sup +} has been reinvestigated at the heavy ion storage ring CRYRING at the Manne Siegbahn Laboratory in Stockholm, Sweden. Thermal rate coefficients for electron temperatures between 10 and 1000 K have been deduced. We show that electron recombination is expected to play an approximately equally important role as CO in the removal of N{sub 2}H{sup +} in dark interstellar clouds. We note that a deeper knowledge on the influence of the ions' rotational temperature in the DR of N{sub 2}H{sup +} would be helpful to set further constraints on the relative importance of the different destruction mechanisms for N{sub 2}H{sup +} in these environments. The branching fractions in the DR of N{sub 2}H{sup +} have been reinvestigated at {approx}0 eV relative kinetic energy, showing a strong dominance of the N{sub 2} + H production channel (93{sup +4}{sub -2}%) with the rest leading to NH + N. These results are in good agreement with flowing afterglow experiments and in disagreement with an earlier measurement at CRYRING.

  6. Low-temperature rate coefficients for the reaction of ethynyl radical (C2H) with benzene.

    PubMed

    Goulay, Fabien; Leone, Stephen R

    2006-02-01

    The reaction of the C2H radical with benzene is studied at low temperature using a pulsed Laval nozzle apparatus. The C2H radical is prepared by 193-nm photolysis of acetylene, and the C2H concentration is monitored using CH(A2Delta) chemiluminescence from the C2H + O2 reaction. Measurements at very low photolysis energy are performed using CF3C2H as the C2H precursor to study the influence of benzene photodissociation on the rate coefficient. Rate coefficients are obtained over a temperature range between 105 and 298 K. The average rate coefficient is found to be five times greater than the estimated value presently used in the photochemical modeling of Titan's atmosphere. The reaction exhibits a slight negative temperature dependence which can be fitted to the expression k(cm3 molecule(-1) s(-1)) = 3.28(+/-1.0) x 10(-10) (T/298)(-0.18(+/-0.18)). The results show that this reaction has no barrier and may play an important role in the formation of large molecules and aerosols at low temperature. Our results are consistent with the formation of a short lifetime intermediate that decomposes to give the final products.

  7. Vibrationally resolved photoelectron imaging of Cu2H- and AgCuH- and theoretical calculations.

    PubMed

    Xie, Hua; Li, Xiaoyi; Zhao, Lijuan; Liu, Zhiling; Qin, Zhengbo; Wu, Xia; Tang, Zichao; Xing, Xiaopeng

    2013-02-28

    Vibrationally resolved photoelectron spectra have been obtained for Cu(2)H(-) and AgCuH(-) using photoelectron imaging at 355 nm. Two transition bands X and A are observed for each spectrum. The X bands in both spectra show the vibration progressions of the Cu-H stretching mode and the broad peaks of these progressions indicate significant structural changes from Cu(2)H(-) and AgCuH(-) to their neutral ground states. The A bands in the spectra of Cu(2)H(-) and CuAgH(-) show stretching progressions of Cu-Cu and Ag-Cu, respectively. The contours of these two progressions are pretty narrow, indicating relatively small structural changes from Cu(2)H(-) and AgCuH(-) to their neutral excited states. Calculations based on density functional theory indicate that the ground states of Cu(2)H(-) and AgCuH(-) and the first excited states of their neutrals are linear, whereas their neutral ground states are bent. The photoelectron detachment energies and vibrational frequencies from these calculations are in good agreement with the experimental observations. Especially, the theoretical predication of linear structures for the anions and the neutral excited states are supported by the spectral features of A bands, in which the bending modes are inactive. Comparisons among the vertical detachment energies of Cu(2)H(-), AgCuH(-), and their analogs help to elucidate electronic characteristics of coinage metal elements and hydrogen in small clusters.

  8. C2H4 adsorption on Cu(210), revisited: bonding nature and coverage effects.

    PubMed

    Amino, Shuichi; Arguelles, Elvis; Agerico Diño, Wilson; Okada, Michio; Kasai, Hideaki

    2016-08-24

    With the aid of density functional theory (DFT)-based calculations, we investigate the adsorption of C2H4 on Cu(210). We found two C2H4 adsorption sites, viz., the top of the step-edge atom (S) and the long bridge between two step-edge atoms (SS) of Cu(210). The step-edge atoms on Cu(210) block the otherwise active terrace sites found on copper surfaces with longer step sizes. This results in the preference for π-bonded over di-σ-bonded C2H4. We also found two stable C2H4 adsorption orientations on the S- and SS-sites, viz., with the C2H4 C[double bond, length as m-dash]C bond parallel (fit) and perpendicular (cross) to [001]. Furthermore, we found that the three peaks observed in previous temperature programmed desorption (TPD) experiment [Surf. Sci., 2011, 605, 934-940] could be attributed to C2H4 in the S-fit or S-cross, S-fit and S-cross-fit (S-cross and S-fit configurations that both exist in the same unit cell) configurations on Cu(210). PMID:27506302

  9. Involvement of plant C(2)H(2)-type zinc finger transcription factors in stress responses.

    PubMed

    Kiełbowicz-Matuk, Agnieszka

    2012-04-01

    Abiotic and biotic stresses frequently impose constraints on plant distribution and affect agricultural productivity. Various aspects of the multiplicity and the complexity of stress responsive gene networks have been previously studied. Many of individual transcription factors in plants and their family classes that regulate the expression of several genes in responses to environmental stresses have been identified. One such class of transcription regulators is the C(2)H(2) class of zinc finger proteins. Numerous members of the C(2)H(2)-type zinc finger family have been shown to play diverse roles in the plant stress response and the hormone signal transduction. Transcription profiling analyses have demonstrated that the transcript level of many C(2)H(2)-type zinc finger proteins is elevated under different abiotic stress conditions such as low temperature, salt, drought, osmotic stress and oxidative stress. Some C(2)H(2)-type proteins are additionally involved in the biotic stress signaling pathway. Moreover, it has been reported that overexpression of some C(2)H(2)-type zinc finger protein genes resulted in both the activation of some stress-related genes and enhanced tolerance to various stresses. Current genetic studies have focused on possible interactions between different zinc finger transcription factors during stresses to regulate transcription. This review highlights the role of the C(2)H(2) class of the zinc finger proteins in regulating abiotic and biotic stress tolerance in the plants.

  10. delta(13)C and delta(2)H isotope ratios in amphetamine synthesized from benzaldehyde and nitroethane.

    PubMed

    Collins, Michael; Salouros, Helen; Cawley, Adam T; Robertson, James; Heagney, Aaron C; Arenas-Queralt, Andrea

    2010-06-15

    Previous work in these laboratories and by Butzenlechner et al. and Culp et al. has demonstrated that the delta(2)H isotope value of industrial benzaldehyde produced by the catalytic oxidation of toluene is profoundly positive, usually in the range +300 per thousand to +500 per thousand. Synthetic routes leading to amphetamine, methylamphetamine or their precursors and commencing with such benzaldehyde may be expected to exhibit unusually positive delta(2)H values. Results are presented for delta(13)C and delta(2)H isotope values of 1-phenyl-2-nitropropene synthesized from an industrial source of benzaldehyde, having a positive delta(2)H isotope value, by a Knoevenagel condensation with nitroethane. Results are also presented for delta(13)C and delta(2)H isotope values for amphetamine prepared from the resulting 1-phenyl-2-nitropropene. The values obtained were compared with delta(13)C and delta(2)H isotope values obtained for an amphetamine sample prepared using a synthetic route that did not involve benzaldehyde. Finally, results are presented for samples of benzaldehyde, 1-phenyl-2-nitropropene and amphetamine that had been seized at a clandestine amphetamine laboratory.

  11. Broad N2H+ Emission toward the Protostellar Shock L1157-B1

    NASA Astrophysics Data System (ADS)

    Codella, C.; Viti, S.; Ceccarelli, C.; Lefloch, B.; Benedettini, M.; Busquet, G.; Caselli, P.; Fontani, F.; Gómez-Ruiz, A.; Podio, L.; Vasta, M.

    2013-10-01

    We present the first detection of N2H+ toward a low-mass protostellar outflow, namely, the L1157-B1 shock, at ~0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30 m antenna. We observed emission at 93 GHz due to the J = 1-0 hyperfine lines. Analysis of this emission coupled with HIFI CHESS multiline CO observations leads to the conclusion that the observed N2H+(1-0) line originated from the dense (>=105 cm-3) gas associated with the large (20''-25'') cavities opened by the protostellar wind. We find an N2H+ column density of a few 1012 cm-2 corresponding to an abundance of (2-8) × 10-9. The N2H+ abundance can be matched by a model of quiescent gas evolved for more than 104 yr, i.e., for more than the shock kinematical age (sime2000 yr). Modeling of C-shocks confirms that the abundance of N2H+ is not increased by the passage of the shock. In summary, N2H+ is a fossil record of the pre-shock gas, formed when the density of the gas was around 104 cm-3, and then further compressed and accelerated by the shock.

  12. EFFICACY OF FUNGICIDES AGAINST CALONECTRIA PAUCIRAMOSA IN POT AZALEA.

    PubMed

    Heungens, K; Pauwels, E

    2015-01-01

    Calonectria (formerly Cylindrocladium) infection of pot azalea (Rhododendron simsii Planch) is an important disease problem in which usually one or two of the four plants per pot show progressing leaf and especially stem lesions, leading to mortality of the respective plant and rendering the pot unmarketable. This may occur in a later stage of the growing season, leading to significant commercial losses. The main objective of this study was to test a range of fungicides for their efficacy against this pathogen. To test the fungicides, a bioassay was first developed in which mycelium and conidiospores of the pathogen were produced on Potato Dextrose Agar, blended in water, and dilutions of the resulting suspension inoculated at the base of 11-week-old cuttings three weeks after they had been trimmed. Disease progression was monitored up to 7 weeks post inoculation and a disease index on a scale of 0 to 3 was established. In the actual efficacy trial, the following fungicides (with corresponding active ingredient(s)) were tested as preventive treatments: Topsin M 70 WG (thiophanate-methyl), Sporgon (prochloraz), Signum (boscalid+pyraclostrobin), Switch (cyprodinyl+fludioxonil), Flint 50WG (trifloxystrobin), Ortiva Top (azoxystrobin+difenoconazole) and Fungaflor (imazalil). Disease expression started after about 2 weeks, increased approximately 1 index level, and leveled off 5 weeks after inoculation. The best control was observed with Sporgon, Ortiva Top and Signum. Switch produced intermediate effects and insufficient control was observed with Topsin, Flint and Fungaflor. These results explain why specific standard fungicide treatments, such as those with Topsin, fail to control the disease, while they can be effective against a different Calonectria species such as C. pseudonaviculata, the cause of boxwood blight. PMID:27141747

  13. EFFICACY OF FUNGICIDES AGAINST CALONECTRIA PAUCIRAMOSA IN POT AZALEA.

    PubMed

    Heungens, K; Pauwels, E

    2015-01-01

    Calonectria (formerly Cylindrocladium) infection of pot azalea (Rhododendron simsii Planch) is an important disease problem in which usually one or two of the four plants per pot show progressing leaf and especially stem lesions, leading to mortality of the respective plant and rendering the pot unmarketable. This may occur in a later stage of the growing season, leading to significant commercial losses. The main objective of this study was to test a range of fungicides for their efficacy against this pathogen. To test the fungicides, a bioassay was first developed in which mycelium and conidiospores of the pathogen were produced on Potato Dextrose Agar, blended in water, and dilutions of the resulting suspension inoculated at the base of 11-week-old cuttings three weeks after they had been trimmed. Disease progression was monitored up to 7 weeks post inoculation and a disease index on a scale of 0 to 3 was established. In the actual efficacy trial, the following fungicides (with corresponding active ingredient(s)) were tested as preventive treatments: Topsin M 70 WG (thiophanate-methyl), Sporgon (prochloraz), Signum (boscalid+pyraclostrobin), Switch (cyprodinyl+fludioxonil), Flint 50WG (trifloxystrobin), Ortiva Top (azoxystrobin+difenoconazole) and Fungaflor (imazalil). Disease expression started after about 2 weeks, increased approximately 1 index level, and leveled off 5 weeks after inoculation. The best control was observed with Sporgon, Ortiva Top and Signum. Switch produced intermediate effects and insufficient control was observed with Topsin, Flint and Fungaflor. These results explain why specific standard fungicide treatments, such as those with Topsin, fail to control the disease, while they can be effective against a different Calonectria species such as C. pseudonaviculata, the cause of boxwood blight.

  14. {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions at sub-coulomb energies

    SciTech Connect

    Tumino, A.; Spitaleri, C.; Mukhamedzhanov, A. M.; Typel, S.; Sparta, R.; Aliotta, M.; Kroha, V.; Hons, Z.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Mrazek, J.; Pizzone, R. G.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.

    2012-11-20

    The {sup 2}H({sup 3}He,p{sup 3}H){sup 1}H and {sup 2}H({sup 3}He,n{sup 3}He){sup 1}H processes have been measured in quasi free kinematics to investigate for the first time the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions by means of the Trojan Horse Method. The {sup 3}He+d experiment was performed at 18 MeV, corresponding the a d-d energy range from 1.5 MeV down to 2 keV. This range overlaps with the relevant region for Standard Big Bang Nucleosynthesis as well as with the thermal energies of future fusion reactors and deuterium burning in the Pre Main Sequence phase of stellar evolution. This is the first pioneering experiment in quasi free regime where the charged spectator is detected. Both the energy dependence and the absolute value of the bare nucleus S(E) factors have been extracted for the first time. They deviate by more than 15% from available direct data with new S(0) values of 57.4{+-}1.8 MeVb for {sup 3}H+p and 60.1{+-}1.9 MeVb for {sup 3}He+n. None of the existing fitting curves is able to provide the correct slope of the new data in the full range, thus calling for a revision of the theoretical description. This has consequences in the calculation of the reaction rates with more than a 25% increase at the temperatures of future fusion reactors.

  15. DISSOCIATION OF B2H6 AND ADSORPTION OF THE FRAGMENTS OF B2H6 ON THE STEPPED Ge(100) SURFACE

    NASA Astrophysics Data System (ADS)

    Türkmenoğlu, Mustafa; Katircioğlu, Şenay

    2012-06-01

    In this work, the p-type doping of the SA type stepped Ge(100) surface by a diborane (B2H6) gas flow has been simulated by the possible dissociation and adsorption models. The most probable dissociation model of B2H6 and adsorption models of the fragments of B2H6 on the stepped Ge(100) surface have been determined by the local minimum total energy and/or binding energy calculations based on the Density functional (B3LYP/6-3g) and Hartree-Fock (HF/STO-3g) theories, respectively. The present calculations have shown that, the step region (for both up and down terraces) of the stepped Ge(100) surface has the most attractive sites for BH3 molecules determined to be the first dissociation fragments of B2H6 by an external energy of 1.3 eV. It has been found that, at the first step of the adsorption, BH3 can dissociate to BH2 and BH fragments on the stepped Ge(100) surface. While BH3 and BH2 products prefer to be attached to a single surface Ge atom, BH is bridged between two adjacent surface Ge atoms. According to the present optimization calculations, the p-type doping process of the stepped Ge(100) surface has started with the adsorption of BH3 on the electron deficient site (buckled down) of the Ge dimer bond close to the step edge and ended with the substitutional occupation of the Ge site in the layers of the surface by B atom. The beginning of the p-type doping of the stepped Ge(100) surface has been illustrated by the electronic states of B appeared in the optical energy gap of Ge very close to the edge of the HOMO.

  16. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop.

    PubMed

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J G M; Zhang, Xuehua; Lohse, Detlef

    2016-08-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life-a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop. PMID:27418601

  17. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    NASA Astrophysics Data System (ADS)

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef

    2016-08-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  18. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop.

    PubMed

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J G M; Zhang, Xuehua; Lohse, Detlef

    2016-08-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life-a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  19. Digitally Programmable Micro Evaporation Source for Nanofabrication

    NASA Astrophysics Data System (ADS)

    Han, Han; Imboden, Matthias; Del Corro, Pablo; Stark, Thomas; Lally, Richard; Pardo, Flavio; Bolle, Cris; Bishop, David

    2015-03-01

    There is a significant world-wide effort to develop nano-manufacturing methods that can extend into the deep nanoscale region, below 20 nm. Techniques include photolithography, nano-imprint and direct write methods such as dip-pen lithography and atomic calligraphy. A central component of any fabrication setup is the deposition control of the materials to be used. Here we present a MEMS based, multi-material evaporation source array with each source element consisting of a polysilicon plate suspended by two electrical constriction leads. When resistively heating the plate, the pre-loaded material is thermally evaporated off of the plate. By arranging many of these devices into an array, one has a multi-material, digitally programmable evaporation source. Pulsing the source with precisely controlled peak voltage and timing can emit atom fluxes with an unprecedented level of control in terms of what, when and how many atoms get deposited. By varying their dimensions and arrangement, the source array can provide controllable atom fluxes ranging over ten orders of magnitude. Such a material source can provide precise control and flexibility when conducting nanopatterning and nanolithography.

  20. Tubeless evaporation process development: Final report

    SciTech Connect

    Not Available

    1987-12-01

    A tubeless evaporation process which has the potential to combine the advantage of both evaporation and freezing processes, without their disadvantages is being developed. The TEP is capable of concentrating process solutions of such things as sugar, caustic soda, salt, sodium sulfate, black liquor from the pulp and paper industry, cooling tower blowdown, ''spent'' pickling liquor (sulfuric acid) from the steel industry, and nitric acid with potential energy savings of half to three-quarters of the energy required by conventional evaporators, with about half of the capital and maintenance cost. It has similar potential for the production of fresh water from seawater. The process uses working fluids (WF's) at their freezing point to effect direct contact heat exchange. The purpose of this project was to find additional and lower cost WF's in the laboratory, to obtain sizing information for the major equipment for an economic evaluation and a pilot plant design in a bench scale plant, and to perform the economic evaluation, and the pilot plant design and cost estimate. 6 refs., 37 figs., 7 tabs.

  1. Dense spray evaporation as a mixing process

    NASA Astrophysics Data System (ADS)

    de Rivas, A.; Villermaux, E.

    2016-05-01

    We explore the processes by which a dense set of small liquid droplets (a spray) evaporates in a dry, stirred gas phase. A dense spray of micron-sized liquid (water or ethanol) droplets is formed in air by a pneumatic atomizer in a closed chamber. The spray is conveyed in ambient air as a plume whose extension depends on the relative humidity of the diluting medium. Standard shear instabilities develop at the plume edge, forming the stretched lamellar structures familiar with passive scalars. Unlike passive scalars however, these lamellae vanish in a finite time, because individual droplets evaporate at their border in contact with the dry environment. Experiments demonstrate that the lifetime of an individual droplet embedded in a lamellae is much larger than expected from the usual d2 law describing the fate of a single drop evaporating in a quiescent environment. By analogy with the way mixing times are understood from the convection-diffusion equation for passive scalars, we show that the lifetime of a spray lamellae stretched at a constant rate γ is tv=1/γ ln(1/+ϕ ϕ ) , where ϕ is a parameter that incorporates the thermodynamic and diffusional properties of the vapor in the diluting phase. The case of time-dependent stretching rates is examined too. A dense spray behaves almost as a (nonconserved) passive scalar.

  2. Evaporation characteristics of ETBE-blended gasoline.

    PubMed

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-04-28

    To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were developed.

  3. Modeling of Bulk Evaporation and Condensation

    NASA Technical Reports Server (NTRS)

    Anghaie, S.; Ding, Z.

    1996-01-01

    This report describes the modeling and mathematical formulation of the bulk evaporation and condensation involved in liquid-vapor phase change processes. An internal energy formulation, for these phase change processes that occur under the constraint of constant volume, was studied. Compared to the enthalpy formulation, the internal energy formulation has a more concise and compact form. The velocity and time scales of the interface movement were obtained through scaling analysis and verified by performing detailed numerical experiments. The convection effect induced by the density change was analyzed and found to be negligible compared to the conduction effect. Two iterative methods for updating the value of the vapor phase fraction, the energy based (E-based) and temperature based (T-based) methods, were investigated. Numerical experiments revealed that for the evaporation and condensation problems the E-based method is superior to the T-based method in terms of computational efficiency. The internal energy formulation and the E-based method were used to compute the bulk evaporation and condensation processes under different conditions. The evolution of the phase change processes was investigated. This work provided a basis for the modeling of thermal performance of multi-phase nuclear fuel elements under variable gravity conditions, in which the buoyancy convection due to gravity effects and internal heating are involved.

  4. Enhanced environmental performance of fiber optic gyroscope by an adhesive potting technology.

    PubMed

    Chen, Jun; Ding, Nengwen; Li, Zhifeng; Wang, Wei

    2015-09-10

    An adhesive potting technology for fiber coils of a fiber optic gyroscope (FOG) is proposed. The fiber coil is immersed in liquid adhesive with superior mechanical properties. The internal air is first removed completely by vacuum pumping, and the adhesive is then evenly pressed into the fiber coil under pressure. The potted fiber core is prepared by ladder-type temperature curing and a stress-release process. With this potting technology, the vibration performance of an FOG is greatly improved and, at the same time, will not lead to degradation of its temperature performance. Using this potting technique of adhesive impregnation, the adaptability of FOGs will be enhanced.

  5. Do Glazed Ceramic Pots in a Mexico-US Border City Still Contain Lead?

    PubMed Central

    Valles-Medina, Ana M.; Martinez-Cervantes, Maria Elena; Castillo-Fregoso, Maria Carmen

    2014-01-01

    In order to identify the presence of lead in glazed ceramic pots in a Mexico-US border city, 41 clay pots were sampled. The pots were purchased in several establishments located in different geographical areas of the city. The presence of lead was determined using LeadCheck Swabs. Most (58.5%) of the pots were from the State of Jalisco and 24.4% were of unknown origin. Only 4 pots did not contain varnish and were lead-negative. Thirty-seven (81.1%) of the glazed pots were lead positive. Among the lead-negative pots, 4 showed the label “this pot is lead-free.” Thus, if we consider the remaining 33 glazed pots without the “Lead-Free” label, 90.9% were lead-positive and only 9.1% were lead-negative. We also found that earthenware glazed utensils without the “Lead-Free” label were 1.6 times more likely to contain lead (OR: 1.6, 95% CI 1.0–2.5), P = 0.003. We concluded that lead was detected in almost all acquired food containers. Government interventions in Mexico have focused on training manufacturers to make lead-free glazed ceramics but it has been difficult to eradicate this practice. Educational interventions to make and acquire lead-free glazed ceramics should be targeted to both sellers and buyers. PMID:27379279

  6. Arabidopsis POT1 associates with the telomerase RNP and is required for telomere maintenance

    PubMed Central

    Surovtseva, Yulia V; Shakirov, Eugene V; Vespa, Laurent; Osbun, Nathan; Song, Xiangyu; Shippen, Dorothy E

    2007-01-01

    POT1 is a single-copy gene in yeast and humans that encodes a single-strand telomere binding protein required for chromosome end protection and telomere length regulation. In contrast, Arabidopsis harbors multiple, divergent POT-like genes that bear signature N-terminal OB-fold motifs, but otherwise share limited sequence similarity. Here, we report that plants null for AtPOT1 show no telomere deprotection phenotype, but rather exhibit progressive loss of telomeric DNA. Genetic analysis indicates that AtPOT1 acts in the same pathway as telomerase. In vitro levels of telomerase activity in pot1 mutants are significantly reduced and are more variable than wild-type. Consistent with this observation, AtPOT1 physically associates with active telomerase particles. Although low levels of AtPOT1 can be detected at telomeres in unsynchronized cells and in cells arrested in G2, AtPOT1 binding is significantly enhanced during S-phase, when telomerase is thought to act at telomeres. Our findings indicate that AtPOT1 is a novel accessory factor for telomerase required for positive telomere length regulation, and they underscore the coordinate and extraordinarily rapid evolution of telomere proteins and the telomerase enzyme. PMID:17627276

  7. Estimating Dungeness crab (Cancer magister) abundance: Crab pots and dive transects compared

    USGS Publications Warehouse

    Taggart, S.J.; O'Clair, C. E.; Shirley, T.C.; Mondragon, J.

    2004-01-01

    Dungeness crabs (Cancer magister) were sampled with commercial pots and counted by scuba divers on benthic transects at eight sites near Glacier Bay, Alaska. Catch per unit of effort (CPUE) from pots was compared to the density estimates from dives to evaluate the bias and power of the two techniques. Yearly sampling was conducted in two seasons: April and September, from 1992 to 2000. Male CPUE estimates from pots were significantly lower in April than in the following September; a step-wise regression demonstrated that season accounted for more of the variation in male CPUE than did temperature. In both April and September, pot sampling was significantly biased against females. When females were categorized as ovigerous and nonovigerous, it was clear that ovigerous females accounted for the majority of the bias because pots were not biased against nonovigerous females. We compared the power of pots and dive transects in detecting trends in populations and found that pots had much higher power than dive transects. Despite their low power, the dive transects were very useful for detecting bias in our pot sampling and in identifying the optimal times of year to sample so that pot bias could be avoided.

  8. Transition metal-free one-pot synthesis of nitrogen-containing heterocycles.

    PubMed

    Kumari, Simpal; Kishore, Dharma; Paliwal, Sarvesh; Chauhan, Rajani; Dwivedi, Jaya; Mishra, Aakanksha

    2016-02-01

    One-pot heterocyclic synthesis is an exciting research area as it can open routes for the development of otherwise complex transformations in organic synthesis. Heterocyclic compounds show wide spectrum of applications in medicinal chemistry, chemical biology, and materials science. These heterocycles can be generated very efficiently through highly economical and viable routes using one-pot synthesis. In particular, the metal-free one-pot synthetic protocols are highly fascinating due to several advantages for the industrial production of heterocyclic frameworks. This comprehensive review is devoted to the transition metal-free one-pot synthesis of nitrogen-containing heterocycles from the period 2010-2013.

  9. Considering complementary relationship of evaporation in Budyko's hydrological model

    NASA Astrophysics Data System (ADS)

    Han, Songjun; Shao, Weiwei

    2013-04-01

    In Budyko's hydrological model, actual evaporation was partitioned from precipitation as a function of the relative magnitude of precipitation and potential evaporation. In practice, both Penman equation and Priestley-Taylor equation have been used to estimate the potential evaporation with same Budyko curve, and they are not distinguished under Budyko framework. Nevertheless, according to the complementary relationship of evaporation, the definitions of Penman equation and Priestley-Taylor equation are absolutely different. When water availability is not limited, evaporation occurs at Priestley-Taylor's evaporation (Ew, referred to as wet environment evaporation). As the surface dries without changing the available energy, the actual and Penman's potential evaporation (Epen) rates depart from Ew with opposite changes in fluxes. So the question is: what is the difference of the Budyko's hydrological model with potential evaporation estimated by Penman or Priestley-Taylor equation? How to consider the complementary relationship in Budyko framework? In this study, for both long-term (multiyear) and annual values on water balances in the 29 non-humid catchments in the middle Yellow River Basin of China, the performances of Budyko's hydrological model with potential evaporation estimated by Epen and Ew were distinguished and compared. The catchments with larger value of Ep/Ew (ratio of Penman potential evaporation to Priestley-Taylor evaporation) are characterized with smaller evaporation ratios. The value of Ep/Ew can be served as another variable besides dryness index to partition actual evaporation from precipitation. With Priestley-Taylor equation as energy supply, an empirical formula for the parameter of the Budyko in terms of Ep/Ew and curve is proposed. Therefore, the complementary relationship of evaporation should be considered in the Budyko framework.

  10. Amavadin and other vanadium complexes as remarkably efficient catalysts for one-pot conversion of ethane to propionic and acetic acids.

    PubMed

    Kirillova, Marina V; Kuznetsov, Maxim L; da Silva, José A L; Guedes da Silva, Maria Fátima C; Fraústo da Silva, João J R; Pombeiro, Armando J L

    2008-01-01

    Synthetic amavadin Ca[V{ON[CH(CH(3))COO](2)}(2)] and its models Ca[V{ON(CH(2)COO)(2)}(2)] and [VO{N(CH(2)CH(2)O)(3)}], in the presence of K(2)S(2)O(8) in trifluoroacetic acid (TFA), exhibit remarkable catalytic activity for the one-pot carboxylation of ethane to propionic and acetic acids with the former as the main product (overall yields up to 93 %, catalyst turnover numbers (TONs) up to 2.0 x 10(4)). The simpler V complexes [VO(CF(3)SO(3))(2)], [VO(acac)(2)] and VOSO(4) are less active. The effects of various factors, namely, C(2)H(6) and CO pressures, time, temperature, and amounts of catalyst, TFA and K(2)S(2)O(8), have been investigated, and this allowed optimisation of the process and control of selectivity. (13)C-labelling experiments indicated that the formation of acetic acid follows two pathways, the dominant one via oxidation of ethane with preservation of the C--C bond, and the other via rupture of this bond and carbonylation of the methyl group by CO; the C--C bond is retained in the formation of propionic acid upon carbonylation of ethane. The reactions proceed via both C- and O-centred radicals, as shown by experiments with radical traps. On the basis of detailed DFT calculations, plausible reaction mechanisms are discussed. The carboxylation of ethane in the presence of CO follows the sequential formation of C(2)H(5) (*), C(2)H(5)CO(*), C(2)H(5)COO(*) and C(2)H(5)COOH. The C(2)H(5)COO(*) radical is easily formed on reaction of C(2)H(5)CO(*) with a peroxo V catalyst via a V{eta(1)-OOC(O)C(2)H(5)} intermediate. In the absence of CO, carboxylation proceeds by reaction of C(2)H(5) (*) with TFA. For the oxidation of ethane to acetic acid, either with preservation or cleavage of the C-C bond, metal-assisted and purely organic pathways are also proposed and discussed. PMID:18058882

  11. Field evaporation of doubly charged ions from a polar liquid

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Novikova, L. I.

    2012-11-01

    The effect of charge on field evaporation of ions from polar liquids is considered. Using the electromembrane ion source, we performed mass-spectral analysis of field evaporation of ions from the solution of sodium sulfate in a water-glycerol mixture. The composition of doubly charged cluster ions in the field evaporation from glycerol is determined. The rates of the field evaporation of doubly charged ions and singly charged ions are compared. It is shown that the ion charge as well as its localization considerably influences the efficiency of field evaporation of ions from polar liquids.

  12. The simultaneous mass and energy evaporation (SM2E) model.

    PubMed

    Choudhary, Rehan; Klauda, Jeffery B

    2016-01-01

    In this article, the Simultaneous Mass and Energy Evaporation (SM2E) model is presented. The SM2E model is based on theoretical models for mass and energy transfer. The theoretical models systematically under or over predicted at various flow conditions: laminar, transition, and turbulent. These models were harmonized with experimental measurements to eliminate systematic under or over predictions; a total of 113 measured evaporation rates were used. The SM2E model can be used to estimate evaporation rates for pure liquids as well as liquid mixtures at laminar, transition, and turbulent flow conditions. However, due to limited availability of evaporation data, the model has so far only been tested against data for pure liquids and binary mixtures. The model can take evaporative cooling into account and when the temperature of the evaporating liquid or liquid mixture is known (e.g., isothermal evaporation), the SM2E model reduces to a mass transfer-only model.

  13. A facile one-pot route to cationic cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Jasmani, Latifah; Eyley, Samuel; Wallbridge, Rachel; Thielemans, Wim

    2013-10-01

    Pyridinium-grafted-cellulose nanocrystals were prepared by a simple one-pot reaction using 4-(1-bromoethyl/bromomethyl)benzoic acid, pyridine and cellulose nanocrystals (CNCs). The grafting consists of an esterification reaction between 4-(1-bromoethyl/bromomethyl)benzoic acid and CNCs and a nucleophilic attack on the C-Br bond of 4-(1-bromoethyl/bromomethyl)benzoic acid by pyridine. This reaction simplifies existing cationization methods, which leads to a higher grafting density while retaining the CNC crystallinity.Pyridinium-grafted-cellulose nanocrystals were prepared by a simple one-pot reaction using 4-(1-bromoethyl/bromomethyl)benzoic acid, pyridine and cellulose nanocrystals (CNCs). The grafting consists of an esterification reaction between 4-(1-bromoethyl/bromomethyl)benzoic acid and CNCs and a nucleophilic attack on the C-Br bond of 4-(1-bromoethyl/bromomethyl)benzoic acid by pyridine. This reaction simplifies existing cationization methods, which leads to a higher grafting density while retaining the CNC crystallinity. Electronic supplementary information (ESI) available: Experimental description, FTIR, XPS and XRD spectra and detailed characterisation results of all compounds. See DOI: 10.1039/c3nr03456a

  14. Cerebrovascular regulation in the postural orthostatic tachycardia syndrome (POTS)

    NASA Technical Reports Server (NTRS)

    Low, P. A.; Novak, V.; Spies, J. M.; Novak, P.; Petty, G. W.

    1999-01-01

    Patients with the postural orthostatic tachycardia syndrome (POTS) have symptoms of orthostatic intolerance despite having a normal orthostatic blood pressure (BP), which suggests some impairment of cerebrovascular regulation. Cerebrovascular autoregulation refers to the maintenance of normal cerebral blood flow in spite of changing BP. Mechanisms of autoregulation include myogenic, metabolic and neurogenic vasoregulation. Beat-to-beat recording of blood-flow velocity (BFV) is possible using transcranial Doppler imaging. It is possible to evaluate autoregulation by regressing deltaBFV to deltaBP during head-up tilt. A number of dynamic methods, relating deltaBFV to deltaBP during sudden induced changes in BP by occluding then releasing peripheral arterial flow or by the Valsalva maneuver. The deltaBFV to deltaBP provides an index of autoregulation. In orthostatic hypotension, the autoregulated range is typically expanded. In contrast, paradoxical vasoconstriction occurs in POTS because of an increased depth of respiration, resulting in hypocapnic cerebrovascular constriction, and impaired autoregulation.

  15. Combinatorial one-pot chemoenzymatic synthesis of heparin.

    PubMed

    Bhaskar, Ujjwal; Li, Guoyun; Fu, Li; Onishi, Akihiro; Suflita, Mathew; Dordick, Jonathan S; Linhardt, Robert J

    2015-05-20

    Contamination in heparin batches during early 2008 has resulted in a significant effort to develop a safer bioengineered heparin using bacterial capsular polysaccharide heparosan and recombinant enzymes derived from the heparin/heparan sulfate biosynthetic pathway. This requires controlled chemical N-deacetylation/N-sulfonation of heparosan followed by epimerization of most of its glucuronic acid residues to iduronic acid and O-sulfation of the C2 position of iduronic acid and the C3 and C6 positions of the glucosamine residues. A combinatorial study of multi-enzyme, one-pot, in vitro biocatalytic synthesis, carried out in tandem with sensitive analytical techniques, reveals controlled structural changes leading to heparin products similar to animal-derived heparin active pharmaceutical ingredients. Liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy analysis confirms an abundance of heparin's characteristic trisulfated disaccharide, as well as 3-O-sulfo containing residues critical for heparin binding to antithrombin III and its anticoagulant activity. The bioengineered heparins prepared using this simplified one-pot chemoenzymatic synthesis also show in vitro anticoagulant activity.

  16. Cell compatible arginine containing cationic polymer: one-pot synthesis and preliminary biological assessment.

    PubMed

    Zavradashvili, Nino; Memanishvili, Tamar; Kupatadze, Nino; Baldi, Lucia; Shen, Xiao; Tugushi, David; Wandrey, Christine; Katsarava, Ramaz

    2014-01-01

    Synthetic cationic polymers are of interest as both nonviral vectors for intracellular gene delivery and antimicrobial agents. For both applications synthetic polymers containing guanidine groups are of special interest since such kind of organic compounds/polymers show a high transfection potential along with antibacterial activity. It is important that the delocalization of the positive charge of the cationic group in guanidine significantly decreases the toxicity compared to the ammonium functionality. One of the most convenient ways for incorporating guanidine groups is the synthesis of polymers composed of the amino acid arginine (Arg) via either application of Arg-based monomers or chemical modification of polymers with derivatives of Arg. It is also important to have biodegradable cationic polymers that will be cleared from the body after their function as transfection or antimicrobial agent is fulfilled. This chapter deals with a two-step/one-pot synthesis of a new biodegradable cationic polymer-poly(ethylene malamide) containing L-arginine methyl ester covalently attached to the macrochains in β-position of the malamide residue via the α-amino group. The goal cationic polymer was synthesized by in situ interaction of arginine methyl ester dihydrochloride with intermediary poly(ethylene epoxy succinimide) formed by polycondensation of di-p-nitrophenyl-trans-epoxy succinate with ethylenediamine. The cell compatibility study with Chinese hamster ovary (CHO) and insect Schneider 2 cells (S2) within the concentration range of 0.02-500 mg/mL revealed that the new polymer is not cytotoxic. It formed nanocomplexes with pDNA (120-180 nm in size) at low polymer/DNA weight ratios (WR = 5-10). A preliminarily transfection efficiency of the Arg-containing new cationic polymer was assessed using CHO, S2, H5, and Sf9 cells.

  17. THE FLAMMABILITY ANALYSIS AND TIME TO REACH LOWER FLAMMABILITY LIMIT CALCULATIONS ON THE WASTE EVAPORATION AT 242-A EVAPORATOR

    SciTech Connect

    HU TA

    2007-10-31

    This document describes the analysis of the waste evaporation process on the flammability behavior. The evaluation calculates the gas generation rate, time to reach 25% and 100% of the lower flammability limit (LFL), and minimum ventilation rates for the 242-A Evaporator facility during the normal evaporation process and when vacuum is lost. This analysis performs flammability calculations on the waste currently within all 28 double-shell tanks (DST) under various evaporation process conditions to provide a wide spectrum of possible flammable gas behavior. The results of this analysis are used to support flammable gas control decisions and support and upgrade to Documented Safety Analysis for the 242-A Evaporator.

  18. One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries.

    PubMed

    Park, Junsu; Kim, Gil-Pyo; Nam, Inho; Park, Soomin; Yi, Jongheop

    2013-01-18

    Silicon nanoparticles trapped in an ordered mesoporous carbon composite were prepared by a one-step self-assembly with solvent evaporation using the triblock copolymer Pluronic F127 and a resorcinol-formaldehyde polymer as the templating agent and carbon precursor respectively. Such a one-pot synthesis of Si/ordered mesoporous carbon nanocomposite is suitable for large-scale synthesis. Characterization confirmed that the Si nanoparticles were trapped in the ordered mesoporous carbon, as evidenced by transmission electron microscopy, x-ray diffraction analysis and nitrogen sorption isotherms. The composite showed a high reversible capacity above 700 mA h g(-1) during 50 cycles at 2 A g(-1). The improved electrochemical performance of the composite can be ascribed to the buffering effect of spaces formed in the ordered pore channels during the volume expansion of silicon and the rapid movement of lithium ions through the uniform cylindrical pore structure of the mesopores.

  19. One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Park, Junsu; Kim, Gil-Pyo; Nam, Inho; Park, Soomin; Yi, Jongheop

    2013-01-01

    Silicon nanoparticles trapped in an ordered mesoporous carbon composite were prepared by a one-step self-assembly with solvent evaporation using the triblock copolymer Pluronic F127 and a resorcinol-formaldehyde polymer as the templating agent and carbon precursor respectively. Such a one-pot synthesis of Si/ordered mesoporous carbon nanocomposite is suitable for large-scale synthesis. Characterization confirmed that the Si nanoparticles were trapped in the ordered mesoporous carbon, as evidenced by transmission electron microscopy, x-ray diffraction analysis and nitrogen sorption isotherms. The composite showed a high reversible capacity above 700 mA h g-1 during 50 cycles at 2 A g-1. The improved electrochemical performance of the composite can be ascribed to the buffering effect of spaces formed in the ordered pore channels during the volume expansion of silicon and the rapid movement of lithium ions through the uniform cylindrical pore structure of the mesopores.

  20. Drivers of δ2H variations in an idealized extratropical cyclone

    NASA Astrophysics Data System (ADS)

    Dütsch, Marina; Pfahl, Stephan; Wernli, Heini

    2016-05-01

    Numerical model simulations of stable water isotopes help to improve our understanding of the complex processes driving isotopic variability in atmospheric moisture. We use the isotope-enabled Consortium for Small-Scale Modelling (COSMO) model to study the governing mechanisms of δ2H variations in an idealized extratropical cyclone. A set of experiments with differing initial conditions of δ2H in vapor and partly deactivated isotopic fractionation allows us to quantify the relative roles of cloud fractionation and vertical and horizontal advection for the simulated δ2H signals associated with the cyclone and fronts. Horizontal transport determines the large-scale pattern of δ2H in both vapor and precipitation, while fractionation and vertical transport are more important on a smaller scale, near the fronts. During the passage of the cold front fractionation leads to a V-shaped trend of δ2H in precipitation and vapor, which is, for vapor, superimposed on a gradual decrease caused by the arrival of colder air masses.

  1. Blood brain barrier breakdown was found in non-infarcted area after 2-h MCAO.

    PubMed

    Wang, Xiaona; Liu, Yushan; Sun, Yanyun; Liu, Wenlan; Jin, Xinchun

    2016-04-15

    The blood brain barrier (BBB) could be damaged within the thrombolytic time window and is considered to be a precursor to hemorrhagic transformation during reperfusion. Although we have recently reported the association between BBB damage and tissue injury within the thrombolytic time window, our knowledge about this early BBB damage is limited. In this study, rats were subjected to 2-h middle cerebral artery occlusion (MCAO) followed by 10 min reperfusion with Evan's blue as a tracer to detect BBB damage. Rat brain was sliced into 10 consecutive sections and with TTC staining, a macro and full view of the spatial distribution of BBB damage and tissue injury could be clearly seen in the same group of animals. After 2-h MCAO, tissue injury started from 2nd slice and the BBB leakage started from the 5th slice, of note, there is no colocalization between BBB damage and tissue injury. Fluoro Jade B was employed to explore the localization of neuronal degeneration, and our results showed that 2-h MCAO produced greater number of positive cells in ischemic cortex and dorsal striatum than other areas. More important, 2-h MCAO induced occludin but not claudin-5 degradation in the ischemic hemisphere and pretreatment with MMP inhibitor GM6001 significantly reduced occludin degradation as well as BBB damage detected by IgG leakage. Taken together, our findings demonstrated a "mismatch" between ischemic tissue injury and BBB leakage and a differential degradation of occludin and claudin-5 by MMP-2 after 2-h MCAO. PMID:27000223

  2. Prediction of the existence of the N2H- molecular anion

    NASA Astrophysics Data System (ADS)

    Lique, François; Halvick, Philippe; Stoecklin, Thierry; Hochlaf, Majdi

    2012-06-01

    We predict the existence of the N2H- anion from first principle calculations. We present the three-dimensional potential energy surface and the bound states of the N2H-/D- van der Waals anion. The electronic calculations were performed using state-of-the-art ab initio methods and the nuclear motions were solved using a quantum close-coupling scattering theory. A T-shaped equilibrium structure was found, with a well depth of 349.1 cm-1, where 18 bound states have been located for N2H- and 25 for N2D- for total angular momentum J = 0. We also present the absorption spectra of the N2H- complex. This anion could be formed after low energy collisions between N2 and H- through radiative association. The importance of this prediction in astrophysics and the possible use of N2H- as a tracer of N2 and H- in the interstellar medium is discussed.

  3. Imidacloprid inhibits IgE-mediated RBL-2H3 cell degranulation and passive cutaneous anaphylaxis

    PubMed Central

    Shi, Linbo; Zou, Li; Gao, Jinyan; Xu, Huaing; Shi, Xiaoyun

    2016-01-01

    Background Imidacloprid has been commonly used as a pesticide for crop protection and acts as nicotinic acetylcholine receptor agonists. Little information about the relationship between imidacloprid and allergy is available. Objective This study aims to examine the effects of imidacoprid on IgE-mediated mast cell activation. Methods The rat basophilic leukemia cell line RBL-2H3 (RBL-2H3 cells) were treated with 10-3 – 10-12 mol/L imidacloprid, followed by measuring the mediator production, influx of Ca2+ in IgE-activated RBL-2H3 cells, and the possible effects of imidacoprid on anti-dinitrophenyl IgE-induced passive cutaneous anaphylaxis (PCA). Results It was shown that imidacoprid suppressed the production of histamine, β-hexosaminidase, leukotriene C4, interleukin-6, tumor necrosis factor-α, and Ca2+ mobilization in IgE-activated RBL-2H3 cells and decreased vascular extravasation in IgE-induced PCA. Conclusion It is the first time to show that imidacloprid suppressed the activation of RBL-2H3 cells. PMID:27803884

  4. Synthesis, spectral characterization and larvicidal activity of acridin-1(2H)-one analogues

    NASA Astrophysics Data System (ADS)

    Subashini, R.; Bharathi, A.; Roopan, Selvaraj Mohana; Rajakumar, G.; Abdul Rahuman, A.; Gullanki, Pavan Kumar

    Acridin-1(2H)-one analogue of 7-chloro-3,4-dihydro-9-phenyl-2-[(pyridine-2yl) methylene] acridin-1(2H)-one, 5 was prepared by using 7-chloro-3,4-dihydro-9-phenylacridin-1(2H)-one, 3 and picolinaldehyde, 4 in the presence of KOH at room temperature. These compounds were characterized by analytical and spectral analyses. The purpose of the present study was to assess the efficacy of larvicidal and repellent activity of synthesized 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues such as compounds 3 and 5 against the early fourth instar larvae of filariasis vector, Culex quinquefasciatus and Japanese encephalitis vector, Culex gelidus (Diptera: Culicidae). The compound exhibited high larvicidal effects at 50 mg/L against both the mosquitoes with LC50 values of 25.02 mg/L (r2 = 0.998) and 26.40 mg/L (r2 = 0.988) against C. quinquefasciatus and C. gelidus, respectively. The 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues that are reported for the first time to our best of knowledge can be better explored for the control of mosquito population. This is an ideal ecofriendly approach for the control of Japanese encephalitis vectors, C. quinquefasciatus and C. gelidus.

  5. (15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity.

    PubMed

    Justice, Nicholas B; Li, Zhou; Wang, Yingfeng; Spaudling, Susan E; Mosier, Annika C; Hettich, Robert L; Pan, Chongle; Banfield, Jillian F

    2014-10-01

    Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either (15)NH4(+) or deuterium oxide ((2)H2O) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized (15)N-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized (15)N-enriched protein in all conditions. There were relatively few (15)N-enriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly (14)N biomass derived from recycled biomolecules. In parallel experiments using (2)H2O, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using (2)H2O. The nearly exclusive ability of Archaea to synthesize proteins using (2)H2O may be due to archaeal heterotrophy, whereby Archaea offset deleterious effects of (2)H by accessing (1)H generated by respiration of organic compounds.

  6. Cooperative catalysis by bovine serum albumin-iodine towards cascade oxidative coupling-C(sp(2))-H sulfenylation of indoles/hydroxyaryls with thiophenols on water.

    PubMed

    Saima; Equbal, Danish; Lavekar, Aditya G; Sinha, Arun K

    2016-06-22

    Cooperative cascade catalysis by bovine serum albumin (BSA)-iodine allows for the first time the performance of C(sp(2))-H sulfenylation of indole from readily available thiophenol (-SH bond) via in situ generation/cleavage of disulfide (S-S bond) in air under aqueous conditions, whereas BSA or I2 individually do not permit this two step sequence to occur in the same pot towards C-S bond formation. This green cooperative protocol is extendable to sulfenylation of hydroxyaryls (i.e. 2-naphthol or 4-hydroxycoumarin) with diverse thiols (aryl/heteroaryl) without using any toxic metal catalysts, bases or oxidants, thus rendering the process environmentally and economically reliable. Further, the gram scale synthesis of a COX-2 inhibitor (3-(pyridin-2-ylthio)-1H-indole), regioselectivity and recyclability (up to four cycles) are the additional merits of this cooperative cascade bio-chemocatalytic (BSA-I2) protocol. Moreover, HPLC and ESI-MS provide powerful insights into the mechanistic aspects of the above cascade sulfenylation reaction. PMID:27251465

  7. Crystal structure of the binary complex of cobalt and zinc chlorides with carbamide [Co(OCN{sub 2}H{sub 4}){sub 5}(H{sub 2}O)][ZnCl{sub 4}

    SciTech Connect

    Furmanova, N. G. Chernaya, T. S.; Resnyanskii, V. F. Sulaimankulov, K. S.

    2010-03-15

    Mixed single crystals of [Co(OCN{sub 2}H{sub 4}){sub 5}(H{sub 2}O)][ZnCl{sub 4}] were grown by the isothermal evaporation of an aqueous solution. The crystal structure of this complex was established by X-ray diffraction (R = 0.052 based on 7003 reflections). The crystals consist of [Co(OCN{sub 2}H{sub 4}){sub 5}(H{sub 2}O)]{sup 2+} cations containing Co atoms in an octahedral coordination and [ZnCl{sub 4}]{sup 2-}] anions containing Zn atoms in a tetrahedral coordination. The carbamide molecules are involved in both intramolecular and interionic hydrogen bonds. The H{sub 2}O molecule forms hydrogen bonds with the anions.

  8. Hollow-Fiber Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  9. Photodetectors and birefringence in ZnP2-С2h5 crystals

    NASA Astrophysics Data System (ADS)

    Stamov, I. G.; Syrbu, N. N.; Dorogan, A. V.

    2013-03-01

    The spectral dependences of refractive indexes no(n⊥), ne(n||) and Δn=no(n⊥)-ne(n||) were studied in ZnP2-C2h5 crystals. The intersection of no(n⊥) and ne(n||) was found for λ0=0.906 μm. The crystal possesses positive dispersion Δn=no(n⊥)-ne(n||) in the region where λ>λ0, and a negative dispersion is observed in the region where λ<λ0. The electrical, spectral and azimuth characteristics of monolith n-р- and Ме-n-р-ZnP2C2h5 and discrete ZnP2-C2h5-ZnP2-D48 structures were studied, and a prognosis was made on the usage perspective of these devices.

  10. Detection of C2H4 Neptune from ISO/PHT-S Observations

    NASA Technical Reports Server (NTRS)

    Schulz, B.; Encrenaz, Th.; Bezard, B.; Romani, P. N.; Lellouch, E.; Atreya, S. K.

    1999-01-01

    The 6-12 micrometer spectrum of Neptune has been recorded with the PHT-S instrument of the Infrared Space Observatory (ISO) at a resolution of 0.095 micrometer. In addition to the emissions of CH4, CH3D and C2H6 previously identified, the spectrum shows the first firm identification of ethylene C2H4. The inferred column density above the 0.2-mbar level is in the range (1.1 - 3) x 10(exp 14) molecules/cm. To produce this low amount, previous photochemical models invoked rapid mixing between the source and sink regions of C2H4. We show that this requirement can be relaxed if recent laboratory measurements of CH4 photolysis branching ratios at Lyman alpha are used.

  11. Theoretical study of the C-H bond dissociation energy of C2H

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1990-01-01

    A theoretical study of the convergence of the C-H bond dissociation energy D(0) in C2H with respect to both the one- and n-particle spaces is presented. The calculated C-H bond energies of C2H2 and C2H4, which are in excellent agreement with experiment, are used for calibration. The best estimate for D(0) of 112.4 + or - 2.0 kcal/mol is slightly below the recent experimental value of 116.3 + or - 2.6 kcal/mol, but substantially above a previous theoretical estimate of 102 kcal/mol. The remaining discrepancy with experiment may reflect primarily the uncertainty in the experimental D(0) value of C2 required in the analysis.

  12. N2H(+) in the Orion ambient ridge - Cloud clumping versus rotation

    NASA Technical Reports Server (NTRS)

    Womack, Maria; Ziurys, L. M.; Sage, L. J.

    1993-01-01

    The IRAM 30-m telescope is used to obtain spectra of the J = 1 yields 0 transition of N2H(+) over a 2 x 2 arcsec area toward the Orion-KL/IRc2 star-forming region with 26-arcsec angular resolution. The N2H(+) emission, which exclusively traces the ridge gas, exhibits multiple radial velocities which appear to arise from the presence of at least four clouds of quiescent material. It is argued that the velocity structure of N2H(+) does not uniformly change across OMC-1 and, consequently, is inconsistent with the presence of large-scale differential rotation of the extended ridge along the SW-NE axis about IRc2. The coincidence of the two larger clouds with star-forming activity in Orion-KL suggests that either the quiescent gas is being pushed apart or that the star formation may have been triggered by a cloud-cloud interaction.

  13. ABC and SLC transporter expression and proton oligopeptide transporter (POT) mediated permeation across the human blood--brain barrier cell line, hCMEC/D3 [corrected].

    PubMed

    Carl, Stephen M; Lindley, David J; Das, Debanjan; Couraud, Pierre O; Weksler, Babette B; Romero, Ignacio; Mowery, Stephanie A; Knipp, Gregory T

    2010-08-01

    Initial studies indicate that the newly developed hCMEC/D3 cell line may prove to be a useful model for studying the physiology of the human blood-brain barrier (BBB) endothelium. The purpose of this study was to assess the mRNA expression of several ABC and SLC transporters, with an emphasis on the proton-coupled oligopeptide transporter superfamily (POT) transporters in this immortalized BBB cell model. The transport kinetics of POT-substrates was also evaluated. The hCMEC/D3 cell line was maintained in a modified EGM-2 medium in collagenated culture flasks and passaged every 3-4 days at approximately 85%-95% confluence. Messenger RNA (mRNA) expression of a variety of ABC and SLC transporters was evaluated using qRT-PCR arrays, while additional qRT-PCR primers were designed to assess the expression of POT members. The transport kinetics of mannitol and urea were utilized to quantitatively estimate the intercellular pore radius, while POT substrate transport was also determined to assess the suitability of the cell model from a drug screening perspective. Optimization of the cell line was attempted by culturing with on laminin and fibronectin enhanced collagen and in the presence of excess Ca(2+). hCMEC/D3 cells express both hPHT1 and hPHT2, while little to no expression of either hPepT1 or hPepT2 was observed. The relative expression of other ABC and SLC transporters is discussed. While POT substrate transport does suggest suitability for BBB drug permeation screening, the relative intercellular pore radius was estimated at 19 A, significantly larger than that approximated in vivo. Culturing with extracellular matrix proteins did not alter mannitol permeability. These studies characterized this relevant human hCMEC/D3 BBB cell line with respect to both the relative mRNA expression of various ABC and SLC transporters and its potential utility as an in vitro screening tool for brain permeation. Additional studies are required to adequately determine the potential

  14. Evaporative light scattering detection of pyrrolizidine alkaloids.

    PubMed

    Schaneberg, Brian T; Molyneux, Russell J; Khan, Ikhlas A

    2004-01-01

    A reverse-phase high-performance liquid chromatography method utilizing evaporative light scattering detection (ELSD) has been developed for the simultaneous detection of hepatotoxic pyrrolizidine alkaloids with and without chromophores, namely, riddelliine, riddelliine N-oxide, senecionine, senecionine N-oxide, seneciphylline, retrorsine, integerrimine, lasiocarpine and heliotrine. Pyrrolizidine alkaloids were detected in five plant extracts (Senecio spartioides, S. douglasii var. longilobus, S. jacobaea, S. intergerrimus var. exaltatus and Symphytum officinale). The detection of heliotrine (which does not contain a chromophore) was much improved by ELSD compared with photodiode array detection. PMID:14979525

  15. Two stage indirect evaporative cooling system

    DOEpatents

    Bourne, Richard C.; Lee, Brian E.; Callaway, Duncan

    2005-08-23

    A two stage indirect evaporative cooler that moves air from a blower mounted above the unit, vertically downward into dry air passages in an indirect stage and turns the air flow horizontally before leaving the indirect stage. After leaving the dry passages, a major air portion travels into the direct stage and the remainder of the air is induced by a pressure drop in the direct stage to turn 180.degree. and returns horizontally through wet passages in the indirect stage and out of the unit as exhaust air.

  16. CHEMISTRY IN EVAPORATING ICES-UNEXPLORED TERRITORY

    SciTech Connect

    Cecchi-Pestellini, Cesare; Rawlings, Jonathan M. C.; Viti, Serena; Williams, David A. E-mail: jcr@star.ucl.ac.u E-mail: daw@star.ucl.ac.u

    2010-12-20

    We suggest that three-body chemistry may occur in warm high-density gas evaporating in transient co-desorption events on interstellar ices. Using a highly idealized computational model we explore the chemical conversion from simple species of the ice to more complex species containing several heavy atoms, as a function of density and of adopted three-body rate coefficients. We predict that there is a wide range of densities and rate coefficients in which a significant chemical conversion may occur. We discuss the implications of this idea for the astrochemistry of hot cores.

  17. Treatment of evaporator condensates by pervaporation

    DOEpatents

    Blume, Ingo; Baker, Richard W.

    1990-01-01

    A pervaporation process for separating organic contaminants from evaporator condensate streams is disclosed. The process employs a permselective membrane that is selectively permeable to an organic component of the condensate. The process involves contacting the feed side of the membrane with a liquid condensate stream, and withdrawing from the permeate side a vapor enriched in the organic component. The driving force for the process is the in vapor pressure across the membrane. This difference may be provided for instance by maintaining a vacuum on the permeate side, or by condensing the permeate. The process offers a simple, economic alternative to other separation techniques.

  18. Evaporation control research, 1959-60

    USGS Publications Warehouse

    ,

    1963-01-01

    Two hundred and forty-five dispersions of long-chain alkanols were formulated by using various emulsifiers and alkanols. The dispensing and spreading ability of each of these formulations was tested. The most promising emulsifier that could be used with any of the alkanols was glyceryl monostearate (self-emulsifying). However, the concentration of the alkanol in the dispersion form varied somewhat: with the length of the carbon chain. A maximum concentration of 16 percent was obtained using the longer chain alkanols in the dispersion form without losing any of the properties of a fluid. Nine field tests were undertaken on small stock tanks. The retardant materials used in these tests were dodecanol, hexadecanol, and octadecanol. These materials were applied in either liquid or dispersion form. Four types of dispensing equipment were tested. The first type used a pressure system which sprayed a liquid onto the surface of the water. An anemometer and wind-controlled vane, operated by an electrical system, determined the length End frequency of application. The second type was similar to the first except that gravity was utilized to force the liquid onto the surface. The third type. used a drip system with rates of about 10 drops per minute. The fourth type used a gravity feed and a wind-controlled valve which allowed the dispersion material to flow onto the surface of the water when the wind was in the proper direction. In the field tests, the best reduction in evaporation was obtained using octadecanol in dispersion form and dispensed with the wind-controlled valve and gravity feed system. The maximum reduction in evaporation for a 2-week period was 27 percent. However, the economics of suppressing evaporation from stock tanks is questionable because of the short travel time across the tank by the film. There are still many problems unsolved. Some of these can be resolved in the laboratory whereas others can be resolved only in the field. Some of the more serious

  19. A One-Pot, Asymmetric Robinson Annulation in the Organic Chemistry Majors Laboratory

    ERIC Educational Resources Information Center

    Lazarski, Kiel E.; Rich, Alan A.; Mascarenhas, Cheryl M.

    2008-01-01

    The Robinson annulation is a topic of importance in the second-year organic curriculum. A one-pot, enantioselective Robinson annulation is described. The experiment is completed in two lab periods and is geared towards the second-year organic chemistry major. To our knowledge, this is the first example of a one-pot enantioselective Robinson…

  20. 9 CFR 319.761 - Potted meat food product and deviled meat food product.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Potted meat food product and deviled meat food product. 319.761 Section 319.761 Animals and Animal Products FOOD SAFETY AND INSPECTION... COMPOSITION Meat Salads and Meat Spreads § 319.761 Potted meat food product and deviled meat food...

  1. 9 CFR 319.761 - Potted meat food product and deviled meat food product.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Potted meat food product and deviled meat food product. 319.761 Section 319.761 Animals and Animal Products FOOD SAFETY AND INSPECTION... COMPOSITION Meat Salads and Meat Spreads § 319.761 Potted meat food product and deviled meat food...

  2. 9 CFR 319.761 - Potted meat food product and deviled meat food product.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Potted meat food product and deviled meat food product. 319.761 Section 319.761 Animals and Animal Products FOOD SAFETY AND INSPECTION... COMPOSITION Meat Salads and Meat Spreads § 319.761 Potted meat food product and deviled meat food...

  3. 9 CFR 319.761 - Potted meat food product and deviled meat food product.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Potted meat food product and deviled meat food product. 319.761 Section 319.761 Animals and Animal Products FOOD SAFETY AND INSPECTION... COMPOSITION Meat Salads and Meat Spreads § 319.761 Potted meat food product and deviled meat food...

  4. 50 CFR 622.189 - Restrictions and requirements for sea bass pots.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Restrictions and requirements for sea... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF OF MEXICO... requirements for sea bass pots. (a) Tending restriction. A sea bass pot in the South Atlantic EEZ may be...

  5. 50 CFR 622.189 - Restrictions and requirements for sea bass pots.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Restrictions and requirements for sea... OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF OF MEXICO... requirements for sea bass pots. (a) Tending restriction. A sea bass pot in the South Atlantic EEZ may be...

  6. Navigating Hegemonies and Critically Examining "The Melting Pot" in the Basic Writing Classroom

    ERIC Educational Resources Information Center

    Scott, Tonya M.

    2004-01-01

    Using diverse texts to critically examine America's melting pot ideal supports basic writing students' successful matriculation through rhetorically and socially challenging locations. This paper is a pedagogical study of a basic writing (BW) classroom in which students grappled with America's "melting pot" metaphor. The theme of the course…

  7. Beyond the Melting Pot Three Decades Later: Recent Immigrants and New York's New Ethnic Mixture.

    ERIC Educational Resources Information Center

    Foner, Nancy

    2000-01-01

    Discusses the 1963 book, "Beyond the Melting Pot," which challenged the melting pot myth in New York City. Comments on new features of New York's ethnic and racial mixture (characteristics of new immigrant groups, the changing city context, and the new global interconnections), noting where insights from the book can help in understanding new…

  8. Kinetic Limited Water Evaporation in Hydrophilic Nanofluidic Channels

    NASA Astrophysics Data System (ADS)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Xie, Quan; Duan, Chuanhua

    2015-11-01

    Capillary evaporation is one of the most efficient approaches for heat and mass transfer, but the interfacial resistance in capillary evaporation governed by the kinetic theory has remained poorly understood. Here we report experimental studies of the kinetic-limited water capillary evaporation in 2-D hydrophilic nanochannels. A novel hybrid nanochannel design is employed to guarantee sufficient water supply to the liquid/vapor evaporation interface and to enable precise evaporation rate measurements. We study the effects of confinement (16 ~ 105nm), temperature (20 ~ 40 °C), and relative humidity (0% ~ 60%) on the evaporation rate and the evaporation coefficient. A maximum evaporation flux of 21287 micron/s is obtained in 16-nm nanochannels at 40°C and RH =0%, which corresponds to a heat flux of 4804 W/cm°. The evaporation coefficient is found to be independent on geometrical confinement, but shows a clear dependence on temperature, decreasing from 0.55 at 20°C to 0.5 at 40 °C. These findings have implications for understanding heat and mass transport in nanofluidic devices and porous media, and shed light on further development of evaporation-based technologies for thermal management, membrane purification and lab-on-a-chip devices. The work is supported by the American Chemical Society Petroleum Research Fund (ACS PRF # 54118-DNI7) and the Faculty Startup Fund (Boston University, USA).

  9. The continuous similarity model of bulk soil-water evaporation

    NASA Technical Reports Server (NTRS)

    Clapp, R. B.

    1983-01-01

    The continuous similarity model of evaporation is described. In it, evaporation is conceptualized as a two stage process. For an initially moist soil, evaporation is first climate limited, but later it becomes soil limited. During the latter stage, the evaporation rate is termed evaporability, and mathematically it is inversely proportional to the evaporation deficit. A functional approximation of the moisture distribution within the soil column is also included in the model. The model was tested using data from four experiments conducted near Phoenix, Arizona; and there was excellent agreement between the simulated and observed evaporation. The model also predicted the time of transition to the soil limited stage reasonably well. For one of the experiments, a third stage of evaporation, when vapor diffusion predominates, was observed. The occurrence of this stage was related to the decrease in moisture at the surface of the soil. The continuous similarity model does not account for vapor flow. The results show that climate, through the potential evaporation rate, has a strong influence on the time of transition to the soil limited stage. After this transition, however, bulk evaporation is independent of climate until the effects of vapor flow within the soil predominate.

  10. Capillary Limit in a Loop Heat Pipe with Dual Evaporators

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Birur, Gajanana; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper describes a study on the capillary limit of a loop heat pipe (LHP) with two evaporators and two condensers. Both theoretical analysis and experimental investigation are conducted. Tests include heat load to one evaporator only, even heat loads to both evaporators and uneven heat load to both evaporators. Results show that after the capillary limit is exceeded, vapor will penetrate through the wick of the weaker evaporator and the compensation chamber (CC) of that evaporator will control the loop operating temperature regardless of which CC has been in control prior to the event Because the evaporator can tolerate vapor bubbles, the loop may continue to work and reach a new steady state at a higher operating temperature. The loop may even function with a modest increase in the heat load past the capillary limit With a heat load to only one evaporator, the capillary limit can be identified by rapid increases in the operating temperature and in the temperature difference between the evaporator and the CC. However, it is more difficult to tell when the capillary limit is exceeded if heat loads are applied to both evaporators. In all cases, the loop can recover by reducing the heat load to the loop.

  11. First-principles characterization of potassium intercalation in the hexagonal 2H-MoS2

    SciTech Connect

    Andersen, Amity; Kathmann, Shawn M.; Lilga, Michael A.; Albrecht, Karl O.; Hallen, Richard T.; Mei, Donghai

    2012-01-12

    Periodic density functional theory calculations were performed to study the structural and electronic properties of potassium intercalated into hexagonal MoS{sub 2} (2H-MoS{sub 2}). Metallic potassium (K) atoms are incrementally loaded in the hexagonal sites of the interstitial spaces between MoS2 sheets of the 2H-MoS{sub 2} bulk structure generating 2H-KxMoS2 (0.125 {<=} x {<=} 1.0) structures. To accommodate the potassium atoms, the interstitial spacing c parameter in the 2H-MoS{sub 2} bulk expands from 12.816 {angstrom} in 2H-MoS{sub 2} to 16.086 {angstrom} in 2H-K{sub 0.125}MoS{sub 2}. The second lowest potassium loading concentration (K{sub 0.25}MoS{sub 2}) results in the largest interstitial spacing expansion (to c = 16.726 {angstrom}). Our calculations show that there is a small gradual contraction of the interstitial spacing as the potassium loading increases with c = 14.839 {angstrom} for KMoS{sub 2}. This interstitial contraction is correlated with an in-plane expansion of the MoS{sub 2} sheets, which is in good agreement with experimental X-ray diffraction (XRD) measurements. The electronic analysis shows that potassium readily donates its 4s electron to the conduction band of the 2H-K{sub x}MoS{sub 2}, and is largely ionic in character. As a result of the electron donation, the 2H-K{sub x}MoS{sub 2} system changes from a semiconductor to a more metallic system with increasing potassium intercalation. For loadings 0.25 {<=} x {<=} 0.625, triangular Mo-Mo-Mo moieties are prominent and tend to form rhombitrihexagonal motifs. Intercalation of H{sub 2}O molecules that solvate the K atoms is likely to occur in catalytic conditions. The inclusion of two H{sub 2}O molecules per K atom in the K{sub 0.25}MoS{sub 2} structure shows good agreement with XRD measurements.

  12. Terahertz Spectroscopy of the Bending Vibrations of Acetylene 12C2H2

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, Brian J.; Pearson, John C.

    2009-11-01

    Twenty P-branch transitions of 12C2H2 have been measured in the 0.8-1.6 THz region of its bending vibrational difference band. The accuracy of these measurements is estimated to be 100 kHz. The 12C2H2 molecules were generated under room temperature by passing 150 mTorr H2O vapor through calcium carbide (CaC2) powder. The observed transitions were modeled together with prior far-infrared data involving the bending levels with ∑\

  13. Low-temperature solid-state phase transformations in 2H silicon carbide

    NASA Technical Reports Server (NTRS)

    Will, H. A.; Powell, J. A.

    1972-01-01

    Single crystals of 2H SiC were observed to undergo phase transformations at temperatures as low as 400 C. Some 2H crystals transformed to a structure with one-dimensional disorder along the crystal c axis. Others transformed to a faulted cubic/6H structure. The transformation is time and temperature dependent and is greatly enhanced by dislocations. Observations indicate that the transformation takes place by means of a slip process perpendicular to the c axis. Cubic SiC crystals were observed to undergo a solid state transformation above 1400 C.

  14. Implications of C2H photochemistry on the modeling of C2 distributions in comets

    NASA Technical Reports Server (NTRS)

    Jackson, William M.; Bao, Yihan; Urdahl, Randall S.

    1991-01-01

    Laboratory studies of the secondary photolysis of the C2H radical are summarized and used to explain some discrepancies between models of C2 emission in comets. These studies show that several states of the C2 radicals produced in the photolysis of C2H2 at 193 nm have bimodal rotational distributions when plotted as a Boltzmann diagram. They also establish that the C2 radicals are formed with varying degrees of vibrational excitation, so that if they are formed in a similar manner in comets, the C2 radicals must start out with this initial vibrational excitation.

  15. Davis–Beirut Reaction: Route to Thiazolo-, Thiazino-, and Thiazepino-2H-indazoles

    PubMed Central

    2015-01-01

    Methods for the construction of thiazolo-, thiazino-, and thiazepino-2H-indazoles from o-nitrobenzaldehydes or o-nitrobenzyl bromides and S-trityl-protected 1°-aminothioalkanes are reported. The process consists of formation of the requisite N-(2-nitrobenzyl)(tritylthio)alkylamine, subsequent deprotection of the trityl moiety with TFA, and immediate treatment with aq. KOH in methanol under Davis–Beirut reaction conditions to deliver the target thiazolo-, thiazino-, or thiazepino-2H-indazole in good overall yield. Subsequent S-oxidation gives the corresponding sulfone. PMID:25019525

  16. High-resolution absorption cross sections of C2H6 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Buzan, Eric; Dulick, Michael; Bernath, Peter F.

    2015-11-01

    Infrared absorption cross sections near 3.3 μm have been obtained for ethane, C2H6. These were acquired at elevated temperatures (up to 773 K) using a Fourier transform infrared spectrometer and tube furnace with a resolution of 0.005 cm-1. The integrated absorption was calibrated using composite infrared spectra taken from the Pacific Northwest National Laboratory (PNNL). These new measurements are the first high-resolution infrared C2H6 cross sections at elevated temperatures.

  17. Stable Isotope (18O, 2H) and Arsenic Distribution in the Shallow Aquifers in Araihazar, Bangladesh

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Datta, S.; Stute, M.; Dhar, R.; Hoque, M. A.; Rahman, M. W.; Ahmed, K. M.; Schlosser, P.; van Geen, A.

    2005-12-01

    Recent estimates indicate that in Bangladesh alone, an estimated 50 million people have been exposed to Arsenic levels that exceed the WHO guideline of 10 μgL-1 for drinking water by up to two orders of magnitude. There is still debate on what processes control the spatial heterogeneity of dissolved As concentrations. One recent suggestion has been that surface waters enriched in labile organic matter and transferred to greater depths by irrigation pumping may be an important factor. We have monitored for a year the oxygen and hydrogen isotopic composition of precipitation in Dhaka, Bangladesh, and of surface waters and groundwaters in a 25 km2 study area in Araihazar, 20 km east of Dhaka. The data show a large spatial and temporal heterogeneity, with δ18O covering a range of up to 12 ‰. The isotopic composition of precipitation falls on the global meteoric water line (GMWL), while most surface waters collected from rivers, ponds and irrigated rice fields plot below and to the right of the meteoric water line, suggesting that evaporation is an important mechanism in this system. Surface waters show a strong evaporative enrichment during the dry season of up to 10 ‰ in δ18O and then show increased mixing with precipitation during the wet season. The groundwater isotopic composition obtained at 6 multi level well sites covers the range between the GMWL and moderately evaporated surface waters. These data indicate that some groundwaters are recharged directly by precipitation while others show evidence of recharge from evaporated surface waters during the wet and at the beginning of the dry season. For several well nests, the sources of groundwater vary in a systematic way as a function of depth. Highly evaporated irrigation water from rice fields in the dry season does not seem to contribute much to groundwater recharge. The degree of evaporation expressed as deuterium excess does not correlate with As concentrations in the groundwater samples. This finding

  18. Relationships between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils.

    PubMed

    De Groote, Mary Ann; Pace, Norman R; Fulton, Kayte; Falkinham, Joseph O

    2006-12-01

    High numbers of mycobacteria, including known pathogenic species such as Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium chelonae, were recovered from aerosols produced by pouring commercial potting soil products and potting soil samples provided by patients with pulmonary mycobacterial infections. The dominant mycobacteria in the soil samples corresponded to the dominant species implicated clinically. Profiles of large restriction fragments obtained by pulsed-field gel electrophoresis demonstrated a closely related pair of M. avium isolates recovered from a patient and from that patient's own potting soil. Thus, potting soils are potential sources of infection by environmental mycobacteria. Use of dust-excluding masks should be considered during potting or other activities that generate aerosol with soil.

  19. The wister mud pot lineament: Southeastward extension or abandoned strand of the San Andreas fault?

    USGS Publications Warehouse

    Lynch, D.K.; Hudnut, K.W.

    2008-01-01

    We present the results of a survey of mud pots in the Wister Unit of the Imperial Wildlife Area. Thirty-three mud pots, pot clusters, or related geothermal vents (hundreds of pots in all) were identified, and most were found to cluster along a northwest-trending line that is more or less coincident with the postulated Sand Hills fault. An extrapolation of the trace of the San Andreas fault southeastward from its accepted terminus north of Bombay Beach very nearly coincides with the mud pot lineament and may represent a surface manifestation of the San Andreas fault southeast of the Salton Sea. Additionally, a recent survey of vents near Mullet Island in the Salton Sea revealed eight areas along a northwest-striking line where gas was bubbling up through the water and in two cases hot mud and water were being violently ejected.

  20. Unfolding the Quantum Nature of Proton Bound Symmetric Dimers of (MeOH)2H+ and (Me2O)2H+: a Theoretical Study

    NASA Astrophysics Data System (ADS)

    Tan, Jake Acedera; Kuo, Jer-Lai

    2014-06-01

    A proton under a tug of war between two competing Lewis bases is a common motif in biological systems and proton transfer processes. Over the past decades, model compounds for such motifs can be prepared by delicate stoichiometric control of salt solutions. Unfortunately, condensed phase studies, which aims to identify the key vibrational signatures are complicated to analyze. As a result, gas-phase studies do provide promising insights on the behavior of the shared proton. This study attempts to understand the quantum nature of the shared proton under theoretical paradigms. Proton bound symmetric dimers of (MeOH)2H+ and (Me2O)2H+ are chosen as the model compounds. The simulation is performed using Density Functional Theory (DFT) at the B3LYP level with 6-311+G(d,p) as the basis set. It was found out that stretching mode of shared proton couples with several other normal modes and its corresponding oscillator strength do distribute to other normal modes. J.R. Roscioli, L.R. McCunn and M.A. Johnson. Science 2007, 316, 249 T.E. DeCoursey. Physiol. Rev., 2003, 83, 475 E.S. Stoyanov. Psys. Chem. Phys., 2000,2,1137